

Latent cytomegalovirus-driven recruitment of activated CD4+ T cells promotes virus reactivation

Sarah E. Jackson^{1*}, Kevin C. Chen¹, Ian J. Groves¹, George X. Sedikides¹, Amar Gandhi¹, Charlotte J. Houldcroft¹, Emma Poole¹, Gavin M. Mason¹, Georgina OKECHA¹, Matthew Reeves², John Sinclair¹, Mark R. Wills^{1*}

¹University of Cambridge, United Kingdom, ²University College London, United Kingdom

Submitted to Journal: Frontiers in Immunology

Specialty Section: Viral Immunology

Article type: Original Research Article

Manuscript ID: 657945

Received on: 24 Jan 2021

Revised on: 19 Mar 2021

Journal website link: www.frontiersin.org

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest

Author contribution statement

S.E.J., M.R.W., J.H.S., E.L.P., I.J.G. and M.B.R. designed research; S.E.J., K.C.C., I.J.G., G.X.S., A.G., C.J.H., E.L.P., I.M., G.M.M., G.O. and M.R.W. performed research; S.E.J., K.C.C., I.J.G., G.X.S., A.G., I.M., C.J.H. and M.R.W. analysed data; S.E.J, M.B.R. and M.R.W. wrote the paper.

Keywords

Human Cytomegalovirus, latency, Monocytes, Reactivation, CD4+ T cells (Min5- Max 8)

Abstract

Word count: 225

Human cytomegalovirus (HCMV) infection is not cleared by the initial immune response but persists for the lifetime of the host, in part due to its ability to establish a latent infection in cells of the myeloid lineage. HCMV has been shown to manipulate the secretion of cellular proteins during both lytic and latent infection; with changes caused by latent infection mainly investigated in CD34+ progenitor cells. Whilst CD34+ cells are generally bone marrow resident, their derivative CD14+ monocytes migrate to the periphery where they briefly circulate until extravasation into tissue sites. We have analyzed the effect of HCMV latent infection on the secretome of CD14+ monocytes, identifying an upregulation of both CCL8 and CXCL10 chemokines in the CD14+ latency-associated secretome. Unlike CD34+ cells, the CD14+ latency-associated secretome did not induce migration of resting immune cell subsets but did induce migration of activated NK and T cells expressing CXCR3 in a CXCL10 dependent manner. As reported in CD34+ latent infection, the CD14+ latency-associated secretome also suppressed the anti-viral activity of stimulated CD4+ T cells. Surprisingly, however, co-culture of activated autologous CD4+ T cells with latently infected monocytes resulted in reactivation of HCMV at levels comparable to those observed using M-CSF and IL-18 cytokines. We propose that these events represent a potential strategy to enable HCMV reactivation and local dissemination of the virus at peripheral tissue sites.

Contribution to the field

Infection with Human cytomegalovirus (HCMV) lasts for a lifetime, due to the establishment of a latent infection in CD34+ cells and monocytes. The virus likely persists, despite a robust immune response, due to its ability to manipulate the secretion of proteins by the host cell. HCMV can manipulate the secretion of cell proteins during both lytic and latent infection. Understanding of the impact of latent infection on host cellular responses has mainly focussed on CD34+ cells. Monocytes, originate in the bone marrow but then migrate into the blood, briefly circulating, before either entering tissue sites or dying. The interaction of the HCMV latent infected CD34+ cells in the bone marrow. Here, we show that HCMV latent infection of CD14+ monocytes increases production of CXCL10, inducing the migration of activated immune cells; which have upregulated expression of CXCR3, a known ligand of CXCL10. We then show that activated CD4+ T-cells recruited by the latent secretome reactivates HCMV from latency. Suggesting that these events represent a potential strategy that HCMV utilises in order to disseminate and propagate the virus at peripheral tissue sites.

Funding statement

This research was funded by the Medical Research Council (MRC: UKRI) grants MR/K021087, MR/S00081X/1 and MR/S00971X/1, and by Wellcome Trust collaborative grant 204870/Z/16/Z.

Ethics statements

Studies involving animal subjects

Generated Statement: No animal studies are presented in this manuscript.

Studies involving human subjects

Generated Statement: The studies involving human participants were reviewed and approved by Health Research Authority (HRA) Cambridge Central Research Ethics Committee (97/092). The patients/participants provided their written informed consent to participate in this study.

Inclusion of identifiable human data

Generated Statement: No potentially identifiable human images or data is presented in this study.

Data availability statement

Generated Statement: The authors acknowledge that the data presented in this study must be deposited and made publicly available in an acceptable repository, prior to publication. Frontiers cannot accept a manuscript that does not adhere to our open data policies.

1 Latent cytomegalovirus-driven recruitment of activated CD4+ T cells

2 promotes virus reactivation

- 3 Sarah E. Jackson^{1*†}, Kevin C. Chen^{1†}, Ian J. Groves^{1†}, George X. Sedikides¹, Amar Gandhi¹,
- 4 Charlotte J. Houldcroft¹, Emma L. Poole¹, Inmaculada Montanuy^{1∞}, Gavin M. Mason¹,
- 5 Georgina Okecha¹, Matthew B. Reeves², John H. Sinclair¹ and Mark R. Wills^{1*}
- 6 ¹Cambridge Institute of Therapeutic Immunology and Infectious Disease and Department of
- 7 Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus,
- 8 Cambridge, CB2 2QQ, UK
- ² Institute of Immunity & Transplantation, UCL, Royal Free Hospital Campus, London, NW3 2PF,
 UK
- 11 [∞] Current address: Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km. 1.800, 28223.
- 12 Madrid. Spain
- 13 [†] SEJ, KCC & IJG contributed equally to this work

14 *** Correspondence:**

- 15 Corresponding Authors Dr Sarah E. Jackson sej47@cam.ac.uk & Dr Mark R. Wills
- 16 <u>mrw1004@cam.ac.uk</u>
- 17

18 Keywords: Human Cytomegalovirus, Latency, Monocytes, Reactivation, CD4+ T cells. (Min.5 19 Max. 8)

20 Abstract

- 21 Human cytomegalovirus (HCMV) infection is not cleared by the initial immune response but persists
- 22 for the lifetime of the host, in part due to its ability to establish a latent infection in cells of the
- 23 myeloid lineage. HCMV has been shown to manipulate the secretion of cellular proteins during both
- 24 lytic and latent infection; with changes caused by latent infection mainly investigated in CD34+
- 25 progenitor cells. Whilst CD34+ cells are generally bone marrow resident, their derivative CD14+
- 26 monocytes migrate to the periphery where they briefly circulate until extravasation into tissue sites.
- 27 We have analyzed the effect of HCMV latent infection on the secretome of CD14+ monocytes,
- 28 identifying an upregulation of both CCL8 and CXCL10 chemokines in the CD14+ latency-associated
- 29 secretome. Unlike CD34+ cells, the CD14+ latency-associated secretome did not induce migration of
- 30 resting immune cell subsets but did induce migration of activated NK and T cells expressing CXCR3
- 31 in a CXCL10 dependent manner. As reported in CD34+ latent infection, the CD14+ latency-
- 32 associated secretome also suppressed the anti-viral activity of stimulated CD4+ T cells. Surprisingly,
- 33 however, co-culture of activated autologous CD4+ T cells with latently infected monocytes resulted
- 34 in reactivation of HCMV at levels comparable to those observed using M-CSF and IL-1 β cytokines.
- 35 We propose that these events represent a potential strategy to enable HCMV reactivation and local
- 36 dissemination of the virus at peripheral tissue sites.

38 1 Introduction

39 A characteristic of human cytomegalovirus (HCMV), common to all the herpesviruses, is an ability

40 to establish a lifelong latent infection. In healthy individuals, primary infection and subsequent

- 41 reactivation of latent HCMV rarely cause disease; whereas in immunocompromised or immune
- 42 suppressed patients, it can be life-threatening (1). Persistent HCMV infection is established in the
- immune competent despite a broad and robust immune response and this inability of the immune
 response to completely clear HCMV infection is likely due to the numerous immune evasion
- 45 molecules encoded by the virus (2) as well as the ability of the virus to establish a latent infection.
- 46 CD34+ progenitor cells and their monocyte derivatives are an established site of latent HCMV
- 47 carriage in vivo (3-5) characterized by the carriage of viral genome in the absence of infectious virion
- 48 production (3). However, viral gene transcription has been reported during latency (6-9) resulting in
- 49 expression of numerous viral genes involved in the maintenance of viral latency, such as US28 (10-
- 50 14). Carriage of HCMV in monocytes from the bone marrow to the peripheral tissue sites (15) can
- 51 result in virus reactivation due to differentiation of monocytes to mature myeloid cells (16) and likely 52 prolongs the lifespan of the infected monocyte (17). Evidence for the periodic subclinical reactivation
- 53 of the virus has been surmised by the continual presence of large HCMV-specific T cell populations
- 54 in infected individuals (18) and the suggested association of HCMV persistence with long-term
- 55 illnesses such as vascular disease (19).

