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Abstract

The score-driven approach to time series modeling provides a solu-

tion to the problem of modeling circular data and it can also be used

to model switching regimes with intra-regime dynamics. Furthermore

it enables a dynamic model to be �tted to a linear and a circular vari-

able when the joint distribution is a cylinder. The viability of the new

method is illustrated by estimating a model with dynamic switching

and dynamic location and/or scale in each regime to hourly data on

wind direction and speed in Galicia, north-west Spain.
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1 Introduction

A dynamic mixture distribution may be modeled using the score of the regime

probabilities in the conditional distribution. Catania (2019) calls these dy-

namic adaptive mixture models (DAMMs). The DAMM model belongs to
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the class of score-driven models developed in Harvey (2013) and Creal et

al (2013), where they were called DCS and GAS models respectively. The

locations and/or scales in each of the regimes contained in the mixture may

also dynamic. Again the conditional scores are used so providing a uni�ed

approach based on well-established principles. The scores for location and

scale, like the scores for the regime probabilities, have a natural and intuitive

interpretation.

The DAMMmodel is designed for situations similar to those addressed by

the regime switching model introduced by Hamilton (1989); see Fruhwirth-

Schnatter (2006) for more recent references. These models now appear in

standard textbooks in econometrics. They have been widely applied, for ex-

ample with respect to modeling booms and recessions, albeit with limited

forecasting success. The basic model assumes a �nite number of regimes and

introduces dynamics by a Markov chain in which there is a �xed probabil-

ity of staying in the current regime or moving to another. The regime is

not observed: hence the term hidden Markov model (HMM) as in Zucchini,

MacDonald and Langrock (2016). The probability of being in a given regime

is given by a �lter that depends on past observations. These probabilities

yield a conditional distribution for the current observation. Hence a likeli-

hood function may be constructed and maximum likelihood (ML) estimates

of the transition probabilities obtained. The DAMM approach di¤ers in that

it by-passes the hidden Markov chain and derives dynamics directly from

the probabilities in the conditionally distribution. In other words it sets up

an observation driven model for the mixture distribution1. The intra-regime

dynamics are similarly constructed and, as a result, past observations are

weighted according to the probability that they are in a given regime. This

not does happen with intra-day dynamics in a standard regime switching

1Bazzi et al (2017) add an extra dimension by modeling the time-varying transition
probabilities using a score-driven approach. As such it combines a parameter-driven model
- the Markov switching - with an observation-driven model. The DAMM, on the other
hand, is fully observation driven.
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model.

The structure of the DAMM is such that diagnostic tests based on the

Lagrange multiplier (or score) test principle are easily constructed. When a

static mixture model, that is with independent observations, has been �tted,

evidence for serial correlation in the regime dynamics and the intra-regime

dynamics is separated out. Formal tests against dynamics can be constructed

and the pattern of serial correlation displayed in correlograms. This is of

great bene�t for model speci�cation. When dynamics have been estimated,

diagnostics designed to assess the possibility of omitted dynamic e¤ects can

be constructed using the same principles.

Mixture distributions appear in the literature on the direction of wind,

because there is often more than one direction for the prevailing wind. This

suggests a switching model for moving between them because if they are a

long way apart, perhaps in opposite directions, it may take time for a single

regime model to adjust. Holtzmann et al (2006) propose a switching regime

model for wind direction and the same approach is used by Zucchini, Mac-

Donald and Langrock (2016, p 228-35) for modeling the change in direction

of �ight for fruit �ies. However, there are no dynamics in individual regimes,

only dynamics in moving from one state to another. The DAMM framework

allows for a wide range of dynamics in the di¤erent regimes and recent work

by Harvey et al (2019) has shown how the score-driven approach provides a

solution to time series modeling of directional data. This paper shows how

the DAMM model can be used for circular data in which the level of each

regime is serially correlated. Modeling serial correlation in concentration or

variance is an additional option.

The viability and e¤ectiveness of our modeling approach is illustrated

with data on wind direction and speed at a wind farm site in Galicia, North-

West Spain. The observations were taken every minute over the month of

January 2004. These data are used by Garcia-Portugues et al (2013) in a

study of pollution. Figure 1 shows the time series of observations, measured
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in radians from 0 to 2�; obtained by taking the �rst observation in each hour.

Garcia-Portugues et al (2013) note that the prevailing wind comes from two

directions: SW and NE. The two dominant directions are apparent in Figure

1 with NE being a little less than one radian and SW around four. Because

of circularity some of the measurements in the NE orbit appear at the top,

close to 2�; rather than near the bottom. Serious distortions can arise if

circularity is not taken into account and standard linear time series methods

are used.

Figure 1 also shows wind speed. Wind speed is a (non-negative) linear

variable and a joint model distribution of a linear and a circular variable

takes the form of a cylinder. The recent paper by Abe and Ley (2017)

proposes a general distribution for cylindrical data. A key feature of their

distribution is that the circular concentration is allowed to increase with

the linear component, a phenomenon �rst identi�ed in the seminal paper

by Fisher and Lee (1992). The challenge is to move from the static to the

dynamic case. We show here that a score-driven approach facilitates the

construction of a model that allows the location of the circular variable and

the level (scale) of the linear variable to change over time. The concentration

may also change. The resulting dynamic model may then be incorporated

in a switching model. Switching bivariate models have been used by Lagona

et al (2015) for modeling the joint distribution of wave height and direction

in the Adriatic; they employ a hidden Markov model for �tting a cylindrical

distribution when there are three distinct regimes.

Section 2 describes the basic DAMM model, with constant parameters in

the regimes, and compares it with Markov switching models. The extension

to dynamic location and scale is then made. Section 3 lays out the diagnostic

tests. The methods are then specialized to directional variables in Section

4 and applied to the Galicia data on wind direction in Section 5. Dynamic

cylindrical distributions are described in Section 6 and extended to handle

switching regimes in Section 7. These models are �tted to the Galicia data
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Figure 1: Hourly wind direction (DirV) and speed (VelV) in Galicia, with
scatter plot.
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on direction and speed in Section 8. Section 9 concludes.

2 Dynamic adaptive mixture model

2.1 Static mixture model

The PDF of a mixture of K distributions is

f(yt) =
KX
i=1

�ifi(yt); 0 � �i � 1; �i�i = 1; t = 1; :::; T;

where �i is the probability of being in i�th regime and fi(yt) = fi(yt; i); i =
1; 2,..,K with  i denoting the parameters in the i � th regime. When the
observations are independent, the probability of being in regime i given ob-

servation yt is

�i(yt) = �ifi(yt)=f(yt); i = 1; 2; ::::K: (1)

The ML estimates for the location �i and scale 'i in each distribution,

together with the unconditional probabilities, �i; i = 1; :::; K; are obtained

by solving

TX
t=1

�i(yt)
@ ln f(yt)

@�i
= 0 and

TX
t=1

�i(yt)
@ ln f(yt)

@'i
= 0; i = 1; 2; ::; K; (2)

and

�i =

PT
t=1 �i(yt)

T
; i = 1; 2; ::; K: (3)

These estimates can be computed iteratively by what turns out to be a special

case of the EM algorithm; see Catania (2019, p9).
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2.2 Score-driven dynamic mixtures

The two-state DAMM has the mixture weight at time t changing over time

according to a �lter, �tpt�1; that is based on information at time t� 1 and is
driven by the score with respect to �tpt�1: The conditional distribution is

ftpt�1(yt) = �tpt�1f1;tpt�1(yt) + (1� �tpt�1)f2;tpt�1(yt); t = 1; :::; T; (4)

where �tpt�1 is the probability of being in state one at time t; based on in-

formation available up to and including time t � 1: The parameters in each
regime may depend on past observations as well. The score is

@ ln ftpt�1
@�tpt�1

=
f1;tpt�1 � f2;tpt�1

ftpt�1
: (5)

Con�rmation that it has zero expectation is straightforward.

