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Identifying Valuable Patents:
A Deep Learning Approach

Leonidas Aristodemou

Big data is increasingly available in all areas of manufacturing, which presents value for

enabling a competitive data-driven economy. Increased data availability presents an opportunity

to introduce the next generation of innovative technologies. Firms invest in innovation and

patents to increase, maintain and sustain competitive advantage. Consequently, the valuation

of patents is a key determinant in economic growth since patents are an important innovation

indicator. Given the surge in patenting throughout the world, the interest in the value of patents

has grown significantly. Traditionally, studies on patent value have focused on limited data

availability restricted to a specific technology area using methods such as regression, and

mostly using numeric and binary categoric data types. We propose the definition for intellectual
property intelligence (IPI) as the data science of analysing large amount of IP information,

specifically patent data, with artificial intelligence (AI) methodologies to discover relationships

and trends in the data for decision making.

With the rise of AI and the ability to analyse larger datasets of patents, we develop an AI

deep learning methodology for the valuation of patents. To do that, we build a large USPTO

dataset consisting of all granted patents from 1976-2019: (i) we collect, clean, collate and

pre-process all the data from the USPTO (and the OECD patent quality indicators database);

(ii) we transform the data into numeric, categoric, and text features so that we are able to input

them to the deep learning model. More specifically, we transform the text (abstract, claims,

summary, title) into feature vectors using our developed Doc2Vec vector space model (VSM),

that we assess using the t-distributed stochastic neighbour embedding (t-SNE) visualisation.

The dataset is made publicly available for researchers to efficiently and effectively run fairly

complex data analysis.

We propose an AI deep learning methodology for the valuation of patents to identify valu-

able patents. Using our developed dataset, we build AI deep learning models, which are based

on deep and wide feed-forward artificial neural networks (ANN), with dropout, L2 penalty and

batch normalisation regularisation layers, to forecast the value of patents with 12 ex-post patent

value output proxies. These include the grant_lag, generality, quality_index_4, and forward

citations, generality_index and renewals in three time horizons (t4, t8, t12). We associate

these patent value proxies to their respective patent value dimension (economic, strategic and

technological). We forecast patent value using ex-ante patent value input determinants, for a

wide range of technological areas (using the IPC classes), and time horizon domains (short

term in t4, medium term in t8, and long term in t12).



We evaluate all our models using a variety of strategies (out-of-time test, out-of-sample

test, k-Fold and random split cross validation), and transparently report all metrics (accuracy,

confusion matrix, F1-score, false negative rate, log loss, mean absolute error, precision, recall).

Our models have higher accuracy and macro average F1-scores, with low values for the training

and validation losses compared to prior art. With increasing prediction horizons, we observe

an increase in the macro average F1-scores for several of the proxies. In addition, we find

that the composite index that takes into consideration more than one value dimension, has the

combined highest accuracy and macro average F1-score, relative to single value dimension

patent proxies. Moreover, we find that firms seem to file widely at the short term time horizon

and then focus their technological competencies to established opportunities. Patent owners

seem to renew their patents in the fear of losing out. Our study has moved away from relatively

small datasets, limited to specific technology field, and allowed for reproducibility in other

fields. We can tailor models to different technology area, with different patent value proxies,

with different time horizons.

This study proposes an AI methodology, which is based on deep learning, using deep and

wide feed forward artificial neural networks, to predict the value of patents, which has academic

and industrial implications. We predict the value of patents with a variety of output proxies,

including composite index proxies, for different technology areas (IPC classifications) and time

horizons. Since we use all USPTO granted patents from 1976-2019 to train our models, we

can apply this approach to patents in any technology field. Our approach enables researchers

and industry professionals to value patents using a variety of patent value proxies, based on

different value dimensions, tailored to specific technology areas. The proposed AI deep learning

approach could effectively support expert decision making (technology, innovation and IP

managers etc.) in their decision making by providing fast, low cost, data-driven intellectual

property intelligence (IPI) from big patent data. Firms with limited resources, i.e. small-medium

enterprises (SMEs) can choose representative proxies to forecast patent value estimates, saving

resources. Consequently, the proposed approach could efficiently support experts in their patent

value judgement, policy making in the government’s investments in technological sectors of the

future to support the economy, and patent offices with the AI approaches to analyse efficiently

and effectively big patent data. We anticipate this research would be interesting for future

researchers to expand the emerging field of IPI research and the skills they will need to perform

IPI data-driven research with a variety of data sources and AI deep learning ANN approaches.
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Chapter 1

Introduction

1.1 Research background

1.1.1 Research positioning

Big data is increasingly available in all areas of manufacturing (OECD, 2017). Data as such
presents value for enabling a data-driven economy, at the heart of the Internet of things
and Industry 4.0 (EPO, 2016; Gubbi et al., 2013). Increased data availability presents an
opportunity for better decision making, policy and strategy development, to introduce the
next generation of innovative technologies (Günther et al., 2017; Mowery et al., 1996; Teece,
1986).

In this time of changing technologies, shrinking product lifecycles and growing in-
ternational competitiveness, it is increasingly important for firms to create and maintain
competitive advantage (Grant, 1991). Innovation is a hybrid concept that has evolved over
time and adapted itself to changing conditions (Fagerberg et al., 2006). It plays a major role
in the growth and economic competitiveness of firms, industries and countries (Grant, 2012).
Innovation can also be defined as improvements in technology, regardless of whether the
new ideas are embodied in products, processes or services (Chesbrough, 2003a,b). Fagerberg
et al. (2006) argues that the function of innovation is to introduce novel knowledge into the
economic sphere. The knowledge-based economy is defined as an economy directly based
on the distribution and use of knowledge (European Commission, 2004). This knowledge-
driven economy is at the heart of the technological era, which strengthens the growth of all
economies and sustainability paths (European Commission, 2004).

The increasing importance of knowledge as an economic driver has major implications
for innovation management, which is a key determinant of competitiveness. Firms invest in
innovation to build knowledge, and increase and sustain competitive advantage. Consequently,
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the valuation of innovation, and specifically of technologies, is a key determinant in economic
growth (Verhoeven et al., 2016). Several scholars have argued that the value of technologies
can be modelled as the value of patented inventions, i.e. patent value, which varies widely at
the patent, firm and industry level (Gambardella, 2011; Gambardella et al., 2005; Giuri et al.,
2007; Harhoff & Hoisl, 2006). Patents are an important indicator to assess the innovation
capabilities of technologies across nations. Many studies use them to map the innovation and
technological profile of firms or as indicators for future economic activities (Harhoff et al.,
2007). Economic research has looked into the value of patents extensively (Bessen, 2008;
Hall, 2005; Harhoff et al., 1999, 2003).

Recently, there has been much discussion about patent value, its definition, how to
measure it and what it entails for innovation and technology development (Grimaldi &
Cricelli, 2019). Patent value analysis plays an important role in managerial economic
and business strategy in that it helps to estimate the value of the technologies. Given
the surge in patenting throughout the world (WIPO, 2019a,c, 2020), the interest in the
valuation of technologies has grown significantly (Greenhalgh & Rogers, 2006; Lagrost
et al., 2010; Pitkethly, 1997). Traditionally, studies on patent value, have focused on limited
data availability, and regression analysis (Hall, 2005; Harhoff et al., 1999; Lanjouw &
Schankerman, 2004; Reitzig, 2004), with emphasis on market value, and mostly numeric and
binary categoric data types (van Zeebroeck, 2011).

Over the last two decades, there have been substantial developments in the field of patent
analytics, which describes the science of analysing large amounts of patent data, in relation
to other data sources, to discover relationships (Abbas et al., 2014; Baglieri & Cesaroni,
2013; Trippe, 2003). With the digitization of patent data (Dintzner & Van Thieleny, 1991),
and gradual improvements of the data quality and analytical techniques over the last decade,
the world’s largest repository of technical information has become accessible for rapidly
decreasing costs and to a wider non-specialist audience (Aristodemou et al., 2017b).

With the rise of Artificial Intelligence (AI)1, a number of AI methods have been applied
to analyse intellectual property data (Abbas et al., 2014; Baruffaldi et al., 2020; Oldham
& Fried, 2016; Trappey et al., 2020a; Trippe, 2015). In a recent study, we use the technol-
ogy roadmapping approach (Phaal et al., 2012) to explore the future of analysing patent
data (Aristodemou & Tietze, 2017b; Aristodemou et al., 2017b). We identify 11 priority
technologies, such as AI, that industry experts believe to be important to increase their

1The term artificial intelligence (AI) refers to the simulation of human intelligence in machines that are
programmed to mimic human actions, exhibits traits associated with human minds such as learning and problem
solving, and have the ability to rationalise in achieving a specific goal. AI collectively includes machine learning
(ML) and deep learning (DL) methods. Bringsjord & Govindarajulu (2020), URL: https://plato.stanford.edu/cgi-
bin/encyclopedia/archinfo.cgi?entry=artificial-intelligence.

https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=artificial-intelligence
https://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=artificial-intelligence
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adoption for the analysis of patent data, since other domains have already adopted widely
such technologies (Agatonovic-Kustrin & Beresford, 2000; Alcácer & Cruz-Machado, 2019;
Chen et al., 2018; De Fauw et al., 2018; Dernis et al., 2019; OECD, 2019a). In this research,
we refine the definition for Intellectual Property Intelligence (IPI) as the data science of
analysing large amount of intellectual property (IP) information, specifically patent data,
with artificial intelligence methodologies such as machine learning and deep learning, to
discover relationships, trends and patterns in the data for decision making. This is a subset of
the definition proposed by Aristodemou & Tietze (2018b) and in line with the definition of
Patinformatics (Trippe, 2003).

With the ability to analyse larger datasets of patents, this research brings together the
valuation of patents, with AI methodologies (Aristodemou & Tietze, 2018b). Given the
limited association and application of AI methodologies to patent value (Choi et al., 2020),
we develop a deep learning approach based on a large USPTO dataset consisting of all
granted patents from 1976-2019, to forecast patent value, using patent data (the technical
information contained within the patent documents). We do that by using deep and wide
feed-forward artificial neural networks to forecast the value of patents for a wide range of
patent value proxies (and their respective patent value dimension), technological areas (using
the IPC classes), and time domains.

1.1.2 Exploring the future of analysing patent data

In a connected world, where successful technological development depends on collaboration
of different partners, effectively analysing and valuing patent data has huge, yet only partially
exploited potential (Lee et al., 2011). The recent advancements of data technologies, known
by the collective term of artificial intelligence (AI) methods, such as machine learning and
deep learning, seem to potentially deliver breakthrough progress to enable new use cases
for patent data with substantial economic benefits. While these technologies already impact
several areas, their impact on patent data remains to be understood in growing the emerging
field of AI-based IPI research (Lupu et al., 2011; Trappey et al., 2020b).

We carried an exploratory study to understand the field of analysing patent data (Aristode-
mou & Tietze, 2017b; Aristodemou et al., 2017b). In the study, we deployed a technology
roadmapping approach (Phaal, 2004; Phaal et al., 2001; Probert et al., 2003) through a
focus group to produce a technology roadmap for the patent data analytics field. The patent
analytics domain technology (PADT) roadmap has a vision of a fully adaptive, interactive,
intelligent system, and aims to contribute in helping research and industry to explore potential
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breakthroughs. We explored 5 areas: the patent data1, the data interconnectedness2, the
analysis effectiveness3, the analysis visualisations4, and the quality of patents5 (Abbas et al.,
2014; Moehrle et al., 2010; Squicciarini et al., 2013; Trappey et al., 2012).

The PADT roadmap evidently shows that the technology development and integration of
artificial intelligence (AI) methods (and specific deep learning and artificial neural networks)
can have a significant impact on the development of the field throughout time, with a
transparent and consistent reporting of information and a clean standardised interlink patent
dataset6. This explorative study, with the collective knowledge of 100+ domain experts, and
the analysis of the 5 areas above, and the consolidated discussion of the PADT roadmap, has
helped to identify the potential of AI methodologies for the analysis of patent data.

1The area of patent data focuses on issues arising with data management, data preparation, and data
inconsistencies (Baudour & van de Kuilen, 2015; Martinez, 2010; Moehrle et al., 2010). The focus group of
experts engaged in discussions to produce a mini-technology roadmap, with a vision of harmonised open source
patent data. In terms of technology developments, the experts discussed: (i) the meta-database harmonisation,
(ii) the full text analysis with natural language processing and latent semantics methods (including artificial
intelligence, machine learning, and artificial neural networks).

2The area of database interconnectedness tackles issues with types of data not properly combined. In
the focus group, the experts produced a mini-technology roadmap visualising databases that are connected
to products and cross-referencing across all data streams, with standardisation, entity disambiguation and
technology classification. Natural language processing methods, artificial intelligence and the development of
ontologies can contribute on how to best approach this area, where strong cooperation between patent offices is
essential to establish and implement common standards.

3The area of data analysis effectiveness focuses on understanding and deciding analytical techniques (Abbas
et al., 2014), and how to deploy them (Squicciarini et al., 2013). The expert focus group produced a mini-
technology roadmap that envisions a fully automated, highly intelligent, highly adaptive artificial intelligence
system. The experts discussed how an expanded understanding of the existing analytic tools and techniques
can be helpful for both industry and academia (Oldham & Fried, 2016; Trippe, 2015). They identified that
technologies such as artificial intelligence, machine learning and deep learning could revolutionise the domain,
with open source and open data as facilitators (Aristodemou & Tietze, 2018b).

4The area of the analysis visualisation tackles issues on the types of visualisation available„ how these can
be improved and their effectiveness for different decisions. The expert focus group produced a mini-technology
roadmap, which envisions an adaptive, interactive, intelligent, personalised search analysis with visualisation
and interpretation.

5The area of patent quality is quite controversial and focuses on the many definitions and how it is measured
(Squicciarini et al., 2013; Trappey et al., 2012). The experts of the focus group produced a mini-technology
roadmap with a vision of transparency and inter-linkage of data, where there is the ability to match patents with
products in a level playing field. An essential activity appears to be connecting different datasets and having
multiple indicators. Ultimately, the integration of different data sources could lead to the availability of more
data to determine patent quality. In terms of technology development, improvements in models using natural
language processing, neural networks and deep learning approaches can better address the inclusion of both
structured and unstructured data into the databases, with appropriate essential secure infrastructure.

6The experts agreed that the technology adoption of AI methods can be aided by more transparency and
specialised data science training, with the aim that these analytic technologies stop being regarded as ’black
box’ solutions.
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1.2 Thesis structure

The thesis is structured with a combination of the following: (i) the framework and method-
ology proposed by Ilevbare et al. (2016) for business methodology creation, and (ii) the
decision support framework development methodology proposed by Turban et al. (2005).

Fig. 1.1 shows the overall approach followed in the structure of this thesis, the process
we have followed, and the theoretical foundations of the research. Definition represents the
research positioning (1.1.1), the future of patent analytics study (1.1.2), and the theoretical
background (chapter 2)1,2. Computational resources are all the computational services we
have used in developing this research. The data is stored in the cloud3, and processed with
virtual machines using Microsoft Azure4 and Google AI Platform servers5. The code is
written in Python language (Van Rossum & de Boer, 1991; Van Rossum & Drake, 1995,
2009), and is stored and maintained on GitHub6.

Chapter 2 reviews the theoretical background of the research, with two main theoretical
literatures: (i) the value of patents (section 2.1); (ii) the analysis of patent data using artificial
intelligence, machine learning and deep learning methodologies, also defined as intellectual
property intelligence (IPI) (section 2.2).

This is followed by chapter 3, which describes the development of the dataset: (i)
the data collection (section 3.1); (ii) the data preparation (transformation) for AI deep
learning methodologies (section 3.2), which includes the numeric, categoric and text feature
representations. The dataset consists of all granted United States Patent and Trademark
Office (USPTO) patents between 1976-2019.

Chapter 4 describes the development of the deep learning algorithmic approach using
patent data for patent valuation. This includes: (i) the problem structure (section 4.1); (ii)
the detailed analysis and representation of the network architecture (section 4.2); (iii) the
evaluation metrics of the error-function derivative (section 4.3); (iv) the network optimisation

1All website URL links, referenced in the thesis, have been last effectively accessed on the 01.03.2021.
2All equations presented in the thesis follow the specific notation of the chapter they are enclosed. Chapter

2 contains equations about the feature definition, chapter 3 contains equations about the feature transformation,
and chapter 4 contains equations about the development of the deep learning algorithm.

3Cloud computing is the on-demand availability of computer system resources or data centres, especially
data storage and computing power, without direct active management.

4Microsoft Azure is a cloud computing service created by Microsoft for building, testing, deploying,
and managing applications and services through Microsoft-managed data centers (Microsoft, 2020), URL:
https://azure.microsoft.com/en-gb/

5Google AI Platform is a comprehensive machine learning service for developers and data scientists, which
covers end-to-end spectrum of machine learning services including data preparation, training, tuning, deploying,
collaborating and sharing of machine learning models (Google, 2020a), URL: https://cloud.google.com/ai-
platform

6Github provides hosting for software development and version control using Git (Github, 2020).

https://azure.microsoft.com/en-gb/
https://cloud.google.com/ai-platform
https://cloud.google.com/ai-platform
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with the parameter optimisation and error backpropagation algorithm (section 4.4); and (v)
the deep learning implementation (section 4.5).

Fig. 1.1 Research approach for the development of the AI deep learning methodology for the
value of patents

Chapter 5 presents the empirical results: (i) the out-of-time evaluation (section 5.1); (ii)
the technology area evaluation (section 5.2); and (iii) the sample size evaluation (section
5.3). Chapter 6 discusses the results in two main directions: (i) in section 6.1 we discuss
the results relative to the patent value literature, including proxies (6.1.1), composite indices
(6.1.2), and value dimensions (6.1.3); (ii) in section 6.2, we compare the results to previous
studies on intellectual property intelligence, for the methodologies deployed for the analysis
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of patent data (6.2.1), technology forecasting (6.2.2), and the use of patent text and language
(6.2.3). Chapter 7 concludes the research, with limitations and future research suggestions.

1.3 Contributions

This research provides the following contributions: (i) methodological (1.3.1), (ii) theoretical
(1.3.2), and (iii) practical (1.3.3). All results and contributions should be interpreted with
care, due to the sensitivity surrounding the value of patents and artificial intelligence (AI).
Complementary contributions for further research and reproducibility also include: (i) the
research code, which is available on GitHub1, with the master branch representing the original
code for the thesis; (ii) the research dataset, which is publicly available on the cloud2.

1.3.1 Methodological contributions

This research makes some major methodological contributions (see 6.2). Primarily, this
research proposes an AI deep learning methodology for the valuation of patents to identify
valuable patents. Unlike previous studies on patent value that focus mostly on regression
methodologies with samples with limited datapoints (Table 2.7), we propose an AI deep
learning approach for patent valuation using big patent datasets. This is based on deep and
wide artificial neural networks (ANN) of multi layer perceptrons (MLP), also known as
deep learning, unlike some recent studies that concentrate on shallow ANNs with lagging
output proxies (Table 2.12). We also make use of the cost-sensitive loss function, batch
normalisation and L2 regularisation methods (see 4.4), allowing for improved learning and
higher performance.

Furthermore, we also use and transform the patent text (abstract, claims, summary, title)
into text vector features, using our developed Doc2Vec vector space model (VSM), which
we use as input to our deep learning model. We evaluate all our models using a variety of
strategies (out-of-time test, out-of-sample test, k-Fold and random split cross validation) (4.5),
and transparently report all metrics (accuracy, confusion matrix, F1-score, false negative rate,

1The code is accessible from the repository of the author. The original time stamp of the master branch
represents the code for the thesis, and is read-only. Any subsequent branches and merges, which have been
modified by external researchers represents advancements of the methodology and build on material. Please,
email the author to request access to the code (Aristodemou, 2020a).

2The dataset is accessible from the repository of the author. The original typestamp of the master dataset
represents the dataset created and used for the thesis, and is read-only. Any subsequent dataset versions, which
have been modified by external researchers represent alternative dataset versions and are saved separately.
Please, email the author to request access to the dataset (Aristodemou, 2020b).
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log loss, mean absolute error, precision, recall) (4.3). Thus, we advance the application of AI
methods using patent data for patent valuation, including a text Doc2Vec VSM.

In addition, we advance the definition of intellectual property analytics (IPA), defined
by Aristodemou & Tietze (2018b), to intellectual property intelligence (IPI). This is defined
as the data science of analysing large amount of intellectual property (IP) information,
specifically patent data, with artificial intelligence methodologies such as machine learning
and deep learning, to discover relationships, trends and patterns in the data for decision
making. For this definition, we move away from traditional analytical methods, and we
focus on AI methods, which include the element of intelligence, i.e. the ability to acquire,
learn and apply knowledge. This definition and the analysis of big patent data with AI-based
approaches form the basis of the emerging field of IPI research and IPI studies.

Moreover, there are limited studies with large number of datapoints that mainly focus on
categoric and numeric data, tailored to specific technology areas (Trappey et al., 2019, 2012).
This research in particular, builds a large dataset, consisting of all granted USPTO patents
from 1976-2019, with numeric, categoric and text features. The dataset is transformed into a
vector space using methods such as one hot encoding (OHE) and Doc2Vec. This combination
of all patent data features has improves the overall model performance. In addition, since
this large dataset is not depended on the technology field, it has a wide applicability and
higher generalisability, and is made publicly available for researchers to run efficiently and
effectively run fairly complex data analysis (Aristodemou, 2020b).

1.3.2 Theoretical contributions

We explore a wide range of patent value output proxies, including a composite index, with
deep learning and large datasets (6.1). Unlike current research (see 2.2.2.3.2), which focus
on lagging proxies, we focus on a variety of output proxies. Specifically, we focus on 12
output proxies, which include grant_lag, generality, quality_index_4, and forward citations,
generality_index and renewals in three time horizons (t4, t8, t12). We also explore the use of
composite indices, such as the quality_index_4. In addition, we move away from relatively
small datasets, limited to specific technological fields that reflect the characteristics of that
area, to large generic datasets, improving the generalisability of the models.

Moreover, we associate the patent value proxies to the value dimension (see 6.1.3) they
represent such as economic, strategic and technological (Frietsch et al., 2010). We observe
that relying on a composite index, which takes into account a combination of dimensions
yields higher results, because inherently the concept of economic growth has the elements of
strategy and technology development (Teece, 1986). For economic value, we observe that
early technology diversification (measured by the generality_index_t4), is important, yet in
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later time horizons it becomes less important. This partly suggests that firms have wider
technological competencies at the beginning to take advantage of new opportunities, which
decrease with the increasing time horizon, focusing on core technologies (Hall, 2005; Hall
& MacGarvie, 2010). In addition, for strategic value, we observe that as the time horizon
increases, it becomes increasingly difficult to predict patent renewal, suggesting that firms
maintain some of their earlier strategies and renew their patents in the fear of losing out
(Granstrand, 1999).

1.3.3 Practical contributions

This research predict the value of patents with a variety of output proxies, including composite
index proxies, for different technology areas (IPC classifications) and time horizons (see
6.2.2)1. Following the principles of technology roadmapping (Phaal, 2004), we use the
models to value patents at different time horizons. This has also implications for technology
management, and R&D management, with managers being able to use a variety of proxies
to value patents at different stages of development. In the short term (t4), they could utilise
together the models on citations_t4 and renewal_t4, for the medium term (t8), the models
on citations_t8 and generality_t8, and for the long term (t12), the models on citations_t12
and renewals_t12, to forecast the value of their patented inventions, and subsequently of
technologies.

From the technology area, technology managers could utilise the grant_lag model to
forecast the value of patents in IPC E, the generality in IPC G, the quality_index_4, cita-
tions_t8, citations_t8, and renewal_t4 in IPC A, the citations_t4 and generality_t8 in IPC
B, the generality_t4 in IPC C, the generality_t12 in IPC D, the renewal_t12 in IPC F, the
generality in IPC G, and the renewal_t8 in IPC H. Thus, they can associate different output
proxies per technology area when they are developing specific technologies, for example
technologies related to physics or electrical, which can be useful for firms with limited
resources, such as small-medium enterprises (SMEs). They can use Table 6.1 to factorise the
grid of models to the particular case for the time horizon and technology area.

1The time horizon breakdown of t4, t8, and t12 refers to the number of years of the granted patent after the
filling date, and only exist if the patent has reached the respective age.





Chapter 2

Theoretical Background

In this chapter, we focus on the theoretical background that underpins this research. It has
been long argued that the value of technologies1 (Mowery & Rosenberg, 1989; Rosenberg,
1994) can be modelled as the value of patented inventions2.

We review the literature on the valuation of technologies and specifically, patent value
(2.1.2). We focus on the patent value dimensions (2.1.2.2), proxies (2.1.2.3), determinants
(2.1.2.4), and the methodologies deployed for patent valuation (2.1.2.6). We define patent
value proxies as measures that can be used to approximate the value of patented inventions.
They represent patent characteristics that have been used mainly in the literature as dependent
variables and can be classified as ex-post3indicators (Lee et al., 2018; Noh & Lee, 2020; van
Zeebroeck & van Pottelsberghe de la Potterie, 2011a). We define patent value determinants
to represent patent characteristic that have been used mainly as value determinants, correlated
with patent value. They represent patent characteristics that have been used in the literature
as explanatory variables and can be classifed as ex-ante3 indicators. Patent value proxies
have also been used as patent value determinants in the literature (van Zeebroeck & van
Pottelsberghe de la Potterie, 2011b).

1The definition of technology varies (Arrow & Intriligator, 2010). Verhoeven et al. (2016) define a
technology as means to fulfil some purpose, which embodies principles and components that work in relation
to each other to meet the purpose at hand. This is similar to the definition formulated by Bresnahan (2010) for
general purpose technologies (GPT), and the technology form definition by Hall et al. (2010).

2There are many definitions of a patented invention, i.e. a patent. Nearly all agree that a patent is a
temporary property right on an invention (Rockett, 2010), i.e. to exclude others from benefiting from the
underlying intellectual property (Arora & Gambardella, 2010). It is an exclusive right granted for an invention,
that provides a novel technical solution (The British Library, 2020; WIPO, 2020). Poege et al. (2019) argues
that follows the principle of means to fulfil some purpose with the requirement that it contains at least one novel
and inventive step.

3Patent characteristics can be classified into ex-ante and ex-post indicators (Arts et al., 2013). An ex-ante
indicator is related to the nature of a patented invention, and is defined immediately at the point or just after
the patent is filed. An ex-post indicator is related to the impact and value of a patented invention, which may
change over time (Lee et al., 2018; Noh & Lee, 2020).
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Following 1.1.2, we focus on the literature of the analysis of patent data with artificial
intelligence (AI) methodologies, also defined as intellectual property intelligence (IPI)
(Aristodemou & Tietze, 2018b). We review the IPI methods, by firstly forming a taxonomy
of the methodologies (2.2.2.1), secondly, focusing on methodologies based on artificial
neural networks (2.2.2.2), and finally, on the theoretical areas of application and the AI
methodologies that have been applied with patent data (2.2.2.3).

2.1 Valuation of technologies

2.1.1 Background

The value of patented inventions varies widely at the patent, firm and industry levels (Thomp-
son, 2010). The concept of patent value has acquired many meanings over time (Munari
& Oriani, 2011; Parr & Sullivan, 1996; Pitkethly, 1997; So-Young et al., 2007). The many
definitions that exist, i.e. technological value, economic value, are neither exclusive, nor do
perfectly overlap, and users tend to bridge them into intuitive notions of value (Squicciarini
et al., 2013). Recently, there has been much discussion about patent value, how to measure it
and what it entails for innovation and technology development (Grimaldi & Cricelli, 2019).

The analysis of patent value plays an important role in managerial economic and business
strategy because helps to estimate the value of the technologies. Various means are used to
measure patent value according to different perspectives. Scholars have focused mainly on
three research areas: (i) the economic value of patents based on information from patent
databases and field surveys, (ii) firm value and performance, and (iii) the investigation of
patent value determinants, sampling strategies and patterns. Under these broad research areas,
scholars have investigated many topics, such as disruptive/ emerging technologies (Guderian,
2019), the geography of inventions (Adams, 2006), the globalisation of R&D activities (Narin
& Hamilton, 1996), knowledge diffusion (Gambardella et al., 2007), patenting strategies
(Granstrand, 1999), and technological performance (Aristodemou & Tietze, 2018a). Given
the surge in world patenting (WIPO, 2019a,c, 2020), the added interest in the valuation of
technologies, and the ability to analyse larger datasets of patents, we review the literature
on the value of patents, to identify the patent value dimensions (2.1.2.2), proxies (2.1.2.3),
determinants (2.1.2.4), and the methodologies deployed for patent valuation (2.1.2.6).

2.1.1.1 Review methodology

We aim to review the literature on patent value, to identify the methodologies deployed to
value patents, the proxies and determinants used, and the patent value dimensions previous
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literature focuses on. To carry out the review1, the narrative and scoping literature review
approaches have been adopted (Cronin et al., 2008; Paré et al., 2015), and a search strategy2

has been developed (Robson, 2011). Fig.2.1 shows the review’s process flow. The articles
on patent value are identified from the Scopus database to find the most relevant published
articles (Falagas et al., 2008). Focusing on recent literature, the search is constrained to
articles published after 1989, to the fields of business, computer science, engineering, social
science and mathematics. The core review identifies 93 articles. We then filter these by
the Source-Normalised Impact Score (SNIP)3 of the journal being greater than 1.00, to
form a subset of 77 articles. For these, we review in detail the value dimensions, proxies,
determinants and the methodologies deployed for patent value.

Fig. 2.1 Process flow of the review on the valuation of technologies

2.1.1.2 Bibliographic analysis results

The first level of the analysis focuses on the bibliographic information from the 93 articles
(n1). The number of articles have increased since 2017, reaching a peak of 13 articles

1The review draws predominantly on on-line resources (articles), and is supported by the narrative perspec-
tive using book references. This inherently introduces a gap in the literature review. We aim to reduce that gap
using book and report references to complement our arguments and explanations.

2We search within the title, abstract and key words for various terms such as ’patent’, ’technolog*’. The
search is then narrowed to documents that also contain either in the title or the abstract or in the key words, the
terms ’value’, ’measure*’, ’index’, ’indicator*’, ’indices’, ’metric’ and ’prox*’. We then form an initial set of
articles from the 150 top cited articles, 100 most relevant articles by Scopus, and 150 articles from the top 10
publishing journals. The search is effective on 08.12.2019.

3Source Normalized Impact per Paper (SNIP) is a metric that intrinsically accounts for field-specific
differences in citation practices, by comparing each journal’s citations per publication with the citation potential
of its field, defined as the set of publications citing that journal. SNIP therefore measures contextual citation
impact and enables direct comparison of journals in different subject fields. A journal with a SNIP of 1.00
has the median number of citations for journals in that field. URL: https://www.elsevier.com/authors/journal-
authors/measuring-a-journals-impact

https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact
https://www.elsevier.com/authors/journal-authors/measuring-a-journals-impact


14 Theoretical Background

published in 2019. Fig.2.2 shows the number of papers per year since 1989 (Fig. 2.2a),
and the cumulative citation overview per article per year with more than 2 citations (Fig.
2.2b). There is an upward trend with the number of publications in recent years indicating
an increasing interest in this particular field. There is a fairly even spread until 2017, and
after there is an increase in the number of publications. In addition, the cumulative forward
citations per year reach a peak in 2017 and then saturate.

Table 2.1 Top 10 affiliatons (2.1a), countries (2.1b), journals (2.1c), and cited articles (2.1d),
for articles for valuation of technologies (n1=93 articles)

(a) Affiliations (n2=188 observations)

Affiliationa No. of obs. Share %
University of California, Berkeley, US 7 4%
KU Leuven, BE 6 3%
ULB Bruxelles, BE 5 3%
Cheongju University, KR 5 4%
CEPR, UK 5 3%
WHU - Otto Beisheim, DE 4 2%
Ludwig-Maximilians University, DE 4 2%
Universita di Cassino e del Lazio, IT 3 2%
Harvard University, US 3 2%
National Tsingua University, CN 3 2%

Total 40 21%

aArticles with one or more affiliations are multi-
counted.

(b) Countries (n3=71 observations)

Countrya No. of obs. Share %
United States 26 21%
Germany 16 13%
United Kingdom 14 11%
Belgium 11 9%
Taiwan 9 7%
Italy 8 6%
China 7 6%
Australia 4 3%
Netherlands 4 3%
South Korea 4 3%

Total 103 82%

aArticles with one or more countries are
multi-counted.

(c) Journals

Journala No. Share %
Research Policy 22 24%
Scientometrics 13 14%
Technological Forecasting and Social Change 8 9%
World Patent Information 8 9%
Economics of Innovation 5 5%
International Journal of Innovation and Technology Management 3 3%
Journal of Intellectual Capital 3 3%
RAND Journal of Economics 2 2%
Review of Economics and Statistics 2 2%
Advanced Engineering Informatics 1 1%

Total 67 72%

aThe 93 articles are published in 36 journals.

(d) Cited Articles

Articlea Citations Cit. Freq.
Mowery et al. (1996) 1755 73.13
Hall (2005) 1304 86.93
Hagedoorn & Cloodt (2003) 623 36.65
Harhoff et al. (1999) 621 29.57
Harhoff et al. (2003) 538 31.65
Adams (2006) 516 36.86
Lanjouw & Schankerman (2004) 459 28.69
Albert et al. (1991) 429 14.79
Ernst (2003) 351 20.65
Lanjouw & Schankerman (2001) 349 18.37

aCitations frequency: total number of cita-
tions over the age of the article.

Table 2.14 shows the top 10 affiliations, countries, journals and citations of the 93 articles.
4In both Table 2.1a and Table 2.1b, any article with one or more affiliation from different countries is

multi-counted (i.e. if an article has 3 different affiliations from 2 different countries, is counted 3 times in Table
2.1a and 2 times in Table 2.1b).
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It is evident from the information that Europe is the leading continent. This is supported
by Table 2.1b, where within the top 10 countries, 5 are in Europe (42% of the total share of
observations). However, from Table 2.1b we observe that contributions are also made by the
USA (21% share), since the majority of articles have been affiliated with the University of
California, Berkeley (Table 2.1a). Moreover, the top 4 journals (accounting for 56%) are:
Research Policy, Scientometrics, Technological Forecasting and Social Change, and World
Patent Information. The top 10 journals account for 67 articles, indicating that articles in this
field are concentrated within these journals (72% of the total share). In addition, the most
cited articles are Mowery et al. (1996) with 1755 citations, followed by Hall (2005) with
1304 citations, and Hagedoorn & Cloodt (2003) with 623 citations. However, the article with
the highest citation frequency1 is Hall (2005) with 86.93, followed by Mowery et al. (1996)
with 73.13.

(a) (b)

Fig. 2.2 Plots of: 2.2a Number of articles published per year (n1=93) since 1989; 2.2b
Cumulatitve citation overview per article per year, for articles with > 2 citations

2.1.2 Patent value

The analysis of patent value helps to estimate the value of the technologies (Grimaldi
& Cricelli, 2019; Squicciarini et al., 2013). For example, Amazon’s one-click patent2 is
considered one of the most valuable patents at the moment, since it enables a user to instantly
place any purchasing ordering via any communications channel. This particular patent has
been licensed widely to companies, including Apple, Facebook, and eBay. Patent value has
several topics of investigation, in the research community (2.1.2.1). Given the surge in world
patenting (WIPO, 2019a,c, 2020), the added interest in the valuation of technologies, and the

1Citation frequency is defined as the total number of citations over the age of the article.
2United States Patent with no. US 5,960,411, and title: Method and system for placing a purchase order via

a communications network. The patent was granted in 1999 and is assigned to Amazon (Hartman et al., 1999).
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ability to analyse larger datasets of patents, we review the patent value dimensions used by
scholars (2.1.2.2), proxies (2.1.2.3), determinants (2.1.2.4), and the methodologies deployed
to value patents (2.1.2.6).

2.1.2.1 Patent value literature streams and topics of investigation

Various means can be used to measure patent value1,2. It has been suggested that the
patent value literature on patent value3 can be organized into 3 broad research streams (van
Zeebroeck & van Pottelsberghe de la Potterie, 2011b). Table 2.2 provides an overview of the
research streams and the relevant theoretical topics.

The first research stream focuses on the estimation of the economic value of patents based
on information from field surveys or patent databases or transactions (Tietze, 2012). The
most well known field survey is the PatVal study, where European inventors were surveyed to
estimate retrospectively the value of their inventions, after the patent expiration (Gambardella
et al., 2007, 2005)4. These studies find that the patent value distribution is positively skewed,
with a long right tail, and the majority of patents having little value (Deng, 2007; Gambardella
et al., 2005; Hall, 2005).

The second research stream focuses on using intellectual property rights (most notably
patents) to analyse the impact of innovation on firm value and performance. Several scholars
correlate patent value determinants with firm value (Lanjouw & Schankerman, 2004). Hall

1The value of a patent is rarely observable and inductive approaches are usually used (Harhoff et al., 2003;
Reitzig, 2003). One could find a direct correlation with observable prices or operationalise latent determinants of
patent value, which correlate with observable effects or proxies (Reitzig, 2004). The nature of value recognition
has two dimensions: the intrinsic and extrinsic. The intrinsic dimension of the patent value is derived from the
intrinsic technological significance, and is represented by all that appear in the patent document, where as the
extrinsic value is the potential to develop the market (Grimaldi & Cricelli, 2019).

2With the focus on the analysis of patent data (see 1.1.2), we can also define intelligent patent value (IPV)
as the value of a patent arising or being represented by patent data determinants and proxies, i.e. arising from
its technological significance (value of the invention) with the potential to develop a market (patent premium)
on dimensions such as economic, technological, social and strategic (see 2.1.2.2), and which is measured or
analysed by artificial intelligence (AI) and data science methodologies (Aristodemou & Tietze, 2018b).

3The value of patent also consists of two parts: (i) the patent value related to the market protection given by
the patent, i.e. the value of the patent rights, and (ii) the value of the invention, i.e. the value to the firm without
information disclosed within the patent being released (Arora et al., 2008; Arora & Gambardella, 2010; Jensen
et al., 2011; Pitkethly, 1997; Thoma, 2016). The patent premium represents the value of the patent related to
the market protection. Arora et al. (2008) argue that patenting firm’s expected earnings are between 75-125%
more than by not disclosing it. Patent premium’s determinants include, but are not limited to, the industrial
sector, competition dynamics, regulation impact etc. (Greenhalgh & Rogers, 2006; Harhoff et al., 2003).

4We are aware that the PatVal study has estimates of patent value (Gambardella et al., 2005). Unfortunately,
it was not possible to source the PatVal dataset despite numerous trials and communication channels. Given the
difficulty in sourcing this dataset, we focus on alternative proxies capable of estimating patent value, of which
some correlate with the patent premium because of patent disclosure (Arora & Gambardella, 2010; Jensen et al.,
2011).
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et al. (2005) explore the use of patents citations as a measure of patent importance, and
associate them to firm’s stock market value.

Table 2.2 Patent value literature research streams and theoretical topics

(a) Literature streams

Literature Streama Authors (examples)
1 Economic value of patents based

on information from patent
databases and field surveys

Bessen (2008); Ernst (2003); Gambardella et al. (2007); Harhoff et al. (1999); Harhoff & Reitzig
(2004); Harhoff et al. (2003); Lanjouw & Schankerman (2001); Lanjouw et al. (1998); Reitzig
(2003, 2004)

2 Firm value and performance Bessen (2009); Greenhalgh & Rogers (2006); Hall (2005); Hall & MacGarvie (2010); Lanjouw &
Schankerman (2004)

3 Investigation into determinants,
sampling strategies and patterns in
relation to patent value

Adams (2006); Albert et al. (1991); Alcácer et al. (2009); Aristodemou & Tietze (2018b); Bass &
Kurgan (2010); Ernst & Omland (2011); Frietsch et al. (2010); Griliches et al. (1991); Grimaldi
et al. (2015, 2018); Grupp & Mogee (2004); Mowery et al. (1996); Narin & Hamilton (1996); van
Zeebroeck (2011); van Zeebroeck & van Pottelsberghe de la Potterie (2011b)

aThe list of literature streams is not exhaustive. We aim to give an overview of the broad literature streams
and the purpose of researching patent value.

(b) Theoretical topics of investigation

Topica Definition Authors (examples)b Total articles <2010c 2011-2018 2018-2020
Disruptive/
Emerging
Technologies

Patents are used to detect progression of
technologies.

Berg et al. (2018); Guderian (2019); Mariani et al.
(2019); Trappey et al. (2012)

4 0 1 3

Economic value
of inventions

The economic value of inventions is im-
portant for its economic impact

Albert et al. (1991); Hall (2005); Harhoff et al. (1999,
2003); Lanjouw et al. (1998); Reitzig (2003, 2004)

30 16 11 3

Geography of
Invention

Patents hold information on the region,
country, inventor and applicant details

Adams (2006); Bessen (2008); Gambardella et al.
(2007); Hagedoorn & Cloodt (2003); Narin & Hamil-
ton (1996)

6 5 0 1

Globalisation of
R&D activities,
and role of uni-
versities

Patents include information on the inven-
tive performance and activities of multi-
national firms; it’s possible to track the
patterns and the intensity of international
cooperation

Bessen (2008); Ernst (2003); Ernst & Omland (2011);
Frietsch et al. (2014); Greenhalgh & Rogers (2006);
Mariani & Romanelli (2007); Narin & Hamilton
(1996); Sapsalis et al. (2006)

15 8 6 1

Knoweldge dif-
fusion

Patents provide detail description on
prior art, and can identify the influence
and progression of technologies

Alcácer & Gittelman (2006); Chandra & Dong (2018);
Gambardella et al. (2007); Hagedoorn & Cloodt
(2003); Mowery et al. (1996); Wang (2015)

7 4 2 1

Patenting strate-
gies

Patents reveal the timeline of inventions,
which identifies the market strategy of
the patent owner

Breitzman & Mogee (2002); Dolfsma (2011); Ernst
(2003); Ernst & Omland (2011); Gambardella et al.
(2007)

8 3 5 0

Performance
and mobility of
researchers

Patents have a variety of information in-
cluding countries and sectors, which can
be used to measure innovation perfor-
mance

Alcácer et al. (2009); Greenhalgh & Rogers (2006);
Grupp & Mogee (2004); Lanjouw & Schankerman
(2004); Narin & Hamilton (1996)

5 5 0 0

Technological
performance

Patents are used to monitor the technolog-
ical performance and track the technolog-
ical positioning of companies, regions or
countries

Aristodemou & Tietze (2018b); Grimaldi et al. (2015);
Grupp & Mogee (2004); Hagedoorn & Cloodt (2003);
Harhoff & Reitzig (2004); Lanjouw & Schankerman
(2001); Veugelers & Wang (2019)

17 3 9 5

aThe topics and definitions have been compiled using the taxonomy suggested by OECD (2009). Many
articles belong to more than one topic under investigation.

bWe provide a few examples of studies for every topic. The list is not exhaustive and the aim is provide an
overview of the research topics.

cThe year 2010 is indicative of when popularity around artificial intelligence (AI) methodologies has
increased due to advancements in compuer science (Murphy, 2012; Schmidhuber, 2015).
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Drawing on the above, the third research stream investigates patent value latent determi-
nants, internal patterns and relationships, in relation to patent value (Mowery et al., 1996;
van Zeebroeck, 2011). Several scholars identify different patent value latent determinants, as
explanatory variables, which are correlated to independent value measures (van Zeebroeck &
van Pottelsberghe de la Potterie, 2011b).

We then focus on the theoretical topics of investigation. Table 2.2b1 shows the theoretical
topics of investigation associated with patent value, with the topic, definition and some
examples of studies The majority of articles are found under the topic of economic value of
inventions, followed by the topics on technological performance and globalisation of R&D.
These have been published before 2010. Topics that have gained attention since 2011 include
the technological performance, patenting strategies, and disruptive/ emerging technologies.
The topic of the economic value of inventions has maintained interested, throughout time.

2.1.2.2 Patent value dimensions

We aim to identify the patent value dimensions previous studies focus on to give an overview
of the discussions around patent value. Table 2.3 gives an overview of the 4 patent value
dimensions, economic, strategic, social and technological, identified in the literature, together
with their definitions and examples of previous studies. It is possible to evaluate patent value
on different value dimensions. Table 2.3 reveals that the majority of the articles are around
the economic value dimension. The economic value of a patent is defined as the degree to
which the patent enters or creates a new market, or the patent’s private asset value (Grimaldi
et al., 2018). This is a generally agreed definition within the innovation management and
economics literature (Deng, 2007; OECD, 2009).

The technological value dimension is defined as the degree to which a patent contributes
to further developing advanced technology (Frietsch et al., 2010), and the implementation of
successive technologies (Chandra & Dong, 2018). Despite a few articles researching the topic
of patent strategies (Table 2.2b), the strategic value dimension has been investigated by a
limited number of articles. It is defined as the degree to which the patent is used strategically,
with underlying strategic motives (Frietsch et al., 2010). Ernst (2003) provides a conceptual
framework on how strategic value can be realised. The least identified dimension is the social
value, which is defined as the degree to which a patent impact society by collectivity and
altruism (Frietsch et al., 2010; Gay et al., 2008)2.

1We construct the table by reviewing the aim and purpose of the studies identified (in 2.1.1.1), and then we
categorise them in the topics. These topics and their definitions are identified in the taxonomy published by
OECD (2009).

2There has been a long discussion in the literature about the economic value of patents, with several
methods and approaches being proposed (Munari & Oriani, 2011; Parr & Sullivan, 1996; Pitkethly, 1997;
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Table 2.3 Patent value dimensions

Patent Value Dimensiona ,b Definition Authors (examples)c

Economic Value (EconV),
including market-based con-
structs such as firm value and
estimated monetary patent
value)

Degree to which the patent enters or creates a new market, or its private
asset vale once realised in terms of sale price, royalties, licenses, costs
(including but not limited to R&D costs, litigations costs, etc.) (Frietsch
et al., 2010; Lagrost et al., 2010)

Bessen (2008, 2009); Deng (2007); Ernst (2003); Fri-
etsch et al. (2014); Gambardella et al. (2007); Gay
et al. (2008); Hall (2005); Hall & MacGarvie (2010);
Harhoff et al. (1999); Harhoff & Reitzig (2004);
Kapoor et al. (2013); Lanjouw et al. (1998); Lanjouw
& Schankerman (2004); Mariani & Romanelli (2007);
Mowery et al. (1996); Striukova (2007)

Strategic Value (StrV) Degree to which the patent is used strategically, with underlying strate-
gic motives to, but not limited to, blocking competitors, easier access
to financial markets, preventing key technologies from being invented
around and the generation of licensing revenues (Frietsch et al., 2010;
Granstrand, 1999)

Ernst (2003); Hsieh (2013)

Social Value (SocV) Degree of wich a patent impacts society by collectivity and altruism
(Frietsch et al., 2010)

Frietsch et al. (2010); Gay et al. (2008)

Technological Value (TechV) Degree to which a patent contributes to further developing advanced
technology (Frietsch et al., 2010). Technical value is a subset of tech-
nological value. It is defined as the degree to which the practical reali-
sation of the technology described by the patent at a commercial scale
is realised, and is revealed through the importance of the patent to the
implementation of successive technologies (Chandra & Dong, 2018).

Albert et al. (1991); Aristodemou & Tietze (2018b);
Bekkers et al. (2011); Chandra & Dong (2018);
Khachatryan & Muehlmann (2019); Kogan et al.
(2017); Lanjouw & Schankerman (2004); Lee et al.
(2017); Mowery et al. (1996); Suzuki (2011); Verho-
even et al. (2016)

aThe list is not exhaustive and provides a summary of the identified dimensions in the literature. It includes
the dimension’s definition and some examples.

bThe value dimensions are arranged in alphabetical order.
cSome articles might belong to more than one dimension.

2.1.2.3 Patent value proxies

From the review, we focus on patent value proxies3 to identify the most frequently used, and
their association to patent value dimensions (Table 2.3), with the aim to understand what
previous scholars have used to approximate the value of a patented invention. These proxies
can represent a variety of patent value dimensions, and should be interpreted with care. Table
2.4 provides an overview of the most frequently used proxies in the literature in alphabetical
order, with their definition, rational, and some examples of studies. We associate them to
their respective patent value dimension (Table 2.3) and provide some criticism on how they
have been used in the text (Grimaldi et al., 2018; OECD, 2009).

So-Young et al., 2007). We focus on the definition by Deng (2007), also supported by the OECD (2009),
which narrowly defines the economic value as the degree which the patent enters or creates a new market
(Arora & Gambardella, 2010). Given that we focus on patent data, we take an inductive approach towards the
intrinsic economic value of patents and how this can be reflected from patent data only by operationalising
latent determinants and proxies (Grimaldi & Cricelli, 2019; Reitzig, 2004; Squicciarini et al., 2013). The value
of patent also consists of two parts: (i) the patent value related to the market protection given by the patent, i.e.
the value of the patent rights, and (ii) the value of the invention, i.e. the value to the firm without information
disclosed within the patent being released (Arora et al., 2008; Arora & Gambardella, 2010; Jensen et al., 2011;
Pitkethly, 1997; Thoma, 2016). The patent premium represents the value of the patent related to the market
protection.

3We use the term patent value proxy to represent patent characteristics that have been been used mainly in
the literature as dependent variables (van Zeebroeck & van Pottelsberghe de la Potterie, 2011a). We use the
term patent value determinants to represent patent characteristic that have been used mainly as explanatory
variables (van Zeebroeck & van Pottelsberghe de la Potterie, 2011b). Patent value proxies have also been used
as patent value determinants.
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2.1.2.3.1 Forward citations

Forward citations have been used widely to assess the technological impact and economic
value of inventions (Aristodemou & Tietze, 2018b). Patents receiving citations indicate
the existence of downstream research efforts. The value of a patent and the number of its
forward citations are positively correlated (Hall, 2005; Harhoff et al., 1999; Reitzig, 2004;
Trajtenberg, 1990). Scholars have also argued that patents receiving more citations are likely
to be renewed (Bessen, 2008; Lanjouw et al., 1998). Hagedoorn & Cloodt (2003) study the
innovative performance of large firms using a variety of proxies including forward citations.
Lanjouw & Schankerman (2001) look into the cost of engaging in litigation, and they argue
that the probability of litigation diminishes the patent value as a research investment incentive.

