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Phylogenetic Signals in Protein Data

Abstract

Structural biology has seen major advances over the past decade. In the area of protein structure

prediction we have seen significant increase in accuracy with the discovery of coevolutionary signals

in a multiple sequence alignment (MSA). Unlike methods which fold proteins using molecular

dynamic (MD) simulations, these coevolutionary methods make use of correlation information to

fold large protein structures orders of magnitudes faster.

Often the correlation signals in a MSA are a strong indicator that a pair of amino acids are suf-

ficiently close together to be in contact, thus interacting with each other. It has been shown that

accurate inference of amino acid pairs that are in contact in the protein gives rise to accurate pre-

diction of protein structure itself. Hence, statistical inference of amino acid pairs in contact is an

important problem for protein folding.

However, one of the major challenges of these statistical inference methods is that levels of noise

significantly overwhelm the relevant signal for protein data. In this thesis, we attempt to alleviate

one of the most important sources of noise which is also one that is often ignored: spurious cor-

relations induced by phylogeny. To this end, we introduce a novel method for disentangling phy-

logenetic noise from the relevant structural signals. This method is grounded in an extension to

a well-known theorem in RandomMatrix Theory. Through extensive analysis on both synthetic
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and protein data, we demonstrate that it is possible to disentangle these two sources of information.

Crucially, we find that the phylogenetic correlations can be largely removed by finding principal

modes of the empirical correlation matrix where its corresponding eigenvalue satisfies a power-law.
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The internal machinery of life, the chemistry of the parts, is something

beautiful. And it turns out that all life is interconnected with all other life.

Richard Feynman

1
Introduction

Proteins are indispensable to every living organism – it is still an ongoing challenge to predict

their tertiary structures. Over the past several decades, significant progress has been made to fold-

ing a protein using molecular dynamics (MD) simulations. However, MD is expensive and often

computationally infeasible for proteins of a larger size.
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Following the technology boost over the past decade, we are able to accumulate and process enor-

mous amounts of data, such as US stocks data, medical data or data for weather prediction. In the

area of proteins, we now have access to large databases of protein sequences within the same protein

family. Consequently, statistical inference methods are now accessible as competitive alternatives to

solving protein folding via MD simulations such as the recent AlphaFold system54. Moreover, these

statistical methods are capable of inferring the shape of a protein with significantly less compute.

For these statistical inference methods, the key is to understand which signals to extract from the

data and how they can be used to decode the physics behind the fold of a protein.

The link between the structure of a protein and how the structure gives rise to signals in the data

has already been well studied. In particular, the correlation in the data is a result of coevolving pairs

of amino acids which are sufficiently close together, or in contact, within the protein; a finding em-

pirically observed by Altschuh et al. 1 , Miller & Eisenberg 39 . The amino-acid pairs in contact can

be viewed as a set of evolutionary constraints which conserve the shape and the function of the pro-

tein. This set of constraints can be expressed as a “contact map”: a matrix of ones and zeros where

the (i, j)th element is one if and only if amino acids at position i and j in the protein sequence are in

contact with each other. Fig. 1.1 shows an example of such a contact map.

As also shown in Fig. 1.1, the regularity of the structure of a protein is reflected in the contact

map. Thus, this map can also be used to infer the structure of a protein. However, for many fam-

ilies of proteins the data available is still limited and in the low-data regime, noise factors such as

phylogeny become more prevalent and inference of the contact map becomes harder.

2



1.1 Molecular Dynamics

A classical approach to predicting a protein’s tertiary structure is via molecular dynamical simu-

lation. For a general overview see Frenkel & Smit 21 . These approaches try to solve the intrinsic

physics underlying the 3D structure. They achieve this, by minimizing the Gibbs free energy of the

protein structure; resolving forces such as electrostatic or Van der Waals. However, for this method-

ology to be accurate, it requires accurate numerical simulation at atomic resolution. Thus this ap-

proach is hard to scale and for sufficiently large proteins it is computationally infeasible.

On the other hand, statistical inference approaches can scale well with respect to the size of the

protein. In the section below, we will give a general overview of how to exploit the data (multiple

sequence alignment) to give us an approximation to a protein’s tertiary structure.

1.2 Evolutionary Constraints FromMultiple Sequence Alignment

The goal of statistical inference based approaches is to approximate an energy function of a protein

which can be minimized to find the protein structure.

To find this approximate energy, we consider a dataset of sequences that are related to each other

via their evolutionary history. Concretely, consider the example of haemoglobin. This is a protein

which exists in rats, dogs as well as humans. Perhaps not surprisingly, the haemoglobins present in

these different organisms are all very similar in both their primary sequence and tertiary structure;

as they are all related to each other strongly via evolution. Importantly, although the primary se-

quences are similar, they do differ while their tertiary structure remains largely the same. This differ-
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A) B)

C) D)

Figure 1.1: This plot shows how the regularities of the protein tertiary structure is reflected in the contact map of
oxymyoglobin. A‐B) shows the intra helical‐contacts correspond to the diagonal of the contact map, whereas C‐D)
shows the contacts between these helices are on the off‐diagonal of the contact map where the regularity of the struc‐
ture is also reflected. We can exploit the regularities in the contact map to infer the structure of the protein.

ence between the primary sequences within a set of related proteins offers crucial information about

the evolutionary constraints which govern its structure. The concept of evolutionary constraints

and related sequences (multiple sequence alignment) are described in the sections below.

1.2.1 Evolutionary Constraints

Consider the case of two amino acids held together by an electrostatic force. One amino acid posi-

tively charged while the other is negatively charged. If one of these amino acid mutates to another

amino acid with a different charge, the two amino acids will repel rather than attract each other.

This would break the protein structure. To ensure the proteins are robust to these mutations, a
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compensatory mutation (at the paired amino acid) is required to maintain the attractive force. This

process is depicted in Fig. 1.2, a compensatory mutation prevents the protein frommis-folding.

More importantly, this coevolution between amino acids in contact have been observed by many

experiments1,39, giving empirical evidence as to why our proteins are robust to mutations.

1.2.2 Multiple Sequence Alignment

Given the preliminaries above, we can now turn to an explanation of what a multiple sequence align-

ment (MSA) is.

Figure 1.2: A depiction of the coevolution process between two amino acids in contact. The red and green colours
indicate the pairs of amino acids that are attracted to each other. The initial protein structure is depicted in the top‐
left. If only one residue mutates to green, the force between the pair may no longer be attractive (middle figure in the
top row), therefore the contact is destroyed. To retain the contact, a compensatory mutation of the other residue is
necessary (top‐right figure). A corresponding multiple‐sequence alignment is depicted below showing the coevolution of
the pair which avoids mis‐folding.
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Amultiple sequence alignment is a set of sequences with the same tertiary structure but slightly

different primary sequences. Concretely, we consider a set of related sequences, or sequences within

the same homolog that are related via a phylogenetic tree and are assumed to have the same tertiary

structure. Ideally, these sequences would only differ by mutations, however in practise, they can

also differ by their length. In this work, we assume the sequences have been pre-aligned by standard

alignment algorithms (for more general overview see Durbin et al. 15) such that they are of the same

length.

In this context, we denote the MSA as X = [x1, · · · , xn], consisting of n related protein se-

quences, xi, each of which is of length p. The sequences are aligned such that each column in X

contains the amino acids which are functionally equivalent.

1.2.3 Correlations to Coevolution

The differences between these primary sequences in a multiple sequence alignment do not violate

the evolutionary constraints. To see this we note when two amino acids are close enough in the na-

tive structure to interact with each other – if one of these amino acids mutate it might change the

nature of the interaction, therefore, also the tertiary structure of a protein. Since the tertiary struc-

ture for related sequences are roughly the same, the differences in the primary sequences must satisfy

evolutionary constraints. In particular, the mutations observed in these sequences must show signals

of coevolution, as described in Section 1.2.1, between pairs of amino acids which are in contact.

To move from coevolution to signal, the central idea is to use multiple sequence alignments to

infer a set of structural constraints. Coevolution implies that we should be able to use correlated
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amino-acid pairs, as is shown in Fig. 1.2, to infer which amino acids are interacting or in contact in

its native structure. Thus, correlations within a collection of sequences with very similar structure

and function can be used to infer a protein’s contact map, see Fig. 1.1. As alluded to before, creating

this contact map allows us to construct an energy function that respects the structural constraints of

a protein structure; which can subsequently be used as a rough guide to fold the protein.

This idea, though intuitive and elegant, has come with many complications. The coevolution-

ary signals related to the evolutionary constraints should be given by the correlations between the

columns of X. Thus, a naive way of finding the residues in contact is through the empirical correla-

tion matrix

C =
1

n− 1
(X− X)T(X− X).

However, many have found that this matrix is an extremely poor measure of residues (amino-acids)

which are in contact11,9,55. This is because of the significant level of noise contained in collected

sequences. In section 1.3 we will address many such possible source of noises.

Other Phenotypic Interactions In this thesis we will only be investigating the evolutionary

constraints when a protein is in its native state and is treated as a ”static” structure. However there

are many other forms of phenotypic interactions in folding pathways of a protein which can induce

correlation within the data. In these cases contact analysis is also useful. These can include allosteric

interactions whereby a substrate can bind to an allosteric site61 or other non-native interactions,

for example McLeish 38 demonstrated that the folding strategies of a protein might be dependent

on both native and non-native interactions - highlighting that more information can be gained on
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protein structures by studying it’s nonnative interactions.

1.3 The Problem of Noise

Phylogenetic Noise To address why the empirical covariance matrix is a poor measure of the

correlations induced by residues in contact, firstly we note that the sequences themselves are corre-

lated by definition. Concretely, the sequences xi in X are related to each other via a phylogenetic

tree.

When the samples of the data are correlated - it is intrinsically difficult to extract features (evolu-

tionary constraints) which are inherent in the sequences themselves. There has been a lot of work

done to find ways of disentangling the phylogenetic signals from the phenotypic (residues in con-

tact) signals, however, most existing methods are derived from heuristics drawn from intuition. We

will refer to these methods in more detail in Section 2.3. The main focus of this thesis is on the novel

methods which we have developed using the tools from RandomMatrix Theory to disentangle the

correlations induced by the similarity between the sequences and the correlations induced by coevo-

lution.

Transitivity: Another example of a source of noise corrupting the coevolution signal is the

transitivity of correlations. Transitive correlations can happen if a residue at position A is in contact

with residues at positions B, and B in turn is in contact with C. See Fig. 2.2. Then if Amutates, com-

pensatory mutations at B, Cwill be needed to maintain the favourable energy setup. Thus residues

at positions A and C are indirectly correlated via B. There have been many developments to filter
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out the indirect correlations, one of which is the enforcement of a global statistical model such as by

Ekeberg et al. 18 , Marks et al. 36 . We will further expand on these global statistical model techniques

in Section 2.2.1.

1.4 RandomMatrix Theory for Phylogeny

In this thesis, our focus is on phylogenetic bias and its effects on our ability to infer the tertiary struc-

ture of proteins. Towards this end, we use RandomMatrix Theory (RMT) to disseminate the sig-

nals induced by phylogeny from the signals induced by the evolutionary constraints in the protein

itself.

RMTmethods are rigorous statistical approaches which analyse the properties of large random

matrices. This field has developed rapidly over the past several decades. The first physical applica-

tion was found byWigner 63 . He found that analysing the eigen-properties of randommatrices

corresponds to finding the energy spectra in systems of quantummechanics, thereby reducing the

complexity of the problem. NowRMTmethods are widely used in analysing financial data and

many other statistical applications5,8,59,58. Due to the steadfast progress in the collection of DNA

sequences, now over 4400 full genome sequences are accessible, equivalent to 3.6 × 107 proteins

sequences12. As randommatrix theory hinges on the necessity of large matrices, many of the protein

families in this dataset fall within the regime in which randommatrix theory can be applied with

precision.

Another motivation behind using randommatrix theory is that one of its critical discoveries is
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that when the elements of a matrix are random, the eigenvalue distribution of its empirical covari-

ance matrix is compactly supported. This is a property which can be used to see if the elements of

the matrix are random. An important question then is whether we can discover these signatures

when the matrices are correlated via a phylogenetic tree or via structural constraints. Moreover ine

might wonder: can they be used to disentangle different sources of signal?

1.5 Contribution

The contribution of this thesis is two-fold*. Firstly, we develop a novel analysis technique that

hinges on RandomMatrix Theory to give insight into how phylogenetic dependencies between pro-

tein sequences can affect covariance matrices. Using this analysis, we find that phylogenetic correla-

tion between the samples induces a distinct signature in the spectral distribution of the covariance

matrix.