With a logistic link function

�tpt�1 =
exp 
tpt�1

1 + exp 
tpt�1
; �1 < 
tpt�1 <1

the score with respect to 
tpt�1 is

wt =
@ ln ftpt�1
@
tpt�1

=
f1;tpt�1 � f2;tpt�1

ftpt�1

exp 
tpt�1
(1 + exp 
tpt�1)

2
(6)

=
f1;tpt�1 � f2;tpt�1

ftpt�1
�tpt�1(1� �tpt�1): (7)

There is no compelling reason to divide the score by the information quantity

matrix; see Catania (2019, p 7).

The basic �rst-order dynamic equation is


t+1jt = (1� �)!
 + �
tjt�1 + �wt; t = 1; :::; T; (8)

where the condition j�j < 1 is all that is required to ensure that 
t+1jt; and

7



hence, �t+1jt; is stationary. No restrictions are imposed on �; as �!1 there

will be an abrupt change in regime when wt changes sign, whereas when � is

close to zero any change will be gradual.

Catania (2019) discusses methods for extending the logistic transforma-

tion to more than two regimes.

2.3 Dynamics within regimes

Changing location in the i-th regime is driven by the score

@ ln ftpt�1
@�i;tpt�1

=
@ ln ftpt�1
@ftpt�1

@ftpt�1
@fi;tpt�1

@fi;tpt�1
@ ln fi;tpt�1

@ ln fi;tpt�1
@�i;tpt�1

(9)

= �i;tpt�1(yt)
@ ln fi;tpt�1
@�i;tpt�1

= uit; i = 1; :::K:

where, following on from (1),

�i;tpt = �i;tpt�1fit=ftpt�1; i = 1; 2; :::; K; (10)

is the estimate of �i;t given yt and �i;tpt�1: When �i;tpt; the estimated proba-

bility of being in the i � th regime, is small, the contribution of yt to the
corresponding score is downweighted.

In the basic �rst-order case, the dynamic equations are

�i;t+1pt = !�i(1� �i) + �i�i;tpt�1 + �iuit; j�ij < 1; i = 1; :::; K; (11)

and the overall level is

�tjt�1 =

KX
i=1

�i;tpt�1�i;tpt�1:
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ML estimates are obtained by maximizing the log-likelihood function

lnL =
TX
t=1

ln ftpt�1 =

TX
t=1

ln

"
KX
i=1

�i;tpt�1fi;tpt�1

#
:

Starting values for !�i and 'i, i = 1; 2; ::; K and �i; i = 1; 2; ::; K; can

be obtained from the static model as described in sub-section 2.1. Similar

formulae are obtained when other parameters, such as scale, are dynamic.

Remark 1 In a Markov switching model, dynamics can be introduced into
the location and/or scale of each regime by letting them depend on past obser-

vations. For example the conditional mean in the i� th regime may be given
by �i + �i(yt�1 � �i); t = 1; :::; T; i = 1; 2; see Hamilton (1994, p 691). This
is very di¤erent from the �lter in (11) which is driven by a forcing variable

that is weighted by the probability of being in the i� th regime.

Remark 2 Intra-regime dynamics feature very little in the HMM literature.

For example, Zucchini, MacDonald and Langrock (2016, p 150-2) devote only

a few pages under the title �HMMs with additional dependencies�.

3 Model selection and diagnostics

When a static mixture has been �tted, Lagrange multiplier (LM) tests are

equivalent to portmanteau tests and they enable the researcher to separate

out transition dynamics from location and/or scale dynamics. The pattern of

the correlogram may be informative as to possible models and so this initial

step has the potential for playing an important role in model speci�cation.

Hamilton (1996) sets out tests for Markov switching models. Smith (2008)

�nds the LM test to have the best size and power properties. Here we show

that in a score-driven model, LM tests can be set up very easily to test for

serial correlation in switching probabilities, locations and scales.
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3.1 Diagnostic tests when a (static) mixture has been

�tted.

Under the null hypothesis that the model is a static mixture with no dynam-

ics, LM tests against dynamics in regime switching and in the parameters

within each regime may be constructed.

In a two state model, the test is against dynamic switching of the form


tpt�1 = !
 + �1wt�1 + :::+ �Pwt�P ; (12)

where wt is as in (7), may be constructed. When the model is static

wt =
f1(yt)� f2(yt)

f(yt)
�(1� �) = �(yt)� � (13)

because, from (1), f1(yt) = �(yt)f(yt)=�; where, as before, the subscript is

dropped from �1: Thus the LM test of the null hypothesis that the model is

static, that is H0 = �1 = ::: = �P = 0; is equivalent to a portmanteau Q-test

based on the correlogram of the estimated probabilities, �1(yt); t = 1; ::; T ;

see Harvey (2013, section 2.5). The critical values are taken from a �2P
distribution.

An LM test against level dynamics in the i-th regime may be constructed

from the equation

�i;tpt�1 = !�i + �i1ui;t�1 + :::+ �iPui;t�P ; i = 1; ::; K:

Combining the derivatives

@�i;t+1pt
@�ij

= ui;t�j; j = 1; :::; P;
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with the score for location in (9) gives

@ ln ftpt�1
@�i;j

=
@ ln ftpt�1
@�i;tpt�1

@�i;t+1pt
@�ij

= ui;tui;t�j; i = 1; ::; K; j = 1; ::; P;

where

ui;t = �i(yt)
@ ln fi;t
@�i

; t = 1; :::; T; i = 1; 2; :: (14)

When the test is against dynamics in the i�th location only, and �j; j 6= i
is �xed, the LM statistic is equivalent to the Q-statistic formed from sample

autocorrelations, ri(�) = ci(�)=ci(0); where ci(�) =
PT

t=�+1 ui;tui;t��=T; i =

1; :::K; � = 1; :::; P; that is

Qi(P ) = T
PX
�=1

r2i (�); i = 1; 2; :: (15)

As noted by Harvey and Thiele (2016, p 578-9), estimating �xed parameters

makes no di¤erence to the distribution of Qi(P ); which is asymptotically

distributed as �2P under the null hypothesis.

