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Abstract

The score-driven approach to time series modeling provides a solu-
tion to the problem of modeling circular data and it can also be used
to model switching regimes with intra-regime dynamics. Furthermore
it enables a dynamic model to be fitted to a linear and a circular vari-
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1 Introduction

A dynamic mixture distribution may be modeled using the score of the regime
probabilities in the conditional distribution. Catania (2019) calls these dy-
namic adaptive mixture models (DAMMs). The DAMM model belongs to
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the class of score-driven models developed in Harvey (2013) and Creal et
al (2013), where they were called DCS and GAS models respectively. The
locations and/or scales in each of the regimes contained in the mixture may
also dynamic. Again the conditional scores are used so providing a unified
approach based on well-established principles. The scores for location and
scale, like the scores for the regime probabilities, have a natural and intuitive
interpretation.

The DAMM model is designed for situations similar to those addressed by
the regime switching model introduced by Hamilton (1989); see Fruhwirth-
Schnatter (2006) for more recent references. These models now appear in
standard textbooks in econometrics. They have been widely applied, for ex-
ample with respect to modeling booms and recessions, albeit with limited
forecasting success. The basic model assumes a finite number of regimes and
introduces dynamics by a Markov chain in which there is a fixed probabil-
ity of staying in the current regime or moving to another. The regime is
not observed: hence the term hidden Markov model (HMM) as in Zucchini,
MacDonald and Langrock (2016). The probability of being in a given regime
is given by a filter that depends on past observations. These probabilities
yield a conditional distribution for the current observation. Hence a likeli-
hood function may be constructed and maximum likelihood (ML) estimates
of the transition probabilities obtained. The DAMM approach differs in that
it by-passes the hidden Markov chain and derives dynamics directly from
the probabilities in the conditionally distribution. In other words it sets up
an observation driven model for the mixture distribution®. The intra-regime
dynamics are similarly constructed and, as a result, past observations are
weighted according to the probability that they are in a given regime. This

not does happen with intra-day dynamics in a standard regime switching

'Bazzi et al (2017) add an extra dimension by modeling the time-varying transition
probabilities using a score-driven approach. As such it combines a parameter-driven model
- the Markov switching - with an observation-driven model. The DAMM, on the other
hand, is fully observation driven.



model.

The structure of the DAMM is such that diagnostic tests based on the
Lagrange multiplier (or score) test principle are easily constructed. When a
static mixture model, that is with independent observations, has been fitted,
evidence for serial correlation in the regime dynamics and the intra-regime
dynamics is separated out. Formal tests against dynamics can be constructed
and the pattern of serial correlation displayed in correlograms. This is of
great benefit for model specification. When dynamics have been estimated,
diagnostics designed to assess the possibility of omitted dynamic effects can
be constructed using the same principles.

Mixture distributions appear in the literature on the direction of wind,
because there is often more than one direction for the prevailing wind. This
suggests a switching model for moving between them because if they are a
long way apart, perhaps in opposite directions, it may take time for a single
regime model to adjust. Holtzmann et al (2006) propose a switching regime
model for wind direction and the same approach is used by Zucchini, Mac-
Donald and Langrock (2016, p 228-35) for modeling the change in direction
of flight for fruit flies. However, there are no dynamics in individual regimes,
only dynamics in moving from one state to another. The DAMM framework
allows for a wide range of dynamics in the different regimes and recent work
by Harvey et al (2019) has shown how the score-driven approach provides a
solution to time series modeling of directional data. This paper shows how
the DAMM model can be used for circular data in which the level of each
regime is serially correlated. Modeling serial correlation in concentration or
variance is an additional option.

The viability and effectiveness of our modeling approach is illustrated
with data on wind direction and speed at a wind farm site in Galicia, North-
West Spain. The observations were taken every minute over the month of
January 2004. These data are used by Garcia-Portugues et al (2013) in a

study of pollution. Figure 1 shows the time series of observations, measured



in radians from 0 to 27, obtained by taking the first observation in each hour.
Garcia-Portugues et al (2013) note that the prevailing wind comes from two
directions: SW and NE. The two dominant directions are apparent in Figure
1 with NE being a little less than one radian and SW around four. Because
of circularity some of the measurements in the NE orbit appear at the top,
close to 27, rather than near the bottom. Serious distortions can arise if
circularity is not taken into account and standard linear time series methods
are used.

Figure 1 also shows wind speed. Wind speed is a (non-negative) linear
variable and a joint model distribution of a linear and a circular variable
takes the form of a cylinder. The recent paper by Abe and Ley (2017)
proposes a general distribution for cylindrical data. A key feature of their
distribution is that the circular concentration is allowed to increase with
the linear component, a phenomenon first identified in the seminal paper
by Fisher and Lee (1992). The challenge is to move from the static to the
dynamic case. We show here that a score-driven approach facilitates the
construction of a model that allows the location of the circular variable and
the level (scale) of the linear variable to change over time. The concentration
may also change. The resulting dynamic model may then be incorporated
in a switching model. Switching bivariate models have been used by Lagona
et al (2015) for modeling the joint distribution of wave height and direction
in the Adriatic; they employ a hidden Markov model for fitting a cylindrical
distribution when there are three distinct regimes.

Section 2 describes the basic DAMM model, with constant parameters in
the regimes, and compares it with Markov switching models. The extension
to dynamic location and scale is then made. Section 3 lays out the diagnostic
tests. The methods are then specialized to directional variables in Section
4 and applied to the Galicia data on wind direction in Section 5. Dynamic
cylindrical distributions are described in Section 6 and extended to handle

switching regimes in Section 7. These models are fitted to the Galicia data
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Figure 1: Hourly wind direction (DirV) and speed (VelV) in Galicia, with
scatter plot.



on direction and speed in Section 8. Section 9 concludes.

2 Dynamic adaptive mixture model

2.1 Static mixture model

The PDF of a mixture of K distributions is
K
F) = &fily), 0<6<1, B =1, t=1,...T,
i=1

where ¢, is the probability of being in i —th regime and f;(y;) = fi(y;¢;), i =
1,2,..,K with 1, denoting the parameters in the i — th regime. When the
observations are independent, the probability of being in regime ¢ given ob-

servation y; is

) =& fi(y)/ fye), i=1,2,...K. (1)

The ML estimates for the location yu; and scale ¢, in each distribution,

together with the unconditional probabilities, &,, i = 1, ..., K, are obtained

by solving
A d1n f(y.) . Oln f(y)
: A7 : AV =1.2,... K, (2
;fz(yt) a/v% 0 and ;gz(yt) 8901 O: 7 5y oty ) ()
and .
_ &)y (3)

v T )
These estimates can be computed iteratively by what turns out to be a special
case of the EM algorithm; see Catania (2019, p9).