Secondly, this distinct signature is a feature that is predictive of which eigenvectors in the empiri-

cal covariance matrix are corrupted by phylogenetic noise. Using this observation, we show that not

only can we remove phylogenetic corruption from Boltzmann-generated sequences that are related

via a phylogenetic tree, but such an analysis also transfers directly to real protein sequences.

*Note that some of the main findings is also published in Qin & Colwell 48
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2
Background on Contact Prediction

The literature review will be split into three different sections. Section 2.1 will highlight the research

showing that amino-acids which are close together (in contact) in the protein structure should co-

evolve. Section 2.2 will detail the work which has been done to improve the contact prediction.

Section 2.3 will outline the work which has been done to investigate how phylogeny affects our

inference ability for contact prediction.
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2.1 Coevolution

One of the first to make observations that the spatial coordinates of amino acids can be inferred by

looking at the mutation patterns of the amino acid residues is Altschuh et al. 1 . They found that

the mutation patterns of amino acids become more conservative near the binding regions of some

viruses related to tobacco mosaic virus. This indicates that it might be possible to also infer the bind-

ing regions of viruses by looking at mutation patterns in proteins. Thus this paper sparked many

statistical studies into looking for ways of inferring spatial coordinates of amino-acids from look-

ing at the mutation patterns of amino-acids. This idea was taken up by Shindyalov et al. 55 . In this

study, they show that it is possible to infer which amino acids are in contact with each other within

the tertiary structure of a protein by looking at the correlated mutations of amino acid sequences

alone. They performed this analysis for 67 protein families, demonstrating that mutagenesis analysis

is a potential methodology for even protein folding itself.

2.2 Contact Prediction

Since the work done by Altschuh et al. 1 , Shindyalov et al. 55 , the field has made significant progress

towards enhancing contact prediction methods. Most of these methods fall into two categories:

local and global statistical models. We outline some of the methods below.
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Figure 2.1: Here, we compare the difference when we use a local model (MI) vs global model (DI) to predict contacts. DI
is detailed in Section 2.2.2. The predicted contacts for DI (red) accurately match the positions of the observed contacts
(grey), whereas many of the contact predictions using MI (blue) are false. Figure adapted from Marks et al. 36 .

2.2.1 LocalModel vs GlobalModel

Fig. 1.2 shows amino-acid sequences within the same homolog being collected together and assem-

bled into a multiple sequence alignment. More concretely, a set of amino-acid sequences within the

same homolog is denoted by X = (x1, · · · , xn)T throughout, where each sequence is of length p,

xj = (xj1, · · · , x
j
p), and x

j
i ∈ {1, 2, · · · , q}. For amino-acid sequences q = 21 which stands for the

twenty amino acids and one extra for the gap.

Here,‘local’ and ‘global’ refers to whether the contact prediction between positions i and j is

dependent on the local residues in question (i, j) or on the entire protein sequence (1, · · · p).
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LocalModel

The most commonmethod used in this category is mutual information (MI)14; a way of measuring

the correlation between two amino-acid positions i, j. The mathematical definition of MI is

(MI)ij =
∑
a,b

Pij(a, b) log
( Pij(a, b)
Pi(a)Pj(b)

)
=
∑
ki,kj

fij(ki, kj) ln
{ fij(ki, kj)
fi(ki)fj(kj)

}
, (2.1)

where fi and fij are the empirically observed moments:

fi(k) =
1
n

n∑
s=1
I(xsi = k) (2.2)

fij(k, l) =
1
n

n∑
s=1
I(xsi = k)I(xsj = l) , (2.3)

I is the indicator function. Eq. (2.1) shows that MI measures howmuch information is lost if a

pairwise probability model is replaced by two independent probability models, this is zero if and

only if the distributions are independent, otherwise it is always positive. The calculation of this is

straightforward since it only involves the local frequencies at residue positions i and j.

Local measures are limited by transitivity, which is explained in Figure 2.2, this can significantly

reduce the accuracy of the contact predictions. Fodor & Aldrich 20 found that the extent to which

the contact predicted differed from the native contacts is substantial. Thus to disentangle the di-

rect and indirect correlations, a global correlation measure is crucial. Another reason whyMI is

insufficient is that it is significantly affected by phylogenetic bias, a detail we will elaborate on in
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Figure 2.2: This shows one residue, shown in blue, which is in contact with two other residues, shown in red. A local
correlation measure will score all three pairs highly with no way of distinguishing which ones are contacts and which
ones are not. This may result in a false contact being predicted between the red pair.

Section 2.3.

GlobalModel

A global correlation measure must follow from a probability distribution dependent on the entire

sequence, P(x1, · · · , xp). This distribution must also agree with the observed frequencies. We en-

force the first two moments of P to match the first two empirically observed moments

P(xi = k) = fi(k) i = 1, · · · , p (2.4)

P(xi = k, xj = l) = fij(k, l) i, j = 1, · · · , p i < j . (2.5)

There are many probability distributions which satisfy Equations (2.4) and (2.5). So which proba-

bility should we choose? It has been observed that we should always choose the model that places

no more constraints than necessary. Maximum entropy models3 are models which maximize the
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entropy while enforcing the constraints shown in Eqs. (2.4), (2.5). Formally, maximizing the prob-

ability model with respect to its Shannon entropy, S = −
∑

X P(X) ln(P(X))while satisfying

the constraints gives rise to the Boltzmann distribution. This distribution can be found using La-

grangian multipliers. For an Ising model where the sequence variables are either 1 or -1, this results

in the following functional form :

P(x) =
1
Z

exp


p∑

i=1
hixi +

∑
i<j

Jijxixj

 . (2.6)

Here hi and the symmetric matrix Jij are the fields and true interactions respectively and

E(x) = −
p∑

i=1
hixi −

∑
i<j

Jijxixj (2.7)

is the energy of the system. The generalised case when there are more than 2 variables is given by

P(x) =
1
Z

exp


p∑

i=1
hi(xi) +

∑
i<j

Jij(xi, xj)

 , (2.8)

known as the Potts Model. Note that Potts model is often understood as the planar Potts Model,

defined in Sec 5.1. This is a more generalised definition as it does not impose functional form of J

16



nor h. For the Ising model the constraints (2.4) and (2.5) are equivalent to the average moments

〈mi〉 =
1
n

n∑
k=1

xki , (2.9)

〈mimj〉 =
1
n

n∑
k=1

xki xkj . (2.10)

For the Potts model, the constraints (2.4) and (2.5) become the marginal probability distributions :

Pi(ki) =
∑

{ks:s̸=i}

P(k1, · · · , kp) = fi(ki) (2.11)

Pij(ki, kj) =
∑

{ks:s̸=i,j}

P(k1, · · · , kp) = fij(ki, kj) , (2.12)

where Pi(ki) is the shorthand for P(xi = ki).

Finding the parameters of this distribution is known as the ‘Inverse Ising/Potts problem’. This

problem is difficult to resolve due to the intractability of the normalisation constantZ . The num-

ber of computations required for the evaluation ofZ scales as qp, where p is the number of residues

and q is the number of types of residues. As a result, most people find approximations in order to

avoidZ . In addition, for the Potts model the calculations for Equations (2.11), (2.12) are also com-

putationally expensive and hence approximations are made for these marginal probabilities.

2.2.2 Inverse Ising Problem: Finding h and J

An intuitive approach to estimating the parameters hi and Jij is to maximise the likelihood of the test

statistic X. Even though they are connected by phylogeny, a simplification is made here to treat the
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sequences as independent models. The log-likelihood function is :

l(hi, Jij) = −n ln(Z)−
n∑

k=1

p∑
i=1

hi(xki )−
n∑

k=1

p−1∑
i=1

p∑
j=i+1

Jij(xki , xkj ) . (2.13)

In addition, we can analytically determine the functional form of Jij(x, y) and hi(x) by noting that

the following expressions are equivalent

n∑
k=1

hi(xki ) = n
q∑

s=1
hi(s)fi(s)

n∑
k=1

Jij(xki , xkj ) = n
q∑

s=1

q∑
t=1

Jij(s, t)fij(s, t) .

To see that the above is equivalent, first we substitute the above into Equation (2.13). Differentiat-

ing with respect to the parameters h and J then gives:

− ∂

∂hi(s)
lnZ = fi(s) (2.14)

− ∂

∂Jij(s, t)
lnZ = fij(s, t) . (2.15)

Since− ∂
∂hi(s) lnZ = Pi(s) and− ∂

∂Jij(s,t) lnZ = Pij(s, t), this reduces Equations (2.14) and (2.15) to

Equations (2.4) and (2.5). Thus the above are equivalent by self-consistency.
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From this, finding parameters h and J becomes the following constrained optimization problem:

l(hi, Jij) = −n ln(Z)− n
p∑

i=1

q∑
s=1

hi(s)fi(s)− n
p−1∑
i=1

p∑
j=i+1

q∑
s=1

q∑
t=1

Jij(s, t)fij(s, t) (2.16a)

P(xi = k) = fi(k) i = 1, · · · , p (2.16b)

P(xi = k, xj = l) = fij(k, l) i, j = 1, · · · , p i < j. (2.16c)

Here P(x) is given by Eq. (2.8). To circumvent the intractability ofZ , we can make the following

approximations.

Pseudolikelihood: As the Inverse Ising problem is intractable due to the intractability of

the partition functionZ . Ekeberg18 shows that we can make this tractable by approximating the

Boltzmann distribution via the following

P(x1, · · · xp) =
p∏

i=1
P(xi|x−i),

where x−i denotes the vector (x1, · · · , xp)with the ith element taken out.

Mean Field Approximations: The mean field approach for treating the Inverse Ising prob-

lem is to approximate quadratic coupling terms with a linear term by adding an external field. This

means that each spin can be treated independently, which greatly simplifies the calculation ofZ .

Morcos et al. 41 generalised the mean field approximation for the Potts model to estimate the

couplings J. They used an expansion for a Gibbs potential which was first introduced by Plefka47, a
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neater derivation is given by Georges and Yedidia23. Firstly, we introduce the perturbed energy

E(x, ε) = −
p∑

i=1
hi(xi)− ε

∑
i<j

Jij(xi, xj) ,

where the parameter ε can be tuned to interpolate between the independent system (ε = 0) and the

original system (ε = 1). The corresponding Gibbs potential is given by

G(ε) =
p∑

i=1

q−1∑
k=1

hi(k)Pi(k)− ln(Z(ε)) , (2.17)

where

Z(ε) =
∑
x

exp{−E(x, ε)} .

This potential ensures that Equation (2.11) is met for all ε. Due to the gauge of the couplings and

the normalisation of the marginals, q is not an independent variable, hence the sum of the variables

is only up to q− 1 in Equation (2.17).

The first and second derivate of Equation (2.17) is

hi(k) =
∂G

∂Pi(k)
(2.18)

(C−1)ij(k, l) =
∂2G

∂Pi(k)Pj(l)
, (2.19)

where

Cij(ki, kj) = fij(ki, kj)− fi(ki)fj(kj) .
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Expanding the Gibbs potential around the independent system where ε = 0 gives

G(ε) = G(0) + ε
∂G
∂ε

∣∣∣∣
ε=0

+O(ε2) . (2.20)

The first two terms in the expansion can be found explictly. The first term is the Gibbs potential for

the independent system which is given by

G(0) =
p∑

i=1

q∑
k=1

Pi(k) lnPi(k) . (2.21)

The second term is found by differentiating Equation (2.17) evaluated at ε = 0, which gives

∂G
∂ε

∣∣∣∣
ε=0

= −
∑
i<j

∑
k,l

Jij(k, l)Pi(k)Pj(l) . (2.22)

Differentiating the left and right hand side of Equation (2.20) twice, yields

∂2G
∂Pi(k)Pj(l)

= ε
∂2

∂Pi(k)Pj(l)
∂G
∂ε

∣∣∣∣
ε=0

+O(ε2)

⇒ (C−1)ij(k, l) = −Jij(k, l)

Subsequently, the mean field approximation for the interaction matrix Jij is dependent on the in-

verse covariance matrix :

Jij(ki, kj) = −(C−1)ij(ki, kj) . (2.23)
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This approximation of the interaction matrix might be counter-intuitive - as it dampens the effects

of the eigenmodes associated with the highest eigenvalues of C. We show later on through our phy-

logenetic analysis, that dampening of these eigenmodes corresponds to removing phylogenetic noise.

This gives an alternative explaination as to the effectiveness of this approach.

Now equipped with the estimation of Jij, the global probability distribution can be approximated

PDir
ij (ki, kj) =

1
Z

exp
{
−(C−1)ij(ki, ki) + h̃i(ki) + h̃j(kj)

}
. (2.24)

The parameters h̃i and h̃j are found by meeting the conditions

q∑
kj=1

PDir
ij (ki, kj) = fi(ki) ,

q∑
ki=1

PDir
ij (ki, kj) = fj(kj) .