56 CD34+ progenitor cells – pluripotent cells that give rise to all circulating blood cells, populate the 57 bone marrow environment (20). However, once the bone marrow resident CD34+ cell matures into

- 57 bone marrow resident CD34⁺ cen matures into 58 monocyte derivatives, they migrate from the bone marrow to the peripheral blood (21) circulating for
- a day or so (22), patrolling the endothelial cell layer in an inactive state (23). The mature monocyte
- 60 then either leaves the circulation to traffic to tissue sites where they may differentiate to, for instance,
- 61 tissue resident macrophages (24, 25) or they die via apoptosis (22, 23, 26). In normal steady state
- 62 conditions the type of mature myeloid cell the tissue resident monocyte differentiates into is
- 63 dependent on signals from the local tissue microenvironment (20). Localized acute inflammation has
- been shown to recruit CD14+ monocytes in humans to the kidneys, intestine, skin, lungs and heart
- 65 (25), inflammatory cytokines will provide the localized monocyte with very different signals to a
- bone marrow resident CD34+ cell. Latency and reactivation of HCMV is directly linked to the
- differentiation status of the infected cell. Latency is established in bone marrow resident CD34+ cells
 and the subsequent egress and terminal differentiation of CD34+ cells to macrophages and dendritic
- cells is concomitant with HCMV reactivation (27), reactivating HCMV has been identified in tissue
- resident macrophages *in vivo* (28). HCMV also manipulates the host's cellular processes prolonging
- the life-span of monocyte cells (17, 26, 29) and promoting the migration of monocytes from the
- 72 circulation into tissue sites (15). Therefore, it is important to improve our understanding of how
- 73 latent HCMV infection manipulates the host's cellular processes and immune responses in different
- 74 tissue environments.
- 75 The manipulation of secreted cellular proteins (the cell secretome) by HCMV during lytic infection
- 76 includes the release of factors that induce angiogenesis (30) and the release of inflammatory
- cytokines (31). We have previously shown that latent HCMV infection in CD34+ progenitors also
- 78 modulates the cell secretome resulting in increased levels of CCL8, which recruits CD4+ T cells, as
- 79 well as increased secretion of cellular IL-10 (cIL-10) and TGF- β , which suppress anti-viral functions
- 80 of recruited CD4+ T cells (32). Another study of latent infection utilizing granulocyte macrophage
- 81 progenitors have shown increased expression of CCL2, which enhances the migration of monocytes
- 82 (33). A short-term model of latent infection in CD14+ monocytes revealed secretion of inflammatory
- 83 immune mediators and promotion of differentiation to a macrophage-like phenotype (34). In a

- 84 previous study, we also observed that viral IL-10 produced during latent infection of CD14+
- 85 monocytes results in upregulation of secretion of cIL-10 and CCL8 (35). However, a comprehensive
- 86 assessment of the cellular secretome of latently infected monocytes has yet to be described and the
- 87 effect of this latency-associated secretome on other immune cells has not been addressed.
- 88 Thus, using an established experimental model of HCMV latent infection in CD14+ monocytes (36),
- 89 we have characterized the latency-associated changes in the cell secretome using chemokine and
- 90 cytokine arrays. Consistent with previous studies in CD34+ and CD14+ cells (34, 35, 37), we
- 91 observed upregulation of expression of cIL-10, CCL8 and CXCL10 by latently infected monocytes.
- 92 We go onto show that the latency-associated secretome promoted the recruitment of immune cell
- 93 subsets; in particular the recruitment of activated NK cells, CD8+ and CD4+ T cells via the
- 94 interaction of CXCR3 expressed by the activated immune cells and CXCL10 present in the 95 secretome. In addition, we also demonstrate that the latent secretome inhibited the production of anti-
- 96 viral cytokines by stimulated CD4+ T cells. Intriguingly, the co-culture of activated CD4+ T cells
- 97 with latently infected CD14+ monocytes promoted viral reactivation, likely due to the induction of
- 98 differentiation pathways in the monocyte. Together, our data suggests that HCMV latently infected
- 99 monocytes which have migrated to peripheral sites modulate the cellular secretome to enable
- 100 reactivation but concomitantly prevent immune effector function to allow local dissemination of the
- 101 virus in order to support long-term persistence of the viral infection of the host.

102 2 Materials and Methods

103 **2.1 Donor sample and ethics statement**

- 104 Ethical approval for the work on healthy human samples was obtained from the Health Research
- 105 Authority (HRA) Cambridge Central Research Ethics Committee (97/092) for this study, informed 106 written consent was obtained from all healthy donors in accordance with the Declaration of Helsinki.
- Heparinized peripheral blood was collected from healthy donors or cells isolated from apheresis
- 108 cones (National Health Service (NHS) Blood and Transplant Service). HCMV serostatus was
- determined using an IgG enzyme-linked immunosorbent assay (Trinity Biotech, Co. Wicklow,
- 110 Ireland). 13 HCMV-seronegative, 7 HCMV-seropositive donors and 3 HCMV-seronegative
- 111 apheresis cones were used in this study.

112 **2.2 Viruses**

113 A low passage isolate of HCMV strain TB40/E and TB40/E UL32-GFP derived from it (a gift from 114 Christian Sinzger, University of Ulm, Germany) and TB40/E-IE2-EYFP virus (a gift from Michael 115 Winkler, Ulm University Hospital, Germany) were used for infections in this study, as indicated in 116 the text. The infectious titre of the TB40/e strain was determined using HFFF cells; the pfu/ml 117 (plaque forming units) was used to calculate the Multiplicity of Infection used to infect monocytes. 118 The amount of TB40/E UL32-GFP and TB40/E-IE2-EYFP virus strains used to infect monocytes 119 was assessed by titration of a range of concentrations of individual virus stocks on monocytes and 120 choosing the input dose which resulted in a latent infection (relative absence of GFP or EYFP 121 signals) compared to fluorescent cells following treatment with either PMA (Sigma Aldrich, Poole, 122 UK) or M-CSF and IL-1β (Miltenyi Biotec, Bisley, UK), in order to reactivate the virus. Ultra-violet 123 inactivation of virus strains used in this study was performed by placing an aliquot of virus in a tissue 124 culture plate and placing this within 10cm of a UV germicidal (254nm) lamp for 60 minutes to

- inactivate the virus stock. We routinely test UV inactivated virus by infecting fibroblast and looking
- 126 for IE protein expression, IE is not detectable by Immunofluorescence in these confirmatory studies.

127 2.3 Preparation of Peripheral Blood Mononuclear Cells

- 128 Peripheral blood mononuclear cells (PBMC) were isolated from heparinized blood samples or
- 129 apheresis cone mononuclear cells using either Lymphoprep (Axis-shield, Alere Ltd, Stockport, UK)
- 130 or Histopaque-1077 (Sigma Aldrich) density gradient centrifugation.

131 2.4 HCMV Latency and Infection of monocytes

- 132 CD14+ Monocytes were isolated from donor PBMC by MACS using anti-CD14+ direct beads
- 133 (Miltenyi Biotech), according to manufacturer's instructions and separated on LS columns or an
- 134 AutoMACS Pro (Miltenyi Biotec). Purified monocytes were adhered to a tissue culture plate at
- either 0.1×10^6 cells per well density for 96 well plates, 0.3×10^6 cells per well for 48 well plates or
- 136 0.5×10^6 cells per well for 24 well plates, and then incubated overnight in X-VIVO 15 (Lonza,
- 137 Slough, UK) supplemented with 2.5mM L-Glutamine (Sigma Aldrich) at 37°C in a humidified CO₂
- 138 atmosphere.
- 139 Monocyte latent secretomes were generated by infecting adherent monocytes with TB40/E strain at a
- 140 HFFF titrated MOI of 5 or the equivalent amount of UV-inactivated virus for 3 hours at 37°C in L-
- 141 glutamine supplemented X-VIVO 15. Media was then replaced following a DPBS (Sigma Aldrich)
- 142 wash and the infected cells were incubated in fresh supplemented X-VIVO 15 at 37°C in a
- humidified CO₂ atmosphere. The supernatant (secretome) of the Mock, UV irradiated, and latently
- infected monocytes were collected and then replenished at days 3, 7 and 10 or 14. The collected
- supernatants were clarified by centrifugation. Latent infection was confirmed by harvesting RNA
- 146 from the 3 cell treatments at day 7 and using RT-qPCR methods to compare relative expression of 147 UL138 transcripts compared to the relative absence of IE72 transcripts controlled by GAPDH
- 148 transcripts as explained in the supplementary methods with representative results also shown in
- Figure S1. We have demonstrated that in this experimental model of latency, that by day 7 latency is
- 150 established, shown by expression of UL138 and absence of IE transcripts (38).
- 151 Latent infection of adherent monocytes in 96-well or 48-well plates with strains TB40\e UL32 GFP
- 152 or TB40/E-IE2-EYFP at a pre-titrated concentration of virus (MOI was dependent on individual virus
- 153 preparations) was performed for 3 hours in L-glutamine supplemented X-VIVO 15 at 37°C. Media
- 154 was then replaced following a PBS wash and the infected cells were incubated in fresh supplemented
- 155 X-VIVO 15 at 37°C in a humidified CO₂ atmosphere for 4 6 days to allow latency to establish. At
- this time RNA was harvested from mock and infected cells to confirm latent infection by RT-qPCR
- and used for reactivation of HCMV from Latency experiments.

158 2.5 Cytokine and Chemokine Array Analysis

- 159 The day 10 secretomes from mock, UV irradiated and Latent virus infected CD14+ monocytes were 160 analyzed by Proteome Profiler Array – Human Chemokine Array Kit (R & D Systems, Abingdon, 161 UK), RayBio Human Cytokine Array C1000 and RayBio Human Cytokine Array C5 (RayBiotech, 162 supplied by Insight Biotechnology Ltd, Wembley, UK) following the manufacturer's instructions.
- 163 The arrays were imaged by autoradiography and then analyzed by ImageJ (Rasband, W.S., ImageJ,
- 164 U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018.)
- 165 to measure the density of each spot and to compare the relative amount of proteins expressed in 166 different secretomes. The fold change in proteins expressed by the latent infected secretome were
- 167 calculated as: Fold change = $\frac{(Density of Latent infection spot-Density of Mock infected spot)}{(Density of Latent infection spot-Density of Mock infected spot)}$. Then
- 167 calculated as: Fold change = $\frac{(Density of Latent infection spot-Density of Mock infected spot)}{(Density of UV irradiated spot -Density of Mock infected spot)}$. Then 168 whether the individual proteins in the array were significantly upregulated across all 3 experiments

- 169 was tested by multiple student t-tests. The results of this analysis are presented as a volcano plot (39)
- 170 in Fig. 1A.

171 2.6 Neutralization of Interferons during the generation of Latent CD14+ Monocyte 172 secretomes

- 173 Adherent CD14+ monocytes were infected with mock, UV irradiated or TB40/E strain as described
- 174 above in the presence of excess neutralizing anti-Human Interferon α (3µg; Clone: MMHA-6; EC50
- 175 20ng/ml (40)), anti-Human Interferon β (4µg/ml; Clone:MMHB-3 (41)) (both PBL Assay Science,
- 176 USA) and Ultra-leaf anti-human Interferon γ (10µg/ml; Clone: B27 (42)) (BioLegend, London, UK)
- antibodies or Mouse IgG1 isotype control (Clone: 11711) (R & D Systems). The secretomes
 generated were harvested after 10 days, clarified and then analyzed by ELISA for CXCL10 and
- 1/8 generated were harvested after 10 days, clarified and then analyzed by ELISA for CXCL10 and
- 179 CCL8 cytokines.