2.2 Score-driven dynamic mixtures

The two-state DAMM has the mixture weight at time ¢ changing over time
according to a filter, £,, ,, that is based on information at time ¢ — 1 and is

driven by the score with respect to &,,_,. The conditional distribution is

fre1(ye) = ft\t—lfl,t\t—l(yt) +(1— ft\t—l)flt\t—l(yt)? t=1,..,T7, (4)

where §,,_; is the probability of being in state one at time ¢, based on in-
formation available up to and including time ¢ — 1. The parameters in each

regime may depend on past observations as well. The score is

Oln fr—y _ fl,m—l - f2,t|t—1

8St\t—l ft\t—l (5)

Confirmation that it has zero expectation is straightforward.

With a logistic link function

EXP V-1

St = 1+ expyp_y’

— 00 < Vg1 < OO

the score with respect to v,,_; is

O fiuer figee1 = fore1 €XP Yy
wy = = (6)

Mt fut—1 (1 +expy,,_1)?

fl,tt_}— f2’t‘t_1€t\t—1(1 - fmt—l)‘ (7)
tit—1

There is no compelling reason to divide the score by the information quantity

matrix; see Catania (2019, p 7).

The basic first-order dynamic equation is

Vi1t = (1= @)w, + ¢7t|t—1 +rw, t=1,..,T, (8)

where the condition |¢| < 1 is all that is required to ensure that v, and



hence, £, 4, is stationary. No restrictions are imposed on r; as K — oo there
will be an abrupt change in regime when w,; changes sign, whereas when & is
close to zero any change will be gradual.

Catania (2019) discusses methods for extending the logistic transforma-

tion to more than two regimes.

2.3 Dynamics within regimes

Changing location in the ¢-th regime is driven by the score

Oln f1—1 _ Oln fry—1 Oftu—1 Ofine—1 OIn fia )
a,ui,tnt—l Ofrt—1 afi,t.tA Oln fz’,t.tﬂ 8/1@“1;_1

Oln fiye—1 .
; —— = Uy, =1,..K.
Eint—1 (Y1) Ot pis Uit t
where, following on from (1),
fi,t\t = giﬂf\t—lfit/ft\t—la 1=1,2,.., K, (10)

is the estimate of §;; given y; and &, ,, ;. When &, ,,, the estimated proba-
bility of being in the ¢ — th regime, is small, the contribution of y; to the
corresponding score is downweighted.

In the basic first-order case, the dynamic equations are

i1t = wui(1 = ¢;) + ¢iﬂi,t|t71 + Kk, o] <1, =1, K, (11)

and the overall level is

K
Hejg—1 = E gi,t\t—luz’,mt—l'
i=1



ML estimates are obtained by maximizing the log-likelihood function

T T K
InL= Zln Jre1 = Z In [Z fi,tt—1fz‘,t|t—1] .
t=1 t=1 i=1

Starting values for w,, and ¢;, ¢ = 1,2,.., K and &, ¢ = 1,2,.., K, can
be obtained from the static model as described in sub-section 2.1. Similar

formulae are obtained when other parameters, such as scale, are dynamic.

Remark 1 In a Markov switching model, dynamics can be introduced into
the location and/or scale of each regime by letting them depend on past obser-
vations. For example the conditional mean in the 1 — th regime may be given
by p; + &;(ye—1 — i), t =1,...,T, i = 1,2; see Hamilton (1994, p 691). This
is very different from the filter in (11) which is driven by a forcing variable
that is weighted by the probability of being in the i — th regime.

Remark 2 Intra-regime dynamics feature very little in the HMM literature.
For example, Zucchini, MacDonald and Langrock (2016, p 150-2) devote only
a few pages under the title ‘HMMs with additional dependencies’.

3 Model selection and diagnostics

When a static mixture has been fitted, Lagrange multiplier (LM) tests are
equivalent to portmanteau tests and they enable the researcher to separate
out transition dynamics from location and/or scale dynamics. The pattern of
the correlogram may be informative as to possible models and so this initial
step has the potential for playing an important role in model specification.
Hamilton (1996) sets out tests for Markov switching models. Smith (2008)
finds the LM test to have the best size and power properties. Here we show
that in a score-driven model, LM tests can be set up very easily to test for

serial correlation in switching probabilities, locations and scales.



3.1 Diagnostic tests when a (static) mixture has been
fitted.

Under the null hypothesis that the model is a static mixture with no dynam-
ics, LM tests against dynamics in regime switching and in the parameters
within each regime may be constructed.

In a two state model, the test is against dynamic switching of the form
Vtt—1 = Wy + K1Wi—1 + ... + KpWi_p, (12)

where w, is as in (7), may be constructed. When the model is static

w fi(ye) — fa(ys)
' f(ye)

because, from (1), fi(y:) = &(ye) f(y:)/€, where, as before, the subscript is
dropped from ;. Thus the LM test of the null hypothesis that the model is

static, that is Hy = k1 = ... = kp = 0, is equivalent to a portmanteau ()-test

§1—8) =¢&ye) — ¢ (13)

based on the correlogram of the estimated probabilities, &, (y;), t = 1,.., T}
see Harvey (2013, section 2.5). The critical values are taken from a x%
distribution.

An LM test against level dynamics in the i-th regime may be constructed

from the equation
Mi,t\t—l = Wy + Ri1Uit—1 + ...+ RipUit—p, 1= 1, . K.

Combining the derivatives

aﬂz‘,tﬂm

= ui,t—j7 J = 1a "'7Pa
8/%-
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with the score for location in (9) gives

Oln f1—4 . Oln fui1 a:ui,tJrlut

= Ui tUjt—j, 1= 17 "7K7 J = ]-7 "7P7

OK; j B aﬂi,m—l Ok
where oo f
N Jit .
i =& = t=1,..,T, =1,2,.. 14
e = &) i (14

When the test is against dynamics in the :—th location only, and y;, j # i
is fixed, the LM statistic is equivalent to the Q-statistic formed from sample
autocorrelations, 7;(7) = ¢;(7)/c;(0), where ¢;(7) = ZtT:TH Wi gtis—r )T, 1 =
1,..K,7=1,..., P, that is

Qi(P)=TY ri(r), i=12,. (15)

As noted by Harvey and Thiele (2016, p 578-9), estimating fixed parameters
makes no difference to the distribution of @;(P), which is asymptotically

distributed as x% under the null hypothesis.