Marks et al. 36 builds upon this and introduces direct information (DI) which is given by the follow-

ing

(DI)ij =
∑
k,l

PDir
ij (ki, kj) ln

{
PDir
ij (ki, kj)
fi(ki)fj(kj)

}
. (2.25)

Note that DI is a form of a global model as PDir uses a mean-field approximation to approximate the

Boltzmann distribution, i.e. J = −C−1, and the Boltzmann distribution is a distribution over the

entire amino-acid sequence. To compute the contacts, DI is ranked by their numerical values. These

numerical values are processed to achieve the best minimal set of couplings. This process involves

filtering out residue pairs which are known to result in high DI score but are not in contact. Due to

the nature of the amino-acid chain, residues are likely to co-vary when they are close in sequential
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position. A manual approach to this problem is to set all the DI scores for pairs separated by less

than five residues to zero36. There are no correlation signals when residues are completely conserved,

therefore when residues are close to being completely conserved the correlation signal comes with a

significant amount of uncertainty. A heuristic way to resolve this uncertainty is to ignore the pairs

which involve highly conserved residues.

Marks et al. 36 compared the contact predictions using DI andMI, see Figure 2.1. The results

show that the contact predictions using MI are substantially different from the contacts in the na-

tive state. On the other hand, there is a high level of agreement between contact predictions using

DI and the native contacts.

2.3 Overcoming Phylogeny

Protein sequences in the same family share a common ancestor, therefore these sequences are not

independent. They are connected by a phylogenetic tree and this tree is a graphical representation of

a series of duplication and mutation events which happened between the time of the ancestor and

the sequences that we observe.

The restrictions (2.4) and (2.5) put on the maximum entropy formulation to produce the Ising/Potts

model correspond also to the maximum-likelihood estimate for independent sequences. This esti-

mate will be affected strongly by the phylogenetic biases for cases where the mutation rate is slow.

There have been many methods developed to counteract the effects of phylogenetic bias, however,

most adopt heuristic approaches as it is hard to quantify the effects of phylogeny.
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Dutheil 16 summarised some of the different methodologies developed to overcome the phylo-

genetic biases. One approach is to analyse the sequences by ignoring phylogeny at first, then the

significance of phylogenetic effects are determined by comparing the observed correlations with

stochastic correlations that one would expect if no phylogeny was present. For example, methods

presented by Lapedes et al. 33 , Larson et al. 34 used a null-model approach, where the phylogeny is

integrated into the null-hypothesis and the correlations due to phylogeny are determined by compar-

ing the observed correlations with the expected correlations. MI was used as the correlation measure

in these cases. In order to compare the correlations, they generated phylogenetic trees which created

sequences that do not have any interactions and thus a threshold for the null-hypothesis is set by

findingMI for this set of sequences. Another way to minimise phylogenetic biases is to reweight se-

quences according to their redundancy. One of the more notable efforts to attenuate phylogenetic

bias for mutual information is Average Product Correction (APC)14. APC ofMI is given by:

APCij =
MIi,:MIj,:

MI
, (2.26)

the overline represents the mean of the vector/matrix, andMi,: denotes the sum over the ithe col-

umn but does not include the ith element - together this gives the following:

MIi,: =
1
p

p∑
j̸=i

MIi,j. (2.27)

This is an estimation of the backgroundMI induced by the similarity between the sequences. De-
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ducting this fromMI has been shown to significantly increase the correlation betweenMI and the

contact map.

These methods lack precision as the treatment for all sequences are the same even when some

sequences are more redundant than others. Altschul et al. 2 motivated the idea of reweighting the se-

quences as a function of their correlation. Given a set of observed data x = (x1, · · · , xn) taken from

a normal distribution with uniformmean μ and covariance matrix Σ. The log-likelihood function

is:

l(μ,Σ) = −n
2
log(2π)− 1

2
log(|Σ|)− 1

2
(x− μ1)TΣ−1(x− μ1) ,

where we overload the notation 1 = (1, · · · , 1). Therefore the maximum likelihood estimate of μ is

given by

μ̂ =
1Σ−1x
1Σ−11

=
n∑
i=1

(
1Σ−1

1Σ−11

)
i
xi =

n∑
i=1

wixi .

The weightsw = (w1, · · · ,wn) can be determined from Σ, however the inference of this parameter

is challenging. For this reason, most of the weighting algorithms are based on a heuristic understand-

ing of the phylogeny. One intuitive methodology is to weigh these sequences by how similar they

are62,41, for example, with respect to the Hamming distance. A similarity threshold is then put in

place to define whether the sequences are similar or not. Let this threshold be xp, where 0 ≤ x ≤ 1

and p is the length of the sequence, the number of sequences similar to the sth sequence is then

given by

θs =
n∑
i=1
H

 p∑
j=1
I(xsj, xij)− xp

 ,
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whereH is the heaviside function and I is the indicator function. Various other weighting systems

have been devised, such as using pairwise distances between sequences to cluster them into bifurcat-

ing trees24. This reweighting is accounted for by redefining the frequency counts in Equations (2.2)

and(2.3):

fi(k) =
1

λ+Meff

(
λ
q
+

n∑
s=1

1
θs
I(xsi , k)

)
(2.28)

fij(k, l) =
1

λ+Meff

(
λ
q2

+
n∑

s=1

1
θs
I(xsi , k)I(xsj , l)

)
(2.29)

where

Meff =

n∑
s=1

1
θs
,

is the effective number of sequences after reweighting. λ, otherwise known as the pseudocount, adds

randomisation which allows the covariance matrix C to be inverted.

A more mathematical approach was taken by Obermayer and Levine44. They formulated a new

probability distribution which accounts for both the interactions and the phylogeny by adding an

extra term to the energy in the Boltzmann distribution stated in Equation (2.6). This is given by

E(X) = −
∑
a,i

gaxai −
∑
a<b,i

Kabxai xbi︸ ︷︷ ︸
extra term

−
∑
a,i

hixai −
∑
i<j,a

Jijxai xaj . (2.30)

HereKab account for the interactions between the sequences due to phylogeny. To simplify the

problem, the phylogeny is chosen to be a linear chain so thatKab = Kδa,b−1. Further simplification
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was made by restricting the length of the chain to two, therefore the only unknown parameters are

the interactions J12 and external fields h1, h2. This particular partition function can be resolved using

standard transfer matrix methods where a recursive relationship can be found between the partial

partition functions, which is given by

ZN(K, J12, h1, h2|xN+1) =
∑

x1,··· ,xN
exp

{ N∑
a=1

h1xa1 + Kxa1x
a+1
1 + h2xa2 + Kxa2x

a+1
2 + J12xa1xa2

}

=
∑
xN

exp
{
h1xN1 + h2xN2 + K(xN+1

1 xN1 + xN+1
2 xN2 ) + J12xN1 xN2

}
ZN−1(K, J12, h1, h2|xN). (2.31)

To gain further insight into how the linear phylogeny affects the sequences, X, a constant parame-

ter is chosenKab = K0. This phylogenetic parameter is estimated from using background data,

X0 . This data is connected by linear phylogeny but independent of observed physical interactions,

thereby singling out the effects of phylogeny. They found that the estimate forK0 is given by

R̂ = tanh(K̂0) =
1
np
∑
a,i

X0
aiX0

(a+1)i , (2.32)

where K̂0 is the estimate, p and n are respectively the length of the sequence and the number of se-

quences. The estimates ĥi and Ĵij satisfy equations

tanh(ĥi) =
(1− R̂)mi√

(1+ R̂2)2 − 4m2
i R̂

(2.33)

tanh(Ĵij) =
(1− R̂)mij√

(1+ R̂2)2 − 4m2
ijR̂2

, (2.34)
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where

mi =
1
n
∑
a

Xai , mij =
1
n
∑
a

XaiXaj . (2.35)

The leading orders of the expected errors were calculated, which yields

〈(ĥi − hi)2〉 = h2i
(
e−2(K̂0−K0) − 1

)2
+

1
n
e−2(2K̂0−K0) (2.36)

〈(Ĵij − Jij)2〉 = J2ij

(
cosh(2K0)

cosh(2K̂0)
− 1

)2

+
1
n
cosh(2K0)

cosh2(2K̂0)
. (2.37)

Obermayer and Levine noted that the estimates (2.33) and (2.34) can be independent of the phylo-

genetic estimate K̂0 if the moments (2.35) are rescaled :

m̃i = mie−2K̂0 , m̃ij =
mij

cosh(2K̂0)
. (2.38)

The argument is that if the estimates are independent of phylogenetic parameters, the samples can

then be retreated independently with these rescaled moments. The results using rescaled moments

are then compared with reweighting the moments. By using the mean field approximation, they

found that the error decreased dramatically, asK0 increases, when both rescaling and reweighting

were applied, whereas the error sustained when only reweighting was applied.

These results show that this probability distribution (2.30) maybe valid for the case where the

phylogeny is a linear chain, but it is still unclear whether this model can account for more convo-
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luted phylogeny. K0 is also a ficticious parameter to create ‘interaction’ between the sequences, but

the dependence of this on the phylogeny in terms of the number of mutations, duplications and

protein lengths is unclear.

It is intuitive that mutations will affect the smaller proteins more strongly than the larger pro-

teins. However, on less intuitive grounds such as how the number of sequences affect the phylogeny,

a more mathematical approach is needed. In this thesis, we explicitly investigate how tuning the

number of mutations, duplications and protein lengths affect the covariances between samples and

residues, furthermore, by using randommatrix methods we hope to show how this may affect the

detection of interactions.
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A living organismmust be studied from two distinct aspects. One of these is

the causal-analytic aspect which is so fruitfully applicable to ontogeny. The

other is the historical descriptive aspect which is unravelling lines of phylogeny

with ever-increasing precision. Each of these aspects may make suggestions

concerning the possible significance of events seen under the other, but does not

explain or translate them into simpler terms.

Sir Gavin De Beer

3
Modelling Phylogeny

Phylogenetic effects are known to significantly affect the ability for us to find relevant signals

for contact prediction. In the previous chapter we highlighted some techniques, mostly heuristic,

researchers have developed to alleviate the effects of phylogeny. Characterizing the effects of phy-

logeny has proven to be challenging as the phylogenetic tree is generally unknown. Thus we often

30



would need to estimate both the phylogenetic tree and it’s effects on the amino acid sequences in

conjunction. In this work, we bypass the need to infer the phylogenetic tree by generating sequences

for which the ground truth information is known; both with respect to the contacts and the phy-

logeny. In this chapter, we will explain in detail the synthetic-model we will use to ground all of our

analysis.

3.1 Phylogenetic Ising Sequences

Consider that we are given an initial amino-acid (Ising) sequence, x0 = (x01 , · · · , x0p), which is the

beginning of the evolutionary history. Now this sequence has a certain amount of energy (Gibbs

energy) which is given by

E(x) = hTx+
1
2
xTJx (3.1)

where h and J are known. This sequence will go through a series of mutation events,M, and branch-

ing events Bwhich are predetermined.

We mimic the evolutionary mutation event with the Metropolis-Hastings algorithm which is one

form of Markov ChainMonte Carlo (MCMC)21,42. Here we choose a random position along the

sequence i to be mutated. The residue along this position will be mutated to another amino acid

with the following probability

P(x→ x̃) = min(1, exp(E(x)− E(x̃))/T), (3.2)
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Figure 3.1: This shows a tree with three branching events and same of number of mutation events before branching.

where x is the sequence before the mutation and x̃ is the sequence if the mutation was to be ac-

cepted. T is the temperature of the system; the lower the temperature is, the less likely an unfavourable

mutation will be accepted. Whether the mutation is accepted or not this is known as one mutation

event.

3.2 Algorithm

We outline our algorithm for simulating phylogenetic Ising Sequences in Listing 1. It is worth not-

ing that, our algorithmmakes the assumption that the branching factor is always two.

3.3 HighMutation vs LowMutation Rates

The algorithm outlined above will take in n0 initial sequences and output n02|B| sequences. The

probability distribution of the resulting sequences will be dependent on the number of mutation

events performed before each branching event. For example, if the mutation rate is high then the

sequences will be less correlated with each other across the branches; while low mutation rate corre-

sponds to sequences being almost identical to each other across the branches. We note that, proteins
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Algorithm 1 Simulating Phylogenetic Ising Sequences
1: procedure PhylogeneticIsing

Require: Initial sequences x. Mutations eventsM, branching events B and h, J, T.
2: for b in B do
3: form inMb do
4: x̃ = x
5: Random-uniformly pick i ∈ {1, · · · p}, a ∈ {1, · · · , q} \ xi
6: x̃i = a
7: if E(x) > E(x̃) then
8: x← x̃
9: else
10: if r ≤ exp(E(x)− E(x̃)/T) then
11: x← x̃
12: x = [x; x]

within the same homolog are closer to the low mutation regime.