180 2.7 Generating Secretomes from monocytes treated with recombinant human IFNy

- 181 Uninfected adherent monocytes were treated with recombinant human IFNγ protein (R&D Systems)
- 182 over a concentration range of 100IU 3.125IU for 4 hours. The IFN γ containing medium was
- removed and the cells washed with DPBS twice, then L-glutamine supplemented X-VIVO 15 was
- added to the treated cells and the cells were incubated at 37° C in a humidified CO₂ atmosphere.
- 185 Continuous application of 100IU/ml IFNγ was used as a positive control and X-VIVO 15 media
- alone was used as the negative control. Supernatants were harvested and media replenished on days
- 187 3, 6 and 10 and then analyzed by ELISA for CXCL10 production.

188 2.8 Cytokine quantification by Enzyme-Linked Immunosorbent Assay (ELISA)

- 189 Human IFNγ ELISA MAX Standard and Human CXCL10 and CCL8 ELISA MAX Deluxe sets (all
- 190 Biolegend) were used to quantify cytokine concentrations in secretomes and supernatants. ELISAs
- 191 were performed according to the manufacturer's recommended protocols.

192 **2.9** Isolation of T cells, B Cells, Monocytes and NK cells

- 193 PBMCs were sorted into cellular subpopulations by positive selection using anti-CD14 microbeads to
- 194 isolate monocytes, anti-CD4 microbeads for CD4+ T cells, anti-CD8 microbeads for CD8+ T cells
- and anti-CD19 microbeads for B cells with either LS columns or an AutoMACS Pro (Miltenyi
- 196 Biotec). NK cells were isolated by either positive selection using anti-CD56 microbeads (Miltenyi
- Biotec) or negative selection using the NK cell isolation kit (Miltenyi Biotec) or with the EasySep
- 198 Human NK cell enrichment kit (Stem Cell Technologies, Grenoble, France) following the
- 199 manufacturer's instructions.

200 2.10 Preparation of activated PBMC subsets

- 201 Activated CD4+, CD8+ T and NK cells were generated in two ways. In the first method, isolated
- 202 CD4+ and CD8+ T cells were re-suspended in RPMI-1640 (Sigma Aldrich) supplemented with
- 203 100IU/ml penicillin, 100µg/ml streptomycin and 10% Fetal Calf Serum (Gibco, Paisley, UK or
- 204 PanBiotech, Wimborne, UK) RPMI-10 and stimulated with irradiated (solid source γ -irradiator)
- 205 autologous PBMC and 1µl/ml PHA (Sigma Aldrich) in the presence of 50IU/ml rhIL-2 (CFAR,
- 206 NIBSC). The polyclonally activated T cell lines were maintained for up to 2 weeks at 37°C in a
- humidified CO₂ atmosphere, with media and IL-2 replenishment every 5 days. Isolated NK cells
- were stimulated by an irradiated mixture of autologous PBMC and allogeneic lymphoblast cell line
- 209 (BLCL) and 50IU/ml IL-2 in RPMI-10 and cultured for up to two weeks at 37°C in a humidified CO₂

- atmosphere, with periodic replenishment of media and IL-2. In the other method, total PBMC were
- stimulated with irradiated allogeneic PBMC and 50IU/ml rhIL-2 for the polyclonal activation of NK
- cells and the addition of 1µg/ml anti-CD3 (clone CD3-2) and 0.5µg/ml anti-CD28 (clone CD28-A)
- 213 (both Mabtech AB, Nacka Strand, Sweden) for the polyclonal activation of T cells in RPMI-10.
- After 5 8 days stimulation the activated NK cells and CD4+ and CD8+ T cells were isolated by
- 215 positive selection as described in section 2.8 or by using the NK cell, CD4+ T cell and CD8+ T cell
- 216 isolation kits (Miltenyi Biotec) using an AutoMACS Pro, following manufacturer instructions.
- Activated NK cells and activated PBMC were sorted into two populations of cells (CXCR3+ and
- 218 CXCR3-) using a BD FACSAria cell sorter by staining with Live Dead Far-Red (Thermo Fisher
- 219 Scientific, Loughborough, UK) and CXCR3-PE (BioLegend).

220 2.11 Transwell-Migration and CXCL10 Neutralization assay

- 221 Transwell ChemoTx plates (5-µm pore size and 30-µl well volume) (Neuro Probe Inc, USA) were
- used to determine cell migration to latent and control secretomes. Cell subsets were fluorescently
- labelled using Calcein AM (BD Biosciences, Wokingham, UK) according to the manufacturer's
- protocol. 2 x 10^4 labelled cells in 20µl of X-VIVO-15 per well were transferred to the transwell plate
- and incubated at 37°C for 2 hours with supernatants from mock, UV and latently infected CD14+
- 226 monocytes in the lower chamber. Supernatants from monocyte-derived macrophages stimulated with 227 LPS were used as a positive control, while X-VIVO-15 alone was used as a negative control.
- 227 LPS were used as a positive control, while X-VIVO-15 alone was used as a negative control. 228 Migrated cells were enumerated using an UV microscope, five fields of view of each well were
- counted and all conditions were run in triplicate. CXCL10 neutralization assays were performed
- using supernatants or supernatants treated with anti-CXCL10 neutralizing antibodies or IgG2a
- isotype control (R & D Systems) for 1 hour using the recommended neutralization procedure and
- dose of the manufacturer, prior to being used in the migration assays.

233 2.12 Flow cytometry methods

234 Phenotyping of resting and activated PBMC subsets

- The phenotype of resting and activated NK and T cell subsets was assessed by flow cytometry by
- staining with 3 antibody cocktails all containing Live Dead Far Red (Thermo Fisher Scientific); and
 (i) CD56 FITC, CXCR3 PE and CD3 PerCP Cy5.5; (ii) CD4 FITC, CXCR3 PE and CD3 PerCP
- 237 (1) CD36 FITC, CXCR3 PE and CD3 PerCP Cy5.5; (11) CD4 FITC, CXCR3 PE and CD3 P 238 Cy5.5; (iii) CD3 FITC, CXCR3 PE and CD8 PerCP Cy5.5 (details of antibody clones and
- manufacturer are listed in Table S2), following staining the cells were washed and fixed with 2%
- 240 Paraformaldehyde in PBS solution (2% PFA (made from 4% PFA in PBS, Santa Cruz Biotechnology
- 241 Inc, Dallas, USA)) and acquired on a BD Accuri C6 flow cytometer.
- 242 Further details of antibody cocktails used to assess the phenotype of resting and activated NK and T
- cell subsets are detailed in the supplementary methods (section 1.3 and Table S2), example gating
- analysis figures are also included (Figure S2).
- 245 Phenotyping of monocytes and CXCR3+ and M-CSF treated co cultured monocytes
- 246 Latent infected monocytes and latent infected monocytes treated with either M-CSF and IL-1β or co-
- 247 cultured with CXCR3+ T cells were harvested using Accutase (BioLegend). Details of the
- antibodies and methods used to analyze these samples can be found in the supplementary methods
- 249 (Section 1.3, Table S2 and figure S2).
- 250

251 2.13 HCMV Reactivation experiments

Adherent monocytes were latently infected with either TB40/E-IE2-EYFP or TB40/E UL32-GFP

strain of HCMV as described above. Between 4-days – 6-days infection the latently infected CD14+

- 254 monocytes were treated with either CXCR3+ sorted PBMC, activated CD8+, CD4+ T cells, NK
- 255 cells, 20ng/ml M-CSF and 10ng/ml IL-1 β (both Miltenyi Biotec) or PMA (Sigma Aldrich). The
- treated monocytes were observed by fluorescent microscope and EYFP or GFP expressing cells
- enumerated on the subsequent days post treatment.
- 258 To assess whether latently infected CD14+ monocytes treated with activated CD4+ T cells and M-
- 259 CSF & IL-1β fully reactivated virus, fibroblasts were overlaid onto the treated monocytes and co-
- 260 cultured for up to 14 days. Lytic HCMV infected fibroblasts were observed by fluorescent
- 261 microscope and photographed. Quantification of HCMV DNA level in the overlaid fibroblast
- cultures was performed by isolating DNA using a previously described method (43), with quality and
- quantity being determined using a Nanodrop 1000 (Thermo Fisher Scientific), before HCMV
 genomic DNA (gDNA) level was determined using HCMV gDNA-specific primers (Table S1) with
- 264 genomic DNA (gDNA) level was determined using HCMV gDNA-specific primers (Table ST) v 265 Luna Universal SYBR Green qPCR Master Mix (NEB, Hitchin, UK) as per manufacturer's
- 265 Luna Universal SYBR Green qPCR Master Mix (NEB, Hitchin, UK) as per manufacturer s 266 instructions on an ABI StepOnePlus (Thermo Fisher Scientific). DNA copy number was then
- determined by referencing to host GAPDH promoter copy number via the Pfaffl method (44).

268 2.14 Suppression assays and cell proliferation assay

- 269 PBMC were depleted of CD8+ T cells by MACS using anti-CD8+ direct beads (Miltenyi Biotec),
- 270 according to manufacturer's instructions and separated on an AutoMACS Pro. The resulting CD4+ T
- 271 cell & Antigen Presenting Cell (APC) PBMC were resuspended in either X-VIVO 15, X-VIVO 15
- 272 with 4ng/ml TGF-β and 10ng/ml IL-10 (both Miltenyi Biotec), neat Mock infected monocyte
- 273 secretome, neat UV irradiated infected monocyte secretome or neat Latent Infected Monocyte
- secretome. The cells were then plated in 48-well tissue culture plates and incubated overnight at 37°C
- in a humidified CO_2 atmosphere. After 24 hours incubation, the cells were stimulated with 1µg/ml anti-CD3 and 0.5µg/ml anti-CD28 (both Mabtech AB) and overlapping peptide pools for HCMV
- 277 proteins (43) resulting in a 1:2 dilution of the secretomes and TGF- β /IL-10 mix. Following a further
- 277 proteins (+5) resulting in a 1.2 unution of the secretomes and 101-p/12-10 linx. Following a furt 278 24-hour incubation at 37°C in a humidified CO₂ atmosphere, the plates were centrifuged, and
- supernatants harvested and then analyzed for the production of IFN- γ by ELISA. Full details of
- 280 proliferation assays used to measure whether latent secretomes can suppress CD4+ T cells can be
- found in the supplementary material (Section 1.8).

282 **2.15 Statistics**

- 283 Statistical analysis was performed using GraphPad Prism version 8.00 and 9.00 for Windows
- 284 (GraphPad Software, San Diego, CA, USA). Multiple data sets groups were compared using a 1-way
- 285 ANOVA Kruskall-Wallis test or Friedman test (for matched samples) with post hoc Dunn's or
- 286 Sidak's multiple comparisons tests to correct for multiple testing false discovery.