A major criticism of this proxy is that it is a lagging indicator, i.e. only becomes realised
with time accumulation (Choi et al., 2020). The number of citations is truncated because
only citations at any point in time are known (Squicciarini et al., 2013). It is influenced by
differences in patent examination practises across time and patent offices, and the patent’s
technological area (OECD, 2009). Thus, scholars relying only on forward citations to
measure the value of patents should be careful when assessing their results.

2.1.2.3.2 Generality index

The generality index calculates the diversification of the technological classes distribution in
the forward citations (Trajtenberg et al., 1997), i.e. the range of technology fields that cite
the patent, and it’s high if the forward citations of a patent belong to a wide range of fields
(Squicciarini et al., 2013). Several scholars have used the proxy to identify general purpose
technologies or to identify high market value technologies (Chen & Chang, 2010d). Wagner
& Wakeman (2016) investigate the relationship between patent indicators that capture patent
value to the outcomes of the product development process. They use the generality index to
capture a patent’s diversified impact to a variety of technological fields.

One of the major criticism of the proxy, is that it treats technologies that are closely
related but are not in the same class in the same way as they treat very distant technology
fields. Due to its variable definition, it’s not easily comparable since scholars have defined
the n-digit IPC technology classes differently.

2.1.2.3.3 Grant lag

The time it takes for a patent to be examined, between the filing date of the application
and the date of the grant, is defined as the grant lag, which is correlated to patent value
(Squicciarini et al., 2013). A granted patent signals legal protection of the underlying patented
invention, and a proxy of value (OECD, 2009).
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Table 2.4 Patent value proxies

Proxya ,b Dimensionc Definitiond Rationale Authors (examples)f

Forward
Citations
(2.1.2.3.1)

TechV,
EconV

The number of citations a given patent receives (forward cita-
tions) represents the technological importance of the patent for
the development of subsequent technologies (Aristodemou &
Tietze, 2018b).

FCi,T =
Pi+T

Â
t=Pi

Â
j2 j(t)

Cit j,i (2.1)

where FCi,T is the number of forward citations received by
patent i granted in year Pi within T years from its grant date.
Cit j,i is variable that equals 1 if the patent document j cites
patent document i, and 0 otherwise. J(t) is the set of all patents
applications published in year t.

The number of citations
a patent receives shows
the economical and tech-
nological importance of
a patent (Aristodemou
& Tietze, 2018b; Hall,
2005).

Albert et al. (1991); Alcácer & Git-
telman (2006); Bessen (2008); Breitz-
man & Mogee (2002); Frietsch et al.
(2010); Hagedoorn & Cloodt (2003);
Hall & MacGarvie (2010); Harhoff
et al. (1999); Harhoff & Reitzig
(2004); Harhoff et al. (2003); Lan-
jouw & Schankerman (2001, 2004);
Lin et al. (2006); Mowery et al. (1996);
Reitzig (2004); Sapsalis et al. (2006);
Trajtenberg (1990)

Generality
Index
(2.1.2.3.2)

TechV,
EconV

The patent generality index is based on a modified Hirschman-
Herfindahl Index (HHI) (Aristodemou & Tietze, 2018b). It
calculates the diversity of the distribution of forward citations
in technology classes (n-digit IPC technology classes), with a
range 0-1. It’s high if the forward citations of a patent belong to
a wide range of fields (i.e. the patent is relevant for later inven-
tions, and not only in its own technology class) (Squicciarini
et al., 2013).

GX = 1�
Mi

Â
j=1
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N

Â
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ji

T n
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(2.2)

where X is the focal patent, Yi patents citing the focal patent X ,
T n

j is the total number of IPC n-digit classes in yi, T n
ji is the total

number of IPC n-digit classes in the jth IPC-k-digit class in yi,
k = 1...8 is the hierarchy level of the IPC class, j = 1...Mi is the
cardinal of all IPC-k-digit classes in yi.

Hall et al. (2001) dis-
cover the existense
of the relationship
between the generality
index and the value
of patents, where a
higher generality index
(higher diversification
of technology classes
in forward citations)
demostrates a higher
value of the patented
invention

Chen & Chang (2010d); Duguet &
MacGarvie (2005); Gay et al. (2008);
Grimaldi et al. (2018); Hall et al.
(2001); Hall (2005); Harhoff et al.
(2003)

Grant
Lag
(2.1.2.3.3)

StrV A granted patent signals a strategic legal protection of an under-
lying patented invention. The time elapsed between the filing
date of the application and the date of the grant, is defined as the
grant lag index, which is correlated to the value of the patent.

GLPi = Dt (2.3)

where for each patent P, is the number of days elapsing be-
tween patent application date and patent granting date.

Harhoff & Wagner
(2009) argue that appli-
cants try to accelerate
the grant procedure
for their most valuable
patents (i.e. by well
documenting their
application)

Grimaldi & Cricelli (2019); Harhoff
et al. (2007); Harhoff & Reitzig
(2004); Ma et al. (2019); Squicciarini
et al. (2013); Thoma (2014); van Zee-
broeck & van Pottelsberghe de la Pot-
terie (2011a)

Renewals
(2.1.2.3.4)

EconV,
StrV

The renewal of a patent signals that the patented invention has
value for the owner.

Rei,T =

(
1
0

(2.4)

where Rei,T is the renewal (= 1) of a granted patent i, after T
years from its grant date, where T = {4,8,12}.

Patent renewals repre-
sent the owner’s rational
to make profit maximis-
ing renewal decisions
(OECD, 2009)

Bakker (2017); Bessen (2008); Deng
(2007); Harhoff et al. (2003); Lan-
jouw et al. (1998); Liu et al. (2008);
Tahmooresnejad & Beaudry (2018);
Thoma (2014); Thompson (2017);
van Zeebroeck (2011); van Zeebroeck
& van Pottelsberghe de la Potterie
(2011a); Wang (2015)

aPatent value proxies are measures that can be used to approximate the value of patented inventions. They
represent patent characteristics that have been used mainly in the literature as dependent variables and can be
classified as ex-post indicators (van Zeebroeck & van Pottelsberghe de la Potterie, 2011a).

bProxies are arranged in alphabetical order, and refer to 2.1.2.3.
cPatent value dimension is defined according to Table 2.3.
dDefinition includes a description of the proxy and its formula.
eRational refers to the purpose of the proxy and how it is interpreted.
fStudies might belong to more than one proxy because they make use of more than one. The list is not

exhaustive, and a selection is shown here.
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Harhoff & Wagner (2009) discover the relationship between the value of a patent and
length of the grant lag period, where they argue that applicants try to accelrate the grant
procedure (by having a shorter grant lag index) for their most valuable patents. However,
the grant lag is subject to the examination process, which varies depending on the patent
office, the examiner, and the filing time (van Zeebroeck & van Pottelsberghe de la Potterie,
2011a). Thus, it is subject to changes in the examination process. In addition, the process
also depends on the applicant and how fast they action the examination report results.

2.1.2.3.4 Renewals

The renewal of a patent signals that the patent is still useful and has some value to the
owner. A patent holder pays a maintenance fee immediately after a patent is granted to retain
exclusive rights, and needs to keep paying this fee in years 4, 8 and 121. Information about the
renewal of patents has been used in a number of studies, which have generally suggested that
more valuable patents are renewed for longer periods (Gambardella et al., 2007). Scholars
have used patent renewal data to estimate the private value of patents, based on the rational
that owners make profit maximising renewal decisions (Bessen, 2008). Lanjouw et al. (1998)
also find that renewals are correlated with the value of patents and larger patent families. This
proxy also suffers from criticism, since the renewal of patents is mainly administrative and is
depended on patent offices. Sometimes due to the lack of information and communication
between the patent office and the patent holder, the fees are not paid in time, and this delays
the patent status.

2.1.2.4 Patent value determinants

Following the review of the proxies in 2.1.2.3, we focus on patent value determinants2 to
identify the most frequently used determinants, and their explanatory association to patent
value dimensions. We aim to understand what previous scholars have used. The determinants
can represent a variety of patent value dimensions, and should be interpreted with care. Table
2.5 provides an overview of the most frequently used determinants in alphabetical order, with
their definition, rational, and some examples of studies that have used it. We associate them
to their respective patent value dimension (Table 2.3 and then provide some criticism in the
text on how they have been used (Grimaldi et al., 2018; OECD, 2009).

1USPTO (2020), URL: https://www.uspto.gov/patents-maintaining-patent/maintain-your-patent
2We use the term patent value determinants to represent patent characteristic that have been used mainly as

explanatory variables (van Zeebroeck & van Pottelsberghe de la Potterie, 2011b).

https://www.uspto.gov/patents-maintaining-patent/maintain-your-patent
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2.1.2.4.1 Backward citations

Backward citations are used to assess an invention’s patentability defining the legitimacy of
the claims (OECD, 2009), and help to track knowledge spillovers in technology. Harhoff
& Reitzig (2004) show how patent characteristics influence the probability of opposition.
Their analysis shows that backward citations are positively correlated to the probability
of oppositions. Hall (2005) find a strong correlation between patent value and backward
citations, similar to Sapsalis et al. (2006) who find that the identification of the prior art
allows for an improved understanding of the value determinants (Chandra & Dong, 2018).
Backward citations are a static determinant, defined at one point in time and very rarely
adjusted. It depends on the examination process and the examiner, and many times firms try
to cite a lower number of backward citations.

2.1.2.4.2 Claims

Claims represent the scope of a patent, which is an important determinant of its economic
value. It defines the legal dimensions of protection and the extent of market power attributed
to the patent. A broader scope refers to a broader technology area from which others are
excluded. The number and content of the claims determine the scope and breadth of the
patent rights (OECD, 2009). This also applies for all patent text sections (abstract, claims,
summary, title) with only limited scholars operationalising it to textual feature representation
(Wang & Chen, 2019). Lanjouw & Schankerman (2004) find that the number of claims is
the most important determinat of the quality of patents. Shane (2001) argue that only highly
valued patents, underpinned by several technical claims, increase the firm’s market value.

One criticism is that the structure of the patent fee is generally based on the number of
claims contained in the document, a large number of claims might also imply higher fees
(Lanjouw & Schankerman, 2001). In addition, Lanjouw & Schankerman (2001) also find
that the probability of litigation increases with the number of claims. There are changes in
the number of claims, and its contents, according to the patent technology field (Ernst, 2003;
Squicciarini et al., 2013), and the assignee firm.

2.1.2.4.3 Family size

A patent family can be defined as a set of patents filed in several countries which share at least
one common priority filing, through the Patent Cooperation Treaty (PCT) (Martínez, 2011).
The size of patent family, represented by the number of countries or number of jurisdictions,
has been found to be correlated to patent value (Lanjouw & Schankerman, 2001; Lanjouw
et al., 1998). Large international patent families have been found to be particularly valuable
(Deng, 2007; Gambardella et al., 2007; Harhoff et al., 2003; Reitzig, 2004; van Zeebroeck
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& van Pottelsberghe de la Potterie, 2011a). Some scholars have used the patent family size
to represent the extent of patent protection in global markets, i.e. market coverage (Ernst &
Omland, 2011; Lagrost et al., 2010; Lanjouw & Schankerman, 2004; Squicciarini et al., 2013;
van Zeebroeck & van Pottelsberghe de la Potterie, 2011a). One of the major criticism is that
there are many patent family definitions, which makes the patent counting quite complicated
(Adams, 2006; Martinez, 2010). Every patent office and patent data provider use different
patent family definitions, which make the identification of priority filings difficult.

2.1.2.4.4 Non-Patent Literature (NPL) references

Non-patent literature (NPL) citations can be considered as indicators of the contribution of
public science to industrial technology (Narin & Hamilton, 1996). Patents that cite science
may contain more complex and fundamental knowledge, and the number of NPL citations
are correlated to the value of patented invention (Messeni Petruzzelli et al., 2015; Reitzig,
2004). They provide insights into technologies closer to scientific knowledge (Gay et al.,
2008).

2.1.2.4.5 Originality index

The originality index operationalises the concept of knowledge diversification, i.e. breadth.
Inventions relying on a large number of diverse knowledge sources lead to patents belonging
to a wide array of technology fields (Harhoff & Wagner, 2009; Trajtenberg et al., 1997).
Bessen (2008) use it as a value determinant to estimate the value of US patents based on
patent renewal data (Dolfsma, 2011; Lin et al., 2006). It is a static indicator, and rarely
changes at the sector and country level (Squicciarini et al., 2013).

2.1.2.4.6 Radicalness index

The radicalness index measures the technological radicalness, by counting the number of
unique IPC technology classes of the backward citations, not including the classes of the
focal patent (Shane, 2001). The higher it is (max=1), the more the invention should be
considered radical, building upon technology fields other than the one it is applied (Grimaldi
& Cricelli, 2019; Mariani et al., 2019; Squicciarini et al., 2013).

2.1.2.4.7 Scope

The scope of patents is defined as the number of technical classes (as indicated by the number
of IPC/ CPC classes) attributed to a patent, and is associated to patent value (Lanjouw et al.,
1998). A criticism of this determinant is that the scope can change, following a court decision,
or adjusted at the filing stage according to an assignee and the patent office.
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Table 2.5 Patent value determinants

Determinanta ,b ,c Dimensiond Definitione Rationalf Authors (examples)g

Backward
Citations
(2.1.2.4.1)

TechV,
EconV

They are prior knowledge on which a focal patent application has relied
on, and are used to assess an invention’s patentability (OECD, 2009)

BCi,T = Â
t=Pi

Â
j2 j(t)

Cit j,i (2.5)

where BCi,T is the no. of backward citations of focal patent i granted in
year Pi. Cit j,i equals 1 if the patent j is cited by focal patent i, and 0
otherwise. J(t) is the set of all patents applications published in year t.

The no. of backward
citations assess the de-
gree of novelty of an
invention (Criscuolo
& Verspagen, 2008;
Lanjouw & Schanker-
man, 2001)

Chandra & Dong (2018); Fischer & Leidinger
(2014); Frietsch et al. (2014); Grimaldi et al.
(2018); Harhoff & Reitzig (2004); Lanjouw &
Schankerman (2004); Lee et al. (2017); Mariani
& Romanelli (2007); Messeni Petruzzelli et al.
(2015); Reitzig (2004); Sapsalis et al. (2006);
Thoma (2014); Trappey et al. (2012)

Claims
(2.1.2.4.2)

TechV,
EconV

They determine the boundaries of the exclusive rights of a patent owner,
given that only the technology covered in the claims can be legally pro-
tected and enforced. Variety: no. of claims, no. of independent/ depen-
dent/ process/ application claims, Text (Abstract, Claims, Tittle, Sum-
mary).

The number and con-
tent of the claims de-
termine the scope and
breadth of the patent
rights (OECD, 2009).

De Clercq et al. (2019); Grimaldi et al. (2015);
Lanjouw & Schankerman (2004); Marco et al.
(2019); Milanez et al. (2017); Porter et al.
(2019); Thoma (2014); Trappey et al. (2012);
Zhang et al. (2017)

Family
(2.1.2.4.3)

EconV,
StrV

A patent family can generaly be defined as a set of patents filed in sev-
eral countries which share at least one common priority filing (Lanjouw
& Schankerman, 2001, 2004; Martínez, 2011). Variety: no. of family
members, Countries of family members, patent family definition

The size of family
(no. of jurisdictions)
is correlated to patent
value (Lanjouw et al.,
1998).

Chandra & Dong (2018); Deng (2007); Fis-
cher & Leidinger (2014); Gambardella et al.
(2007); Gay et al. (2008); Grimaldi et al. (2018);
Harhoff et al. (2003); Reitzig (2004); Sapsalis
et al. (2006); Trappey et al. (2012)

Non-Patent Liter-
ature (NPL)
(2.1.2.4.4)

TechV NPL citations are a list of prior art references to scientific papers that
set the boundaries of patents’ claims for novelty, inventive activity and
industrial applicability, and consists of peer-reviewed scientific papers,
conference proceedings, databases and other relevant literature. Variety:
no. NPL citations, vector embeddings of NPLs

NPLs can be con-
sidered as indicators
of the contribution of
science to industrial
technology.

Bass & Kurgan (2010); Chandra & Dong
(2018); Fischer & Leidinger (2014); Gay et al.
(2008); Harhoff & Reitzig (2004); Harhoff
et al. (2003); Narin & Hamilton (1996); Re-
itzig (2004); Suzuki (2011); Veugelers & Wang
(2019)

Originality Index
(2.1.2.4.5)

TechV It refers to the breadth of the technology fields on which a patent relies,
i.e. inventions relying on diverse knowledge sources lead to patents be-
longing to a wide array of technology fields.
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where X is the focal patent, Yi patents cited (backward citations) by the
focal patent X , T n

j is the total number of IPC n-digit classes in yi, T n
ji is

the total number of IPC n-digit classes in the jth IPC-k-digit class in yi,
k = 1...8 is the hierarchy level of the IPC class, j = 1...Mi is the cardinal
of all IPC-k-digit classes in yi.

It measures knowl-
edge diversification
(Trajtenberg et al.,
1997)

Bessen (2008); Gay et al. (2008); Grimaldi &
Cricelli (2019); Lin et al. (2006); Suh (2015)

Radicalness
Index
(2.1.2.4.6)

TechV,
EconV

It measures the technological radicalness of inventions, by counting the
number of IPC technology classes in which the patents cited by the focal
patent are, but in which the focal patent is not classified (Shane, 2001).

RdP =
np

Â
j

CTj

np
; IPCp j 6= IPCp (2.7)

where CTj denotes the count of IPC-k-digit codes IPCp j of patent j cited
in patent p that is not allocated to patent p, out of n IPC classes in the
backward citations counted at the most disaggregated level available.

The higher the ra-
tio, the more diversi-
fied the array of tech-
nologies on which the
patent relies upon, the
more the invention
should be considered
radical

Grimaldi & Cricelli (2019); Shane (2001);
Squicciarini et al. (2013)

Scope/ Tech-
nological (IPC,
CPC) Classifica-
tion
(2.1.2.4.7)

TechV,
EconV

The scope is associated with patent value, and represents the protection
regime.

SCp = np (2.8)

where np denotes the no. of distinct k digit IPC classifications. Variety:
categorical representation of IPC/ CPC classifications, no. of primary/
addition IPC/ CPC classifications

Higher no. classifica-
tions indicate higher
scope, and thus patent
value

Alcácer & Gittelman (2006); Gambardella et al.
(2007); Harhoff & Reitzig (2004); Lanjouw &
Schankerman (2001); Reitzig (2004); Trappey
et al. (2012); Verhoeven et al. (2016); Zhang
et al. (2017)

aPatent value determinants represent patent characteristic that have been used as explanatory variables and
can be classifed as ex-ante indicators (Lee et al., 2018; Noh & Lee, 2020; van Zeebroeck & van Pottelsberghe
de la Potterie, 2011a).

bThis is not an exclusive list of patent value determinants (Grimaldi & Cricelli, 2019; Grimaldi et al., 2018).
cDeterminants are arranged in alphabetical order, and refer to 2.1.2.4
dDimension is defined as per Table 2.3.
eIt includes the description, formula and variety.
fRational refers to the purpose of the determinant and how it is interpreted.
gSome authors appear more than once because they use more than one determinant in the studies.
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2.1.2.5 Composite indices

While there has been a number articles on patent proxies (Table 2.4), and patent value
determinants (Table 2.5), there have been limited studies on composite indices of patent
value. We identify patent value composite indices during our review of the articles, which
combine one or more variables from Tables 2.4 and 2.5. We classify them as patent value
proxies1, consistent with our definition of patent value proxies. Table 2.6 provides an
overview of the composite indices identified in alphabetical order, with their definition, how
they have been used, and some examples. The majority of articles proposing composite
indices are recent, i.e. published in the last decade, and concentrate on valuing patent
portfolios rather than individual patents.

Table 2.6 Patent value composite indices

Composite Patent Indexa ,b Value Assessmentc Level of Usaged Authors (examples)e

Corporate market value, sales, return on
equity

The index measures the market value, sales, and return on equity by
combining the following determinants: HHI-index, current impact
index, essential patent index

Portfolio Chang (2012); Zhang et al.
(2012)

Essential Technology Strength Index
(ETS)

The index is constructed using the number of patents, the current
impact index, and the essential patent index

Portfolio Chen et al. (2007)

Patent Asset Index (PAI) The index measures the strength of patent as a combination of com-
petitive impact, market coverage, technology relevance, and portfolio
size

Patent Ernst & Omland (2011)

Patent Portfolio Value Index (PPVI) The index is calculated using the technological scope, forward cita-
tion frequency, international scope, patenting strategy, and economic
relevance

Portfolio Grimaldi et al. (2015, 2018)

Patent Quality Index (PQI) Patent quality is analysed using 4 determinants: number of claims,
forward citations, number of backward citations, Family size

Patent Lagrost et al. (2010); Lan-
jouw & Schankerman (2004);
Squicciarini et al. (2013)

Potential Market of Patented Invention
(PMPI)

The index is calculated by combining 5 elements: forward citations,
grant decisions, number of families, renewals, and oppositions

Portfolio van Zeebroeck (2011)

aThe list is not exclusive, and provides the composite indices identified in the articles.
bWe classify them as patent value proxies. A patent value proxy is a measure that can be used to approximate

the value of a patented invention. It represents patent characteristics, which have been used mainly in the
literature as dependent variables and are classified as ex-post indicators (van Zeebroeck & van Pottelsberghe de
la Potterie, 2011a).

cThis includes the composite index’s definition, and its component variables from Tables 2.4 and 2.5.
dWe identify the level of the analysis for these composite indices: portfolio level, or individual patent level
eWhen there is more than one study, the authors construct the composite index similarly.

Lanjouw & Schankerman (2004) propose a multiple proxy model which combines four
patent determinants: number of claims, forward citations to the patent, backward citations
in the patent application, and family size, similar to Squicciarini et al. (2013) who also use
the patent family. Ernst & Omland (2011) develop a benchmarking index, which evaluates

1A patent value proxy is a measure that can be used to approximate the value of a patented invention. It
represents patent characteristics, which have been used mainly in the literature as dependent variables and are
classified as ex-post indicators (van Zeebroeck & van Pottelsberghe de la Potterie, 2011a).
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a patent portfolio of a company in comparison with its competitors, and is based on the
technological scope, market coverage, competitive impact, technology relevance and portfolio
size. This is similar to Grimaldi et al. (2018), who propose a portfolio value index based on
technological scope, forward citation frequency, international scope, patenting strategy and
economic relevance (van Zeebroeck, 2011).

2.1.2.6 Methodological approaches deployed for patent valuation

We focus the methodological approaches currently deployed for patent valuation, identified
in the review. Table 2.7 provides an overview of approaches, with examples. We review
previous studies for the specific approaches and models used (2.1.2.6.1), the evaluation
metrics (2.1.2.6.2), and the sample size (2.1.2.6.3).

2.1.2.6.1 Methodological approaches

The majority of articles (52%) use traditional regression methods for patent valuation
using proxies and determinants, which use simply computed data, such as numeric and
binary categoric types of data. These articles chose a dependent variable based on patent
characteristics, i.e. forward citations, followed by the applicant’s characteristics, i.e. firm
market value. The most common approach used is the ordinary least square (OLS) regression1,
followed by Tobin Q regression2. Several scholars also make use of probit regression3, where
the dependent variable is binary categoric. Classifying observations based on their predicted
probabilities is a type of linear binary classification model, which treats similar problems
like the logistic regression.

The remaining articles fall within the approaches of artificial intelligence (AI) and other.
About 34% of the articles are classified as other, using descriptive and conceptual methodolo-
gies to discuss the literature around the value of patents and technologies. From these, the
majority are descriptive literature papers, which discuss one or more dimensions (Grimaldi
et al., 2018), proxies (Aristodemou & Tietze, 2018b; Grimaldi & Cricelli, 2019), determi-
nants (Lagrost et al., 2010) or composite indicators, followed by conceptual frameworks
about the strategic nature of patent value (Ernst, 2003).

1Ordinary least square (OLS) regression is a type of linear least squares method for estimating the unknown
parameters in a linear regression model. OLS chooses the parameters of a linear function of a set of explanatory
variables by the principle of least squares, which minimises the sum of the squares of the differences between
the observed dependent variable in the given dataset and those predicted by the linear function (James et al.,
2013; Murphy, 2012).

2Tobin’s Q, also known as Q ratio, is the ratio between a physical asset’s market value and its replacement
value (Tobin & Brainard, 1977).

3Probit regression estimates the probability that an observation with particular characteristics falls within a
specific category (Agresti, 2015).
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2.1.2.6.2 Evaluation metrics

The articles use a variety of evaluation metrics, to evaluate the suitability of the proposed
models to measure patent value. The regression approaches focus on the use of R2 and its
variations. Particularly, the OLS regression and probit regression approaches seem to focus
on the use of R2 together with the Log�L measure. The remaining of the regression studies
use measures such as c2 and its variations. This is in contrast to AI approaches, which
entirely focus on the error evaluation metric, which shows the difference between predicted
and actual output.

2.1.2.6.3 Sample size

The sample size varies according to the different approaches deployed. The majority of
the regression studies have less than 10000 datapoints, using mainly numeric, and binary
categoric variables. Only 1 study has a sample size greater than 1000000, found in the
AI approaches. There are a few studies that have used datapoints in the range of 100000-
1000000, which are mostly comprised by numeric types of data in linear models, with a
range of R2 values between 0.3-0.7. In addition, the majority of the dependent variables in
the regression methodologies are concentrated around patent characteristics, followed by
applicant characteristics.

2.2 Intellectual Property Intelligence (IPI)

2.2.1 Background

Increased data availability presents an opportunity for better decision making, policy and
strategy development, to introduce the next generation of innovative technologies (Günther
et al., 2017). We define Intellectual Property Intelligence (IPI) as the data science of
analysing large amount of intellectual property information, specifically patent data, with
artificial intelligence (AI) methodologies, such as machine learning and deep learning, to
discover relationships, trends and patterns in the data for decision making1. Data as such
presents value for enabling a competitive data-driven economy (OECD, 2017, 2019a,b). This
definition and the associated AI-based approaches form the basis of the emerging field of IPI
research.

It is important to understand the process of analysing patent data. Trippe (2015) has
produced a WIPO guide, which explains a large number of concepts on patent analysis2.

1This definition is an advancement to the one proposed by Aristodemou & Tietze (2018b) for Intellectual
Property Analytics (IPA), to focus on artificial intelligence (AI) methodologies.

2Oldham & Fried (2016), URL: https://wipo-analytics.github.io/

https://wipo-analytics.github.io/
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With the recent advancements of AI, there has been a positive amount of activity around the
different methodologies involved that could be applied to patent data (Aristodemou & Tietze,
2017b; Lupu, 2018; Trappey et al., 2020a; WIPO, 2019b). Moehrle et al. (2010) argue that
the analysis of patent data in a business context consists of three stages: the pre-processing
stage, the processing stage and the post processing stage. This is similar to Abbas et al.
(2014), who present a generic patent analysis workflow, with specific purpose analysis types.
Raturi et al. (2010) argues that this process is a complementary process to the innovation
cycle. Similarly, Baglieri & Cesaroni (2013) argue that patent analysis is a form of patent
intelligence to support decision making (Bonino et al., 2010).

With the rise of AI and increased computational resources, there has been an increase in
the usage of methodological approaches such as machine learning (ML) and deep learning
(DL), previously not been deployed, to analyse patent data (Aristodemou & Tietze, 2018b).
Given the rise of interest for AI in the analysis of patent data (OECD, 2019a; WIPO, 2019b),
we review the methodological approaches deployed for the analysis of patent data. More
specifically, we synthesize a taxonomy for these (2.2.2.1), focusing on artificial neural
network (ANN) methodologies and the architectures deployed (2.2.2.2). We then explore the
areas of application of IPI, concentrating on the AI methodologies deployed for patent value
(2.2.2.3).

2.2.1.1 Review Methodology

We review the IPI literature, with the aim to synthesize a taxonomy of AI methodologies
analysing patent data, and identify the relevant ones deployed for patent value. To carry
out the review1, the narrative and scoping literature review approaches have been adopted
(Cronin et al., 2008; Paré et al., 2015), and a search strategy2 has been developed (Robson,
2011). Fig.2.3 shows the process flow for the review. The articles on IPI are identified
from the Scopus database (Falagas et al., 2008). Focusing on recent literature, the search
is constrained to articles published after 2000, to the fields of business, computer science,
engineering, social science and mathematics. The core review identifies 57 articles. For these,
we review in detail the architectures and approaches deployed for the analysis of patent data
with AI methodologies, with a focus on the ones deployed for patent value.

1The review draws predominantly on on-line resources (articles), and is supported by the narrative perspec-
tive using book references. This inherently introduces a gap in the literature review. We aim to reduce that gap
using book and report references to complement our arguments and explanations.

2We search within the title, abstract and key words for various terms such as ’patent’, ’patent data’, ’patent
analysis’ and ’intellectual property data’. The search is then narrowed to documents that also contain either in
the title or the abstract or in the key words, the terms ’machine learning’, ’machine learning models’, ’neural
networks’, ’deep learning’ and ’artificial intelligence’. The search is effective on 08.01.2018.
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Fig. 2.3 Process flow of the review on Intellectual Property Intelligence

2.2.1.2 Bibliographic analysis results

The first level of the analysis focuses on the bibliographic information of the 57 articles
(n1). The number of articles have increased since 2009, reaching a peak of 12, indicating an
increasing interest in the field, together with an increase in the citations to 153. Fig.2.4 shows
the number of papers per year since the year 2000 (Fig.2.4a), and the cumulative citation
overview per article per year (Fig.2.4b).

Table 2.8 shows the top 10 affiliations, countries, journals and citations of the 57 articles.
Asia is the leading continent, which is also supported by the fact that it accounts for 47% of
the world’s patent application filings (WIPO, 2019b). While a late comer in the patent field,
it is forerunner in the applications of AI for patent data (OECD, 2019a). This is supported
by Table 2.8b, with the top 3 countries are Taiwan, South Korea and China respectively.
European countries also show strong influence in this domain, with 19% of the share total.
Moreover, the top two journals, which account for 30% of the articles (15% each) are
Technological Forecasting and Social Change and Scientrometrics. The top 10 journals
account for 33 articles, indicating that articles in this field are fragmented in 34 journals.

The most cited article is Klinger et al. (2008) with 70 citations, followed by Trappey
et al. (2006) with 68 citations, and Trappey et al. (2012) with 61 citations. However, the
article with the highest citation frequency1 is Krallinger et al. (2015) with 11.00, followed by
Trappey et al. (2012) with 10.17, and Klinger et al. (2008) with 7.00. 8 out of the 10 articles
are published since 2010, which indicates an increase in the application of AI methodologies
with the analysis of patent data. Together with Table 2.8a, where all the top 10 affiliations
are in Asia, this indicates the importance and progression Asia has made in this field.

1Citation frequency is defined as the total number of citations over the age of the article.
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(a) (b)

Fig. 2.4 Plots of: 2.4a number of articles published per year (n1=57) since 2000; 2.4b
cumulatitve citation overview per article per year, for articles with > 2 citations

Table 2.8 Top 10 affiliatons (2.8a), countries (2.8b), journals (2.8c), and cited articles (2.8d),
for articles analysing patent data with Artificial Intelligence Methodologies (n1=57 articles)

(a) Affiliations (n2=128 observations)

Affiliationa No. of obs. Share %
National Tsingua University, CN 7 5%
National Chiao Tung University, TW 6 5%
Korea University, KR 5 4%
Cheongju University, KR 5 4%
National Yunlin University, TW 5 4%
University of Nis, RS 4 3%
Korea Institute of S & T., KR 3 2%
Gainia Intellectual Asset Services, TW 2 2%
Chung Hua University, TW 2 2%
Beijing Institute of Technology, CN 2 2%

Total 41 33%

aArticles with one or more affiliations are multi-
counted.

(b) Countries (n2=71 observations)

Countrya No. of obs. Share %
Taiwan 18 25%
South Korea 12 17%
China 8 11%
United States 6 8%
Germany 4 6%
Serbia 4 6%
Spain 3 4%
Belgium 2 3%
Japan 2 3%
Hong Kong 1 1%

Total 60 84%

aArticles with one or more countries are
multi-counted.

(c) Journals

Journala No. Share %
Technological Forecasting And Social Change 8 14%
Scientometrics 8 14%
Expert Systems With Applications 4 7%
World Patent Information 3 5%
Sustainability Switzerland 3 5%
Database The Journal Of Biological Databases 2 4%
International Journal Of Applied Engineering Research 2 4%
Physica A Statistical Mechanics And Its Applications 2 4%
Advanced Engineering Informatics 1 2%
Applied Soft Computing Journal 1 2%

Total 33 61%

aThe 57 articles are published in 34 journals.

(d) Cited Articles

Articlea Citations Cit. Freq.
Klinger et al. (2008) 70 7.00
Trappey et al. (2006) 68 5.67
Trappey et al. (2012) 61 10.17
Thorleuchter et al. (2010) 39 4.88
Jun et al. (2014) 34 8.50
Krallinger et al. (2015) 33 11.00
Jun (2013) 27 5.40
Chen & Chang (2010b) 25 3.13
Jun & Lee (2012) 23 3.83
Zhang (2014) 22 5.50

aCitations frequency: total number of
citations over the age of the article.
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2.2.2 Intellectual property intelligence methods

Several analytical methodologies have been used with patent data (Abbas et al., 2014; Trippe,
2015). Specifically, Aristodemou & Tietze (2018b) focus on the artificial intelligence (AI)
methodologies deployed with the analysis of intellectual property (IP) data. We review the
literature, to identify and understand the AI methodologies analysing patent data, also defined
as intellectual property intelligence (IPI). Firstly, we construct an advanced taxonomy of AI
methodologies used with patent data, to identify the learning paradigms, types of application,
methodologies and algorithms delpoyed (2.2.2.1)1,2.

From the taxonomy, we identify the limited application of deep learning (DL)3. We then
review the articles on artificial neural networks (ANN) (2.2.2.2), and focus on the ones,
which deploy the multi-layer perceptron (MLP) network architecture4. We aim to identify the
current state of the art in the deep learning methodologies deployed for the analysis of patent
data. Finally, we focus on the areas of application of IPI, and specifically on the articles that
focus on patent value (2.2.2.3), to comprehend the methodologies and models developed by
previous scholars.

2.2.2.1 Taxonomy of artificial intelligence methodologies for patent data analysis

Table 2.9 presents the taxonomy of the artificial intelligence (AI) methodologies5 deployed to
analyse patent data (Barredo Arrieta et al., 2020). We identify 10 collective AI methodological

1Learning paradigms represent the way and purpose of learning. In artificial intelligence (AI), there are 3
learning paradigms: supervised, unsupervised, and reinforcement. The majority of AI methodologies deployed
today are hybrid, i.e. involve a combination of the above. Supervised learning is when a learning task infers a
function from the analysis of the training data, given a set of mapped input-output pairs, and can determine the
mapping of new examples (Bishop, 2006; Goodfellow et al., 2016). Unsupervised learning is often used to
cluster, associate or summarise data to reveal information or underlying relatioships (Goodfellow et al., 2016).
Reinforcement learning is when a learning task carries a punishment and reward with every inference from an
input (Murphy, 2012).

2The learning paradigms have application types associated with them. Supervised learning can be applied in
a regression or classification problem task. Unsupervised learning can be applied in a classification, clustering
or dimensionality reduction problem task. Reinforcement learning can be adapted to the specific problem task.

3Deep Learning (DL) has many different learning paradigms, types of application, methodologies and
algorithms. For the purpose of this research, we use Deep Learning (DL) as artificial neural networks (ANN),
in supervised learning paradigms, defined by the depth of the credit assignment paths, which are chains of
possibly learnable, causal links between inputs and outputs, i.e. finding weights that make the neural network
exhibit desired behaviour (Schmidhuber, 2015). These are also known as deep (and wide) neural networks
(Cheng et al., 2017; Goodfellow et al., 2016; Shaked et al., 2016).

4Multi-layer perceptron (MLP) network architectures primarily form the basis of deep learning models
(Schmidhuber, 2015), and is the most widely researched and implemented methodology in other fields (Basheer
& Hajmeer, 2000; Bishop, 2006).

5For the purpose of simplicity, we refer the readers to the literature by Bishop (2006); Goodfellow et al.
(2016); Murphy (2012); Schmidhuber (2015), for an introduction and in-depth understanding of the artificial
intelligence methodologies and respective algorithms.
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approaches, which are split further into 32 algorithms.

Table 2.9 Artificial intelligence methodologies deployed to analyse patent data

Paradigma ,b Typec Methodologyd ,e Algorithm Authors (examples)f

Supervised
learning

Classification/
Regression

Artificial Neural
Networks (ANN)

Backpropagation (BP) Chen & Chang (2009, 2010a,b,c); Chiang et al. (2011); Jokanović et al.
(2017); Kim & Lee (2017); Kyebambe et al. (2017); Lai & Che (2009a);
Lee et al. (2018); Riedl et al. (2016); Trappey et al. (2012, 2006, 2013);
Venugopalan & Rai (2015); Zhang et al. (2012)

Evolutionary Algorithm de la Paz-Marín et al. (2012)
Extension Theory Learning Lai & Che (2009b)
Extreme Learning Machine (ELM) Jokanović et al. (2017); Marković et al. (2017)
Fuzzy Interference Marković (2017)
Growing Cell Structure Sung et al. (2017)

Decision tree CART Choi et al. (2015); Zhu et al. (2015)
C4.5 Bass & Kurgan (2010)

Deep Belief Net-
works (DBN)

Backpropagation (BP) Lee et al. (2017)

Ensemble Bootstrapping Klinger et al. (2008)
Random Forest Bass & Kurgan (2010)
Stacking Leaman et al. (2016)

Regression Linear Regression Jun (2013); Jun & Lee (2012); Jun et al. (2014); Lai & Che (2009b)
Logistic Regression Bass & Kurgan (2010); Han et al. (2017); Hido et al. (2012)

Statistical and prob-
abilistic modelling

Conditional random fields (CRF) Akhondi et al. (2016); Klinger et al. (2008); Krallinger et al. (2015); Zhang
et al. (2016b)

Hidden Markov Model (HMM) Lee et al. (2016)
Latent Dirichlet Allocation (LDA) Govindarajan et al. (2018); Suominen et al. (2017)
Naive Bayes Bass & Kurgan (2010); Zhu et al. (2015)

Support Vector Net-
works (SVN)

Support Vector Clustering (SVC) Jun et al. (2014)

Support Vector Machine (SVM) Krallinger et al. (2015); Kyebambe et al. (2017); Li et al. (2009); Lu et al.
(2009); Vrochidis et al. (2012); Wu et al. (2016); Zhang et al. (2009); Zhang
(2014); Zhang et al. (2016b)

Unsupervised
learning

Clustering Clustering Girvan-Newman (GN) Sung et al. (2017)

K-means Algorithm (and derivations) Jun (2013); Jun et al. (2014); Trappey et al. (2017b)
Self Organising Maps (SOM) Chen & Chang (2009, 2010a,b); Wu et al. (2016)

Dimensionality
reduction

Pre-processing data Linear Discriminant Analysis (LDA) Callaert et al. (2012); Venugopalan & Rai (2015)

Multi-Dimensional Scaling (MDS) Lamirel et al. (2003)
Principal Component Analysis (PCA) Jun et al. (2014); Lai & Che (2009b); Trappey et al. (2012)
Quadratic Discriminant Analysis (QDA) Venugopalan & Rai (2015)
Singular Value Decomposition (SVD) Jun et al. (2014)

Text mining Dictionary-based Akhondi et al. (2016); Krallinger et al. (2015)
Natural Language Processing (NLP) Han et al. (2017); Krallinger et al. (2015)
Rule-based Bass & Kurgan (2010); Krallinger et al. (2015)
Semantic-based Trappey et al. (2013); Wu et al. (2012b); Zhang et al. (2016b)

Reinforcement
Learning

Reward/
penalty

Reinforcement
Learning

SARSA Tenorio-González & Morales (2018)

aWe base the synthesis of the taxonomy on the WIPO report on AI Technology Trends (WIPO, 2019b), and
the theory underpinning artificial intelligence (AI), machine learning (ML) and deep learning (DL) (Goodfellow
et al., 2016; Murphy, 2012). We identify the learning paradigm and type of application of the AI methodologies
deployed, and the specific algorithms, giving some examples from the literature. WIPO (2019b), URL:
https://www.wipo.int/tech_trends/en/artificial_intelligence/.

bThe table is structured according to the learning paradigms, and then arranged in alphabetical order
according to the methodology deployed, and algorithm.

cWithin the learning paradigm, the type indicates the type of model build for the application.
dIt’s important to note that this is not an absolute taxonomy since several algorithms can have more than

one learning paradigm or types of application. The list is not exhaustive.
eWe refer the readers to the literature by Bishop (2006); Goodfellow et al. (2016); Murphy (2012);

Schmidhuber (2015), for an introduction and in-depth understanding of the artificial intelligence methodologies
and respective algorithms.

fSeveral studies can be classified in more than one methodology.

https://www.wipo.int/tech_trends/en/artificial_intelligence/
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The majority of articles are clustered around supervised and unsupervised paradigms
of learning, with only one article using reinforcement learning. This is reflective of the
artificial intelligence field development, with reinforcement learning becoming recently
popular (WIPO, 2019b).

Supervised learning has the highest share of articles, similar to the trend from other fields
(Ozturk et al., 2020; Tietze et al., 2020b). With artificial neural networks (ANN) being the
most popular methodology deployed, the backpropagation algorithm (BP) is the most used
algorithm, and remains until today the central algorithm for the development of networks.
This is because ANNs are versatile, robust, scalable and can handle high dimensionality tasks
(Bengio et al., 2007; Bishop, 2006). In addition, the type of application models concentrate
on classification and regression for supervised learning. For unsupervised learning, there
is a large number of articles around dimensionality reduction1. This is expected since
these methodologies have the ability to summarise data with a large number of dimensions
(Goodfellow et al., 2016), which is an essential step for the analysis involving patent data
(Moehrle et al., 2010)2.

2.2.2.2 Artificial Neural Networks

Artificial neural networks (ANNs) are computational methodologies that can solve many
complex real-world problems (Basheer & Hajmeer, 2000). They have been proposed in
the 1940s, but recently have gained remarkable attention for patent data due to the capacity
of the information they can process, as the computer science has evolved (Hagan et al.,
1995). ANNs are modelled after biological neurons, with complex functions (Gupta, 2000;
Murphy, 2012). They tend to outperform traditional methods (such as regressions) when
the dimensionality and non-linearity of the problem increases, since they have a high noise
tolerance, earning and generalisation capabilities (Basheer & Hajmeer, 2000; Hill et al.,
1993; Lee et al., 1989; Sargent, 2001).

Several ANN methodologies have been developed over the years, with many algorithms,
network architectures, parameter and network optimisation techniques (Hudson & Postma,
1982; Maren, 1991; Murphy, 2012; Schmidhuber, 2015). The most widely researched
and implemented methodology in other fields is the multi-layer perceptron (MLP)3,4,5,

1Golstein (2018), URL: https://www.sharper.ai/taxonomy-ai/.
2Brownlee (2019a), URL: https://machinelearningmastery.com/types-of-learning-in-machine-learning/.
3The artificial neural network (ANN) approach consists of fixing a number of basis functions, which are

adaptive, i.e. parametric forms of these basis functions are used so their parameters are adapted (Bishop, 2006).
4Van Veen (2016), URL: https://www.asimovinstitute.org/neural-network-zoo/
5The multi-layer perceptron (MLP) is a feed-forward artificial neural network (ANN). The MLP is a series

of logistic regressions stacked on top of each other (continuous non-linearities), with the final layer being
either another logistic regression, a linear or non-linear regression model, depending on the problem under

https://www.sharper.ai/taxonomy-ai/
https://machinelearningmastery.com/types-of-learning-in-machine-learning/
https://www.asimovinstitute.org/neural-network-zoo/
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which forms the basis of deep learning (Basheer & Hajmeer, 2000; Bishop, 2006), with the
backpropagation (BP) algorithm still remaining the central learning algorithm (Schmidhuber,
2015). We review the articles that deploy the ANN MLP network architectures to identify
the different methodological characteristics for the analysis of patent data, focusing on the
output variables and sample size the scholars use (2.2.2.2.1), the parameter and network
optimisation of the models (2.2.2.2.2), and the evaluation measures used to evaluate the
models (2.2.2.2.3).

Table 2.10 shows the articles, that deploy the ANN MLP network architecture with the
BP algorithm on patent data. There are 13 articles in total, which shows how limited the
field still is. The majority of articles (85%) have been published after 2010, indicating the
interest in these ANNs for patent analysis is growing. Reviewing the articles’ aim, 38% of
them belong to the topic of economic valuation (i.e. corporate market value, GDP), 31%
on forecasting (i.e. emerging technologies, multi-technology convergence), and 31% on
document classification (Aristodemou & Tietze, 2018b). There is limited association of these
directly to patent value or forecasting of patent value. Moreover, 54% of the articles are
classification applications, with the remaining being regression applications.

2.2.2.2.1 Output variables and sample size

We observe that 31% of the articles use the IPC classification of a patent as the output
variable (Table 2.10)1. In addition, 38% of the articles have some association to value, with
output variables such as firm market value, GDP or forward citations (Kim & Lee, 2017;
Lee et al., 2018). Moreover, 54% of the articles use a patent characteristic as a proxy output
variable, such forward citations or IPC classification, with only one article using a composite
index in the form of trading quality (Trappey et al., 2012). All the articles in Table 2.10 have
a small sample size, with only one above 10,000 datapoints, one above 1,000, and the rest
below.

2.2.2.2.2 Parameter and network optimisation

We observe that almost all the applications of ANNs are shallow neural networks since all
the models, except one (Kim & Lee, 2017), have one hidden layer (Mhaskar et al., 2017;
Mhaskar & Poggio, 2016)2. This suggests that there is limited application of deep learning
(Schmidhuber, 2015). In addition, the majority of these models require a high number of

investigation (Murphy, 2012; Pal & Mitra, 1992).
1An output variable is a variable being predicted in supervised learning. In statistics, this is also known as

the dependent variable, or target variable.
2A shallow neural network is a term used to describe neural networks with one hidden layer. We adopt the

terminology by Murphy (2012), where a 2 layer ANN is a network with 2 layers of adaptive weights, i.e. 1
hidden layer (Mhaskar & Poggio, 2016).
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epochs to be trained, with relatively high learning rates. This suggests that either ANN MLP
models based on patent data require more time to converge, or the architecture network
parameters are partly suitable to represent the problem the articles are tackling.

2.2.2.2.3 Evaluation metrics

The suitability of evaluation metrics is driven by the application type. The majority of articles
focus on classification types of applications (54%), with the remaining to be regression types1.
Some patent scholars report low mean absolute error (MAE), which is partly driven by the
model complexity, i.e. the low number of input layer nodes and hidden layer nodes (Chen
& Chang, 2009, 2010a,b), where others report a relatively large MAPE (Kim & Lee, 2017).
These variations in the metrics are also driven by the scale of input data together with the
model complexity. Scholars that focus on classification problems, report relatively high
accuracy values when predicting the likely IPC classification of a patent (Trappey et al.,
2012, 2006). This is partly because of two reasons: firstly, the model complexity is fairly
small, with a small sample size, and secondly, some scholars restrict their sample size to a
specific area, and thus that model is not able to universally generalise. However, there are
some studies that report relatively low values of accuracy when forecasting forward citations
over a time horizon, partly driven by the low recall values (Lee et al., 2018).

2.2.2.3 Intellectual property intelligence applications

Intellectual property intelligence, and artificial intelligence (AI) methodologies have been
applied in a variety of areas within innovation management (Aristodemou & Tietze, 2018b).
We expand the list of articles identified in 2.2.1.1 and Table 2.9 using the narrative approach
(Cronin et al., 2008) to include recently published articles and working articles2, between
2018-2020. We review the articles, and based on the aim of the articles we synthesize
them into 3 areas of application. The areas are: knowledge and technology management,
information retrieval and management, and economic development and valuation3,4. We

1Evaluation metrics such as mean absolute error (MAE), mean absolute percentage error (MAPE), and
root mean square error (RMSE) are suitable for regression problems, where as accuracy, precision, recall, and
F1-score are suitable for classification problems.

2In the computer science field, working paper articles are a way to publish research fast, while waiting for
journal reviews. This shows the research area progression and are available almost immediately in archive.

3It is important to note that these areas of application are not mutually exclusive, and one article might
belong to one or more areas of application. For simplicity, the most prominent theme within the article is
identified for the article classification.

4In this research, we focus on the valuation of patents with artificial intelligence (AI) methodologies. We
refer the readers to the article by Aristodemou & Tietze (2018b) for a description and in-depth discussion of the
articles and the AI methodologies deployed in the areas of application presented in Table 2.11.
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provide an overview of these in 2.2.2.3.1, and focus on the valuation of patents with AI
methods in 2.2.2.3.2.

2.2.2.3.1 Areas of application of artificial intelligence approaches with patent data

Table 2.11 shows the areas of application of AI methodologies with patent data. The majority
of articles are knowledge and technology management, followed by information retrieval,
and economic development and valuation. The number of articles after 2010 is higher than
before 2010, and between 2018-2020 there is an increase1. For the areas of knowledge and
technology management and information retrieval, the number of articles published after
2010 is higher because the focus was on traditional methods (Lupu et al., 2011), where as for
economic development the spread is equal. The shift between 2010 and after 2010 can be
partly explained by the increase in computational resources and the rise of AI and Big Data
(Aristodemou & Tietze, 2017b).