3.4 Temperature T

Another important factor that affects the output distribution of the algorithm is the temperature

T. The higher the temperature is the lower the effects of the parameters h and J, thus the signal from

the interactions between elements within the sequence increases when we decrease the temperature.

3.5 Boltzmann Sequences vs Protein Sequences

We have chosen to use Boltzmann distribution to generate our sequences with energy given in

Eq. 3.1 as this is also a probability model which can be used to infer protein contacts19,18. This

energy will be high when the probability of the given state x is low and vice versa. This is also akin

to an energy in a physical system or fitness function of in a population31. Temperature is a param-
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eter which can be controlled during the simulation that allows us to control for the diversity of the

sequences generated (an equivalence has been made between temperature and population size be-

fore31). We anneal the temperature to ensure that local optimal states are avoided but we tune the

temperature to ensure a level of redundancy between the sequences which is similar to the ones we

observe in proteins.
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4
Correlation Induced by Phylogeny

To single out the effects of phylogeny, we simulate sequences using Algorithm 1 with h and J set to

zero. In other words, there are no interactions between the amino acid residues. To further simplify

the model, the number of mutation events along each branch is constant and denoted bym.

Suppose sequences x1 and x2 both of length p are generated using the tree shown in Fig. 4.1. The

covariance between the two sequences must be dependent on bothm and p, i.e. (ΣS)12 = α(m, p).
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2

1

t0 1 2 3 4

Figure 4.1: This is a graphical representation of the simple phylogeny, where the nodes represent sequences and the
branches represent mutation events. In a duplication event, a branch divides at a node.

In fact the functional form of α can be found exactly and is given below

α(m, p) = exp(−ωm/p) . (4.1)

where ω is a constant. How this is derived is given below.

4.1 Covariance Between Related Sequences

2

1

4

3

t0 1 2 3 4 5 6

2

1

4

3

t0 1 2 3 4 5 6

Figure 4.2: The blue lines highlight the mutation (coalescence) distance,Dij, which separates the sequences xi and xj‐
this is the only factor governing the covariance between the sequences. The examples shown are the distance between
sequences x1 and x2 on the left and x1 and x3 on the right.
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To examine the expected covariance generated by a phylogenetic tree, we consider the expected

covariance between two nodes separated by 2mmutation events. We use a substitution model with

the assumption that each amino acid can mutate to any other with equal probability. This is remi-

niscent of the Jukes-Cantor model with discrete time30, i.e. discrete mutations as a measure of time.

Here, we will give a more detailed mathematical derivation of the expected covariance.

The derivation takes two steps. Firstly, we will show that this is an Ornstein-Uhlenbeck22 pro-

cess, thus the covariance/autocorrelation is proportional to an exponential where the exponent is

dependent on a relaxation rate. The second step is to find the relaxation rate.

OU process : The Ornstein-Uhlenbeck process is otherwise known as stationary Gaussian

Markov process, which means that the Markov chain is stationary and satisfies the Gaussian con-

dition, see Eq. (4.2). To see that the phylogenetic process is stationary we note that when there are

no preferences for mutation sites, the stationary state of the Markov chain is the uniform distribu-

tion. More concretely, consider an Ising sequence with two states -1, 1 evolving through the simple

phylogeny shown in Fig 4.1. The probability distribution of the initial sequence, x0, is uniform

since it is randomly generated and after one mutation event the distribution can be found using the

following

P(x1 = 1) = P(x1 = 1|x0 = −1)P(x0 = −1) + P(x1 = 1|x0 = 1)P(x0 = 1) ,
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which gives

P(x1i = 1) =
1
p
× 1

2
+

p− 1
p
× 1

2
=

1
2

P(x1i = −1) = 1− P(x0i = 1) =
1
2
.

Thus by induction, this shows the probability distribution stays uniform throughout the phylogeny

process, thereby making the process stationary.

The Gaussian condition26 is as follows

E(x(t+ 1)|x(t), · · · , x(0)) = E(x(t+ 1)|x(t)) . (4.2)

To see that the phylogenetic process is Gaussian, we note that the state at t + 1 can be written as

x(t+ 1) = x(t)+ v(t+ 1)where v(t) is the change induced by the mutation; which can be viewed as

a discrete velocity. Crucially, the expectation of v(t+ 1) is only dependent on the state x(t). This can

be seen from the Ising model with states -1 and 1. The probability distribution of v(t+ 1) is given by

P(v(t+ 1) = −2x(t)) = 1
p

(4.3)

P(v(t+ 1) = 0) =
p− 1
p

. (4.4)
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Therefore the instantaneous mean is

E(v(t+ 1)|x(t)) = −2
p
x(t) . (4.5)

This implies that x(t+ 1) is solely dependent on x(t), consequently Eq. (4.2) is satisfied.

Relaxation Rate : The relaxation rate r is defined by this condition

E(x(t+ 1)|x(t)) = (1− r)x(t).

Another property of an OU process is that the covariance between two states at time 0 and t, x(t)

and x(0), is given by α(t) = α(0) exp(−rt). There are multiple ways of deriving r. We choose to

map the q states onto the unit circle of a complex plane as this does not place any bias towards any

states, i.e. the magnitude of the states are the same. The mapping is explicitly given by

F : {1, · · · , q} 7→ {1, exp(iθ), · · · , exp(i(q− 1)θ)} , (4.6)

where θ = 2π/q. The Gaussian condition, Eq. (4.2), can be rewritten as

E(xj(t+ 1)|xj(t)) = E(dj(t+ 1)xj(t)|xj(t))

= E(dj(t+ 1)|xj(t))︸ ︷︷ ︸
(A)

xj(t) , (4.7)
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where dj(t) = xj(t+ 1)/xj(t) and dj(t) and xj(t) are the jth elements of d(t) and x(t) respectively. If

we use mapping (4.6) then (A) in Eq. (4.7) becomes

E(dj(t+ 1)|xj(t)) =
p− 1
p

+
1

p(q− 1)

q−1∑
k=1

exp(ikθ)

= 1− 1
p

q
q− 1

.

Substituting this back into Eq. (4.7) yields

E(x(t+ 1)|x(t)) =
(
1− 1

p
q

q− 1

)
x(t) .

Using the definition of relaxation rate, r, the relaxation rate is given by r = q/(p(q− 1)). As a result,

the covariance is

α(t) = α(0) exp
(
− q
q− 1

t
p

)
. (4.8)

The mapping to a complex circle means α(0) = var(x) = 1. This can be seen if we consider E(x)

and E(xTx) separately. We note that for an uniform distribution, E(x) is proportional to the sum of

the states on a complex circle, which is 0. Similarly, we note that since the magnitude of the nodes

on a unit circle is one, we have E(xTx) = var(x) = 1. Consequently, for two nodes separated by

t = 2mmutations, the covariance is given by

α = exp(−2mq/p(q− 1)) (4.9)
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⇒ ΣS =

1 α α2 α2 α3 α3 α3 α3

α 1 α2 α2 α3 α3 α3 α3

α2 α2 1 α α3 α3 α3 α3

α2 α2 α 1 α3 α3 α3 α3

α3 α3 α3 α3 1 α α2 α2

α3 α3 α3 α3 α 1 α2 α2

α3 α3 α3 α3 α2 α2 1 α
α3 α3 α3 α3 α2 α2 α 1




Figure 4.3: We visualise the nested structure induced in the covariance matrix between the sequences from a binary
tree. The color in (ΣS)ij corresponds to the color of the node where the two sequences coalesce.

4.1.1 Nested Structure of the CovarianceMatrix

To see the nested structure of the covariance matrix induced by a phylogenetic tree, as shown in

Fig. 4.3, we consider the homogeneous tree with b branching events andmmutations per branch.

Each pair of sequences are separated by 2b̃mmutations where b̃ is the number branching events

since their most recent common ancestor. Hence, using the covariance to distance relation shown

in Eq. (4.9), the covariance matrix ΣS between a set of sequences generated by a homogeneous tree is

given by

ΣS = exp
(
− q
p(q− 1)

D
)

(4.10)
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where

D =



0 2m · · · 2bm · · · 2bm

2m 0
... . . . ...

... . . . 2bm · · · 2bm

2bm · · · 2bm . . . ...

... . . . ... 0 2m

2bm · · · 2bm · · · 2m 0



, (4.11)

is the distance matrix, see Fig 4.2. The monotonicity of the exponential function means that the

nested structure ofD is reflected in ΣS. This is explicitly demonstrated in Fig. 4.3.

4.2 Eigenvalues of the CovarianceMatrix

The eigenvalues of ΣS in Eq. (4.10) can be found analytically. This set of eigenvalues has a few dis-

tinct features, firstly, there are b + 1 distinct eigenvalues for sequences generated with b branching

events; secondly, the degeneracy of the eigenvalues increases as its magnitude decreases. The explicit

mathematical formula is given by the following

λi =


1+

∑b
j=1 2

j−1αj i = 0

(1− α)
(∑i−1

j=0(2α)b−i
)

i > 0
, (4.12)
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where λ0 > · · · > λb (α 6= 0). We can view the degeneracy of the eigenvalues as proportional to the

probability of drawing a particular eigenvalue, this probability distribution is given by

pi =


1/n i = 0

2i−1/n i > 0
, (4.13)

where pi = P(λ = λi) and n = 2b. The exponential decay in degeneracy as the eigenvalue gets larger

indicates that the eigenvalues of its empirical covariance matrix will have a heavy tailed distribution.
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A final proof of our ideas can only be obtained by detailed studies on the

alterations produced in the amino acid sequence of a protein by mutations of

the type discussed here.

Francis Crick

5
Protein Interactions and Covariance

Analysis

So far, we have made the simplification that the amino-acid sequences generated are phylogenetically

dependent only and there are no interactions within the sequence. Here, we extend this analysis to

sequences with interactions, i.e. where elements in J are non-zero. In this thesis, we refer to these
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pairwise interactions as ‘phenotypic’ interactions, alluding to the importance of these interactions

to the structure of the protein.

In the second half of this chapter, we will go through, in detail, the framework used to unravel-

ling relevant signals induced by J in the presence of phylogeny.

5.1 Protein Interactions

To simulate the phenotypic interactions in a protein sequence with p residues chosen from q charac-

ters (q = 21 for amino acids including gaps), we adopted a generalised Potts model64. This model in

its biological applications has been explored extensively3,40,60.

For a generalized Potts model, we need to specify a positional interaction matrix J̃ of size p × p

and an intrinsic interaction matrix between the q types of amino acids which is Θ of size q × q. In

protein sequences, Θ can capture the interaction between amino acids, for example two amino acids

with similar charges will repel each other and the corresponding interaction within Θ will be posi-

tive, which means a positive increase in energy. The associated energy function of the generalized

Potts model is given by

E(x) = −
q∑

a,b=1

∑
i<j

J̃ijΘab δ(xi, a)δ(xj, b). (5.1)

For the matrix Θ, we use the planar Potts model64 which is a specific form of the generalized Potts
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model. This model extends the binary spin states in an Ising model to q spin states as follows

Θa,b = cos(2π(a− b)/q)

where a, b ∈ {1, · · · q}. To derive the covariance induced by the pairwise interaction matrix J̃we can

express the amino acids with the same mapping as shown in Eq. (4.6). We find that

E(xixj)− E(xi)E(xj) = E(xixj) =
q∑

a,b=1

ei2π(a−b)/q eJ̃ijΘab∑
a,b eJ̃ijΘab

=
1
Zab

∂Zab

∂ J̃ij
, (5.2)

whereZab =
∑q

a,b=1 e
J̃ijΘab . To see that this is true we simply note that the left-hand side of the

equation is real with the imaginary part set to zero. An important property of Eq. (5.2) is that as

J̃ij → ±∞, E(xixj) → ±1, similarly as J̃ij → 0, E(xixj) → 0. In other words, the covariance func-

tion saturates and cannot exceed more than the magnitude one as the strength of the interactions

increases. For example, if we consider the binary state case then Eq. (5.2) becomes

E(xixj) =
1

eJ̃ij + e−J̃ij

∂

∂ J̃ij

(
eJ̃ij + e−J̃ij

)
= tanh(̃Jij) , (5.3)

which is a function that saturates at large values of J̃ij.