287 3 Results

3.1 IL-10, CCL8 and CXCL10 are upregulated in the Latent HCMV infected CD14+ Monocyte secretome

- We have previously shown that experimental latent HCMV infection of CD34+ progenitor cells
- alters the cellular secretome resulting in the upregulation of chemokines CCL8, CCL2 and secretion

- 292 of TGF-β and cellular IL-10 (cIL-10) (32). Monocytes, which arise from CD34+ progenitor cells, are
- also a site of latent HCMV carriage in vivo (3). Consequently, we wanted to investigate whether the
- cellular secretome is also modulated in latently infected monocytes and, additionally, how this
- 295 compares with the latency associated CD34+ secretome. Using an experimental model of latent $(D_1 + D_2)$
- HCMV infection of CD14+ monocytes (Fig. S1), we screened secretomes from three independently generated latent HCMV infections of CD14+ monocytes using antibody arrays. In order to identify
- changes specific to latent infection, the fold change of cytokines in the secretome of latently infected
- 299 monocytes was expressed relative to levels seen in the secretome of monocytes infected with UV-
- 300 inactivated HCMV and corrected for background protein expression in mock infected monocytes
- 301 (Fig. S3). This analysis identified three proteins, IL-10, CCL8 and CXCL10, which were
- 302 significantly upregulated (more than 4-fold) in all three latency-associated secretomes (Fig. 1A). The
- 303 production of CXCL10 and CCL8 by latently infected monocytes was confirmed by ELISA (Fig. 1B
- and 1C); the level of both chemokines in the latently infected CD14+ monocytes were significantly increased over mock and LIV inactivated infection controls
- 305 increased over mock and UV inactivated infection controls.
- 306 The promoters of CXCL10 and CCL8 contain both Type I and II Interferon-responsive elements
- 307 (45). As such, the overexpression of these chemokines could simply represent the induction of an
- 308 anti-viral interferon response to infection rather than long term effects of latent carriage of virus. To
- 309 determine if this was the case, latent secretomes were generated in the presence of neutralizing
- antibodies for IFN- α , IFN- β , IFN- γ or isotype controls. Analysis of the mock, UV irradiated and
- 311 latency-associated secretomes by ELISA for CCL8 (Fig. 2A) and CXCL10 (Fig. 2B) shows that both
- 312 chemokines are generated by the latently infected monocytes in the presence of interferon 313 neutralizing antibodies and the magnitude of production is not significantly different. In addition,
- analysis of latency-associated secretomes after sequential replacement with fresh media across
- 315 multiple time points (wash out experiments), revealed that latently infected monocytes continually
- 316 produce CXCL10 (Fig. 2C). In contrast, the treatment of monocytes with exogenous IFN- γ at the
- 317 beginning of culture to stimulate CXCL10 production did not result in the continuous production of
- 318 CXCL10 after IFN-γ is washed out (Fig. 2D). Taken together, these data suggest that both CCL8 and
- 319 CXCL10 are produced as a result of the latent HCMV infection of monocytes.

3203.2Latency-associated CD14+ Monocyte Secretomes induce activated CXCR3+ immune cell
migration mediated by CXCL10

- 322 Cellular chemotaxis can be regulated by various chemokines and cytokines. In the context of HCMV
- infection, we have previously demonstrated that secreted factors from latently infected CD34+ cells
- promoted the migration of CD14+ monocytes and resting CD4+ T cells (32). Thus, we investigated the effect of latently infected CD14+ monocyte secretomes on cellular migration. Using a transwell
- migration assay, we assessed the impact of latency-associated CD14+ monocyte secretomes on the
- migration assay, we assessed the impact of factory-associated CD14+ monocyte secretomes of the migration of NK cells (Fig. 3A, D), CD8+ T cells (Fig. 3B, E), CD4+ T cells (Fig. 3C, F), B cells
- (Fig. S4A), activated directly ex vivo or in vitro, and on monocytes (Fig. S4B). In contrast to our
- 329 observations with the latency-associated CD34+ secretome (32), we observed no significant
- migration of the freshly isolated lymphocyte cell subsets to the monocyte latency-associated
- secretome in six donors tested (Fig. 3A, B, C; Fig. S4A, B), despite the presence of CCL8 in these
- secretomes (Fig. 1C). However, when cells were polyclonally activated prior to the assay, we saw
 significant migration of activated NK cells and CD4+ T cells (Fig. 3D, F) and an upregulation of
- 334 migration of activated CD8+ T cells (Fig. 3E) to the latent infected monocyte secretomes.
- 335 CXCR3, a receptor that interacts with CXCL10 (46), is known to be upregulated on subsets of
- activated CD4+ T cells, CD8+ T cells and NK cells (47-49). We, therefore, analyzed the expression

- of CXCR3 on both resting and polyclonally activated T and NK cell subsets. The data show that
- there is low level expression of CXCR3 on all three subsets isolated directly *ex vivo* (Fig. 4A–C, left
- hand histogram). However, CXCR3 expressed by un-activated T and NK cells has been shown to be
- non-responsive to its chemokine ligands (47), possibly explaining why *ex vivo* NK and T cells did
 not migrate to the latent secretome. The polyclonal activation of the NK cells, CD8+ and CD4+ T
- cells resulted in an upregulation of CXCR3 expression in all cases (Fig. 4A–C, right hand histogram).
- 343 Furthermore, flow sorting of activated NK cells into CXCR3+ and CXCR3- populations prior to
- 344 performing a transwell migration assay showed that only the CXCR3 expressing cells had the
- 345 capacity to migrate (Fig. S4C). Importantly, antibody neutralization of CXCL10 present in the
- 346 latently infected monocyte secretomes significantly abrogated the migration of all three activated
- 347 cellular subsets (Fig. 4D–F).

348 3.3 Latent HCMV infected CD14+ Monocyte Secretome suppresses T cell function

- 349 Virus driven recruitment of activated CD4+ T cells to latently infected cells does, at first, seem
- counter-intuitive with respect to virus survival; CD4+ T cells can be potently anti-viral and thus,
- 351 hypothetically, if HCMV-specific, could limit HCMV reactivation (50, 51). However, we also
- 352 observed elevated levels of cIL-10 (Fig. 1A), an immunomodulatory cytokine that can suppress IFN-
- 353 γ production by T cells (52), in the latently infected monocyte secretomes. Therefore, we
- hypothesized that the latently infected monocyte secretomes may also suppress possible anti-viral
- activity of the recruited CD4+ T cells. We assessed the production of IFN- γ by CD4+ T cells
- following polyclonal stimulation in the presence or absence of latency-associated secretomes. As
- 357 expected, polyclonal stimulation of CD4+ T cells induced IFN- γ production (Fig. 5A). However, this
- 358 was significantly suppressed in the presence of the latently infected monocyte secretomes for each of 359 five donors tested (Fig. 5B, right-hand graph). Interestingly, treatment of stimulated CD4+ T cells
- with TGF- β and cIL-10 only suppressed IFN- γ production in three of the five same donors (Fig. 5B,
- 361 left-hand graph). Furthermore, we also observed a suppression of both IFN- γ production and cell
- 362 proliferation by the latently infected monocyte secretome when the CD4+ cells were stimulated with
- 363 HCMV antigen in some donors (Fig. S5A, B).
- 364
- To determine if the secretomes produced by latently infected cells could also suppress HCMV lytic
- 366 replication, we utilized viral dissemination assays and show that spread of lytic virus was not
- inhibited (Fig. S6A, B). We also determined if the secretomes caused an alteration in the phenotype
- 368 of bystander uninfected monocytes (Fig. S6C, D), however there was no change in expression of
- 369 myeloid differentiation markers in monocytes incubated with latency-associated secretomes 370 compared to secretomes from untreated monocytes. This evidence suggests that while proteins
- compared to secretomes from untreated monocytes. This evidence suggests that while proteins
 secreted by the latently infected monocyte recruit activated CD4+ T cells to its location, it can also
- suppress known anti-viral functions, such as production of IFN- γ , from these cells.

373 3.4 CXCR3+ CD4+ T cell co-culture induces reactivation from latent HCMV infected CD14+ 374 Monocytes

- 375 The accumulation of CXCL10 in the latently infected monocyte secretome and the consequent
- 376 recruitment of activated lymphocyte cell subsets was unexpected(32). However, virally induced
- 377 supernatants from monocytes that recruited these activated lymphocyte cell subsets also
- 378 simultaneously reduced their effector function. Consequently, we reasoned that recruitment of
- activated immune cells to the site of latent infection (as long as their effector functions were
- 380 suppressed) might, in some way, have a pro-viral effect on latency and/or reactivation. To interrogate
- 381 this in more detail, we initially performed a co-culture experiment with CXCR3+ PBMC and

382 monocytes latently infected with either TB40/E UL32-GFP or TB40/E IE2-YFP tagged strains of 383 HCMV. Both pp150 (encoded by UL32) and IE2 proteins are expressed during lytic replication of 384 the virus and, thus, can be used as markers of HCMV reactivation. Virus reactivation from latently 385 infected monocytes was induced by culturing them in the presence of either GM-CSF and IL-4 or M-386 CSF and IL-1ß cytokines which differentiate monocytes into a dendritic cell or macrophage like phenotype, respectively. When latently infected monocytes were incubated with CXCR3+ PBMCs, 387 388 virus reactivation (UL32-GFP expression) was observed (Fig. 6A left-hand panel) which was shown 389 to be statistically significant (Fig. 6A right-hand graph). Importantly, these levels of reactivation 390 were comparable to that observed with the cytokine cocktails that promote dendritic (IL-4/GM-CSF) 391 and macrophage (IL-1\beta/M-CSF) differentiation (Fig. 6A). To determine which CXCR3 expressing 392 cells could drive HCMV reactivation, we assessed the contribution of individual cell populations. A 393 comparison of co-cultures of separate CXCR3+ populations of NK cells, CD8+ T cells and CD4+ T 394 cells with latently infected monocytes alongside positive control for reactivation M-CSF and IL-1ß 395 treatment of infected monocytes was performed. The results show that co-culture with purified 396 activated NK cells or CD8+ T cells did not result in virus reactivation in three separate donors tested 397 (Fig. S7A). Co-culture with activated NK cells may result in killing of latently infected monocytes, 398 as the number of reactivating cells is lower than in the other conditions, this is not however a 399 significant repression of infected monocyte numbers. In contrast, co-culture of activated CD4+ T 400 cells with latently infected monocytes promoted virus reactivation at levels that were comparable to 401 those observed following monocyte differentiation with M-CSF and IL-1ß cytokines (Fig. 6B). We 402 also demonstrated that expression of IE2-YFP in monocytes, is indicative of the production of 403 infectious virions, as the addition of fibroblasts to the reactivating monocyte culture results in 404 infection of the fibroblast cell layer. Fibroblast overlaid on monocytes treated with M-CSF and IL-405 1ß cytokines and co-cultured with CXCR3+ CD4+ T cells formed IE2-YFP positive infectious 406 plaques (Fig. 6C left-hand panel). This observation was quantified by the measurement of genomic 407 HCMV DNA present in the fibroblast overlaid cultures (Fig. 6C right-hand graph), showing the presence of HCMV DNA in all reactivating conditions (PMA and cytokine treated and activated 408 409 CD4+ T cell co-culture).