Remark 3 The Q;(P) tests assume that the transition probabilities are fized.
When the transition probabilities are dynamic, but not modeled as such, the
u; s will be conditionally heteroscedastic martingale differences (MDs). The

portmanteau statistic may be adjusted to deal with this situation. Lobato et
al (2001) show that

" C T Zt 1uztuzt 7')2
Q;"(P)zTZ 5 ZTZ it L i=1,2,..,  (16)

UJ, Zt =7+1 u’L tuzt T

=1

where w;(7) = (T —7)~! Z?:TH uz vz, ., is asymptotically distributed as xP

under the MD hypothesis. The structure of the test statistic is consistent with
that of the LM statistic: as in the static case, the off diagonal terms in the

information matrix have expectation zero but the conditional expectations of
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the diagonal terms are no longer the same.

3.2 Diagnostic tests when a dynamic model has been
fitted

Let 1p;, denote the parameters in the dynamic equation for the f;ym_ls. Sup-
pose a basic DAMM has been fitted. The LM test statistic for location
dynamics in the h — th regime can be constructed as 7' times the uncentred
R? from regressing the constant unity on w;,u;;—j, j = 1,.., P, together with
dln f14-1/0u, and dln fi;1/0%,, h = 1,..., K; see Davidson and MacKin-
non (1990). The asymptotic distribution is x% under the null hypothesis.
Calvori et al (2017) make use of this result for DCS/GAS but develop it in
a different direction.

When dynamics have been estimated within regimes, tests for omitted
dynamics can be constructed by adding lagged scores to the filtering equation.

Thus when (11) has been fitted to location it is augmented to give
Pigrre = (1= @:)wpi + Gittyp—1 + Kioie + K1 + .. + Kiptig—p. (17)

Then

i g v1:t a:ui,t\tfl

6I€j 8/%

This derivative can be computed recursively and in the LM test, the regressor

= (¢; + Kioliz )+ iy, j=1,...,P.

i is replaced by w; (Op; 4 1/0kK;). The derivatives for ¢; and kg, @ =
1, .., K, must be included as well as those detailed in the opening paragraph.
Test for heteroscedasticity can be constructed in a similar way, as can
tests of dynamics in location/scale models for non-negative variables.
If the effect of fitting dynamics to the £'s and to location and/or scale,
is ignored, simple @);(P) tests may be used against serial correlation in each

regime?. Harvey and Thiele (2016) show that this can often be a good strat-

2Some account could be taken of switching dynamics by using the Q7 (P)’s of Remark

12



egy, particularly when the Escanciano and Lobato (2009) automatic data-

driven procedure for selecting the number of lags, P, is adopted.

3.3 Residuals and PITs

The residuals

Yt — Hyp—1 = Yt — 51,t\t—1,u1,t\t—1 - f2,t|t—1/~b2,t\t—1
= f1,t|t—1(yt - :U’l,t\t—l) + 52,t\t—1(yt - Mz,t|t—1>

are MDs but they are not identically distributed. A better way forward is to
note that the CDF and hence the PITs are obtained as

F(y) = &uo1 Fr(ye) + (1 = &um1) Falye).-

If these PITs are transformed to observations with a normal distribution, a

check on residual serial correlation can be made using their correlogram.

4 Score-driven models for directional data

Circular data measured in radians is usually taken to have a von Mises (vM)
distribution with PDF

1
27’(’[0('1])

fly) = exp{v cos(y — 1)}, —n<yp<m v>0, (18)
where [j(v) denotes a modified Bessel function of order k, u is the direc-
tional mean and v is a non-negative concentration parameter that is inversely
related to scale. When v = 0 the distribution is uniform whereas y is ap-
proximately N(u,1/v) for large v. The ML estimator of location, u, is the

directional mean, 7,;; see Mardia and Jupp (1999). A class of general circu-

3.
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lar distributions is described in Jones and Pewsey (2005). The cardioid and

wrapped Cauchy are special cases.

4.1 Dynamic direction

Data generated by a time series model over the real line, that is —oo < z; <
oo, can be converted into wrapped circular time series observations in the

range [—m, ) by letting
Yy = zzmod(2m) — m, t=1,..T; (19)

see Breckling (1989) and Fisher and Lee (1994). The score-driven model for

directional data is
Zt :Mt\t—l—i_gt? t= 1,....7T, (20)

where the ¢}s are independent and identically distributed (IID) random vari-
ables from a standardized circular distribution with location zero. The basic
filter is

Hep1ie = (1—-d)w+ ¢/Lt|t71 + Ky, (21)

where the forcing variable, u;, is defined as being (proportional to) the con-
ditional score for location. A defining property of a (continuous) circular dis-
tribution is that it satisfies the periodicity condition f(y £ 27k;0) = f(y;0),
where k is an integer and 6 denotes parameters. Provided the derivatives
of the log-density with respect to the elements of 6 are continuous, they too
are circular in that the periodicity condition is satisfied. The distribution of
Yt — 41 in a model defined by (20), (21) and (19) is therefore the same as
that of z; — p1y,_, and so the likelihood function of the wrapped observations,
the y;s, is the same as that of the unobserved variables, the z;s.

In the case of the von Mises distribution, that is ; ~ vM(0,v) in (20),

14



the score is
up = vsin(z; — 1) = vsin(ys — pyp-1), ug ~ I1D(0, A(v)/v). (22)

The general continuous circular distribution proposed by Jones and Pewsey
(2005) has a score that is equal to sin(y; — j,;_;) multiplied by a factor that
depends on cos(y; — f;—1), 80, like (22), it is clearly invariant to wrapping
as well as being IID.

The model is strictly stationary when |[¢| < 1 in (21). Harvey et al
(2019) derive the asymptotic distribution of the ML estimators of ¢, x and
1 for the stationary vM model. When ¢ is known to be one, the asymptotic

distribution of the ML estimators of x and § may be similarly obtained.

Remark 4 Note that wrapping ju,,_; changes the model unless ¢ = 1. How-
ever, it may be useful to wrap the u;‘t_ls for the purpose of plotting on a

graph with the observations.