We can relate this derivation to commonly used covariance analysis from the literature for pro-
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tein structure prediction18,25,13,57,19,50 as follows. For protein structure prediction, it is common

to map the sequences to a one-hot format. This is where we map the first state to the basis vector

(1, 0, · · · , 0), and second state on to (0, 1, 0, · · · , 0) and so on. The mapping is given by:

X : {1, · · · , q} 7→ {e1, · · · , eq} , (5.4)

where ei is the ith basis vector. Then, analogous to the Eq. (5.3) above, the expected covariance be-

tween the ith and jth position can be expressed as E(xixTj )− E(xi)E(xj)T, where

E(xixTj ) =
q∑

a,b=1

eaeTb
eJ̃ijΘab∑
a,b eJ̃ijΘab

⇒ E(xixTj )ab = P(xi = a, xj = b) (5.5)

E(xi) =
q∑

a=1
ea

eJ̃ijΘab∑
a,b eJ̃ijΘab

⇒ E(xi)a = P(xi = a) , (5.6)

putting the above together, yields

cov(xi, xj)ab = P(xi = a, xj = b)− P(xi = a)P(xj = b) . (5.7)

Phenotype vs Phylogeny: Here, we note that the phenotypic interaction matrix J only affects

the covariance of the residues which are involved, shown in Fig. 5.1. In contrast, phylogeny affects

every single element in the covariance matrix. An example of this effect is shown in Fig. 5.1. As we

will show later, this has significant impact on how the interaction signals should be extracted.
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Figure 5.1: Empirical covariance matrices are shown. A) sequences of length 100 generated after 5 branching events and
mutation rate 0.1. B) 4096 independent sequences of length 30 are generated with two disjoint interactions J17,15 =
−3.12 and J19,20 = 3.30.

5.2 Covariance Analysis

Our goal is to find properties which distinguish phylogenetic and phenotypic interaction signals in

a covariance matrix which contains a superposition of both. Towards this end, we develop a method

that approaches this problem by examining characteristics in the covariance matrix from phyloge-

netic or phenotypic sources separately. To approximate the covariance matrix, in practice we use the

empirical covariance matrix throughout our analysis; as defined below.

Definition 5.2.1. For a matrix X of size n× pq where n is the number of samples and pq is the dimen-

sion of each sample then the phylogeny covariance matrix of X is CS =
1

n−1(X− X)(X− X)T, which is

an n× n matrix, where Xij =
1
p
∑p

j=1 xij.

Definition 5.2.2. For a matrix X of size n× pq where n is the number of samples and pq is the dimen-

sion of each sample (p is the size of the amino acid sequence and q is the dimension of the one-hot vector)

then the phenotypic covariance matrix of X is C = 1
p−1(X− X)T(X− X), is an pq× pq matrix, where

Xij =
1
n
∑n

i=1 xij.
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Figure 5.2: This plot demonstrates the detrimental effects of phylogeny when using the empirical covariance matrix C to
infer contacts. A) vs B) are heatmaps of C without and with phylogenetic dependencies respectively. C) and D) shows
when we use the top 200 correlations in C shown in A) and B) respectively to infer contacts. We can see that by adding
the phylogenetic process the precision reduces from 185/200 to 7/200 which is signficant.

When sequences are generated with a phylogenetic tree, their corresponding covariance matrix

exhibits a nested square structure (Fig. 5.1A). In contrast interactions between amino-acids appear

to generate a spiky signal (Fig. 5.1B), at (i, j) position, if the positional residues i and j are interact-

ing with each other. This entails that phylogeny imposes a global signature on the covariance matrix

while the phenotype signature on the covariance matrix is local.

5.2.1 Significance of Phylogeny

Fig. 5.2 shows the ability to infer J from the empirical covariance matrix when the sequences are

generated via a phylogenetic tree compared to independently generated. In Fig. 5.2C we see that,

indeed, the empirical covariance matrix can infer 185/200 non-zero interactions for indepenent
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sequences, while when phylogeny is involved this drops down to 7/200 (Fig. 5.2D).

From this we ask the following key question: is it possible to disentangle phylogenetic correla-

tion from the correlations induced by J in the empirical covariance matrix? Moreover, would it be

possible to improve the inference of J if we removed the phylogenetic signals.

5.3 Eigenvalue Distribution

Most of the covariance analysis will be done with respect to its decomposition in eigenspace. The

advantage to this method is that complicated features can be easily extracted through eigenvectors28.

The eigen decomposition of the covariance is given by

C = λnUnUT
n + · · ·+ λ1U1UT

1 , (5.8)

whereUi denote the eigenvectors and λi the corresponding eigenvalues. Note if λn � λi for all

i 6= n then the prominent features of ΣS can be captured by a rank-one matrix given by λnUnUT
n

(also known as principal componenet analysis).

Definition 5.3.1. Let C be a matrix of size p × p with eigenvalues λ1, · · · , λp. The empirical eigen-

value distribution function P(λ) is given as

P(λ) =
1
p

p∑
i=1

δ(λ− λi).

Here we show that the phenotypic covariance matrix, C shown in Definition 5.2.2, has almost
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the same eigenvalue distribution as phylogenetic covariance matrix (Definition 5.2.1).

To see this, first note that matrices C1 = XTX and C2 = XXT share the same eigenvalue distri-

bution, with the exception of a degenerate eigenvalue at zero since both matrices have the same rank

but are of different dimension.

We can thus use a singular value decomposition on X

X = UΛV , (5.9)

whereU is an n×n unitary matrix,V is a p×p unitary matrix and Λ is a diagonal matrix of size n×p.

Next, we substitute this into C1 and C2 resulting in

C1 = UΛΛTUT ,

C2 = VTΛTΛV . (5.10)

The eigenvalues of C1 and C2 are the diagonal elements of ΛΛT and ΛTΛ respectively. The matrix

of the larger dimension between C1 and C2 will have a degenerate eigenvalue at zero. This is simply

a reflection on the non-zero dimensionality of the null space and is not essential for the detection

of the correlation structure of either phylogeny or phenotype. The rest of the eigenvalues of C1 and

C2 are the same. Similarly, both the phylogenetic and the phenotypic empirical covariance matrix,

CS and C, will have approximately the same eigenvalues distribution after scaling. From empirical

observations, the removal of modes, XTX and XXT, only affect the largest eigenvalue but the rest of
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the eigenvalues remains the same.

In this chapter and above, we have shown that the empirical covariances matrices for both phy-

logeny and phenotype contains equivalent eigenmodes as well as non-zero eigenvalues. Crucially, we

have found that the phylogenetic process and phenotypic process induces two very different kind

of signals in its corresponding true covariance matrix. Phylogenetic dependence changes the covari-

ance matrix globally (i.e. nested squares see Fig. 4.3), while phenotypic covariance induces only local

spikes, i.e. we see that interactions between the ith and jth amino acid pair will only induce non-zero

covariance in the ijth element of the matrix see Eqs 5.3 and 5.7. These two different ”frequency” of

signals should be decomposable similar to Fourier decomposition where phylogenetic dependencies

corresponds to signicantly lower frequency signal than that of point contacts induced by phenotype.

As a result, we hope to find a way to remove phylogenetic noise by looking at the eigendecomposi-

tion of the empirical covariance matrices. Towards this end, we turn towards randommatrix theory

to shed light into how to decompose these two different signatures.
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We could not, for example, arrive at a principle like that of entropy without

introducing some additional principle, such as randomness, to this topogra-

phy.

Michael Polanyi

6
Eigenvalue Analysis using RandomMatrix

Theory

When the data is sampled independently, the empirical covariance matrix, C ∼ XTX, is a good way

to deduce the significant correlations that come from phenotypic interactions. However, for protein

families – the sequences are not independent. They are related via phylogeny and, as shown in the
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previous chapter, when the sequences are related via phylogeny, this correlation measure is no longer

effective at all.

We have also seen from the previous chapter that the covariance induced by phylogeny and the

one induced by the phenotype are strikingly different in nature. Namely, the phenotypic interac-

tions induce sharp spiky signals in the covariance matrix, whereas phylogeny induces a global nested

structure. Here, we examine the consequential effects these different signatures have on the em-

pirical covariance measure. In particular, we would like to know the effect on its corresponding

eigenvalue distribution.

In this chapter, we turn to randommatrix theory (RMT) to show that, in the regime where we

have a large number of sequences in the multiple sequence alignment, we can predict to high preci-

sion the eigenvalue distribution of the empirical covariance matrix induced by phylogeny. In order

to do this, we develop a novel extension to a known theorem byMarčenko & Pastur 37 .

With the ability to predict the eigenvalue distribution induced by phylogeny, we hope to shed

light on why the covariance matrix is no longer a good indicator of phenotype in its presence.

RMT has been applied to a wide range of areas such as quantum, population genetics and fi-

nance to name a few63,46,32,6,7,8,9; we will limit the exposure in the following to our area of investiga-

tion but refer to books by Edelman &Rao 17 , Tao 58 , for in-depth guides.
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Figure 6.1: 4096 random sequences of length 100 are generated. Blue line is the MP distribution.

6.1 Marčenko-Pastur (MP) Distribution

For independent and identically distributed (iid) sequences with no phenotypic constraints, the

empirical covariance matrix, XTX/n, has some well known properties. One of which, is its eigen-

value distribution. This distribution was discovered byMarčenko & Pastur 37 in 1967 and has the

following form:

f(λ) =
√
(b− λ)(λ− a)

2πλc
, (6.1)

where a =
√
1− c2, b =

√
1+ c2 and c = p/n. Fig. 6.1 gives an example of the MP distribution.

An important property about this distribution is that it is not dependent on the base distribution

used to generate the elements in X and more importantly it is satisfied in the limit where p, n → ∞.
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We can view this as the theorem in RMTwhich is equivalent to Central Limit Theorem where we

can find the exact distribution of the sample mean in the limit of infinite samples, i.e. n→∞. Note

this distribution is compactly supported, which means it is interval bounded by [a, b]. Thus this

distribution is an easy way to detect whether the data we have is completely random.

This compactness also allows us to distinguish the noisy modes (eigenvectors) from the impor-

tant ones. For example, if we have the following interaction matrix

J =


0 ε 0

ε 0 0

0 0 0

 , (6.2)

which is a rank one matrix. Its empirical covariance matrix C = XTX/n should tend towards a

rank one matrix as we increase the sample size. A common way to make sure that the estimate we

have is rank one is to use dimension reduction methods. A common dimension reduction method is

principal component analysis28 (PCA) which captures the matrix in lower dimensions by reducing

the following loss function

L(C, C̃d) =
∑
i,j
|Cij − C̃dij|2 , (6.3)

where d is the dimension of the estimate. By expressing C in its eigendecomposition

C = λ1v1vT1 + · · ·+ λpvpvTp ,
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Figure 6.2: 4096 independent sequence of length 100 are generated with 100 phenotypic interactions, the non‐zeros
values of J are between ‐5 and 5. The blue line is the MP distribution. Note that many eigenvalues fall outside of the
compat support of MP distribution, as we would expect from the interaction structure in J.

where λ1 ≥ · · · ≥ λp and p is the dimension of the matrix, then the d-dimension PCA estimate is

given by

C̃d = λ1v1vT1 + · · ·+ λdvdvTd . (6.4)

For the problem where J has the form of Eq. (6.2), we know that d = 1 will give us a good estimate

of C. However, if the rank of the interaction matrix, J, is not known beforehand then choosing

d is not as straightforward. One method is to plot the loss function shown in Eq. (6.3) against d.

The optimal d can then be determined as the lowerest dimension before the loss function saturates.

However, this is not an elegant method as it gives us no indication of the dimension of the underly-

ing physical system.
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Amore mathematically satisfying way of choosing d is by utilising the MP distribution shown

in Eq. (6.1). In particular, the eigenvectors associated with the eigenvalues outside the compact

support of the MP distribution must capture the relevant signals (i.e. the non-zero interactions in J).

An example is shown in Fig. 6.2, here we see that the eigenvalues mostly satisfy the MP distribution,

but a few lies outside of the compact support. This indicates that the underlying physical systems

used to generate the sequences are not completely random.

Many fields have successfully adopted this idea to clean the covariance matrices for their physical

system such as in finance6,5,32,4, which made this an area of increasing interest.

6.2 Extension toMarčenko-Pastur

The compactness of the MP-distribution gave rise to an elegant way of distinguishing noise from

relevant signals. However, when the true covariance matrix is not of low rank, as is the case for the

covariance matrix induced by phylogeny (see Fig. 5.1), then the MP distribution no longer holds.

In this work, we extended the MP distribution to sequences generated via a phylogenetic tree.

For sequences with no phenotypic constraints simulated along a homogeneous tree, the covari-

ance matrix, ΣS, is given by Eq. (4.10). Correspondingly, its eigenvalue distribution is given by

Eqs. (4.12) and (4.13). Marčenko and Pastur37 formulated a connection between the expected

eigenvalue distributions and the empirical eigenvalues of CS. We extendMarčenko and Pastur’s

derivation for independent samples to the case of samples which are dependent via a tree structure.