410 Cytokines produced by allogeneically stimulated T cells have been demonstrated to promote virus 411 reactivation in supernatant transfer experiments (53) and, thus, we asked whether cytokines produced 412 by polyclonally stimulated CD4+ cells were similarly able to induce virus reactivation. Supernatants 413 derived from activated immune cell subsets were co-cultured with a THP-1 monocytic cell line stably 414 transfected with an integrated MIEP driven GFP expression cassette which act as a model of differentiation dependent induction of MIEP activity - when the THP-1 cells differentiate GFP is 415 416 induced. Using this model cell line, we observed that supernatants derived from polyclonally 417 activated CD4+ T cells do not promote increased MIEP expression whereas co-culture with activated 418 CD4+ T cells do increase GFP expression (Fig. S7B). This suggests that a physical interaction 419 between the activated CD4+ T cell and monocyte is required. Phenotype analysis of monocytes co-420 cultured with CD4+ T cells showed that monocytes increased expression of T cell co-stimulation 421 molecules CD80 and CD86 whereas monocytes differentiated with M-CSF and IL-16 increased 422 expression of macrophage associated markers CD64 and CD68 (Fig. S8A and B), all these upregulated markers are consistent with monocyte differentiation to myeloid derivatives. CD4+ T 423 424 cell activation was confirmed by increased expression of CD40L, CXCR4 and 4-1BB alongside 425 increased CXCR3 expression. In addition, MHC Class II (HLA-DR) was robustly upregulated on 426 CXCR3+ CD4+ T cells in multiple donors (Fig. S8C).

427 It has been reported that ligation of CD4 expressed on monocytes, by MHC Class II molecules
428 expressed on other cells, promotes differentiation to macrophages (54) via Src family kinase (SFK),

- 429 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) pathways.
- 430 Given the importance of these pathways in HCMV reactivation from dendritic cells (55, 56) we
- 431 attempted to investigate whether inhibitors of ERK-MAPK signaling (U0126) and Src Family
- Kinases (PP2) prevented reactivation in our co-culture model. Unfortunately, treatment of latently
 infected monocytes with the inhibitors for the 96 hours incubation required for activated CD4+ T
- 433 infected monocytes with the inhibitors for the 96 hours incubation required for activated CD4+ 1 434 cells and M-CSF and IL-1 β to trigger expression of IE2 protein was toxic. We investigated if by
- 434 detecting IE72 mRNA by RT-qPCR we could perform these reactivation experiments over a shorter
- time period when these inhibitors would be less toxic to the cells. Latently infected monocytes were
- 437 stimulated with either PMA (which induces rapid reactivation and IE72 expression) or M-CSF & IL-
- 438 1β in the presence of U0126 inhibitor or its inactive control. The results at 24 hours post stimulation
- 439 show PMA drives IE72 transcripts and this is partially inhibited by 10μm U0126 and not U0124 (the
- 440 inactive analog), however M-CSF & IL-1 β did not induce IE72 at this time point. By 48 hours PMA
- drive IE72 was no longer inhibited by U0126, as such inhibitions of these signaling pathways in an
- 442 experimental set up that takes 96 hours to cause reactivation is not tractable.

443 **4** Discussion

444 Taken together, our analyses of the latency-associated secretome of monocytes is consistent with the

- 445 view that latent HCMV infection results in modulation of the cellular secretome of the myeloid
- 446 lineage which profoundly affects the latent cell microenvironment and modulates host immune
- 447 responses to the latent reservoir (57, 58). Whilst carriage of latent HCMV genome by monocytes is
- 448 likely to be short lived due to the limited lifespan of monocytes once they have migrated to the 449 periphery (15, 22, 24), viral genomes can be detected in CD14+ monocytes isolated from healthy
- 450 HCMV infected individuals (43, 59) and, importantly, the virus can be reactivated from these cells
- 451 (3, 16, 53, 60). Therefore, consideration of the impact of latent infection on the local micro-
- 452 environment in peripheral tissue sites, not just bone marrow sites of latency, is crucial for a full
- 453 understanding of latency and reactivation *in vivo* and may be particularly helpful in the development
- 454 of therapeutic measures to target HCMV reactivation in transplantation patients or pregnant women,
- the latter of which can lead to congenital HCMV (cCMV) sequalae in the new-born.
- 456 Previously, we have shown that experimental latent infection of CD34+ progenitor cells alters the 457 cellular secretome to induce migration of CD4+ T cells and subsequent suppression of their effector function (32). That study revealed the impact of HCMV latent carriage on the CD34+ progenitor 458 459 cellular microenvironment in the bone marrow but did not consider the very different environment 460 encountered at peripheral tissue sites by the HCMV infected CD34+ myeloid derivatives. Here, we 461 have shown that experimental latent infection of CD14+ monocytes, an established in vitro model 462 system for latent infection in vivo (36), also results in changes to the cellular secretome causing 463 upregulation of cIL-10, CCL8 and, in particular, CXCL10. Our analyses are consistent with another 464 study of short-term latency in monocytes (34), but that study did not address the functional 465 consequences of increases in latency-associated CCL8 and CXCL10 and did not identify an increase 466 in cIL-10. These differences in latent secretome analyses may be attributable to the fact that, in our study, latency-associated secretomes were analysed at much later times (up to 14 days latency). The 467 468 bioactivity of the CD14+ monocyte latent secretome differs to that observed for CD34+ progenitor 469 cells in that monocytes and CD4+ T cells isolated directly ex vivo did not specifically migrate to the 470 CD14+ secretome. Instead, we observed a significant recruitment of activated NK cells, CD8+ and 471 CD4+ T cells, all with increased CXCR3 expression, to the CD14+ monocyte latency-associated 472 secretome. Migration of these immune cell subsets was abrogated by neutralisation of CXCL10, a 473 known ligand of CXCR3, in the CD14+ latency-associated secretome. Suggesting that the migration 474 of activated CD8+ and CD4+ T cells as well as NK cells is mediated via interaction of CXCL10

- 475 present in the latently infected monocyte secretomes and that this effect is specific to CXCR3
- 476 expressing immune cells. Clear parallels from our study can be drawn with other infections, for
- 477 example, the expression of CXCL10 was IFN independent an observation also made with Hepatitis
- 478 A infection (61). Furthermore, herpes simplex virus promotes CXCR3-mediated migration of CD4+
- T cells to sites of infection (62) and CD8+ T cells to sites of latent infection (63). Recruitment of NK
- 480 cells in the lung during Influenza A infection is similarly dependent on CXCR3 expression (64).
- 481 These results could represent host driven anti-viral responses although, at least in the case of HCMV,
- 482 the recruitment of CXCR3+ cells appears to be virus driven.
- 483 Activated antigen specific CD4+ T cells directed against HCMV have been demonstrated to be
- 484 highly anti-viral (50, 51). Thus, it seems counterintuitive for the latent infection to modulate the
- cellular secretome to produce chemokines that attract activated and potentially antigen-specific
 immune cells to latently infected monocytes. However, our previous studies of HCMV latent
- 487 infection in CD34+ progenitors showed that the latent secretome was also able to suppress
- 488 inflammatory cytokine production by CD4+ T cells due to the presence of immunomodulatory
- 489 cytokines including cIL-10 and TGF- β (32) as well as HCMV vIL-10 (35). This observation also
- 490 holds true for the monocyte secretome, which we demonstrated has a significant inhibition on the
- 491 production of IFNγ by CD4+ T cells following polyclonal activation. Whilst the suppression of
- 492 activated CD4+ T cell anti-viral activity at the local site of latent monocytes would enable
- 493 persistence of the virus infection, it does not entirely explain why activated immune cells are
- 494 recruited. It may be that the secretion of CXCL10 and the recruitment of activated T cells is an
- 495 unintended, and unwanted, consequence of the latent infection. Alternatively, the cellular secretome
- 496 from latently infected monocyte might be promoting the recruitment of activated CD4+ T cells to the
- 497 local tissue microenvironment for a pro-viral purpose.

498 While the establishment of cellular latency in reservoir sites such as CD34+ progenitor cells within 499 the bone marrow is a long-term survival strategy for HCMV within the infected host, virus has to be 500 able to reactivate in order for viral replication and dissemination to occur with a potential to transmit 501 to a new host. In order to achieve this, the virus needs to be able to react to favourable changes in the 502 cellular environment and external signals in order to initiate reactivation and provide a permissive 503 cellular environment for virus replication. It is well established that HCMV reactivation is closely linked to myeloid cell differentiation and inflammatory environments (16, 53, 56, 65, 66). Utilisation 504 505 of the monocyte, a derivative of CD34+ progenitor cells, to export the latent HCMV infection from 506 the bone marrow to the periphery is one possible strategy for the virus to employ in order to reach an 507 appropriate environment for virus replication. To overcome the short lifespan of monocytes in the 508 periphery (15, 22, 24) the virus has been shown to manipulate cellular processes to promote a pro-509 survival state (17). Therefore, we hypothesized that the latent viral infection may be promoting a 510 pro-inflammatory environment at peripheral sites by inducing production of CXCL10, rather than 511 needing to relocate to a pre-existing inflammatory environment. The recruitment of activated CD4+ 512 T cells by CXCL10 in the local environment may, then, trigger myeloid cell differentiation and 513 successful virus reactivation, despite the concomitant recruitment of activated NK cells which may 514 kill latently infected monocytes. Consistent with this, co-culture of latently infected monocytes with 515 activated CD4+ T cells results in reactivation of virus and increased expression of myeloid 516 differentiation markers. Further, our evidence suggests that direct interaction between the activated T 517 cell and infected monocytes is required, possibly via ligation of HLA-DR, upregulated on CXCR3+ 518 CD4+ T cells, with CD4 expressed on monocytes and other myeloid cell subsets (67). This CXCR3-519 mediated signalling to the monocyte has been shown to result in monocyte differentiation to a mature 520 myeloid population (54) and is known to involve the ERK-MAPK pathway. Interestingly, the ERK-521 MAPK signalling pathway is also utilised by the M-CSF receptor (68) and Src family kinases are