4.2 Tests

The Lagrange multiplier (LM) test against serial correlation in location is
based on the portmanteau or Box-Ljung statistic constructed from the au-
tocorrelations of the scores as in (15). For a vM distribution with v > 0,
the scores under the null hypothesis of constant location are proportional
to the sines of the angular observations measured as deviations from their

directional mean, 7. Hence the sample autocorrelations are

r (7_) — ZSin(yt B yd) Sin(yt—T - yd) r—=1.9
C Zsin2(yt_gd> ) ) PR

which correspond to the circular autocorrelations in Jammalamadaka and
SenGupta (2001, p176-9). The limiting distribution when the observations
are IID is standard normal, that isv/7Tr.(7) — N(0,1); see Brockwell and
Davis (1991, Theorem 7.7.2). When the @)-statistic in the portmanteau test is

(23)
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based on the first P sample autocorrelations, it is asymptotically distributed

as % under the null hypothesis of serial independence.

4.3 Heteroscedasticity

Score-driven models can be extended to allow for dynamic heteroscedasticity
by setting up a filter for the conditional concentration. Thus &; in (20) is
distributed as vM (0, Ut‘t_l) with the dynamics dependent on the score wrt
Uyg¢—1, that is

uy = cos(yr — pye—1) — Alvye—1).

The scores are a MD with mean zero and variance 1—A(vy—1)*—A(Vy—1) /Vtjt—1.
An exponential link function can be used to ensure the concentration remains

positive. Thus

Utjt—1 = eXp(Cﬂtfl)'

The first-order dynamic model for (y,_; is then

Coprpe = (1 —¢)w+ OCype—1 + /iuf, (24)

where

up = vipauy = exp(Cyyr)[cos(y — py—1) — A(vg)]. (25)

In the results for heteroscedasticity, the constant term is reported as an
estimate of exp(w) = v.

For small deviations, cos(ys — pye—1) =~ 1 — (Y — py-1)?/2 s0 uy is
essentially quadratic as in the GARCH model that is widely used in fi-
nancial econometrics. It works in the opposite direction from GARCH in
that large deviations have a negative effect because they reduce concen-
tration. When wvy;_; is large, so that the vM is close to being Gaussian,
cos(ye — pyp—1) — Alvee—1) = —(Ye — fty—1)*/2 because A(vyy—1) ~ 1. With
the exponential link function, the model is similar in structure to the expo-
nential GARCH (EGARCH) model; see Harvey (2013, ch 4). When vy, is

16



large, ug ~ —(y, — ut‘tfl)z exp(Ct‘Fl)/Q. Defining vy¢—1 = exp(—ye—1) gives
a closer link to EGARCH because

up = exp(—yje—1)[A(vije—1) — cos(ys — Hyp_1)]- (26)

The score-driven heteroscedastic model is still observation-driven; its like-

lihood function is
T
In L(3p) =T (27 o(vre-1)) + Y V-1 08(yr = frygp—1)s
t=1

where 1) denotes the parameters in the dynamic equations for v, as well

as ;1. The forcing variable for location is now u; = vye—1 sin(ye — fiy_q)-

4.4 Static mixture model

In a static directional mixture model the conditions in (2) for location and

concentration are

T .
; = arctan Zthlfi(yt>Slnyt , 1=1,2,.. (27)
D11 8i(ur) cos e

where [i; is the estimated directional mean in regime ¢ and

~

T
Ui = (L/TE)Y &y cos(ye — i) | = ARy,  i=1,2,... (28
t=1

where R; is the term in square brackets and ¢, is given by (3). Approximations
for A7'(R) can be found in Mardia and Jupp (2001, p 85-6). The estimates
obtained by iterating these equations may be fed into the EM algorithm, but
numerical optimization of the log-likelihood with respect to the vs and other
parameters will yield ML estimates directly.

A test that the probability of being in the i — th regime is dynamic is

17



constructed from the correlogram of the estimates of the probabilities &,(y;).
A test against dynamics in the level of the i — th regime is based on the

correlogram of &, (y;) sin(y; — 11;), i = 1, ..., K, that is

_ > &i(ye) sin(yy — 11,)€;(ye ) sin(ys—~ — 11;)
> & (ye) sin®(y; — ;) ’

Tie(T) r=12.. (29)
Note that although the score is v;&;(y;) sin(y; — 7;), the concentration para-

meter, v;, can be dropped as it cancels out.

Remark 5 The arithmetic mean of &;(y;) sin(y; — [1;) is zero since if it were
not, its directional mean would not be zero; see also Remark 10 in Harvey
(2013, p 53).

4.5 Dynamic mixture models

Dynamic mixture models with dynamics in the regimes may be set up as
outlined in Section 2. The variable w; driving the switching equation, (8), is
obviously circular so invariance to wrapping is retained. The one-step ahead

forecast in a dynamic mixture model with dynamic regimes is

Er(yr1) = e = Euriyrtaroyr + Sa b rir

When a forecast of an observation, that is iz, 7, falls outside the range it
can be reset, so that yri1r = g, mod 2w — 7 gives yriyyr in the range
[—7, 7). Multi-step forecast can be computed recursively and the distribu-

tions of future observations can be simulated.
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5 Application to directional data from Gali-
cia

The Galicia data was described in the Introduction. Here we report the
results from fitting models to hourly® wind direction. The parameter es-
timates are shown in Table 1. The estimates of the asymptotic standard
errors, obtained from the numerical Hessian, are shown in brackets. When
heteroscedastic models are fitted, the constant term for speed is reported (in
the second row of the first and last groups) as an estimate of the level of the
logarithm of concentration.

Diagnostic test statistics for assessing residual serial correlation in dif-
ferent components are shown in Table 2. However, the tests should not be
treated formally because, as indicated earlier, the distribution is affected by
the estimation of parameters. Furthermore, because the sample size is large,
with T' = 744, Q-statistics based on relatively small sample autocorrelations
may be statistically significant. Having said that, some of the differences ob-
served between models convey a very strong message about which are most

effective.

5.1 One regime

The sample circular autocorrelation functions (CACFs) for the series shows
very strong autocorrelation. If the possibility of more than one regime is
ignored and a basic first-order model fitted, the result is 5 =10,k =0.19
and v = 4.68. The maximized log-likelihood is In L = —520.4. However,
the residual CACF shows there is considerable serial correlation remaining.

