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Abstract  

 

Brain tissue undergoes substantial activity-dependent reorganisation after stroke due to neuronal 

plasticity, leading to partial functional recovery in patients. Concurrent myelin repair is crucial for 

proper neuronal network function and reorganisation. Myelin repair after stroke might occur as 

myelin plasticity or as remyelination through the recruitment and differentiation of 

oligodendrocyte precursor cells (OPCs), which become myelin-forming oligodendrocytes (OLs). 

These two processes might share a similar guiding mechanism, which is postulated to depend on 

neuronal activity and glutamate signaling to OPCs. However, with ageing, the ability of OPCs to 

differentiate into myelinating OLs decreases due to changes in their ion channel and 

neurotransmitter receptor expression profile, rendering them less sensitive to neuronal activity. 

Because of their unique ability to replace damaged OLs, OPCs represent a potential therapeutic 

target for myelin repair in the context of stroke. 
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Introduction 

Stroke represents one of the leading causes of death and long-term disability worldwide [1]. Most 

cases originate from blockage of blood flow within cerebral arteries, which often occur in the 

territory of the middle cerebral artery, leading to the development of large lesions encompassing 

both cortical and subcortical grey and white matter [2]. Smaller lesions often resulting in subtle 

neurological manifestation occur mostly in subcortical structures, particularly in the white matter, 

and frequently progress to vascular dementia [3–5]. These lesions have been lately recognised to 

contribute to degenerative central nervous system (CNS) diseases, such as Alzheimer’s Disease 

[6].  

The CNS grey matter is composed of neuronal cell bodies and their processes, along with glial cell 

types which include astrocytes, oligodendrocytes (OLs), oligodendrocyte precursor cells (OPCs), 

and microglia. In the ischemic core, all cell types suffer complete lack of energy, and the majority 

die. In the penumbra around the ischemic core, where partial blood flow is preserved, cell death 

may be specific to more vulnerable cell types. As damage in this area is partial, neuronal plasticity 

allows neurons in the penumbra and the surrounding healthy brain region, or peri-infarct, to 

reorganise and rewire to achieve functional recovery [7]. Because CNS white matter consists of 

neuronal axons and the four glial cell types, white matter ischemia might lead to selective glial cell 

death followed by demyelination. OLs have been shown to be vulnerable to oxidative stress, 

trophic factor deprivation and glutamate toxicity, making them highly susceptible to ischemia [8–

11]. White matter might thus be especially vulnerable to ischemia, as demonstrated by the high 

frequency of white matter abnormalities in aged patients suffering from severe cognitive 

dysfunction, sensorimotor impairment, pain and emotional disorders [12]. 

 

Patients often undergo remarkable neurological improvements after stroke, which are enhanced by 

physical activity and rehabilitation [13]. The cellular and molecular correlates of functional 

recovery can be assigned to activity-dependent neuronal plasticity including axonal sprouting, 

dendritic morphology changes and alterations in synaptic connectivity [14]. Neuronal precursors 

stemming from the neurogenic niche in the subventricular zone (SVZ) might migrate to the site of 

injury to replace damaged neurons, although to a limited extent [15]. However, neuronal plasticity 

and circuit reorganization may not be sufficient for functional recovery, given the importance of 

myelin in neuronal circuit formation and function [16]. Thus, myelin regeneration alongside 
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neuronal repair and circuit reorganization might significantly improve the outcome of stroke 

patients. Myelin repair could occur via myelin plasticity or remyelination. Myelin plasticity, 

through de novo myelination of previously unmyelinated axons by newly formed OLs and changes 

in the structure of already-myelinated axons, might play an important role in the tissue repair of 

the penumbral regions, where some neuronal structures are preserved and reorganised [17]. Repair 

in these areas might contribute to functional improvement of neurological outcome in stroke 

patients. Remyelination of previously myelinated axons by OPC recruitment from the surrounding 

tissue and differentiation into new myelin-forming OLs could occur after ischemia in the white 

matter or after selective OL loss in the penumbra of grey matter ischemia.  

 

In this review, we focus on myelin plasticity and remyelination as potential therapeutic targets 

after stroke. These two processes might significantly contribute to proper nervous tissue repair and 

neurological improvement in stroke patients. We propose that myelin plasticity and remyelination 

share a common underlying mechanism, which could be targeted to enhance functional recovery. 

OLs are the only cell type in the adult brain that can be replaced by their precursors, OPCs, which 

persist in all brain regions throughout life [18,19]. This unique ability makes OPCs a potent and 

promising therapeutic target. Moreover, we address the mechanisms leading to limited myelin 

plasticity and remyelination in aged patients, where stroke and its therapy become more relevant 

because of their higher incidences.  