- also implicated in reactivation of HCMV (55, 56). Unfortunately, due to the toxicity of the inhibitors
- 523 to the ERK-MAPK signalling pathway over the time required to observe reactivation induced by both
- 524 CD4+ T cell co-culture as well as M-CSF & IL-1 β treatment we were not able to confirm this
- 525 hypothesis. Other approaches to investigate the mechanisms involved in the reactivation of virus by
- activated CD4+ T cells include the use of neutralising antibodies to both CD4 (expressed by the
 monocytes) and HLA-DR (expressed by the T cells) or the use of recombinant HLA-DR to stimulate
- 528 monocytes. These experimental approaches are limited to known ligand interactions, however, it is
- 520 monocytes. These experimental approaches are infined to known figand interactions, nowever, it is 529 possible that reactivation of virus by activated CD4+ T cells or by differentiation with M-CSF and
- 530 IL-1 β employs similar signalling mechanisms with both resulting in monocyte differentiation to
- 531 terminally differentiated myeloid cells.
- 532 Taken together, our observations support a model whereby latent HCMV promotes the recruitment of 533 activated CD4+ T cells to monocyte sites of latency to promote viral reactivation which, in vivo, may 534 support local dissemination of the virus at peripheral tissue sites. Importantly, HCMV simultaneously down-regulates effector functions of CD4+ T cells thereby "cherry picking" the effects of this CD4+ 535 536 T cell recruitment by obtaining the benefit of T cell inflammation and contact-driven myeloid 537 differentiation of the monocytes but preventing any T cell-mediated anti-viral immune response. In 538 interpreting the evidence from this study it is important to note that this is an ex vivo model system, 539 utilised because of the low frequency of latently infected monocytes in peripheral blood (69). There 540 is evidence from many studies that subclinical reactivation of HCMV likely occurs in persistently infected, healthy, individuals; for instance there is a strong association of CMV infection with 541 542 vascular disease in population studies (19) and CMV DNA has been identified in artherosclerotic 543 plaques in a number of studies (70-72). It has been shown that HCMV latent infection results in 544 profound changes in the latently infected cells besides just secreted cellular proteins - it also 545 manipulates apoptotic pathways (17, 73) and modulates expression of cellular microRNAs (35, 74). 546 HCMV latent infection of monocytes is also known to manipulate the recruitment of neutrophils (75) 547 as well as the motility of latently infected monocytes to increase their trans endothelial migration 548 (76). The association of persistent HCMV infection with vascular disease could also be partly 549 explained by recruitment of activated T cells to peripheral sites of latency, as demonstrated here, as it 550 is long established that CXCR3 expressing CD4+ T cells are recruited to atherosclerotic plaque sites 551 (77). Therefore, the evidence from this study using an *ex vivo* model of latently infected monocytes, 552 suggests potential avenues for future investigations looking for CMV reactivation in peripheral tissue
- 553 sites in association with CXCL10 production and recruitment of CXCR3 expressing activated T cells.
- 554 In conclusion, the work presented here shows that latent HCMV carriage in monocytes at peripheral 555 tissue sites results in manipulation of the cellular secretome of the infected cell in order to recruit 556 activated immune cells resulting in reactivation and potential dissemination of the virus. This 557 underscores how dynamic latent HCMV infection is and the extraordinary range of cellular processes 558 that are manipulated by latent infection. We believe that identifying and understanding such latency-559 associated changes can only improve the development of therapeutic agents for use in clinical 560 situations where CMV reactivation can cause significant morbidity and mortality such as in post-561 transplant or other immunosuppressed patients.

562 5 Conflict of Interest

- 563 The authors declare that the research was conducted in the absence of any commercial or financial 564 relationships that could be construed as a potential conflict of interest.
- 565

566 6 Author Contributions

- 567 S.E.J., M.R.W., J.H.S., E.L.P., I.J.G. and M.B.R. designed research; S.E.J., K.C.C., I.J.G., G.X.S.,
- A.G., C.J.H., E.L.P., I.M., G.M.M., G.O. and M.R.W. performed research; S.E.J., K.C.C., I.J.G.,
- 569 G.X.S., A.G., I.M., C.J.H. and M.R.W. analysed data; S.E.J, M.B.R. and M.R.W. wrote the paper.

570 7 Funding

- 571 This research was funded by the Medical Research Council (MRC: UKRI) grants MR/K021087,
- 572 MR/S00081X/1 and MR/S00971X/1, and by Wellcome Trust collaborative grant 204870/Z/16/Z.

573 8 Acknowledgments

574 This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub.

575 9 References

- 576 1. Crough T, Khanna R. Immunobiology of human cytomegalovirus: from bench to bedside.
 577 Clin Microbiol Rev. 2009;22(1):76-98.
- Jackson SE, Redeker A, Arens R, van Baarle D, van den Berg SPH, Benedict CA, et al. CMV
 immune evasion and manipulation of the immune system with aging. Geroscience. 2017;39(3):27391.
- 581 3. Sinclair J. Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J Clin
 582 Virol. 2008;41(3):180-5.
- 4. Hahn G, Jores R, Mocarski ES. Cytomegalovirus remains latent in a common precursor of
 dendritic and myeloid cells. Proc Natl Acad Sci U S A. 1998;95(7):3937-42.
- 585 5. Rossetto CC, Tarrant-Elorza M, Pari GS. Cis and trans acting factors involved in human 586 cytomegalovirus experimental and natural latent infection of CD14 (+) monocytes and CD34 (+) 587 cells. PLoS pathogens. 2013;9(5):e1003366.
- 588 6. Shnayder M, Nachshon A, Krishna B, Poole E, Boshkov A, Binyamin A, et al. Defining the
 589 Transcriptional Landscape during Cytomegalovirus Latency with Single-Cell RNA Sequencing.
 590 MBio. 2018;9(2):18.
- 591 7. Cheng S, Caviness K, Buehler J, Smithey M, Nikolich-Zugich J, Goodrum F. Transcriptome592 wide characterization of human cytomegalovirus in natural infection and experimental latency. Proc
 593 Natl Acad Sci U S A. 2017;114(49):E10586-E95.
- 594 8. Jenkins C, Abendroth A, Slobedman B. A novel viral transcript with homology to human
 595 interleukin-10 is expressed during latent human cytomegalovirus infection. Journal of virology.
 596 2004;78(3):1440-7.
- 597 9. Goodrum FD, Jordan CT, High K, Shenk T. Human cytomegalovirus gene expression during
 598 infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci U S A.
 599 2002;99(25):16255-60.
- 600 10. Krishna BA, Poole EL, Jackson SE, Smit MJ, Wills MR, Sinclair JH. Latency-Associated
- Expression of Human Cytomegalovirus US28 Attenuates Cell Signaling Pathways To Maintain
 Latent Infection. MBio. 2017;8(6):17.

603 11. Humby MS, O'Connor CM. Human Cytomegalovirus US28 Is Important for Latent Infection 604 of Hematopoietic Progenitor Cells. Journal of virology. 2015;90(6):2959-70. 605 12. Crawford LB, Caposio P, Kreklywich C, Pham AH, Hancock MH, Jones TA, et al. Human 606 Cytomegalovirus US28 Ligand Binding Activity Is Required for Latency in CD34(+) Hematopoietic 607 Progenitor Cells and Humanized NSG Mice. MBio. 2019;10(4). 608 13. Elder EG, Krishna BA, Williamson J, Lim EY, Poole E, Sedikides GX, et al. Interferon-609 Responsive Genes Are Targeted during the Establishment of Human Cytomegalovirus Latency. 610 mBio. 2019;10(6). 611 14. Krishna BA, Humby MS, Miller WE, O'Connor CM. Human cytomegalovirus G protein-612 coupled receptor US28 promotes latency by attenuating c-fos. Proc Natl Acad Sci U S A. 613 2019;116(5):1755-64. 614 15. Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human 615 cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and 616 transfer of productive virus to enhance hematogenous dissemination of HCMV. Journal of virology. 617 2006;80(23):11539-55. 618 16. Reeves MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH. Latency, chromatin 619 remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc 620 Natl Acad Sci U S A. 2005;102(11):4140-5. 621 17. Collins-McMillen D, Chesnokova L, Lee BJ, Fulkerson HL, Brooks R, Mosher BS, et al. 622 HCMV Infection and Apoptosis: How Do Monocytes Survive HCMV Infection? Viruses. 623 2018;10(10):533. 624 18. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, et al. Broadly targeted 625 human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of 626 exposed subjects. J Exp Med. 2005;202(5):673-85. 627 19. Savva GM, Pachnio A, Kaul B, Morgan K, Huppert FA, Brayne C, et al. Cytomegalovirus 628 infection is associated with increased mortality in the older population. Aging Cell. 2013;12(3):381-629 7. 20. 630 Wolf AA, Yanez A, Barman PK, Goodridge HS. The Ontogeny of Monocyte Subsets. Front 631 Immunol. 2019;10:1642. 632 21. Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and 633 relationship with dendritic cells. Annu Rev Immunol. 2009;27(1):669-92. 634 22. Patel AA, Zhang Y, Fullerton JN, Boelen L, Rongvaux A, Maini AA, et al. The fate and 635 lifespan of human monocyte subsets in steady state and systemic inflammation. J Exp Med. 636 2017;214(7):1913-23. 637 23. Ozanska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and 638 disease. Scand J Immunol. 2020;92(1):e12883. 639 24. Guilliams M, Mildner A, Yona S. Developmental and Functional Heterogeneity of 640 Monocytes. Immunity. 2018;49(4):595-613. 641 25. Coillard A, Segura E. In vivo Differentiation of Human Monocytes. Front Immunol. 642 2019;10:1907.