Table 2.11 Application areas of artificial intelligence (AI) methodologies with patent data

Areaa Authors (examples) No. < 2010b ,c No. 2011-2018 No. 2018-2020
Economic Development
and Valuation

Bass & Kurgan (2010); Chen & Chang (2009, 2010a,b,c,d); Choi et al. (2020); Jokanović et al. (2017);
Karanikić et al. (2017); Lai & Che (2009a,b); Lee et al. (2016, 2018, 2017); Mariani et al. (2019); Marković
(2017); Noh & Lee (2020); Trappey et al. (2019); Woo et al. (2019); Zhang et al. (2012)

8 6 6

Information Retrieval and
Management of Informa-
tion

Abdelgawad et al. (2020); Abood & Feltenberger (2018); Akhondi et al. (2016); Callaert et al. (2012); Choi et al.
(2019); Govindarajan et al. (2019b); Hu et al. (2018b); Klinger et al. (2008); Krallinger et al. (2015); Leaman
et al. (2016); Li et al. (2009); Lu et al. (2020); Riedl et al. (2016); Trappey et al. (2017a, 2020b); Venugopalan &
Rai (2015); Vrochidis et al. (2012); Wu et al. (2012a); Zhang et al. (2018); Zhang (2014); Zhang et al. (2016b);
Zhu et al. (2015)

2 12 10

Knowledge Management
and Technology Manage-
ment

Chiang et al. (2011); Choi et al. (2015); de la Paz-Marín et al. (2012); Govindarajan et al. (2018, 2019a); Han
et al. (2017); Helmers et al. (2019); Hido et al. (2012); Jun (2013); Jun & Lee (2012); Jun et al. (2014); Kim &
Lee (2017); Kyebambe et al. (2017); Lamirel et al. (2003); Lee et al. (2016, 2017); Lu et al. (2009); Momeni
& Rost (2016); Seo et al. (2019); Sung et al. (2017); Tenorio-González & Morales (2018); Thorleuchter et al.
(2010); Trappey et al. (2012, 2006, 2017b, 2013); Uhm et al. (2020); Wu et al. (2016); Wu (2019); Zhai et al.
(2019); Zhang et al. (2009)

5 18 8

Total 15 36 24

aThe table includes articles that are similar but published in different journals from one or more of the
same authors. The list of articles include the ones identified in Table 2.9, and additional working paper articles
between 2018-2020 (see 2.2.2.3). The table is arranged in alphabetical order according to the area column.

bWe look at the distribution of articles before 2010 (including 2010), between 2011-2018 (excluding 2018),
and between 2018-2020.

cThe year 2010 is indicative of when popularity around artificial intelligence (AI) methodologies has
increased due to advancements in computer science (Murphy, 2012; Schmidhuber, 2015).

2.2.2.3.2 Patent value with artificial intelligence methodologies

Focusing on articles in the area of economic development and valuation, and in particular
patent valuation, we concentrate on the most relevant articles2. While there are 20 articles

1This can also be attributed to the inclusion of working paper articles.
2With the focus on the analysis of patent data (see 1.1.2 and 2.1.2), we can also define intelligent patent

value (IPV) as the value of a patent arising or being represented by patent data determinants and proxies, i.e.
arising from its technological significance (value of the invention) with the potential to develop a market (patent
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in total in the area of economic development and valuation (Table 2.11), only 8 are directly
relevant of deploying AI methodologies for the value of patents, with 3 of these published
before 2018, and 5 published from 2018 onwards1. Table 2.122 shows the 8 relevant papers
for deploying AI methods to value patents. The 8 articles are reviewed according to the
approach they follow (2.2.2.3.2.1), the sample size and the data type (2.2.2.3.2.2), the
parameter optimisation (2.2.2.3.2.3) and the evaluation metrics used (2.2.2.3.2.4).

Choi et al. (2020) propose an approach to evaluate the business potential of patents.
They apply an ANN with BP to predict the likelihood that a patent will be renewed until its
maximum expiration date. Trappey et al. (2019) deploy an ANN with the BP to classify the
value of patents, defined as being a standard essential patent (SEP), within the IoT industry.
Noh & Lee (2020) focus on forecasting forward citations, as a proxy for technological
impact, using an ANN in the telecommunications area. Similarly, Lee et al. (2018) propose
an ANN approach to identify emerging technologies using forward citations. Woo et al.
(2019) propose a k-nearest neighbour (k-NN) clustering algorithm to screen early stage ideas.
Trappey et al. (2012) develop a screening ANN model to improve patent quality, with a high
quality patent defined as having been sold or licensed.

2.2.2.3.2.1 Methodological approach

Almost all the 8 articles follow the supervised learning paradigm, using ANN with the BP
algorithm apart from Woo et al. (2019), which use the k-NN algorithm. Also, 63% of the
articles are classification applications and the rest are regressions. The majority of articles
(63%) use patent characteristics as output variables, with only Trappey et al. (2019), Trappey
et al. (2012), and Chen & Chang (2010c) focusing on SEP, trading quality, and firm market
value respectively (Chen & Chang, 2009). The most used output variable is forward citations
with 3 studies (Lee et al., 2018; Noh & Lee, 2020; Woo et al., 2019), with only 1 recent study
using renewals (Choi et al., 2020), and generality (Woo et al., 2019).

2.2.2.3.2.2 Sample size and data type

The majority of the studies have small datasets, constrained to a specific technological area.
The study by Choi et al. (2020) has a larger dataset of 200000 datapoints, followed by 3
studies higher than 10000 datapoints (Lee et al., 2018; Noh & Lee, 2020; Woo et al., 2019).
Moreover, all models use fairly simplistic numeric and binary categoric features, with only

premium) on dimensions such as economic, technological, social and strategic (see 2.1.2.2), and which is
measured or analysed by artificial intelligence (AI) and data science methodologies (Aristodemou & Tietze,
2018b).

1Of these 5 articles, 3 have been published since November 2019 (Choi et al., 2020; Noh & Lee, 2020;
Trappey et al., 2019).

2Table 2.12 is a subset of Table 2.11 and is synthesized from Tables 2.7 and 2.10.
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Woo et al. (2019) making use of an abstract-keyword categoric matrix to utilise some text.
All the other studies use limited features in the range of 5-24.

Table 2.12 Articles deploying artificial intelligence (AI) methods for valuation purposes

Authora ,b ,c Choi et al. (2020) Noh & Lee (2020) Trappey et al. (2019) Lee et al. (2018) Woo et al. (2019) Trappey et al. (2012) Chen & Chang (2009, 2010c)
Approach Paradigmd Supervised Supervised Supervised Supervised Unsupervised Supervised Supervised

Typee Classification Regression Classification Classification Classification Classification Regression
Methodologyf ANN ANN ANN ANN Clustering ANN ANN
Algorithmg BP BP BP BP k-NN BP BP
Output variableh Renewals Forward citations Standard essential

patent (SEP)
Forward citations Forward citations,

generality, originality
Trading quality Firm market value

Sample Sizei Train 150000 42736 4312 28286 28286 260 272
Test 50000 10684 2154 7071 7071 101 70
Years 2000-2005 1976-1991 - 2000-2009 2000-2009 - 1997-2006
Area General Telecomms IoT Drugs Drugs Semiconductors Pharmaceutical

Data Type Numeric x x x x x x x
Categoric x - x - - - -
Text - - - - Keywords - -
Features 24 9 11 18 611 - 5

Parameter
optimisation

j Hidden Neurons 512 200 10 4 - - 3
Layers 4 4 3 2 - - 2
Epochs 10000 Early stopping 6000 1000 - 10000 100000

Evaluation
metrics

k ,l Classes 2 - 2 4 4 2 -
MAE - 0.98 - - - 0.29 0.027
RMSE - - - - - - 0.051
Accuracy # 0.71 - 0.73 0.91, 0.84, 0.71 # 0.61 0.85 -
Precision 0.65 - - 0.77, 0.51, 0.45 # 0.53, 0.55, 0.40 - -
Recall 0.92 - - 0.37, 0.34, 0.37 # 0.29, 0.32, 0.30 - -
F1-score # 0.76 - - # 0.50, 0.41, 0.41 # 0.37, 0.40, 0.34 - -
F2-scorem 0.85 - - - - - -

aThe table is arranged in descending order, i.e. the most recent article is found on the left.
bThe table is a subset of Table 2.11, and is synthesized from Tables 2.7 and 2.10.
cEmpty cells correspond to non-existing values in the literature. The list of articles is not exhaustive.
dLearning paradigms represent the way and purpose of learning. There are 3 learning paradigms for AI:

supervised, unsupervised, and reinforcement (Goodfellow et al., 2016; Murphy, 2012).
eWithin the learning paradigm, the type indicates the type of model build for the application.
fMethodology refers to AI approaches deployed, with artificial neural networks (ANN) being the most

popular approach.
gThis is the algorithm used to evaluate the error-function derivative, with the backpropagation (BP)

remaining the central learning algorithm (Schmidhuber, 2015).
hAn output variable is a variable being predicted in supervised learning. In statistics, this is also known as

the dependent variable, or target variable.
iSample size refers to the split and number of datapoints between the training set and the testing set for the

algorithms (see 4.5.1). We also include the technological area the dataset is limited and the year constrain.
jParameter optimisation refers to the hyperparameters for neural networks. This is explained in Chapter 4

and for simplicity we report the most common hyperparameters.
kEvaluation metrics evaluate the model’s generalising ability. Regression evaluation metrics include mean

absolute error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE). Classification
evaluation metrics include accuracy, precision, recall, and F1-score (see 4.3). For simplicity, not all evaluation
metrics are reported.

lWe have calculated all evaluation metrics in the table cells with the symbol #. These were calculated using
information from the articles for comparative purposes.

mThe Fbeta-score is a generalization of the F-score that adds a configuration parameter called beta. A
default beta value is 1.0, which is the same as the F1-score. A beta value of 2, i.e. F2-score, gives more weight
to recall and less weight to precision. Brownlee (2020a), URL: https://machinelearningmastery.com/fbeta-
measure-for-machine-learning/

https://machinelearningmastery.com/fbeta-measure-for-machine-learning/
https://machinelearningmastery.com/fbeta-measure-for-machine-learning/
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2.2.2.3.2.3 Parameter optimisation

From Table 2.12, while all the studies deploy the ANN methodology, all the studies have low
capacity1 models. About 75% are shallow neural networks2, with only two recent studies
delpoying a slightly deeper neural network, with 4 layers (Choi et al., 2020; Noh & Lee,
2020). In addition, 75% are narrow neural networks, i.e. have a narrow width3, with only
two studies deploying a slightly wider layer (Choi et al., 2020; Noh & Lee, 2020). All the
models require a large number of epochs to be trained, despite their low capacity.

2.2.2.3.2.4 Evaluation metrics

The studies in Table 2.12 use a variety of evaluation metrics (see 4.3). Regression models
use measures such as the mean absolute error (MAE) and root mean square error (RMSE)
to evaluate the generalising ability of the model. With MAE of 0.98 and 0.29, the models
proposed by Noh & Lee (2020) and Trappey et al. (2012) are partly driven by the low number
of input features.

Classification models use measures such as the accuracy, precision, recall and F1-score.
For these models, the accuracy ranges from 0.71 (Choi et al., 2020) - 0.91 (Lee et al., 2018).
Precision, being the fraction of relevant instances among the retrieved instances, ranges from
0.40 (Woo et al., 2019) - 0.77 (Lee et al., 2018). Recall, being the fraction of the total amount
of relevant instances that have been retrieved, ranges from 0.29 (Woo et al., 2019) - 0.92
(Choi et al., 2020). These models are able to identify lower value patents better than higher
value patents. Choi et al. (2020) evaluate their models using a balanced dataset approach,
where the 2 classes (maximum renewal vs. not renewal) are balanced, with the F2-score4.
In addition, from the 5 articles proposing classification models, 3 are structured as 2-class
tasks and 2 are structured as a 4-class task. Choi et al. (2020), a 2-class task, outperforms
the other studies on recall, F1-score and F2-score; however, Lee et al. (2018), a 4-class task
outperforms the other studies on accuracy and precision.

1The capacity of a neural network is defined as configuration of neurons or nodes and layers, i.e. the
number of layers, the number of input nodes, the number of output nodes, and the number of nodes in each
layer (Brownlee, 2019g; Hopfield, 1982; Jia et al., 2016).

2Shallow neural networks are artificial neural networks with 2 or 3 layers, i.e. 1 or 2 hidden layers. Deep
neural networks are defined as networks with architectures with multiple hidden layers (Delalleau & Bengio,
2011; Goodfellow et al., 2016; Murphy, 2012).

3The number of input layer neurons and hidden layer neurons is referred to as the width, and the number of
layers is referred to as the depth, of the neural network (Abood & Feltenberger, 2018; Brownlee, 2019g).

4The F2-score gives more weight to recall by arguing that a false negative rate is more critical than a false
discovery rate in a practical business environment.



Chapter 3

Developing the Dataset

In this chapter, we focus on the process of developing the large dataset that is used in chapter
4 for developing the deep learning approach1. Fig. 3.1 shows the process flowchart for the
dataset development, which is supported by computational resources2 (see 1.2 and Fig. 1.1).

Fig. 3.1 Process flowchart of dataset development (a subset of Fig. 1.1)

Firstly, we describe and explain how the data are identified, selected, extracted, collated,
and cleaned (3.1). Then, we describe the data preparation process (3.2), which involves
the data transformation process of the numeric, categoric and text field values into features,
and a feature representation dataframe. The feature transformation directly influences the
model results because the success of all AI algorithms depends on how you present the data3

(Liu & Motoda, 1999). We give a brief overview of the exploratory data analysis (EDA)
continuously performed in 3.3.

1The code is written in Python language (Van Rossum & Drake, 1995), and uses the libraries of Tensorflow
(Abadi et al., 2016a) and Keras (Chollet & Others, 2015). Tensorflow (Abadi et al., 2016b), URL: https:
//tensorflow.org. Keras (Chollet & Others, 2015), URL: https://keras.io.

2The data is stored in the cloud and processed with virtual machines using Microsoft Azure (Microsoft,
2020) and Google AI Platform servers (Google, 2020a). The code is written in Python (Van Rossum & Drake,
1995), and is stored and maintained on GitHub (Github, 2020).

3Koehrsen (2018c), URL: https://towardsdatascience.com/feature-engineering-what-powers-machine-
learning-93ab191bcc2d

https://tensorflow.org
https://tensorflow.org
https://keras.io
https://towardsdatascience.com/feature-engineering-what-powers-machine-learning-93ab191bcc2d
https://towardsdatascience.com/feature-engineering-what-powers-machine-learning-93ab191bcc2d
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3.1 Data collection and pre-processing

We describe the process of data collection and pre-processing: (i) the data identification and
selection (3.1.1), and (ii) data extraction, collation and cleaning (3.1.2). Fig. 3.2 gives an
overview of the data collection and pre-processing process.

Fig. 3.2 Data collection and pre-processing process flow diagram (a subset of Fig. 3.1)

We use 2 main data collection sources: firstly, the USPTO1 serves as our primary data
collection source, through PatentsView2. The US is the world’s largest patent market, where
the majority of USPTO patents are also submitted in other countries (Bass & Kurgan, 2010;
Lee et al., 2013; WIPO, 2019a,c, 2020). The USPTO database is well-organised, with high
data quality and holds historical information (Cai & Zhu, 2015; Lee et al., 2017). Secondly,
we use the OECD public data source3, to complement the USPTO data.

3.1.1 Data identification and selection

We build a large dataset from 2 main data collection sources. Our primary data are sourced
from the USPTO PatentsView database4, and are complemented by the OECD patent quality
indicators database5. From the USPTO data catalog (see Table 3.1), we select the following
tables for extraction: application, brf_sum_text, claim, cpc_current, ipcr, maint_fees_events6,

1United States Patent and Trademark Office (USPTO), URL: https://www.uspto.gov/.
2PatentsView, URL: https://www.patentsview.org/web/#viz/locations.
3Organisation for Economic Cooperation and Development (OECD), URL: https://data.oecd.org/.
4PatentsView, https://www.patentsview.org/download/.
5Organisation for Economic Cooperation and Development (OECD), URL: ftp://prese:Patents@ftp.oecd.

org/Indicators_202001/. The OECD patent quality indicators database proposes a number of indicators to
capture the quality of patents, intended as the technological and economic value of patents, and the possible
impact that these might have on subsequent technological developments. It has been compiled for the OECD
report by Squicciarini et al. (2013), and it contains respectively 16 patent value proxies and determinants at the
USPTO patent level.

6United States Patent and Trademark Office (USPTO), URL: https://developer.uspto.gov/product/patent-
maintenance-fee-events-and-description-files.

https://www.uspto.gov/
https://data.oecd.org/
https://www.patentsview.org/download/
ftp://prese:Patents@ftp.oecd.org/Indicators_202001/
ftp://prese:Patents@ftp.oecd.org/Indicators_202001/
https://developer.uspto.gov/product/patent-maintenance-fee-events-and-description-files
https://developer.uspto.gov/product/patent-maintenance-fee-events-and-description-files
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patent, uspatentcitation, together with the description, data element names, definition, ex-
ample, and type of available data, for all tables. From the OECD data catalog (Squicciarini
et al., 2013), we source all the data. In addition, for the USPTO data we restrict the dataset
between the start date 01.01.1976 and end date 01.01.2019, and to patent kind codes ’A’,
’B1’, and ’B2’, which represent granted patents1. We then drop all empty fields from the
original USPTO source data of Table 3.1.

3.1.2 Data extraction, collation and cleaning

Following the data identification and selection in 3.1.1, we extract the data in CSV format in
the cloud. Using a python developed automated script2, we collate the data into a Pandas3

dataframe, which is then saved as a dataset pickle4 file (McKinney, 2010)5,6,7. As part of
the collation process, data cleaning occurs where symbols and duplicates are removed. Data
fields that are supposed to be empty are removed, where as data fields that are supposed to
contain data are populated with zeros if empty. We save the dataset dataframe in the cloud.

1United States Patent and Trademark Office (USPTO), URL: https://www.uspto.gov/learning-and-
resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent. The USPTO began
printing the WIPO Standard ST.16 code (kind code) on each of its published patent documents, which is used
to distinguish the kind of patent document. Kind code ’A’ represents granted patents up to 2001, which was
later replaced by kind codes ’B1’, ’B2’.

2The automated python script is a script that automatically compiles the dataset based on the constrains,
i.e. the start date, end date, kind codes, and the USPTO data tables, such as the ones in Table 3.1. The script
code then restructures the data: firstly, each table is deconstructed in columns and attached to a temporary
dataframe, according to the patent id, which is used as a key. Secondly, the data is then cleaned by removing
empty fields, and fields with wrongly introduced symbols or data types. Then, we calculate and operationalise
all the variables, as shown in Table 4.1. Finally, the script restructures and re-orders the updated columns, to
compose a permanent dataframe, which is saved in the cloud (Aristodemou, 2020a,b).

3The Pandas Development Team (2020), URL:https://pandas.pydata.org/. Pandas is a software library
written for Python (Van Rossum & Drake, 1995) for data manipulation and analysis, offering data structures
and operations for manipulating tables and time series.

4Van Rossum & Drake (2009), URL: https://docs.python.org/3/library/pickle.html. Pickle implements
binary protocols for serializing and de-serializing a python object structure (Pandas dataframe), and its hierarchy
is converted into a byte stream.

5In parallel, as a confirmatory process, we also use Google BigQuery with the same constrains as the
Python script, to extract the USPTO data from the Google Patents Public dataset. The Google BigQuery
platform allows for fast SQL queries, with standardised means of access, and we use it to confirm the total
number of granted patents extracted.

6BigQuery on Google Cloud Platform, URL: https://cloud.google.com/bigquery. BigQuery is a fully-
managed data warehouse that enables scalable, and fast analysis of big data working in conjunction with Google
Cloud Storage.

7Google (2020a) Google Patents Public Datasets, URL: https://cloud.google.com/blog/products/gcp/google-
patents-public-datasets-connecting-public-paid-and-private-patent-data.

https://www.uspto.gov/learning-and-resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent
https://www.uspto.gov/learning-and-resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent
https://pandas.pydata.org/
https://docs.python.org/3/library/pickle.html
https://cloud.google.com/bigquery
https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data
https://cloud.google.com/blog/products/gcp/google-patents-public-datasets-connecting-public-paid-and-private-patent-data
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Table 3.1 USPTO data catalog table identification

Tablea ,b Description Data Elementc Definition Example Typed

Application Information
on the
applications
for granted
patent.

id Application id assigned by USPTO 02/002761 varchar(36)
patent_id Patent number D345393 varchar(20)
series_code Application series 2 varchar(20)
number Unique application 2002761 varchar(64)
country Country this application was filed in US varchar(20)
date Date of application filing 21/12/1992 date

Brf_sum_
text

Summary
patent text

patent_id Patent number 8918554 varchar(20)
text Text of the summary itself Background text

Claim Full text of
patent
claims

patent_id Patent number 4968079 varchar(20)
text Claim text A golf ball retriever... text
dependent Sequence number of dependent claims 1 int(11)
sequence Order of patent claims 10 int(11)

Cpc_
current

CPC classi-
fication of
the patente

patent_id Patent number 3930271 varchar(20)
section_id Cpc section A varchar(10)
subsection_id Cpc subsection A63 varchar(20)
group_id Cpc group A63B varchar(20)
subgroup_id Cpc subgroup A63B71/146 varchar(20)
category Cpc category (primary or additional) inventional varchar(36)
sequence Order in which cpc class appears 0 int(11)

Ipcr International
Patent Clas-
sificationf

patent_id Patent number D409748 varchar(20)
section Ipc section H varchar(20)
ipc_class Ipc class 21 varchar(20)
subclass Ipc subclass L varchar(20)
main_group Ipc group 21 varchar(20)
sequence Order in which ipc class appears 0 int(11)

Patent Data
concerning
granted
patents

id Patent Id 3930271 varchar(20)
type Category of patent utility varchar(100)
number Patent number 3930271 varchar(64)
country Country in which patent was granted US varchar(20)
date Date when patent was granted 06/01/1976 date
abstract Abstract text of patent A golf glove is... text
title Title of patent Golf glove text
kindg ST.16 code A varchar(10)
num_claims Number of claims 4 int(11)

uspatent
citation

Citations
made to US
granted
patents by
US patents

patent_id Patent number 9009250 varchar(20)
citation_id Patent to which select patent cites 8127342 varchar(20)
date Date select patent (patent_id) cites patent (citation_id) 01/02/2012 date
name Name of cited record Boynton et al. varchar(64)
category who cited the patent (examiner, applicant) cited by patent varchar(20)
sequence order of the citation 622 int(11)

WIPO - field_title WIPO technology field title Electrical machinery varhcar(255)

aThe USPTO data catalog table identification, where the data elements are defined with examples and the
type of data. The list is not exhaustive, and only a selected number of data elements are reported.

bThe table names are kept the same as found in the USPTO data catalog.
cThe data element represents the particular patent field, feature or cell data available.
dThe type shows the type of the data structure and in brackets its length. For example, ’varchar’ represents

variable character, and ’int’ represents integer.
eUnited States Patent and Trademark Office (USPTO), URL: https://www.uspto.gov/web/patents/

classification/cpc/html/cpc.html.
fWorld Intellectual Property Organisation (WIPO), URL: https://www.wipo.int/classifications/ipc/en/.
gUnited States Patent and Trademark Office (USPTO), URL: https://www.uspto.gov/learning-and-

resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent.

https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
https://www.wipo.int/classifications/ipc/en/
https://www.uspto.gov/learning-and-resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent
https://www.uspto.gov/learning-and-resources/support-centers/electronic-business-center/kind-codes-included-uspto-patent
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3.2 Data preparation (transformation)

In this section, we describe the process of the data preparation (transformation). The
transformation involves the transformation of the numeric, categoric and text data, into
features1 to form a features dataframe. This is also known as feature engineering2, which
is the process of transforming data into features that represent the underlying problem
to the predictive models (Domingos, 2012; Liu & Motoda, 1999). The success of all AI
algorithms depends on how you present the data to the predictive model, i.e. the transformed
representation3.

Fig. 3.3 Data preparation (transformation)

Fig. 3.3 shows an overview of the data preparation (transformation) process. Patent data
1In artificial intelligence (AI), a feature is a variable, an individual characteristic of a phenomenon being

observed, which can be quantified (Bishop, 2006). For example, for this research, the number of backward
citations is a numeric input feature, i.e. a numeric feature patent value determinant, where as forward citations
are a categoric target or output feature, i.e. a categoric feature patent value proxy. Thus, input features are
patent value determinants, and target/ output features, are patent value proxies (see Table 4.1).

2Brownlee (2014), URL: https://machinelearningmastery.com/discover-feature-engineering-how-to-
engineer-features-and-how-to-get-good-at-it/.

3Koehrsen (2018c), URL: https://towardsdatascience.com/feature-engineering-what-powers-machine-
learning-93ab191bcc2d.

https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/
https://machinelearningmastery.com/discover-feature-engineering-how-to-engineer-features-and-how-to-get-good-at-it/
https://towardsdatascience.com/feature-engineering-what-powers-machine-learning-93ab191bcc2d
https://towardsdatascience.com/feature-engineering-what-powers-machine-learning-93ab191bcc2d
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are a series of structured and unstructured data1. Structured patent data include numeric
data, i.e. the citation information, and categoric data, i.e. the IPC/ CPC classifications.
Unstructured patent data includes the narrative text (abstract, claims, summary, title) (Abbas
et al., 2014).

Firstly, we transform the numeric data, into numeric features (3.2.1). Using the one-
hot-encoding (OHE) methodology, we perform 2 transformations: (i) the categoric data,
i.e. IPC/ CPC classifications, into categoric features (3.2.2) and particularly the categoric
input feature determinants (3.2.2.2); (ii) the continuous numeric features, i.e the grant lag
index, the forward citations, the generality index, and the patent renewals, into categoric
target feature proxies (3.2.2.3)2. The text data is transformed into text features (3.2.3) with
our developed Doc2Vec methodology and visualised using the t-SNE3 algorithm (Van Der
Maaten & Hinton, 2008).

3.2.1 Numeric feature representation

Loading the dataset into a Pandas dataframe, we process all numeric data, transforming
them into numeric features (see Fig. 3.3). Firstly, we process the numeric data into the
numeric input features, by calculating the patent value determinants (2.1.2.3). These include:
the number of claims, number of independent claims, the number of independent claims,
the patent scope, the number of backward citations , the number of Non-Patent Literature
references, the originality index, the radicalness index, the family size, the technology field,
the relevance of classification to many fields, the number of primary unique CPC invention
sections, the number of primary unique CPC invention subsections, the number of primary
unique CPC invention main groups, the number of primary unique CPC invention subgroups,
the number of additional unique CPC invention sections, the number of additional unique
CPC invention subsections, the number of primary unique CPC additional main groups, the
number of additional unique CPC invention subgroups (see Table 4.1).

Secondly, we process the numeric data into the numeric target/ output features, by
calculating the patent value proxies (2.1.2.3). These include: the grant lag index, the forward
citations, the generality index, and the patent renewals. We align the calculation of the
foward citations and the generality index, with the patent renewal timeline, i.e. in T years

1Structured data is data with clearly defined data types whose pattern makes them easily searchable.
Unstructured data is data with no underlying structure or pattern (Lupu, 2013; Lupu et al., 2011; Manning et al.,
2008).

2These transformations result in structuring the problem in a supervised classification approach (see 4.1).
3The t-SNE algorithm is a non-linear dimensionality reduction approach, suited for embedding high-

dimensional data for visualization in a low-dimensional space of 2 or 3 dimensions. It models similar objects
by nearby points and dissimilar objects by distant points. We use the t-SNE algorithm to visualise the patent
text sections and visually evaluate the effectiveness of our developed Doc2Vec methodology (3.2.3.3.2).
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after the grant date, where T = {4,8,12}. We also include the generality and patent quality
index 4, as calculated by the OECD (Squicciarini et al., 2013). We then transform these
continuous numeric target/ output features, into categoric target/ output feature proxies, using
one-hot-encoding (OHE) (see 3.2.2).

3.2.2 Categoric feature representation

3.2.2.1 One-hot-encoding methodology

Artificial intelligence (AI) algorithms cannot work with categoric data directly. Categoric
data are variables that contain label values rather than numeric values. Categoric data must
be converted to numbers in order to be able to work on AI algorithms1. This involves a 2-step
process: firstly the categorical data are assigned an integer value using a label encoder2,
and secondly an one-hot encoding (OHE) is applied to the integer representation, where
the integer encoded variable is removed and a new binary variable is added for each unique
integer value3 (Murphy, 2012). Fig. 3.4 shows an example of one-hot-encoding (OHE) of
the IPC section variables. There are 8 IPC sections, identified from A to H. The label set S ,
of size [8x1], consists of 8 labels S = [A,B,C,D,E,F,G,H]. The label set is then converted
to a numeric set, Sle, of size [8x1], using a label encoder Sle = [0,1,2,3,4,5,6,7], which in
turn is transformed to an orthogonal matrix of size nx[1x8], where n is the examples.

Fig. 3.4 One hot encoding (OHE) transformation example

1Brownlee (2017h), URL: https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-
learning/.

2The integer values have a natural ordered relationship between each other and algorithms may be able to
understand and harness this relationship. The problem is that with label encoding, the categories now have
natural ordered relationships. The computer is programmed to treat higher numbers as higher numbers, and
thus it will naturally give the higher numbers higher weights, which may result in poor performance .

3Brownlee (2017f), URL: https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-
python/.

https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/
https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
https://machinelearningmastery.com/how-to-one-hot-encode-sequence-data-in-python/
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3.2.2.2 Categoric input features (determinants) representation

Firstly, we process the categoric data, focusing on patent value determinants (2.1.2.4). These
include the IPC and CPC classifications1, to transform them into categoric input feature
determinants. We one-hot-encode the CPC section, CPC subsection, CPC main group, IPC
section and IPC class. Due to the language proximity (3.2.3.3.2), the IPC subclass and IPC
main group of the classification are covered by the CPC main group2.

3.2.2.3 Categoric target/ output features (proxies) representation

We then focus on transofrming our target/ output features. Following 3.2.1 and Table 2.4,
we transform the continuous numeric/ target output features, into categoric target/ output
feature proxies. From 2.2.2.3.2, we identify that the majority of articles are structured as
supervised classification approaches. Thus, we structure our problem, of identifying valuable
patents, into a supervised classification approach (see 4.1). The categoric target/ output
feature proxies represent patent value on one or more value dimensions (Table 2.3). These
are structured as a binary classification, where class VH represents a high value patented
invention, and a VL represents a low value patented invention. We use a binary classification3,
for the following reasons: (i) the model interpretability4, (ii) simplicity and practicality, (iii)
the model complexity5, and (iv) previous studies on patent value with AI methodologies
and patent data have used, in the majority, a binary classification with higher evaluation
performance (see 2.2.2.3.2.4 and Table 2.12).

Table 3.2 shows the categoric output features proxies, with the output variables (deployed
in chapter 4), the definition of the two value classes, and the justification. These include:

1For the transformation, the categoric data includes the IPC and CPC classifications with the sections,
classes, subclasses, main groups and subgroups.

2We include the higher levels of the IPC classification, i.e. the section and class, to cover the international
presence of the patent, but we use the lower levels of the CPC classification, i.e. the main group, to capture the
class presence of the patent. This is because the CPC classification is a joint endeavour of the European Patent
Office (EPO) and the United States Patent and Trademark Office (USPTO) to harmonize their classification sys-
tems into a single system having a similar structure to the International Patent Classification (IPC) administered
by WIPO (EPO, 2017). The jointly developed classification system is more detailed than the IPC to improve
patent searching. The IPC classification is not available for USPTO data before 2005.

3This is similar to one-vs-all classification scheme. Brownlee (2020d), URL: https://
machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/.

4Pagels (2018), URL: https://medium.com/value-stream-design/machine-learning-reductions-mother-
algorithms-part-ii-multiclass-to-binary-classification-1dad599147b.

5A binary class represents one pair of classes and it’s possible to understand more about the association
factors (Har-Peled et al., 2002). The lower the number of output nodes (i.e. classes) the lower the model
complexity, which makes the likelihood inference of the model higher for those output nodes. Given a fixed
amount of data, a greater number of output nodes will lead to poorer results (Lorena et al., 2008; Tewari &
Bartlett, 2007).

https://machinelearningmastery.com/one-vs-rest-and-one-vs-one-for-multi-class-classification/
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the grant lag index, the forward citations, the generality index, and the patent renewals. We
align the calculation of the forward citations and the generality index, with the patent renewal
timeline, i.e. in T years after the grant date, where T = {4,8,12}. We also include the
generality and patent quality index 4, as calculated by the OECD (Squicciarini et al., 2013).

Table 3.2 Categoric output/ target feature proxies class definition

Categoric outputa Output variableb Classc ,d Definition Percentilee Justification
VH VL

Forward Citations Citations_t4,
Citations_t8,
Citations_t12

21> citations <20 citations Hall (2005) >75th Firms with patents with forward citations of more than 20 citations per
patent, have a 54% higher market value of what would be expected,
given their R&D capital and patent stock

Grant lag Grant_Lag <600 days 600> days Harhoff & Wagner (2009) >75th The shorter the time between application and granting, the higher the
value of the patent. Patents with time less than 600 days, are considered
valuable

Generality Index Generality_t4,
Generality_t8,
Generality_t12,
Generality

0.75> <0.75 Aristodemou & Tietze (2018b) >75th Patents with a generality of higher than 0.75 have a diversified number
of forward citations influencing a diverse range of technology fields

Renewals Renewal_t4,
Renewal_t8,
Renewal_t12

Renewed Not Renewed Lanjouw et al. (1998) >75th Firms renew their most valuable patents, and also keep alive the ones
that are strategically and economically important to them

Patent Quality Index 4 Quality_Index_4 0.45> <0.45 Squicciarini et al. (2013) >75th The index considers the following compoentns: number of forward ci-
tations (up to 5 years after publication), patent family size, number of
claims, and the patent generality index, with equal weights. It is can be
considered exceptional above 0.45, but should be interpreted with care
(Lanjouw & Schankerman, 2004)

aThe patent value proxies with their definitions, rational and patent value dimension can be found in 2.1.2.2,
and Table 2.4. The table is arranged in alphabetical order according to the proxy.

bOutput variables are the variables being predicted by the model (see Table 4.1).
cBinary classification patent value classes, where class VH represents a high value patented invention, and a

VL represents a low value patented invention.
dThe dataset consists of the full USPTO granted patents from 1976-2019 (see 3.1.2), and the model

development (see chapter 4) considers all the population. In principle, focusing only on granted patents and not
including patent applications can introduce survival bias (Brown et al., 1992; Deng et al., 1999; Groeneveld &
Meeden, 1984; Lin & Chen, 2005; Seru, 2014); however, granted patents provide exclusive market rights to the
firms for exploitation, which gives an indication of the market value of inventions (Hall, 2005).

ePercentile of high value distribution of the feature, i.e. a patent with 21 forward citations belongs to the
75th percentile and above in the value distribution.

For the patent value proxies in Table 2.4, we define a cut-off threshold, the separation
between high value, VH and low value, VL, based on previous literature. Scholars have argued
about these cut-off thresholds on what constitutes high value and a low value patent and these
are justified in Table 3.2. For forward citations, the cut-off threshold is 21 citations, where
Hall (2005) argues that firms with patents with forward citation of more than 20 citations per
patent, have a 54% higher market value. A patent with more than 21 citations is classed as
high value VH , and otherwise as low value VL

6.
6From Table 3.5, it is evident that the cut-off threshold of 21 citations is 7 times more than the 75th

percentile for citation_t4, 3 times more than the 75th percentile for citation_t8, and about 2 times the 75th
percentile for citation_t12. All distributions are positively skewed, with the Pearson’s first skewness coefficient
(mode skewness) of 0.24 for citation_t4, 0.26 for citation_t8 and 0.20 for citation_t12. In addition, the Yule’s
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For renewals, the cut-off threshold is if a patent has been renewed, because firms renew
their most valuable patents and keep alive the ones that are strategically and economically
important to them (Lanjouw et al., 1998)1. For grant lag, the cut-off threshold is 600 days,
with a shorter time between application and granting indicating a high value patent (Harhoff
& Wagner, 2009). For generality, the cut-off threshold is 0.75, giving a diverse range of
technology fields in the forward citations (Aristodemou & Tietze, 2018b)2. The patent quality
index 4, as defined by Squicciarini et al. (2013), has a cut-off threshold of 0.45, with high
value patents VH considered exceptional if it’s higher3. Thus, for every output variable, we
form 2 classes, the high value VH and low value VL patents, based on cut-off thresholds of
what constitutes a high/low value patent in the literature4.

3.2.3 Text feature representation - Naive Doc2Vec

Patent text has long be considered a patent value determinant (Lanjouw & Schankerman,
2004) and has been associated with the technological and economical value of patents (Table
2.5). Patents contain four main sections of text: abstract, claims, summary/ description, title.
Several scholars have used the patent text for patent information retrieval (Table 2.9), mainly

coefficient of skewness is 0.33 for citation_t4, 0.33 for citation_t8 and 0.40 for citation_t12. The positive
skewed distribution follows the distribution identified by Hall (2005). Older patents in t8 and t12 accumulate
forward citations with age. Given that the number of datapoints is restricted to the patent reaching age 8 and
12, survival bias can be introduced given that the patents that have not reached the required age are excluded
(Brown et al., 1992; Groeneveld & Meeden, 1984). However, all patents remaining are treated similarly, with
the model taking into consideration high value, VH and low value, VL patents at the same point in time. This
was introduced to ensure that there is a complete set of input feature determinants and output proxies for every
patents (see 4.5).

1From Table 3.5, the renewals (t4, t8, t12) distribution is negatively skewed, with the Pearson’s first
skewness coefficient (mode skewness) of -0.15, and the Yule’s coefficient of skewness of -0.11. This is similar
to the distribution by Squicciarini et al. (2013), with the majority of patents being renewed by firms in the fear
of losing out.

2From Table 3.5, it is evident that the cut-off threshold of 0.75 is 2.9 times more than the 75th percentile for
generality_t4, 1.5 times more than the 75th percentile for generality_t8, and about 1.3 times the 75th percentile
for generality_t12. All distributions are positively skewed, with the Pearson’s first skewness coefficient (mode
skewness) of 0.56 for generality_t4, 0.83 for generality_t8 and 0.30 for generality_t12. In addition, the Yule’s
coefficient of skewness is 1.00 for generality_t4, 1.00 for generality_t8 and 0.33 for generality_t12. The relative
increase in forward citations is less than the diversification in the IPC classes, showing that there is a small
number of patents covering a diverse number of fields, with increasing diversification as the number of forward
citations increases (i.e. forwarded cited patents are filed in a diverse number of fields).

3From Table 3.5, it is evident that the cut-off threshold of 0.45 is 1.3 times more than the 75th percentile.
The distributions is close to an asymmetric distribution, with the Pearson’s first skewness coefficient (mode
skewness) of 0.05, and the Yule’s coefficient of skewness of -0.02. This is partly the reason for the improved
model performance in Table 5.15.

4From a practical point of view, technology managers, intellectual property managers, and firms are
interested on the valuable patented inventions (Choi et al., 2020), and if a patent is high value or low value
(Altuntas et al., 2015; Poege et al., 2019).
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focusing on classifying patents into respective technological classes, based on the frequency
of words (Abbas et al., 2014). Recently, some scholars have used more advanced methods
of natural language processing (NLP) to capture the semantic and contextual meanings of
words for technological area classification. However, a limited number of studies have used
the patent text as input to artificial intelligence (AI) methods for valuation purposes (Table
2.12), with many studies focusing on numeric and categoric types of data (see 2.2.2.3.2.2).

Firstly, we review the literature using the narrative approach (Cronin et al., 2008; Paré
et al., 2015) on natural language processing (NLP) vector space models (VSM) that capture
semantic and contextual similarity (3.2.3.1). We then provide an overview of how these
models have been used with patent data (3.2.3.2). Secondly, we describe the text feature
vector representation method1 (3.2.3.3), which consists of two parts: (i) the development of
the Doc2Vec methodology, for representing patent text into vector input features (3.2.3.3.1);
(ii) the visual representation with t-SNE approach of the Doc2Vec vectors (3.2.3.3.2).

3.2.3.1 Natural language processing (NLP) vector space models (VSM)

Text data can be vectorised or transformed into a vector, which captures the complex re-
lationships that exist within the text2 (syntactic, semantic, sequential) (Jurafsky & Martin,
2016; Lupu, 2013). There are two overlapping groups of methods deployed for the analysis
of text (Abbas et al., 2014; Jurafsky & Martin, 2016). The first group includes traditional
document-term matrix representations such as the term frequency (TF), inverse document fre-
quency (IDF), bag of words (BOW), dictionary-based approaches, and rule-based approaches.
For example, some studies identified in Table 2.9 make use of specific chemical compound
dictionaries to identify chemical elements in patents (Krallinger et al., 2015). The second
group includes more advanced methods that are related to distributed text representation,
which can be captured by vector space models (VSMs). Such representations or transfor-
mations can be captured with dense3 vectors, where the vectors are short (relative to sparse
vector representations) and dense (non-zero values) (Mikolov et al., 2013a). Some of these
approaches consist of linear discriminant analysis (LDA), multi-dimensional scaling (MDS),
principal component analysis (PCA), quadratic discriminant analysis (QDA), singular value
decomposition (SVD). Scholars have used these approaches with patent data (Table 2.9), for

1This transformation is necessary to utilise the patent text as an input to the developed AI deep learning
methodology of valuing patents in chapter 4.

2The success of all artificial intelligence algorithms depends on how you present the data to the predictive
model, i.e. the transformed representation (Koehrsen, 2018c).

3Generally, dense vectors generalize better because they contain less parameters than sparse vectors, and
can capture context and semantic relationships better, i.e. similar words are mapped to nearby points (Jurafsky
& Martin, 2016).
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example Jun et al. (2014) analyse technological trends by building a document-term matrix,
combined with a K-means clustering method and dimensionality reduction.

Recent advancements in NLP compose distributed document text representations from
word representations in vector spaces. Word embeddings is a method by which words are
transformed to vectors using their semantic meaning. Mikolov et al. (2013a) develop the
Word2Vec model, where the words and the context are captured in a vector transformation.
This allows words with similar meanings to be clustered together and share relationships
(Mikolov et al., 2013b). Such methods include the Word2Vec models, which consist of (i)
the continuous bag of words (WV-CBOW) model, and (ii) the continuous skip-gram model
(WV-CSG) (Mikolov et al., 2013a). Word2Vec models aim to predict a word based on the
context regardless of its position (WV-CBOW) or predict the words that surround a given
single word (WV-CSG) (Mikolov et al., 2013a). Word embeddings can be applied to larger
corpora of text by taking the centroids of the individual vectors to generate a document
embedding (Le et al., 2014), which can then be used in neural networks. This captures the
sequential, contextual and semantic similarity of words, sentences and paragraphs (Dai et al.,
2015). Document embedding methods include the paragraph vector models, which consist of
(i) the distributed memory paragraph vector (PV-DM), and (ii) the distributed bag of words
of paragraph vector (PV-DBOW).

Fig. 3.5 shows the representations of the Word2Vec and paragraph vector models1

model, as defined by Mikolov et al. (2013a) and Le et al. (2014). The WV-CBOW, given a
window of words, from w(t �2) to w(t +2) can predict the next word w(t) in the sequence
from the syntactic and contextual similarity. The WV-CSG, given a word w(t), with a
syntactic and contextual representation, can predict the neighbouring words, with similar
semantic meanings (Stein et al., 2019). The PV-DM, given a set of words W , keeps in the
memory a paragraph D, which captures the syntactic and semantic similarity of the sentences,
paragraphs or the document, and can predict the next. This is based on the similarity of the
semantic representation, and paragraph vector D, which acts as a global representation. The
PV-DBOW can predict a set of sentences, paragraphs or documents, given a paragraph vector
D, which captures the semantic and syntactic representation2.

1Eclipse Deeplearning4j Development Team (2020), URL: https://deeplearning4j.konduit.ai/language-
processing/word2vec.

2The semantic and syntactic evaluation of Word2Vec models and vector space models (VSMs) involves the
evaluation against a test developed by Google (Google Code, 2013; Mikolov et al., 2013a). This test measures
how well the model captures the semantic and syntactic relationships between words. The model is presented
with an analogy, which exists in the vocabulary of the model, such as ’King’:’Queen’::’Man’:’?’. This is solved
by finding a vector x such that vec(x) is closest to vec(0Queen0)� vec(0King0)+ vec(0Man0), according to the
cosine distance. This example is considered correct if the model predicts x as ’Woman’, which would represent
the model’s ability to infer the relationship. The task has two broad categories: the syntactic analogies (such as
’quick’:’quickly’::’slow’:’slowly’) and the semantic analogies, such as the country to capital city relationship

https://deeplearning4j.konduit.ai/language-processing/word2vec
https://deeplearning4j.konduit.ai/language-processing/word2vec
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(a) (b)

(c)
(d)

Fig. 3.5 Model representations of: 3.5a Word2Vec - continuous bag of words (WV-CBOW);
3.5b Word2Vec - continuous skip-gram (WV-CSG); 3.5c Paragraph vector - distributed
memory paragraph vector (PV-DM); 3.5d Paragraph vector - distributed bag of words of
paragraph Vector (PV-DBOW)

3.2.3.2 Vector space models (VSM) with patent text

The use of embeddings has recently gained considerable attention, with an increasing interest
in using advanced NLP models to represent patent text data (Skripnikova, 2019). From
3.2.3.1 and Table 2.9, we identify relevant articles that deploy the vector space models (VSM)
with patent data, using a narrative approach (Cronin et al., 2008). The majority of these
articles are in the area of information retrieval, and limited studies have used the patent text
for patent valuation (see Table 2.12). We review these articles to identify VSMs applications
and limitations, to help us with the development of our VSM, Doc2Vec (3.2.3.3).

Table 3.3 shows the patent text VSM studies, with the majority published after 2018.
All of the studies make use of pre-processing data approaches (see Table 2.9). All the
articles identify similarity in patents and predict IPC/ CPC classifications, mainly used in

(Leonard, 2013).
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prior art search. The studies are technology area specific with highest precision of 0.90
(Trappey et al., 2020b) and highest F1-score of 0.64 (Hu et al., 2018a). Hu et al. (2018a)
propose a hierarchical feature extraction model for mechanical patents, which is able to
capture local and global features of phrases including temporal semantics. Similarly, Lu
et al. (2020) propose a similarity model evaluating text representation approaches (Lei et al.,
2019). However, it is difficult to directly compare them because of different evaluation
metrics. Govindarajan et al. (2019a) develop a topic model for topic generation (Trappey
et al., 2012, 2020b), similar to Tenorio-González & Morales (2018), who develop a text
automatic concept generation method (Hurtado et al., 2016; Jeong et al., 2018). Helmers
et al. (2019) use a comparative method to evaluate different embeddings on patent prior art
search. Abdelgawad et al. (2020) develop an algorithm for automatic classification of patent
documents into IPC classes (Aras et al., 2018; Lee & Hsiang, 2019a,b). Hofstätter et al.
(2019) explore the use of word embeddings for patent retrieval.

Table 3.3 Vector space model (VSM) studies with patent text

Authora Algorithmic approachb Output variable Sample sizec Dataset area Evaluation measure Evaluation result
Lu et al. (2020) Recurrent neural network (RNN) Similarity 55615 Text processing,

telecommunications
Mean absolute

error (MAE)
0.09

Trappey et al. (2020b) Sequence to sequence with attention (SSWA) Patent summary 1708 AI techniques
in smart machinery

ROUGE Precision: 0.90
Recall: 0.84

Govindarajan et al. (2019a) Excessive topic generation (ETG),
Latent semantic analysis (LSA)

IPC/ CPC
classification

741 IoT Accuracy 0.8

Helmers et al. (2019) Bag of words (BOW),
Latent semantic analysis (LSA),
kernel principal component analysis (KPCA),
Word2Vec continuous bag of words (WV-CBOW),
Paragraph vector (Doc2Vec)

Similarity 2500 Medical Area under
curve (AUC)

-

Lei et al. (2019) Latent dirichlet allocation (LDA),
Convolution neural network (CNN)

Similarity 8942 IoT Euclidean
distance

0.67-0.91

Hu et al. (2018a) Hierarchical feature extraction model (HFEM),
with BiLSTM and convolution neural network (CNN)

CPC classification 90000 Mechanical F1 score,
precision,

recall

F1 score: 0.64
Precision: 0.82

Recall: 0.55
Jeong et al. (2018) Topic modelling,

Latent semantic analysis (LSA)
Topics, keywords - - - -

Trappey et al. (2012) Kaiser–Meyer–Olkin (KMO) approach,
Principal component analysis (PCA)

Trading quality 361 Semiconductors Accuracy 0.85

aThe studies are arranged in descending order, i.e. the most recent study is found at the top.
bThe algorithmic approach is the methodology used to process the patent text.
cThe sample size is the total number of patents for training and testing the models.

Although previous studies have used patent text data a number of them extracted features
based on word frequency (Jeong et al., 2018; Lei et al., 2019; Trappey et al., 2012). Recently,
several of the studies in Table 3.3 has focused on the semantic and contextual meaning of the
text, or the sequential order of words. However, these have been in the information retrieval
and prior art search. Limited studies have used the patent text or a patent text VSM for patent
valuation (see Table 2.12). In addition, some studies have used patent text VSMs, such as
Word2Vec or Doc2Vec, for comparative purposes (Helmers et al., 2019; Lu et al., 2020).
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Consequently, it is necessary to derive features that have the patent documents’ contextual
meaning and capture the patents’ technical content. These can be used in patent value models
to improve prediction (see chapter 4).

3.2.3.3 Doc2Vec - vector space model (VSM) methodology

Embeddings are a learned representation of data, often using ANN architectures. They
reduce the dimensionality of an input set by mapping the most important features of the set
to a vector of continuous numbers. We develop and adapt a text vector space model (VSM)
representation, based on the paragraph vector, Doc2Vec (Fig. 3.5). We do this to capture
the syntactic and semantic relationships of the patent text sections, and convert them into a
matrix, which can be processed by AI methodologies as input features (see chapter 4).

3.2.3.3.1 Doc2Vec vector feature representation

Doc2Vec1 are distributed embedding vectors of sentences and paragraphs (Grzegorczyk,
2019), capable of constructing representations of variable length sequences (Dai et al., 2015;
Le et al., 2014; Pagliardini et al., 2018). From Table 3.3, we have identified limited studies
that use Doc2Vec with patent text data. Lu et al. (2020) run a comparative analysis of
NLP methods to measure patent citation similarity, with different VSMs. One of these is
the Doc2Vec, which significantly reduces the mean absolute error (MAE). However, their
analysis seems to be dataset specific to the technological area of electronics, which partly
drives some of their results. Similarly, Helmers et al. (2019) find that the Doc2Vec is more
meaningful and effective on individual patent text sections, i.e. abstract, claims, because of
the reduction in noise (Carvalho & Nguyen, 2017)2.