 

Neuronal Plasticity after Stroke 

Surviving neurons in the penumbra are capable of partial functional recovery, which potentially 

compensates for the lost functions due to neuronal death in the ischemic core [20]. Experimental 

stroke models have shown synaptic and distal dendritic growth [21], extensive dendritic spine 

turnover [20] and pruning [22], along with axonal remodeling [23] and synaptogenesis [24,25]. In 

many cases, increased neuronal activity can enhance neuronal grey matter repair. Neuronal 

stimulation has been shown to induce axonal remodeling in the corticospinal tract in humans and 

rodents, leading to motor map reorganisation and possible functional recovery [23,26,27]. Axonal 

sprouting and outgrowth can be promoted by neuronal stimulation in both the corticospinal tract 

and the motor cortex [15,28,29]. Cortical axonal remodeling and rewiring can be facilitated 

through the use of repetitive transcranial magnetic stimulation, which modifies the excitability of 
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the motor cortex over treatment periods [30]. In large strokes where a large part of the hemisphere 

is lost, asynchronous therapy targeting the contralesional hemisphere can restore motor control 

through corticospinal tract rewiring, leading to motor recovery [31]. Peri-infarct axonal sprouting, 

which initiates within the first week after stroke incidence [32], continues for several months after 

injury with task-specific rehabilitation [33]. In addition, stroke-induced neurogenesis can also 

contribute to self-repair. Neurogenesis in the SVZ is enhanced by increased neuronal firing, as 

demonstrated through the stimulation of neuronal activity in murine stroke models, allowing neural 

stem progenitor cells to migrate to the injured region [34]. 

 

Myelin Plasticity Supports Neuronal Function  

Given myelin’s role as a potential modulator of neuronal networks [35,36], myelin plasticity might 

be critical in supporting rewiring after stroke. Myelin plasticity consists of de novo myelination of 

previously unmyelinated axons and changes to existing myelin sheaths, including internode 

number and length, myelin thickness and geometry of the nodal area in mature CNS tissue [17]. 

Continuous de novo myelination occurs in the healthy adult in both white and grey matter, where 

adult OPCs actively divide and differentiate to form myelinating OLs [37–40]. Sensory enrichment, 

motor learning and direct neuronal stimulation enhance this process [35,38,41,42], while neuronal 

deprivation through social isolation impairs myelination [43]. Myelin plasticity in adulthood 

recapitulates development, during which neuronal activity is important for proper myelin 

formation. Social isolation studies in both juvenile primates and mice showed decreased 

myelination [44,45]. Similarly, blocking auditory activity decreases myelin sheath thickness [46]. 

Given the evidence showing that new motor skill learning is dependent on white matter structural 

changes and de novo myelination [35,47], functional recovery might depend on myelin plasticity.  

 

Indeed, an increasing number of studies point to the importance of myelin and the existence of 

myelin plasticity alongside neuronal plasticity. In chronic stroke patients, hemispheric myelin 

asymmetry, which is computed by the ratio of contralesional to ipsilesional myelin through myelin 

water fraction, showed that increased asymmetry between the hemispheres is a significant 

predictor of impairment and functional loss [48,49]. Unlike previously believed, persistent myelin 

loss has also been evidenced in contralesional hemispheres of chronic ischemic stroke patients 

[50,51]. These observations may be attributed to overall inactivity during crucial brain 
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reorganisation [52], which may lead to myelin loss and reduced synaptic connectivity. In subjects 

with one immobilised arm without any neurological deficit, immobilisation leads to reduced white 

matter integrity and cortical thinning in the contralateral motor output pathway. Forced use of the 

non-immobilised arm leads to increases in both white matter and cortical thickness in the 

contralateral hemisphere [53]. Similar mechanisms occur after stroke, where simultaneous axonal 

and myelin remodeling are shown in the motor cortex contralesional to stroke [54]. In fact, 

enhancing myelination after neonatal hypoxia partially rescues synaptogenesis and increases 

motor functional recovery [55]. Since myelin plasticity can occur in parallel with neuronal 

rewiring, which is often followed by motor recovery [56], it is reasonable to believe that myelin 

plasticity might contribute to functional recovery after stroke. Thus, promoting both neuronal 

rewiring and myelin plasticity could provide greater rehabilitation. 