Surprisingly, the parameters of the phylogenetic tree, i.e. the number of mutations per branch and
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number of branching events, control the empirical eigenvalue distribution through a polynomial

which we can analytically find. Edelman et al49 coined the term ‘algebraic randommatrices’ for such

cases where the eigenvalue distribution is encoded in a polynomial. Additionally, we use the proper-

ties of these polynomials to find the eigenvalue distribution of CS.

The connection whichMarčenko and Pastur derived between the eigenvalue distribution of

ΣS, denoted as T(λ), and of CS, denoted by f(λ), is via its Stieltjes Transform,G(z). The Stieltjes

transform of f(λ) is given by

G(z) =
∫ ∞

−∞

dF(λ)
λ− z

, (6.5)

where dF(λ) = f(λ)dλ. The inversion formula is

f(λ) = lim
y→0

1
π
={G(λ+ iy)} . (6.6)

Marčenko and Pastur37 found thatG(z) satisfies the following differential equation

−1
G(z)

= z− c
∫ ∞

−∞

λdT(λ)
1+ λG(z)

, (6.7)

where c = n/pwhen X is a matrix of size n × p. This estabilishes a connection between T(λ) to

f(λ) viaG(z). To apply Eq. (6.7) we simply use the expressions for the eigenvalues λi and their corre-

sponding probabilities pi from Eqs. (4.12) and (4.13), namely dT(λ) =
∑b+1

i=1 piδ(λ− λi)dλ .Thus
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Figure 6.3: 4096 sequences of length 100 with no structural constraints are generated using the following branching
events A)1; B)3; C)7 ; D) 10 ; E)12. Here analysis depicts our extension to MP, which yields an exact fit.

Eq. (6.7) becomes

−1
G(z)

= z− c
b+1∑
i=1

piλi
1+ λiG(z)

. (6.8)

By multiplying this with the factorG(z)×
∏b+1

i=1 (1+ λiG(z)), Eq. (6.8) is changed to the following

polynomial

(zG+ 1)
b+1∏
i=1

(1+ λiG)− c
b+1∑
i=1

piλiG
∏
j ̸=i

(1+ λjG) = 0 . (6.9)

f(λ) can now be found using the inversion formula Eq. (6.6). As this requires us to find the roots

to the polynomial Eq. (6.9), one limit to this method is in the accuracy of root finding algorithms

for polynomials of high degree. However, we note that the eigenvalue distribution becomes station-
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Figure 6.4: This shows CS = XXT/p, where X is a matrix consisting of 600 binary sequences of length 300 in one‐hot
format. Here J = 0 and the sequences are created with 300 random initial sequences going through one branching
event. The mutations per branch are A) 3, B)20, C)50 and D)200.

ary as b increases, see Fig. 6.3. In this figure we plot sequences for different number of branching

events as well as our analytically derived solution from above (red line in the figure) and the standard

MP distribution (blue line). We can observe a clear difference between the exact solution we derived

and the MP distribution. We further see that the change in the eigenvalue distribution between one,

three and seven branching events is noticeable, while the bulk of eigenvalue distribution is almost

exactly the same between 10 and 12 branching events. Thus we can approximate the eigenvalue

distribution by finding the distribution of a tree with sufficiently large number of branching events.

Simple Phylogeny – Case Study As an example, consider a tree with just one branching

event. The expected eigenvalue distribution is p1 = P(λ = 1+α) = 1/2 , p2 = P(λ = 1−α) = 1/2
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where α = exp(−2mq/p(q− 1)). As a result, Eq. (6.9) becomes

z(1− α2)G3 + (2z+ (1− c)(1− α2))G2 + (z+ 2− c)G+ 1 = 0 . (6.10)

This is a polynomial of degree three, hence there are three roots,G1(z),G2(z) andG3(z). These

roots are either all real, or we can have one real root and two complex conjugate roots. The eigen-

value distribution is given by f(z) = =(G(z)). Fig. 6.4 shows our analytical results (red line) com-

pared to the empirical eigenvalue distribution, the two almost overlap exactly. Moreover, we show

that as we increase the mutations along the branch, the eigenvalue distribution tends towards the

Marčenko-Pastur distribution.

6.3 Spectra of Inhomogeneous Simple Phylogeny

So far, the analysis was done for trees with equal length branches. To push this towards a more real-

istic protein evolution model, we extend this analysis to inhomogeneous trees. Here, the mutations

per branch are drawn from a probability distribution with mean E(m) ≡ μ. The distribution we

consider is the Poisson distribution as it provides a realistic model of the frequency of events in a

time interval.

We start again with the case of simple phylogeny, a tree with just one branching event. If we have

n0 initial sequences which all go through a homogeneous simple phylogenetic tree with μmutations
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per branch, then the expected covariance matrix is given by :

2

1

...

2

1

μ

μ

μ

μ

⇒ ΣS =



1 α2μ

α2μ 1

. . .

1 α2μ

α2μ 1


, (6.11)

where α2μ = exp(−2μq/p(q− 1)). Using Eq. (6.9), the Stieltjes transform for this homogeneous

simple phylogenetic system satisfies the following

G
(
z− c

2
1+ α2μ

1+ (1+ α2 μ)G
− c

2
1− α2μ

1+ (1− α2μ)G

)
= −1 , (6.12)

where c = n/p and n = 2n0. For the equivalent inhomogeneous case,m1,m2, · · · ,m2n0−1,m2n0

are the branch lengths drawn from a Poisson distribution with mean μ, thus ΣS is

2

1

...

2

1

m1

m2

m2n0−1

m2n0

⇒ ΣS =



1 αi1

αi1 1

. . .

1 αin0

αin0 1


, (6.13)

where i1 = m1 + m2 , · · · , in0 = m2n0−1 + m2n0 and αi = e−qi/p(q−1). This notation satisfies
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three properties :αi+j = αiαj; αij = αji; α
j
i = αij . Using the additive property of a Poisson distribution,

i1 , · · · , in0 are independent and identically distributed variables drawn from a Poisson distribution

with mean 2μ

ρi =
(2μ)ie−2μ

i!
, (6.14)

where ρi = P(i1 = i). Using Eq. (6.8),G satisfies

G
(
z− c

2

∞∑
i=0

ρi(1+ αi)
1+ (1+ αi)G︸ ︷︷ ︸

(A)

− c
2

∞∑
i=0

ρi(1− αi)
1+ (1− αi)G︸ ︷︷ ︸

(B)

)
= −1 , (6.15)

where ρi is given by Eq. (6.14). We note that (A) can be rearranged into the following

∞∑
i=0

ρi(1+ αi)
1+ (1+ αi)G

=
1
G
− 1

G(1+ G)

∞∑
i=0

ρi
1+ αi G

G+1

=
1
G
− 1

G(1+ G)

∞∑
i=0

ρi
∞∑
j=0

(
−G
1+ G

αi
)j

=
1
G
− 1

G(1+ G)

∞∑
j=0

(
−G
1+ G

)j ∞∑
i=0

ρiα
i
j , (6.16)

(B) can be rearranged in a similar fashion. Furthermore, we can make the following approximation

∞∑
i=0

ρiα
i
j = Ei(αij) (6.17)

= exp
(
2μ(e−qj/p(q−1) − 1)

)
= exp

(
2μ(qj/p(q− 1) + o(p−2))

)
∼ αj2μ , (6.18)
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for large p. Substituting this back into Eq. (6.16) gives

∞∑
i=0

ρi(1+ αi)
1+ (1+ αi)G

∼ 1
G
− 1

G(1+ G)

∞∑
i=0

(
−G
1+ G

)i
αi2μ

=
1+ α2μ

1+ (1+ α2μ)G
. (6.19)

Eq. (6.19) shows that when p is sufficiently large, the summation simplifies as a function of the

mean of the Poisson distribution which yields

G
(
z− c

2
1+ α2μ

1+ (1+ α2μ)G
− c

2
1− α2μ

1+ (1− α2μ)G

)
∼ −1 .

This is the same as Eq. (6.12). Intuitively,G can be approximated by the mean of the probability

distribution, μ, when p is sufficiently large.

6.4 Spectra of Inhomogeneous Trees

We extend the analysis in the previous section for trees with just one branching event to inhomoge-

neous trees with an arbitrary number of branching events. This is done in two steps.

The first step is to show that Eq. (6.18) still holds when the following approximation can be

made:

Ei(αij) ∼ αjE(i).

For our purposes E(i) = 2μ. We show that this is a valid approximation for any probability dis-
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tribution with convergent moment generating function (MGF). For the second step, we use this

approximation for a tree with arbitrary number of branching events.

Definition 6.4.1. Amoment generating function (MGF), M(t), of a random variable x is given by

M(t) = E(etx).

For the random variable i, where i is the number of mutations, the MGF is given by Ei(αi) =

Ei(e−qi/p(q−1)).

For the first step we want to show, for p sufficiently large, that

Ei(αij) ∼ αE(i)j = αjE(i) . (6.20)

This condition can be equivalently expressed as E(e−δi) ∼ e−δE(i) where δ = O(1/p). Firstly, we

note that the MGF satisfies the following:

E(e−δx) =

∞∑
i=0

(−1)i 1
i!
δiE(xi) , (6.21)

in particular, E(x2) = var(x) + E(x)2. The functional form f(x) = e−δx is convex for positive δ and

x. Therefore, we can apply Jensen’s inequality which yields

e−δE(x) ≤ E(e−δx) , (6.22)

this gives a lower bound to Eq. (6.21). An upper bound can also be found by considering the follow-
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ing inequality:

e−δx ≤ 1− δx+
1
2!

(δx)2 , (6.23)

we can apply the expectation operator on both sides to give:

E(e−δx) ≤ 1− δE(x) +
1
2!
δ2E(x)2 +

1
2!
δ2var(x)

= e−δE(x) +
1
2!
δ2var(x) + O(δ3) . (6.24)

Consequently, Eq. (6.21) is bounded by the following :

e−δE(x) ≤ E(e−δx) ≤ e−δE(x) + O(δ2) . (6.25)

As δ becomes sufficiently small, the upper and lower bounds both converges to e−δμ. Subsequently,

we can approximate E(e−δx) by e−δμ with an error term which is second order with respect to δ.

Hence, as p becomes sufficiently large we can use the following approximation

E(e−δx) ∼ e−δE(x) . (6.26)

where the error of the approximation isO(p−2).

Extending to Arbitrary Phylogeny: The Stieltjes transform,G, for a homogeneous tree with b
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branching events and μmutation events per branch is given by

G

(
z− c

b+1∑
i=1

pi
λi

1+ λiG(z; c)

)
= −1 , (6.27)

where λi and pi are given in Eq. (4.12), Eq. (4.13) respectively, further α = exp(−2qμ/(p(q− 1)).

For a inhomogeneous tree with l branches where the number of mutations is drawn from a distri-

bution with mean μ, the equivalent expression to Eq. (6.27) is given by

G

(
z− c

b+1∑
i=1

pi
∑
M

ρm1
· · · ρml

λi(αm1 , · · · , αml)

1+ λi(αm1 , · · · , αml)G

)
= −1 , (6.28)

where {m1, · · · ,ml} denotes the branch lengths, ρi = P(m = i) and λi(αm1 , · · · , αml) satisfies

λi(αμ, · · · , αμ) = λi.