Furthermore the fit, as measured by dispersion (circular variance), is no

3Fitting regime switching models is best done over the full range of the sample and
the minute data set is very large. It is difficult to see the bigger picture but once suitable
models have been identified with hourly data estimating them with minute data is a
possibility.
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Figure 2: Filtered wind direction in Galicia from one regime heteroscedastic
model

better than that of a random walk in which p,, ; = y:—1; see Mardia and
Jupp (2000, pp 18-19, 30) and HHT(2019). Adding heteroscedasticity gives
a better fit, but strong serial correlation remains.

Figure 2 plots the evolution of the filtered location from the heteroscedas-
tic model (the plot from the static model is similar). The fact that ¢ is
estimated to be unity allows the location to travel round the circle several
times. Figure 3 shows the corresponding wrapped filter; it is clear that the

model is slow to adapt to a change in regime.

5.2 Static mixture

Although the static mixture model can be ruled out from the correlogram of
the raw data, it is nevertheless informative about the presence of regimes.
The parameter estimates obtained by the EM iterative procedure described

in sub-section 2.1 were p; = 4.06, u, = 1.08, v; = 12.78, v = 2.00 and
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Figure 3: Wrapped filtered wind direction in Galicia from one regime het-
eroscedastic model. Note that some observations would appear less extreme
if 27 were added or subtracted.

¢ = 0.67. Taking these as initial values for numerically optimizing the log-
likelihood function gave p; = 4.05, 11, = 1.06, v; = 12.69, vy = 2.09 and
E = 0.66, with In L = —820.7, which is far lower than the for the one regime
dynamic model. The plot of {(y;) in Figure 4 shows how the contrast between
the distributions in the two regimes gives a clear indication of which regime
is operative at any one time. The regimes are obviously not determined
randomly and the ACF of the ,(y;)’s indicates that a fairly persistent first-
order filter, as in (8), is likely to give a good fit. The CACF's for the individual
regimes in the lower panels indicate persistent dynamics in the location. The

correlations between the three scores are not far from zero.

5.3 Dynamic mixture: pure DAMM

Although the tests indicate dynamics within each regime, it is useful to begin
by fitting a pure DAMM, that is one without dynamics within regimes. In
the directional DAMM, the probability of being in the first regime, &,, ;,
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Figure 4: Regime probabilities and ACFs (from initial EM estimates) for
static mixture model of wind direction in Galicia

comes from a dynamic equation for v,,_; as in (8).

The estimates of iy, pt9, wy and ws are similar to the estimates found for
the static mixture model except that the estimate of ¢ is, at 0.89, somewhat
higher than the static estimate of 0.66. The log-likelihood is —487.6 so there
is a clear improvement over both the static mixture model and the single
regime dynamic model for location. However, it does not beat the single
regime model when both location and scale are dynamic.

The diagnostic test based on the switching residuals indicates that there
are no omitted dynamics in the regime-switching equation. However, the
Q-statistics for location dynamics are still highly significant in both regimes;
indeed the correlograms are not dissimilar from those in Figure 4.

The finding that the pure DAMM model is inadequate is important be-
cause most, if not all, of the research in this area has been restricted to pure
Markov switching models, that is HMMs.
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5.4 Dynamic mixture model with dynamic regimes

As regards the regimes, the first-order DCS models are as in (11) with u;; =
& 4aVitit—18I0(Ye — f1;4—1)- The dynamics in locations are fairly persistent
in both regimes, but the concentration in regime 1 is much higher than
in regime 2. The mean of location in the second regime has increased to
3.16 but if it is constrained to its value for the static model, that is 1.03,
the log-likelihood is much lower at —279.34 as opposed to -241.4 for the
unconstrained model. It seems that the second regime is less clearly identified
than the first. Nevertheless there is a huge increase in the likelihood as
compared with the pure DAMM.

The diagnostics show that serial correlation in location has been elimi-
nated. However, the scores for concentration indicate dynamics. When the
model is extended to allow for heteroscedasticity, the last line in the table
shows there is a further improvement in goodness of fit and the level in
regime 2 falls to 2.24. On the other hand the underlying probability of being
in regime 1, &, rises from 0.77 to 0.88. The filtered location shown in Figure
5 tracks the observations quite well, although there are some discrepancies

near the beginning and end.

6 Modeling the cylinder

A bivariate distribution for a circular and a linear variable takes the form
of a cylinder. This section shows how a dynamic model can be constructed.

The next section makes the extension to a bivariate regime switching model.

6.1 Weibull-von Mises (Abe-Ley) distribution

The joint distribution proposed by Abe and Ley (2017) combines a von Mises

directional distribution with a Weibull distribution. The latter is a special
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Figure 5: Filtered wind direction from the two-regime heteroscedastic vM
model

case of the generalized gamma (GG) distribution, where the PDF is

(07 a

Fanr = 2 (5

ay—1
ST () e’\) exp (—(:Ee_)‘)o‘) , 0< < o0,

with v, > 0 and —oo < A < co. The gamma distribution is obtained by
setting o = 1, whereas the Weibull has v = 1. The dynamics in location/scale

are best modeled in terms of the logarithm of scale parameter so

Ty = &t eXp()\t‘t_l),

where ¢; has unit scale and the forcing variable is the score

Oln f(x)
ONyji—1

*Aut—la

=uy = a(ye — 7).

Remark 6 Fuat tailed distributions can be modeled with a GB2 distribution
as discussed in Harvey (2013, ch 5).
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The Weibull-Sine Skewed-von Mises (WeiSSVM) proposed* by Abe and
Ley (2017) is for a non-negative linear variable z and and circular z. The
PDF is

f(z,x) %S(%)xa_l exp{—(z/exp A\)*(1 — tanh(v). cos(z — u))}, (30)

-7 < zypu<m x>0, a>0,v>0,

where exp(\) is the scale, ¢, for the linear variable and v is a parameter
that determines concentration for the circular variable. As in Jones and
Pewsey (2005), S(z:) = 1+¢sin(z; — p), |s| < 1, skews the distribution. This
skewing term will be dropped here to simplify the exposition. The result is
the Weibull-von Mises (WeiVM) distribution. The distribution proposed by
Johnson and Wehrly (1978), and used in Garcia-Portugues et al (2013), is a
special case of the WeiVM with a = 1.

