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Abstract

Technological advances have enabled the profiling of multiple molecular layers
at single-cell resolution, assaying cells from multiple samples or conditions.
Consequently, there is a growing need for computational strategies to analyze
data from complex experimental designs that include multiple data modalities
and multiple groups of samples. We present Multi-Omics Factor Analysis v2
(MOFA+), a statistical framework for the comprehensive and scalable integration
of single-cell multi-modal data. MOFA+ reconstructs a low-dimensional
representation of the data using computationally efficient variational inference
and supports flexible sparsity constraints, allowing to jointly model variation
across multiple sample groups and data modalities.
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Background
Single-cell methods have provided unprecedented opportunities to assay cellular het-

erogeneity. This is particularly important for studying complex biological processes, in-

cluding the immune system, embryonic development, and cancer [1–4].

Following the establishment of the first scalable methods for single-cell RNA sequen-

cing (scRNA-seq), other molecular layers are increasingly receiving attention, including

single-cell assays for DNA methylation [5–9] and chromatin accessibility [10–12]. More

recently, technological advances have enabled multiple biological layers to be probed in

parallel in the same cells [12, 13], including single-cell genome and transcriptome (G&T-

seq) [14], single-cell DNA methylation and transcriptome (scM&T-seq) [15], single-cell

chromatin accessibility and transcriptome (sci-CAR) [16], and single-cell nucleosome,

transcriptome and methylation (scNMT-seq) [17], among others [18–24]. These experi-

mental techniques provide the basis for studying regulatory dependencies between tran-

scriptomic and (epi)-genetic diversity at the single-cell level.
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However, from a computational perspective, the integration of single-cell assays

remains challenging owing to high degrees of missing data, inherent assay noise, and

the scale of modern single-cell datasets, which can potentially span millions of cells.

Previously, we introduced Multi-Omics Factor Analysis (MOFA) [25], a statistical

framework that addresses some of these challenges. However, the inference framework

of MOFA is not designed to cope with increasingly large-scale datasets. Moreover,

while MOFA is already devised to account for multiple data modalities, this previous

model makes strong assumptions about the dependencies across cells and in particular

it does not account for side information about the structure between cells, e.g., sample

groups, such as batch, donors, or experimental conditions. By pooling and contrasting

information across studies or experimental conditions, it would be possible to obtain

more comprehensive insights into the complexity underlying biological systems [26–29].

Other methods that have recently been proposed for integrating different data modal-

ities include Seurat (v3) and LIGER, two strategies based on dimensionality reduction

and manifold alignment [30, 31]. Both methods anchor independent datasets from re-

lated populations of cells by leveraging a common feature space (for example matching

gene expression and corresponding promoter accessibility). MOFA+, in contrast, is

aimed at a different problem and is designed for integrating data modalities via a com-

mon sample space (i.e., measurements derived from the same set of cells), where the

features may be distinct across data modalities.

Results
Model description

In a previous study, we introduced Multi-Omics Factor Analysis (MOFA), a statistical frame-

work for the integrative analysis of multi-omics data from a common set of samples [25].

Building on the Bayesian Group Factor Analysis framework, MOFA infers a low-dimensional

representation of the data in terms of a small number of (latent) factors that capture the glo-

bal sources of variability. Notably, MOFA employs Automatic Relevance Determination

(ARD), a hierarchical prior structure that facilitates untangling variation that is shared across

multiple modalities from variability that is present in a single modality. In addition, the spars-

ity assumptions on the weights facilitate the association of molecular features with each

factor. Intuitively, MOFA can be viewed as a statistically rigorous generalization of (sparse)

principal component analysis (PCA) to multi-omics data.

While the model is applicable to single-cell assays, MOFA and related factor models

have critical limitations, including their scalability and the lack of ability to account for

side information about the structure between cells. In particular, these models do not

provide a principled approach for integrating multiple sample groups and data modal-

ities within the same inference framework.

Here, we propose MOFA+, a model extension addressing these challenges by (i) de-

veloping a stochastic variational inference framework amenable to GPU computations,

enabling the analysis of datasets with potentially millions of cells and (ii) incorporating

priors for flexible, structure regularization, thus enabling joint modelling of multiple

groups and data modalities.

Briefly, the inputs to MOFA+ are multiple datasets where features have been aggre-

gated into non-overlapping sets of modalities (also called views) and where cells have
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For technical details and mathematical derivations, we refer the reader to “Methods”

and the Additional file 2: Supplementary Methods. Guidelines for the selection of

group views, data preprocessing and normalization, determination of the number of

factors, interpretation of the factor values and the weights are provided in “Methods”.

A technical comparison with other factor analysis models is provided in Additional file 3:

Table S1.

Model validation using simulated data

Initially, we validated the new features of MOFA+ using simulated data drawn from its

generative model. We considered data representing a range of dataset sizes with differ-

ing numbers of data modalities and sample groups.

First, to assess the utility of stochastic variational inference, we trained models either

using conventional (deterministic) variational inference (VI) or using stochastic variational

inference (SVI). Across a wide range of training hyperparameters (see “Methods”), we ob-

served that SVI yields Evidence Lower Bounds (i.e., the objective function of variational

inference) that are consistent with those obtained from conventional variational inference

as employed in MOFA (Additional file 1: Fig. S1). However, the GPU-accelerated SVI im-

plementation in MOFA+ achieved up to a ~ 20-fold increase in speed compared to VI,

with the most dramatic speedups observed for large datasets. This inference scheme facili-

tates the application of MOFA+ to datasets comprising hundreds of thousands of cells

using commodity hardware (Additional file 1: Fig. S2).

Next, we assessed the group-wise ARD priors, by assessing to what extent it facilitates

the identification of factors with simultaneous differential activity between groups and

data modalities. Indeed, when simulating data where factors explain differing amounts

of variance across groups and across data modalities, MOFA+ was able to more accur-

ately reconstruct the true factor activity patterns than MOFA v1 or conventional Bayes-

ian Factor Analysis (Additional file 1: Fig. S3).

Integration of a heterogeneous time-course single-cell RNA-seq dataset

To illustrate the ability of MOFA+ to model data with samples that exhibit an explicit

group structure, we considered a time-course scRNA-seq dataset, consisting of 16,152

cells that were isolated from multiple mouse embryos at embryonic days E6.5, E7.0,

and E7.25 (two biological replicates per stage). In this dataset, individual embryos are

expected to exhibit transcriptional differences at different stages and even between

embryos from the same stage due to variation in the rate of the developmental progres-

sion. As a proof of principle, we used MOFA+ to disentangle stage-specific variation

from variation that is shared across all stages. For this purpose, we considered the six

batches of cells (two replicates for each of the three embryonic stages) as different

groups in the MOFA+ model.

MOFA+ identified 7 factors that explain at least 1% of variance, which collectively

explain between 35 and 55% of the total transcriptional cell-to-cell variance per embryo

(Additional file 1: Fig. S4). Some factors recapitulate the existence of post-implantation

developmental cell types, including extra-embryonic (ExE) cell types (Factor 1 and

Factor 2, respectively) and the transition of epiblast cells to nascent mesoderm via a

primitive streak transcriptional state (Factor 4; Fig. 2b, c and Additional file 1: Fig. S5).
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