 

Remyelination Following Stroke 

While myelin plasticity might contribute to circuit rewiring, remyelination could be necessary in 

the penumbra or during white matter stroke to salvage OL-depleted tissues [57]. Remyelination is 

the myelination of previously myelinated axons, which have lost their sheaths due to injury. This 

process is mostly studied in toxin-induced demyelinating models, where OL death leads to 

demyelinated lesions. OPCs are recruited to these sites and proliferate and differentiate into mature 

myelinating OLs [58]. A number of different cues are known to regulate remyelination, including 

cytokines, growth factors and neuronal activity [58]. Recent evidence indicates that remyelination 

occurs after stroke. In the murine stroke model, administration of nicotinamide, whose metabolite 

NAD+ promotes OPC differentiation [59], leads to a gain in function and increased fractional 

anisotropy in the surrounding white matter fibers of the internal capsule [60]. Brain-derived 

neurotrophic factor (BDNF) treatment in rats with induced subcortical ischemia improves tract 

connectivity and increases OPCs proliferation [61]. Moreover, blockage of Nogo Receptor 1 

signaling increases OPC differentiation in the peri-infarct and rescues remyelination [62]. 

 

Neuronal Activity: a Common Mechanism?  

Several lines of evidence suggest that remyelination and myelin plasticity might represent two 

aspects of the same process, myelination in the adult. In both cases, OPCs differentiate into mature 

myelinating OLs [35,63]. In addition, the underlying mechanism may be similar, as both processes 
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could be driven by neuronal activity. OPCs monitor the firing pattern of neurons as they express 

voltage-gated ion channels and glutamate receptors and receive synaptic inputs from neurons 

[10,11,64–66]. Overlapping populations of OPCs and postsynaptic neurons show synchronised 

spontaneous activity, indicating that OPCs can sense activity patterns from circuits [67].  

 

An increasing number of studies indicate that neuronal activity regulates remyelination. In 

particular, glutamate signaling is crucial for remyelination, as blocking vesicular release, α-amino-

3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors (AMPA/KARs) or N-methyl-D-

aspartate receptors (NMDARs) prevents remyelination in  ethidium bromide-induced white matter 

lesions [68,69]. Neuronal activity may also regulate myelin plasticity. Direct stimulation of 

neuronal circuits leads to OPC differentiation and de novo myelination in adult mice [41,42]. In 

addition, motor learning, which is driven by changes in neuronal activity [70], requires de novo 

myelination [17,35]. Moreover, social isolation in adult mice decreases myelination, presumably 

due to a decrease in neuronal activity following reduced sensory inputs [43]. 

 

Given that OPCs express glutamate receptors and form synapses with axons in adulthood and after 

injury [64,69,71,72], we postulate that neuronal activity modulates both remyelination and myelin 

plasticity. Specifically, glutamate signaling through axon-OPC synapses might be an important 

input. Understanding this common mechanism might therefore allow the identification of 

therapeutic targets to promote myelination in adults, since both remyelination and myelin plasticity 

might be important for repair and functional recovery following stroke. 

 

Heterogeneity in OPCs  

As neuronal signaling to OPCs might regulate remyelination and myelin plasticity, understanding 

the functional properties of OPCs becomes crucial. Unlike previously believed, recent evidence 

suggests that OPCs are heterogeneous. For instance, several groups report differential gene 

expression patterns and response to growth factors with age [73–75]. White and grey matter OPCs 

respond differently to cytokines [76] and express different ion channels [75,77]. These channels, 

which are essential for OPCs to sense neuronal activity, are also differentially expressed in OPCs 

in an age- and region-dependent manner. Notably, when OPCs first appear, they lack all ion 

channels, but then gradually acquire voltage-gated potassium (KV) channels, voltage-gated sodium 
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(NaV) channels, AMPA/KARs and NMDARs at different rates and differentially between and 

within regions [75]. 

 

The proliferation and differentiation potential of OPCs can be linked to region, age, transcriptome 

and ion channel and neurotransmitter receptor expression, suggesting that OPCs exist in different 

functional states. Several OPC states were recently identified. Embryonic-like,‘naïve’ OPCs lack 

voltage-gated ion channels and glutamate receptors and are presumably incapable of sensing 

neuronal activity. OPCs then acquire KV channels and AMPA/KARs, before transitioning into a 

‘highly proliferative’ state, which is characterised by large NaV membrane densities. OPCs ‘primed’ 

for differentiation have high NaV and NMDAR membrane densities, indicative of high sensitivity 

to neuronal activity and glutamate signaling. Finally, ‘quiescent’ OPCs lack NMDARs, but have 

high AMPA/KAR membrane densities. Importantly, while the majority of OPCs in a certain region 

or at a particular age are in a particular state, a small proportion of OPCs are in other states. This 

supports the notion that OPCs heterogeneity rather indicates different functional states (Figure 1A) 

[75]. Moreover, OPC states correlate with age. In young adults, the majority of OPCs are in a 

proliferative or primed state. However, in one-year-old mice, primed OPCs have disappeared, and 

only 1% of OPCs are proliferating. These changes are concomitant with an increase in quiescent 

OPCs numbers [75]. 