6.2 Dynamic model

In the dynamic score-driven cylinder model the parameters p and A change
over time. When z; is defined over the whole real line, it may be wrapped,
as in (19), to give —m < y; < m. When the dynamic equations are driven by
scores, as in the univariate model of sub-section 4.1, the log density of the
conditional WeiVM distribution is

In f(y,2z:) = In(a/2m) —Incosh(v) — a1 +(a—1)Inz, (31)
—(w1/ exp A1) (1 — tanh(v) cos(ye — pry;-1)),

with g,y still defined over the whole real line. The conditional scores are

ol .
TT = tanh(v) e exp Ager) sinly — ) (32)
Heje—1

4Abe and Ley (2017) have 8 = exp(—\) and k = v.
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=u; = a(z,/ exp Aye—1)*(1 — tanh(v) cos(y; — fyi-1)) — . (33)

Both u} and u} retain the univariate circularity property of being unchanged
when multiples of 27 are added or subtracted from ;.

It follows from Abe and Ley (2017) that the distribution of y; conditional
on 7, together with all the information at time ¢ — 1, is v M with mean p,,_,

and concentration
v(x,) = tanh(v) (@) exp Aye—1)”, (34)

so the more x; exceeds its expected value, the higher the concentration. Thus

(32) can be written as

up = v(e) sin(ye — pyy1)- (35)

When z; is close to zero, there is no clear direction so the concentration is low.
The conditional distribution of z; given y; together with all the information
at time t — 1 is Weibull with scale

¢(y:) = (1 — tanh(v) cos(y; — /Lt|t—1))71/agpt\t—17 (36)

where ¢,;_; = exp(Ay;—1) is the scale conditioned only on past observations.

Substituting in (33) gives

up = af(z/o(y)* = 1] (37)

When y; is close to p,,_ it will boost the effect of ;.

The filters for 4, ; and Ay,—; are driven by their scores, u; and up
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respectively, so for first-order dynamics

Hip1p = (1- ¢M)M + ¢uﬂt\t—1 + mﬂuf (38)
i = (1= )A + A1 + fﬁ,\UtA-

Remark 7 The asymptotic distribution can be derived for the model when

1 and X\, but not v, are dynamic.

6.3 Heteroscedasticity

As the model stands, concentration, v(z;), changes only with z;, depending
on whether z; it is higher or lower than expected given A;;_;. Using a result
in Abe and Ley (2017, p 95), the expected value of v(z;) based on information

at time ¢t — 1 is

Ei_qv(x) = tanh(v)E.(z/ exp Ay—1)® = tanhv coshv. P (coshv)
= tanhwv cosh®v = 0.5sinh(2v).

Thus the prediction of v(z;) is constant. It is not dependent on Agji—1 and
so if, in the context of wind, speed has been high for some time, a value of
x; lower than its expectation will imply that concentration is suddenly lower
than average. This seems implausible and it points to the need to introduce
dynamic heteroscedasticity into the model by letting v be dynamic. The

score with respect to this new dynamic parameter, denoted, vy;_1, is
uy = () exp Mp—1)“[1 — tanh? Vgje—1] cOS(Ye — pyy—q) — tanh vy, 1. (39)

The score ug is very close to that of A\y;—1, in (33), but it differs in that when
Yr is close to py,_q it increases whereas u) reacts in the opposite direction.

Note that u? is now defined with tanh vy;_; replacing tanh v. Using the filter
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for vy, now gives
Et,1U<It> = Et,1 tanh(vﬂt_l)(a:t/ exXp )\t|t_1)a =0.5 sinh(2vt‘t_1). (40)

The heteroscedastic dynamic model includes an equation for ¥y;_; =

— Invyy—;. Thus the second equation in (38) is replaced by

)\t+1|t = (1 — ¢)\))\ + ¢,\)\t\t71 + /‘i)\U? + K?(S)\'Lbf (41)
Veprp = (1= d)0 + @5040-1 + KUl + Fasuy,
where u} = —vy_quf and u) and u! are included in both the last two

equations for generality.

Remark 8 An expression for the circular-linear correlation can be found
in Abe and Ley (2017, p 96). Their Figure 2a shows how it varies with

concentration.

Remark 9 As in univariate models the scores can be used to detect residual

serial correlation.

Remark 10 The information matrixz for u, X and v is

1 cosh (2v) 0 0
II)] = 0 a? avtanh v ; (42)
¥ 0 avtanhv v? (1 + tanhv?)

see Appendix. This raises the issue of whether to pre-multiply the scores in

the dynamic equations by the inverse® of 1.

Remark 11 Abe and Ley (2017, p 96-7) give a generalization®, the GGSSVM,

wn which the generalized gamma distribution, denoted GG, replaces the Weibull;

50r even the inverse based on information at time ¢.
6Note that they have a replacing our ary and v replacing o.
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the circular marginal distribution is the Jones-Pewsey distribution. A dy-

namic score model can again be formulated.

6.4 No observations on direction

When there is no wind, it has no direction. Similarly animals may be not
be moving because they are eating or sleeping; see Zucchini et al (2016, pp
229-42). In such cases x; = 0 and so the model gives v(x;) = 0 which implies
the (unobserved) wind direction is distributed uniformly”. It is evident from
(35) that the score for location, u}, is zero. Thus the observation is effec-
tively ignored as in the naive solution for dealing with an observation that
is missing. This is not the case for the scale of the linear variable because
uf‘ = —a and the concentration score where uy = —tanhvy;_;.

As regards the likelihood, the difficulty is that f(y;,0) = 0 for a > 1,
indicating that z; = 0 is impossible. For a < 1, f(0) = oo which is also
unhelpful. Only for v = 1 is there a viable solution as in this case f(y;,0) =
1/27. The simplest solution is to assume there is no contribution to the
likelihood.

6.5 Forecasts

Forecasts are based on information at 7" so for 7'+ 1 we plug fipyqp, Uriajr
and Ariqr into the joint distribution. The (marginal) distribution of yr,1,

conditional on information at time 7', is wrapped Cauchy that is

1 1-— tal’lh2<'UT+1‘T/2)

211+ tanh®(vryqr/2) — 2 tanh(vry 7 /2) cos(yri1 — A7)
(43)

where —7m < yp,1 < m. The one-step ahead forecast for direction, E7r(yry1),

fr(yry1) =

9

is just the predicted location fip 7. The marginal distribution for the linear

"When there is skewing, that is ¢ # 0, the uniform is replaced by a circular cardioid
with location at p + 7/2 and concentration ¢
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variable is given in Abe and Ley (2017, p 94) as

o Tr a—1 o
Fara) = Ve (era) 5o <e)‘T;\1T> exp (—(zp41/THIT)) |
(44)

where 0 < zpy; < oo and

Io((.Z'T+1/€>\T+1|T)a tanh 'UTJrl\T)

VT+1|T(1’T+1) = N .
COSD U 1|1

The one-step ahead forecast of . is

ET(LTT—Q—I) = exp()\T+1|T)F(1 + ]./Oé)[(COSh UT+1|T)1/QP1/OC(COSh UT+1|T)]7

where P,(.) in the normalizing term is the associated Legendre function of
the first kind with degree v and order zero. Except for the nomalizing term
Vriir(@ryr), the form of (44) is that of a Weibull distribution and likewise
Er(xzry4q) is as for a Weibull distribution, apart from the term in square
brackets. Multi-step forecasts can be obtained by simulation. Abe and Ley
(2017, p 94) provide details on how to simulate from the WeiSSVM distrib-

ution.