Remark 3 The Qi(P ) tests assume that the transition probabilities are �xed.
When the transition probabilities are dynamic, but not modeled as such, the

u0i;ts will be conditionally heteroscedastic martingale di¤erences (MDs). The

portmanteau statistic may be adjusted to deal with this situation. Lobato et

al (2001) show that

Q�i (P ) = T

PX
�=1

c2i (�)

wi(�)
= T

PX
�=1

(
PT

t=�+1 ui;tui;t�� )
2PT

t=�+1 u
2
i;tu

2
i;t��

; i = 1; 2; :::; (16)

where wi(�) = (T � �)�1
PT

t=�+1 u
2
i;tu

2
i;t�� ; is asymptotically distributed as �

2
P

under the MD hypothesis. The structure of the test statistic is consistent with

that of the LM statistic: as in the static case, the o¤ diagonal terms in the

information matrix have expectation zero but the conditional expectations of
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the diagonal terms are no longer the same.

3.2 Diagnostic tests when a dynamic model has been

�tted

Let  h denote the parameters in the dynamic equation for the �
0
i;tpt�1s: Sup-

pose a basic DAMM has been �tted. The LM test statistic for location

dynamics in the h� th regime can be constructed as T times the uncentred
R2 from regressing the constant unity on ui;tui;t�j; j = 1; ::; P; together with

@ ln ftpt�1=@�h and @ ln ftpt�1=@ h; h = 1; :::; K; see Davidson and MacKin-

non (1990). The asymptotic distribution is �2P under the null hypothesis.

Calvori et al (2017) make use of this result for DCS/GAS but develop it in

a di¤erent direction.

When dynamics have been estimated within regimes, tests for omitted

dynamics can be constructed by adding lagged scores to the �ltering equation.

Thus when (11) has been �tted to location it is augmented to give

�i;t+1pt = (1� �i)!�i + �i�tjt�1 + �i0ui;t + �i1ui;t�1 + :::+ �iPui;t�P : (17)

Then
@�i;t+1pt
@�j

= (�i + �i0ui;t
@�i;tpt�1
@�ij

) + ui;t�j; j = 1; :::; P:

This derivative can be computed recursively and in the LM test, the regressor

ui;tui;t�j is replaced by ui;t(@�i;tpt�1=@�j): The derivatives for �i and �i0; i =

1; ::; K; must be included as well as those detailed in the opening paragraph.

Test for heteroscedasticity can be constructed in a similar way, as can

tests of dynamics in location/scale models for non-negative variables.

If the e¤ect of �tting dynamics to the �0is and to location and/or scale,

is ignored, simple Qi(P ) tests may be used against serial correlation in each

regime2. Harvey and Thiele (2016) show that this can often be a good strat-

2Some account could be taken of switching dynamics by using the Q�i (P )
0s of Remark

12



egy, particularly when the Escanciano and Lobato (2009) automatic data-

driven procedure for selecting the number of lags, P; is adopted.

3.3 Residuals and PITs

The residuals

yt � �tjt�1 = yt � �1;tjt�1�1;tjt�1 � �2;tjt�1�2;tjt�1
= �1;tjt�1(yt � �1;tjt�1) + �2;tjt�1(yt � �2;tjt�1)

are MDs but they are not identically distributed. A better way forward is to

note that the CDF and hence the PITs are obtained as

F (yt) = �tpt�1F1(yt) + (1� �tpt�1)F2(yt):

If these PITs are transformed to observations with a normal distribution, a

check on residual serial correlation can be made using their correlogram.

4 Score-driven models for directional data

Circular data measured in radians is usually taken to have a von Mises (vM)

distribution with PDF

f(y) =
1

2�I0(�)
expf� cos(y � �)g; � � � y; � < �; � � 0; (18)

where Ik(�) denotes a modi�ed Bessel function of order k, � is the direc-

tional mean and � is a non-negative concentration parameter that is inversely

related to scale. When � = 0 the distribution is uniform whereas y is ap-

proximately N(�; 1=�) for large �: The ML estimator of location, �; is the

directional mean, yd; see Mardia and Jupp (1999). A class of general circu-

3.
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lar distributions is described in Jones and Pewsey (2005). The cardioid and

wrapped Cauchy are special cases.

4.1 Dynamic direction

Data generated by a time series model over the real line, that is �1 < zt <

1; can be converted into wrapped circular time series observations in the
range [��; �) by letting

yt = ztmod(2�)� �; t = 1; :::; T ; (19)

see Breckling (1989) and Fisher and Lee (1994). The score-driven model for

directional data is

zt = �tjt�1 + "t; t = 1; ::::; T; (20)

where the "0ts are independent and identically distributed (IID) random vari-

ables from a standardized circular distribution with location zero. The basic

�lter is

�t+1jt = (1� �)! + ��tjt�1 + �ut; (21)

where the forcing variable, ut; is de�ned as being (proportional to) the con-

ditional score for location. A de�ning property of a (continuous) circular dis-

tribution is that it satis�es the periodicity condition f(y� 2�k; �) = f(y; �);
where k is an integer and � denotes parameters. Provided the derivatives

of the log-density with respect to the elements of � are continuous, they too

are circular in that the periodicity condition is satis�ed. The distribution of

yt � �tjt�1 in a model de�ned by (20), (21) and (19) is therefore the same as
that of zt��tjt�1 and so the likelihood function of the wrapped observations,
the y0ts; is the same as that of the unobserved variables, the z

0
ts.

In the case of the von Mises distribution, that is "t � vM(0; �) in (20),
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the score is

ut = � sin(zt � �tjt�1) = � sin(yt � �tjt�1); ut s IID(0; A(�)=�): (22)

The general continuous circular distribution proposed by Jones and Pewsey

(2005) has a score that is equal to sin(yt��tjt�1) multiplied by a factor that
depends on cos(yt � �tjt�1); so, like (22), it is clearly invariant to wrapping
as well as being IID.

The model is strictly stationary when j�j < 1 in (21). Harvey et al

(2019) derive the asymptotic distribution of the ML estimators of �; � and

� for the stationary vM model. When � is known to be one, the asymptotic

distribution of the ML estimators of � and � may be similarly obtained.

Remark 4 Note that wrapping �tjt�1 changes the model unless � = 1: How-
ever, it may be useful to wrap the �0tjt�1s for the purpose of plotting on a

graph with the observations.

4.2 Tests

The Lagrange multiplier (LM) test against serial correlation in location is

based on the portmanteau or Box-Ljung statistic constructed from the au-

tocorrelations of the scores as in (15). For a vM distribution with � > 0,

the scores under the null hypothesis of constant location are proportional

to the sines of the angular observations measured as deviations from their

directional mean, yd: Hence the sample autocorrelations are

rc(�) =

P
sin(yt � yd) sin(yt�� � yd)P

sin2(yt � yd)
; � = 1; 2; :::; (23)

which correspond to the circular autocorrelations in Jammalamadaka and

SenGupta (2001, p176-9). The limiting distribution when the observations

are IID is standard normal, that is
p
Trc(�) ! N(0; 1); see Brockwell and

Davis (1991, Theorem 7.7.2). When theQ-statistic in the portmanteau test is
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based on the �rst P sample autocorrelations, it is asymptotically distributed

as �2P under the null hypothesis of serial independence.