We consider an inductive process, where we show that the following is satisfied

∑
M∈Nl

ρm1
· · · ρml

λ(αm1 , · · · , αml)

1+ λ(αm1 , · · · , αml)G

∼
∑

M∈Nl−1

ρm1
· · · ρml−1

λ(am1 , · · · , αml−1 , αμ)
1+ ρml−1

λ(am1 , · · · , αml−1 , αμ)G
. (6.29)

To do this, we first consider the Taylor expansion of the following function

h(x) =
λ(αm1 , · · · , αml−1 , x)

1+ λ(αm1 , · · · , αml−1 , x)G
=

∞∑
j=0

hjxj , (6.30)

where the coefficients hj are dependent on αmi . This Taylor expansion can then subsequently be
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Figure 6.5: This shows CS = XXT/p for sequences related via a simple phylogeny (one‐branching event), where X
is the matrix consisting of 600 21‐state sequences of length 300 in one‐hot format. Note that the eigenvalues wrt the
true covariance matrix of simple phylogeny is give 1 ± α where α = exp(−2mq/p(q − 1)). This induces a bimodal
distribution when α is sufficiently large, this corresponds to when the mutation rate is low. While if the mutation rate
is sufficiently high then α → 0 and the empirical eigenvalue distribution merges to the MP distribution. For these for
plots we show how the bimodal distribution tends towards the MP distribution as we increase the mutation rate. The
average mutations per branch used are: A) 20, B)50, C)200 and D)500.
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used in the following way:

∞∑
i=0

ρiλ(αm1 , · · · , αml−1 , αi)
1+ λ(αm1 , · · · , αml−1 , αi)G

=

∞∑
i=0

ρi
∞∑
j=0

hjα
j
i =

∞∑
j=0

hj
∞∑
i=0

ρiα
j
i =

∞∑
j=0

hj
∞∑
i=0

ρiα
i
j

=
∞∑
j=0

hjEi(αij) . (6.31)

Using the approximation in Eq. (6.20), Eq. (6.31) can be approximated by the following

∞∑
j=0

hjα
j
μ = h(αμ) , (6.32)

thus Eq. (6.29) is satisfied. We can repeat this process l times yielding

∑
M∈Nl

ρm1,··· ,ml
λ(αm1 , · · · , αml)

1+ λ(αm1 , · · · , αml)G
∼

λ(αμ, · · · , αμ)
1+ λ(αμ, · · · , αμ)G

=
λ

1+ λG
. (6.33)

Substituting this back into Eq. (6.28), we find that this equation is approximated by Eq. (6.27). We

can see from Fig. 6.5 that our analytical solution is indeed correctly overlaying the empirical eigenval-

ues observed.
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Distinguishing the signal from the noise requires both scientific knowledge

and self-knowledge: the serenity to accept the things we cannot predict, the

courage to predict the things we can, and the wisdom to know the difference.

Nate Silver

7
Cleaning Protein Spectra of Phylogeny

There have been many heuristic approaches in cleaning the phylogenetic bias, such as reweighting

of sequences2,41,18; pruning the multiple sequence alignment to be rid of redundant sequences; or

more advanced methods involving the inference of a tree such as the evolutionary trace (ET)35,57, or

phylogenetic significance testing51,53,52. However, these all rely on the inference of a phylogenetic
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Figure 7.1: 4096 sequences of length 100 are generated using 100 pairwise interactions with strength uniformly dis‐
tributed between ‐10 and 10. Top row are independent sequences and bottom row are sequences generated with 12
branching events and mutation rate 0.03. The pairwise interaction matrix is shown on the left where the grey dots are
the true interactions, red dots represent correctly predicted contact and blue cross is a false predicted contact. A‐D)
shows the outer product of the top eigenvector, v1 of C. A,C) vT1 v1, B,D) (Xv1)T(Xv1)

tree using various methods such as parsimony or maximum likelihood. The inference of a phyloge-

netic tree is computationally expensive, further, it is unclear how the fine details of a phylogenetic

tree can help contact prediction.

In the previous chapters we have shown that given a phylogenetic tree we can infer the eigenvalue

distribution of the empirical covariance matrix C ∝ XTX. In this chapter, we now put this knowl-

edge to good use, by demonstrating how we can disentangle phylogenetic signal from phenotypic by

inspecting the eigenvalue distribution.

Finally, we demonstrate the effectiveness of our approach in removing phylogenetic noise for

both our synthetic data and real protein data.
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7.1 Relation between Eigenvectors

If the sequences are independent, then the maximum likelihood estimate (MLE) for the phenotypic

pairwise interactions is given by C = (XTX)/n. Similarly, if there are no phenotypic interactions,

then the MLE for the dependence between the sequences is given by CS = (XXT)/p. However,

when there are both phenotypic and phylogenetic dependencies then C and CS are no longer opti-

mal estimates since the matrices contain both phenotypic and phylogenetic information.

We have seen from Section 5.3 that the non-zero eigenvalues C and CS are related via scaling.

Here, we show that the eigenvectors are also related by a linear transformation. The scaling and

the linear transformation is derived via the following

XTXv = λv ⇒ Cv = 1
nλv

XXT(Xv) = λXv ⇒ CS(Xv) = 1
pλ(Xv) .

(7.1)

In other words the following mapping transforms the eigenvectors in the residue space to its

corresponding sequence space

X : {v1, · · · , vr} 7→ {Xv1, · · · ,Xvr} , (7.2)

where r = max(n, p) and λ1 ≥ · · · ≥ λr are the corresponding eigenvalues.

This correspondence between eigenvectors means that each eigenvector should contain informa-

tion both about the phenotypic interactions and phylogenetic dependencies.
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Figure 7.2: 4096 sequences of length 100 are generated with 12 branching events and 0.03 mutation rate using 100
pairwise interactions with strength uniformly distributed between ‐10 and 10. This shows the outer product of the
eigenvectors, A‐B) v1, Xv1 and C‐D) v50, Xv50.

This sharing of information can be seen in the outer products as we switch between the residue

and sequence space shown in Fig. 7.1. Crucially, in this figure we see the catastrophic effects which

this sharing of information has on our ability to predict contacts if we compare the top and bottom

row figures 7.1. While the correct contacts predicted using C is 73/100 for independent sequences,

we only managed to predict 5/100 correct contacts when the sequences are related by phylogeny.

This figure also exhibits the sharing of information in the principal eigenvectors. In particular, for

Fig. 7.1C) we observe that the principal eigenvector of C, v1, doesn’t appear to pin down any par-

ticular phenotypic interaction pair, rather, it precisely captures the first duplication event when we

transform it into sequence space (see Fig. 7.1D)), Xv1. It would appear that this eigenvector was

‘phylogenetic’ rather than ‘phenotypic’.

This observation motivated our approach in the rest of this chapter: maybe there are some eigen-
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vectors which contain significantly more phylogenetic information and vice versa. This also raises

the question, howmuch does phylogeny affect each of the eigenvectors of the phenotypic empirical

covariance matrix? From Fig. 7.2 we see the outer products of v1 and Xv1, v50 and Xv50 where v1 and

v50 are the eigenvectors of C. The first duplication event is clearly captured in the principal eigen-

vector, Xv1, while Xv50 appears to be white noise. This suggests that phylogeny is a more dominant

factor in the eigenvectors with larger corresponding eigenvalues. This is intuitive, since phylogenetic

factors are ubiquitous amongst the sequences while phenotypic factors affect only the local residues

involved. If this indeed is the case, then this raises the exciting prospect of cleaning phylogenetic

biases by removing the top eigenmodes.

7.2 PhenotypicModes Exists in Conjugate Pairs

Although cleaning the phylogenetic bias by removing the top eigenmodes seems like a simple and

attractive solution, it is paramount that we do not remove important phenotypic information by

doing so. Thus, we want to understand how the information is encoded in C for a sequence align-

ment where there is no sequence dependence (i.e. phylogeny). We consider a system with only one

pairwise interaction to gain some insight. Concretely, let us assume that the underlying covariance

matrix for the system is

Σ =



1 β 0 0

β 1 0 0

0 0 1 0

0 0 0 1


,
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Figure 7.3: We visualise the outer product of the eigenvectors with largest and smallest eigenvalues, extracted from the
covariance of 700 independent sequences of length 40 with one pairwise interaction. A) C (X in amino acid format), B)
v1, C) vr.

this describes a system with an interaction between residue positions 1 and 2. Then the eigenmodes

associated with the largest and lowest eigenvalue (1± β) are correspondingly v+ = (1, 1, 0, 0)T/
√
2

and v− = (1,−1, 0, 0)T/
√
2. Unlike PCA, this system suggests that information is encoded in

the modes of the largest and smallest eigenvalues, precisely in those eigenvalues which are not one.

Fig. 7.3 shows the outer product of the eigenvector with the largest and smallest eigenvalues. Sur-

prisingly, the pairwise interaction is encoded in both of the eigenmodes. Furthermore, the modes at

the top end of the spectrum and the bottom ends of the spectrum appear to hold the same pheno-

typic information albeit with different signs, in some sense they contain the same information but

in a different orientation*. This suggests that if the top eigenmodes are corrupted by phylogeny, we

can try to retain the right amount of lower eigenmodes and not lose any phenotypic information.

*The result of adding these outer products together is given by

v+vT+ + v−vT− =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 .

Apart from the diagonal imprint, there is no information in the off diagonal elements when the top and
bottommodes are added together. This behaviour suggests that the information at the different ends of the
spectrum are ’oriented’ differently.
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Figure 7.4: The change to the maximum eigenvalue of CS with A) phylogenetic and B) phenotypic parameters. The line
of best fit is found using MATLAB, the different runs are represented by different colors. A) 8192 (n0 × 2b = 8192)
amino acid sequences of length 100 are generated with no phenotypic signals; the maximum eigenvalue is measured
against the number of branching events b. B) 4000 amino acid sequences of length 100 are generated independently of
each other where the non‐zero elements in the interaction matrix J is one; the maximum eigenvalue is measured against
the number of interactions.

7.3 Principal Eigenvectors Dominated By Phylogeny

The sharing of information between matrices C and CS curbs our ability to accurately infer pheno-

typic interactions when the sequences are related via a phylogenetic tree. We have speculated that

the modes with higher eigenvalues are more influenced by phylogeny, giving rise to the possibility

of separating phylogeny from phenotype information by removing the principal eigenvectors. Here,

we will show that by analysing the spectra of CS, the extremely large eigenvalues can only be con-

ducive to phylogeny.

Fig. 7.4 shows the functional behavior of the maximum eigenvalue when we simulated sequences

with either phylogeny (Fig. 7.4A) or phenotypic interactions (Fig. 7.4B). Here, we find that the

largest eigenvalue increases exponentially as we increase the number of duplication events while the

increase is only logarithmic when we increase the number of phenotypic interactions. This suggests
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Figure 7.5: The sequences are generated with 12 branching events and phenotypic interactions that is akin to DYR‐
ECOLI (see Fig. 5.2). A, B, C) uses 20, 100, 500 mutations per branch respectively. Here we see the empirical eigenvalue
distribution for CS = XXT/p. The red line is the analytical solution using Eq. (6.9) and the effective mutation rates,
the blue line is the MP distribution.

that when the phylogenetic tree has a sufficiently large number of branching events (as is the case in

protein sequences), then the largest eigenvalues in the spectrum of our empirical covariance matrix

must be due to phylogeny.

Moreover, our empirical observations show that the shape of the eigenvalue distribution is mostly

controlled by phylogeny and not by phenotype. This can be seen in Fig. 7.5. Here the red lines are

the predicted analytical eigenvalue distribution from phylogeny. We see that it closely matches with

the empirical eigenvalue distribution observed - the sequences generated have both phylogenetic

dependencies and phenotypic interactions.

7.4 Power LawTails

We have shown that the shape of the eigenvalue distribution of the empirical covariance matrix is

dictated by phylogeny – crucially even when phenotypic constraints are present. As a result, we can

extend many properties that apply to the eigenvalue distribution induced by only phylogeny to the
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Figure 7.6: Sequences generated using 13 branching events with 500 interactions, the mutation rate is approximately
105. A) the interactions B) log log scaling of the spectrum, C) accuracy of predicted contacts given truncation.

eigenvalue distribution when both phylogeny and phenotype are present such as protein sequences.

In particular, we have seen in Fig. 7.4 that the maximum eigenvalue increases exponentially as the

number of branching events increase. Further, we have also shown that the probability decreases ex-

ponentially as the eigenvalues increase, see Eq. (4.13). Thus, the heavy tailed eigenvalue distribution

is symptomatic of the phylogenetic process, while phenotypic information is present in the lower

half of the spectrum which is much harder to detect. With the phylogenetic signals dominating the

phenotypic signals in the principal modes, we hope to remove phylogenetic signals from the pheno-

typic by removing these - and only these - modes.

Since the eigenvalue distribution is mostly dictated by phylogeny, for this part of our analysis, we

will, at first, make the simplification that the sequences have only phylogenetic dependence. Here,

we will first show that the eigenvalue distribution induced by phylogeny follows a power law in the

low mutation regime. To see this, we can use Eqs. (4.12) and (4.13) to deduce the power law in the

tail of the empirical eigenvalue distribution when mutation rate is sufficiently low. We note that the
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expected eigenvalue distribution in Eq. (4.12) can be rewritten as

λ(r) = (1− α)(1+ 2α+ · · ·+ (2α)k)

λ(2r) = (1− α)(1+ 2α+ · · ·+ (2α)k−1) , (7.3)

here k = b − blog2 rc, b is the number of branching events, r > 1 and λ(r) = λ⌊log2 r⌋ (λi is

defined in Eq. (4.12)). If we consider the bth generation of sequences where b is sufficiently large, we

can evaluate the gradient of log(λ) as a function of log(r) by taking the approximation that λ(r) ∼

O((2α)k+1)when 2α > 1. This results in the following

λ(r) ∼ O((2α)b−log(r)/ log(2)+1) (7.4)

λ(r) ∼ O (exp(log(2α)(b− log(r)/ log(2) + 1))) (7.5)

→ ∇log(r) log(λ) = −
log(2α)
log(2)

. (7.6)

For the case where 2α ≤ 1 we note that∇ log(λ) ∼ 0; using the approximation that k is sufficiently

large in the tail of the eigenvalue distribution for large b.