6.6 Switching cylinders

DAMMSs can be applied to multivariate series as in Catania (2019, eq 3).
In a bivariate model the switching filter for £,, ; depends on the joint PDF
f(y, ). All parameters, including those that are fixed, such as «, are regime
dependent.

In the Galicia example the graphs in Figure 1 suggest that the regimes
for direction are more clearly defined than those for speed. Thus it is worth
considering whether to model regime switching only in terms of the marginal
distribution of direction, y;. To implement such a regime switching mecha-

nism, the PDF in the score with respect to the dynamic switching probability,
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(5), is taken to be wrapped Cauchy, as in (43), and the same density is used

in the contemporaneous probability equation (10).

Remark 12 When switching depends only on direction, it raises the question
of whether to model the dynamic scale parameters for speed in terms of one
regime or two. If we decide on the former, the score for Aji—1 = X —1,

1= 1,2, is the sum of the individual scores

Oln fry—y _ Oln fri1 Ofut—1 Ofie—1 OIn fipi—
a)\tnf—l 3ft|t 1 8fz tit— 1alnfi,t|t—1 a/\m—l

alnfzt\t 1 by .
E g Uy, 1=1,...K,
gltlt a)\t\t 1 it

(45)

where, from (33),

dln fi,t\tfl _

Dy a(wy/ exp Aye—1)* (1 — tanh(vy—1) cos(ye — p 1)) — - (46)
tit—

Although there is only one model for scale in each regime, the u,,s depend on

the changing parameters vi .1 and ;4,4 as well as on the &, ,)'s.

7 Wind direction and speed in Galicia

This section reports the experience of fitting bivariate WeiVM models, with
and without heteroscedasticty in direction, to the Galicia data on wind di-

rection and velocity.

7.1 Single regime

Table 3 first shows results for the single regime WeiVM bivariate model. The
dynamics for both direction and speed show high persistence with the AR
parameters greater than 0.9. The estimates of the x’s for direction are similar
to those found in the univariate models. The same is true for speed. (The

univariate estimates are not reported here.)
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The estimate of « in the speed Weibull distribution is about 2.6 so it
is not heavy-tailed®. There is high serial correlation in the direction score

residuals but not in those for speed.

7.2 Static and dynamic mixture models

As might be expected from the univariate results, a static mixture model, in
line three, fares badly with In . = —3871.8 as opposed to In L = —3424.3 for
the single regime model without heteroscedasticity and In L = —3406.8 with
heteroscedasticity The pure DAMM model, shown in line 4, is much better,
with In L = —3.444.50 but it too fails to beat the single regime models. The

Q-statistics for residual serial correlation are huge.

7.3 Dynamic mixture model with dynamic regimes

The inclusion of dynamics within regimes offers considerable improvement.
As before the fit is better with heteroscedasticity dynamics. The main issue
to resolve is whether the dynamics in the switching equation should depend
on both direction and speed or direction only. The results favour the second
possibility, especially when the dynamics include heteroscedasticity. Thus
the estimates reported in the last line of Table 3 are for the preferred model.

Figure 6 shows the filtered locations in each regime, together with the
path when they are combined. The combined filter is less inclined to go
all the way round the circle than in the univariate model; compare Figure
2. Fitting the model with heteroscedasticity gives a higher likelihood and a
slightly smoother filtered direction. However the overall picture remains the
same.

Estimating the restricted regime switching model, in which the regime
dynamics depend only on direction, gives an improvement in fit. As can be
seen in Table 3, In L = —2.987.89 when heteroscedasticity is included. There

8The exponential distribution is obtained when a = 1.
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Figure 6: Filtered locations in each regime for the (unrestricted) regime
switching model, without heteroscedasticity, together with the path when
they are combined

is still some residual serial correlation in some of the components, but, as
noted earlier, this is not unusual with large sample sizes. The estimates of «
in the Weibull parameter are well above one in almost all cases.

The combined direction filter in Figure 7 tracks the data better than the
corresponding filters for the unrestricted switching models. Although there
appears to be some discrepancy towards the end, this can be explained by
the direction moving round the circle; adding 27 to values of y,,_, close to

zero gives a path much closer to the observations.

8 Conclusion

Score-driven regime switching models can be extended to handle circular (di-
rectional) observations and diagnostic tests can be constructed. The models
allow for changing scale (concentration) as well as changing location. The
models are fitted to hourly wind direction in a site in Galicia. A hidden

Markov model, without intra-regime dynamics is unable to outperform the
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Figure 7: Filtered direction from the restricted switching regime WeiVM
model with dynamic heteroscedasticity

single regime model when both location and scale are dynamic. Although the
diagnostic test based on the switching residuals indicates that there are no
omitted dynamics in the regime-switching equation, the Q-statistics for loca-
tion dynamics are still highly significant in both regimes. Fitting a switching
model with location dynamics in each regime gives a big increase in the
likelihood function.

The score-driven approach is then used to construct dynamic bivariate
models circular and linear variables. The focus is on the Weibull-von Mises
cylindrical distribution. The model can allow for changing scale as well as lo-
cation. Furthermore it suggests a solution to the missing values for direction
that arise when speed is zero, so there is no wind.