 

These functional states might have important implications for myelination in adults. In particular, 

if both remyelination and myelin plasticity are dependent on neuronal activity, the capacity of 

OPCs to sense neuronal activity, which is dependent on their ion channel expression profile, 

becomes a crucial factor in understanding the molecular mechanism underlying remyelination and 

myelin plasticity. For instance, remyelination failure is often due to a block in differentiation [78], 

which has been linked to ageing [79]. Taking into consideration OPC states, this failure in 

differentiation might be due to the declining proportion of primed OPCs and the increasing number 

of quiescent OPCs in older mice [75]. OPCs present in human chronic multiple sclerosis lesions 

have been described as quiescent, as they neither proliferate nor differentiate [80]. Thus, 

characterising OPC states in the context of demyelinated lesions might provide a better 

understanding of myelin repair mechanisms.  
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In contrast to remyelination, myelin plasticity has mostly been examined in young adult mice 

[35,41,43], when the relative abundance of primed OPCs suggests that the capacity for myelin 

plasticity is optimal. Little is known about myelin plasticity in older mice, so it would be important 

to examine whether, like remyelination, myelin plasticity is hindered in old age, when the majority 

of OPCs become quiescent. One intriguing study shows that sensory stimulation promotes de novo 

myelination in the somatosensory cortex in one-year-old mice [38]. Unlike in many other brain 

areas, myelination continues in the upper layers of the somatosensory cortex in mice beyond a year 

and half [37–39], similar to comparative timelines in humans [17]. But by two years, myelin loss 

is observed in the somatosensory cortex, presumably due to the lack of OPCs differentiation, 

indicating that de novo myelination declines with age [37]. It is surprising how long myelination 

in the somatosensory cortex continues, given the loss of primed OPCs and the increasing 

proportion of quiescent OPCs in most brain areas in one-year-old mice. A possible explanation is 

the large number of SVZ OPCs that remain primed for differentiation beyond that age [75]. 

Perhaps this population is maintained for up to two years and is the source of newly formed cortical 

OLs. Another possibility is that somatosensory cortex OPCs differ from other cortical OPCs and 

remain primed into old age. However, this is currently unknown. Alternatively, sensory 

stimulation could lead to the release of growth factors like BDNF or neuregulin and reactivate 

NMDAR expression in OPCs [68]. This promotes a shift towards the primed state and thus allows 

for activity-dependent myelin plasticity. A better understanding of OPC states and the extent of 

state transition might unveal the dynamics and underlying mechanism of remyelination and myelin 

plasticity. This in turn could provide targets to enhance myelination in adults, particularly during 

ageing. 

 

Future Perspectives 

The capacity of OPCs to differentiate into mature myelinating OLs in response to neuronal activity 

makes them an important target to enhance myelin plasticity and remyelination. Because myelin 

plasticity and remyelination are important processes in nervous tissue repair after stroke, 

therapeutic strategies should target both neurons and OPCs to better promote functional recovery. 
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Figure Legend 

Figure 1: Oligodendrocyte precursor cell states might play a central role in remyelination 

and myelin plasticity after stroke.  

(A) Oligodendrocyte precursor cells (OPCs) first appear as ‘naïve’ cells (light grey) without ion 

channels. They transition through an intermediate state (pink), acquiring voltage-gated potassium 

channels (KV) and AMPA/kainate receptors (AMPA/KARs), before becoming ‘highly 

proliferative’ (yellow), when they express high densities of voltage-gated sodium (NaV) channels. 

Later, OPCs express high densities of NMDA receptors (NMDARs) and become ‘primed’ for 

differentiation (blue). During ageing, OPCs become ‘quiescent’ (dark grey), with high 

AMPA/KAR densities, but have lost NMDARs and their ability to differentiate. 

 

(B) Demyelination and remyelination in the penumbra after stroke. In young adults, most OPC 

states are present in the penumbra, so OPCs can proliferate and differentiate into myelinating 

oligodendrocytes (OLs) to replace those damaged by injury. With age, the majority of OPCs 

become quiescent and lose their ability to differentiate, leading to potential remyelination failure. 

 

(C) Axonal rewiring and de novo myelination in the penumbra and peri-infarct after stroke. After 

OL and neuronal death, surviving neurons rewire and retarget to replace lost synapses (yellow 

branches). New myelinating OLs (light blue) are generated to strengthen new neuronal circuits. In 

old mice, the absence of highly proliferative and primed OPCs and the large number of quiescent 

OPCs presumably prevent differentiation and de novo myelination.  
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