4.3 Heteroscedasticity

Score-driven models can be extended to allow for dynamic heteroscedasticity

by setting up a �lter for the conditional concentration. Thus "t in (20) is

distributed as vM(0; �tjt�1) with the dynamics dependent on the score wrt

�tjt�1, that is

u�t = cos(yt � �tjt�1)� A(�tjt�1):

The scores are aMDwith mean zero and variance 1�A(�tjt�1)2�A(�tjt�1)=�tjt�1:
An exponential link function can be used to ensure the concentration remains

positive. Thus

�tjt�1 = exp(�tjt�1):

The �rst-order dynamic model for �tjt�1 is then

�t+1jt = (1� �)! + ��tjt�1 + �u
�
t ; (24)

where

u�t = �tjt�1u
�
t = exp(�tjt�1)[cos(yt � �tjt�1)� A(�tjt�1)]: (25)

In the results for heteroscedasticity, the constant term is reported as an

estimate of exp(!) = �:

For small deviations, cos(yt � �tjt�1) ' 1 � (yt � �tjt�1)
2=2 so u�t is

essentially quadratic as in the GARCH model that is widely used in �-

nancial econometrics. It works in the opposite direction from GARCH in

that large deviations have a negative e¤ect because they reduce concen-

tration. When �tjt�1 is large, so that the vM is close to being Gaussian,

cos(yt � �tjt�1)� A(�tjt�1) ' �(yt � �tjt�1)2=2 because A(�tjt�1) ' 1: With
the exponential link function, the model is similar in structure to the expo-

nential GARCH (EGARCH) model; see Harvey (2013, ch 4). When �tjt�1 is
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large, u�t ' �(yt � �tjt�1)2 exp(�tjt�1)=2: De�ning �tjt�1 = exp(�#tjt�1) gives
a closer link to EGARCH because

u#t = exp(�#tjt�1)[A(�tjt�1)� cos(yt � �tjt�1)]: (26)

The score-driven heteroscedastic model is still observation-driven; its like-

lihood function is

lnL( ) =T ln(2�I0(�tjt�1)) +
TX
t=1

�tjt�1 cos(yt � �tjt�1);

where  denotes the parameters in the dynamic equations for �tjt�1 as well

as �tjt�1: The forcing variable for location is now ut = �tjt�1 sin(yt � �tjt�1).

4.4 Static mixture model

In a static directional mixture model the conditions in (2) for location and

concentration are

b�i = arctan
"PT

t=1 �i(yt) sin ytPT
t=1 �i(yt) cos yt

#
; i = 1; 2; ::: (27)

where b�i is the estimated directional mean in regime i and
b�i = A�1 "(1=T�i) TX

t=1

�i(yt) cos(yt � b�i)
#
= A�1(Ri); i = 1; 2; :::; (28)

whereRi is the term in square brackets and �i is given by (3). Approximations

for A�1(R) can be found in Mardia and Jupp (2001, p 85-6). The estimates

obtained by iterating these equations may be fed into the EM algorithm, but

numerical optimization of the log-likelihood with respect to the �0is and other

parameters will yield ML estimates directly.

A test that the probability of being in the i � th regime is dynamic is
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constructed from the correlogram of the estimates of the probabilities �i(yt).

A test against dynamics in the level of the i � th regime is based on the
correlogram of �i(yt) sin(yt � e�i); i = 1; :::; K; that is
ric(�) =

P
�i(yt) sin(yt � e�i)�i(yt�� ) sin(yt�� � e�i)P

�i(yt) sin
2(yt � e�i) ; � = 1; 2; :::: (29)

Note that although the score is �i�i(yt) sin(yt � yi), the concentration para-
meter, �i; can be dropped as it cancels out.

Remark 5 The arithmetic mean of �i(yt) sin(yt� e�i) is zero since if it were
not, its directional mean would not be zero; see also Remark 10 in Harvey

(2013, p 53).

4.5 Dynamic mixture models

Dynamic mixture models with dynamics in the regimes may be set up as

outlined in Section 2. The variable wt driving the switching equation, (8), is

obviously circular so invariance to wrapping is retained. The one-step ahead

forecast in a dynamic mixture model with dynamic regimes is

ET (yT+1) = �T+1jT = �1;T+1jT�1;T+1jT + �2;T+1jT�2;T+1jT :

When a forecast of an observation, that is �T+1jT ; falls outside the range it

can be reset, so that eyT+1jT = �T+1jT mod 2� � � gives eyT+1jT in the range
[��; �): Multi-step forecast can be computed recursively and the distribu-
tions of future observations can be simulated.
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5 Application to directional data from Gali-

cia

The Galicia data was described in the Introduction. Here we report the

results from �tting models to hourly3 wind direction. The parameter es-

timates are shown in Table 1. The estimates of the asymptotic standard

errors, obtained from the numerical Hessian, are shown in brackets. When

heteroscedastic models are �tted, the constant term for speed is reported (in

the second row of the �rst and last groups) as an estimate of the level of the

logarithm of concentration.

Diagnostic test statistics for assessing residual serial correlation in dif-

ferent components are shown in Table 2. However, the tests should not be

treated formally because, as indicated earlier, the distribution is a¤ected by

the estimation of parameters. Furthermore, because the sample size is large,

with T = 744; Q-statistics based on relatively small sample autocorrelations

may be statistically signi�cant. Having said that, some of the di¤erences ob-

served between models convey a very strong message about which are most

e¤ective.

5.1 One regime

The sample circular autocorrelation functions (CACFs) for the series shows

very strong autocorrelation. If the possibility of more than one regime is

ignored and a basic �rst-order model �tted, the result is e� = 1:0; e� = 0:19
and e� = 4:68: The maximized log-likelihood is lnL = �520:4. However,
the residual CACF shows there is considerable serial correlation remaining.

Furthermore the �t, as measured by dispersion (circular variance), is no

3Fitting regime switching models is best done over the full range of the sample and
the minute data set is very large. It is di¢ cult to see the bigger picture but once suitable
models have been identi�ed with hourly data estimating them with minute data is a
possibility.
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Figure 2: Filtered wind direction in Galicia from one regime heteroscedastic
model

better than that of a random walk in which �tjt�1 = yt�1; see Mardia and

Jupp (2000, pp 18-19, 30) and HHT(2019). Adding heteroscedasticity gives

a better �t, but strong serial correlation remains.

Figure 2 plots the evolution of the �ltered location from the heteroscedas-

tic model (the plot from the static model is similar). The fact that � is

estimated to be unity allows the location to travel round the circle several

times. Figure 3 shows the corresponding wrapped �lter; it is clear that the

model is slow to adapt to a change in regime.

5.2 Static mixture

Although the static mixture model can be ruled out from the correlogram of

the raw data, it is nevertheless informative about the presence of regimes.

The parameter estimates obtained by the EM iterative procedure described

in sub-section 2.1 were �1 = 4:06, �2 = 1:08; �1 = 12:78, �2 = 2:00 and
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Figure 3: Wrapped �ltered wind direction in Galicia from one regime het-
eroscedastic model. Note that some observations would appear less extreme
if 2� were added or subtracted.