We can further simplify the above by considering α as a function of the mutation ratem/p, α =

e−2qm/(p(q−1)), this gives

∇log(r) log(λ) ∝


2q

log(2)(q−1)
m
p − 1 (q−1) log(2)

2q > m
p

0 otherwise.
(7.7)
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Figure 7.7: We used 12th generation sequences of length 100, the average mutations per branch is 10. The x‐axis
is the size of the block of interactions, the left panel shows the effect mutation rate when the true mutation rate is
0.1, the right panel is the corresponding gradient extracted from a prediction using MATLAB’s fit function. The blue,
yellow and red lines show the maximum, mean and minimum values, respectively, calculated from 20 runs. The purple is
y(meff) = − log(2αeff)/ log(2).

From this we see that∇log(r) log(λ) is piecewise constant, depending on the mutation ratem/p.

Thus, λ(r) ∝ r∇ log(λ) = rcst when λ is sufficiently large; also note that the exponent cst is dependent

on the mutation rate. Concretely, the exponent is always negative with a slower mutation rate gen-

erating a steeper gradient. Fig. 7.6 shows the prediction the slope of the power law using Eq. 7.7, we

can see that the observed slope is exactly as predicted.

7.5 EffectiveMutation Rate

One subtlety in the analysis we have done so far, is that them used is the proposed number of muta-

tions for the Metropolis Hastings algorithm; cf. Algorithm 1. However, the number of mutations

accepted will be significantly different in the case of pathological interactions27, where the pheno-

typic interactions are spatially correlated. Here, we use the term ‘effective mutation rate’ to mean the

rate of mutations which are accepted.
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The spatial correlation mentioned above is necessary for a realistic protein model, as it is well

known that a protein’s 3D structure is composed of a variety of beta sheets, alpha helices and loops.

This so called secondary structure projects a checkerboard-like pattern on the contact map between

proteins. For example, Fig. 1.1 shows the pattern induced in the contact map by oxymyoglobin

which consists of α-helix strands. An important question to answer thus is: What happens to the

power law when the spatial correlation between the amino acid residues are high? To investigate this

question, we impose a simple interaction matrix where the spatial correlation is high.

J =



1 · · · 1 0 · · · 0

... . . . ...
... . . . ...

1 · · · 1 0 · · · 0

0 · · · 0 0 · · · 0

... . . . ...
... . . . ...

0 · · · 0 0 · · · 0



. (7.8)

Although this model is unrealistic, it can be seen as a stress test that we can use to uncover to what

extent imposing a strong spatial correlation affects the power law induced by phylogeny alone.

Fig. 7.7 shows the relationship between the power tail and the block size of interactions. We make

two noteworthy observations: firstly the effective mutation rate decreases linearly as we increase the

block size, this behaviour is mirrored in the power tail, and secondly the average gradient of expo-

nent of λ is well approximated by− log(2αeff)/ log(2)where αeff ∝
meff
p andmeff/p is the effective
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mutation rate.

For this simple synthetic model the linear behaviour can be analytically found. Consider the

probability of accepting a mutation at position iwhich we denote asmi, the ith residue has inter-

acting neighbours if i ≤ x, where x is the size of the block. We can apply the sum of probability to

get

P(mi) = P(mi|i ≤ x)P(i ≤ x) + P(mC
i |i > x)P(i > x)

= 1− 1− e−ΔE

p
x . (7.9)

The effective mutation rate would be given bymeff/p = P(mi)m/p and this is a linear function of

the block of interactions of size x.

7.6 Cleaning Protein Spectra

Finally, we arrive at the application of the above developed theory to cleaning protein spectra.

7.6.1 Pruning Sequence Alignments

To start, as a sanity check, we first want to see what a canonical phylogeny correction such as prun-

ing the multiple sequence alignment would do to the eigenvalue distribution of the empirical co-

variance matrix. This is shown in Fig. 7.8. We see that the eigenvalue distribution remains almost

exactly the same when we prune the alignment; indicating that phylogenetic bias is still very much

present.
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Figure 7.8: Comparison of the eigenvalue spectra of large protein sequence alignments with and without the canon‐
ical phylogeny correction used in the literature. Here we compare no treatment to pruning the alignments, whereby
sequences are removed so that no two remaining sequences are more similar than a user‐chosen threshold—often a
Hamming distance of around 0.3 is chosen. These plots show analysis of the spectra resulting from alignments for (A)
Trypsin, (B) DHFR, and (C) TRML HAEIN both before (A–C, Left and Center) and after (A–C, Left and Right) we prune the
alignment.
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7.6.2 Removing PhylogeneticModes

Our approach then, which we present in this section, is derived from the signature behaviour of

the eigenvalue distribution with respect to phenotypic and phylogenetic signals; as described in

previous section. Furthermore, we note that this analysis carries through even when the sequences

are generated with a superposition of both.

As we have argued above, the presence of phylogeny will introduce a heavy tailed eigenvalue dis-

tribution for the empirical covariance matrix. This remains to be true also in the presence of pheno-

type interactions.

This heavy tailed distribution induced by phylogeny follows a power law which is dependent

on the mutation rate of evolution. Here, we hypothesise that in the presence of both phenotypical

mutations and phylogeny the modes whose eigenvalues follow this power law are ‘phylogenetic’

modes. In other words, these are eigenvectors whose signal is mostly induced by phylogeny rather

than the phenotypic interactions we seek.

We use our simulated data to test this hypothesis. Indeed, the analysis of simulated data suggests

that the effects of phylogeny can be minimised by removing large modes from the covariance matrix,

and enforcing the constraint that the remaining eigenvalues are all of the same size. Concretely, if

our empirical covariance matrix C ∝ XTX has eigenvalues λ1 ≤ · · · ≤ λt ≤ · · · ≤ λp(q−1) with

corresponding eigenvectors vi, then the most effective way to enhance phenotypic signals whilst
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removing phylogenetic signals is given by the truncated covariance

C(t) = v1vT1 + · · ·+ vtvTt , λ1 ≤ · · · ≤ λt ≤ · · · ≤ λp(q−1), (7.10)

here t is the parameter which controls howmany principal modes we truncate.

7.6.3 Effectiveness on Simulated Sequences

Our results are highlighted in Fig. 7.6. In Fig. 7.6A we show the interaction matrix J used to simu-

late the sequences. In Fig. 7.6B we show the plot of log(r) vs log(λ). Indeed we see a linear depen-

dence for the highest eigenvalues, the yellow line in the figure is the predicted linearity shown in

Eq. (7.6). The empirically observed eigenvalues match our prediction.

The most important part of this figure, is given in Fig. 7.6C. Here, we plot the accuracy of our

predicted contacts (interactions) vs the number of principal modes we remove – namely the trun-

cation t from Eq. (7.10). When no principal modes are removed the accuracy of the prediction of

interactions is less than 10%, when we remove the firstO(200) principal modes out of 2000, the

accuracy shoots up to 80%. This agrees with our analysis that the largest principal modes are highly

corrupted by phylogeny. Moreover, the optimal number of modes to remove – to obtain the highest

accuracy – is highlighted in the purple line shown in Fig. 7.6B) which corresponds to the cut-off

where the eigenvalues are no longer following the power law. All of this is in exact agreement with

our analysis.
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7.6.4 Effectiveness on Protein Families
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Figure 7.9: Protein sequences used DYR ECOLI,TRY2 RAT,TRML HAEIN. The top row shows the precision of the contact
prediction when we remove the largest eigenmodes; the number of principal modes removed is shown on the x‐axis.
The middle row shows the power law induced by the design matrix of the proteins with the purple line showing the
threshold at which the lower rank eigenvalues should be discarded to optimize the precision. No pseudocounts are
used. The purple line shows that maximum contact prediction is reached when 200, 416, 491 eigenmodes are removed,
respectively. The bottom row uses the power law to predict the spectrum of the proteins, the analytical result is shown
by the red line.

We now examine the eigenvalue distributions of the covariance matrix formed from three, dif-

ferent, real protein families. Given the vastly different signatures in the eigenvalue distributions

expected from phylogeny and phenotypic interactions, it is of great interest to see if such signa-

tures arise in practice. We choose three representative protein families for our experiment. We se-
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lected these families adversarially, i.e. we chose them because covariance analysis has been shown to

yield inaccurate contact predictions for them. The results when applying our method are given in

Fig. 7.9.

The middle panels of Fig. 7.9 show that the eigenvalue distributions for each of the three fam-

ilies satisfy the power law tail, λ ∼ r−x, with x ranging from 0.4 to 0.9. Given the formula (7.6),

this means thatm/p ∼ O(0.1). The top panels of Fig. 7.9 show the results of C(t) for predicting

contacts. For each protein, the optimal threshold, T, is found, i.e when we remove vt for t > T the

highest contact accuracy is obtained. The lower panels of Fig. 7.9 compare the optimal truncation

(purple vertical line) with the eigenvalue distribution. There is an astonishing agreement between

the modes best removed and the modes which follow the linearity of the power law. The result is

congruent with our theory; the power law indicates the presence of strong phylogenetic effects. Fur-

ther, the power law tails give us the estimated effective mutation rates allowing us to predict the spec-

tra, which is the analytical solution (red lines) shown in the bottom panels. Overall, we observe a

remarkable match between our analytical predictions and empirical data extracted from real protein

sequences.
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8
Conclusion

In this thesis we aimed to understand, at a fundamental leve, how we can use the protein data

at our disposal to better infer protein structures. To this end, we focused on analysing properties of

covariance matrices induced by a Multiple Sequence Alignment (MSA). In particular, we wanted

to understand how phylogeny and residue-residue interactions differently impact the empirical co-
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variance we observe in proteins. By building upon existing results from RandomMatrix Theory

(RMT), we were able to develop new approaches in RMT spectral analysis to handle randomma-

trices that can be closely related to correlations extracted for different protein families. In particular,

we can now analyse MSAs in which phylogeny is a major factor.

Both our theoretical and empirical analysis show that covariance matrices induced byMSAs are

dominated by signals from phylogeny rather than phenotype (residue-residue interactions). Con-

cretely, we find that phantom correlations induced by phylogeny causes eigenvalues in the empiri-

cal covariance matrix to follow a heavy-tailed distribution. In this distribution the largest eigenval-

ues/eigenvectors are largely due to phylogeny, following a power-law that depends on the mutation

rate. This is a theoretical result that we built using simulated models of tree-related Boltzmann se-

quences. More importantly, we find that this theoretical result is consistent with what we observe

empirically for real protein data. Namely, we find that for MSAs, the spectral distribution of an

empirical covariance matrix is always heavy-tailed with the tail satisfying a power law.

This discovery allowed us to develop a simple and theoretically grounded method to disentangle

the correlations induced by structure/phenotype and phylogeny by leveraging the shape of the eigen-

value distribution of the empirical covariance matrix. Indeed, the primary accomplishment of this

manuscript is in identifying that phylogenetic relations between amino-acid sequences give rise to a

power law tail in the eigenvalue distribution of covariance matrices. This distinct feature can be used

to distinguish the covariation caused by phylogeny from that caused by phenotypic interactions.

Crucially, we demonstrate that covariance matrices are most effective at predicting residue-residue

contact when we remove eigenmodes for which the corresponding eigenvalues follow the power-law,

90



further validating our theoretical result – and retain other eigenmodes.

The presence of power law tails in both synthetic Boltzmann sequences as well as the data from

diverse protein families shows the dominance of covariant signals induced by phylogeny. At the

same time, it means that removing the modes associated with the power law is an elegant way of de-

convolving covariance induced by phenotypic interactions from the covariance that results from

sequence phylogeny. Interestingly, this offers an alternative rationale for the covariance matrix inver-

sion step (i.e. mean-field approximations) that enabled features of protein structure and function to

be predicted from covariance analysis of large protein sequence alignments10,56,62,43,29,19,45.

Understanding the extent to which the effects of phylogeny and structural/functional interac-

tions can be disentangled is an important direction for further research; and this thesis only provides

a first step in this direction. Many other open questions such as: In what circumstances can we accu-

rately infer the strength of interactions? What happens in the low-data regime, e.g. when we have a

multiple sequence alignment of only one or two sequences? still remain to be answered. Our hope

is, that the approach outlined in this work can provide a mathematical framework that future work

can build upon to make progress towards answering these questions.
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