To transform the patent text into a distributed embedding vector of sentences and para-
graphs, which captures the syntactic and semantic relatioships3,4, we propose an adapted
Doc2Vec methodology (Le et al., 2014). Firstly, a vocabulary set v of size n is constructed by

1Doc2Vec has a few advantages over other methods, with the vector inheriting the semantic and syntactic
properties of the words (Le et al., 2014). This ensures that the context of the document is maintained,
maintaining the global document corpus context (influenced by N, the total number of documents) (Dai et al.,
2015). The semantic relationship between the Doc2Vec dimension D exists because the proximity is maintained
(Grzegorczyk, 2019; Le et al., 2014).

2Given the recency in all articles using the Doc2Vec methodology (Helmers et al., 2019; Lu et al., 2020),
we follow some of the principles introduced. For example, for every patent section (abstract, claims, summary,
title), we produce a separate Doc2Vec vector for each patent text secion, following the findings by Helmers
et al. (2019). In our dataset, each patent document consists of 4 Doc2Vec vectors of 300 dimensions.

3Rehurek & Sojka (2010), Gensim Library ,URL: https://radimrehurek.com/gensim/index.html. Gensim is
an open-source library for unsupervised topic modeling and natural language processing.

4Bird et al. (2009), Natural Language Toolkit (NTLK) Package, URL: https://www.nltk.org/. NLTK is a
package, libraries for symbolic and statistical natural language processing for English.

https://radimrehurek.com/gensim/index.html
https://www.nltk.org/
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extracting all words from the patent corpus (Eqn. 3.1a). Each word vector w contained in
this vocabulary has a fixed dimension d, and is randomly initialized. Each patent document x
consists of a subset of words belonging to v , and contains lx words. The word representations
are learned with the Word2Vec continuous bag of words (WV-CBOW) approach1, which
predicts the target word ti j based on a window of context words ci j of size k, i is the index
number of a patent document, j 2 (1, l) is the index number of a word in patent document
i (Eqn. 3.1b and 3.1c). We apply zero padding2 up to a size of k after wi j, to maintain the
same window size for all words. To construct the embedding vectors for patent documents,
we construct a randomly initialized embedding vector pi. The vector ui, which represents
the patent document embedding vectors, is of dimension d and is initialized randomly. The
embedding vectors are updated dynamically based on gradients (Eqn. 3.1d).

Fig. 3.6 shows the process we follow for our adapted Doc2Vec methodology, to transform
the patent text sections into vector space model feature representations. Firstly, we make
use of the pre-trained Word2Vec continous bag of words (WV-CBOW) model by Google3.
The pre-trained model has been trained on 5.9 million US patent abstracts4,5. We use the
extracted [nxm] matrix of the model, where n is the number of words in the vocabulary and
m is the size of the word embedding vector. The size of the vocabulary is comprised of 33
million specialised words. The size of the embedding vector is 300 dimensions6.

v = {w1,w2,w3, ...,wn} (3.1a)

ti j = wi j (3.1b)

ci j = {wi( j�k), ...,wi( j+k),wi j /2 ci j} (3.1c)

pi =
1
2

 
(ui +

1
l Â

j
ci j

!

(3.1d)

1Brownlee (2017d), URL: https://machinelearningmastery.com/develop-word-embeddings-python-
gensim/.

2Zero padding refers to adding zeros to a vector to increase its length to specific size (Murphy, 2012).
3Google (2020b), URL: https://github.com/google/patents-public-data.
4Google Cloud (2019b), URL: https://console.cloud.google.com/storage/browser/patent_landscapes/.
5This is also comparable to our total dataset (see 3.3).
6The dimension determines the size of the resulting vector space, i.e. the vector size. Mikolov et al. (2013a)

argue that increasing the model’s dimensionality after a certain point leads to incremental improvements in
model performance. Experimentation with other dimensions has shown degradation in model performance
(Abood & Feltenberger, 2018), and thus we determine a dimension of 300 to be the most appropriate (Abbott,
2018; Habibi et al., 2017; Schakel & Wilson, 2015; Stein et al., 2019; Yin & Shen, 2018).

https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://machinelearningmastery.com/develop-word-embeddings-python-gensim/
https://github.com/google/patents-public-data
https://console.cloud.google.com/storage/browser/patent_landscapes/
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Fig. 3.6 Doc2Vec methodology for transforming the patent text into vector feature embedding

From previous studies (Helmers et al., 2019), we identify the patent abstract as a concise
representative summary of the patented invention, which articulates the contents of the
invention in the legal drafting language1 (WIPO, 2004). Therefore, we use these pre-
trained Google patent abstract word embeddings2 as an approximation of the contextual
representation of the semantic and syntactic relationships that exist within the patent text,
and transform all the patent text sections3.

From the data collation (3.1.2), we tokenise the patent text for every section (abstract,
claims, summary, title) in every patent, which creates a tokens matrix of size N (the number

1The patent abstract is a concise representative summary of the patent, since it is important to act as a stand
alone section, which can clearly articulate the contents of the invention in a legal drafting language. According
to WIPO (2004), the principle is that the abstract should be as concise as the disclosure permits, since it serves
as a scanning tool for searching purposes.

2Google Cloud (2019a), URL: https://cloud.google.com/blog/products/data-analytics/expanding-your-
patent-set-with-ml-and-bigquery.

3Google (2019), URL: https://github.com/google/patents-public-data/tree/master/models/landscaping.

https://cloud.google.com/blog/products/data-analytics/expanding-your-patent-set-with-ml-and-bigquery
https://cloud.google.com/blog/products/data-analytics/expanding-your-patent-set-with-ml-and-bigquery
https://github.com/google/patents-public-data/tree/master/models/landscaping
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of words in a specific patent section per patent)1. We use an encoder, for the word-2-index
transformation, which transforms the tokens matrix into an index matrix of size N. The
encoder makes use of the pre-trained Google patent Word2Vec model’s vocabulary n, where
n is the number of words the vocabulary of 5.9 million US patent abstracts, to map the
tokenised text into a sequence of numbers, which maintains the semantic and sequential
positioning. Then, we use an embedding translation, for the index-2-vector transformation,
which transforms the index matrix to an embedding transformation matrix of size [NxD].
This represents the total document vector, and using a vectorisation transformation, we
concatenate/ average the contextual dimensions (representing the syntactic and semantic
positions) to form the final Doc2Vec embedding vector representation of size [1xD], for every
patent section (see Fig. 3.6).

3.2.3.3.2 t-distributed stochastic neighbour embedding (t-SNE) visualisation

To evaluate the visual effectiveness of the Doc2Vec patent embeddings we use the t-SNE2,3,4

visualisation method (Van Der Maaten & Hinton, 2008).
We use the t-SNE approach to form a visual representation of the patent text sections

Doc2Vec vector relative to the categoric input feature determinants (3.2.2.2), which include
the IPC primary section, IPC primary class, CPC primary section, CPC primary subsection
and CPC primary group (Linderman & Steinerberger, 2019; Pezzotti et al., 2020; Van Der

1Tokenisation is the process of chopping the text into words or sentences, called tokens. At the same time,
this removes punctuation and makes all elements lowercase (Brownlee, 2017c; Fonseca, 2019). Tokens are
sequences of characters with context, grouped together as a useful semantic unit for processing (Manning et al.,
2008). Stopwords, i.e. ’the’ or ‘a’, are the most common words in any language, and is standard practice to
remove them, because they are considered noise (Mattyws Grawe et al., 2017). However, since the model
is also a contextual model, and given the complex patent language due to patent drafting (Dirnberger, 2011;
Marco et al., 2019; WIPO, 2010), these words are important syntactical elements to understand the contextual
meaning of words, sentences and paragraphs, and we chose to keep them (Hess, 2008; Marco et al., 2019).
Stopwords are also referred to non-content bearing words, which do not impact knowledge of the topic area but
impact the contextual meaning once removed (Agarwal & Yu, 2009; Trippe, 2015).

2The t-SNE is a non-linear dimensionality reduction algorithm for high-dimensional embedding visual-
ization in a low-dimensional space (Van Der Maaten, 2009). It constructs a probability distribution over pairs
of high-dimensional objects (Van Der Maaten, 2020). It then defines a similar probability distribution over
the points in the low-dimensional map, and it minimizes the Kullback–Leibler divergence (KL divergence)
between the two distributions with respect to the locations of the points in the map (Van Der Maaten, 2010), by
gradient descent. It succeeds in preserving both global and local data structures that makes clusters visible at
several scales (Skripnikova, 2019). It is also important to note that when minimising high dimensional space to
a low dimension space, some information would not be recovered (Arora et al., 2018; Wattenberg et al., 2016).

3The Kullback–Leibler divergence (KL divergence) is a measure of how a probability distribution is
different from reference probability distribution. Minimising the KL divergence, minimises the error of the
representation.

4Gradient descent is an iterative optimization algorithm that aims to find a minimum of a function by taking
small steps in the direction of the steepest decline.
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Maaten & Hinton, 2008; Wattenberg et al., 2016; Whitehead et al., 2017)1. Similarly, Kim
et al. (2020) propose a method for applying embedded feature vectors to identify text features
in patent documents by visualising them using t-SNE and evaluate their effectiveness. We
choose the t-SNE optimised hyperparameters based on previous research2 (Van Der Maaten
& Hinton, 2008).

Table 3.43 summarises the main observations from the t-SNE visualisations of the
Doc2Vec vector of the patent text sections, shown in Fig. 3.7-3.10. We observe some
evidence that suggest that our Doc2Vec vector inherits the semantic and syntactic properties
of the words and sentences (Le et al., 2014). This ensures that the context of the document is
maintained, in addition to the global context of the corpus (Dai et al., 2015).

Table 3.4 Observations from the t-SNE algorithm visualisations of the Doc2Vec vector for
the patent text sections of abstract, claims, summary, title, for the Fig. 3.7-3.10

Sectiona ,b ,c Abstract Claims Summary Title
Fig. Fig. 3.7 Fig. 3.8 Fig. 3.9 Fig. 3.10
Categoric
input feature
determinants
(3.2.2.2)

Limited differences between perplexities 30 and 50 in the overall
shape of the visualisation for all input features (2, 3). There is
some cluster formation, which is better observable for IPC primary
section and perplexity 50 (3). The IPC primary section and IPC pri-
mary class have a similar shape (2, 3, 5, 6), and the CPC primary
section, CPC primary subsection and CPC primary group, indicat-
ing that the overall language found within the hierarchical levels
is similar (8, 9, 11, 12, 14, 15). With increasing granularity, i.e.
down the hierarchy levels of the technological classifications, CPC
primary subsection, CPC primary group, we observe that the clus-
ters are not well formed (12, 14, 15). This can be attributed to two
reasons: (i) the training of the t-SNE algorithm is insufficient, and
requires more time to converge; (ii) the language becomes more
overlapping in a similar context, and the proximity of the points
increases.

The IPC primary section and IPC primary class
have distinct clusters from perplexity=5 (1, 4).
This is expected because of the claim length, and
could possibly indicate that the contextual simi-
larity is higher. With increasing granularity, i.e.
down the hierarchy levels of the technological
classifications, we can observe that the language
becomes more overlapping because there is lim-
ited clustering. However, this limited clustering
unlike Fig. 3.7, could be partly because of two
reasons: (i) the language becoming more repet-
itive because of broad claims, (ii) the language
within the same fields becoming more specific
and similar (12, 14, 15).

The clusters are more
well formed than all
the other patent text
sections, especially
for perplexity=30,
and even with increas-
ing granularity (2, 5,
8, 11, 14). Patent
summaries contain
both descriptive and
technical language,
balancing semantic
and syntactic context,
which could be partly
because of this.

There is very
limited cluster
formation, partly
because the title
consists of only a
few words, which
possibly cannot
fully represent
the contextual
and semantic
relationships.

aThe aim of this analysis is to visually represent the patent text sections, with the adapted Doc2Vec vectors.
The colours represent the technological classes, i.e. points with colour grey are within IPC primary section H.
For simplicity, due to the large number of classes, subsections and groups, we do not explicitly mention the
technological classes in the descriptive text or the figures.

bThe associated numbers in brackets refer to the numbers in Fig. 3.7-3.10.
cThe table provides an overview and some main observations from the t-SNE algorithm visualisations.

1We also compile the t-SNE for the patent text sections Doc2Vec vector relative to the categoric output/
target feature proxies (3.2.2.3). However, for simplicity, we do not report it here.

2For all the experiments, we use an iteration cycle (epochs) of 1000, a learning rate of 200, and a set of
perplexities of 5, 30, and 50 (Belkina et al., 2019; Cao & Wang, 2017). Perplexity is the balance between local
and global aspect of the data, i.e. is the number of neighbours each point has, which has a complex effect on
the resulting visualisations, with typical values ranging between 5 and 50 (Wattenberg et al., 2016).

3The numbers in brackets in Table 3.4 refer to Fig. 3.7-3.10, e.g. Fig. 3.7[2] refers to the abstract and the
analysis on IPC primary section vs. pervar(30).
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aCategoric input feature determinants appear in order: IPC primary section, IPC primary class, CPC
primary section, CPC primary subsection, CPC primary group (vertical axis), with perplexity variation (pervar)
of [5,30,50] (horizontal axis).

bThe associated numbers represent the following combinations: (1) IPC primary section vs. pervar(5),
(2) IPC primary section vs. pervar(30), (3) IPC primary section vs. pervar(50), (4) IPC primary class vs.
pervar(5), (5) IPC primary class vs. pervar(30), (6) IPC primary class vs. pervar(50), (7) CPC primary section
vs. pervar(5), (8) CPC primary section vs. pervar(30), (9) CPC primary section vs. pervar(50), (10) CPC
primary subsection vs. pervar(5), (11) CPC primary subsection vs. pervar(30), (12) CPC primary subsection vs.
pervar(50), (13) CPC primary group vs. pervar(5), (14) CPC primary group vs. pervar(30), (15) CPC primary
group vs. pervar(50).

Fig. 3.7 t-SNE visualisation for abstract vs. categoric input feature determinantsa,b
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aCategoric input feature determinants appear in order: IPC primary section, IPC primary class, CPC
primary section, CPC primary subsection, CPC primary group (vertical axis), with perplexity variation (pervar)
of [5,30,50] (horizontal axis).

bThe associated numbers represent the following combinations: (1) IPC primary section vs. pervar(5),
(2) IPC primary section vs. pervar(30), (3) IPC primary section vs. pervar(50), (4) IPC primary class vs.
pervar(5), (5) IPC primary class vs. pervar(30), (6) IPC primary class vs. pervar(50), (7) CPC primary section
vs. pervar(5), (8) CPC primary section vs. pervar(30), (9) CPC primary section vs. pervar(50), (10) CPC
primary subsection vs. pervar(5), (11) CPC primary subsection vs. pervar(30), (12) CPC primary subsection vs.
pervar(50), (13) CPC primary group vs. pervar(5), (14) CPC primary group vs. pervar(30), (15) CPC primary
group vs. pervar(50).

Fig. 3.8 t-SNE visualisation for claims vs. categoric input feature determinantsa,b
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aCategoric input feature determinants appear in order: IPC primary section, IPC primary class, CPC
primary section, CPC primary subsection, CPC primary group (vertical axis), with perplexity variation (pervar)
of [5,30,50] (horizontal axis).

bThe associated numbers represent the following combinations: (1) IPC primary section vs. pervar(5),
(2) IPC primary section vs. pervar(30), (3) IPC primary section vs. pervar(50), (4) IPC primary class vs.
pervar(5), (5) IPC primary class vs. pervar(30), (6) IPC primary class vs. pervar(50), (7) CPC primary section
vs. pervar(5), (8) CPC primary section vs. pervar(30), (9) CPC primary section vs. pervar(50), (10) CPC
primary subsection vs. pervar(5), (11) CPC primary subsection vs. pervar(30), (12) CPC primary subsection vs.
pervar(50), (13) CPC primary group vs. pervar(5), (14) CPC primary group vs. pervar(30), (15) CPC primary
group vs. pervar(50).

Fig. 3.9 t-SNE visualisation for summary vs. categoric input feature determinantsa,b
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aCategoric input feature determinants appear in order: IPC primary section, IPC primary class, CPC
primary section, CPC primary subsection, CPC primary group (vertical axis), with perplexity variation (pervar)
of [5,30,50] (horizontal axis).

bThe associated numbers represent the following combinations: (1) IPC primary section vs. pervar(5),
(2) IPC primary section vs. pervar(30), (3) IPC primary section vs. pervar(50), (4) IPC primary class vs.
pervar(5), (5) IPC primary class vs. pervar(30), (6) IPC primary class vs. pervar(50), (7) CPC primary section
vs. pervar(5), (8) CPC primary section vs. pervar(30), (9) CPC primary section vs. pervar(50), (10) CPC
primary subsection vs. pervar(5), (11) CPC primary subsection vs. pervar(30), (12) CPC primary subsection vs.
pervar(50), (13) CPC primary group vs. pervar(5), (14) CPC primary group vs. pervar(30), (15) CPC primary
group vs. pervar(50).

Fig. 3.10 t-SNE visualisation for title vs. categoric input feature determinantsa,b
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3.3 Exploratory data analysis (EDA)

We perform an exploratory data analysis (EDA), following the data preparation (transfor-
mation) process (see 3.2), for our full dataset (100FD), as to confirm results from previous
studies to validate our dataset and to identify relationships between the data. Firstly, we
produce the patent distributions per year and per technological area in terms of IPC and CPC
classifications, and then the descriptive statistics for the full dataset1,2.

Fig. 3.11 shows the distribution of the full dataset (100FD) by publication year, CPC clas-
sification section and IPC classification section. We observe that our dataset’s distributions
follow the USPTO distributions3 for granted patents (WIPO, 2019a,c), with an exponential
increase in the number of patents in the last two decades (50% of the patents have been
granted after 2003) (Harhoff et al., 2007; WIPO, 2020). The CPC section of G (physics)
has the highest number of patents, followed by H (electricity) and B (performing operations/
transporting), where as D (textiles/ paper) has the lowest number of patents (EPO, 2017),
which follows a similar trend to the IPC classification section.

Table 3.5 shows the descriptive statistics for the numeric input feature determinants (3.2.1)
and categoric output/ target feature proxies (3.2.2.2) for the full dataset (100FD)4. We observe

1In part, we perform a sensitivity analysis on the distributions of the dataset (chapter 3) to explore the
multi-dimensional input space (Leamer, 1985). We produce scatter plots and perform a correlation analysis.
We identify very weak correlations, with correlation coefficients between +/� 0.15 (Saltelli et al., 2008,
2004; Zhou & Lin, 2008). For simplicity, due to the large number of the scatter plots and the large matrix
produced from the correlation analysis, we do not include them in the thesis. A limitation of our sensitivity
analysis in relation to the dataset is that we could have focus more on the quantification of the uncertainty in
each input (numeric, text, categoric) relative to the categoric outputs, and perform more in depth one-at-time
(OAT) analysis, local derivative analysis (partial derivative of the output with respect to an input), and a more
detailed variance-based analysis (James et al., 2013; Saltelli et al., 2008, 2004). However, this is partially
counterbalanced by the focus on developing a deep learning methodology (see chapter 4) using artificial neural
networks, which are highly adaptive, with a high noise tolerance (Bishop, 2006). Thus, the information gain
from collinear data outperforms the noise concerns (Murphy, 2012).

2Driven by the artificial intelligence and machine learning literature, we perform a sensitivity analysis on
the model development (see chapter 4) (Leamer, 1985; Saltelli et al., 2008, 2004). We perform an in-depth
network optimisation using a quasi-experimental approach to identify the optimal hyperparameters and model
parameters (see 4.4) (Brownlee, 2019e; Murphy, 2012). This follows the emulator methodology for evaluating
the robustness and reliability of our proposed approach (see 4.5) (Becker et al., 2013; Gramacy & Taddy, 2010;
Oakley & O’Hagan, 2004; Sudret, 2008; Wang et al., 2019). We develop an in-depth evaluation strategy for
training, validation and testing, which also includes cross validation and ensemble learning (see 4.5.2). A
limitation of our sensitivity analysis in relation to the model development, is that we could have concentrated on
using more advance ensemble learning models for varying the inputs and evaluating the impact on the output,
and also focus on the model simplification (i.e. identifying and removing redundant parts of the model input
and structure).

3Lens.org open datasets - USPTO full granted patents from 1976-2019, URL: https://link.lens.org/
mf0zpKCXDzh.

4The dataset consists of the full USPTO granted patents from 1976-2019 (see 3.1.2), and the model
development (see chapter 4) considers all the population. In principle, focusing only on granted patents and not
including patent applications can introduce survival bias (Brown et al., 1992; Deng et al., 1999; Groeneveld &

https://link.lens.org/mf0zpKCXDzh
https://link.lens.org/mf0zpKCXDzh
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that backward citations and forward citations (citations_t4, citations_t8, citations_t12) are
positively skewed (Hall, 2005)1.

Fig. 3.11 Distribution of granted patents by (a) publication year (b) CPC classification section
(c) IPC classification section (legend: black colour = USPTO full dataset, grey colour = our
developed dataset)

The originality index is high, which is expected because a patent is granted based on
novelty and inventiveness (Squicciarini et al., 2013). The mean filing year is 2001, with
50% of the patents having been filed until 2003. On average, patent family size is 3.98,
with patents with more than 5 patent family members being above the 75th percentile of the
distribution. Patent scope is positively skewed, with a long tail (Marco et al., 2019). In all
categoric output feature proxies2.

Meeden, 1984; Lin & Chen, 2005; Seru, 2014); however, granted patents provide exclusive market rights to
the firms for exploitation, which gives an indication of the market value of patented inventions (Hall, 2005).
We develop an in-depth evaluation strategy with variations of the dataset (see 4.5.1). Given that the number of
datapoints is restricted to the patent reaching age 4, 8 and 12, survival bias can be introduced given that the
patents that have not reached the required age are excluded (Brown et al., 1992; Groeneveld & Meeden, 1984).
However, all patents remaining are treated similarly, with the model taking into consideration high value, VH
and low value, VL patents at the same point in time (Murphy, 2012). This was introduced to ensure that there
is a complete set of input feature determinants and output proxies for every patents (see 4.5). This allows for
inter-model comparison, i.e. within the same variant of the dataset, and intra-model comparison, i.e. across the
variants of the dataset (see Fig. 4.12 and 4.13).

1From Table 3.5, it is evident that all distributions are positively skewed, with a Pearson’s first skewness
coefficient (mode skewness) of 0.24 for citation_t4, 0.26 for citation_t8 and 0.20 for citation_t12. In addition,
the Yule’s coefficient of skewness is 0.33 for citation_t4, 0.33 for citation_t8 and 0.40 for citation_t12. The
positive skewed distribution follows the distribution identified by Hall (2005), which also justifies the use of a
cost-sensitive function, i.e. the focal loss, to account for imbalanced datasets (see 4.4.2.2). A limitation is that
we could focus more on variance-based methods, which in turn could improve our loss function training.

2From Table 3.5, the renewals (t4, t8, t12) distribution is negatively skewed, with the Pearson’s first
skewness coefficient (mode skewness) of -0.15, and the Yule’s coefficient of skewness of -0.11. This is similar
to the distribution by Lanjouw et al. (1998); Squicciarini et al. (2013), with the majority of patents being renewed
by firms in the fear of losing out. It is also evident that the generality distributions are positively skewed, with the
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Table 3.5 Descriptive statistics for numeric input feature determinants and categoric output/
target feature proxies for the full dataset (100FD)

Featuresa ,b Variable namec Datapoints d Mean Standard Min. Percentiles Max.
Deviation 25p 50p 75p

Numeric input
feature determinants
(see 2.1.2.4,
Table 2.5, and
3.2.1)

Backward citations 5190340 19.33 47.51 0.00 6.00 11.00 19.00 5277.00
Classification - many field 5190340 0.43 0.49 0.00 0.00 0.00 1.00 1.00
Dependent claims 5190340 15.53 11.46 1.00 8.00 14.00 20.00 -
Family size 5190340 3.98 4.07 1.00 1.00 3.00 5.00 57.00
Filing year 5190340 2001.18 10.64 1976.00 1994.00 2003.00 2010.00 2018.00
Independent claims 5190340 7.80 9.85 1.00 2.00 4.00 10.00 -
Non-patent literature citations 5190340 4.40 16.85 0.00 0.00 0.00 2.00 2356.00
Num_of_unique_cpc_additional_group 5190340 0.81 0.96 0.00 0.00 1.00 1.00 17
Num_of_unique_cpc_additional_section 5190340 0.71 0.75 0.00 0.00 1.00 1.00 8
Num_of_unique_cpc_additional_subgroup 5190340 2.19 4.58 0.00 0.00 1.00 3.00 265
Num_of_unique_cpc_additional_subsection 5190340 0.74 0.83 0.00 0.00 1.00 1.00 13
Num_of_unique_cpc_invention_group 5190340 1.58 0.91 0.00 1.00 1.00 2.00 24
Num_of_unique_cpc_invention_section 5190340 1.26 0.50 0.00 1.00 1.00 1.00 6
Num_of_unique_cpc_invention_subgroup 5190340 3.63 3.75 0.00 1.00 3.00 4.00 241
Num_of_unique_cpc_invention_subsection 5190340 1.41 0.70 0.00 1.00 1.00 2.00 15
Originality index 5190340 0.73 0.21 0.00 0.66 0.80 0.88 1.00
Patent scope 5190340 1.92 1.20 1.00 1.00 2.00 2.00 44.00
Radicalness index 5190340 0.37 0.27 0.00 0.15 0.34 0.57 1.00
Total claims 5190340 15.58 11.62 1.00 8.00 14.00 20.00 887.00

Categoric output/ target
feature proxies
(see 2.1.2.3,
Table 2.4, and
3.2.2.2)

Citation_t4 4192600 2.16 4.83 0.00 0.00 1.00 3.00 509.00
Citation_t8 3226554 6.27 12.63 0.00 1.00 3.00 7.00 2702.00
Citation_t12 2560696 11.87 39.64 0.00 1.00 4.00 11.00 3981.00
Generality 5190340 0.47 0.28 0.00 0.28 0.52 0.69 1.00
Generality_t4 4192600 0.14 0.25 0.00 0.00 0.00 0.26 1.00
Generality_t8 3226554 0.25 0.30 0.00 0.00 0.00 0.50 1.00
Generality_t12 2560696 0.29 0.31 0.00 0.00 0.20 0.59 1.00
Grant_Lag 5190340 984.41 564.82 0.00 593.00 844.00 1233.00 14060.00
Renewals (t4, t8, t12) - 8.32 4.59 0.00 4.00 9.00 13.00 39.00
Quality_index_4 5190340 0.27 0.13 0.01 0.17 0.26 0.34 0.99

aThe descriptive statistics are calculated on the full dataset (100FD). The total number of datapoints, n, for
the full dataset (100FD) are 5190340 granted patents between 01.01.1976 - 01.01.2019 (see 3.1.1).

bTable 4.1 includes the operationalisation of all features (proxies and determinants) for deep learning,
including the variable name, type, dimension and operational definition.

cVariable names are arranged in alphabetical order and are calculated on the patent level (see 2.1.2).
dSome of the categoric output/ target proxies have different total number of datapoints (i.e. total number of

complete variables per patent), which depends on the time T , where T = 4,8,12 in T years after the grant date.

Pearson’s first skewness coefficient (mode skewness) of 0.56 for generality_t4, 0.83 for generality_t8 and 0.30
for generality_t12. In addition, the Yule’s coefficient of skewness is 1.00 for generality_t4, 1.00 for generality_t8
and 0.33 for generality_t12. The relative increase in forward citations is less than the diversification in the IPC
classes, showing that there is a small number of patents covering a diverse number of fields, with increasing
diversification as the number of forward citations increases (i.e. forwarded cited patents are filed in a diverse
number of fields). This is then followed by a sudden drop in positive skewness, showing a concentration of
the forward citations in the same number of fields. The patent quality index 4, as defined by Squicciarini et al.
(2013), is close to an asymmetric distribution, with the Pearson’s first skewness coefficient (mode skewness)
of 0.05, and the Yule’s coefficient of skewness of -0.02. This is partly the reason for the improved model
performance in Table 5.15.



Chapter 4

Developing the deep learning algorithmic

approach

In this chapter, we describe and explain the development of the deep learning (DL)1 algo-
rithmic approach (Schmidhuber, 2015), an artificial intelligence (AI) methodology, for the
valuation of patented invention, i.e. patents2. We aim to show the design and development of
the algorithm, including the tests performed to arrive at optimised prediction models3. Fig.
4.14 shows the process flowchart for the development of the deep learning approach, which
is supported by computational resources5 (see 1.2 and Fig. 1.1).

We follow a forecasting approach to structure the problem into a supervised learning
paradigm6 and a classification task (4.1). We describe and explain the process of developing
the network architecture (4.2)7.

1For the purpose of this research (see 2.2), we use the term deep learning (DL) to describe artificial neural
networks (ANN), in supervised learning paradigms, defined by the depth of the credit assignment paths, which
are chains of possibly learnable, causal links between inputs and outputs (Hinton et al., 2006), i.e. finding
weights that make the neural network exhibit desired behaviour (Schmidhuber, 2015). These are also known as
deep (and wide) neural networks (Cheng et al., 2017; Goodfellow et al., 2016; Shaked et al., 2016).

2From previous studies, the application of artificial intelligence (AI) methodologies for patent valuation is
limited, as identified in chapter 2.

3The code (Aristodemou, 2020a) is written in Python language (Van Rossum & Drake, 1995), and uses
the libraries of Tensorflow (Abadi et al., 2016a) and Keras (Chollet & Others, 2015). Tensorflow (Abadi et al.,
2016b), URL: https://tensorflow.org. Keras (Chollet & Others, 2015), URL: https://keras.io.

4Fig. 4.1 is a subset of Fig. 1.1.
5The data is stored in the cloud and processed with virtual machines using Microsoft Azure (Microsoft,

2020) and Google AI Platform servers (Google, 2020a). The code is written in Python (Van Rossum & Drake,
1995), and is stored and maintained on GitHub (Github, 2020).

6Supervised learning is when a learning task infers a function from the analysis of the training data, given a
set of mapped input-output pairs, and can determine the mapping of new examples (Bishop, 2006; Goodfellow
et al., 2016) (see 2.2.2).

7The network architecture is determined from the analysis of previous literature (see 2.1.2.6, 2.2.2.2 and
2.2.2.3.2). We focus on deep and wide artificial neural networks, i.e. deep learning, given the limited applications

https://tensorflow.org
https://keras.io
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We take a quasi-experimental network optimisation approach (4.4), for the optimisation,
i.e. the error reduction of the error function between target output value and predicted output
value, of the network architecture (4.2). This consists of two main optimisation tasks: the
optimisation of the parameters (4.4.1), and the optimisation of the gradient descent algorithm
(4.4.2). We evaluate the error function derivative of these optimisations with the evaluation
metrics: accuracy, confusion matrix, F1-score, false negative rate (FNR), log loss, mean
absolute error (MAE), precision, and recall (4.3). Section 4.5 describes the implementation
tests of the deep and wide neural network, with emphasis on the dataset split (4.5.1), and
evaluation strategies (4.5.2).

Fig. 4.1 Process flowchart of the proposed deep learning approach (a subset of Fig. 1.1)

4.1 Supervised learning approach and problem definition

The analysis of the literature in chapter 2, reveals that for the analysis of patent data with arti-
ficial intelligence (AI) methodologies, the majority of the articles are found to be supervised
learning paradigms (2.2.2.1). The most widely researched and implemented methodology
is the multi-layer perceptron (MLP) artificial neural network (ANN) (Basheer & Hajmeer,
2000), with the implementation of the backpropagation (BP) learning algorithm (Schmidhu-
ber, 2015). This applies for the analysis of patent data (see 2.2.2.2), with scholars mainly
using the MLP ANN for technology classification (see Table 2.10).

However, there are limited studies of applying AI methods for valuing patents (see
2.1.2.6). From these, only a limited number make use of ANN, with low capacity1 shallow

of this network architecture in previous studies (2.2.2.3.2), and most specifically artificial intelligence (AI)
methodologies for patent valuation (2.1.2.6).

1The capacity of a neural network is defined as configuration of neurons or nodes and layers, i.e. the
number of layers, the number of input nodes, the number of output nodes, and the number of nodes in each
layer (Hopfield, 1982; Jia et al., 2016), and controls the scope of the types of mapping functions that it is able
to learn (Brownlee, 2019g).
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ANN1, with binary classification, limited number of numeric and categoric features, and
relatively small datasets. Thus, there is limited studies using deep and wide2 ANN, i.e. deep
learning3, for the valuation of patents (Table 2.12).

The value of technologies can be modelled as the value of patents (Squicciarini et al.,
2013). To measure patent value4,5,6, we operationalise determinants7 (see Table 2.5), to
predict proxies8 (see Table 2.4) (Frietsch et al., 2010; Reitzig, 2004). Most empirical
implementations of patent value take the generic form in Eqn. 4.1a, which is operationalised
by Eqn. 4.1b.

Vi = f (vi, j) = g(Ci, j,pk) (4.1a)

Ci, j,pk = h(Ci, j,dm) (4.1b)

where Vi is the value of patented invention i, vi, j is the value of patent j of patented invention
i, Ci, j,pk is a set of k patent value proxies pk for every patent j, and Ci, j,dm is a set of m patent
value determinants dm for every patent j.

1Deep neural networks are defined as networks with architectures with multiple hidden layers, where as
shallow neural networks have one or two hidden layer (Delalleau & Bengio, 2011; Goodfellow et al., 2016;
Murphy, 2012).

2The number of layer nodes is referred to as the width, and the number of layers is referred to as the depth,
of the neural network (Abood & Feltenberger, 2018; Brownlee, 2019g).

3Brownlee (2019m), URL: https://machinelearningmastery.com/what-is-deep-learning/.
4The value of patents is rarely observable (Harhoff et al., 2003), and inductive approaches are more suitable

to determine it (Reitzig, 2003).
5It has been argued in the literature that the nature of value recognition has an intrinsic and extrinsic

dimension. The intrinsic dimension is derived from the intrinsic technological significance, and is represented
by all that appear in the patent document, where as the extrinsic value is the potential to develop the market
(Grimaldi & Cricelli, 2019). Moreover, it has also been suggested that the value of patents consists of: (i) the
value of the patent rights, and (ii) the value of the invention (Jensen et al., 2011), with the former representing
the patent premium, i.e. the value related to the market protection (Arora et al., 2008).

6The PatVal study has estimates of patent value (Gambardella et al., 2007, 2005). Given the difficulty
in sourcing this dataset, we focus on alternative proxies capable of estimating patent value, of which some
correlate with the patent premium (Jensen et al., 2011).

7We define patent value determinants to represent patent characteristic that have been used mainly as value
determinants, correlated with patent value. They represent patent characteristics that have been used in the
literature as explanatory variables and can be classified as ex-ante indicators. An ex-ante indicator is a patent
characteristic that is related to the nature of a patented invention, and is defined immediately at the point or just
after the patent is filed (Arts et al., 2013; Lee et al., 2018; Noh & Lee, 2020).

8We define patent value proxies as measures that can be used to approximate the value of patented inventions.
They represent patent characteristics that have been used mainly in the literature as dependent variables and
can be classified as ex-post indicators (van Zeebroeck & van Pottelsberghe de la Potterie, 2011a). An ex-post
indicator is patent characteristic that is related to the impact and value of a patented invention, which may
change over time (Arts et al., 2013; Lee et al., 2018; Noh & Lee, 2020).

https://machinelearningmastery.com/what-is-deep-learning/
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Table 4.1 Patent value output/ target feature proxies and input feature determinants, opera-
tionalised for deep learning

Featuresa Patent characteristicsb ,c Variable named Variable typee Dim. (DT )f Operational Definitiong

Categoric target/
output proxies
(Ci, j,pk )

h Forward Citations Citations_t4 C [d0] 0 if greater than 21 citations, otherwise 1
Citations_t8 C [d0] 0 if greater than 21 citations, otherwise 1
Citations_t12 C [d0] 0 if greater than 21 citations, otherwise 1

Generality Index Generality_t4 C [d0] 0 if greater than 0.75, otherwise 1
Generality_t8 C [d0] 0 if greater than 0.75, otherwise 1
Generality_t12 C [d0] 0 if greater 0.75, otherwise 1

Grant Lag Grant_Lag C [d0] 0 if less than 600 days, otherwise 1
Renewals Renewal_t4 C [d0] 0 if renewal occurs in year 4 after grant date, otherwise 1

Renewal_t8 C [d0] 0 if renewal occurs in year 8 after the grant date, given renewal_t4 oc-
curred, otherwise 1

Renewal_t12 C [d0] 0 if the renewal of the patent occurs in year 12 after the grant date, given
renewal_t8 occurred, otherwise 1

Quality Indexi Quality_Index_4 C [d0] 0 if greater than 0.45, otherwise 1

Input feature
determinants
(Ci, j,dm )

j Backward Citations Backward citations N [d0] Number of backward citations
Claims Total claims N [d0] Number of claims

Independent claims N [d0] Number of independent claims
Dependent claims N [d0] Number of dependent claims

Classification CPC section C [d0, ...,d7] One hot encoding of the CPC section
CPC subsection C [d0, ...,d122] One hot encoding of the CPC subsection
CPC main group C [d0, ...,d629] One hot encoding of the CPC main group
CPC invention section N [d0] Number of CPC invention sections
CPC invention subsection N [d0] Number of CPC invention subsections
CPC invention main group N [d0] Number of CPC invention main groups
CPC invention subgroup N [d0] Number of CPC invention subgroups
CPC additional section N [d0] Number of CPC additional sections
CPC additional subsection N [d0] Number of CPC additional subsections
CPC additional main group N [d0] Number of CPC additional main groups
CPC additional subgroup N [d0] Number of CPC additional subgroups
IPC section C [d0, ...,d7] One hot encoding of the IPC section
IPC class C [d0, ...,d130] One hot encoding of the IPC class
Many fields N [d0] 1 if the patent is allocated to other fields
Technology Field C [d0, ...,d40] Technology fields, IPC technology concordance (WIPO, 2009)

Family Family Size N [d0] Number of patent family members
Filing year Filing year N [d0] Filing year of the patent application
Non-Patent Literature NPL N [d0] Number of non-patent literature references
Originality Index Originality N [d0] Originality index
Publication number Pub. no. of granted patent N [d0] Publication Number of Granted Patent
Radicalness Index Radicalness Index N [d0] Radicalness index
Scope Patent scope N [d0] Number of unique IPC subclasses
Text Abstract D2V [d0, ...,d299] Doc2vec representation of the abstract

Claims D2V [d0, ...,d299] Doc2vec representation of the claims
Title D2V [d0, ...,d299] Doc2vec representation of the title
Summary D2V [d0, ...,d299] Doc2vec representation of the summary

aProxies are considered the output variables (equivalent to dependent variables and ex-post indicators), and
determinants are considered the input features (equivalent to exploratory variables and ex-ante indicators) (Arts
et al., 2013; Lee et al., 2018; Noh & Lee, 2020; van Zeebroeck & van Pottelsberghe de la Potterie, 2011a).

bPatent characteristics are calculated on the patent level, and are arranged in alphabetical order.
cDescriptive statistics for the numeric input feature determinants, and categoric output/ target feature

proxies, and distributions of granted patents and technology classifications can be found in 3.3.
dTime T is chosen so that proxies are equivalent at the same point in time, where T = 4,8,12, i.e. in T

years after the grant date
eThe feature type: categoric (C), numeric (N), and text Doc2Vec representation (D2V) (see 3.2).
fThe index of the vector dimension in computer science begins from 0.
gValue class definitions have been defined in 3.2.2.3 and Table 3.2. The number 0 represents high value

patents, VH , and the number 1 represents low value patents, VL.
hCategoric target/ output proxies are identified, defined and described in 2.1.2.3, 2.1.2.5, and Tables 2.4

and 2.6. These have been transformed into categoric target/ output feature proxies in 3.2.2.3, and Table 3.2.
iIt’s a composite indicator, which follows the definition by Squicciarini et al. (2013) (Table 2.6).
jInput determinants are identified, defined and described in 2.1.2.4 and Table 2.5. Depending on their data

type, i.e. numeric, categoric, text, these have been transformed into numeric input feature determinants in 3.2.1,
categoric input feature determinants in 3.2.2.2, and Doc2Vec vector text input feature representation in 3.2.3.
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Table 4.1 shows the patent value proxies belonging to set Ci, j,pk , and the patent value
determinants belonging to set Ci, j,dm , that we use in our model development of using deep and
wide ANNs (see 4.2). Ci, j,pk includes all patent value proxies (see 2.1.2.3 and Table 2.4), and
one composite index (see 2.1.2.5 and Table 2.6). These have been transformed into categoric
target/ output feature proxies (see 3.2.2.3), with class definitions for a high value VH and
low value VL patents1 found in Table 3.2. Ci, j,dm includes all patent value determinants (see
2.1.2.4 and Table 2.5). Depending on their data type, i.e. numeric, categoric, text, these have
been transformed into numeric input feature determinants (3.2.1), categoric input feature
determinants (3.2.2.2), and Doc2Vec vector text input feature representation (3.2.3).

4.2 Network architecture

Artificial neural networks (ANNs) are computational methodologies that can solve many
complex real world problems2 (Basheer & Hajmeer, 2000; Hagan et al., 1995). ANNs are
modelled after biological neurons, with complex functions (Gupta, 2000; Murphy, 2012).
They tend to outperform traditional methods, such as logistic regression methods, when the
dimensionality and non-linearity of the problem increases, because they have a high noise
tolerance, learning and generalisation capabilities (Basheer & Hajmeer, 2000; Hill et al.,
1993; Lee et al., 1989; Sargent, 2001).

ANNs learn to approximate a function, which is being governed by a mathematical
function, called the mapping function, and it is this function that a supervised learning
paradigm algorithm seeks to best approximate3. ANNs seek to approximate the mapping
function represented by the data observations. This is achieved by calculating the error
between the predicted output variables, calculated by the model, and the expected target
output variables, and minimizing this error during the training process (Bishop, 2006;
Goodfellow et al., 2016). ANNs are known as universal adaptive approximators and in theory
can be used to approximate any function (Murphy, 2012; Widrow & Lehr, 1993).

1The timeline and calculations of forward citations and the generality index, is aligned with the patent
renewal timeline, i.e. T years after the grant date, where T = {4,8,12} (Choi et al., 2020; Squicciarini et al.,
2013).

2There are many complex real world problems that deploy artificial neural networks (ANNs) and deep
learning (DL) (Baruffaldi et al., 2020; WIPO, 2019b). For example, De Fauw et al. (2018) apply a deep learning
architecture to diagnose retinal disease and subsequent doctor referrals. Recently, Ozturk et al. (2020) also
apply a neural network to detect the COVID-19 virus from patients’ X-rays (Tietze et al., 2020b). There are
also some limited studies that have deployed ANNs in the patent domain (Aristodemou & Tietze, 2018b).
These have been reviewed in Table 2.9, and 2.2.2.2. For example, Trappey et al. (2006) classify a patent into its
possible IPC classification, based on its prior art.

3Brownlee (2020e), URL: https://machinelearningmastery.com/neural-networks-are-function-
approximators/.

https://machinelearningmastery.com/neural-networks-are-function-approximators/
https://machinelearningmastery.com/neural-networks-are-function-approximators/
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Several ANN methodologies1, have been developed over the years, with many network
architectures, parameter and network optimisation techniques, and error function derivatives2

(Hudson & Postma, 1982; Maren, 1991; Murphy, 2012; Schmidhuber, 2015). We use the
multi layer perceptron (MLP) feed-forward ANNs, because it has the highest practical value
and is the most widely researched and implemented methodology in other fields3 (Basheer &
Hajmeer, 2000; Bishop, 2006; Gupta, 2000; Murphy, 2012).

Neural networks have at least two physical components, the processing elements and
the connections. The processing elements are called neurons, and the connections between
the neurons are known as links. In the case of MLP, neurons are known as perceptrons
(Rosenblatt, 1958). Every link has a weight parameter associated with it. Each neuron
receives stimulus from the neighbouring neurons connected to it, processes the information,
and produces an output. Neurons that receive stimuli from outside the network (i.e., not
from neurons of the network) are called input neurons. Neurons on the output layer are
called output neurons. Neurons that receive stimuli from other neurons and whose output is a
stimulus for other neurons in the neural network are known as hidden neurons, and are part
of the hidden layers (Gupta, 2000).

(a) (b)

Fig. 4.2 Network diagrams of 4.2a single perceptron (neuron) representation with 1 layer;
4.2b artificial neural network (ANN) with 2 layers

Fig. 4.2a shows the single perceptron, which is essentially a single layer neural network4.
The perceptron has input links, a bias input term, a net input function, a non-linear activation
function, and an output link, similarly to ANNs5. The perceptron computes a single output

1Van Veen (2016), URL: https://www.asimovinstitute.org/neural-network-zoo/.
2Some of these ANN methodologies have also been applied for the analysis of patent data (see 2.2.2.2 and

Tables 2.9 and 2.10).
3This applies to the patent domain with limitations in the applications and applied methods (see 4.1).
4Sharma (2017b), URL: https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53.
5Chandra (2018), URL: https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975.

https://www.asimovinstitute.org/neural-network-zoo/
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://towardsdatascience.com/perceptron-learning-algorithm-d5db0deab975
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from multiple real-valued inputs by forming a linear sum combination according to its input
weights and then transfers the output through a non-linear activation function1, to give an
output link2. This is a functional transformation, which can be represented as follows:

a =
D

Â
i=1

wixi +w0x0 (4.2a)

y = h(a) = h

 
D

Â
i=1

wixi +w0x0

!
(4.2b)

where x = {x1, ...,xD} is a set of inputs, w = {w1, ...,wD} is a set of weights (adjustable
parameters during training), h(.) is a non-linear activation function, b = w0x0 is the bias
parameter, a is an activation, and y is the output.

Neural networks use basis functions that follow the same form as the perceptron, so that
each basis function is itself a non-linear function of a linear combination of the inputs, where
the coefficients in the linear combination are adaptive parameters (Murphy, 2012). Fig. 4.2b
shows a 2 layer3 artificial neural network (ANN), with one input layer, one hidden layer
and one output layer. The input, hidden and output variables are represented by nodes, with
weight parameter connectors, and the bias parameters.
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yk = s(ak) (4.3d)
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1Sharma (2017a), URL: https://towardsdatascience.com/activation-functions-neural-networks-
1cbd9f8d91d6.

2Honkela (2001), URL: https://users.ics.aalto.fi/ahonkela/dippa/node41.html.
3We adopt the terminology by Murphy (2012), where a 2 layer ANN is a network with 2 layers of adaptive

weights, i.e. one hidden layer.

https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6
https://users.ics.aalto.fi/ahonkela/dippa/node41.html
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where j = 1, ...,M, and the subscript (1) indicates the corresponding parameters are in the
first layer of the network, z j are the hidden units, h(.) is the activation function1 of the first
layer, s(.) is the activation function2 of the second (output) layer, k = 1, ...,K is the total
number of outputs, b2 = w(2)

k0 is the bias parameter of the hidden layer. We absorbed the bias
parameters into the set of weight parameters, so that Eqn.. 4.3f represents the final form of a
2-layer ANN. Thus, the neural network model is a non-linear function from a set of input
variables {xi}, represented by vector x, to a set of output variables yk, controlled by a vector
w of adjustable parameters.

4.3 Evaluation of the error-function derivative

The evaluation of the error-function derivative quantifies the performance of a predictive
model (Brownlee, 2020f). This involves splitting a full dataset into a training, validation
and testing set (see 4.5.1). The model is then trained on a training dataset, validated on
the validation set for hyperparameter tuning, and then tested on a holdout testing set. The
predicted values are then compared to the target values (Ferri et al., 2009; Sun et al., 2009).

We evaluate our models using a variety of classification evaluation metrics3,4,5. These
include (in alphabetical order): accuracy (4.3.1), confusion matrix (4.3.2), F1-score (4.3.3),
false negative rate (FNR) (4.3.4), log loss (4.3.5), mean absolute error (MAE) (4.3.6),
precision (4.3.7), and recall (4.3.8). Moreover, we calculate three variations of precision,
recall, and F1-score, which include: (i) per class label, (ii) macro average, and (iii) weighted
average6.

1Jain (2019), URL: https://www.linkedin.com/pulse/activation-functions-neural-networks-rahul-jain.
2Kathuria (2018), URL: https://blog.paperspace.com/vanishing-gradients-activation-function/.
3Harrel (2019), https://www.fharrell.com/post/classification/.
4The taxonomy proposed by Ferri et al. (2009), divides the evaluation metrics into three groups: (i)

threshold metrics, (ii) ranking metrics, and (iii) probability metrics. Threshold metrics quantify the classification
prediction errors, and include accuracy, confusion matrix, F-score, mean absolute error (MAE), precision and
recall. Ranking metrics evaluate classifiers based on how effective they are at separating classes, such as the
false negative rate. Probabilistic metrics quantify the uncertainty in predictions, such as log loss (Brownlee,
2020f; Ferri et al., 2009). Brownlee (2020f), URL: https://machinelearningmastery.com/tour-of-evaluation-
metrics-for-imbalanced-classification/.

5We evaluate our models with a variety of evaluation metrics to ensure a consistent performance of our
proposed deep learning approach for patent valuation. Given the high imbalance nature of the problem,
i.e. highly positive skewness of distributions of forward citations, especially when T = 4, we evaluate the
performance of our model, with transparent reporting, on a variety of metrics to increase our confidence
in its predictive ability (Brownlee, 2020c; Ferri et al., 2009; Provost, 2000; Sun et al., 2009). Previous
studies only focus on a selective number of metrics (see 2.2.2.3.2 and Table 2.12). Brownlee (2020c), URL:
https://machinelearningmastery.com/failure-of-accuracy-for-imbalanced-class-distributions/.

6The macro average calculates metrics for each label, and finds their unweighted mean. This does not
take into account class imbalance. The weighted average calculates metrics for each label, and finds their

https://www.linkedin.com/pulse/activation-functions-neural-networks-rahul-jain
https://blog.paperspace.com/vanishing-gradients-activation-function/
https://www.fharrell.com/post/classification/
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/failure-of-accuracy-for-imbalanced-class-distributions/
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4.3.1 Accuracy

Accuracy is the most widely used metric to evaluate a classifier (Lee et al., 2018). It is
defined as the degree of right predictions of a model, i.e. the number of correct predictions
over the total predictions (Ferri et al., 2009). We calculate the average accuracy with Eqn 4.4
(see 4.3.2 for definition of terms):

Accuracy =
T P+T N

T P+FN +FP+T N
(4.4)

4.3.2 Confusion matrix

The confusion matrix (Table 4.2) is a summary of prediction results on a classification task
(Sokolova & Lapalme, 2009). For our models a true positive (TP) is when the patent is low
value, VL and is predicted by the model to be low value, VL. A true negative (TN) is when the
patent is high value, VH and is predicted by the model to be high value, VH .