� = 0:67. Taking these as initial values for numerically optimizing the log-

likelihood function gave e�1 = 4:05, e�2 = 1:06; e�1 = 12:69, e�2 = 2:09 ande� = 0:66; with lnL = �820:7; which is far lower than the for the one regime
dynamic model. The plot of �(yt) in Figure 4 shows how the contrast between

the distributions in the two regimes gives a clear indication of which regime

is operative at any one time. The regimes are obviously not determined

randomly and the ACF of the �i(yt)
0s indicates that a fairly persistent �rst-

order �lter, as in (8), is likely to give a good �t. The CACFs for the individual

regimes in the lower panels indicate persistent dynamics in the location. The

correlations between the three scores are not far from zero.

5.3 Dynamic mixture: pure DAMM

Although the tests indicate dynamics within each regime, it is useful to begin

by �tting a pure DAMM, that is one without dynamics within regimes. In

the directional DAMM, the probability of being in the �rst regime, �tpt�1;
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Figure 4: Regime probabilities and ACFs (from initial EM estimates) for
static mixture model of wind direction in Galicia

comes from a dynamic equation for 
tpt�1 as in (8).

The estimates of �1; �2; !1 and !2 are similar to the estimates found for

the static mixture model except that the estimate of � is, at 0:89; somewhat

higher than the static estimate of 0:66. The log-likelihood is �487:6 so there
is a clear improvement over both the static mixture model and the single

regime dynamic model for location. However, it does not beat the single

regime model when both location and scale are dynamic.

The diagnostic test based on the switching residuals indicates that there

are no omitted dynamics in the regime-switching equation. However, the

Q-statistics for location dynamics are still highly signi�cant in both regimes;

indeed the correlograms are not dissimilar from those in Figure 4.

The �nding that the pure DAMM model is inadequate is important be-

cause most, if not all, of the research in this area has been restricted to pure

Markov switching models, that is HMMs.
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5.4 Dynamic mixture model with dynamic regimes

As regards the regimes, the �rst-order DCS models are as in (11) with ui;t =

�i;tpt�i;tjt�1 sin(yt � �i;tjt�1): The dynamics in locations are fairly persistent
in both regimes, but the concentration in regime 1 is much higher than

in regime 2. The mean of location in the second regime has increased to

3.16 but if it is constrained to its value for the static model, that is 1.03,

the log-likelihood is much lower at �279:34 as opposed to -241.4 for the
unconstrained model. It seems that the second regime is less clearly identi�ed

than the �rst. Nevertheless there is a huge increase in the likelihood as

compared with the pure DAMM.

The diagnostics show that serial correlation in location has been elimi-

nated. However, the scores for concentration indicate dynamics. When the

model is extended to allow for heteroscedasticity, the last line in the table

shows there is a further improvement in goodness of �t and the level in

regime 2 falls to 2:24. On the other hand the underlying probability of being

in regime 1, �; rises from 0:77 to 0:88. The �ltered location shown in Figure

5 tracks the observations quite well, although there are some discrepancies

near the beginning and end.

6 Modeling the cylinder

A bivariate distribution for a circular and a linear variable takes the form

of a cylinder. This section shows how a dynamic model can be constructed.

The next section makes the extension to a bivariate regime switching model.

6.1 Weibull-von Mises (Abe-Ley) distribution

The joint distribution proposed by Abe and Ley (2017) combines a von Mises

directional distribution with a Weibull distribution. The latter is a special
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Figure 5: Filtered wind direction from the two-regime heteroscedastic vM
model

case of the generalized gamma (GG) distribution, where the PDF is

f(x;�; 
; �) =
�

e��(
)

� x
e�

��
�1
exp

�
�(xe��)�

�
; 0 � x <1;

with 
; � > 0 and �1 < � < 1. The gamma distribution is obtained by
setting � = 1; whereas theWeibull has 
 = 1. The dynamics in location/scale

are best modeled in terms of the logarithm of scale parameter so

xt = "t exp(�tjt�1);

where "t has unit scale and the forcing variable is the score

@ ln f(xt)

@�tjt�1
= u�t = �(yt

�e��tjt�1� � 
):

Remark 6 Fat tailed distributions can be modeled with a GB2 distribution
as discussed in Harvey (2013, ch 5).
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The Weibull-Sine Skewed-von Mises (WeiSSVM) proposed4 by Abe and

Ley (2017) is for a non-negative linear variable x and and circular z: The

PDF is

f(z; x) =
� exp(���)
2� cosh(�)

S(zt)x
��1 expf�(x= exp�)�(1� tanh(�): cos(z � �))g; (30)

� � � z; � < �; x � 0; � > 0; � � 0;

where exp(�) is the scale, '; for the linear variable and � is a parameter

that determines concentration for the circular variable. As in Jones and

Pewsey (2005), S(zt) = 1+ & sin(zt��); j&j � 1; skews the distribution. This
skewing term will be dropped here to simplify the exposition. The result is

the Weibull-von Mises (WeiVM) distribution. The distribution proposed by

Johnson and Wehrly (1978), and used in Garcia-Portugues et al (2013), is a

special case of the WeiVM with � = 1:

6.2 Dynamic model

In the dynamic score-driven cylinder model the parameters � and � change

over time. When zt is de�ned over the whole real line, it may be wrapped,

as in (19), to give �� � yt < �: When the dynamic equations are driven by
scores, as in the univariate model of sub-section 4.1, the log density of the

conditional WeiVM distribution is

ln f(yt; xt) = ln(�=2�)� ln cosh(�) � ��tjt�1 + (�� 1) lnxt (31)

�(xt= exp�tjt�1)�(1� tanh(�) cos(yt � �tjt�1));

with �tjt�1 still de�ned over the whole real line. The conditional scores are

@ ln f

@�tjt�1
= u�t = tanh(�)(xt= exp�tjt�1)

� sin(yt � �tjt�1) (32)

4Abe and Ley (2017) have � = exp(��) and � = �:
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and

@ ln f

@�tjt�1
= u�t = �(xt= exp�tjt�1)

�(1� tanh(�) cos(yt � �tjt�1))� �: (33)

Both u�t and u
�
t retain the univariate circularity property of being unchanged

when multiples of 2� are added or subtracted from yt:

It follows from Abe and Ley (2017) that the distribution of yt conditional

on xt; together with all the information at time t�1; is vM with mean �tjt�1
and concentration

�(xt) = tanh(�)(xt= exp�tjt�1)
�; (34)

so the more xt exceeds its expected value, the higher the concentration. Thus

(32) can be written as

u�t = �(xt) sin(yt � �tjt�1): (35)

When xt is close to zero, there is no clear direction so the concentration is low.

The conditional distribution of xt given yt together with all the information

at time t� 1 is Weibull with scale

'(yt) = (1� tanh(�) cos(yt � �tjt�1))�1=�'tjt�1; (36)

where 'tjt�1 = exp(�tjt�1) is the scale conditioned only on past observations.

Substituting in (33) gives

u�t = �[(xt='(yt))
� � 1] (37)

When yt is close to �tjt�1 it will boost the e¤ect of xt:

The �lters for �tjt�1 and �tjt�1 are driven by their scores, u
�
t and u

�
t
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respectively, so for �rst-order dynamics

�t+1jt = (1� ��)�+ ���tjt�1 + ��u
�
t (38)

�t+1jt = (1� ��)�+ ���tjt�1 + ��u�t :

Remark 7 The asymptotic distribution can be derived for the model when
� and �, but not �; are dynamic.