643 26. Stevenson EV, Collins-McMillen D, Kim JH, Cieply SJ, Bentz GL, Yurochko AD. HCMV

- 644 reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon.
- 645 Viruses. 2014;6(2):782-807.
- 646 27. Soderberg-Naucler C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA.
- Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent.
 Journal of virology. 2001;75(16):7543-54.
- 649 28. Sinzger C, Plachter B, Grefte A, The TH, Jahn G. Tissue macrophages are infected by human
 650 cytomegalovirus in vivo. J Infect Dis. 1996;173(1):240-5.
- Chan G, Nogalski MT, Stevenson EV, Yurochko AD. Human cytomegalovirus induction of a
 unique signalsome during viral entry into monocytes mediates distinct functional changes: a strategy
 for viral dissemination. Journal of leukocyte biology. 2012;92(4):743-52.
- 30. Dumortier J, Streblow DN, Moses AV, Jacobs JM, Kreklywich CN, Camp D, et al. Human
 cytomegalovirus secretome contains factors that induce angiogenesis and wound healing. Journal of
 virology. 2008;82(13):6524-35.
- 657 31. Fiorentini S, Luganini A, Dell'Oste V, Lorusso B, Cervi E, Caccuri F, et al. Human
- cytomegalovirus productively infects lymphatic endothelial cells and induces a secretome that
 promotes angiogenesis and lymphangiogenesis through interleukin-6 and granulocyte-macrophage
 colony-stimulating factor. The Journal of general virology. 2011;92(Pt 3):650-60.
- Mason GM, Jackson SE, Okecha G, Poole E, Sissons JG, Sinclair J, et al. Human
 cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4(+) T
 cells. PLoS pathogens. 2013;9(10):e1003635.
- Stern JL, Slobedman B. Human cytomegalovirus latent infection of myeloid cells directs
 monocyte migration by up-regulating monocyte chemotactic protein-1. J Immunol.
 2008;180(10):6577-85.
- 34. Noriega VM, Haye KK, Kraus TA, Kowalsky SR, Ge Y, Moran TM, et al. Human
 cytomegalovirus modulates monocyte-mediated innate immune responses during short-term
 experimental latency in vitro. Journal of virology. 2014;88(16):9391-405.
- 670 35. Poole E, Avdic S, Hodkinson J, Jackson SE, Wills M, Slobedman B, et al. Latency-associated
 671 viral interleukin-10 (IL-10) encoded by human cytomegalovirus modulates cellular IL-10 and CCL8
 672 Secretion during latent infection through changes in the cellular microRNA hsa-miR-92a. Journal of
 673 virology. 2014;88(24):13947-55.
- 674 36. Reeves MB, Sissons JGP, Sinclair JH. Reactivation of human cytomegalovirus in dendritic 675 cells. Discov Med. 2005;5(26):170-4.
- Mason GM, Poole E, Sissons JG, Wills MR, Sinclair JH. Human cytomegalovirus latency
 alters the cellular secretome, inducing cluster of differentiation (CD)4+ T-cell migration and
 suppression of effector function. Proc Natl Acad Sci U S A. 2012;109(36):14538-43.
- 679 38. Groves IJ, Jackson SE, Poole EL, Nachshon A, Rozman B, Schwartz M, et al. Bromodomain
 680 proteins regulate human cytomegalovirus latency and reactivation allowing epigenetic therapeutic
 681 intervention. Proc Natl Acad Sci U S A. 2021;118(9):e2023025118.
- 682 39. Kuyuk SA, Ercan I. Commonly used statistical methods for detecting differential gene
 683 expression in microarray experiments. Biostatistics Epidemiol Int J. 2017;1(1):1-8.

- 40. Cabatu SC, Pandya Y, Digioia G, Xu J, Esposito J, Pestka S, et al. PS3-69 Binding and neutralization of monoclonal antibodies to human interferon alpha subtypes. Cytokine. 2010;52(1-2):96.
 41. Schaeffer J, Carnec X, Reynard S, Mateo M, Picard C, Pietrosemoli N, et al. Lassa virus
- activates myeloid dendritic cells but suppresses their ability to stimulate T cells. PLoS pathogens.
 2018;14(11):e1007430.
- 42. Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A, Sallusto F. Interleukins 1beta and 6 but
 not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing
 human T helper cells. Nat Immunol. 2007;8(9):942-9.
- 43. Jackson SE, Sedikides GX, Okecha G, Poole EL, Sinclair JH, Wills MR. Latent
- 694 Cytomegalovirus (CMV) Infection Does Not Detrimentally Alter T Cell Responses in the Healthy
 695 Old, But Increased Latent CMV Carriage Is Related to Expanded CMV-Specific T Cells. Front
 696 Immunol. 2017;8:733.
- 697 44. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR.
 698 Nucleic Acids Res. 2001;29(9):e45.
- 45. Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. Interferome v2.0: an
 updated database of annotated interferon-regulated genes. Nucleic Acids Res. 2013;41(Database
 issue):D1040-6.
- 46. Loetscher M, Gerber B, Loetscher P, Jones SA, Piali L, Clark-Lewis I, et al. Chemokine
 receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J
 Exp Med. 1996;184(3):963-9.
- 47. Loetscher M, Loetscher P, Brass N, Meese E, Moser B. Lymphocyte-specific chemokine
 receptor CXCR3: regulation, chemokine binding and gene localization. Eur J Immunol.
 1998;28(11):3696-705.
- 48. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, et al. The chemokine
 receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions.
 J Clin Invest. 1998;101(4):746-54.
- 49. Gregoire C, Chasson L, Luci C, Tomasello E, Geissmann F, Vivier E, et al. The trafficking of
 natural killer cells. Immunol Rev. 2007;220:169-82.
- 50. Jackson SE, Sedikides GX, Mason GM, Okecha G, Wills MR. Human Cytomegalovirus
- (HCMV)-Specific CD4+ T Cells Are Polyfunctional and Can Respond to HCMV-Infected Dendritic
 Cells In Vitro. Journal of virology. 2017;91(6):16.
- 51. Crompton L, Khan N, Khanna R, Nayak L, Moss PAH. CD4(+) T cells specific for
 glycoprotein B from cytomegalovirus exhibit extreme conservation of T-cell receptor usage between
 different individuals. Blood. 2008;111(4):2053-61.
- 719 52. Castillo P, Kolls JK. IL-10: A Paradigm for Counterregulatory Cytokines. J Immunol.
 720 2016;197(5):1529-30.
- 53. Soderberg-Naucler C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by
 allogeneic stimulation of blood cells from healthy donors. Cell. 1997;91(1):119-26.
- 723 54. Zhen A, Krutzik SR, Levin BR, Kasparian S, Zack JA, Kitchen SG. CD4 ligation on human
- blood monocytes triggers macrophage differentiation and enhances HIV infection. Journal of
- 725 virology. 2014;88(17):9934-46.

- 726 55. Reeves MB. Cell signaling and cytomegalovirus reactivation: what do Src family kinases727 have to do with it? Biochem Soc Trans. 2020.
- 56. Dupont L, Du L, Poulter M, Choi S, McIntosh M, Reeves MB. Src family kinase activity
 drives cytomegalovirus reactivation by recruiting MOZ histone acetyltransferase activity to the viral
 promoter. The Journal of biological chemistry. 2019;294(35):12901-10.
- 731 57. Wills MR, Poole E, Lau B, Krishna B, Sinclair JH. The immunology of human
- 732 cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic strategies?733 Cell Mol Immunol. 2015;12(2):128-38.
- 734 58. Poole E, Sinclair J. Sleepless latency of human cytomegalovirus. Med Microbiol Immunol.
 735 2015;204(3):421-9.
- 736 59. Parry HM, Zuo J, Frumento G, Mirajkar N, Inman C, Edwards E, et al. Cytomegalovirus viral
 737 load within blood increases markedly in healthy people over the age of 70 years. Immun Ageing.
 738 2016;13(1):1.
- Reeves MB, Sinclair JH. Circulating dendritic cells isolated from healthy seropositive donors
 are sites of human cytomegalovirus reactivation in vivo. Journal of virology. 2013;87(19):10660-7.
- 51. Sung PS, Hong SH, Lee J, Park SH, Yoon SK, Chung WJ, et al. CXCL10 is produced in
 hepatitis A virus-infected cells in an IRF3-dependent but IFN-independent manner. Sci Rep.
 2017;7(1):6387.
- 744 62. Zhang M, Deng X, Guan X, Geng L, Fu M, Zhang B, et al. Herpes Simplex Virus Type 2
 745 Infection-Induced Expression of CXCR3 Ligands Promotes CD4(+) T Cell Migration and Is
- 746 Regulated by the Viral Immediate-Early Protein ICP4. Front Immunol. 2018;9:2932.
- 63. Srivastava R, Khan AA, Chilukuri S, Syed SA, Tran TT, Furness J, et al. CXCL10/CXCR3Dependent Mobilization of Herpes Simplex Virus-Specific CD8(+) TEM and CD8(+) TRM Cells
 within Infected Tissues Allows Efficient Protection against Recurrent Herpesvirus Infection and
 Disease. Journal of virology. 2017;91(14):JVI.00278-17.
- 64. Carlin LE, Hemann EA, Zacharias ZR, Heusel JW, Legge KL. Natural Killer Cell
 Recruitment to the Lung During Influenza A Virus Infection Is Dependent on CXCR3, CCR5, and
 Virus Exposure Dose. Front Immunol. 2018;9:781.
- Reeves MB, Compton T. Inhibition of inflammatory interleukin-6 activity via extracellular
 signal-regulated kinase-mitogen-activated protein kinase signaling antagonizes human
 cytomegalovirus reactivation from dendritic cells. Journal of virology. 2011;85(23):12750-8.
- 757 66. Dupont L, Reeves MB. Cytomegalovirus latency and reactivation: recent insights into an age
- 758 old problem. Rev Med Virol. 2016;26(2):75-89.
- 67. Lynch GW, Turville S, Carter B, Sloane AJ, Chan A, Muljadi N, et al. Marked differences in
 the structures and protein associations of lymphocyte and monocyte CD4: resolution of a novel CD4
 isoform. Immunol Cell Biol. 2006;84(2):154-65.
- Rodriguez RM, Suarez-Alvarez B, Lavin JL, Ascension AM, Gonzalez M, Lozano JJ, et al.
 Signal Integration and Transcriptional Regulation of the Inflammatory Response Mediated by the
 GM-/M-CSF Signaling Axis in Human Monocytes. Cell Rep. 2019;29(4):860-72 e5.
- 765 69. Roback JD, Hillyer CD, Drew WL, Laycock ME, Luka J, Mocarski ES, et al. Multicenter
- revaluation of PCR methods for detecting CMV DNA in blood donors. Transfusion.
- 767 2001;41(10):1249-57.