Table 4.2 Confusion matrix

Confusion Matrix
Target variable

High value, VH Low value, VL

Predicted variable High value, VH True negative (TN) False negative (FN)
Low Value, VL False positive (FP) True positive (TP)

In addition, a false positive (FP) is when a patent is high value, VH but is predicted to
be low value, VL. Thus, one can interpret that a false positive (FP) represents a missed
opportunity, i.e. when a patent is high value, VH but it remains unexploited because the
model predicts it to be low value, VL, and the firm’s management decides against exploiting
it (Baglieri & Cesaroni, 2013; Gregory, 1995).

Moreover, a false negative (FN) is when a patent is low value, VL but is predicted to be
high value, VH . Thus, one can interpret that a false negative represents a wrong investment,
i.e. when a patent is low value VL but it is heavily exploited, with resource commitment and
development investment because the model predicts it to be high value, VH and the firm’s
management decides on fully exploiting it (Arora et al., 2008; Ernst, 1995; Soenksen &
Yazdi, 2016; Verbano & Nosella, 2010). This has more serious implications for firms, since
committing resources, and investing for the development of patented inventions to tangible
outputs might lead to depletion of resources or financial losses (Benaroch, 2001; Bond &
Meghir, 1994; Gambardella et al., 2011; Greenhalgh & Rogers, 2006; Griliches, 1998).

weighted average by taking into consideration the number of datapoints in each class. This alters the macro
average to account for class imbalance (Pedregosa et al., 2020; Shmueli, 2019). Pedregosa et al. (2020), URL:
https://scikit-learn.org/stable/modules/model_evaluation.html.

https://scikit-learn.org/stable/modules/model_evaluation.html
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4.3.3 F1-score

The F1-score1 is the harmonic mean of precision and recall. It gives equal weight to both
precision and recall (Ferri et al., 2009). We calculate the F1-score with Eqn 4.5, using the
definitions of precision (4.3.7) and recall (4.3.8):

F1� score =
2⇥Precision⇥Recall

Precision+Recall
(4.5)

4.3.4 False negative rate (FNR)

The false negative rate (FNR) is the number of false negatives2 over the total number of
positives (TP + FN). We calculate the FNR with Eqn 4.6 (see 4.3.2 for definition of terms):

False negative rate, (FNR) =
FN

T P+FN
(4.6)

4.3.5 Log loss

The most common metric for evaluating predicted probabilities is log loss for classification3.
It measures how good probability estimates are and is used when calibration and stability is
important (Ferri et al., 2009). We calculate the log loss for every iteration cycle (epoch) of
training and validation and compare the development of the learning curves4 (see 4.4.2).

4.3.6 Mean absolute error (MAE)

Mean absolute error (MAE) measures the average magnitude of how much a set of predictions
deviates from the target true values.

4.3.7 Precision

Precision is the ability of a classification model to return only relevant instances5, i.e. the
number of correctly classified positives (TP) over the total number relevant instances (TP +

1Dercksen (2018), URL:https://koendercksen.com/micro-averaged-f1-optimization-using-neural-networks.
html.

2Valchanov (2018), https://towardsdatascience.com/false-positive-and-false-negative-b29df2c60aca.
3Brownlee (2020f), URL: https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-

classification/.
4Brownlee (2019h), URL: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-

learning-model-performance/.
5Saxena (2018), URL: https://towardsdatascience.com/precision-vs-recall-386cf9f89488.

https://koendercksen.com/micro-averaged-f1-optimization-using-neural-networks.html
https://koendercksen.com/micro-averaged-f1-optimization-using-neural-networks.html
https://towardsdatascience.com/false-positive-and-false-negative-b29df2c60aca
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/tour-of-evaluation-metrics-for-imbalanced-classification/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://towardsdatascience.com/precision-vs-recall-386cf9f89488
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FP). We calculate precision with Eqn 4.7 (see 4.3.2 for definition of terms):

Precision =
T P

T P+FP
(4.7)

4.3.8 Recall

Recall, is the ability of a model to find all the relevant cases1, i.e. the number of correctly
classified positives (TP) over the total number of positives (TP + FN). We calculate recall
with Eqn 4.8 (see 4.3.2 for definition of terms):

Recall =
T P

T P+FN
(4.8)

4.3.9 Classification threshold (Q)

Classification predictive modelling involves predicting a class label. This is achieved by
using a threshold (Q), which is also known as classification threshold or decision threshold2,
where the model converts the probability returned into a class (Lipton et al., 2014; Provost,
2000). The default threshold (Q) is 0.50, where all values greater than the threshold are
mapped to one class and all other values are mapped to another class. For classification
problems with high imbalanced datasets (Haibo He & Garcia, 2009), we tune the threshold
(Q) as part of a post-processing step approach, where we convert the outputs of a classifier
into optimal predictions (Lipton et al., 2014). We tune the classification threshold (Q) to
optimise the prediction outputs by maximising the macro average F1-score (Ferri et al., 2019;
Lipton et al., 2014; Zou et al., 2016).

4.4 Network optimisation

Deep learning has recently enjoyed success across a variety of complex problems, for example
the synthesis prediction for drug discovery (Chen et al., 2018). Artificial neural networks
(ANN) are able to recover good solutions that minimize the error, controlled by a number
of adjustable parameters. These models are composed of two different types of parameters:
(i) the hyperparameters, which are all the arbitrarily defined parameters, and (ii) the model
parameters, which are learned during the model training, i.e. the weights that define how to

1Koehrsen (2018b), URL: https://towardsdatascience.com/beyond-accuracy-precision-and-recall-
3da06bea9f6c.

2Brownlee (2020b), URL:https://machinelearningmastery.com/threshold-moving-for-imbalanced-
classification/.

https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://towardsdatascience.com/beyond-accuracy-precision-and-recall-3da06bea9f6c
https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
https://machinelearningmastery.com/threshold-moving-for-imbalanced-classification/
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use the input data to get the desired output. Hyperparameters, through fine tuning1, determine
the structure of the model to identify the network’s optimised form for generalisation using
the model parameters (Jääsaari et al., 2019; Neyshabur et al., 2017).

The problem of tuning these hyperparameters is solved by autotuning algorithms known
as search methods2,3. These search methods, such as grid search4, random search5, or trial
and error search, are autotuning algorithms,which find the optimal hyperparameter values to
optimise an evaluation metric (see 4.3) (Bergstra et al., 2011, 2013; Komer et al., 2014).

In our study, we take a quasi-experimental approach, using all 3 search methods for
tuning and optimising our networks for the chosen output feature proxies (see Table 4.1). Fig.
4.3 shows the top level quasi-experimental approach we follow. Firstly, we use a combination
of the grid search and random search autotuning algorithms, to determine an initial set of
evaluated hyperparameters6. Secondly, we fine tune the performance of our model using a
combination of random search and trial and error (Bergstra et al., 2011; Brownlee, 2019k).
We do this by using the learning curve approach7,8 to diagnose the performance of the model,
and identify performance problems (Domhan et al., 2015).

1Brownlee (2019l), URL: https://machinelearningmastery.com/hyperparameters-for-classification-
machine-learning-algorithms/,

2Ippolito (2019), URL: https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d.
3Koehrsen (2018a), URL: https://towardsdatascience.com/automated-machine-learning-hyperparameter-

tuning-in-python-dfda59b72f8a.
4In grid search, all the combinations of hyperparamters are implemented, and the model is evaluated. The

pattern follows a grid matrix, where the model with the highest accuracy is considered the best (Senapati, 2018).
One of the major drawbacks of grid search is that it suffers from the dimensionality problem, i.e. when the
number of hyperparameters increases, the number of models to be evaluated increases exponentially (Brownlee,
2016b). Brownlee (2016b), URL: https://machinelearningmastery.com/grid-search-hyperparameters-deep-
learning-models-python-keras/.

5In random search, random combinations of a range of the hyperparameters are used to find the best
solution for the built model. The probability of finding the optimal parameters are comparatively higher in
random search because of the random search pattern where the model might end up being trained on the
optimised parameters without any aliasing (Senapati, 2018)

6The initial range of hyperparameters is based on previous literature in Tables 2.10 and 2.12 to determine
the grid’s start. We then train the quasi-search models for 30 epochs (iterations) because of the time constrains.
However, if we train the quasi-search models to convergence, i.e. a large number of training epochs, then early
stopping occurs around 30 epochs (Brownlee, 2019j; Caruana et al., 2001; Prechelt, 2012). Early stopping
is the point at which the performance of the classifier evaluated against the validation set, begins to degrade,
i.e. log loss begins to increase or accuracy begins to decrease, at which point the training process is stopped
(Bishop, 2006).

7Brownlee (2019h), URL: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-
learning-model-performance/.

8A learning curve is a plot of model learning performance over experience or time. Learning curves are
widely used in performance diagnosis. The evaluation of each model on the training dataset and on a holdout
validation dataset after each update (or epoch) during training is then plotted. Reviewing the learning curves
and the model performance during training can be used to diagnose problems with learning, such as underfitting
or overfitting, as well as whether the training and validation datasets are suitably representative (Brownlee,
2019h; Domhan et al., 2015).

https://machinelearningmastery.com/hyperparameters-for-classification-machine-learning-algorithms/
https://machinelearningmastery.com/hyperparameters-for-classification-machine-learning-algorithms/
https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d
https://towardsdatascience.com/automated-machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a
https://towardsdatascience.com/automated-machine-learning-hyperparameter-tuning-in-python-dfda59b72f8a
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Fig. 4.3 Quasi-experimental approach for network optimisation, using grid search, random
search, and trial and error

There are 3 types of problems that are straightforward to diagnose for a poorly performing
deep learning model (Brownlee, 2019b). These include: (i) problems with learning, where a
model cannot effectively learn from the training dataset or shows slow progress; (ii) problems
with generalisation, where a model overfits the training dataset and performs poorly on a
holdout test dataset, and (iii) problems with prediction, where the training algorithm has a
strong influence on the final model, causing a high variance in behaviour and performance.
We follow a 3-step framework approach, proposed by Brownlee (2019e), for identifying
and improving problems with performance: (i) better learning, with methods that improve
the adaptation of neural network model weights in response to a training dataset; (ii) better
generalization, with methods that improve the performance of a neural network model on a
test dataset; (iii) better predictions, with methods that reduce the variance in the performance
of a final model1,2.

In the first step, we identify the initial set of hyperparameters using a combination of
grid search and random search methods. Fig. 4.4 shows the results of the initial tuning of
the quasi-experimental approach in Fig. 4.3. The colours represent the number of different
experiments3. The plots in Fig. 4.4 include: 4.4a validation loss vs. training loss; 4.4b

1Brownlee (2019e), URL: https://machinelearningmastery.com/framework-for-better-deep-learning/.
2Maheswari (2019), URL: https://towardsdatascience.com/breaking-the-curse-of-small-data-sets-in-

machine-learning-part-2-894aa45277f4.
3Due to the large number of experiments produced from grid search and random search autotuning

experiments, with trying combinations of hyperparameters, a key is omitted from Fig. 4.4. This is because, for

https://machinelearningmastery.com/framework-for-better-deep-learning/
https://towardsdatascience.com/breaking-the-curse-of-small-data-sets-in-machine-learning-part-2-894aa45277f4
https://towardsdatascience.com/breaking-the-curse-of-small-data-sets-in-machine-learning-part-2-894aa45277f4


82 Developing the deep learning algorithmic approach

validation accuracy vs. training accuracy; 4.4c training precision vs. training recall; 4.4d
validation precision vs. validation recall; 4.4e validation F1-score vs. training F1-score.

From Fig. 4.4a, we observe that there is a non-linear relationship between training loss
and validation loss due to the evaluation of different hyperparameters. The training loss
should be about the same as the validation loss, and a near-to linear relationship should exist,
indicating that learning takes place1. Fig. 4.4b shows the training accuracy vs. validation
accuracy, which has a logarithmic trend relationship, indicating that either the model is
overfitting or the validation dataset is not representative of the training dataset, i.e. the
distributions of the training and validation datasets are different2. However, we also observe a
set of experimental values above the trend line, indicating that the model is learning from the
training dataset with the experimental hyperparameter combinations. This is probably due to
the increase on the network size and the introduction of regularisation (Kukačka et al., 2017;
Ng, 2004). These experiments also coincide with the reduction in the loss function (Fig.
4.4a), and improvements in identifying more easily the elements of the confusion matrix (Fig.
4.4c and 4.4d). We also observe that the trend curve is higher in Fig. 4.4d than Fig. 4.4c,
attributed to the introduction of the dropout regularisation method (see 4.4.1.2). This is also
supported by Fig. 4.4e with a few experiments above the trend line indicating the increase in
the model’s learning ability.

example for two hyperparameters, each testing 3 values, there are 9 combinations of experiments, as shown in
Fig. 4.3. Due to the large number of hyperparameter testing, which produced a large number of experiments,
we omit the key to avoid confusion. We plot all the experiments on the same set of axis, to identify patterns in
the model’s performance and hyperparameters before we fine tune the models (see Fig. 4.3). Some experiments
are overlayed because of the similarity in the results.

1Brownlee (2019h), URL: https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-
learning-model-performance/.

2The shape and dynamics of a learning curve can be used to diagnose the behaviour of a model and in turn
identify configuration changes to improve learning and performance. There are three dynamics to be observed:
underfit, overfit, good fit. Underfitting refers to a model that cannot learn from the training dataset, and occurs
when the model is not able to obtain a sufficiently low error value on the training dataset (Goodfellow et al.,
2016). An underfitted model can be identified either from a flat learning curve of the training loss or from
the training accuracy curve being significantly lower than the validation accuracy curve (Brownlee, 2019h).
Overfitting occurs when a models learns the training dataset ’too well’, i.e. memorises it (Domhan et al., 2015).
The more overfitted the model is, the less it is able to generalise to new data. This increases the generalisation
error and occurs either when the model has more capacity, i.e. flexibility, than is required for the problem or if
prolong training occurs (Murphy, 2012). A good fit is the target of the learning algorithm and exists between an
overfit and underfit model. A good fit is identified by a training and validation loss function that decreases to a
point of stability with a minimal gap between the two final loss values. The model’s training loss will always be
slightly lower than the validation dataset, which is known as generalisation gap (James et al., 2013).

https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
https://machinelearningmastery.com/learning-curves-for-diagnosing-machine-learning-model-performance/
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Fig. 4.4 Plots of results from the initial tuning (grid search and random search, see Fig.
4.3): 4.4a validation loss vs. training loss; 4.4b validation accuracy vs. training accuracy;
4.4c training precision vs. training recall; 4.4d validation precision vs. validation recall;
4.4e validation F1 score vs training F1 score. The colours represent the different number of
experiments

In the second step, we fine tune the network using a combination of random search
methods and trial and error methods approach, to determine optimal networks (see Fig. 4.3).
Fig. 4.5 shows the results of all the experiments for the fine tuning of the network. These are
aggregated results of all experiments, of which a selection is reported in 4.4.1 and 4.4.2 to
show the development of the optimisation of the deep neural network’s parameters1.

1In Fig. 4.5, we plot all the experiments on the same set of axis, to identify patterns in the model’s
performance and identify the best model (see Fig. 4.3). The colours represent some of the experiments. We omit
the key to avoid confusion because of the number of experiments, which is smaller than the ones in Fig. 4.4
since we have already identified a set of initial hyperparameters from step 1 (see Fig. 4.3). Some experiments
are overlayed because of the similarity in the results. A selection of experiments to show the development of
the optimisation of the deep neural network’s parameters to identify the best model are reported in 4.4.1.
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Fig. 4.5 Plots of results from the fine tuning (trial and error and random search, see Fig. 4.3):
4.5a validation loss vs. training loss; 4.5b validation accuracy vs. training accuracy; 4.5c
validation precision (macro average) vs. validation recall (macro average); 4.5d validation
precision (weighted average) vs. validation recall (weighted average); 4.5e validation F1-
score vs training F1-score. The colours represent the different number of experiments

From Fig. 4.5a validation loss vs. training loss, we observe that the results of these
experiments are concentrated along the trend line, which indicates that the ANN is learning,
with sometimes minimal underfitting (some of the experiments are further up the trend
line). This is also supported by Fig. 4.5b validation accuracy vs. training accuracy, where
the accuracies increase of the quasi-models, with a high concentration of experiments
concentrated above the trend line in the upper right quadrant. The improved learning and
generalising ability of the models can be observed by Fig. 4.5c, Fig. 4.5d, and Fig. 4.5e,
where the evaluation metric of precision, recall and F1-score have been increasing. These are
also above the trend lines, and concentrated on the upper left quadrants.
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4.4.1 Parameter optimisation

We optimise the hyperparameters of the artificial neural networks, which have an impact on
the model’s parameters. Hyperparameters determine the structure of the model to identify
the network’s optimised form for generalisation using the model parameters, the weights
(Neyshabur et al., 2017). Firstly, we focus on the neural network capacity (4.4.1.1), to
determine the number of layers and nodes for our model. Then, we reduce the generalisation
error by regularisation methods, such dropout, batch normalisation, and L2 penalty (4.4.1.2),
to improve and tailor our model’s ability to learn and generalise to new data.

4.4.1.1 Neural network capacity

The capacity1 of a deep learning ANN controls the scope of the types of mapping functions
that it is able to learn2.Increasing the number of layers provides an increase to the capacity
of the model3. Neural networks, with high capacity are known as deep neural networks4.
Deep neural networks with a high number of layer nodes5 are known as wide and deep neural
networks (Pandey & Dukkipati, 2014). We need to optimise the capacity of our model, so it
fits with our dataset’s size and complexity (see 3.3), with the aim to learn how to map the
inputs to the outputs. In the experiments described below, we focus on the number of layers,
and number of nodes in the hidden layers. By adding more layers and nodes within a layer, a
deep network can represent functions of increasing complexity (Goodfellow et al., 2016).

From Tables 2.10 and 2.12, current research focuses on shallow 2 and 3 layer neural
networks6,7, with only a limited number of recent studies using a slightly deeper network
structures (see 2.2.2.3.2). Thus, we use ANNs with more than 4 layers. In addition, we

1The capacity of a neural network is defined as configuration of neurons or nodes and layers, i.e. the
number of layers, the number of input nodes, the number of output nodes, and the number of nodes in each
layer (Brownlee, 2019g; Hopfield, 1982; Jia et al., 2016). A model with too little capacity cannot learn the
training dataset, and underfits, whereas a model with too much capacity memorises the training dataset and thus
overfits.

2Brownlee (2019g), URL: https://machinelearningmastery.com/how-to-control-neural-network-model-
capacity-with-nodes-and-layers/.

3A model with more nodes or more layers has a greater capacity and is potentially capable of learning a
larger set of mapping functions, governed by the data complexity.

4Deep neural networks are defined as networks with architectures with multiple hidden layers, i.e. high
capacity, where as shallow neural networks have one or two hidden layer (Delalleau & Bengio, 2011; Goodfellow
et al., 2016; Murphy, 2012).

5The number of layer nodes is referred to as the width, and the number of layers is referred to as the depth,
of the neural network (Abood & Feltenberger, 2018; Brownlee, 2019g).

6We adopt the terminology by Murphy (2012), where a 2 layer artificial neural network (ANN) is a network
with 2 layers of adaptive weights, i.e. 1 hidden layer

7Shallow neural networks have 1 or 2 hidden layer, i.e they are a 2 or 3 layer network respectively (Delalleau
& Bengio, 2011; Goodfellow et al., 2016; Murphy, 2012).

https://machinelearningmastery.com/how-to-control-neural-network-model-capacity-with-nodes-and-layers/
https://machinelearningmastery.com/how-to-control-neural-network-model-capacity-with-nodes-and-layers/
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set the number of nodes in the input layer to the number of input features. There is no
universally accepted method for setting the number of nodes in the hidden layers1, with only
some heuristic methods having been reported in the literature (Kavzoglu & Mather, 2003;
Stathakis, 2009). We follow a systematic experimentation approach2, where we combine the
following two approaches: (i) the heuristics, proposed by Heaton (2005), where the number
of hidden nodes should be between the size of the input layer and the size of the output layer,
should be 2/3 the size of the input layer, plus the size of the output layer, and should be less
than twice the size of the input layer; (ii) the argument proposed by Goodfellow et al. (2016)
to go for a greater depth and width network for a prediction model, where the data size and
complexity is high (Chen et al., 2019; Hornik, 1991; Zhang et al., 2016a). Thus, we set the
number of nodes in the hidden layers to 2048 nodes, and allow the model to try numbers in
the range 128-4096 and determine the number of nodes, based on the best performance.

Fig. 4.63 shows the network capacity tuning experiments. This is complemented by Table
4.3. From Fig. 4.6, we observe that the training and validation loss curves follow each other,
which shows that the deep ANN’s learning is stable (Brownlee, 2019h). This is supported by
Table 4.3, since with increasing capacity the training loss and validation loss are similar. The
training accuracy is slightly lower that the validation accuracy in Fig. 4.6 and in Table 4.3.

From Table 4.3, as the number of layers increases, the validation accuracy increases. This
saturates at 7 layers, since any more layer addition causes the network to overfit (training
accuracy rises above the validation accuracy), while validation precision (macro average)
and validation F1-score (macro average) drop significantly (see Table 4.3 models h and i).
We can also observe that increasing the width of the network (no. of nodes), allows the ANN
to capture the complex relationships of the dataset, since the training loss and validation
loss drop even further (see Table 4.3 models e, f and g). Also, the weighted averages for
precision, recall, and F1-score are higher than the macro averages for precision, recall,
F1-score, because they take into consideration the class imbalance present within the data.
Table 4.3 model g from is slightly underfitting since the training accuracy is less than the
validation accuracy. However, it has the highest validation F1-score (macro), which indicates
that it has more capacity to learn and requires further tuning to reduce the generalisation
error. Thus, Table 4.3 model g with 7 layers and 2048 nodes on each layer, is a wide and deep

1Cross Validated (2010), URL: https://stats.stackexchange.com/questions/181/how-to-choose-the-number-
of-hidden-layers-and-nodes-in-a-feedforward-neural-netw.

2Brownlee (2017e), URL: https://machinelearningmastery.com/evaluate-skill-deep-learning-models/.
3Fig. 4.6 is a dynamic representation of the experiments, i.e. shows the evaluation of the different

configuration models per epoch (iteration cycle) on the training and the validation datasets. It shows a selective
number of experiments, which are overlayed due to the similarity in the results, and a sub-selection of those are
reported in Table 4.3. Table 4.3 is a static representation of the experiments, i.e. shows the evaluation of the
different configuration models at the last epoch (end of training) on the training and validation datasets.

https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw
https://stats.stackexchange.com/questions/181/how-to-choose-the-number-of-hidden-layers-and-nodes-in-a-feedforward-neural-netw
https://machinelearningmastery.com/evaluate-skill-deep-learning-models/
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ANN, with stable predictive power, and forms the basis for the neural network regularisation
experiments (4.4.1.2).

Fig. 4.6 Dynamic (per epoch) network capacity tuning evaluation results for selective ex-
periments: training loss, validation loss, validation precision (macro average), validation
recall (macro average), validation F1-score (macro average), validation precision (weighted
average), validation precision (weighted average), validation F1-score (weighted average)

Table 4.3 Static end of training (last epoch) network capacity tuning evaluation results for a
selection of experiments from Fig. 4.6

Triala ,b ,c Layersd Nodese Training
loss

f Validation
loss

Training
accuracy

Validation
accuracy

Validation
precision
(weighted)

Validation
recall
(weighted)

Validation
F1-score
(weighted)

Validation
precision
(macro)

Validation
recall
(macro)

Validation
F1-score
(macro)

a 4 2048 73.93 73.91 0.68 0.68 0.88 0.68 0.75 0.56 0.67 0.61
b 5 2048 75.20 75.15 0.68 0.69 0.89 0.69 0.75 0.57 0.69 0.62
c 6 2048 67.99 67.93 0.69 0.70 0.89 0.70 0.76 0.57 0.69 0.63
d 6 4096 52.63 52.63 0.70 0.70 0.88 0.70 0.76 0.57 0.69 0.62
e 7 128 74.79 74.70 0.71 0.74 0.86 0.74 0.77 0.62 0.70 0.65
f 7 1024 77.24 77.15 0.71 0.74 0.86 0.74 0.78 0.62 0.70 0.66
g 7 2048 59.67 59.60 0.71 0.74 0.86 0.74 0.78 0.62 0.73 0.67
h 8 2048 0.38 0.61 0.79 0.76 0.99 0.76 0.85 0.52 0.88 0.65
i 8 2048 66.49 66.55 0.79 0.77 0.99 0.77 0.86 0.52 0.88 0.65

aThe model with the optimal configuration parameters is shown in bold for this set of experiments.
bA selection of experiments from Fig. 4.6 is reported for simplicity.
cAll experiments have been standardised with the following hyperparamters: no. of input nodes = no.

of input features, loss function = categorical cross-entropy, optimiser = Adam, learning rate = 1e�7, layer
activation function = ReLU, output activation function = softmax, batch size = 512, no. of output nodes = 2.

dWe adopt the terminology by Murphy (2012), where a n layer ANN is a network with n layers of adaptive
weights, for the no. of layers.

eHeaton (2017), URL: https://www.heatonresearch.com/2017/06/01/hidden-layers.html.
fThe evaluation metrics are introduced in 4.3 and the dataset terminology of training, validation and testing

is introduced in 4.5.1.

https://www.heatonresearch.com/2017/06/01/hidden-layers.html
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4.4.1.2 Neural network regularisation

Training a deep neural network that can generalise1 well on new data is a challenging problem
(Goodfellow et al., 2016). A model with too little capacity cannot learn the problem, whereas
a model with too much capacity can learn it too well and overfit the training dataset2. A
modern approach to reducing the generalization error is to use a deeper model that may
require regularization during training to keep the weights of the model small. Methods
that seek to reduce the generalization error by keeping network weights small are referred
to as regularisation methods, constraining the network complexity and leading to faster
optimisation and improved performance (Bishop, 2006; Kukačka et al., 2017; Zhang et al.,
2016a). We use 3 methods that are considered regularisation methods: (i) dropout3 (4.4.1.2.1),
(ii) L2 regularisation4 (4.4.1.2.2), and (iii) batch normalisation5 (4.4.1.2.3).

4.4.1.2.1 Dropout regularisation

Deep ANN with large number of parameters are very powerful machine learning systems.
Dropout6 randomly drops nodes with their connections from the ANN during training to avoid
overfitting (Labach et al., 2019), and prevents them from over-adapting (Gal & Ghahramani,
2015, 2016; King & Zeng, 2003). Dropout forces ANNs to learn useful robust features in
relation to random subsets of neighbouring neurons (Ranjan, 2019; Srivastava et al., 2014).

Fig. 4.7 shows the network regularisation tuning experiments for dropout, which is
complemented by Table 4.47. We observe that the training and validation loss curves follow
each other, indicating a stability in the model’s learning ability (Fig. 4.7), with no overfitting
and minimal underfitting8.

1The objective of ANN is to have a model that performs well both on the training data and the new data on
which the model will be used to make predictions. This is also known as model generalisation or generalising
ability (Goodfellow et al., 2016). A model with a near-infinite number of examples will eventually plateau in
terms of what the capacity of the network is capable of learning.

2Brownlee (2018d), URL: https://machinelearningmastery.com/introduction-to-regularization-to-reduce-
overfitting-and-improve-generalization-error/.

3Brownlee (2018a), URL: https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-
networks/.

4Jane Street (2019), URL: https://blog.janestreet.com/l2-regularization-and-batch-norm/.
5Brownlee (2019c), URL: https://machinelearningmastery.com/batch-normalization-for-training-of-deep-

neural-networks/.
6Maklin (2019), URL: https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-

explained-8c9f6dc4c9ab
7Fig. 4.7 is a dynamic representation of the experiments, i.e. shows the evaluation of the different

configuration models per epoch (iteration cycle) on the training and the validation datasets. It shows a selective
number of experiments, which are overlayed due to the similarity in the results, and a sub-selection of those are
reported in Table 4.4. Table 4.4 is a static representation of the experiments, i.e. shows the evaluation of the
different configuration models at the last epoch (end of training) on the training and validation datasets.

8Budhiraja (2016), URL: https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-

https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/introduction-to-regularization-to-reduce-overfitting-and-improve-generalization-error/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://blog.janestreet.com/l2-regularization-and-batch-norm/
https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/
https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://towardsdatascience.com/machine-learning-part-20-dropout-keras-layers-explained-8c9f6dc4c9ab
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5


4.4 Network optimisation 89

Fig. 4.7 Dynamic (per epoch) network regularisation tuning evaluation results with dropout
for selective experiments: training loss, validation loss, validation precision (macro average),
validation recall (macro average), validation F1-score (macro average), validation precision
(weighted average), validation precision (weighted average), validation F1-score (weighted
average)

Table 4.4 Static end of training (last epoch) network capacity tuning evaluation results with
dropout for a selection of experiments from Fig. 4.7

Triala ,b ,c Dropout
(Hidden
Layers)d

Dropout
(Output
Layer)e

Training
loss

f Validation
loss

Training
accuracy

Validation
accuracy

Validation
precision
(weighted)

Validation
recall
(weighted)

Validation
F1-score
(weighted)

Validation
precision
(macro)

Validation
recall
(macro)

Validation
F1-score
(macro)

a 0.10 0.00 0.53 0.68 0.73 0.71 0.87 0.71 0.75 0.62 0.74 0.67
b 0.20 0.00 0.59 0.61 0.71 0.73 0.86 0.73 0.77 0.62 0.74 0.67
c 0.40 0.10 0.51 0.56 0.75 0.73 0.86 0.73 0.77 0.62 0.74 0.67
d 0.20 0.10 0.59 0.58 0.71 0.74 0.86 0.74 0.78 0.62 0.73 0.67
e 0.20 0.40 0.68 0.62 0.69 0.74 0.86 0.74 0.78 0.62 0.74 0.68
f 0.20 0.20 0.54 0.56 0.74 0.74 0.86 0.74 0.78 0.62 0.74 0.68
g 0.00 0.00 0.59 0.55 0.72 0.76 0.86 0.76 0.79 0.60 0.71 0.65

aThe model with the optimal configuration parameters is shown in bold for this set of experiments.
bA selection of experiments from Fig. 4.7 is reported for simplicity.
cAll experiments have been standardised with the following hyperparamters: no. of input nodes = no.

of input features, loss function = categorical cross-entropy, optimiser = Adam, learning rate = 1e�7, layer
activation function = ReLU, output activation function = softmax, batch size = 512, no. of output nodes = 2, no.
of layers = 7, no. of nodes in hidden layers = 2048.

dDropout is applied between the hidden layers. Brownlee (2018a), URL: https://machinelearningmastery.
com/dropout-for-regularizing-deep-neural-networks/.

eDropout is applied between the last hidden layer and the output layer. Brownlee (2016a), URL: https:
//machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/.

fThe evaluation metrics are introduced in 4.3 and the dataset terminology of training, validation and testing
is introduced in 4.5.1.

learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5.

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
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However, the validation loss curve is less smooth because the model becomes more
sensitive to the validation dataset’s distribution. From Table 4.4, we observe that with a 0.20
dropout rate (i.e. 20% of nodes dropped randomly per layer) in all layers (hidden and output
layers), there is optimal performance with the training and validation loss, which are close to
each other (Table 4.4 model f). This is supported by the training and validation accuracy, with
the introduction of dropout yielding stable results. However, Table 4.4 models e and g exhibit
overfitting. Table 4.4 model f becomes less sensitive to the node weights (Srivastava et al.,
2014), increasing its capability of better generalisation and less likely to overfit the training
data1, and forms the basis for the ANN L2 penalty regularisation experiments (4.4.1.2.2).

4.4.1.2.2 L2 penalty regularisation

The ANN learns a set of weights w (see Eqn. 4.3f) using a gradient descent derivative on
the training dataset, during fitting. Large weights make the ANN unstable, causing sharp
transitions in the node functions and thus large changes in the output for small changes in the
inputs. This indicates an overly specialised ANN to training data (Goodfellow et al., 2016).
Having small weights allows the model to focus learning. The learning algorithm (4.4.2)
can be updated to encourage the ANN towards small weights by introducing the size of the
weights as a penalty, i.e. penalising the model’s loss function (4.4.2.2) proportional to the
weights’ size2 (Ng, 2004).

We use the L2 penalty, where the sum of squared weights w is added into the loss function
as a penalty term (l ) to be minimised3 (Hastie, Trevor, Tibshirani, Robert, Friedman, 2009;
Murphy, 2012). The l hyperparameter4 controls the amount of bias in the model between 0.0
(no penalty, low bias and high variance) and 1.0 (full penalty, high bias and low variance)5,6.

1Brownlee (2016a), URL: https://machinelearningmastery.com/dropout-regularization-deep-learning-
models-keras/.

2Brownlee (2018g), URL: https://machinelearningmastery.com/weight-regularization-to-reduce-
overfitting-of-deep-learning-models/.

3The L2 penalty is also known as ridge regression in other domains (Hoerl & Kennard, 1970; van Wieringen,
2018). It performs a weight decay or shrinkage because it penalises larger weights to decay towards zero unless
supported by the data (Bishop, 2006; Cortes et al., 2009; Loshchilov & Hutter, 2019a).

4It is computationally inefficient and expensive to search for the correct value of multiple hyperparameters.
It is reasonable to use the same weight decay at all layers to reduce the size of search space (Goodfellow et al.,
2016), and a good configuration strategy is usually to start with larger networks and use weight decay.

5Brownlee (2018f), URL: https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-
learning-with-weight-regularization/.

6The model underestimates the weights and underfits the training data with a strong penalty, where as it
overfits the training data with a weak penalty (Lau et al., 2020; Oppermann, 2020).

https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/dropout-regularization-deep-learning-models-keras/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/
https://machinelearningmastery.com/weight-regularization-to-reduce-overfitting-of-deep-learning-models/
https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-regularization/
https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-regularization/
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Fig. 4.8 Dynamic (per epoch) network regularisation tuning evaluation results with L2 penalty
for selective experiments: training loss, validation loss, validation precision (macro average),
validation recall (macro average), validation F1-score (macro average), validation precision
(weighted average), validation precision (weighted average), validation F1-score (weighted
average)

Table 4.5 Static end of training (last epoch) network capacity tuning evaluation results with
L2 penalty for a selection of experiments from Fig. 4.8

Triala ,b ,c L2 Penaltyd Training
loss

e Validation
loss

Training
accuracy

Validation
accuracy

Validation
precision
(weighted)

Validation
recall
(weighted)

Validation
F1-score
(weighted)

Validation
precision
(macro)

Validation
recall
(macro)

Validation
F1-score
(macro)

a 0.0001 73.93 73.91 0.68 0.68 0.88 0.68 0.75 0.56 0.67 0.61
b 0.0010 75.20 75.15 0.68 0.69 0.89 0.69 0.75 0.57 0.69 0.62
c 0.0050 67.99 67.93 0.69 0.70 0.89 0.70 0.76 0.57 0.69 0.63
d 0.0070 74.79 74.70 0.71 0.74 0.86 0.74 0.77 0.62 0.73 0.67
f 0.0090 77.24 77.15 0.71 0.74 0.86 0.74 0.78 0.62 0.73 0.67
g 0.0100 59.67 59.60 0.73 0.74 0.86 0.74 0.78 0.62 0.73 0.67
h 0.0200 66.49 66.55 0.79 0.77 0.99 0.77 0.86 0.52 0.88 0.66

aThe model with the optimal configuration parameters is shown in bold for this set of experiments.
bA selection of experiments from Fig. 4.8 is reported for simplicity.
cAll experiments have been standardised with the following hyperparamters: no. of input nodes = no.

of input features, loss function = categorical cross-entropy, optimiser = Adam, learning rate = 1e�7, layer
activation function = ReLU, output activation function = softmax, batch size = 512, dropout rate = 0.2, no. of
output nodes = 2, no. of layers = 7, no. of nodes in hidden layers = 2048, dropout rate = 0.2.

dWe follow the approach by Brownlee (2018g) to introduce the same L2 penalty to all layers. Brownlee
(2018f), URL: https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-
regularization/.

eThe evaluation metrics are introduced in 4.3 and the dataset terminology in 4.5.1.

https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-regularization/
https://machinelearningmastery.com/how-to-reduce-overfitting-in-deep-learning-with-weight-regularization/
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Fig. 4.81 shows the network regularisation tuning experiments for L2 penalty, and is
complemented by Table 4.5. While the curves are shifted upwards due to the addition of
the penalty term l , we observe a stable training and learning from the smoothness of the
training loss curve and the validation loss curve in Fig. 4.8, originating from the weight
decay constrain (Hoerl & Kennard, 1970). From Table 4.5, with a value of 0.01 for the L2
penalty, the model’s fit seems just right, with a tendency towards undefitting (model c, d and
f), and only overfitting (model h) when the value of the L2 penalty is high (Ng, 2004). We
also observe an increase in the accuracy curves. Due to the data complexity, we allow the
model some flexibility to avoid overfitting (Bishop, 2006; Lau et al., 2020). Thus, we use
Table 4.5 model g that exhibits the optimal performance for the next set of experiments with
batch normalisation (4.4.1.2.3).

4.4.1.2.3 Batch normalisation regularisation

Training deep ANN is complicated because the distribution of each layer’s inputs changes
during training, as the parameters of the previous layers change. This is known as internal
covariate shift and Ioffe & Szegedy (2015) propose the batch normalisation layer to address
it2, which normalises the layer inputs, and allows the usage of higher learning rates, acting
as a form of regularisation3. Recently, Chen et al. (2019) expand the method of batch nor-
malisation by introducing the independent component layer, combining batch normalisation
and dropout before each weight connection to achieve faster convergence and improved
performance (Mhaskar et al., 2017).

We use the batch normalisation layer, together with the dropout layer (4.4.1.2.1) (Srivas-
tava et al., 2014). Deep ANN with batch normalisation are more stable and converge faster4.
We evaluate the introduction of the batch normalisation layer in relation to the sequence
of layers and the activation function (Ioffe & Szegedy, 2015). The activation function5

1Fig. 4.8 is a dynamic representation of the experiments, i.e. shows the evaluation of the different
configuration models per epoch (iteration cycle) on the training and the validation datasets. It shows a selective
number of experiments, which are overlayed due to the similarity in the results, and a sub-selection of those are
reported in Table 4.5. Table 4.5 is a static representation of the experiments, i.e. shows the evaluation of the
different configuration models at the last epoch (end of training) on the training and validation datasets.

2Brownlee (2019c), URL: https://machinelearningmastery.com/batch-normalization-for-training-of-deep-
neural-networks/.

3Brownlee (2019f), URL: https://machinelearningmastery.com/how-to-accelerate-learning-of-deep-neural-
networks-with-batch-normalization/.

4The effectiveness of the batch normalisation layer stems from controlling the change of the layers’ input
distributions during training, making the optimisation landscape significantly smoother and inducing a more
predictive and stable behaviour of the gradients (Bjorck et al., 2018; Santurkar et al., 2018).

5The activation function (also known as transfer function) is a mathematical gate in between the input
feeding the current neuron (node) and its output, going to the next layer. It can be seen as a transformation that
maps the input signals into output signals that are needed for the neural network to function, adding a non-linear
property to the functions (see Fig. 4.2a). ML Glossary (2020), URL: https://ml-cheatsheet.readthedocs.io/en/

https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/
https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/
https://machinelearningmastery.com/how-to-accelerate-learning-of-deep-neural-networks-with-batch-normalization/
https://machinelearningmastery.com/how-to-accelerate-learning-of-deep-neural-networks-with-batch-normalization/
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html
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transforms the summed weighted input from the node into the activation of the node or
output for that input1 (LeCun et al., 2012). There are many types of activation functions,
with non-linear activation functions being preferred because they allow the nodes to learn
more complex structures in the data2. We test the 3 common activation functions for hidden
layers3: the rectified linear units (ReLU), the sigmoid, and the tanh activation functions4.

Fig. 4.95 shows the network regularisation tuning experiments using batch normalisation
and the activation functions, and is complemented by Table 4.6. From Fig. 4.9, we observe
the ANN’s improved learning from the fast convergence and the smoothness of the training
and validation loss curves (Zhang et al., 2016a). This is supported by the shift in the training
and validation accuracy curves, indicating an increase in the network’s generalising ability
(Bjorck et al., 2018). The weighted and macro average validation precision, recall and
F1-score curves are sensitive to the validation data, which indicates that the choice of the
activation function together with the order of layers has a stability effect on the ANN6 (Zhang
et al., 2016a).

From Table 4.6, we observe models a-h are overfitted, where as model i is underfitted,
partly because of the order of the layers. The order of layers suggested by Chen et al.
(2019), i.e. dense layer - activation layer - batch normalisation layer - dropout layer, and
using a deep ANN with hidden layer sigmoid activation functions7, exhibits the most stable
behaviour (Mhaskar et al., 2017). This is represented by model i, which seems to be fitted
just about right, with the training loss and validation loss very similar, the training accuracy
and validation accuracies close to each other, and the weighted and macro average of the
F1-score the highest of all experiments (Santurkar et al., 2018). We use model i from Table
4.6 for the next set of experiments with the error backpropagation optimisation (4.4.2).

latest/activation_functions.html.
1DeepAI (2020), URL: https://deepai.org/machine-learning-glossary-and-terms/activation-function.
2Brownlee (2019d), URL: https://machinelearningmastery.com/rectified-linear-activation-function-for-

deep-learning-neural-networks/.
3Sharma (2017a), URL: https://towardsdatascience.com/activation-functions-neural-networks-

1cbd9f8d91d6.
4For all models, we use the hierarchical softmax activation function in the output layer for classification

(Lj Miranda, 2017; Oliinyk, 2017; Roelants, 2020; Samala, 2017).
5Fig. 4.9 is a dynamic representation of the experiments, i.e. shows the evaluation of the different

configuration models per epoch (iteration cycle) on the training and the validation datasets. It shows a selective
number of experiments, which are overlayed due to the similarity in the results, and a sub-selection of those are
reported in Table 4.6. Table 4.6 is a static representation of the experiments, i.e. shows the evaluation of the
different configuration models at the last epoch (end of training) on the training and validation datasets.

6Sharma (2017a), URL: https://towardsdatascience.com/activation-functions-neural-networks-
1cbd9f8d91d6.

7Kathuria (2018), URL: https://blog.paperspace.com/vanishing-gradients-activation-function/.
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Fig. 4.9 Dynamic (per epoch) network regularisation tuning evaluation results with batch nor-
malisation, order of layers and activation function in dense layers, for selective experiments:
training loss, validation loss, validation precision (macro average), validation recall (macro
average), validation F1-score (macro average), validation precision (weighted average),
validation precision (weighted average), validation F1-score (weighted average)

Table 4.6 Static end of training (last epoch) network regularisation tuning experiments with
batch normalisation, order of layers and activation function in dense layers from Fig. 4.9

Triala ,b ,c Dense
layer

Activation
layer and
function

d Batch
norm
layer

e Dropout
layer

Training
loss

Validation
loss

Training
accuracy

Validation
accuracy

Validation
precision
(weighted)

Validation
recall
(weighted)

Validation
F1-score
(weighted)

Validation
precision
(macro)

Validation
recall
(macro)

Validation
F1-score
(macro)

a 1 2-ReLU 3 4 0.10 0.40 0.98 0.83 0.84 0.83 0.83 0.65 0.67 0.66
b 1 3-ReLU 2 4 0.06 0.40 0.99 0.85 0.85 0.85 0.85 0.67 0.68 0.68
c 1 4-ReLU 2 3 0.18 0.49 0.93 0.80 0.84 0.80 0.82 0.63 0.69 0.66
d 1 2-Sigmoid 3 - 0.25 0.41 0.90 0.82 0.86 0.82 0.84 0.66 0.73 0.69
e 1 2-Tanh 3 4 0.12 0.40 0.97 0.83 0.85 0.83 0.83 0.65 0.69 0.67
f 1 3-Tanh 2 4 0.13 0.49 0.96 0.79 0.83 0.79 0.81 0.60 0.64 0.62
g 1 4-Tanh 2 3 0.13 0.46 0.96 0.79 0.84 0.79 0.81 0.62 0.67 0.65
h 1 3-Sigmoid 2 4 0.59 0.58 0.81 0.84 0.86 0.74 0.78 0.62 0.73 0.67
i 1 2-Sigmoid 3 4 0.54 0.55 0.86 0.85 0.86 0.74 0.78 0.62 0.74 0.68

aThe model with the optimal configuration parameters is shown in bold for this set of experiments. The
order of layers is represent by the assigned number in the column’s layer.

bA selection of experiments from Fig. 4.9 is reported for simplicity.
cAll experiments have been standardised with the following hyperparamters: no. of input nodes = no.

of input features, loss function = categorical cross-entropy, optimiser = Adam, learning rate = 1e�7, layer
activation function = ReLU, output activation function = softmax, batch size = 512, dropout rate = 0.2, no. of
output nodes = 2, no. of layers = 7, no. of nodes in hidden layers = 2048, dropout rate = 0.2, L2 penalty = 0.01.

dWe test the three common activation functions for hidden layers: the rectified linear units (ReLU), the
sigmoid, and the tanh activation functions (DeepAI, 2020; LeCun et al., 2012).

eWe follow the definition by Ioffe & Szegedy (2015). Stack Overflow (2016), URL: https://stackoverflow.
com/questions/39691902/ordering-of-batch-normalization-and-dropout.

https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout
https://stackoverflow.com/questions/39691902/ordering-of-batch-normalization-and-dropout
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4.4.2 Error backpropagation

The aim of a deep artificial neural network (ANN) is to evaluate the gradient1 of the loss
function2. We optimise the hyperparameters of the error backpropagation (BP) algorithm of
the deep ANN, which is the iterative process of minimising the error function, i.e. improving
the forecasting ability of the model (4.4.2.1). We run a set of experiments to determine the
parameters of the loss function (4.4.2.2), followed by the learning rate experiment (4.4.2.3).

4.4.2.1 Error backpropagation algorithm

Most training algorithms involve an iterative procedure for minimising the error function,
with weight adjustments made in sequences of steps3 (Bishop, 2006). This is the optimisation
function, which calculates the gradient, i.e. the partial derivative of the loss function with
respect to weights, and the weights are modified in the opposite direction of the calculated
gradient (Schraudolph & Cummins, 2006). One of the most well-known optimisation
functions is the gradient descent (Ruder, 2017a). This iterative procedure is repeated until
we reach the minima of the loss function4.

We make use of the backpropagation algorithm for an arbitrary feed-forward network
network with arbitrary non-linear activation functions, and a broad class of error functions.
Specifically, the 7-layer deep ANN (4.4.1), is represented by Eqn. 4.9a, and in the generic
form by Eqn. 4.9b (Lee et al., 2019). The error backpropagation algorithm forward propagates
the input vector xn through the activation functions. Then, it evaluates the error dk for each
output k, which are the small differences in weights, and backpropagates them through
the network5 to evaluate the derivatives6 (Bishop, 2006; Murphy, 2012; Nielsen, 2015).
For the classification task (see 4.1), in which each input is assigned to one of K classes,

1Brownlee (2019i), URL: https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-
learning-neural-networks/.

2The loss function (also known as the cost function), E(w) computes the error, i.e. the difference between
the predictive value and the actual value, and which forward and back propagates through the ANN (Benvenuto
& Piazza, 1992; Whittington & Bogacz, 2019).

3At each step, there are two distinct stages. The first stage involves the evaluation of the derivatives of the
the error function with respect to the weights, which are back propagated through the network. In the second
stage, the derivatives are used to forward compute the adjustments to be made to the weights. This is known
as forward and backpropagation and is how the backpropagation algorithm computes the gradient of the loss
function (Bishop, 2006; Murphy, 2012).

4Agrawal et al. (2017), URL: https://medium.com/data-science-group-iitr/loss-functions-and-optimization-
algorithms-demystified-bb92daff331c.

5McGonagle et al. (2020), URL: https://brilliant.org/wiki/backpropagation/.
6For simplicity, the derivation of the backpropagation algorithm is omitted mainly due to the model

complexity and the data complexity. The author refers to Bishop (2006), where a similar notation is used, and
presents only the top level equations to help the readers understand the development of the methodology (Ng,
2017; Sadowski, 2017).

https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://machinelearningmastery.com/loss-and-loss-functions-for-training-deep-learning-neural-networks/
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://medium.com/data-science-group-iitr/loss-functions-and-optimization-algorithms-demystified-bb92daff331c
https://brilliant.org/wiki/backpropagation/
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with the binary target variables tk 2 {0,1}, and with the network outputs interpreted as
yk(x,w) = p(tk|x), the cross-entropy error function is described by Eqn. 4.9c, for each
datapoint n in the training set (Bishop, 2006).
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where D is the number of nodes in the input layer, z = 1, ...,M, and the subscript (1) indicates
the corresponding parameters are in the first layer of the network, with same being applied
to {i, j, l,m,o, p,q}, s(x) = sigmoid(x), h(x) = so f tmax(x)1,2,3 are activation functions4,5,
k = 1, ...,K is the total number of outputs, CE = cross-entropy loss, and n = 1, ...,N is the
number of datapoints.

There are many optimisation functions, which are also known as optimisers (Ruder,
2017a). We use the Adam (adaptive moment estimation)6 optimiser because it is computa-
tionally efficient, easy to implement, and suitable for large scale data and parameter problems
with noisy gradients7. This makes Adam one of the most popular optimisers in deep learning8

(Bushaev, 2018).

1Roelants (2020), URL: https://peterroelants.github.io/posts/cross-entropy-softmax/
2Knet.jl (2020), URL: https://knet.readthedocs.io/en/latest/softmax.html
3Samala (2017), URL: https://becominghuman.ai/hierarchical-softmax-as-output-activation-function-in-

neural-network-1d19089c4f49.
4Jain (2019), URL: https://www.linkedin.com/pulse/activation-functions-neural-networks-rahul-jain.
5Kathuria (2018), URL: https://blog.paperspace.com/vanishing-gradients-activation-function/.
6Adam is an extension of the classical stochastic gradient descent procedure to iteratively update network

weights (Kingma & Ba, 2015). Stochastic gradient descent maintains a single learning rate for all weight updates
and the learning rate does not change during training (Loshchilov & Hutter, 2019b; Ruder, 2017a). For Adam,
a learning rate is maintained for each network weight (parameter) and separately adapted as learning unfolds. It
computes individual adaptive learning rates for different parameters from estimates of first and second moments
of the gradients (Karpathy & Lei, 2015). Brownlee (2017b), URL: https://machinelearningmastery.com/adam-
optimization-algorithm-for-deep-learning/.