6.3 Heteroscedasticity

As the model stands, concentration, �(xt); changes only with xt; depending

on whether xt it is higher or lower than expected given �tjt�1. Using a result

in Abe and Ley (2017, p 95), the expected value of �(xt) based on information

at time t� 1 is

Et�1�(xt) = tanh(�)Ex(xt= exp�tjt�1)
� = tanh � cosh �:P 01 (cosh �)

= tanh � cosh2 � = 0:5 sinh(2�):

Thus the prediction of �(xt) is constant. It is not dependent on �tjt�1 and

so if, in the context of wind, speed has been high for some time, a value of

xt lower than its expectation will imply that concentration is suddenly lower

than average. This seems implausible and it points to the need to introduce

dynamic heteroscedasticity into the model by letting � be dynamic. The

score with respect to this new dynamic parameter, denoted, �tjt�1; is

u�t = (xt= exp�tjt�1)
�[1� tanh2 �tjt�1] cos(yt � �tjt�1)� tanh �tjt�1: (39)

The score u�t is very close to that of �tjt�1; in (33), but it di¤ers in that when

yt is close to �tjt�1 it increases whereas u
�
t reacts in the opposite direction.

Note that u�t is now de�ned with tanh �tjt�1 replacing tanh �: Using the �lter
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for �tjt�1 now gives

Et�1�(xt) = Et�1 tanh(�tjt�1)(xt= exp�tjt�1)
� = 0:5 sinh(2�tjt�1): (40)

The heteroscedastic dynamic model includes an equation for #tjt�1 =

� ln �tjt�1: Thus the second equation in (38) is replaced by

�t+1jt = (1� ��)�+ ���tjt�1 + ��u�t + ���u#t (41)

#t+1jt = (1� ��)� + ���tjt�1 + ��u#t + ���u�t ;

where u#t = ��tjt�1u�t and u�t and u#t are included in both the last two
equations for generality.

Remark 8 An expression for the circular-linear correlation can be found
in Abe and Ley (2017, p 96). Their Figure 2a shows how it varies with

concentration.

Remark 9 As in univariate models the scores can be used to detect residual
serial correlation.

Remark 10 The information matrix for �; � and � is

I

0B@��
#

1CA =

0B@cosh (2�) 0 0

0 �2 �� tanh �

0 �� tanh � �2 (1 + tanh �2)

1CA ; (42)

see Appendix. This raises the issue of whether to pre-multiply the scores in

the dynamic equations by the inverse5 of I:

Remark 11 Abe and Ley (2017, p 96-7) give a generalization6, the GGSSVM,
in which the generalized gamma distribution, denoted GG, replaces the Weibull;

5Or even the inverse based on information at time t:
6Note that they have � replacing our �
 and 
 replacing �:
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the circular marginal distribution is the Jones-Pewsey distribution. A dy-

namic score model can again be formulated.

6.4 No observations on direction

When there is no wind, it has no direction. Similarly animals may be not

be moving because they are eating or sleeping; see Zucchini et al (2016, pp

229-42). In such cases xt = 0 and so the model gives �(xt) = 0 which implies

the (unobserved) wind direction is distributed uniformly7. It is evident from

(35) that the score for location, u�t ; is zero. Thus the observation is e¤ec-

tively ignored as in the naive solution for dealing with an observation that

is missing. This is not the case for the scale of the linear variable because

u�t = �� and the concentration score where u�t = � tanh �tjt�1:
As regards the likelihood, the di¢ culty is that f(yt; 0) = 0 for � > 1;

indicating that xt = 0 is impossible. For � < 1; f(0) = 1 which is also

unhelpful. Only for � = 1 is there a viable solution as in this case f(yt; 0) =

1=2�: The simplest solution is to assume there is no contribution to the

likelihood.

6.5 Forecasts

Forecasts are based on information at T so for T + 1 we plug �T+1jT ; �T+1jT
and �T+1jT into the joint distribution. The (marginal) distribution of yT+1,

conditional on information at time T; is wrapped Cauchy that is

fT (yT+1) =
1

2�

1� tanh2(�T+1jT=2)
1 + tanh2(�T+1jT=2)� 2 tanh(�T+1jT=2) cos(yT+1 � �T+1jT )

;

(43)

where �� � yT+1 < �: The one-step ahead forecast for direction, ET (yT+1);
is just the predicted location �T+1jT : The marginal distribution for the linear

7When there is skewing, that is & 6= 0; the uniform is replaced by a circular cardioid
with location at �+ �=2 and concentration &
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variable is given in Abe and Ley (2017, p 94) as

f(xT+1) = VT+1jT (xT+1)
�

e�T+1jT

� xT+1
e�T+1jT

���1
exp

�
�(xT+1=e�T+1jT )�

�
;

(44)

where 0 � xT+1 <1 and

VT+1jT (xT+1) =
I0((xT+1=e

�T+1jT )� tanh �T+1jT )

cosh �T+1jT
:

The one-step ahead forecast of xT+1 is

ET (xT+1) = exp(�T+1jT )�(1 + 1=�)[(cosh �T+1jT )
1=�P1=�(cosh �T+1jT )];

where P�(:) in the normalizing term is the associated Legendre function of

the �rst kind with degree � and order zero. Except for the nomalizing term

VT+1jT (xT+1); the form of (44) is that of a Weibull distribution and likewise

ET (xT+1) is as for a Weibull distribution, apart from the term in square

brackets. Multi-step forecasts can be obtained by simulation. Abe and Ley

(2017, p 94) provide details on how to simulate from the WeiSSVM distrib-

ution.

6.6 Switching cylinders

DAMMs can be applied to multivariate series as in Catania (2019, eq 3).

In a bivariate model the switching �lter for �tpt�1 depends on the joint PDF

f(yt; xt): All parameters, including those that are �xed, such as �; are regime

dependent.

In the Galicia example the graphs in Figure 1 suggest that the regimes

for direction are more clearly de�ned than those for speed. Thus it is worth

considering whether to model regime switching only in terms of the marginal

distribution of direction, yt. To implement such a regime switching mecha-

nism, the PDF in the score with respect to the dynamic switching probability,
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(5), is taken to be wrapped Cauchy, as in (43), and the same density is used

in the contemporaneous probability equation (10).

Remark 12 When switching depends only on direction, it raises the question
of whether to model the dynamic scale parameters for speed in terms of one

regime or two. If we decide on the former, the score for �tjt�1 = �i;tpt�1;

i = 1; 2; is the sum of the individual scores

@ ln ftpt�1
@�tpt�1

=
@ ln ftpt�1
@ftpt�1

X @ftpt�1
@fi;tpt�1

@fi;tpt�1
@ ln fi;tpt�1

@ ln fi;tpt�1
@�tpt�1

(45)

=
X

�i;tpt
@ ln fi;tpt�1
@�tpt�1

=
X

u�it; i = 1; :::K;

where, from (33),

@ ln fi;tpt�1
@�tpt�1

= �(xt= exp�tjt�1)
�(1� tanh(�i;tjt�1) cos(yt� �i;tjt�1))� �: (46)

Although there is only one model for scale in each regime, the u0its depend on

the changing parameters �i;tjt�1 and �i;tjt�1 as well as on the �i;tpt
0s:

7 Wind direction and speed in Galicia

This section reports the experience of �tting bivariate WeiVM models, with

and without heteroscedasticty in direction, to the Galicia data on wind di-

rection and velocity.