- 768 70. Yaiw KC, Ovchinnikova O, Taher C, Mohammad AA, Davoudi B, Shlyakhto E, et al. High
 769 prevalence of human cytomegalovirus in carotid atherosclerotic plaques obtained from Russian
 770 patients undergoing carotid endarterectomy. Herpesviridae. 2013;4(1):3.
- 771 71. Beyaz MO, Ugurlucan M, Oztas DM, Meric M, Conkbayir C, Agacfidan A, et al. Evaluation
 772 of the relationship between plaque formation leading to symptomatic carotid artery stenosis and
 773 cytomegalovirus by investigating the virus DNA. Archives of Medical Science Atherosclerotic
 774 Diseases. 2019;4(1):19-24.
- 775 72. Xenaki E, Hassoulas J, Apostolakis S, Sourvinos G, Spandidos DA. Detection of
 776 Cytomegalovirus in Atherosclerotic Plaques and Nonatherosclerotic Arteries. Angiology.
 777 2009;60(4):504-8.
- 778 73. Poole E, Lau JC, Sinclair J. Latent infection of myeloid progenitors by human
 779 cytomegalovirus protects cells from FAS-mediated apoptosis through the cellular IL-10/PEA-15
 780 pathway. The Journal of general virology. 2015;96(8):2355-9.
- 781 74. Poole E, McGregor Dallas SR, Colston J, Joseph RS, Sinclair J. Virally induced changes in
 782 cellular microRNAs maintain latency of human cytomegalovirus in CD34(+) progenitors. The
 783 Journal of general virology. 2011;92(Pt 7):1539-49.
- 784 75. Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, et al. Monocytes Latently
 785 Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience. 2019;12:13-26.
- 786 76. Aslam Y, Williamson J, Romashova V, Elder E, Krishna B, Wills M, et al. Human
 787 Cytomegalovirus Upregulates Expression of HCLS1 Resulting in Increased Cell Motility and
- 788 Transendothelial Migration during Latency. iScience. 2019;20:60-72.
- 789 77. Szentes V, Gazdag M, Szokodi I, Dezsi CA. The Role of CXCR3 and Associated
- Chemokines in the Development of Atherosclerosis and During Myocardial Infarction. Front
 Immunol. 2018;9:1932.
- 792

793

794 Figure Legends

Figure 1. CXCL10, CCL8 and cIL-10 are upregulated in the secretome from latently infected CD14+ monocytes.

- AVolcano plot summarizing the protein array results from 3 independent day 7 secretomes,
- rys significant (p<0.05) highly upregulated (values > 4-fold) proteins are indicated by the red circle and label. Data was analysed as described in the methods. (A)
- 800

801 Confirmatory ELISA results for the production of CXCL10 (B) and CCL8 (C) show that both

802 cytokines are significantly upregulated in the HCMV latent infected secretome at day 7. Seven and

six independent secretomes were analysed for CXCL10 and CCL8 production respectively. Friedman

1-way ANOVA results are shown in black on the graph; CXCL10 p=0.0012 and CCL8 p=0.0031.

805 Post hoc Dunn's test results are shown in blue CXCL10 p=0.004 and CCL8 p=0.0133.

Figure 2. Production of CCL8 and CXCL10 by latently infected CD14+ monocytes is independent of interferon signaling.

808 Neutralization of IFN α , IFN β and IFN γ does not prevent the production of either CCL8 (A) or

809 CXCL10 (B) from latent infected CD14+ cells at day 7 post infection. CXCL10 and CCL8 was

810 measured by ELISA, with background chemokine production in response to mock infection

subtracted and fold-change results above UV irradiated infection from 2 CMV sero-negative donors

- 812 CMV401 and CMV405. There was no significant change in the production of CCL8 or CXCL10 in
- the presence of neutralizing antibodies (Kruskall-Wallis test).
- 814 (C) Freshly isolated monocytes were infected with TB40/E virus as described, cell supernatant was
- removed and replaced (indicated on x-axis) over a 20-day period, error bars represent SEM. This
- shows that CXCL10 is only reproduced by the latent infected monocytes over this time period.

817 (D) Treatment of monocytes by recombinant IFNγ protein shows CXCL10 is detectable at day 3 but

818 lost at later time points. Freshly isolated monocytes were stimulated with decreasing amount of IFNy

819 from 100IU/ml for 4 hours. Supernatants were collected on days 3 (white), 6 (grey) and 10 (black).

- 820 Levels of CXCL10 were assayed using ELISA. Positive control consisted of continuous 100IU/ml
- 821 IFN γ and negative control was media alone. This is the representative results of three repeats, error
- bars represent SEM.

823 Figure 3. Migration of activated immune cell subsets in response to monocyte latent secretome.

824 Transwell migration assays were performed in response to positive control, Mock, UV irradiated

- 825 (UV irr) and Latent infected (LAT) CD14+ monocyte secretomes from day 7 harvest in multiple
- 826 donors (indicated on each graph). Shown are the results from migration assays performed with
- 827 resting NK cells light green (A), CD8+ T cells light red (B) and CD4+ T cells light blue (C)
- 828 subsets. Following polyclonal activation (Act) transwell migration assays were performed with NK
- 829 cells dark green (D), CD8+ T cells dark red (E) and CD4+ T cells dark blue (F). All tested
- immune cell subsets from all donors migrated to the positive control, but there was only significant
- 831 migration of the activated cell subsets (Friedman's 1 way ANOVA results indicated in black on
- graphs; Act NK p=0.0085, Act CD8 p=0.0123 and Act CD4 p=0.0123) to the latent infected
- 833 secretomes. Activated NK_cells and CD4+ T cells significantly migrated to the latent infected
- secretome (Dunn's post-test shown in blue on graphs; NK p=0.0133 and CD4 p=0.0342).

Figure 4. CXCR3 is upregulated on activated immune cell subsets and neutralization of CXCL10 abrogates migration of these cells.

- 650 Creelito abrogates ingration of these cens.
- 837 Histograms from flow cytometry analysis of CXCR3 expression on resting (left-hand histogram) and
- activated (right-hand histogram) NK cells (A), CD8+ T cells (B) and CD4+ T cells (C) showing
 increased expression of CXCR3 on activated cell subsets (value shown on graph normalized geo-
- 839 metrased expression of CACRS on activated cell subsets (value shown on graph normalized geo-840 mean of CXCR3 expression for all cells analysed). Representative results from 6 individual donors
- shown.
- 842 Transwell migration assays were performed on the latent infected monocyte secretomes in the
- 843 presence of CXCL10 neutralizing antibody or isotype controls showing that neutralization of
- 844 CXCL10 significantly abrogates migration of activated NK cells (D), CD8+ T cells (E) and CD4+ T
- 845 cells (F)_(1-way ANOVA with Sidak's multiple comparison results shown in blue on the graphs).

Figure 5. The latent infected monocyte secretome inhibits the production of IFNγ in response to polyclonal activation.

- 848 CD4+ T cells were resuspended in either X-VIVO Media (Not Treated (NT)), media with added
- 849 recombinant protein TGFβ & IL-10 (TGFβ/IL-10), Mock, UV irradiated (UV irr) or Latent infected
- 850 (LAT) secretomes; following 24 hours pre-treatment the CD4+ T cells were stimulated with a
- 851 mixture of anti-CD3 and anti-CD28 for a further 24 hours and then supernatants harvested.
- 852 Production of IFNγ in the supernatants was measured by ELISA, representative results from one
- 853 donor are shown (A). Summary graphs showing the percentage suppression by either TGF β /IL-10
- 854 treatment or the Latent infected monocyte secretomes of polyclonally stimulated CD4+ T cells from
- 855 5 donors (B). The Latent infected secretomes significantly suppressed the production of IFNγ by
- polyclonal stimulation (Friedman matched 1-way ANOVA test (black line p=0.0085) and Dunn's
- 857 corrected post-test (blue line p=0.0133).

858 Figure 6. Activated CD4+ T cells can reactivate HCMV infection of latent infected monocytes.

- (A) CD14+ monocytes from a CMV sero-negative donor were infected with TB40/E UL32-GFP
- 860 virus and co-cultured with activated PBMC or treated with cytokine cocktails (GM-CSF & IL-4 or
- 861 M-CSF & IL-1β), virus reactivating GFP positive cells (white arrows) were visualized by microscope
- 862 (right-hand panel a Media, b M-CSF, c CXCR3+ PBMC & d GM-CSF) and enumerated (left-hand
- graph). All treatment conditions results in significant levels of GFP expressing cells representing
- reactivated virus (1-way ANOVA (black line: p=0.0112) with corrected Dunnets post-test (blue lines:
- 65 GM-CSF p=0.044, M-CSF p=0.0048, PBMC p=0.0363). Shown is one representative donor of 4
- 866 different donors analysed.
- 867 (B) CD14+ monocytes latently infected with TB40/E IE2-YFP virus were co-cultured with activated
- 868 CD4+ T cells or treated with M-CSF & IL-1β in 3 CMV sero-negative donors, reactivating YFP
- positive cells were enumerated. Both activated CD4+ T cells and M-CSF & IL-1 β significantly
- 870 increased reactivation of HCMV from latently infected autologous CD14+ monocytes (Kruskal
- 871 Wallis 1-way ANOVA (Black line: CMV400 p=0.0049; CMV410 p=0.0078; CMV401 p<0.0001)
- 872 and Dunn's post-test (Blue line CMV400 MCSF p=0.003, CD4 p=0.03; CMV410 M-CSF p=0.0133,
- 873 CD4 p=0.0098; CMV401 MCSF p=0.0086, CD4 p<0.0001)).
- 874 (C) CD14+ monocytes latently infected with TB40/E IE2-YFP virus were co-cultured with activated
- 875 CD4+ T cells, treated with M-CSF & IL-1 β or treated with PMA, then the cultures were overlaid
- 876 with fibroblasts to measure the production of infectious virions. The resulting plaques were

- 877 visualized by microscope (left-hand panel **a** M-CSF & **b** Act CD4+ Treated) and IE2-YFP infected
- 878 fibroblast plaques are indicated (white arrows). The infection of fibroblasts was quantified by
- 879 measurement of genomic HCMV DNA present in each condition (right-hand graph), HCMV genome
- copy number was determined by qPCR of UL44 promoter relative to host GAPDH promoter. This
- demonstrates that detection of IE2-YFP positive monocytes can be used as a surrogate for the
- 882 production of infectious virions in this system.
- 883
- 884

A

Activated NK Cells

Figure 4.TIFF

А