7Adam combines the benefits of two other optimisers: the adagrad (adaptive gradient algorithm), which
maintains a per-parameter learning rate improving performance on sparse gradient problems (LeCun et al.,
2012), and rmsprop (root mean square propagation), which maintains a per-parameter learning rate adapted on
the changing magnitude of the weight gradients (Qian, 1999).

8Karpathy (2017), URL: https://medium.com/@karpathy/a-peek-at-trends-in-machine-learning-
ab8a1085a106.

https://peterroelants.github.io/posts/cross-entropy-softmax/
https://knet.readthedocs.io/en/latest/softmax.html
https://becominghuman.ai/hierarchical-softmax-as-output-activation-function-in-neural-network-1d19089c4f49
https://becominghuman.ai/hierarchical-softmax-as-output-activation-function-in-neural-network-1d19089c4f49
https://www.linkedin.com/pulse/activation-functions-neural-networks-rahul-jain
https://blog.paperspace.com/vanishing-gradients-activation-function/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://medium.com/@karpathy/a-peek-at-trends-in-machine-learning-ab8a1085a106
https://medium.com/@karpathy/a-peek-at-trends-in-machine-learning-ab8a1085a106
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4.4.2.2 Loss function

The loss function computes the ANN error between predicted and target value (Benvenuto
& Piazza, 1992). We aim to determine the optimal hyperparameters for the loss function
to converge to the minima, and thus identify the highest performing model. We adapt the
cross-entropy loss function, defined by Eqn. 4.9c, into the focal loss function. The focal loss,
developed by Facebook AI research, has weighted terms1 in front of the cross-entropy loss to
account for imbalanced datasets2 (Haibo He & Garcia, 2009; Lin et al., 2017), and is defined
by Eqn. 4.10.
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where ak is a prefixed balancing value to balance the positive labelled and negative labelled
samples (and one of the most common ways to balance the classes), gk is the focusing
parameter, which down-weights the loss assigned to easily classified examples, k = 1, ...,K
is the total number of outputs, FL = focal cross-entropy loss, and n = 1, ...,N is the number
of datapoints.

Fig. 4.103 shows the loss function tuning experiments with focal cross-entropy loss,
and is complemented by Table 4.7. From Fig. 4.10, we observe that the model’s learning
ability improves as the focusing parameters are varied. This is supported from the shape of
downward shift of the training and validation loss curve (Brownlee, 2019h; Lin et al., 2017).
The training and validation accuracy curves are shifted upwards and stability increases. We
also observe that the validation precision (macro) increases, with the model becoming more
sensitive to the data (Weber et al., 2019). From Table 4.7, we observe a stable learning for all
models with no overfitting from the training and validation loss4. The optimal performance
is exhibited by model f, with the highest validation F1-score (macro) (Mukhoti et al., 2020),
which we use to determine the optimal learning rate (4.4.2.3).

1Du (2019), URL: https://medium.com/ai-salon/demystifying-focal-loss-i-a-more-focused-version-of-
cross-entropy-loss-f49e4b044213.

2Focal loss down-weights the well-classified examples, instead of giving equal weighting to all training
examples, This has the effect of putting more training emphasis on the data that is hard to classify. Kwag
(2018), URL: https://chadrick-kwag.net/focal-loss-a-k-a-retinanet-paper-review/.

3Fig. 4.10 is a dynamic representation of the experiments, i.e. shows the evaluation of the different
configuration models per epoch (iteration cycle) on the training and the validation datasets. It shows a selective
number of experiments, which are overlayed due to the similarity in the results, and a sub-selection of those are
reported in Table 4.7. Table 4.7 is a static representation of the experiments, i.e. shows the evaluation of the
different configuration models at the last epoch (end of training) on the training and validation datasets.

4Nieradzik (2019), URL: https://lars76.github.io/neural-networks/object-detection/losses-for-
segmentation/.

https://medium.com/ai-salon/demystifying-focal-loss-i-a-more-focused-version-of-cross-entropy-loss-f49e4b044213
https://medium.com/ai-salon/demystifying-focal-loss-i-a-more-focused-version-of-cross-entropy-loss-f49e4b044213
https://chadrick-kwag.net/focal-loss-a-k-a-retinanet-paper-review/
https://lars76.github.io/neural-networks/object-detection/losses-for-segmentation/
https://lars76.github.io/neural-networks/object-detection/losses-for-segmentation/
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Fig. 4.10 Dynamic (per epoch) network loss function tuning evaluation results with focal
cross-entropy loss for selective experiments: training loss, validation loss, validation precision
(macro average), validation recall (macro average), validation F1-score (macro average),
validation precision (weighted average), validation precision (weighted average), validation
F1-score (weighted average)

Table 4.7 Static end of training (last epoch) network loss function tuning experiments with
focal cross-entropy loss from Fig. 4.10

Triala ,b ,c a d ge Weightsf Training
loss

Validation
loss

Training
accuracy

Validation
accuracy

Validation
precision
(weighted)

Validation
recall
(weighted)

Validation
F1-score
(weighted)

Validation
precision
(macro)

Validation
recall
(macro)

Validation
F1-score
(macro)

a 4.00 5.00 C,S 94.26 94.23 0.86 0.87 0.85 0.87 0.86 0.72 0.63 0.67
b 4.00 2.00 C,S 81.08 81.06 0.87 0.88 0.86 0.88 0.86 0.74 0.64 0.69
c 4.00 1.00 C,S 81.11 81.09 0.87 0.88 0.86 0.88 0.87 0.74 0.66 0.70
d 0.25 2.00 C 10.04 9.96 0.88 0.89 0.87 0.89 0.86 0.82 0.61 0.70
e 0.25 2.00 S 32.07 32.05 0.88 0.89 0.87 0.89 0.87 0.80 0.63 0.70
f 0.25 2.00 C,S 17.29 17.20 0.87 0.89 0.88 0.89 0.87 0.82 0.63 0.71

aThe model with the optimal configuration parameters is shown in bold for this set of experiments. The
order of layers is represent by the assigned number in the column’s layer.

bA selection of experiments from Fig. 4.10 is reported for simplicity.
cAll experiments have been standardised with the following hyperparamters: no. of input nodes = no. of

input features, loss function = focal cross-entropy, optimiser = Adam, learning rate = 1e�7, layer activation
function = ReLU, output activation function = softmax, batch size = 512, dropout rate = 0.2, no. of output
nodes = 2, no. of layers = 7, no. of nodes in hidden layers = 2048, dropout rate = 0.2, L2 penalty = 0.01.

dKapil (2018), URL: https://medium.com/adventures-with-deep-learning/focal-loss-demystified-
c529277052de.

eWei (2019), URL: https://www.dlology.com/blog/multi-class-classification-with-focal-loss-for-
imbalanced-datasets/.

fThere are two types of weights: class weights (C) and sample weights (S). Both weights involve the
ratio of high-to-low value patents, with the difference of one being applied to the class level, and the other
transforming the individual samples (Cui et al., 2019). Mao (2019), URL: https://leimao.github.io/blog/Focal-
Loss-Explained/.

https://medium.com/adventures-with-deep-learning/focal-loss-demystified-c529277052de
https://medium.com/adventures-with-deep-learning/focal-loss-demystified-c529277052de
https://www.dlology.com/blog/multi-class-classification-with-focal-loss-for-imbalanced-datasets/
https://www.dlology.com/blog/multi-class-classification-with-focal-loss-for-imbalanced-datasets/
https://leimao.github.io/blog/Focal-Loss-Explained/
https://leimao.github.io/blog/Focal-Loss-Explained/
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4.4.2.3 Learning rate

Deep learning ANN are trained using stochastic gradient descent optimisation algorithms
(Bishop, 2006). The learning rate is a hyperparameter that controls how much to change the
model in response to the estimated error each time the model weights are updated (Bengio,
2012). We optimise the learning rate of the deep ANN to identify the optimal training time1

required for the model to converge2, since it controls how quickly the model is adapted to
the task3. We use the Adam optimiser, an adaptive gradient descent algorithm, together with
a learning scheduler, which monitors the performance of the model on the training dataset
and the learning rate is adjusted in response4 (Smith, 2017).

Fig. 4.115 shows the learning rate tuning experiments, and is complemented by Table
4.8. From Fig. 4.11, we observe that while the learning rate decreases, the training curve
and validation curves converge closer together, with a smooth gradient. This is supported by
an increase in the training accuracy, with a smooth learning, which is also replicated on the
validation accuracy curve (Darken et al., 1992). The trend of the validation precision (macro)
curve is slightly unstable, partly because it becomes more sensitive to the variation within the
validation dataset. However, with decreasing learning rate, the validation precision curves
(both macro and weighted) are shifted upwards, partly because the number of false positives
(FP) decreases. This is also evident by Table 4.8, with also a slight increase in the validation
recall (macro) due to a reduction in false negatives (FN) with the variation in the learning
rate. We observe that ANN’s learning momentum shifts towards a solution gradient, with
the learning being slightly premature, i.e. stopped early since the training loss curve and
validation loss curves do not converge to a flat trend line after 30 epochs (Qian, 1999; Smith,
2018; Smith & Topin, 2019). Table 4.8 model e is the model with the optimal performance,
which we use for further evaluation in 4.5.2, and then test it with a variety of categorical
output feature proxies in chapter 5.

1Choosing the learning rate is challenging as a value too small may result in a long training process that
could get stuck, whereas a value too large may result in learning a sub-optimal set of weights too fast or an
unstable training process.

2Lau (2017), URL:https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-
methods-for-deep-learning-2c8f433990d1.

3Brownlee (2020h), URL: https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-
on-deep-learning-neural-networks/.

4This is called an adaptive learning rate (Goodfellow et al., 2016).
5Fig. 4.11 is a dynamic representation of the experiments, i.e. shows the evaluation of the different

configuration models per epoch (iteration cycle) on the training and the validation datasets. It shows a selective
number of experiments, which are overlayed due to the similarity in the results, and a sub-selection of those are
reported in Table 4.8. Table 4.8 is a static representation of the experiments, i.e. shows the evaluation of the
different configuration models at the last epoch (end of training) on the training and validation datasets.

https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://towardsdatascience.com/learning-rate-schedules-and-adaptive-learning-rate-methods-for-deep-learning-2c8f433990d1
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
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Fig. 4.11 Dynamic (per epoch) network learning rate tuning evaluation results for selective
experiments: training loss, validation loss, validation precision (macro average), validation
recall (macro average), validation F1-score (macro average), validation precision (weighted
average), validation precision (weighted average), validation F1-score (weighted average)

Table 4.8 Network tuning experiments with learning rate variation from Fig. 4.11

Triala ,b ,c Learning
rate

d Training
loss

e Validation
loss

Training
accuracy

Validation
accuracy

Validation
precision
(weighted)

Validation
recall
(weighted)

Validation
F1-score
(weighted)

Validation
precision
(macro)

Validation
recall
(macro)

Validation
F1-score
(macro)

a 1e�6 25.81 25.68 0.88 0.89 0.87 0.89 0.86 0.79 0.62 0.69
b 1e�8 23.05 22.93 0.88 0.89 0.87 0.89 0.86 0.80 0.62 0.70
c 5e�7 24.72 24.60 0.88 0.89 0.87 0.89 0.86 0.80 0.62 0.70
d 3e�7 23.92 23.79 0.87 0.89 0.87 0.89 0.86 0.81 0.62 0.70
e 1e�7 27.07 26.93 0.87 0.89 0.88 0.89 0.87 0.81 0.63 0.71

aThe model with the optimal configuration parameters is shown in bold for this set of experiments.
bA selection of experiments from Fig. 4.11 is reported for simplicity.
cAll experiments have been standardised with the following hyperparamters: no. of input nodes = no. of

input features, loss function = focal cross-entropy, optimiser = Adam, layer activation function = sigmoid,
output activation function = softmax, batch size = 512, dropout rate = 0.2, no. of output nodes = 2, no. of layers
= 7, no. of nodes in hidden layers = 2048, dropout rate = 0.2, L2 penalty = 0.01.

dWe vary the learning rate and monitor the performance of the model. Brownlee (2016c), URL: https:
//machinelearningmastery.com/using-learning-rate-schedules-deep-learning-models-python-keras/.

eThe evaluation metrics are introduced in 4.3 and the dataset terminology of training, validation and testing
is introduced in 4.5.1.

https://machinelearningmastery.com/using-learning-rate-schedules-deep-learning-models-python-keras/
https://machinelearningmastery.com/using-learning-rate-schedules-deep-learning-models-python-keras/
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4.5 Deep neural network architecture implementation

In 4.5 we describe the implementation tests for the development and deployment of the
deep and wide ANN. The aim is to ensure that we evaluate our developed deep learning
algorithmic approach on suitable representations of the dataset, to ensure the robustness and
reliability of our proposed approach1. Thus, section 4.5 provides support for the development
of the deep learning algorithmic approach. We follow a 2-step evaluation strategy: (i) we
describe the dataset processing, dataset variations and dataset split into training, validation
and testing datasets, to evaluate the performance of our models (4.5.1); (ii) we describe the
evaluation strategies for different variations of the dataset for training, validation and testing
of our models, including the out-of-sample (OOS), out-of-time (OOT) evaluation tests and
the cross validation tests for assessing the model’s generalising ability (4.5.2).

4.5.1 Dataset split

We evaluate AI methods, and specifically supervised paradigm models on a dataset, which
is split into training, validation and testing dataset. The purpose of this is to ensure: (i)
the models are able to work with data that have not been exposed to before2,3, and (ii) the
datasets have a suitable representation of the classification task, i.e. the distribution of the
categoric output/ target proxies is the same in the training, validation and testing datasets4.

The training dataset is defined as the part of data used to fit the model, i.e. a set of
examples used for learning and fit the parameters of the classifier. The validation dataset
is defined as the part of data used to provide an unbiased evaluation of a model fit on the
training dataset while tuning model hyperparameters. The evaluation becomes more biased
as skill on the validation dataset is incorporated into the model configuration. The testing
dataset5 is defined as the part of data used to provide an unbiased evaluation of a final model
fit on the training dataset, i.e. to assess the performance of a fully-specified classifier (Bishop,
2006). There are some other techniques, complementary to the train-validate-test split6

1Ruder (2017b), URL: https://ruder.io/transfer-learning/.
2The model should be evaluated on datapoints that are not used to build or fine-tune the model, i.e. they are

not part of the training or validation datasets. So that they provide an unbiased sense of model effectiveness
(Kuhn & Johnson, 2013; Russell & Norvig, 2010).

3Kumar (2020), URL: https://towardsdatascience.com/data-splitting-technique-to-fit-any-machine-
learning-model-c0d7f3f1c790.

4Seif (2018), URL: https://towardsdatascience.com/handling-imbalanced-datasets-in-deep-learning-
f48407a0e758.

5Brownlee (2017g), URL: https://machinelearningmastery.com/difference-test-validation-datasets/.
6Brownlee (2020g), URL: https://machinelearningmastery.com/train-test-split-for-evaluating-machine-

learning-algorithms/.

https://ruder.io/transfer-learning/
https://towardsdatascience.com/data-splitting-technique-to-fit-any-machine-learning-model-c0d7f3f1c790
https://towardsdatascience.com/data-splitting-technique-to-fit-any-machine-learning-model-c0d7f3f1c790
https://towardsdatascience.com/handling-imbalanced-datasets-in-deep-learning-f48407a0e758
https://towardsdatascience.com/handling-imbalanced-datasets-in-deep-learning-f48407a0e758
https://machinelearningmastery.com/difference-test-validation-datasets/
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/
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above, of calculating unbiased estimates of a model’s generalising ability. These include
k-fold and random split cross validation to tune the model’s hyperparameters (4.5.2.2).

We follow a mixed approach, which builds on the train-test split approach and cross
validation approach, with variable percentage splits for the training, validation and training
datasets1,2. Fig. 4.12 shows the variations of the dataset and how the dataset is constrained
according to the time horizon and the output proxy. For every output proxy, we ensure
that the dataset is constrained to only the fields that contain the full features, i.e. there is a
complete set of input feature determinants and output proxies for every patent, and there are
no NaNs (empty fields)3.

Fig. 4.12 Dataset variations with full datapoints for different time horizons and output proxies

Fig. 4.13 shows the different evaluation strategies we follow with the percentage split of
the dataset, associated output proxy and reference table (Dobbin & Simon, 2011). Setting up
the training, validation and testing datasets has an impact on the evaluation of the generalising

1Sanjay (2018), URL: https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-
d6424b45261f.

2Bronshtein (2017), URL: https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-
80b61beca4b6.

3For example, for the time horizon T=4, for the output proxies of citations_t4, generality_t4 and renewal_t4,
there are 4192600 available datapoints with completed fields.

https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6
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ability of the model. It is important to choose the validation and testing datasets from the same
distribution as the training dataset for the output proxy. In addition, the size of the validation
and testing datasets depend on the size of the available dataset to assess the performance of
the model1,2. We perform the dataset split breakdown in our evaluation strategies: (i) the
cross validation in 4.5.2.2 with a 70:20:10 percentage split of the training/ validation/ testing
datasets, (ii) train and test our models on the full dataset (100FD), the 10% sample dataset
(010FD), and the 3% sample dataset (003FD) with a 98:1:1 percentage because the size of
the dataset is very large (Xu & Goodacre, 2018).

Fig. 4.13 Evaluation strategies for training, validation and testing, based on the train-test split
approach and cross validation approach, with the associated results table (see 4.5.2)

4.5.2 Evaluation strategies for training, validation and testing

We evaluate our developed deep learning approach on suitable representations of the dataset,
to ensure robustness and reliability of our proposed approach. We use the evaluation metrics
explained in 4.3 to evaluate the models on the testing datasets. We follow an evaluation

1Ng & Katanforoosh (2020), URL: http://cs230.stanford.edu/blog/split/.
2Kumar (2020), URL: https://towardsdatascience.com/data-splitting-technique-to-fit-any-machine-

learning-model-c0d7f3f1c790.

http://cs230.stanford.edu/blog/split/
https://towardsdatascience.com/data-splitting-technique-to-fit-any-machine-learning-model-c0d7f3f1c790
https://towardsdatascience.com/data-splitting-technique-to-fit-any-machine-learning-model-c0d7f3f1c790
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approach with variable dataset splits and variable sample sizes (see Fig. 4.13). The aim of
this evaluation approach is to ensure robustness and reliability of our proposed approach by
performing the following: (i) out-of-sample (OOS) tests1, (ii) out-of-time (OOT) tests2, and
(iii) cross validation3.

4.5.2.1 Evaluation strategies breakdown

We perform the following evaluations (Wu et al., 2012a), shown in Fig. 4.13: (i) an OOS test
on the full dataset (100FD) for all output proxies (see 3.3) with a dataset split of 98:1:1 for
training:validation:testing; (ii) an OOS test on a 10% random representative sample dataset
(010FD)4 for all output proxies with a dataset split of 98:1:1 for training:validation:testing5;
(iii) an OOS test on a 10% random representative sample dataset (010FD) for all output
proxies constrained to technology IPC classification classes with a dataset split of 98:1:1 for
training:validation:testing; (iv) an OOS test on a 3% random representative sample dataset
(003FD)6 for all output proxies with a dataset split of 98:1:1 for training:validation:testing7;
(v) a cross validation test (k-Fold8 and random split9) on the 10% random representative

1An out-of-sample (OOS) test, is a forecasting test conducted, when a model is tested on a holdout
(previously unseen) testing dataset. The test is used to assess the ability of the model to forecast known values,
i.e. the testing dataset. The testing dataset is a percentage of a original dataset, which is not used for training
and validation (Beleites et al., 2013; Bergdahl et al., 2007; Tashman, 2000).

2An out-of-time (OOT) test is an extension of the out-of-sample (OOS) test, when a model is tested on
a holdout (previously unseen) testing dataset, which is not a percentage of the original dataset. The testing
dataset is an extension of the original population of the full dataset, because of new observations (see Fig. 4.12
and 4.13) (Beleites et al., 2013; Bergdahl et al., 2007; Tashman, 2000).

3Schneider & Moore (1997), URL: https://www.cs.cmu.edu/~schneide/tut5/node42.html.
4The 10% random representative sample dataset (010FD) is a 10% random sample of the full dataset

(100FD), where year distribution and IPC distribution of patents have been stratified (Brownlee, 2017g, 2020g;
Dobbin & Simon, 2011; Ng & Katanforoosh, 2020).

5For each output proxy, the 010FD sample dataset is split into a training dataset (98%), validation dataset
(1%) and testing dataset (1%), ensuring a representative distribution of the categoric output proxy in the training,
validation and testing datasets (Ng & Katanforoosh, 2020).

6The 3% random representative sample dataset (003FD) is a 3% random sample of the full dataset (100FD),
where year distribution and IPC distribution of patents have been stratified (Brownlee, 2017g, 2020g; Dobbin &
Simon, 2011; Ng & Katanforoosh, 2020).

7For each output proxy, the 003FD sample dataset is split into a training dataset (98%), validation dataset
(1%) and testing dataset (1%), ensuring a representative distribution of the categoric output proxy in the training,
validation and testing datasets (Ng & Katanforoosh, 2020).

8k-Fold cross validation (k = 10) is when a dataset is split between a training/ validation dataset (90%) and an
out-of-sample test set (10%). A model is trained on (k-1) number of folds and validated on a 1 fold of the training/
validation (90%) dataset, and then tested on an out-of-sample test (10%) dataset (Kohavi, 1995). Pedregosa
et al. (2019), URL: https://scikit-learn.org/stable/auto_examples/model_selection/plot_cv_indices.html#sphx-
glr-auto-examples-model-selection-plot-cv-indices-py.

9Random split (split = 10) is when the dataset is split into arrays or matrices into random train and test
subsets. We calculate the average of the performance of the model across each split, which will give a better
estimate of the generalising ability of the model.

https://www.cs.cmu.edu/~schneide/tut5/node42.html
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sample dataset (010FD) for all output proxies with a dataset split of 70:20:10 for training/
validation/ testing; (vi) an OOT test on a 10% random sample (010FD | T=12), of a a subset
of the full dataset (100FD | T=12)1. The trained and validated models are then tested on a
random 20% OOT sample of all available output proxies from 2007-20192,3. The results of
these tests are transparently presented in chapter 5.

4.5.2.2 Cross validation (k-Fold and random split)

Table 4.9 shows the results of the cross validation evaluation on the 010FD dataset, with a
random split and a k-Fold4 cross validation (Schneider & Moore, 1997). Column a represent
the validated accuracy on that fold/ split, column b represent the model being tested on the
out-of-sample test set, and column c represent an ensemble5 of models combined together and
tested on the holdout test. Ensemble learning6,7,8 are methods that combine the predictions
from multiple models.

We observe that for all splits and folds the standard deviation is low between 0.001-0.002,
indicating that the cross validation method is effective with the distribution of the output
proxies in the training, validation and testing datasets9. This ensures that the distribution of
the proxies is representative in all datasets (see 4.1). We observe a stability in the models
for all proxies for columns a and b, and for proxies such as generality_t8 (column c) the
ensemble performs slightly better. The k-Fold cross validation appears less optimistic than
the random split10. From all the results in Table 4.9, we observe that the accuracy of the
proposed deep learning method is stable for all output proxies.

1This subset consists of all granted patents with complete fields of features, i.e. all the outputs in the time
frame T=12 exist (see Fig. 4.13). This means that the patents have reached aged 12, which constrains the
dataset to the years between 1976-2007, and we take a 10% random representative sample from that subset to
form the sample dataset (010FD | T=12)

2All output proxies from 2007-2019 are divided into three time subsets of the full dataset (100FD): (i)
between 2007-2011 (equivalent to Fig. 4.12 part d), (ii) between 2011-2015 (equivalent to Fig. 4.12 part e), and
(iii) between 2015-2019 (equivalent to Fig. 4.12 part f).

3This is both an out-of-sample test, i.e. the models have never ’seen’ the test dataset, and an out-of-time
test, i.e. the models are trained and validated up to 2007, and then forecast in the future from 2007-2019.

4Brownlee (2018b), URL: https://machinelearningmastery.com/k-fold-cross-validation/.
5Shubham (2018), URL: https://becominghuman.ai/ensemble-learning-bagging-and-boosting-

d20f38be9b1e.
6Rocca (2019), URL: https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-

c9214a10a205.
7Brownlee (2018c), URL: https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-

method/.
8Brownlee (2017a), URL:https://machinelearningmastery.com/transfer-learning-for-deep-learning/.
9Sanjay (2018), URL: https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-

d6424b45261f.
10Brownlee (2018e), URL: https://machinelearningmastery.com/how-to-create-a-random-split-cross-

validation-and-bagging-ensemble-for-deep-learning-in-keras/.

https://machinelearningmastery.com/k-fold-cross-validation/
https://becominghuman.ai/ensemble-learning-bagging-and-boosting-d20f38be9b1e
https://becominghuman.ai/ensemble-learning-bagging-and-boosting-d20f38be9b1e
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://towardsdatascience.com/ensemble-methods-bagging-boosting-and-stacking-c9214a10a205
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/a-gentle-introduction-to-the-bootstrap-method/
https://machinelearningmastery.com/transfer-learning-for-deep-learning/
https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f
https://machinelearningmastery.com/how-to-create-a-random-split-cross-validation-and-bagging-ensemble-for-deep-learning-in-keras/
https://machinelearningmastery.com/how-to-create-a-random-split-cross-validation-and-bagging-ensemble-for-deep-learning-in-keras/
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Chapter 5

Empirical Results

In this chapter, we describe the results from the deployment of the deep learning algorithmic
approach (chapter 4), using our developed dataset (chapter 3). Class VH represents high value
patents and class VL represents low value patents (see 3.2.2.3 and Tables 3.2 and 4.1).

We aim to evaluate our developed deep learning approach on suitable representations
of the dataset, and ensure robustness and reliability of our proposed approach. We use
the evaluation metrics explained in 4.3 to evaluate the models on the testing datasets. We
present the results on the testing datasets from three evaluation strategies (see 4.5 and Fig.
4.13): (i) the out-of-sample (OOS)1 and out-of-time (OOT)2 evaluation strategy (5.1); (ii)
the out-of-sample (OOS) by technological area (5.2); and (iii) the out-of-sample (OOS) by
sample size evaluation strategy (5.3). We describe the results and provide some explanations
of the observed trends. The purpose is to explain some of the observations, which arise
from the analysis of using a transparent reporting structure and multiple evaluation metrics.
The discussion and implications are found in chapter 6, where we draw observations from
multiple results tables and compare them collectively to the literature (chapter 2).

1An out-of-sample (OOS) test, is a forecasting test conducted, when a model is tested on a holdout
(previously unseen) testing dataset. The test is used to assess the ability of the model to forecast known values,
i.e. the testing dataset. The testing dataset is a percentage of a original dataset, which is not used for training
and validation (Beleites et al., 2013; Bergdahl et al., 2007; Tashman, 2000).

2An out-of-time (OOT) test is an extension of the out-of-sample (OOS) test, when a model is tested on
a holdout (previously unseen) testing dataset, which is not a percentage of the original dataset. The testing
dataset is an extension of the original population of the full dataset, because of new observations (see Fig. 4.12
and 4.13) (Beleites et al., 2013; Bergdahl et al., 2007; Tashman, 2000).
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5.1 Model out-of-sample evaluation by an out-of-time eval-

uation strategy

Table 5.1 shows the results of the out-of-sample and out-of-time test for all outputs, following
the evaluation strategy in 4.51.

For the overall outputs, i.e. grant lag, generality and quality_index_4, for the 2007-2011
test dataset, we observe that the quality_index_4 (model c) has the highest accuracy with
0.94, and macro average F1-score with 0.80, similar to Table 5.15 results. However, the
false negative rate (FNR) for model a (grant_lag) is 0.40, driven by the high number of false
negatives. This indicates that characteristics of the VH and VL patents are not fully identified
or several patents are granted at adhoc times distorting the output proxy. This seems to be
supported by Squicciarini et al. (2013), which identify a number of peaks in the publication
life cycle of patents from year 2004 onwards, suggesting the existence of administrative rules
shaping the timing of grant of patents. For the 2011-2015 test dataset and the 2015-2019,
the grant_lag output improves even further to accuracies of 0.75 (model m) and 0.87 (model
y) respectively, and macro average F1-scores of 0.77 and 0.87 respectively. The reasons
behind this are threefold: (i) a substantial improvement in the digital landscape, reducing the
search times, and administrative burden, and thus improving search and examination times
(Squicciarini et al., 2013); (ii) the changing competitive landscape has forced firms to be
more precise with their patent and look for a quick and robust granting process of the VH

patents, indicated also by the rising precision of the VH patents from 0.18 (model a), 0.40
(model m), to 0.91 (model y) (Harhoff et al., 2003; Thoma, 2014); (iii) the distribution of
VH patents is higher in later test subsets, driven by the desire for patents to be granted faster
(Harhoff et al., 2007).

For the citations outputs, i.e. citations_t4, citations_t8, and citations_t12, we observe a
reduction in accuracy from 0.99 for citation_t4 (model d), to 0.93 for citation_t8 (model e),
to 0.88 for citation_t12 (model f), for 2007-2011. This is consistent with Table 5.15, with an
improvement of the VH patents recall, and a marginal increase in the false negative rate.

1The models are trained and validated on a 10% random sample (010FD | T=12), of a a subset of the full
dataset (100FD | T=12). This subset consists of all granted patents with complete fields of features, i.e. all the
outputs in the time frame T=12 exist (see Fig. 4.13). This means that the patents have reached aged 12. This
constrains the dataset to the years between 1976-2007, and we take a 10% random representative sample from
that subset to form the sample dataset (010FD | T=12). These trained and validated models are then tested
on a random 20% out-of-time sample of all available output proxies from 2007-2019, in 3 time sub-datasets
of the full dataset (100FD): (i) between 2007-2011 (equivalent to Fig. 4.12 part d), (ii) between 2011-2015
(equivalent to Fig. 4.12 part e), and (iii) between 2015-2019 (equivalent to Fig. 4.12 part f). Therefore, this is
both an out-of-sample test, i.e. the models have never ’seen’ the test dataset, and an out-of-time test, i.e. the
models are trained and validated up to 2007, and then forecast in the future from 2007-2019.
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Table 5.1 Model Evaluation Out of Time Test

Outputa ,b
Overall Citations Generality Renewals

Grant_Lag Generality Quality_Index_4 Citations_t4 Citations_t8 Citations_t12 Generality_t4 Generality_t8 Generality_t12 Renewals_t4 Renewals_t8 Renewals_t12
2007-2011

Model a b c d e f g h i j k l
Datapoints Classc VH 16285 42111 22573 2437 15152 2168 6587 12922 1489 211215 98509 25999

VL 184734 182785 228701 188692 213992 17218 232325 216222 17897 32823 58223 239097
Accuracyd 0.63 0.82 0.94 0.99 0.93 0.88 0.97 0.94 0.92 0.86 0.64 0.56
Precision Class VH 0.18 0.59 0.80 0.44 0.42 0.39 0.08 0.40 0.38 0.87 0.65 0.93

VL 1.00 0.84 0.95 0.99 0.94 0.91 0.97 0.95 0.93 0.36 0.54 0.13
Average Macro 0.59 0.72 0.88 0.72 0.68 0.65 0.53 0.68 0.66 0.62 0.60 0.53

Weighted 0.93 0.79 0.94 0.98 0.91 0.85 0.95 0.91 0.89 0.80 0.61 0.85
Recall Class VH 0.99 0.19 0.48 0.01 0.11 0.20 0.01 0.04 0.08 1.00 0.91 0.56

VL 0.60 0.97 0.99 1.00 0.99 0.96 1.00 1.00 0.99 0.02 0.19 0.62
Average Macro 0.79 0.58 0.73 0.51 0.55 0.58 0.50 0.52 0.54 0.51 0.55 0.59

Weighted 0.63 0.82 0.94 0.99 0.93 0.88 0.97 0.94 0.92 0.86 0.64 0.56
F1-score Class VH 0.30 0.29 0.60 0.02 0.17 0.26 0.01 0.07 0.14 0.93 0.76 0.70

VL 0.75 0.90 0.97 0.99 0.96 0.93 0.97 0.97 0.96 0.03 0.28 0.22
Average Macro 0.68 0.64 0.80 0.60 0.61 0.61 0.51 0.59 0.59 0.56 0.57 0.56

Weighted 0.71 0.79 0.94 0.98 0.91 0.86 0.96 0.92 0.89 0.81 0.58 0.65
Confusion
Matrix

True Positives (TP) 111011 177342 226066 188657 211717 16551 232314 215479 17697 210236 89207 16101
False Positives (FP) 232 34117 11723 2409 13509 1737 6596 12420 1364 32267 47221 105907
False Negatives (FN) 73723 5443 2635 35 2275 667 11 743 200 979 9302 9898
True Negatives (TN) 16053 7994 10850 28 1643 431 1 502 125 556 11002 133190

False Negative Rate (FNR) 0.40 0.03 0.01 0.00 0.01 0.04 0.00 0.00 0.01 0.00 0.09 0.38
Mean Absolute Error (MAE) 0.37 0.17 0.06 0.01 0.07 0.12 0.03 0.06 0.08 0.14 0.36 0.44

2011-2015
Model m n o p q r s t u v w x
Datapoints Class VH 36820 33402 18236 3807 71

N / A

6260 41

N / A

161566 9935

N / A

VL 177603 182162 196187 216354 904 213901 937 19447 65658
Accuracy 0.75 0.85 0.94 0.98 0.93 0.97 0.96 0.89 0.27
Precision Class VH 0.40 0.52 0.78 0.31 0.43 0.35 0.62 0.28 0.95

VL 1.00 0.87 0.95 0.98 0.93 0.97 0.96 0.89 0.15
Average Macro 0.70 0.70 0.87 0.64 0.68 0.66 0.79 0.59 0.55

Weighted 0.90 0.82 0.94 0.97 0.90 0.95 0.95 0.83 0.84
Recall Class VH 1.00 0.22 0.45 0.00 0.08 0.01 0.12 0.02 0.17

VL 0.69 0.96 0.99 1.00 0.99 1.00 1.00 0.99 0.94
Average Macro 0.85 0.59 0.72 0.50 0.54 0.50 0.56 0.51 0.56

Weighted 0.75 0.85 0.94 0.98 0.93 0.97 0.96 0.89 0.27
F1-score Class VH 0.57 0.31 0.57 0.01 0.14 0.01 0.20 0.03 0.29

VL 0.82 0.91 0.97 0.99 0.96 0.99 0.98 0.94 0.25
Average Macro 0.77 0.64 0.79 0.56 0.60 0.57 0.66 0.55 0.55

Weighted 0.78 0.82 0.94 0.97 0.90 0.96 0.95 0.84 0.29
Confusion
Matrix

True Positives (TP) 123082 175488 193861 216329 896 213890 931 160723 9339
False Positives (FP) 104 26175 10013 3796 65 6254 36 19118 54405
False Negatives (FN) 54521 6674 2326 25 8 11 3 843 599
True Negatives (TN) 36716 7227 8223 11 6 6 5 329 11253

False Negative Rate (FNR) 0.31 0.04 0.01 0.00 0.01 0.00 0.00 0.01 0.06
Mean Absolute Error (MAE) 0.25 0.15 0.06 0.02 0.07 0.03 0.04 0.11 0.73

2015-2019
Model y z aa

N / A

Datapoints Class VH 157418 21128 20364
VL 156795 146961 215296

Accuracy 0.87 0.87 0.94
Precision Class VH 0.91 0.5 0.76

VL 0.83 0.9 0.95
Average Macro 0.87 0.7 0.85

Weighted 0.87 0.85 0.93
Recall Class VH 0.81 0.3 0.4

VL 0.92 0.96 0.99
Average Macro 0.87 0.63 0.69

Weighted 0.87 0.87 0.94
F1-score Class VH 0.86 0.37 0.52

VL 0.87 0.93 0.97
Average Macro 0.87 0.66 0.76

Weighted 0.87 0.86 0.93
Confusion
Matrix

True Positives (TP) 144697 140656 212681
False Positives (FP) 29830 24828 12242
False Negatives (FN) 12098 6305 2615
True Negatives (TN) 127588 6300 8122

False Negative Rate (FNR) 0.08 0.04 0.01
Mean Absolute Error (MAE) 0.13 0.13 0.06

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe models are trained and validated on a 10% random sample (010FD | T=12), of a a subset of the
full dataset (100FD | T=12). This subset consists of all granted patents with complete fields of features, i.e.
all the outputs in the time frame T=12 exist (see Fig. 4.13). This constrains the dataset to the years between
1976-2007, and we take a 10% sample from that subset to form the sample dataset (010FD | T=12). These
trained and validated models are then tested on a random 20% out-of-time sample of all available output proxies
from 2007-2019, in three time subsets of the full dataset (100FD) (see 4.5): (i) 2007-2011 (equivalent to Fig.
4.12 part d), (ii) 2011-2015 (equivalent to Fig. 4.12 part e), and (iii) 2015-2019 (equivalent to Fig. 4.12 part f).

cClass VH represents high value patents and class VL represents low value patents (see 3.2.2.3).
dThe error-function derivative evaluation metrics and their definitions can be found in 4.3.
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The macro average F1-score also increases marginally relative to Table 5.15, which is
driven by the low precision for VH . This indicates that these models (models d, e, f) are
not able to identify clear characteristics for the VH patent, in comparison to models p and
q, where there is an increase in precision for VH patents. These results also hold true for
the generality outputs (generality_t4, generality_t8, and generality_t12), i.e. models g, h
and i. We observe an improved macro average F1-score for 2011-2015 for models s and
t, driven by the increase in precision and recall for the VH class. This is partly due to the
improvement in the distinction boundary between VH and VL patents due to improvements
in digital communications, improvements in the examination process and completeness of
search reports, and the introduction of the 8th edition of the IPC classification system1 (Falk
& Train, 2017).

For the renewal outputs, i.e. renewal_t4, renewal_t8, and renewal_t12, for 2007-2011,
there is a reduction in the accuracy from 0.86 (model j), to 0.64 (model k), to 0.56 (model l),
while the macro average F1-score remains fairly constant to 0.56. This is consistent with
Table 5.15. For 2011-2015, we observe an improvement in the accuracy for renewal_t4
(model v), driven by the increase in the ratio of VH relative to VL patents. We also observe a
significant drop in the accuracy for renewal_t8 to 0.27 (model w), driven by the very low
number of VH patents. Model w is no longer able to distinguish the characteristics of VL and
thus the number of false positives increases. This is because the trained model is tested on a
non-representative testing dataset, i.e. the distribution of the output proxy in the test dataset,
is not the same as the distribution of the output proxy in the training and validation datasets
used to train the model.

5.2 Model out-of-sample evaluation by technological area

evaluation strategy

We evaluate the forecasting ability of our models on technological areas, using a sample
size evaluation strategy (see 4.5 and Fig. 4.12). We perform the out-of-sample evaluation
by technological area evaluation strategy on the 10% random representative sample dataset

1The eighth edition of the IPC classification system came into force in 2006, where the system was
revised and the classification was divided into core and advanced levels. Thus it has taken a few years for the
improvement to be seen in the data.
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(010FD)1 for each IPC patent classification for all output proxies2 (see Fig. 4.13). The
purpose is to identify which output proxies are suitable for forecasting patent value for
different technology areas.

5.2.1 Overall (grant_lag, generality, quality_index_4)

Table 5.2 shows the results on the IPC classification sections for the grant_lag output. All the
models are able to distinguish the VL patents from the VH patents, shown by the consistent
macro average F1-score, with the IPC G model performing well in a variety of evaluation
metrics (models h_i and h_ii). The IPC section models perform worse than the full sample,
due to the smaller number of datapoints. IPC G model (models h_i and h_ii) show the highest
accuracy and lowest false negative rate, where as IPC D model (models e_i and e_ii) shows
the lowest accuracy and the highest false negative rate. The IPC E model (models i_i and
i_ii) has the highest macro average F1-score. IPC G and H models (models h_i, h_ii, i_i and
i_ii) have the highest saturation in the training and validation loss comparatively to models
a_i and a_ii.

Table 5.3 shows the results on the IPC classifications sections for the generality output.
IPC A model (models b_i and b_ii) shows the highest accuracy, where as IPC D model shows
(models e_i and e_ii) shows the lowest accuracy and highest false negative rate. However,
IPC E and G models (models h_i, h_ii, i_i and i_ii) show the highest macro average F1-score
with 0.69 and 0.71 respectively. IPC E model (models f_i and f_ii) also exhibits severe over
fitting. This is mainly driven by the small number of datapoints and the large imbalance
between VH and VL patents. The models are able to distinguish the VL patents well, shown by
the high F1-score for VL patents.

Table 5.4 shows the results on the IPC classifications sections for the quality_index_4
output. The models are able to distinguish the VL patents relative to the VH patents, evident
by the consistently high macro average F1-scores, and the high F1-score for VL patents. They
show stability and consistency for all IPC sections, driven by the composite nature of the
output proxy, which makes the characteristics between VH and VL patents more distinct,
improving the classification results (Grimaldi et al., 2018; van Zeebroeck, 2011).

1The 10% random representative sample dataset (010FD) is a 10% random sample of the full dataset
(100FD), where year distribution and IPC distribution of patents have been stratified (Brownlee, 2017g, 2020g;
Dobbin & Simon, 2011; Ng & Katanforoosh, 2020).

2For each output proxy, the 010FD sample dataset is split into a training dataset (98%), validation dataset
(1%) and testing dataset (1%), ensuring a representative distribution of the categoric output proxy in the training,
validation and testing datasets (Ng & Katanforoosh, 2020).
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Table 5.2 Model evaluation on the sample dataset (010FD) for grant_lag by IPC section
(technological area)

Output: Grant_Laga
Full Sample

IPC Section
A B C D E F G H

Datapointsb Class VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totalc 129598 389431 18113 51720 24152 58205 13366 32583 1496 2640 4192 9408 12116 27661 27700 115180 28328 91704
Training 127019 381680 17753 50689 23671 57046 13232 32257 1466 2587 4108 9221 11875 27110 21149 112887 27764 89878
Validation 1283 3856 179 513 239 577 134 326 15 26 42 93 120 274 274 1141 281 908
Testing 1296 3895 181 518 242 582 135 330 15 27 42 94 121 277 277 1152 283 918

Training / Validation
Training Loss 0.04 18.22 13.47 33.20 102.88 81.76 39.64 3.50 5.72
Validation Loss 0.04 18.22 13.47 33.20 102.85 81.75 39.63 3.50 5.72
Training Accuracy 0.78 0.75 0.72 0.72 0.60 0.63 0.70 0.81 0.77
Validation Accuracy 0.77 0.76 0.70 0.74 0.71 0.64 0.70 0.81 0.77

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qd 0.50 0.45 0.50 0.44 0.50 0.44 0.50 0.45 0.50 0.43 0.50 0.47 0.50 0.44 0.50 0.42 0.50 0.42
Accuracye 0.77 0.76 0.75 0.73 0.72 0.69 0.72 0.70 0.60 0.62 0.72 0.74 0.69 0.68 0.82 0.76 0.77 0.74
Precision Class VH 0.58 0.51 0.56 0.48 0.56 0.47 0.53 0.48 0.45 0.48 0.58 0.58 0.48 0.47 0.67 0.40 0.60 0.45

VL 0.79 0.84 0.77 0.82 0.73 0.79 0.75 0.79 0.73 0.79 0.75 0.82 0.73 0.80 0.82 0.86 0.78 0.83
Average Macro 0.68 0.68 0.67 0.65 0.65 0.63 0.64 0.64 0.59 0.64 0.67 0.70 0.61 0.64 0.75 0.63 0.69 0.64

Weighted 0.74 0.76 0.71 0.73 0.68 0.70 0.69 0.70 0.63 0.68 0.70 0.75 0.65 0.70 0.79 0.77 0.74 0.74
Recall Class VH 0.26 0.52 0.19 0.48 0.18 0.52 0.27 0.50 0.60 0.73 0.36 0.62 0.23 0.60 0.13 0.43 0.10 0.45

VL 0.94 0.84 0.95 0.82 0.94 0.76 0.90 0.78 0.59 0.56 0.88 0.80 0.89 0.71 0.99 0.84 0.98 0.83
Average Macro 0.60 0.68 0.57 0.65 0.56 0.64 0.59 0.64 0.60 0.65 0.62 0.71 0.56 0.66 0.56 0.64 0.54 0.64

Weighted 0.77 0.76 0.75 0.73 0.72 0.69 0.72 0.70 0.60 0.62 0.72 0.74 0.69 0.68 0.82 0.76 0.77 0.74
F1-score Class VH 0.36 0.51 0.28 0.48 0.27 0.49 0.36 0.49 0.51 0.58 0.44 0.60 0.31 0.53 0.22 0.41 0.17 0.45

VL 0.86 0.84 0.85 0.82 0.82 0.77 0.82 0.78 0.65 0.66 0.81 0.81 0.80 0.75 0.90 0.85 0.87 0.83
Average Macro 0.64 0.68 0.61 0.65 0.60 0.63 0.61 0.64 0.59 0.64 0.64 0.70 0.58 0.64 0.64 0.63 0.61 0.64

Weighted 0.75 0.76 0.73 0.73 0.70 0.69 0.70 0.70 0.61 0.65 0.71 0.74 0.67 0.69 0.80 0.76 0.75 0.74
Confusion
Matrix

True Positives (TP) 3643 3262 491 426 547 440 298 257 16 15 83 75 247 196 1135 971 899 761
False Positives (FP) 954 625 147 95 198 116 99 67 6 4 27 16 93 48 242 158 255 155
False Negatives (FN) 252 633 27 92 35 142 32 73 11 12 11 19 30 81 17 181 19 157
True Negatives (TN) 342 671 34 86 44 126 36 68 9 11 15 26 28 73 35 119 28 128

False Negative Rate 0.06 0.16 0.05 0.18 0.06 0.24 0.10 0.22 0.41 0.44 0.12 0.20 0.11 0.29 0.01 0.16 0.02 0.17
Mean absolute error 0.23 0.24 0.25 0.27 0.28 0.31 0.28 0.30 0.40 0.38 0.28 0.26 0.31 0.32 0.18 0.24 0.23 0.26

aAll outputs are defined according to Table 3.2. Class VH represents high value patents and class VL
represents low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent
after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in
each): training, validation and the testing set, with a ratio of 98:1:1 respectively.

dQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000)

eAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.3 Model evaluation on the sample dataset (010FD) for generality by IPC section
(technological area)

Output: Generalitya
Full Sample

IPC Section
A B C D E F G H

Datapointsb Class VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totalc 69174 362916 6809 51773 12442 53503 8604 27436 593 2548 1408 9408 5125 26724 19251 103626 14942 87898
Training 67797 355694 6674 50742 12194 52438 8433 26889 581 2496 1380 9219 5023 26191 18867 101564 14644 86148
Validation 685 3593 67 513 123 530 85 272 6 26 14 94 51 265 191 1026 148 871
Testing 692 3629 68 518 125 535 86 275 6 26 14 95 51 268 193 1036 150 879

Training / Validation
Training Loss 0.05 23.60 19.76 43.91 108.53 86.10 49.15 5.25 8.22
Validation Loss 0.05 23.60 19.75 43.90 108.51 86.09 49.16 5.25 8.22
Training Accuracy 0.85 0.88 0.82 0.77 0.60 0.81 0.84 0.85 0.84
Validation Accuracy 0.85 0.88 0.83 0.78 0.62 0.67 0.82 0.86 0.86

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qd 0.50 0.41 0.50 0.44 0.50 0.45 0.50 0.45 0.50 0.48 0.50 0.49 0.50 0.45 0.50 0.43 0.50 0.41
Accuracye 0.85 0.81 0.90 0.88 0.82 0.78 0.77 0.77 0.72 0.69 0.77 0.78 0.82 0.81 0.86 0.84 0.87 0.83
Precision Class VH 0.61 0.44 0.64 0.46 0.54 0.43 0.54 0.51 0.36 0.33 0.32 0.34 0.38 0.40 0.59 0.50 0.67 0.42

VL 0.87 0.91 0.91 0.92 0.86 0.87 0.81 0.86 0.90 0.90 0.95 0.96 0.86 0.88 0.88 0.91 0.88 0.92
Average Macro 0.74 0.68 0.78 0.69 0.70 0.65 0.68 0.69 0.63 0.62 0.64 0.65 0.62 0.64 0.74 0.71 0.78 0.67

Weighted 0.83 0.84 0.88 0.87 0.80 0.79 0.75 0.78 0.80 0.79 0.87 0.88 0.78 0.81 0.84 0.85 0.85 0.85
Recall Class VH 0.22 0.57 0.24 0.41 0.34 0.47 0.33 0.56 0.67 0.67 0.71 0.79 0.18 0.37 0.32 0.52 0.24 0.55

VL 0.97 0.86 0.98 0.94 0.93 0.86 0.91 0.83 0.73 0.69 0.78 0.78 0.94 0.90 0.96 0.90 0.98 0.87
Average Macro 0.60 0.72 0.61 0.68 0.64 0.67 0.62 0.70 0.70 0.68 0.75 0.79 0.56 0.64 0.64 0.71 0.61 0.71

Weighted 0.85 0.81 0.90 0.88 0.82 0.78 0.77 0.77 0.72 0.69 0.77 0.78 0.82 0.81 0.86 0.84 0.87 0.83
F1-score Class VH 0.32 0.50 0.35 0.21 0.42 0.45 0.41 0.53 0.47 0.44 0.44 0.48 0.24 0.38 0.42 0.51 0.35 0.48

VL 0.92 0.88 0.94 0.93 0.89 0.86 0.86 0.84 0.81 0.78 0.86 0.86 0.90 0.89 0.92 0.90 0.93 0.89
Average Macro 0.66 0.69 0.68 0.68 0.67 0.66 0.65 0.69 0.66 0.65 0.69 0.71 0.59 0.64 0.68 0.71 0.68 0.69

Weighted 0.84 0.82 0.89 0.87 0.81 0.78 0.76 0.77 0.76 0.74 0.82 0.83 0.80 0.81 0.84 0.84 0.86 0.84
Confusion
Matrix

True Positives (TP) 3532 3126 509 485 499 458 251 229 19 18 74 74 253 240 993 933 861 767
False Positives (FP) 540 298 52 40 83 66 58 38 2 2 4 3 42 32 131 92 114 68
False Negatives (FN) 97 503 9 33 36 77 24 46 7 8 21 21 15 28 43 103 18 112
True Negatives (TN) 152 394 16 28 42 55 28 48 4 4 10 11 9 19 62 101 36 82

False Negative Rate (FNR) 0.03 0.14 0.02 0.06 0.07 0.14 0.09 0.17 0.27 0.31 0.22 0.22 0.06 0.10 0.04 0.10 0.02 0.13
Mean Absolute Error (MAE) 0.06 0.19 0.10 0.12 0.18 0.22 0.23 0.23 0.28 0.31 0.23 0.22 0.18 0.19 0.14 0.16 0.13 0.17

aAll outputs are defined according to Table 3.2. Class VH represents high value patents and class VL
represents low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent
after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in
each): training, validation and the testing set, with a ratio of 98:1:1 respectively.

dQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

eAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.4 Model evaluation on the sample dataset (010FD) for quality_index_4 by IPC
section (technological area)

Output: Quality_Index_4a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Class VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totalc 42658 476376 5622 64211 7288 75070 4793 41621 373 3763 884 12716 3362 36416 10606 132277 9730 110302
Training 41809 466895 5510 62932 7143 73575 4697 40792 365 3688 866 12463 3295 35691 10395 129644 9537 108105
Validation 422 4717 56 636 72 744 48 412 4 37 9 126 33 361 105 1310 96 1093
Testing 427 4764 56 643 73 751 48 417 4 38 9 127 34 364 106 1323 97 1104

Training / Validation
Training Loss 0.02 17.74 13.07 32.67 102.54 80.42 38.70 3.39 5.52
Validation Loss 0.02 17.74 13.08 32.67 102.57 80.44 38.70 3.39 5.53
Training Accuracy 0.94 0.94 0.95 0.93 0.68 0.93 0.95 0.95 0.95
Validation Accuracy 0.94 0.94 0.93 0.91 0.58 0.74 0.92 0.95 0.95

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qd 0.50 0.38 0.50 0.43 0.50 0.45 0.50 0.45 0.50 0.47 0.50 0.49 0.50 0.43 0.50 0.45 0.50 0.43
Accuracye 0.95 0.93 0.95 0.95 0.93 0.93 0.92 0.92 0.74 0.71 0.93 0.93 0.91 0.91 0.95 0.95 0.95 0.94
Precision Class VH 0.80 0.56 0.79 0.65 0.71 0.63 0.70 0.63 0.18 0.21 0.60 0.50 0.50 0.47 0.76 0.70 0.80 0.66

VL 0.95 0.97 0.96 0.97 0.94 0.95 0.93 0.95 0.94 0.96 0.98 0.98 0.93 0.96 0.96 0.97 0.95 0.97
Average Macro 0.88 0.77 0.88 0.81 0.83 0.79 0.82 0.79 0.56 0.59 0.79 0.74 0.72 0.72 0.86 0.84 0.88 0.82

Weighted 0.94 0.94 0.94 0.95 0.92 0.93 0.91 0.92 0.86 0.89 0.95 0.95 0.90 0.92 0.95 0.95 0.94 0.94
Recall Class VH 0.46 0.73 0.48 0.71 0.37 0.52 0.40 0.60 0.50 0.75 0.67 0.78 0.26 0.59 0.49 0.60 0.44 0.65

VL 0.99 0.95 0.99 0.97 0.99 0.97 0.98 0.96 0.76 0.71 0.97 0.94 0.98 0.94 0.99 0.98 0.99 0.97
Average Macro 0.73 0.84 0.74 0.84 0.68 0.75 0.69 0.78 0.63 0.73 0.82 0.86 0.62 0.77 0.74 0.79 0.72 0.81

Weighted 0.95 0.93 0.95 0.95 0.93 0.93 0.92 0.92 0.74 0.71 0.95 0.93 0.91 0.91 0.95 0.95 0.95 0.94
F1-score Class VH 0.58 0.63 0.60 0.68 0.49 0.57 0.51 0.61 0.26 0.33 0.63 0.61 0.34 0.52 0.60 0.65 0.57 0.65

VL 0.97 0.96 0.97 0.97 0.96 0.96 0.95 0.95 0.84 0.82 0.97 0.96 0.95 0.95 0.97 0.97 0.97 0.97
Average Macro 0.79 0.80 0.80 0.82 0.75 0.77 0.75 0.78 0.59 0.65 0.80 0.80 0.66 0.74 0.80 0.81 0.79 0.81

Weighted 0.94 0.93 0.94 0.95 0.92 0.93 0.91 0.92 0.80 0.79 0.95 0.94 0.90 0.91 0.95 0.95 0.94 0.94
Confusion
Matrix

True Positives (TP) 4714 4524 636 621 740 729 409 400 29 27 120 120 355 341 1307 1295 1093 1071
False Positives (FP) 230 116 29 16 46 35 29 19 2 1 2 2 25 14 54 42 54 34
False Negatives (FN) 50 240 7 22 11 22 8 17 9 11 7 7 9 23 16 28 11 33
True Negatives (TN) 197 311 27 40 27 38 19 29 2 3 7 7 9 20 52 64 43 63

False Negative Rate (FNR) 0.01 0.05 0.01 0.03 0.01 0.03 0.02 0.04 0.24 0.29 0.06 0.06 0.02 0.06 0.01 0.02 0.01 0.03
Mean Absolute Error (MAE) 0.05 0.07 0.05 0.05 0.07 0.07 0.08 0.08 0.26 0.29 0.07 0.07 0.09 0.09 0.05 0.05 0.05 0.06

aAll outputs are defined according to Table 3.2. Class VH represents high value patents and class VL
represents low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent
after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in
each): training, validation and the testing set, with a ratio of 98:1:1 respectively.

dQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

eAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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5.2.2 Forward citations (citations_t4, citations_t8, citations_t12)

Table 5.5 shows the results on the IPC classification sections for the citation_t4 output. The
models performed worse when split into individual IPC section models, rather than when
combined all together. We observe a drop in the macro average F1-score, and the relative
increase in the mean absolute error. We also observe the following: IPC G and H models
(models h_i, h_ii, i_i, and i_ii), have the highest share of VH patents, and the lowest training
and validation losses, indicating that the convergence of weights is more robust. In addition,
the IPC A model (models b_i and b_ii) follows IPC G and H, with the highest share of VH

patents, yet the training and validation loss is higher than that of IPC B model (models c_i
and c_ii), indicating that these patents are more difficult to be distinguished.