7.1 Single regime

Table 3 �rst shows results for the single regime WeiVM bivariate model. The

dynamics for both direction and speed show high persistence with the AR

parameters greater than 0.9. The estimates of the �0s for direction are similar

to those found in the univariate models. The same is true for speed. (The

univariate estimates are not reported here.)
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The estimate of � in the speed Weibull distribution is about 2.6 so it

is not heavy-tailed8. There is high serial correlation in the direction score

residuals but not in those for speed.

7.2 Static and dynamic mixture models

As might be expected from the univariate results, a static mixture model, in

line three, fares badly with lnL = �3871:8 as opposed to lnL = �3424:3 for
the single regime model without heteroscedasticity and lnL = �3406:8 with
heteroscedasticity The pure DAMM model, shown in line 4, is much better,

with lnL = �3:444:50 but it too fails to beat the single regime models. The
Q-statistics for residual serial correlation are huge.

7.3 Dynamic mixture model with dynamic regimes

The inclusion of dynamics within regimes o¤ers considerable improvement.

As before the �t is better with heteroscedasticity dynamics. The main issue

to resolve is whether the dynamics in the switching equation should depend

on both direction and speed or direction only. The results favour the second

possibility, especially when the dynamics include heteroscedasticity. Thus

the estimates reported in the last line of Table 3 are for the preferred model.

Figure 6 shows the �ltered locations in each regime, together with the

path when they are combined. The combined �lter is less inclined to go

all the way round the circle than in the univariate model; compare Figure

2. Fitting the model with heteroscedasticity gives a higher likelihood and a

slightly smoother �ltered direction. However the overall picture remains the

same.

Estimating the restricted regime switching model, in which the regime

dynamics depend only on direction, gives an improvement in �t. As can be

seen in Table 3, lnL = �2:987:89 when heteroscedasticity is included. There
8The exponential distribution is obtained when � = 1:
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Figure 6: Filtered locations in each regime for the (unrestricted) regime
switching model, without heteroscedasticity, together with the path when
they are combined

is still some residual serial correlation in some of the components, but, as

noted earlier, this is not unusual with large sample sizes. The estimates of �

in the Weibull parameter are well above one in almost all cases.

The combined direction �lter in Figure 7 tracks the data better than the

corresponding �lters for the unrestricted switching models. Although there

appears to be some discrepancy towards the end, this can be explained by

the direction moving round the circle; adding 2� to values of �tjt�1 close to

zero gives a path much closer to the observations.

8 Conclusion

Score-driven regime switching models can be extended to handle circular (di-

rectional) observations and diagnostic tests can be constructed. The models

allow for changing scale (concentration) as well as changing location. The

models are �tted to hourly wind direction in a site in Galicia. A hidden

Markov model, without intra-regime dynamics is unable to outperform the
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Figure 7: Filtered direction from the restricted switching regime WeiVM
model with dynamic heteroscedasticity

single regime model when both location and scale are dynamic. Although the

diagnostic test based on the switching residuals indicates that there are no

omitted dynamics in the regime-switching equation, the Q-statistics for loca-

tion dynamics are still highly signi�cant in both regimes. Fitting a switching

model with location dynamics in each regime gives a big increase in the

likelihood function.

The score-driven approach is then used to construct dynamic bivariate

models circular and linear variables. The focus is on the Weibull-von Mises

cylindrical distribution. The model can allow for changing scale as well as lo-

cation. Furthermore it suggests a solution to the missing values for direction

that arise when speed is zero, so there is no wind.

The bivariate models are estimated for the Galicia data. The preferred

speci�cation has dynamic location and scale for wind direction and dynamic

location/scale for its speed. Estimating a restricted regime switching model,

in which the regime dynamics depend only on direction, gives a good �t when

heteroscedasticity is included and the resulting �lter for direction tracks the

observations remarkably well.
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There is further scope for research extending the score-driven approach to

bivariate cylindrical models based on copulas, as used by García-Portugués

et al (2013) and Lagona (2019).
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1. Tables

AIC BIC Logl ωµ1 φµ1 κµ1 ωϑ1/υ1 φϑ1 κϑ1 ωµ2 φµ2 κµ2 ωϑ2/υ2 φϑ2 κϑ2 ωξ φξ κξ ξ0

1,048.834 1,067.200 - 520.417
0.000 1.000 0.193 4.683 - -

(0.273) (0.001) (0.014) (0.049)

858.205 885.755 - 423.103
4.294 1.000 0.152 -1.800 0.732 0.213

(0.349) (0.001) (0.009) (0.071) (0.041) (0.032)

1,651.475 1,674.434 - 820.738
4.051 - - 12.688 - - 1.061 - - 2.094 - - 0.672 - -

0.662
(0.014) (0.101) (0.055) (0.128) (0.086)

989.239 1,021.381 - 487.620
4.041 - - 11.435 - - 1.032 - - 2.334 - - 2.112 0.960 4.737

0.892
(0.014) (0.066) (0.049) (0.090) (0.825) (0.012) (0.723)

504.785 555.294 - 241.393
4.139 0.915 0.013 27.606 - - 3.163 0.988 0.264 3.365 - - 1.205 0.958 5.821

0.769
(0.036) (0.025) (0.002) (0.066) (0.411) (0.005) (0.027) (0.073) (0.835) (0.012) (0.700)

476.137 545.013 - 223.069
4.089 0.908 0.017 2.932 0.813 0.336 2.241 0.989 0.130 1.436 0.669 0.519 1.980 0.932 6.131

0.879
(0.040) (0.025) (0.003) (0.108) (0.068) (0.083) (0.188) (0.005) (0.023) (0.147) (0.088) (0.099) (0.674) (0.017) (0.908)

Table 1: Estimated parameters from fitting the vM distribution to the Galicia Wind Direction data either with one (First and Second line) or two regimes
in a DAMM model.

µ1t|t−1 ϑ1t|t−1 µ2t|t−1 ϑ2t|t−1 ξt|t−1
Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20)

0.03 7.43 31.03* 128.15*** 246.58*** 308.81***
19.09*** 28.83*** 43.04*** 6.91*** 37.87*** 62.03***

180.33*** 699.79*** 1371.29*** 48.03*** 182.28*** 326.65*** 222.24*** 760.22*** 1295.63*** 137.07*** 339.85*** 413.64*** 569.15*** 2399.35*** 5857.89***
249.05*** 821.30*** 1468.43*** 128.63*** 286.86*** 377.86*** 246.62*** 775.45*** 1389.42*** 122.82*** 229.51*** 317.86*** 0.02 18.64*** 52.96***

0.18 2.14 28.60 14.64*** 34.45*** 60.59*** 2.40 8.44 25.55 23.07*** 65.50*** 91.21*** 1.93 44.32*** 61.96***
0.72 2.81 30.62* 12.33*** 18.55*** 28.55* 4.08** 11.05* 31.78** 2.49 4.03 28.43 0.00 36.99*** 68.08***

Table 2: Box-Ljung test for residual correlation on the fitted scores with respect to all the distribution parameters, either static or dynamic, in all the above
model specifications. When the parameter is not modelled dynamically it reports instead the statistics for the simple LM test. ”***” if the test results are
significant with a confidence level of 0.01, ”**” significant with a confidence level of 0.05, * significant with confidence level of 0.1.