Table 5.6 shows the results on the IPC classification sections for the citation_t8 output.
These follow a similar pattern as before when the separation in the individual IPC section
models occur. However, the range of the results for the training and validation is smaller
than that of the results for citations_t4. While we observe an increase in the mean absolute
error and false negative rate in all IPC sections relative to Table 5.5, and a slight expectable
decrease in the overall accuracy, we can see an increase in the macro average F1-score with
the highest observed in IPC A (models b_i and b_ii). This is mainly driven by the high
precision for VH , which is the result of the increase of VH patents. This leads to a more
distinct separation between VH and VL patents.

Table 5.7 shows the results on the IPC classification sections for the citations_t12 output.
We observe that the model on the full sample has a high accuracy of 0.88 and a macro average
F1-score of 0.70. IPC B, C, and F models (models c_i, c_ii, d_i, d_ii, g_i and g_ii) have a
higher accuracy than the full sample model, but the macro average F1-score is lower. This
driven by the low precision and recall for VH patents. IPC A, G, and H models (models b_i,
b_ii, h_i, h_ii, i_i, and i_ii) have a relative lower accuracy than the full sample accuracy,
but a macro average F1-score higher, which is driven by the higher number of available VH

patents. The false negative rate is higher than that of citations_t8, which is expected as the
forecasting ability of the model in T=12 decreases.
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Table 5.5 Model evaluation on the sample dataset (010FD) for citations_t4 by IPC section
(technological area)

Output: Citation_t4a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Class VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totalc 4015 415426 783 55452 195 70236 132 39499 9 3748 96 11081 110 32556 1625 111137 1065 91717
Training 3935 407158 767 54348 191 68837 130 38711 9 3672 94 10860 108 31907 1593 108924 1043 89892
Validation 40 4113 8 549 2 696 1 392 0 38 1 110 1 323 16 1101 11 908
Testing 40 4155 8 555 2 703 1 397 0 38 1 111 1 326 16 1112 11 917

Training / Validation
Training Loss 0.04 24.90 17.45 38.95 103.17 84.40 46.88 6.45 10.10
Validation Loss 0.04 24.90 17.45 38.95 103.14 84.39 46.88 6.45 10.10
Training Accuracy 0.99 0.99 1.00 0.99 0.53 0.70 0.99 0.99 0.99
Validation Accuracy 0.99 0.99 1.00 1.00 0.71 0.95 1.00 0.98 0.99

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qd 0.50 0.27 0.50 0.36 0.50 0.33 0.50 0.40 0.50 0.49 0.50 0.49 0.50 0.41 0.50 0.29 0.50 0.39
Accuracye 0.99 0.97 0.99 0.96 1.00 1.00 1.00 1.00 0.58 0.50 0.94 0.92 1.00 1.00 0.99 0.92 0.99 0.99
Precision Class VH 0.01 0.14 0.01 0.16 0.01 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.01 1.00

VL 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99
Average Macro 0.50 0.57 0.50 0.57 0.50 0.75 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49 0.53 0.49 0.99

Weighted 0.98 0.99 0.97 0.98 0.99 1.00 0.99 0.99 1.00 1.00 0.98 0.98 0.99 0.99 0.97 0.98 0.98 0.99
Recall Class VH 0.01 0.45 0.01 0.38 0.01 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.38 0.01 0.09

VL 1.00 0.97 1.00 0.97 1.00 1.00 1.00 1.00 0.58 0.50 0.95 0.93 1.00 1.00 1.00 0.93 1.00 1.00
Average Macro 0.50 0.71 0.51 0.68 0.51 0.75 0.51 0.51 0.30 0.26 0.48 0.47 0.51 0.51 0.51 0.66 0.51 0.55

Weighted 0.99 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
F1-score Class VH 0.01 0.21 0.01 0.23 0.01 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.12 0.01 0.17

VL 0.99 0.98 0.99 0.98 1.00 1.00 1.00 1.00 0.73 0.67 0.97 0.96 1.00 1.00 0.99 0.96 0.99 0.99
Average Macro 0.50 0.63 0.50 0.62 0.50 0.75 0.50 0.50 0.37 0.33 0.48 0.48 0.50 0.50 0.50 0.54 0.50 0.58

Weighted 0.98 0.98 0.97 0.97 1.00 1.00 1.00 1.00 0.73 0.67 0.96 0.95 1.00 1.00 0.98 0.95 0.98 0.98
Confusion
Matrix

True Positives (TP) 4153 4047 555 539 703 702 396 396 22 19 105 103 326 326 1112 1034 917 917
False Positives (FP) 38 22 7 5 2 1 1 1 0 0 1 1 1 1 16 10 11 10
False Negatives (FN) 2 108 0 16 0 1 0 0 16 19 6 8 0 0 0 78 0 0
True Negatives (TN) 2 18 1 3 0 1 0 1 0 0 0 0 0 0 0 6 0 1

False Negative Rate (FNR) 0.00 0.03 0.00 0.03 0.00 0.00 0.00 0.00 0.42 0.50 0.05 0.07 0.00 0.00 0.00 0.07 0.00 0.00
Mean Absolute Error (MAE) 0.01 0.03 0.01 0.04 0.00 0.00 0.00 0.00 0.42 0.50 0.06 0.08 0.00 0.00 0.01 0.08 0.01 0.01

aAll outputs are defined according to Table 3.2. Class VH represents high value patents and class VL
represents low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent
after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in
each): training, validation and the testing set, with a ratio of 98:1:1 respectively.

dQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000)

eAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.6 Model evaluation on the sample dataset (010FD) for citations_t8 by IPC section
(technological area)

Output: Citation_t8a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Class VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totalc 21202 301497 3741 39293 1652 56950 929 32385 70 3261 385 8690 639 26039 7915 73040 5871 61575
Training 20780 295497 3667 38509 1619 55815 911 31739 68 3196 377 8517 627 25778 7758 71585 5754 60349
Validation 210 2985 37 390 16 565 9 321 1 32 4 86 6 261 78 724 58 610
Testing 212 3015 37 394 17 570 9 325 1 33 4 87 6 264 79 731 59 616

Training / Validation
Training Loss 0.15 35.53 23.32 46.30 103.92 89.58 55.10 13.61 18.79
Validation Loss 0.15 35.53 23.33 46.30 103.89 89.59 55.09 13.61 18.79
Training Accuracy 0.94 0.92 0.97 0.96 0.55 0.65 0.94 0.91 0.91
Validation Accuracy 0.94 0.92 0.97 0.98 0.64 0.90 0.98 0.90 0.91

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qd 0.50 0.37 0.50 0.47 0.50 0.43 0.50 0.41 0.50 0.49 0.50 0.46 0.50 0.42 0.50 0.40 0.50 0.41
Accuracye 0.94 0.90 0.94 0.94 0.97 0.97 0.97 0.95 0.74 0.71 0.86 0.73 0.97 0.96 0.91 0.89 0.92 0.91
Precision Class VH 0.59 0.34 0.73 0.66 1.00 0.62 0.01 0.18 0.10 0.09 0.01 0.08 0.01 0.20 0.68 0.42 0.80 0.48

VL 0.94 0.96 0.95 0.96 0.97 0.98 0.97 0.98 1.00 1.00 0.95 0.97 0.98 0.98 0.92 0.94 0.92 0.94
Average Macro 0.77 0.65 0.84 0.81 0.99 0.80 0.49 0.58 0.55 0.55 0.48 0.52 0.49 0.59 0.80 0.68 0.86 0.71

Weighted 0.92 0.92 0.93 0.93 0.97 0.97 0.95 0.96 0.97 0.97 0.91 0.93 0.96 0.97 0.90 0.89 0.91 0.90
Recall Class VH 0.10 0.49 0.43 0.57 0.06 0.29 0.01 0.22 1.00 1.00 0.01 0.50 0.01 0.33 0.22 0.48 0.07 0.37

VL 1.00 0.93 0.98 0.97 1.00 0.99 1.00 0.97 0.73 0.70 0.90 0.74 1.00 0.97 0.99 0.93 1.00 0.96
Average Macro 0.55 0.71 0.71 0.77 0.53 0.64 0.50 0.60 0.86 0.85 0.45 0.62 0.50 0.65 0.60 0.70 0.53 0.67

Weighted 0.94 0.90 0.94 0.94 0.97 0.97 0.97 0.95 0.74 0.71 0.86 0.73 0.97 0.96 0.91 0.89 0.92 0.91
F1-score Class VH 0.17 0.40 0.54 0.61 0.11 0.40 0.01 0.20 0.18 0.17 0.01 0.14 0.01 0.25 0.33 0.45 0.13 0.42

VL 0.97 0.94 0.96 0.96 0.98 0.98 0.98 0.97 0.84 0.82 0.92 0.84 0.99 0.97 0.95 0.93 0.96 0.95
Average Macro 0.64 0.68 0.77 0.79 0.69 0.71 0.49 0.59 0.67 0.67 0.46 0.57 0.49 0.62 0.69 0.69 0.66 0.69

Weighted 0.93 0.91 0.93 0.93 0.97 0.97 0.96 0.95 0.84 0.82 0.88 0.82 0.96 0.96 0.90 0.89 0.91 0.90
Confusion
Matrix

True Positives (TP) 3643 2812 388 383 570 567 325 316 24 23 78 64 263 256 723 679 615 592
False Positives (FP) 954 108 21 16 16 12 9 7 0 0 4 2 6 4 62 41 55 37
False Negatives (FN) 252 203 6 11 0 3 0 9 9 10 9 23 1 8 8 52 1 24
True Negatives (TN) 342 104 16 21 1 5 0 2 1 1 0 2 0 2 17 38 4 22

False Negative Rate (FNR) 0.06 0.07 0.02 0.03 0.00 0.01 0.00 0.03 0.27 0.30 0.10 0.26 0.00 0.03 0.01 0.07 0.00 0.04
Mean Absolute Error (MAE) 0.06 0.10 0.06 0.06 0.03 0.03 0.03 0.05 0.26 0.29 0.14 0.27 0.03 0.04 0.09 0.11 0.08 0.09

aAll outputs are defined according to Table 3.2. Class VH represents high value patents and class VL
represents low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent
after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in
each): training, validation and the testing set, with a ratio of 98:1:1 respectively.

dQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

eAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.7 Model evaluation on the sample dataset (010FD) for citations_t12 by IPC section
(technological area)

Output: Citation_t12a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Class VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totalc 34089 221984 6408 29189 3727 46283 1942 26689 138 2817 699 6975 1268 21774 11136 47403 8771 40854
Training 33410 217566 6280 28608 3653 45360 1904 26156 136 2759 685 6836 1242 21340 10915 46458 8596 40040
Validation 338 2198 64 289 37 459 19 265 1 29 7 69 13 216 110 470 87 405
Testing 341 2220 64 292 37 459 19 268 1 29 7 70 13 216 111 475 88 409

Training / Validation
Training Loss 0.42 43.84 29.61 52.88 105.23 93.35 61.22 24.00 30.36
Validation Loss 0.42 43.83 29.60 52.87 105.20 93.34 61.21 24.00 30.36
Training Accuracy 0.88 0.84 0.93 0.90 0.55 0.63 0.88 0.83 0.83
Validation Accuracy 0.88 0.86 0.92 0.93 0.77 0.61 0.95 0.83 0.85

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qd 0.50 0.42 0.50 0.44 0.50 0.39 0.50 0.44 0.50 0.49 0.50 0.49 0.50 0.46 0.50 0.44 0.50 0.44
Accuracye 0.88 0.86 0.86 0.85 0.92 0.87 0.93 0.90 0.63 0.63 0.81 0.81 0.92 0.91 0.84 0.82 0.84 0.83
Precision Class VH 0.64 0.47 0.65 0.56 0.01 0.26 0.25 0.29 0.08 0.08 0.28 0.28 0.01 0.23 0.67 0.54 0.61 0.53

VL 0.89 0.91 0.90 0.93 0.93 0.95 0.94 0.95 1.00 1.00 0.97 0.97 0.94 0.95 0.86 0.88 0.87 0.88
Average Macro 0.78 0.69 0.77 0.74 0.46 0.61 0.59 0.62 0.54 0.54 0.62 0.62 0.47 0.59 0.76 0.71 0.74 0.70

Weighted 0.86 0.85 0.85 0.86 0.86 0.90 0.94 0.91 0.97 0.97 0.90 0.90 0.89 0.91 0.82 0.81 0.82 0.82
Recall Class VH 0.24 0.43 0.52 0.69 0.01 0.41 0.05 0.32 1.00 1.00 0.71 0.71 0.01 0.23 0.32 0.45 0.32 0.42

VL 0.98 0.93 0.94 0.88 1.00 0.91 0.90 0.94 0.62 0.62 0.81 0.81 0.98 0.95 0.96 0.91 0.96 0.92
Average Macro 0.63 0.68 0.73 0.78 0.50 0.66 0.52 0.63 0.81 0.81 0.76 0.76 0.49 0.59 0.64 0.68 0.64 0.67

Weighted 0.88 0.86 0.86 0.85 0.92 0.87 0.93 0.90 0.63 0.63 0.81 0.81 0.92 0.91 0.84 0.82 0.84 0.83
F1-score Class VH 0.35 0.45 0.58 0.62 0.01 0.32 0.08 0.30 0.15 0.15 0.40 0.40 0.01 0.23 0.43 0.49 0.42 0.47

VL 0.93 0.92 0.92 0.90 0.96 0.93 0.92 0.94 0.77 0.77 0.88 0.88 0.96 0.95 0.91 0.89 0.91 0.90
Average Macro 0.70 0.68 0.75 0.76 0.48 0.63 0.55 0.62 0.65 0.65 0.68 0.68 0.48 0.59 0.69 0.69 0.69 0.68

Weighted 0.87 0.85 0.85 0.85 0.89 0.88 0.93 0.90 0.76 0.76 0.85 0.85 0.90 0.91 0.83 0.81 0.83 0.82
Confusion
Matrix

True Positives (TP) 2174 2057 274 257 463 422 265 253 18 18 57 57 213 208 457 432 391 376
False Positives (FP) 260 196 31 20 37 22 18 13 0 0 2 2 13 10 75 61 60 51
False Negatives (FN) 46 163 18 35 1 42 3 15 11 11 13 13 5 10 18 43 18 33
True Negatives (TN) 81 145 33 44 0 15 1 6 1 1 5 5 0 3 36 50 28 37

False Negative Rate 0.02 0.07 0.06 0.12 0.00 0.09 0.01 0.06 0.38 0.38 0.19 0.19 0.02 0.05 0.04 0.09 0.04 0.08
Mean absolute error 0.12 0.14 0.14 0.15 0.08 0.13 0.07 0.10 0.37 0.37 0.19 0.19 0.08 0.09 0.16 0.18 0.16 0.17

aAll outputs are defined according to Table 3.2. Class VH represents high value patents and class VL
represents low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent
after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in
each): training, validation and the testing set, with a ratio of 98:1:1 respectively.

dQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000)

eAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3
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5.2.3 Generality index (generality_t4, generality_t8, generality_t12)

Table 5.8 shows the results on the IPC sections for the generality_t4 output. The individual
IPC models perform similarly to the full combined sample. We also observe the following:
while the IPC G and H models (models h_i, h_ii, i_i and i_ii) have the lowest training and
validation loss, indicating that the convergence of weights is more robust, the IPC C model
(models d_i and d_ii) has the optimal performance for both accuracy and macro average
F1-score. This indicates that the distinction boundary between VH and VL patents is clearer
for IPC section C.

Table 5.9 shows the results on the IPC sections for the generality_t8 output, which
are similar to Table 5.8. The individual IPC section models perform similarly to the full
combined sample. IPC A model (models b_i and b_ii) has the optimal performance for both
accuracy and macro F1-score. This indicates that the distinction boundary between VH and
VL patents is clearer for IPC A, rather than for example IPC B, G and H, (models c_i, c_ii,
h_i, h_ii, i_i and i_ii), which have the highest number of VH patents. In addition, the IPC D,
E, and F models (models e_i, e_ii, f_i, f_ii, g_i, and g_ii) are slightly overfitted.

Table 5.10 shows the results on the IPC sections for the generality_t12 output. IPC
G model (models h_i and h_ii) has the optimal performance for both accuracy and macro
average F1-score. This indicates that the distinction boundary between VH and VL patents
is clearer for IPC G, rather than for example IPC section B, which has the highest number
of VH patents. The models for IPC D and E (models e_i, e_ii, f_i and f_ii) have the highest
false negative rate, driven by the higher number of false negatives and the low number of
datapoints. The IPC D model (models e_i and e_ii) is slightly overfitted, where as the IPC E
model (models f_i and f_ii) is slightly underfitted.

5.2.4 Renewals (renewal_t4, renewal_t8, renewal_t12)

Table 5.11 shows the results on the IPC sections for the renewal_t4 output. The individual
IPC section models perform similarly to the full combined sample. While IPC G model
(models h_i and h_ii), has the lowest training and validation loss, IPC H model (models
i_i and i_ii) has the optimal performance for both accuracy and macro average F1-score,
despite not having the highest number of VH patents. This indicates that the distinction
boundary between VH and VL patents is clearer for IPC H. Table 5.12 shows the results for
the renewal_t8 output. The results are similar to Table 5.11, with IPC G model (models h_i
and h_ii), having the optimal performance for macro average F1-score optimisation. This is
also similar to Table 5.13 for the renewal_t12 output. The false negative rate rises further,
driven by the number of false negatives and the low recall values.
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Table 5.8 Model evaluation on the sample dataset 010FD for generality_t4 by IPC section
(technological area)

Output: Generality_t4a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Classc VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totald 9612 409829 2203 54032 2122 68309 329 39302 50 3707 407 10770 745 31921 2045 110717 1711 91071
Training 9421 401672 2159 52956 2080 66948 323 38518 48 3633 399 10555 731 31284 2005 108512 1677 89258
Validation 95 4058 22 535 21 677 3 390 1 37 1 107 7 317 20 1097 17 902
Testing 96 4099 22 541 21 684 3 394 1 37 1 108 7 320 20 1108 17 911

Training / Validation
Training Loss 0.04 25.06 17.43 39.02 102.92 84.68 46.90 6.45 10.14
Validation Loss 0.04 25.06 17.43 39.03 102.89 84.68 36.90 6.45 10.14
Training Accuracy 0.97 0.96 0.96 0.99 0.56 0.70 0.98 0.98 0.98
Validation Accuracy 0.97 0.96 0.96 0.99 0.57 0.94 0.98 0.98 0.98

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qe 0.50 0.35 0.50 0.39 0.50 0.36 0.50 0.34 0.50 0.49 0.50 0.47 0.50 0.45 0.50 0.37 0.50 0.31
Accuracyf 0.98 0.97 0.96 0.94 0.97 0.95 0.99 0.96 0.68 0.61 0.89 0.82 0.98 0.98 0.98 0.98 0.98 0.92
Precision Class VH 0.01 0.34 0.01 0.24 0.01 0.18 0.01 0.23 0.08 0.06 0.01 0.10 0.01 0.01 0.01 0.40 0.01 0.09

VL 0.98 0.98 0.96 0.97 0.97 0.98 0.99 0.98 1.00 1.00 0.96 0.98 0.98 0.98 0.98 0.99 0.98 0.99
Average Macro 0.50 0.66 0.49 0.60 0.49 0.58 0.50 0.61 0.54 0.53 0.48 0.54 0.49 0.49 0.49 0.69 0.49 0.54

Weighted 0.95 0.97 0.92 0.94 0.94 0.95 0.98 0.97 0.98 0.98 0.93 0.95 0.96 0.96 0.96 0.98 0.96 0.97
Recall Class VH 0.01 0.17 0.01 0.18 0.01 0.19 0.01 0.31 1.00 1.00 0.01 0.50 0.01 0.01 0.01 0.20 0.01 0.35

VL 1.00 0.99 1.00 0.98 1.00 0.97 1.00 0.97 0.68 0.59 0.93 0.83 1.00 1.00 1.00 0.99 1.00 0.93
Average Macro 0.50 0.58 0.50 0.58 0.50 0.58 0.50 0.64 0.84 0.80 0.46 0.67 0.50 0.50 0.50 0.60 0.50 0.64

Weighted 0.98 0.97 0.96 0.94 0.97 0.95 0.99 0.96 0.68 0.61 0.89 0.82 0.98 0.98 0.98 0.98 0.98 0.92
F1-score Class VH 0.35 0.23 0.01 0.21 0.01 0.18 0.01 0.26 0.15 0.11 0.01 0.17 0.01 0.01 0.01 0.27 0.01 0.14

VL 0.93 0.98 0.98 0.97 0.98 0.97 0.99 0.97 0.81 0.74 0.94 0.90 0.99 0.99 0.99 0.99 0.99 0.96
Average Macro 0.50 0.62 0.49 0.59 0.49 0.58 0.50 0.62 0.66 0.64 0.47 0.60 0.49 0.49 0.49 0.64 0.49 0.59

Weighted 0.96 0.97 0.94 0.94 0.95 0.95 0.98 0.96 0.80 0.75 0.91 0.88 0.97 0.97 0.97 0.98 0.97 0.94
Confusion
Matrix

True Positives (TP) 4099 4068 541 528 684 666 394 390 25 22 100 90 320 320 1108 1102 911 850
False Positives (FP) 95 80 22 18 21 17 3 3 0 0 4 2 7 7 20 16 17 11
False Negatives (FN) 0 31 0 13 0 18 0 4 12 15 8 18 0 0 0 6 0 61
True Negatives (TN) 1 16 0 4 0 4 0 0 1 1 0 2 0 0 0 1102 0 6

False Negative Rate (FNR) 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.01 0.32 0.41 0.07 0.17 0.00 0.00 0.00 0.01 0.00 0.07
Mean Absolute Error (MAE) 0.02 0.03 0.04 0.06 0.03 0.05 0.01 0.04 0.32 0.39 0.11 0.18 0.02 0.02 0.02 0.02 0.02 0.08

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cClass VH represents high value patents and class VL represents low value patents.
dThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in

each): training, validation and the testing set, with a ratio of 98:1:1 respectively.
eQ refers to the classification threshold or decision threshold, where the model converts the probability

returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.9 Model evaluation on the sample dataset 010FD for generality_t8 by IPC section
(technological area)

Output: Generality_t8a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Classc VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totald 18906 303793 2895 40139 4184 53873 1334 32525 137 3194 660 8415 1594 25348 4223 76732 3879 63567
Training 18530 297747 2837 39339 4101 53333 1308 31350 135 3129 646 8248 1562 24843 4139 75204 3802 62301
Validation 187 3008 29 398 41 540 13 317 1 32 7 83 16 251 42 760 38 630
Testing 189 3038 29 402 42 545 13 321 1 33 7 84 16 254 42 768 39 636

Training / Validation
Training Loss 0.15 35.53 23.46 46.43 103.86 89.74 55.39 13.53 18.72
Validation Loss 0.15 35.52 23.46 46.43 103.82 .89.73 55.39 13.53 18.72
Training Accuracy 0.94 0.93 0.93 0.95 0.56 0.64 0.90 0.95 0.94
Validation Accuracy 0.94 0.93 0.93 0.96 0.70 0.74 0.94 0.95 0.94

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qe 0.50 0.36 0.50 0.39 0.50 0.40 0.50 0.40 0.50 0.49 0.50 0.46 0.50 0.42 0.50 0.35 0.50 0.38
Accuracyf 0.94 0.90 0.94 0.89 0.93 0.93 0.96 0.91 0.56 0.56 0.80 0.67 0.94 0.86 0.95 0.88 0.94 0.90
Precision Class VH 0.17 0.23 1.00 0.27 0.01 0.47 0.01 0.16 0.06 0.06 0.13 0.17 0.50 0.19 0.01 0.22 0.50 0.27

VL 0.94 0.96 0.94 0.97 0.93 0.95 0.96 0.97 1.00 1.00 0.93 0.98 0.95 0.96 0.95 0.97 0.94 0.96
Average Macro 0.55 0.60 0.97 0.62 0.47 0.71 0.49 0.57 0.53 0.53 0.53 0.58 0.73 0.58 0.48 0.60 0.72 0.62

Weighted 0.90 0.91 0.94 0.92 0.86 0.92 0.92 0.94 0.96 0.97 0.87 0.92 0.92 0.92 0.90 0.93 0.92 0.92
Recall Class VH 0.01 0.33 0.07 0.59 0.01 0.38 0.01 0.31 1.00 1.00 0.29 0.86 0.12 0.44 0.01 0.52 0.05 0.38

VL 1.00 0.93 1.00 0.88 1.00 0.97 1.00 0.93 0.55 0.55 0.85 0.65 0.99 0.89 1.00 0.90 1.00 0.94
Average Macro 0.50 0.63 0.54 0.74 0.51 0.68 0.51 0.62 0.78 0.78 0.57 0.76 0.56 0.67 0.51 0.71 0.53 0.66

Weighted 0.94 0.90 0.94 0.86 0.93 0.93 0.56 0.56 0.56 0.56 0.80 0.67 0.94 0.86 0.95 0.88 0.94 0.90
F1-score Class VH 0.02 0.27 0.13 0.37 0.01 0.42 0.01 0.21 0.11 0.11 0.18 0.28 0.19 0.27 0.01 0.31 0.09 0.32

VL 0.97 0.94 0.97 0.92 0.96 0.96 0.98 0.95 0.71 0.71 0.89 0.78 0.97 0.92 0.97 0.93 0.97 0.95

Average
Macro 0.52 0.61 0.69 0.67 0.49 0.69 0.49 0.59 0.63 0.63 0.55 0.65 0.63 0.62 0.49 0.65 0.61 0.64
Weighted 0.92 0.90 0.94 0.89 0.89 0.92 0.70 0.70 0.71 0.71 0.83 0.78 0.93 0.89 0.92 0.90 0.93 0.91

Confusion
Matrix

True Positives (TP) 3033 2830 402 484 545 527 321 300 18 18 71 55 252 225 768 689 634 595
False Positives (FP) 183 126 27 12 42 26 13 9 0 0 5 1 14 9 42 20 37 24
False Negatives (FN) 5 208 0 47 0 18 0 21 15 15 13 29 2 29 0 79 2 41
True Negatives (TN) 6 63 2 17 0 16 0 4 1 1 2 6 2 7 0 22 2 15

False Negative Rate (FNR) 0.00 0.07 0.00 0.09 0.00 0.03 0.00 0.07 0.45 0.45 0.15 0.35 0.01 0.11 0.00 0.10 0.00 0.06
Mean Absolute Error (MAE) 0.06 0.10 0.06 0.11 0.07 0.07 0.04 0.09 0.44 0.44 0.20 0.33 0.06 0.14 0.05 0.12 0.06 0.10

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cClass VH represents high value patents and class VL represents low value patents.
dThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in

each): training, validation and the testing set, with a ratio of 98:1:1 respectively.
eQ refers to the classification threshold or decision threshold, where the model converts the probability

returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.10 Model evaluation on the sample dataset 010FD for generality_t12 by IPC section
(technological area)

Output: Generality_t12a
Full Sample

IPC Section
A B C D E F G H

Datapointsb

Classc VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totald 22836 230904 3144 32453 5321 44689 2068 26563 187 2768 793 6881 2039 21003 4771 53768 4513 45112
Training 22382 228594 3082 31806 5215 43798 2026 26034 183 2712 777 6744 1999 20583 4676 52697 4423 44213
Validation 226 2310 31 322 53 443 21 263 2 28 8 68 20 209 47 533 45 447
Testing 228 2333 31 325 53 448 21 266 2 28 8 69 20 211 48 538 45 452

Training / Validation
Training Loss 0.41 43.49 29.82 52.94 105.30 93.52 61.62 23.66 30.04
Validation Loss 0.41 43.48 29.82 52.94 105.27 93.50 61.62 23.66 30.04
Training Accuracy 0.91 0.90 0.89 0.90 0.56 0.61 0.84 0.92 0.91
Validation Accuracy 0.91 0.91 0.89 0.93 0.67 0.78 0.90 0.92 0.91

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qe 0.50 0.39 0.50 0.44 0.50 0.40 0.50 0.43 0.50 0.48 0.50 0.49 0.50 0.45 0.50 0.41 0.50 0.41
Accuracyf 0.91 0.88 0.91 0.87 0.89 0.89 0.93 0.88 0.80 0.82 0.74 0.77 0.91 0.84 0.93 0.92 0.92 0.91
Precision Class VH 0.46 0.35 0.43 0.33 0.33 0.48 0.75 0.30 0.25 0.25 0.25 0.31 0.44 0.28 0.75 0.49 0.67 0.58

VL 0.91 0.94 0.92 0.95 0.90 0.92 0.94 0.96 1.00 1.00 0.96 1.00 0.93 0.95 0.93 0.96 0.92 0.92
Average Macro 0.70 0.65 0.68 0.64 0.62 0.70 0.85 0.63 0.63 0.63 0.61 0.66 0.69 0.62 0.84 0.73 0.80 0.75

Weighted 0.87 0.89 0.88 0.89 0.84 0.87 0.92 0.91 0.95 0.95 0.89 0.93 0.89 0.89 0.92 0.92 0.90 0.89
Recall Class VH 0.05 0.42 0.10 0.48 0.02 0.28 0.14 0.48 1.00 1.00 0.75 1.00 0.20 0.50 0.19 0.54 0.13 0.16

VL 0.99 0.93 0.99 0.91 1.00 0.96 1.00 0.91 0.79 0.79 0.74 0.74 0.98 0.88 0.99 0.95 0.99 0.99
Average Macro 0.52 0.68 0.55 0.70 0.51 0.62 0.57 0.70 0.90 0.90 0.75 0.87 0.59 0.69 0.59 0.75 0.56 0.58

Weighted 0.91 0.88 0.91 0.87 0.89 0.89 0.57 0.88 0.80 0.80 0.75 0.77 0.91 0.84 0.93 0.92 0.92 0.91
F1-score Class VH 0.09 0.38 0.16 0.39 0.04 0.35 0.24 0.37 0.40 0.40 0.38 0.47 0.28 0.36 0.30 0.51 0.22 0.25

VL 0.95 0.93 0.95 0.93 0.95 0.94 0.97 0.93 0.88 0.88 0.84 0.85 0.95 0.91 0.96 0.95 0.95 0.95
Average Macro 0.60 0.66 0.60 0.67 0.56 0.66 0.68 0.66 0.74 0.74 0.67 0.75 0.63 0.65 0.69 0.73 0.66 0.65

Weighted 0.89 0.88 0.89 0.88 0.86 0.88 0.70 0.89 0.87 0.87 0.81 0.84 0.90 0.86 0.92 0.92 0.91 0.90
Confusion
Matrix

True Positives (TP) 2320 2160 321 295 446 432 265 243 22 21 51 51 206 185 535 511 449 447
False Positives (FP) 217 133 28 16 52 38 18 11 0 0 2 0 16 10 39 22 39 38
False Negatives (FN) 13 173 4 30 2 16 1 23 6 5 18 18 5 26 3 27 3 5
True Negatives (TN) 11 95 3 15 1 15 3 10 2 2 6 8 4 10 9 22 6 7

False Negative Rate (FNR) 0.01 0.07 0.01 0.09 0.00 0.04 0.00 0.09 0.21 0.19 0.26 0.26 0.02 0.12 0.01 0.05 0.01 0.01
Mean Absolute Error (MAE) 0.09 0.12 0.09 0.13 0.11 0.11 0.07 0.12 0.20 0.18 0.26 0.23 0.09 0.16 0.07 0.08 0.08 0.09

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cClass VH represents high value patents and class VL represents low value patents.
dThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in

each): training, validation and the testing set, with a ratio of 98:1:1 respectively.
eQ refers to the classification threshold or decision threshold, where the model converts the probability

returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.11 Model evaluation on the sample data 010FD for renewal_t4 by IPC section
(technological area)

Output: Renewal_t4a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Classc VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totald 361519 57664 46415 9934 57310 11236 32416 5546 2829 636 8844 1996 26633 5129 102110 12979 84962 10208
Training 354325 56516 45490 9737 56168 11013 31771 5490 2771 624 8667 1956 26102 5027 100078 12720 83270 1005
Validation 3579 571 460 98 568 111 321 55 29 6 88 20 264 51 1011 129 842 101
Testing 3615 577 465 98 574 112 324 56 29 6 89 20 267 51 1021 130 850 102

Training / Validation
Training Loss 0.06 25.46 18.53 41.34 104.12 86.35 49.16 6.21 9.72
Validation Loss 0.06 25.46 18.53 41.34 104.10 86.34 49.16 6.22 9.72
Training Accuracy 0.86 0.82 0.84 0.85 0.56 0.63 0.82 0.89 0.89
Validation Accuracy 0.86 0.82 0.83 0.85 0.51 0.71 0.83 0.89 0.89

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qe 0.50 0.38 0.50 0.41 0.50 0.38 0.50 0.39 0.50 0.49 0.50 0.47 0.50 0.40 0.50 0.35 0.50 0.37
Accuracyf 0.86 0.80 0.82 0.78 0.83 0.74 0.85 0.73 0.63 0.63 0.70 0.65 0.83 0.70 0.89 0.77 0.89 0.85
Precision Class VH 0.86 0.30 0.83 0.88 0.84 0.88 0.85 0.88 0.83 0.83 0.83 0.85 0.84 0.85 0.89 0.92 1.00 0.90

VL 0.20 0.90 0.50 0.40 0.33 0.30 0.01 0.23 0.18 0.18 0.22 0.25 0.25 0.21 0.01 0.22 0.89 0.23
Average Macro 0.53 0.60 0.67 0.64 0.59 0.59 0.43 0.56 0.51 0.51 0.53 0.55 0.55 0.53 0.45 0.57 0.95 0.57

Weighted 0.77 0.81 0.77 0.80 0.76 0.79 0.73 0.78 0.72 0.72 0.71 0.74 0.75 0.75 0.79 0.84 0.91 0.83
Recall Class VH 1.00 0.37 0.99 0.84 0.99 0.79 1.00 0.80 0.69 0.69 0.80 0.70 0.99 0.77 1.00 0.81 1.00 0.92

VL 0.01 0.86 0.05 0.48 0.02 0.47 0.01 0.36 0.33 0.33 0.25 0.45 0.02 0.31 0.01 0.42 0.01 0.19
Average Macro 0.51 0.62 0.52 0.66 0.51 0.63 0.51 0.58 0.51 0.51 0.53 0.58 0.51 0.54 0.51 0.62 0.51 0.56

Weighted 0.86 0.80 0.82 0.78 0.83 0.74 0.85 0.73 0.63 0.63 0.70 0.65 0.83 0.70 0.89 0.77 0.89 0.85
F1-score Class VH 0.93 0.33 0.90 0.86 0.91 0.83 0.92 0.84 0.75 0.75 0.81 0.77 0.91 0.81 0.94 0.86 1.00 0.91

VL 0.01 0.88 0.09 0.44 0.04 0.37 0.01 0.28 0.23 0.23 0.23 0.32 0.04 0.25 0.01 0.29 0.02 0.21
Average Macro 0.52 0.61 0.58 0.65 0.54 0.61 0.46 0.57 0.51 0.51 0.53 0.56 0.52 0.53 0.48 0.59 0.66 0.56

Weighted 0.81 0.80 0.79 0.79 0.79 0.76 0.79 0.75 0.67 0.67 0.70 0.69 0.79 0.72 0.84 0.80 0.90 0.84
Confusion
Matrix

True Positives (TP) 3607 3118 460 392 570 452 324 258 20 20 71 62 264 206 1021 829 850 786
False Positives (FP) 575 362 94 51 110 59 56 36 4 4 15 11 50 35 130 76 101 83
False Negatives (FN) 8 497 5 73 4 122 0 66 9 9 18 27 3 61 0 192 0 64
True Negatives (TN) 2 215 5 48 2 53 0 20 2 2 5 9 1 16 0 54 1 19

False Negative Rate (FNR) 0.00 0.14 0.01 0.16 0.01 0.21 0.00 0.20 0.31 0.31 0.20 0.30 0.01 0.23 0.00 0.19 0.00 0.08
Mean Absolute Error (MAE) 0.14 0.20 0.18 0.22 0.17 0.26 0.15 0.27 0.37 0.37 0.30 0.35 0.17 0.30 0.11 0.23 0.11 0.15

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cClass VH represents high value patents and class VL represents low value patents.
dThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in

each): training, validation and the testing set, with a ratio of 98:1:1 respectively.
eQ refers to the classification threshold or decision threshold, where the model converts the probability

returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.12 Model evaluation on the sample data 010FD for renewal_t8 by IPC section
(technological area)

Output: Renewal_t8a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Classc VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totald 209474 119676 25254 18790 33870 23777 19963 12252 1745 1342 4931 3938 15626 10597 58771 27130 49314 21850
Training 205305 117294 24750 18416 33196 23303 19565 12008 1727 1316 4833 3859 15314 10386 57601 26589 48332 21415
Validation 2074 1185 251 186 335 236 198 121 18 13 49 39 155 105 582 269 489 216
Testing 2095 1197 253 188 339 238 200 123 18 13 49 40 157 106 588 272 493 219

Training / Validation
Training Loss 0.17 35.36 24.83 48.91 105.61 91.83 57.58 12.38 17.56
Validation Loss 0.17 35.37 13.83 48.92 105.59 91.81 57.58 12.38 17.56
Training Accuracy 0.67 0.65 0.60 0.63 0.59 0.57 0.59 0.69 0.70
Validation Accuracy 0.66 0.64 0.61 0.61 0.52 0.59 0.61 0.69 0.70

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qe 0.50 0.46 0.50 0.48 0.50 0.46 0.50 0.45 0.50 0.49 0.50 0.49 0.50 0.48 0.50 0.44 0.50 0.45
Accuracyf 0.67 0.66 0.65 0.64 0.63 0.64 0.63 0.61 0.55 0.58 0.66 0.63 0.60 0.61 0.69 0.65 0.70 0.68
Precision Class VH 0.68 0.73 0.67 0.69 0.64 0.73 0.65 0.71 0.62 0.67 0.69 0.67 0.64 0.66 0.70 0.75 0.71 0.74

VL 0.60 0.53 0.61 0.58 0.60 0.55 0.53 0.49 0.47 0.50 0.63 0.59 0.51 0.52 0.57 0.45 0.53 0.47
Average Macro 0.64 0.63 0.64 0.64 0.62 0.64 0.59 0.60 0.55 0.59 0.66 0.63 0.58 0.59 0.64 0.60 0.62 0.61

Weighted 0.65 0.66 0.64 0.64 0.62 0.65 0.60 0.63 0.56 0.60 0.66 0.63 0.59 0.60 0.66 0.65 0.65 0.66
Recall Class VH 0.89 0.73 0.76 0.68 0.84 0.62 0.89 0.62 0.56 0.56 0.71 0.65 0.79 0.74 0.95 0.74 0.95 0.82

VL 0.27 0.52 0.50 0.59 0.33 0.67 0.21 0.59 0.54 0.62 0.60 0.60 0.33 0.42 0.14 0.46 0.13 0.37
Average Macro 0.58 0.63 0.63 0.64 0.59 0.65 0.55 0.61 0.55 0.59 0.66 0.63 0.56 0.58 0.55 0.60 0.54 0.60

Weighted 0.67 0.66 0.65 0.64 0.63 0.64 0.63 0.61 0.55 0.58 0.66 0.63 0.60 0.61 0.69 0.65 0.70 0.68
F1-score Class VH 0.77 0.73 0.71 0.68 0.73 0.67 0.75 0.66 0.59 0.61 0.70 0.66 0.71 0.70 0.81 0.74 0.81 0.78

VL 0.38 0.52 0.55 0.58 0.43 0.60 0.30 0.54 0.50 0.55 0.61 0.59 0.40 0.46 0.22 0.45 0.21 0.41
Average Macro 0.61 0.63 0.63 0.64 0.60 0.64 0.57 0.60 0.55 0.59 0.66 0.63 0.57 0.58 0.59 0.60 0.58 0.60

Weighted 0.66 0.66 0.64 0.64 0.62 0.64 0.61 0.62 0.55 0.59 0.66 0.63 0.59 0.60 0.67 0.65 0.67 0.67
Confusion
Matrix

True Positives (TP) 1874 1538 192 173 286 210 177 124 10 10 35 32 124 116 559 433 467 403
False Positives (FP) 868 575 94 78 160 79 97 50 6 5 16 16 71 61 234 146 190 138
False Negatives (FN) 221 557 61 80 53 129 23 76 8 8 14 17 33 41 29 155 26 90
True Negatives (TN) 329 622 94 110 78 159 26 73 7 8 24 24 35 45 38 126 29 81

False Negative Rate (FNR) 0.11 0.27 0.24 0.32 0.16 0.38 0.12 0.38 0.44 0.44 0.29 0.35 0.21 0.26 0.05 0.26 0.05 0.18
Mean Absolute Error (MAE) 0.33 0.34 0.35 0.36 0.37 0.36 0.37 0.39 0.45 0.42 0.34 0.37 0.40 0.39 0.31 0.35 0.30 0.32

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cClass VH represents high value patents and class VL represents low value patents.
dThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in

each): training, validation and the testing set, with a ratio of 98:1:1 respectively.
eQ refers to the classification threshold or decision threshold, where the model converts the probability

returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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Table 5.13 Model evaluation on the sample data 010FD for renewal_t12 by IPC section
(technological area)

Output: Renewal_t12a
Full Sample

IPC Section
A B C D E F G H

Datapointsb Classc VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL VH VL

Totald 113582 165675 13887 24622 18971 32586 11536 17246 1000 1836 2743 5127 8910 14558 30144 38340 26391 30868
Training 111321 162378 13610 24131 18593 31937 11306 17079 980 1798 2688 5025 8733 14267 29544 37577 25866 30559
Validation 1125 1640 138 244 188 323 114 173 10 19 27 51 88 146 298 380 261 309
Testing 1136 1657 139 247 190 326 116 174 10 19 28 51 89 146 302 383 264 312

Training / Validation
Training Loss 0.32 23.87 29.07 53.29 105.66 0.59 62.47 18.85 24.83
Validation Loss 0.33 23.88 29.07 53.29 105.64 0.59 63.46 18.85 24.83
Training Accuracy 0.66 0.66 0.64 0.60 0.59 0.94 0.61 0.64 0.63
Validation Accuracy 0.65 0.67 0.66 0.62 0.65 0.94 0.67 0.65 0.66

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii e_i e_ii f_i f_ii g_i g_ii h_i h_ii i_i i_ii
Qe 0.50 0.49 0.50 0.49 0.50 0.49 0.50 0.49 0.50 0.29 0.50 0.49 0.50 0.49 0.50 0.49 0.50 0.49
Accuracyf 0.67 0.67 0.68 0.67 0.66 0.65 0.60 0.60 0.48 0.66 0.66 0.66 0.69 0.68 0.66 0.66 0.62 0.62
Precision Class VH 0.63 0.69 0.58 0.58 0.58 0.59 0.49 0.49 0.31 0.50 0.52 0.52 0.68 0.67 0.65 0.66 0.60 0.60

VL 0.69 0.64 0.71 0.71 0.67 0.66 0.62 0.61 0.62 0.71 0.71 0.71 0.69 0.68 0.66 0.65 0.64 0.63
Average Macro 0.66 0.67 0.65 0.65 0.63 0.63 0.56 0.55 0.47 0.61 0.62 0.62 0.69 0.68 0.66 0.66 0.62 0.62

Weighted 0.67 0.67 0.66 0.66 0.64 0.63 0.57 0.56 0.52 0.64 0.65 0.65 0.69 0.67 0.66 0.66 0.62 0.62
Recall Class VH 0.47 0.83 0.38 0.38 0.24 0.19 0.22 0.17 0.40 0.40 0.43 0.43 0.34 0.29 0.49 0.45 0.54 0.52

VL 0.81 0.45 0.84 0.84 0.90 0.92 0.85 0.88 0.53 0.79 0.78 0.78 0.90 0.91 0.79 0.82 0.69 0.71
Average Macro 0.64 0.64 0.61 0.61 0.57 0.56 0.54 0.53 0.47 0.60 0.61 0.61 0.62 0.60 0.64 0.64 0.62 0.62

Weighted 0.67 0.67 0.68 0.68 0.66 0.65 0.60 0.60 0.48 0.66 0.66 0.66 0.69 0.68 0.66 0.66 0.62 0.62
F1-score Class VH 0.54 0.75 0.46 0.46 0.34 0.29 0.30 0.72 0.35 0.44 0.47 0.47 0.45 0.40 0.56 0.54 0.57 0.56

VL 0.75 0.53 0.77 0.77 0.77 0.77 0.72 0.25 0.57 0.75 0.74 0.74 0.78 0.78 0.72 0.73 0.66 0.67
Average Macro 0.65 0.65 0.63 0.63 0.60 0.59 0.54 0.54 0.47 0.60 0.61 0.61 0.65 0.64 0.65 0.64 0.62 0.62

Weighted 0.67 0.67 0.67 0.67 0.65 0.64 0.58 0.58 0.50 0.65 0.65 0.65 0.69 0.67 0.66 0.66 0.62 0.62
Confusion
Matrix

True Positives (TP) 539 510 53 53 45 37 25 20 4 4 12 12 30 26 147 137 143 136
False Positives (FP) 315 284 39 40 33 26 26 21 9 4 11 11 14 13 79 70 97 90
False Negatives (FN) 597 626 86 86 145 153 91 96 6 6 16 16 59 63 155 165 121 128
True Negatives (TN) 1342 1373 208 207 293 300 148 153 10 15 40 40 132 133 304 313 215 222

False Negative Rate (FNR) 0.53 0.55 0.62 0.62 0.76 0.81 0.78 0.83 0.60 0.60 0.57 0.57 0.66 0.71 0.51 0.55 0.46 0.48
Mean Absolute Error (MAE) 0.33 0.33 0.32 0.33 0.34 0.35 0.40 0.40 0.52 0.34 0.34 0.34 0.31 0.32 0.34 0.34 0.38 0.38

aAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

bThe results are calculated on the sample dataset 010FD, which is a 10% random sample of the full dataset,
100FD, where year distribution and IPC distributions have been stratified. For every output, the number of
datapoints corresponds to the total number of complete fields of features, i.e. datapoints with empty number of
features because of cleaning or non-existence are not included.

cClass VH represents high value patents and class VL represents low value patents.
dThe sample dataset 010FD is split into three sets (maintaining the distribution of the output variable in

each): training, validation and the testing set, with a ratio of 98:1:1 respectively.
eQ refers to the classification threshold or decision threshold, where the model converts the probability

returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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5.3 Model out-of-sample evaluation by sample size evalua-

tion strategy

We evaluate the forecasting ability of our models using a sample size evaluation strategy
(see 4.5 and Fig. 4.13). Firstly, we train, validate and test our models on the full dataset
(100FD) (5.3.1), and then on a 10% and 3% random sample of the full dataset, 010FD and
003 respectively (5.3.2).