1



AIC BIC Logl ωµ1 φµ1 κµ1 ωλ1/ϕ1 φλ1 κλ1 ωϑ1/υ1 φϑ1 κϑ1 α1 ωµ2 φµ2 κµ2 ωλ2/ϕ2 φλ2 κλ2 ωϑ2/υ2 φϑ2 κϑ2 α2 ωξ φξ κξ ξ0

6,864.583 6,901.316 - 3,424.291
3.033 0.922 0.170 2.713 0.966 0.047 1.355 - - 2.623

(0.072) (0.009) (0.014) (0.105) (0.007) (0.004) (0.028) (0.028)

6,833.643 6,879.560 - 3,406.822
3.179 0.939 0.158 2.702 0.974 0.049 -0.206 0.781 0.025 2.598

(0.132) (0.010) (0.012) (0.118) (0.007) (0.005) (0.038) (0.079) (0.008) (0.028)

7,761.762 7,803.087 - 3,871.881
4.054 - - 11.402 - - 2.001 - - 2.136 0.884 - - 3.883 - - 1.705 - - 1.732 0.995 - -

0.730
(0.012) (0.051) (0.024) (0.033) (0.028) (0.104) (0.052) (0.054) (0.096)

6,910.994 6,961.502 - 3,444.497
4.048 - - 11.315 - - 2.084 - - 2.175 0.924 - - 5.392 - - 1.378 - - 1.792 1.035 0.851 11.574

0.738
(0.011) (0.045) (0.022) (0.029) (0.036) (0.025) (0.054) (0.052) (0.597) (0.019) (1.591)

6,112.906 6,200.147 - 3,037.453
3.994 0.930 0.010 2.218 0.978 0.021 2.104 - - 1.272 1.712 0.992 0.042 1.490 0.772 0.110 1.620 - - 0.730 1.355 0.926 7.226

0.795
(0.033) (0.025) (0.002) (0.079) (0.005) (0.002) (0.021) (0.029) (0.120) (0.003) (0.007) (0.025) (0.066) (0.018) (0.041) (0.037) (0.670) (0.016) (0.991)

6,064.883 6,170.491 - 3,009.441
4.079 0.942 0.008 2.325 0.975 0.019 0.664 0.906 0.011 3.619 1.106 0.995 0.017 1.871 0.770 0.088 0.193 0.954 0.114 2.083 0.978 0.927 16.219

0.727
(0.041) (0.019) (0.001) (0.079) (0.008) (0.002) (0.045) (0.031) (0.003) (0.028) (0.120) (0.006) (0.007) (0.033) (0.062) (0.015) (0.132) (0.023) (0.024) (0.044) (0.969) (0.020) (6.950)

6,099.026 6,186.268 - 3,030.513
3.992 0.918 0.010 2.264 0.972 0.028 2.102 - - 3.511 1.489 0.970 0.059 1.348 0.921 0.058 1.572 - - 2.138 0.922 0.970 5.401

0.715
(0.029) (0.026) (0.002) (0.102) (0.006) (0.003) (0.020) (0.031) (0.174) (0.015) (0.013) (0.187) (0.044) (0.015) (0.057) (0.051) (0.987) (0.010) (1.209)

6,021.775 6,127.384 - 2,987.888
4.034 0.946 0.007 2.276 0.980 0.017 0.564 0.930 0.017 3.407 1.754 0.989 0.063 1.345 0.954 0.037 0.326 0.910 0.064 2.062 -1.312 0.946 9.484

0.212
(0.028) (0.018) (0.001) (0.110) (0.006) (0.002) (0.051) (0.019) (0.004) (0.032) (0.142) (0.003) (0.010) (0.143) (0.016) (0.009) (0.105) (0.057) (0.017) (0.045) (0.492) (0.008) (0.934)

Table 3: Estimated parameters from fitting the WeibVM distribution to the Galicia Wind Direction and Velocity data either with one (First and Second
line) or two regimes in a DAMM model. The last two lines assumes that the switching probabilty of the DAMM model is driven just by the marginal
Wrapped Cauch distribution of the Wind Direction data.

µ1t|t−1 λ1t|t−1 ϑ1t|t−1 µ2t|t−1 λ2t|t−1 ϑ2t|t−1 ξt|t−1
Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20) Q(1) Q(5) Q(20)

8.71*** 55.36*** 145.85*** 2.70 5.84 32.20** 144.44*** 506.19*** 968.20***
15.99*** 44.21*** 99.15*** 1.13 5.72 32.53** 72.35*** 298.13*** 589.91***

208.17*** 734.12*** 1,110.11*** 205.37*** 753.47*** 1.042.69*** 478.05*** 1,968.95*** 3,884.16*** 101.16*** 566.21*** 901.82*** 165.57*** 577.84*** 756.38*** 358.68*** 1,229.61*** 1,582.69*** 594.25*** 2,561.45*** 5,918.20***
207.15*** 723.76*** 1,085.00*** 183.18*** 656.69*** 865.35*** 475.69*** 1,864.53*** 3,380.22*** 126.21*** 605.67*** 1,065.69*** 162.79*** 451.97*** 562.27*** 377.03*** 1,313.55*** 1,674.72*** 15.29*** 23.57*** 84.56***

0.00 4.35 24.33 1.55 3.83 20.43 88.80*** 212.02*** 292.75*** 0.27 27.75*** 76.32*** 0.03 14.99** 46.16*** 46.23*** 213.37*** 237.71*** 14.32*** 15.42*** 36.66**
0.63 3.72 18.59 0.08 3.05 21.02 24.56*** 54.15*** 79.81*** 0.83 39.92*** 138.90*** 1.36 7.90 36.81** 7.66*** 43.06*** 91.45*** 2.19 5.02 24.26

0.29 2.64 20.82 0.02 1.37 21.79 52.84*** 130.60*** 208.45*** 0.88 29.90*** 75.21*** 0.83 15.42*** 64.48*** 68.54*** 241.10*** 257.85*** 76.45*** 91.24*** 131.67***
1.42 6.31 19.11 0.04 2.33 18.16 15.62*** 37.60*** 73.32*** 7.81*** 54.71*** 107.88*** 1.89 3.97 17.90 0.09 23.74*** 57.81*** 67.35*** 80.46*** 111.98***

Table 4: Box-Ljung test for residual correlation on the fitted scores with respect to all the distribution parameters. either static or dynamic. in all the above
model specifications. When the parameter is not modelled dynamically it reports instead the statistics for the simple LM test. ”***” if the test results are
significant with a confidence level of 0.01. ”**” significant with a confidence level of 0.05. * significant with confidence level of 0.1.
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