5.3.1 Full dataset (100FD) results

Table 5.14 presents the results from the deploying the methodology on the full dataset
(100FD)1. The results for forward citations show a consistency across the different time
periods, with an accuracy of 0.99 for T=4 (model a_i), 0.94 for T=8 (model b_i), and 0.88
for T=12 (model c_i). Our results show a significant improvement in accuracy, precision,
recall, and F1-score, compared to previous studies summarise in Tables 2.10 and 2.12. This
is due to the increase of high patents, VH , as older patents gain forward citations, which is
consistent with the observations by Hall (2005). In addition, the false negative rate appears to
be very low, while the number of high value patents VH increasing with time. This appears to
be because of the boundaries becoming clearer between VH and VL patents (only high valued
patent inventions survive).

The results on the generality_t12, also appear to have a high accuracy 0.91, and an
F1-score of 0.61 (model d_i). The model identifies all the relevant instances with a high
macro average precision 0.72. Comparing the citations_t12 (models c_i and c_ii) and the
generality_t12 (models d_i and d_ii), we observe a similar consistency. These models have
a low false negative rate, a high precision and recall for VL, and a high precision for VH .
We also observe that the F1-score is higher for citations_t12 than generality_t12, which is
driven by the higher macro average recall. This is due to noise with the introduction of the
diversification of patent classes in the generality index, where sometimes patents are placed
in some IPC patent classes with small relevance due to prior art citations.

Our results show that we identify very effectively the VL patents, with a high precision
and recall. This appears to be significant contribution, since the algorithm seems to predict
well the low value patents VL, and identifies with high relevance the high value patents VH .

1Unfortunately, due to the computational resources required to run these sort of algorithms, it was not
possible to train, validate and test all output categorical proxies on the full dataset. This is partly the reason
we have developed the wide evaluation strategy in 4.5. We focus on the most frequently used output proxies
(forward citations, see Table 2.12) and train, validate and test the deep learning algorithm on citations_t4,
citations_t8, citations_t12, and generality_index_t12.
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Table 5.14 Model evaluation on the full dataset (100FD) per output proxy

Outputa ,b Citations_t4 Citations_t8 Citations_t12 Generality_t12
Datapointsc Class VH VL VH VL VH VL VH VL

Totald 39857 4152743 213454 3013091 345582 2215114 229938 2330758
Training 39063 4070104 209206 2953130 338705 2171033 225363 2284375
Validation 395 41112 2113 29830 3421 21930 2276 23075
Testing 399 41527 2135 30131 3456 22151 2299 23308

Training / Validation
Training Loss 0.00 0.01 0.02 0.02
Validation Loss 0.00 0.01 0.02 0.02
Training Accuracy 0.99 0.94 0.88 0.91
Validation Accuracy 0.99 0.94 0.88 0.91

Testing
Model a_i a_ii b_i b_ii c_i c_ii d_i d_ii
Qe 0.50 0.26 0.50 0.36 0.50 0.48 0.50 0.36
Accuracyf 0.99 0.98 0.94 0.91 0.88 0.85 0.91 0.85
Precision Class VH 0.40 0.15 0.61 0.36 0.66 0.46 0.52 0.29

VL 0.99 0.99 0.94 0.96 0.89 0.92 0.91 0.94
Average Macro 0.70 0.57 0.78 0.66 0.78 0.69 0.72 0.62

Weighted 0.99 0.99 0.92 0.92 0.86 0.85 0.88 0.88
Recall Class VH 0.03 0.32 0.11 0.44 0.25 0.50 0.06 0.44

VL 1.00 0.98 1.00 0.95 0.98 0.91 0.99 0.90
Average Macro 0.52 0.65 0.56 0.70 0.62 0.71 0.53 0.67

Weighted 0.99 0.98 0.94 0.91 0.88 0.85 0.91 0.85
F1-score Class VH 0.06 0.20 0.18 0.40 0.36 0.48 0.11 0.35

VL 1.00 0.99 0.97 0.95 0.93 0.91 0.95 0.92
Average Macro 0.59 0.61 0.65 0.68 0.69 0.70 0.61 0.64

Weighted 0.99 0.98 0.92 0.92 0.86 0.86 0.88 0.87
Confusion
Matrix

True Positives (TP) 41512 40801 29985 28474 21707 20092 23184 20870
False Positives (FP) 389 272 1903 1192 2595 1711 2164 1285
False Negatives (FN) 15 726 146 1657 444 2059 124 2438
True Negatives (TN) 10 127 232 943 861 1754 135 1014

False Negative Rate (FNR) 0.00 0.02 0.00 0.05 0.02 0.09 0.01 0.10
Mean Absolute Error (MAE) 0.01 0.02 0.06 0.09 0.12 0.12 0.09 0.15

aAll outputs are defined according to Table 3.2. Class VH represent high value patents and class VL represent
low value patents. Breakdown of t4, t8, and t12 refers to the number of years of the granted patent after the
filling date, and only exist if the patent has reached the respective age.

bDue to limited computational resources, only the following output proxy models have been trained,
validated and tested on the full dataset 100FD.

cThe results are calculated on the full dataset, 100FD, (where year distribution and IPC distributions have
been stratified). For every output, the number of datapoints corresponds to the total number of complete fields
of features, i.e. datapoints with empty number of features because of cleaning or non-existence are not included.

dThe full dataset is split into three sets (maintaining the distribution of the output variable in each): training,
validation and the testing set, with a ratio of 98:1:1 respectively.

eQ refers to the classification threshold or decision threshold, where the model converts the probability
returned from the model into a class. In the case when Q = 0.50, the model is optimised for the lowest loss
function and highest accuracy. In the case, when Q 6= 0.50, the threshold is optimised to maximise the macro
average F1-score (Lipton et al., 2014; Provost, 2000).

fAll evaluation metrics of the error-function derivative and their definitions can be found in 4.3.
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5.3.2 Random representative samples of the full dataset

5.3.2.1 Sample 010FD

Sample dataset 010FD is a 10% random representable sample of the full dataset (100FD)1.
Table 5.15 shows the results of the models being trained, validated and tested on the 10%
random sample (010FD) of the full dataset (100FD), with 98% of 010FD used as training
dataset, 1% of 010FD used as validation dataset and 1% of 010FD used as testing dataset2.

The results show that the model is well trained on the training dataset, validated on the
validation dataset and tested on the testing dataset. The loss values for both training and
validation are consistent and low for output proxies. We note that the training and validation
losses, while low, they are not as low as the 100FD dataset’s results (Table 5.14). This
is due to the large scale difference in the number of datapoints, which is relative to each
model’s complexity, resulting in a more consistent adjustment of weight parameters that
turned towards very small numbers in order to minimise the loss function. The false negative
rate is low for all output proxies, except for renewal_t8 (models i_i and i_ii) and renewal_t12
(models l_i and l_ii), which follows the mean absolute error. Citations_t4 (model d_i and d_ii)
has the highest accuracy model, driven by the high number of VL patents. Quality_index_4
(models c_i and c_ii) has the highest macro average precision and recall, driven by the high
precision and recall for VL. The grant lag (models a_i and a_ii) has an accuracy of 0.77, with
a macro average F1-Score of 0.64. This is mainly driven by the low recall of class VH .

In the short term (t4), citations_t4 model (models d_i and d_ii) has the highest accuracy
with 0.99, followed by generality_t4 (models e_i and e_ii) with 0.98 and renewal_t4 (models
f_i and f_ii) with 0.86. This is consistent across t4, with macro average F1-scores around
0.50, driven by the low precision and recall values for VH . All three models can identify the
VL patents, but find it difficult to classify the VH patents. This partly arises because of the
large class imbalance at the early stages of the patent lifecycle, making it difficult to predict
the value class in the short term. However, these models are useful because they identify well
the VL patents, and thus can identify a wrong investment into a technology, i.e. a patent that
belongs to class VL, but the model classifies it into class VH (see 4.3.2). This is also reflected
in the low false negative rate.

1The 10% random representative sample dataset (010FD) is a 10% random sample of the full dataset
(100FD), where year distribution and IPC distribution of patents have been stratified (Brownlee, 2017g, 2020g;
Dobbin & Simon, 2011; Ng & Katanforoosh, 2020).

2The dataset split and the dataset and variations for training, validation and testing are described and
explained in 4.5.2, where the percentage split ensures a representative distribution of the categoric output proxy
in the training, validation and testing dataset (Ng & Katanforoosh, 2020).
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In the medium term (t8), both citations_t8 (models g_i and g_ii) and generality_t8
(models h_i and h_ii) have an accuracy of 0.94, where as renewal_t8 (models i_i and i_ii)
drops to 0.67. The number of VH patents increases, and thus the model are able to identify
them. This is reflected in the higher precision both in VH and the macro average, while
maintaining the false negative rate low. Recall for VL is very high indicating that these models
are able to maintain the identification of the majority class from t4. Renewal_t8 has an
accuracy of 0.67, and an F1-score of 0.61. However, the false negative rate increases, partly
driven by the rise in false negatives. As we increase the forecasting window, the model finds
it more difficult to identify which patents are renewed and thus are valuable. This reinforces
the question whether firms do renew their most valuable patents, or they renew the majority
of their patent portfolios in fear of losing out.

In the long term (t12), both citations_t12 (models j_i and j_ii) and generality_t12 (models
k_i and k_ii) are close with accuracies of 0.88, and 0.91 respectively, while renewal_t12
(models l_i and l_ii) remains at 0.67. While the macro average F1-scores rise due to the
number of VH patents increasing, the false negative rate remains low, indicating that the
models are able to better identify VH and VL patents, with higher macro average precision.
These models are less able to distinguish between true negatives and false positives, and
that is why the number of false positives increases. In addition, for renewal_t12 (models l_i
and l_ii), the false negative rate increases to 0.53, which indicates a high number of false
positives and false negatives, strengthening the above that firms decide to renew all of their
patents and not in a strategic manner.

5.3.2.2 Sample 003FD

Sample dataset 003FD is a 3% random representable sample of the full dataset (100FD)1.
Table 5.16 shows the results of the models being trained, validated and tested on the 3%
random sample of the full dataset (100FD), with 98% of 003FD used as training dataset, 1%
of 003FD used as validation dataset and 1% of 003FD used as testing dataset2.

The results show that the model is well trained on the training set, validated on the
validation set and tested on the testing set. The loss for both training and validation is not
as low as the results in the 010FD sample dataset (Table 5.15) or the 100FD full dataset
(Table 5.14). This implies that while the model’s error loss function (see 4.4.2.2) reaches

1The 3% random representative sample dataset (010FD) is a 3% random sample of the full dataset (100FD),
where year distribution and IPC distribution of patents have been stratified (Brownlee, 2017g, 2020g; Dobbin &
Simon, 2011; Ng & Katanforoosh, 2020).

2The dataset split and the dataset and variations for training, validation and testing are described and
explained in 4.5.2, where the percentage split ensures a representative distribution of the categoric output proxy
in the training, validation and testing dataset (Ng & Katanforoosh, 2020).
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the minimum, the weight parameters are not fully adjusted and thus keeping the error at a
higher than anticipated value. This is also supported by the increase in the false negative rate
relative to Table 5.15. Citations_t4 model (models d_i and d_ii) has the highest accuracy,
driven by the high number of VL patents1.

In the short term (t4), citations_t4 model (models d_i and d_ii) has an accuracy of 0.99,
followed by generality_t4 (models e_i and e_ii) with 0.98 and renewal_t4 (models f_i and
f_ii) with 0.86. In addition, we observe that the classification thresholds for the adjusted
models (models d_ii, e_ii and f_ii) lie between 0.32-0.37, which shows a consistency in the
identification of the boundary between VH and VL, but a difficulty in correctly classifying
the VH patents. With the decision boundary optimisation, we can clearly observe an increase
in recall for all three output proxies, mainly driven by the increase in recall of VH patents
(Provost, 2000).

In the medium term (t8), both the citations_t8 model (models g_i and g_ii) and the
generality_t8 model (models h_i and h_ii) have an accuracy of 0.94, where as the renewal_t8
model (models i_i and i_ii) drops to 0.57. In the long term (t12), both the citations_t12
model (models j_i and j_ii) and the generality_t12 model (models k_i and k_ii) are close with
accuracies of 0.88, and 0.91 respectively, while the renewal_t12 model (models l_i and l_ii)
remains at 0.66. These results follow the results of Table 5.15 dataset, with higher training
and validation errors and false negative rates, despite the changing parameter which is the size
of the dataset (because the model complexity is fixed). If a firm is interested in monitoring
technologies, then models trained on the 3% sample (003FD), are more suitable since speed
is of essence. Firms interested in investing in technologies and technology development
should focus more on the models with a higher number of datapoints such as the 10% sample
(010FD) and the full dataset (100FD), where the error is lower, false negative rates are lower,
and accuracy and F1-score are higher.

1When we optimise the classification decision threshold to increase the macro average F1-score, the
citation_t4 model reaches 0.61 with a threshold of 0.32, which is quite close to the 0.63 from the 010FD sample
dataset and threshold of 0.27 (Table 5.15).
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Discussion

The analysis of the literature (chapter 2), reveals that there are limited studies of applying
artificial intelligence (AI) methodologies for valuing patents, predominantly using small
sample sizes (see 2.1.2.6 and Tables 2.11 and 2.12). Only a limited number of studies make
use of artificial neural networks (ANN), with the majority of the studies using low capacity1

shallow ANNs2, with binary classification, limited numeric and categoric features, and one
output variable. Thus, there is a limited number of studies using deep learning3 for the
valuation of patents.

In this chapter, we provide an interpretation of the results transparently reported in chapter
5, from the deployment of our developed deep learning algorithmic approach (chapter 4),
referring to prior literature using examples. We identify patterns from some of the observed
trend explanations provided in chapter 5, and refer them back to the literature. Given the
limitations of previous research, we discuss two main topics: (i) valuation of patents using
AI methodologies (6.1), and (ii) the advancement of AI methodologies for the analysis of
patent data and deployment for patent valuation purposes (6.2).

Firstly, we focus on discussing the valuation of patented inventions referring to prior
1The capacity of a neural network is defined as configuration of neurons or nodes and layers, i.e. the

number of layers, the number of input nodes, the number of output nodes, and the number of nodes in each
layer (Hopfield, 1982; Jia et al., 2016), and controls the scope of the types of mapping functions that it is able
to learn (Brownlee, 2019g).

2Deep neural networks are defined as networks with architectures with multiple hidden layers, where as
shallow neural networks have one or two hidden layer (Delalleau & Bengio, 2011; Goodfellow et al., 2016;
Murphy, 2012).

3For the purpose of this research (see 2.2), we use the term deep learning (DL) to describe artificial neural
networks (ANN), in supervised learning paradigms, defined by the depth of the credit assignment paths, which
are chains of possibly learnable, causal links between inputs and outputs (Hinton et al., 2006), i.e. finding
weights that make the neural network exhibit desired behaviour (Schmidhuber, 2015). These are also known as
deep (and wide) neural networks (Cheng et al., 2017; Goodfellow et al., 2016; Shaked et al., 2016). Brownlee
(2019m), URL: https://machinelearningmastery.com/what-is-deep-learning/.

https://machinelearningmastery.com/what-is-deep-learning/
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literature in 6.1, relative to the following: (i) patent value output proxies deployed (6.1.1); (ii)
composite indices deployed for patent value (6.1.2); and (iii) the value dimension the model
outputs represent and how these could partly be interpreted (6.1.3). Secondly, we focus on
the AI methodologies deployed for patent valuation in 6.2, discussing the following: (i) the
advancements of the deep learning approach in the analysis of patent data for forecasting
patent value (6.2.1); (ii) the deployment of our deep learning approach to forecast patent
value for a variety of technological areas (6.2.2); and (iii) the advancements of the deep
learning approach to forecast patent value by using the patent text (abstract, claims, title,
summary) (6.2.3).

6.1 Valuation of patented inventions

6.1.1 Patent value output proxies

As the literature reveals (chapter 2), this research is one of few to explore a range of patent
value output proxies using artificial intelligence (AI) methodologies and large datasets. This
is in contrast to current research, i.e. Lee et al. (2018) and Noh & Lee (2020), who explicitly
use only a few lagging proxies, such as forward citations (see 2.2.2.3.2.1 and Table 2.12).
Most of prior studies depend on forward citations, making the analysis of newly filed patents
with little or no forward citations practically impossible (Jun & Lee, 2012). Thus, relying
only on forward citations as a patent value proxy could lead to incomplete patent value
assessment. Woo et al. (2019) use the generality output proxy with a very low macro average
F1-scores. In contrast, from Table 5.15, we find a macro average optimised F1-scores (i.e.
Q 6= 0.50) of 0.62 for generality_4 and generality_8, and 0.66 for generality_12. We observe
that the generality proxy, which is the technological diversification of forward citations,
improves with increasing time horizon (Hagedoorn & Cloodt, 2003; Leten et al., 2007).

Our results show a significant improvement from prior art. With higher accuracies and
macro average F1-scores (see Table 5.14 and Table 5.15), our models are well trained with
low values for the training and validation losses (Zhang et al., 2012). They are able to
distinguish VH and VL better than previous research (Table 2.12). This is driven by the 2-class
approach of structuring the problem (see 4.1), relative to the 4-class approach followed by
Lee et al. (2018) (see 2.2.2.3.2.4)1.

For our models, a true positive (TP) is a VL patent that is predicted to be VL, and a true
negative (TN) is a VH patent that is predicted to be VH (see 4.3.2). A false positive (FP) is

1Studies in Table 2.12 are able to classify low value patents really well, but are hardly able to find any of
the high value patents.
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a VH patent that is predicted to be VL, i.e. it is a missed opportunity and the patent remains
unexploited because the firm’s management decides against exploiting it due to the inaccurate
prediction (Baglieri & Cesaroni, 2013; Gregory, 1995). A false negative is a VL patent that is
predicted to be VH , i.e. it is a wrong investment (Arora et al., 2008; Ernst, 1995; Soenksen
& Yazdi, 2016; Verbano & Nosella, 2010). The patent is heavily exploited with resource
commitment and development investment due to the inaccurate prediction, with more serious
implications for firms, leading to financial losses1.

Moreover, as the prediction horizon increases from t4 to t12, we observe an increase
in the macro average F1-scores, because the number of VH patents tends to increase. This
is particularly important comparing our results to Lee et al. (2018) and Woo et al. (2019)
(see Table 2.12), since we observe that our models are able to more clearly distinguish the
features of VH relative to VL patents, i.e. the number of false positives (FP) decreases, while
the number of true negatives (TN) increases (Hall et al., 2005).

Trappey et al. (2019) propose a patent value deep learning-based analysis with numerical
features, specific for the Internet of Things (IoT). They use a 4-class output proxy to determine
if a patent would become a standard essential patents (SEPs) under the Paris Convention
Treaty (PCT). They find a training accuracy of 0.83 and testing accuracy of of 0.73. This
suggests that there is substantial model overfitting. They also observe an improvement in
the testing accuracy when trying a deep neural network architecture, consistent with our
methodology development (see 4.4.1.1) on the basis of deep and wide neural networks (Lee
& Hsiang, 2019a; Noh & Lee, 2020). However, Choi et al. (2020) achieve a higher macro
average F1-score using the constructed proxy of core business patent (CBP). This is based on
the patent lifetime renewal, which reduces the scope of the research and focus solely on the
strategic and economic value dimensions (see Table 2.3). Their results are driven by the low
number of input features together with using a balanced dataset training approach, with equal
class ratio. This is in contrast to AI, machine and deep learning research, which suggests to
use a cost-sensitive loss function, i.e. focal loss (see 4.10), before using other approaches2

for a balanced dataset, such as oversampling or undersampling (Altini, 2015; Mao, 2019;
Seif, 2018). Harhoff et al. (1999) find that patents renewed full term are more likely to be
cited, identifying the noisy relationship between citations and the value distribution. We
also observe this in our results with the macro average F1-score increasing for citations_t12,
despite a slight drop in the accuracy, because the number of VH patents tends to increase.

1The model is penalised more by the focal loss (see 4.10) when it makes a mistake for a false negative
relative to other types of misclassification, with low number of false negatives and low false negative rate
(chapter 5) because of the more serious implications that could result for firms with wrong investments.

2Wu & Radewagen (2017), URL: https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-
data.html.

https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-data.html
https://www.kdnuggets.com/2017/06/7-techniques-handle-imbalanced-data.html
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Our study is one of the very few to explore a wide range of patent value proxies, with
large datasets, with an improvement in accuracy, macro average F1-scores and false negative
rate relative to prior art. We use 12 output proxies, in three time horizons, with several of
our trained models able to distinguish the features of VH relative to VL patents (Hall, 2005).
This has implications for patent value forecasting using deep learning AI methodologies.
Identifying valuable patents using more than one output proxy, based on a number of patent
value dimensions, could improve the completeness of the patent value assessment, and
subsequently of technologies.

6.1.2 Composite indices of patent value proxies

This research is one of the few in the field (see Table 2.12) to explore the use of composite
indices as a patent value proxy using AI methodologies and large datasets. We use the qual-
ity_index_4, defined by Squicciarini et al. (2013), which builds on Lanjouw & Schankerman
(2004). The index is based on four components: the number of forward citations (up to
5 years after publication), family size, number of claims, and the generality index. Patent
quality is a controversial subject, mainly because of the many definitions for the term ’qual-
ity’ (Aristodemou & Tietze, 2017b). This is a complex and multi-dimensional issue, which
suffers from the typical drawback of all composite indicators, and should be interpreted
with care (OECD, 2008; Squicciarini et al., 2013). We argue that our index is a patent value
proxy, capturing the value of patents, from the technological, economic and strategic value
dimension. This is based on Table 2.3, and the value dimensions covered by the components
of the index (Poege et al., 2019). Forward citations, the generality_index and the number
of claims are associated with the technological and economic value of patents, whereas the
patent family size is associated with the economic and strategic value (see Tables 2.4 and
Table 2.5).

Table 5.15 shows that the quality_index_4 model has one of the highest accuracies of
0.95 (model c_i, Q = 0.50) and 0.93 (model c_ii, Q 6= 0.50) respectively, together with
the highest macro average F1-scores of 0.79 (model c_i, Q = 0.50) and 0.80 (model c_ii,
Q 6= 0.50) respectively. These are driven by the high precision and recall values for the VH

patents, which are consistently high for the VL patents. We argue that this occurs because
of a number of reasons. Firstly, with 0.45, the cut-off threshold between class VH and VL

is quite high, which positions the high value patents above at least the 75th percentile of
patents per year and above at least the 90th percentile of the overall distribution according to
Squicciarini et al. (2013). Secondly, drawing on multiple components, there is an inclusive
agreement between these proxies, of which are the features of VH patents relative to VL

patents. Three out of the four components draw mainly on the technological and economic
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value dimensions, while the patent family size draws also on the strategic value dimension.
This is supported by the argument by Harhoff et al. (2003) that relying on one output proxy
alone, specifically forward citations, is not likely to lead to the best possible approximation
of the value of patents (Lagrost et al., 2010). Lanjouw & Schankerman (2004) also shows
that there is a substantial information gain from using the composite index because of the
greater percentage decrease in the variance. Strengthening this, the boundary threshold of
the quality_index_4, i.e. the features that distinguish between VH and VL patents, increases,
and the model is able to understand the distinction between them much better, because these
features draw on multiple combinations of the four components (Grimaldi et al., 2015, 2018).

Our study is one of the very few to explore the use of composite indices as patent value
proxies with AI methodologies, with large datasets. We find that using a composite index,
which draws on multiple components, our models identify the features between VH and VL

patents better, with improved accuracy and macro average F1-scores (Harhoff et al., 2003;
Lagrost et al., 2010). Further research could focus on exploring the use of composite indices
for patent valuation with AI, and construction of indices, taking into consideration the patent
value dimensions, and other data sources.

6.1.3 Value dimension of patents

This research explores a wide range of patent value output proxies and their associated patent
value dimension (see Table 2.3). Frietsch et al. (2010) is one of the few studies that offers
a taxonomy for the patent value concepts and identify different motives and incentives for
applicants and inventors to file patents (Ernst, 2001). We observe a number of relevant
associations of the patent value proxies and their dimensions (see Fig. 6.1).

Fig. 6.1 Value dimension of patents and patent value output proxies (based on Table 2.3)
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The economic value is defined as the degree to which a patent enters or creates a new
market (Frietsch et al., 2010; Lagrost et al., 2010). Forward citations, generality and renewals
are all associated with it. Forward citations and the generality_index (see Table 5.15 and Table
5.16) have similar accuracies and macro average F1-scores. This can be partly explained by
the overlap in the definition of the generality_index. However, with increasing time horizon,
the citations models perform slightly better than the generality_index models, which look
at the technology diversification, i.e. the distribution of the forward citations in different
IPC classes. This is partly driven by the higher increase in VH patents for citations than the
generality_index, meaning that while forward citations increase, they are more concentrated
on related fields. This partially contradicts Chen & Chang (2010d), who argue that firms
should diversify their patents or technological capabilities if they want to enhance their
market value. Firms with wider technological competencies, have higher probabilities to take
advantage of new technological opportunities, and thus have a lower risk of missing new
opportunities in the short term.

Moreover, patents that are renewed full term are more likely to be cited and be part of
a valuable technology (Harhoff et al., 1999). Deng (2007) empirically ’prove’ that several
patent owners of high valued inventions not only choose to keep their patents alive longer
in a country, but also seek patent protection in more countries (Liu et al., 2008). We also
observe this from our results of renewals, with increasing time horizon, the performance of
the renewals models drops (see Table 5.1).

The technological value is defined as the degree to which a patent contributes to further
developing advanced technology (Chandra & Dong, 2018; Frietsch et al., 2010). Forward
citations, and the generality_index, are a measure of technological importance and thus
technological value (Albert et al., 1991; Aristodemou & Tietze, 2018a). From our analysis,
we observe a similarity between these two output proxies. As the time horizon increases,
the models of citation_t12 (see Table 5.15) identify more easily VH patents. Lanjouw &
Schankerman (2001) argue that a greater number of citations implies a greater level of
competition on that technology, which we observe above. However, the number of VH patents
in citations_12 grows faster than the number in the generality_index_12, indicating that the
forward citations are more concentrated in the same technology classes. This is different for
the short term (t4) time horizon where the opposite seems to be happening. This implies that
firms file core patents in a diversified number of IPC classes in the short term, and then once
these patents are established firms concentrate their resources and new fillings around these
core patents in similar IPC classes (Hall et al., 2005; Hall & MacGarvie, 2010).

Patents can create strategic benefits, where patent strategies of innovative companies
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become broader and more complex, thus resulting in an expansion of patents1. The strategic
value is defined as the degree to which a patent is used with an underlying strategic motives
to, but not limited to, blocking competitors, easier access to financial markets, preventing key
technologies from being invented around and the generation of licensing revenues (Frietsch
et al., 2010; Granstrand, 1999). The analysis of patent renewals could serve as a rough
estimate of the strategic value of patents (Blind et al., 2006; Harabi, 1995). For example,
blocking patents seems to have no direct technological value, yet it has a strategic value
(Reitzig, 2004).

As innovation cycles become shorter, the 4 year and 8 year renewal periods suffice to
deter market entrants and competitors from patenting in the same field. So patents that are
withdrawn in the short term could roughly be seen as an indicator for strategic patenting
(Frietsch et al., 2010). However, also given that the cost of maintaining a patent portfolio is
not massive, firms seem to continue paying the renewal fees (Blind et al., 2009; Striukova,
2007). This partly explains the performance decrease for the renewal_t12 models (see Table
5.15). With improvements in the digital landscape, reduced search times and administrative
burden and the changing competitive landscape has forced many firms to be precise with
their patents and look for a quick and robust granting process of the VH patents (Squicciarini
et al., 2013). This is partly observed in the results for grant_lag (see Table 5.1).

All the three value dimensions, economic, technological and strategic, can be represented
together by the quality_index_42 (see 6.1.2). Table 5.15 shows that the results of the
quality_index_4 models are higher than the rest of the output proxies for both accuracy
and macro average F1-score3. Drawing on multiple value dimensions, there is an inclusive
agreement between the elemental proxies that form the composite index, as to which are VH

patents relative to VL patents. This is also supported by Harhoff et al. (2003) who argue that
one output proxy alone is not likely to lead to a representative approximation of patent value
(European Commission, 2004; Lagrost et al., 2010; Lanjouw & Schankerman, 2004).

Our study is one of the very few to explore a wide range of patent value proxies and
their associated patent value dimensions with AI methodologies, with large datasets. We use
12 patent value proxies, which are represented by 3 dimensions in the literature, economic,
strategic and technological. This has several research and practical implications, with firms

1The patent system, whose original purpose was to provide a temporally limited protection for technological
knowledge seems to be more intensively used by applicants for various strategic motives (Blind et al., 2009;
Miller, 2006).

2The quality_index_4 is a composite value index, and is based on forward citations, patent family size,
number of claims, and the generality index. This inherently means that it represents a complex collective and
multi-dimensional value (Squicciarini et al., 2013).

3Given the complexity of our models, the complex nature of the output proxies, and the complex nature of
the value dimensions these proxies represent, the results should be interpreted with care.
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choosing to focus on specific value dimensions, and use certain proxies associated with that
dimension, thus reducing time and resources. Moreover, researchers can focus on the less
well developed strategic value dimension, exploring the motives that drive renewals and
technological diversification in different time horizons, with AI methodologies.

6.2 Methodologies deployed for the value of patents

6.2.1 Patent value methodologies

Table 2.7 reveals that are limited studies with a large number of datapoints that use categoric
and numeric data. Table 2.12 shows that there 8 articles that use artificial neural network
methodologies with patent data for patent value. We differentiate ourselves from the re-
maining methodologies, by drawing on several artificial intelligence methodologies. More
specifically, this study is one of the very few studies to have used deep and wide artificial
neural networks (ANN) of multi-layer perceptrons (MLP), i.e. deep learning1. Doing so, we
observe improvements in the overall results and the distinction classification between VH

and VL patents due to the increase in the depth and width of the neural network. Our models
use numeric, categoric and text data, with a 7-layer deep neural network, which balances
the gains in overall performance, and is able to extract enough information from the data to
make a reasonable classification.

We are able to run our models on extensively large datasets, which are not depended
on a technology field (see 5.2). With this wide applicability2 our models reach saturation,
with the addition of the batch normalisation and L2 regularisation parameters with low loss
function errors. This seems to be mainly because of the comparative number of the dataset’s
datapoints and the model complexity, allowing our models to identify many relationships
between the determinants and proxies. Future research directions can focus on the exploration
of variations of deeper ANNs to identify relationships between determinants and proxies.

6.2.2 Technologies

Our approach has allowed us to move away from relatively small datasets, limited to a
specific technological field, which have less reproducibility in other fields (see 2.2.2.3.2 and
Table 2.12). Models confined to a particular area of technology reflect the characteristics

1Earlier studies have used 2 or 3-layer neural networks, with a limited number of numeric or categoric data
(see 2.2.2.3.2).

2All the patent value determinants are defined ex-ante, at the point or just after the patent has been filed
(Lee et al., 2018; Noh & Lee, 2020; van Zeebroeck & van Pottelsberghe de la Potterie, 2011b).
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of that area with a high performance, but it may be difficult to apply these models to other
fields, and the experiments must be repeated for each field of application1. Table 6.1 shows
the comparative evaluation of model performance for technology IPC classes. We observe
consistently that models trained on IPC G and H, are in the top 3 rankings for all except the
generality index output proxy. For forward citations and renewals, this consistency can be
due to the high ratio of VH to VL patents, which allows the models to identify the features of
VH of patents, and proximity of the language.

Table 6.1 Evaluation of Model Performance for the Technology IPC area

Technologya Overallb Citations Generality Renewal
IPCc , d Grant Lag Generality Quality Index 4 Citations_t4 Citations_t8 Citations_t12 Generality_t4 Generality_t8 Generality_t12 Renewal_t4 Renewal_t8 Renewal_t12
A 2 + 1 2 1 1 x 2 1 3
B 1 , + 2 , + 1 , x , + x 2
C x x 1
D 3 1 3
E 1 , x 2 2
F + + 1
G + 1 2 , + x x 2 , x 2 3 3 3 2 2
H 3 3 3 3 3 3 + x , + 1 , x , + x , +

aTechnologies are grouped according to the International Patent Classification (IPC) (Squicciarini et al.,
2013), which has been defined by the World Intellectual Property Organisation (WIPO), URL: https://www.
wipo.int/classifications/ipc/en/.

bAll outputs are defined according to Table 3.2. Breakdown of t4, t8, and t12 refers to the number of years
of the granted patent after the filling date, and only exist if the patent has reached the respective age.

cThe assessment of Tables 5.2 - 5.13 is synthesized by reviewing and ranking the performance of each
model according to the following evaluation metrics in order (per output proxy and IPC classification): (i) the
macro average F1-score for Q 6= 0.50, which is optimised to maximise the macro average F1-score (Lipton
et al., 2014; Provost, 2000); (ii) the accuracy; and (iii) the false negative rate.

dEvaluation symbols: The numbers 1, 2, and 3 represent the ranking of IPC model performance per output
proxy, + represents the lowest false negative model performance per output proxy for the IPC section, and x
represents the highest ratio of VH to VL patents per output proxy for the IPC section.

As a rule-of-thumb, one could utilise the grant_lag model to forecast the value of patents
in IPC E, the generality in IPC G, the quality_index_4, citations_t8, citations_t8, and
renewal_t4 in IPC A, the citations_t4 and generality_t8 in IPC B, the generality_t4 in IPC
C, the generality_t12 in IPC D, the renewal_t12 in IPC F, the generality in IPC G, and the
renewal_t8 in IPC H. Moreover, in the short term (t4) time horizon, we observe that we can
use citations_t4 and renewal_t4 together, with the weight in favour of citations_t4 due to the
lower false negative rate. For the medium term (t8) time horizon, we can use citations_t8 and
generality_t8, with the weight in favour of the generality_t8 due to the lower false negative
rate and higher ratio of VH to VL patents. For the long term (t12) time horizon, citations_t12
and renewals_t12 can be used together.

1This is reflected in the models for which results are shown in Tables 5.2-5.13, which we trained, validated
and tested per output proxy on the different IPC classifications.

https://www.wipo.int/classifications/ipc/en/
https://www.wipo.int/classifications/ipc/en/
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We associate a different output proxy with different technology classes, for different time
horizons. This has implications for firms by reducing time for technology development, as
well as firms with limited resources, such as small-medium enterprises (SMEs). Firms can
use Table 6.1 to tailor the time horizon and the technology they are developing, and use only
the relevant proxies to forecast patent value. At the same time, SMEs with limited resources,
can choose the most representative proxy for the technology they are developing to forecast
an estimate of patent value, saving resources. Thus, we can use Table 6.1 to tailor the choice
of output proxy models in the particular case for the time horizon and technology area.

6.2.3 Patent Text and Language

A methodological contribution of this research relates to the use of patent text for the valuation
of patents (see 3.2.3). This seems to be lacking in the studies that are similar with this research
(see Table 2.12). Some recent studies used text, however, mainly to classify patents in the
respective technological areas. Lee & Hsiang (2019a) use the BERT transformer model
to classify patents in the respective IPC sections using a pre-trained 12-layer deep neural
network with 110 million parameters and 768 nodes per hidden layer. While our models are
not structured in the same way to measure the same output, i.e. the probability of classifying
a patent in the respected field, we decode the patent language with less complexity developing
a deep and wide 7-layer and 2048 nodes per hidden layer neural network. The reduction in
depth (i.e. the number of layers) together with the increase in the width (i.e. number of nodes
in hidden layers), increases the model performance, indicating that the approach utilised has
the advantage of a good representation of the patent text.

The use of both the metadata on patents and the text, in the form of a Doc2Vec embedding,
seems to improve the overall classification (Choi et al., 2019; Li et al., 2018), in comparison
to prior studies which use only numeric data such as Lee et al. (2018) and Noh & Lee
(2020). A similar approach proposed by Lu et al. (2020) uses the patent text to predict
the forward citation similarity between patents and arrives at comparable results to our
proposed method. They use an adapted Doc2Vec methodology with the gensim library and a
multi-layer perceptron (MLP) to find accuracies of 0.61 to 0.94 for similar patents. This is
similar to the study by Abdelgawad et al. (2020) that use artificial neural networks (ANN) to
analyse patent text for feature extraction and technology area classification. Our results seem
to outperform prior studies in both accuracy and macro average F1-score. This is mainly
due to using a deeper and wider network because of the language complexity found within
patent documents (Hu et al., 2018a), as well as the development of the Doc2Vec methodology
for every patent text section (abstract, claims, description, title) instead of using the whole
document as a single vector leading to noise (Helmers et al., 2019).
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Conclusion

In this research, we develop an artificial intelligence (AI) deep learning approach for the
valuation of patents to identify valuable patents. Unlike previous studies (chapter 2) that
focus mostly on regression methods, small datasets (Table 2.7), and low capacity shallow
artificial neural networks (Table 2.12), we propose an AI deep learning approach to predict
the value of patents with large datasets and a variety of patent value proxies associated to
patent value dimensions.

We develop a large USPTO dataset consisting of all granted patents from 1976-2019.
We transform all patent data into: (i) numeric features, (ii) categoric features using one hot
encoding (OHE), and (iii) text features using a Doc2Vec methodology for the patent text
(abstract, claims, summary, title) (chapter 3). We then develop our deep learning approach,
using deep and wide feed-forward artificial neural networks (ANN). We operationalise
patent value determinants to predict 12 patent value proxies. We train, validate and test our
deep learning models using our developed large dataset, to predict the grant_lag, general-
ity, quality_index_4, citations_t4, citations_t8, citations_t12, generality_t4, generality_t8,
generality_t12, renewal_t4, renewal_t8 and renewal_t12. We evaluate our models using 8
evaluation metrics, namely accuracy, confusion matrix, F1-score, false negative rate (FNR),
log loss, mean absolute error (MAE), precision, recall, and different evaluation strategies to
ensure the stability and generalising ability of our developed approach (chapter 4).

Our results show that our models have higher accuracy and macro average F1-scores.
With increasing prediction horizons, we observe an increase in the macro average F1-scores.
In addition, we find that the composite index that takes into consideration more than one
value dimension, has the combined highest accuracy and macro average F1-score. Our study
has moved away from relatively small datasets, limited to specific technology field, and
allowed for reproducibility in other fields. We can tailor models to different technology area,
with different patent value proxies, with different time horizons (chapter 5).
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7.1 Addressing industry-related problems and implications

This research addresses several of the problem areas identified and explored by the technology
roadmap approach (see 1.1.2). In chapter 3, we extract, clean and prepare the full USPTO
dataset of granted patents, using state-of-the-art data preparation methods and advanced
data management processes (see 3.1). In addition, we develop the Doc2Vec methodology to
represent the patent text using natural language processing (NLP) methods (see 3.2.3). We
also interconnect numerical, categorical, and text data from patent data (see 3.2). In addition,
we develop a deep learning methodology with deep and wide artificial neural networks
using multiple patent indicators (see chapter 4), with a transparent evaluation and reporting
structure (see chapter 5).

This research belongs to the emerging field of IPI research and proposes an AI deep
learning approach to predict the value of patents with academic and industrial implications.
Since we use all USPTO granted patents from 1976-2019 to train our models, we can apply
this approach to patents in any technology field. In particular, most previous studies have
deployed lagging proxies, meaning that newly issued patents cannot be effectively valued. By
contrast, our approach outperforms previous research (Table 2.12), addresses the industrial
gap identified by the PADT roadmap (see 1.1.2) and enables researchers to value patents
using a variety of patent value proxies, based on different value dimensions, tailored to
specific technology areas.

Moreover, we could develop our approach in an automated intelligent system (Aristode-
mou & Tietze, 2017b), which predicts the likelihood that a patent is valuable VH or not
valuable VL, by reducing the time and cost of a manual human expert patent valuation. This
could be in the form of a decision support tool to effectively support experts (technology and
innovation managers, IP managers etc.) in their decision making by providing data-driven
intellectual property intelligence (IPI) from large amount of patent data. Experts could tailor
the time horizon and technology fields with only the relevant proxies, to reduce time for
technology development, and also identify key applicants or inventors of valuable patents in
different technology fields. In addition, the trained models can be used to identify emerging
technologies, monitor technological trends, and provide competitive technology intelligence.
The long term (t12) time horizon models could identify granted patents or possible patent
applications that could become valuable in the future, and thus identifying early stage valu-
able technologies. Firms with limited resources, such as small-medium enterprises (SMEs)
can choose a representative proxy to forecast an estimate patent value and save resources.
In addition, patent offices could use adapted versions of our proposed approach to identify
invalid patents based on low value and their similarity to other patents or could use elements
of the research, such as the Doc2Vec method and vectors, to expand their prior-art similarity
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search for aiding the patent examination process. Consequently, the proposed approach
could efficiently support experts in their judgement of patent value, policy making in the
government’s investments in technological sectors of the future to support the economy, and
patent offices in their administrative work. Furthermore, linking patent value with products
could make it possible to identify key patents for licensing for specific products, the technical
feasibility and completeness of products, and the market value of products (chapter 6).

7.2 Limitations and future research

Despite this research contributions (see 1.3), there are limitations and challenges to overcome,
which can form the basis of future research. We are witnessing a shift from traditional
regression models to AI-based intellectual property intelligence (IPI) data-driven models,
which can analyse big patent data. Given that we provide a first definition of the emerging
IPI research stream, this has the potential to change how research is done, with researchers in
this field (and subsequent data-driven fields) needing to acquire new competences and skills
to effectively and collectively understand AI research.

Firstly, our results show a significant improvement from prior art, with higher accuracies
and macro average F1-scores. The AI model’s prediction performance could be improved
further to forecast patent value proxies, especially in increasing the F1-score for forward cita-
tions. This can be explored in future research by: (i) using a variety of artificial intelligence
(AI) algorithms, such as XGBoost, to report a comparison of approaches; (ii) improving
the distinction between VH and VL patents further by improving the data pre-processing1;
(iii) expanding on approaches such as the ensemble methodology of combining several AI
methods (bagging, boosting, stacking) for prediction and then using a concatenation methods
(such averaging) to combine the predictions from several approaches.

Secondly, our study focuses on exploring a wide range of patent value proxies and patent
value determinants, linked to patent value dimensions. One of the limitations is the narrow
focus on using only proxies arising from the patent data, with limited focus on the economic
value of patents. The PatVal study has estimates of patent value (Gambardella et al., 2005).
However, given the difficulty in sourcing this dataset, we focus on alternative proxies capable
of estimating patent value, of which some correlate with the patent premium (Arora &
Gambardella, 2010; Jensen et al., 2011). Future research could expand our approach to:

1Unfortunately, due to the computational resources required to run these sort of algorithms, it was not
possible to train, validate and test all output categorical proxies on the full dataset. This is partly the reason we
have developed the wide evaluation strategy in 4.5. Given the emerging field of IPI research, the decreasing
costs of computational resources, and the availability of resources and cloud services to a wider audience, future
researchers could also attempt to train AI models on the full dataset (100FD).
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(i) include other datasources such as financial data, social opinion data (Twitter, Facebook
and social media sites) and product related data sources; (ii) develop the ensemble method
approach to include a reinforcement learning element, where the human experts’ estimates
of the value of patents act as feedback response (reward) to improve the learning of the
AI models to identify valuable patents. The later has the potential to develop into an
intelligent system that can collectively take into consideration all types of learning, such as
supervised, unsupervised, and reinforcement, to arrive at a rational decision that maximises
the cumulative reward. In addition, future research could focus on the strategic and social
(sustainable, green etc.) value dimensions and the identification/development of proxies
and determinants. This can have an important impact on the patent value literature with
comparative studies and construction of composite indices.

Moreover, we develop an AI deep learning approach, which is based on deep and wide
7-layer artificial neural networks, and are widely applicable. We have utilised numeric,
categoric and text features that have had a significant increase in the AI models prediction
performance. We have developed a Doc2Vec methodology to represent the patent text into
vector space embeddings. Future research can focus on different AI text models, with a
focus on: (i) the contribution of the individual text sections to patent value (abstract, claims -
independent and dependent, summary, title), and (ii) the contributions of different natural
language processing (NLP) models in understanding the syntactic and semantic elements of
the text. Researchers can focus on the following NLP models: (i) developing joint Word2Vec,
Paragraph2Vec, Doc2Vec vector space models (VSM), with the proximity in the syntactic
and semantic elements of the text, and clustering similar patents together; (ii) with extensions
of recurrent neural network (RNN) models that learn sequential, syntactic and semantic
elements of the text with the aim to reproduce the text from their learnings. This is an
emerging field that has recently spark a large interest in the AI NLP community of using the
BERT transformer model. This has the potential to significantly impact the work of patent
offices1 by (i) identifying invalid patents when considering the filing date, scope, inventive
nature and novelty of patented inventions, and (ii) improving the information retrieval of
similar patents during the prior-art search in the patent examination2.

1These type of AI models could also have a significant impact on the overall question "Can AI be an
inventor?", since the recurrent neural network (RNN) approach has the potential to re-create text, and thus has
inherited ability to produce novel text taking into consideration the elements learned during training.

2The richness of information found within patent data, makes an attractive source of information. This is
because it combines numeric, categoric and text elements, which several proxies, determinants and indicators
can be constructed, for economic and strategy research. In particular, the text found within patents has the
potential: (i) to describe products and technologies; (ii) to unveil legal dynamics found within the language
that describe patented inventions; and (iii) to identify innovation diffusion dynamics with the introduction of
complementary and substitute products, and how these with the strategic patenting activity of firms represented
by the legal language.
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In addition, our approach has moved away from relatively small datasets, limited to a
specific technological field. From Table 6.1, we can associate a different output proxy to a
different technology class for different time horizons. Future research can focus on creating
industry-related validated models to be used by small firms, SMEs and large firms, depending
on the different needs. As part of the Strategic Technology and Innovation Management
(STIM) consortium, we explore the applications of the AI patent value models in specific
tasks of innovation management. Further research includes the industrial applicability and
thus building a number of case study validation protocols with firms from a variety of sectors,
to identify valuable patents, and perform some portfolio analysis (patent level, firm level,
technology level, industry level). We anticipate this research would be interesting for future
researchers working in the area of reinforcement learning where the feedback from the
environment (in this case the firm experts), can be taken as a signal input to the model to
improve its performance.

Future researchers could explore further AI methods for big patent data using deep
learning and moving towards the direction of reinforcement learning, which include: (i)
the disambiguation of patent applicants and names; (ii) the interconnectedness of patent
data to other data sources; (iii) the identification of invalid patents, (iv) the identification
of prior-art; (v) improvements in patent translation and harmonisation of data from patent
offices; (vi) virtual reality interfaces with patent-to-product interaction; (vii) automating
patent drafting; (viii) AI inventing; (ix) identification of opposition and litigation cases; (x)
transparent identification of licensing agreements; and (xi) AI examination of filed patents etc.
A further application could focus on using AI patent value models together with blockchain
technologies that track licensing agreements, to predict future revenues or the asset value
of patents and intangibles value. One could take this even further to build prototypes of
neural network models that could negotiate contracts themselves based on the value of the
patented inventions, the innovation landscape, the micro and macro economic environments.
With AI and big data and the ability to process large amounts of information, this has the
potential to impact accounting standards and quantify the value of intangible assets based on
a negotiating contract price, licensing agreements, and the collective information analysis
about the value of the patented invention from other datasources.
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