The bivariate models are estimated for the Galicia data. The preferred
specification has dynamic location and scale for wind direction and dynamic
location/scale for its speed. Estimating a restricted regime switching model,
in which the regime dynamics depend only on direction, gives a good fit when
heteroscedasticity is included and the resulting filter for direction tracks the

observations remarkably well.
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There is further scope for research extending the score-driven approach to
bivariate cylindrical models based on copulas, as used by Garcia-Portugués
et al (2013) and Lagona (2019).
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1. Tables

AIC BIC Logl | wu Ou1 Kyl wor/vr oo K91 Wy2 2 Kuz  wea/va g2 K92 we o¢ ke )
0.000 1.000 0.193 4.683 - -
1,048.834  1,067.200 - 520417 | 973y (0.001) (0.014) (0.049)
4.294 1.000 0.152 -1.800 0.732 0.213
858205 885755 423103 | 519) (0.001) (0.009) (0.071) (0.041) (0.032)
4.051 - - 12.688 - - 1.061 - - 2.094 - - 0.672 - -
L5145 1674434 - 820738 | (o (0.100) (0.055) (0.128) (0.086) 0.662
4.041 - - 11.435 - - 1.032 - - 2.334 - - 2.112 0.960 4.737
989239 LOZL3SL - 487.620 | 1) (0.066) (0.049) (0.090) (0.825) (0.012) (0.723) °592
4.139 0.915 0.013  27.606 - - 3.163 0.988 0.264 3.365 - - 1.205 0.958 5.821
PUATES 555294 - 241393 1 h36)  (0.025) (0.002) (0.066) (0.411)  (0.005) (0.027) (0.073) (0.835) (0.012) (0.700) °-769
4.089 0.908 0.017 2.932 0.813 0.336 2.241 0.989 0.130 1.436 0.669 0.519 1.980 0.932 6.131
476.137 545013 - 223069 1 10y (0.025) (0.003) (0.108) (0.068) (0.083) | (0.188) (0.005) (0.023) (0.147) (0.088) (0.099) | (0.674) (0.017) (0.908) °57°
Table 1: Estimated parameters from fitting the vM distribution to the Galicia Wind Direction data either with one (First and Second line) or two regimes
in a DAMM model.
Hatt—1 1911\7:—1 Hatjt—1 792t|t—1 §t\t—1
Q1) Q) Q20 | Q@) Q(5) Q(20) | Q@) Q(5) Q20) | Q@) Q) Q20) | Q) Q(5) Q(20)
0.03 7.43 31.03* 128.15%**  246.58***  308.81***
19.09***  28.83*** 43.047%F* 6.917H%* 37.87FFF  62.03%H*
180.33%F**  699.79%**  1371.29%** | 48.03***  182.28%**  326.65%** | 222.24%**  760.22***  1295.63%** | 137.07*** 339.85***  413.64%** | 569.15%**  2399.35%**  5857.89%**
249.05%FF  821.30%**  1468.43*** | 128.63***  286.86***  377.86*** | 246.62***  775.45%**  1389.42%F* | 122.82%** 229 51FFF  317.86%** 0.02 18.64%** 52.96%+*
0.18 2.14 28.60 14.64%*%  34.45%%*  60.59%** 2.40 8.44 25.55 23.07*%%  65.50%FF  91.21%F* 1.93 44, 32%F* 61.96***
0.72 2.81 30.62* 12.33***  18.55%** 28.55% 4.08%* 11.05%* 31.78%* 2.49 4.03 28.43 0.00 36.997%** 68.08%**

Table 2: Box-Ljung test for residual correlation on the fitted scores with respect to all the distribution parameters, either static or dynamic, in all the above
model specifications. When the parameter is not modelled dynamically it reports instead the statistics for the simple LM test. 7***” if the test results are
significant with a confidence level of 0.01, ”7**” significant with a confidence level of 0.05, * significant with confidence level of 0.1.



AIC

BIC

Logl ‘ Wyl b1 Kyl wat/e1 (381 KA1 wy1 /1 du1 K91 ay ‘ wy2 Du2 Kp2 wxa/ 2 dr2 RA2 wga/v2 D2 Ry2 g we D¢ K¢ &o
. , 3033 0922 0170 2713 0966 0047 135 - - 2623
6,864.583  6,901.316 - 3,424.291 | (g 79y (0.009) (0.014) (0.105) (0.007) (0.004) (0.028) (0.028)
- ooe e . . . . 3.179 0.939 0.158 2.702 0.974 0.049 -0.206 0.781 0.025 2.598
6.833.643  6.879.560 - 3406822 | 1155y (0.010) (0.012) (0.118) (0.007) (0.005) (0.038) (0.079) (0.008) (0.028)
. 4.054 - - 11.402 - - 2.001 - 2.136 0.884 - 3.883 - 1.705 - - 1.732 0.995 - - ;
TT6LT62 T803.087 - BSTLESL | 19y (0.051) (0.024) (0.033) | (0.028) (0.104) (0.052) (0.054) | (0.096) 0.730
1048 - -1 - - 2.084 - - 2175 | 0.924 - - 5.392 - - 1.378 - - 1792 | 1.035 0851 11.574
5 -
6.910.994  6,061.502 - 3444497 1 1) (0.045) (0.022) (0.029) | (0.036) (0.025) (0.054) (0.052) | (0.507) (0.019) (L591) 738
3.994 0.930 0.010 2.218 0.978 0.021 2.104 - 1.272 1.712 0.992 0.042 1.490 0.772 0.110 1.620 - - 0.730 1.355 0.926 7.226
6,112.906  6.200.147 - 3037453 | () o33y (0.025) (0.002) (0.079) (0.005) (0.002) (0.021) (0.029) | (0.120) (0.003) (0.007) (0.025) (0.066) (0.018) (0.041) 0.037) | (0.670) (0.016) (0.991) 7
GOGLESS 6170491 - 300044 | LOT9 0942 0008 2325 0075 0019 0664 0906 0011 3619 | 1106 0995 0017 LSTL  0.770 0088 0193 0954 0114 2083 | 0978 0927 16219 o
D0 e AU (0.041) (0.019) (0.001) (0.079) (0.008) (0.002) (0.045) (0.031) (0.003) (0.028) | (0.120) (0.006) (0.007) (0.033) (0.062) (0.015) (0.132) (0.023) (0.024) (0.044) | (0.969) (0.020) (6.950) -
Cenoe wa 1o | 3992 0918 0010 2264 0972 0028 2102 - - 3511 | 1489 0970 0059 1348 0921 0058 1572 - - 2138 | 0922 0970  5.401 .
6,099.026  6,186.268 - 3030513 |\ 500) (0.026) (0.002) (0.102) (0.006) (0.003) (0.020) (0.031) | (0174) (0.015) (0.013) (0.187) (0.044) (0.015) (0.057) (0.051) | (0.987) (0.010) (1.209) *71
6.021.775 6.127.384 - 2.987.888 4.034 0.946 0.007 2.276 0.980 0.017 0.564 0.930 0.017 3.407 1.754 0.989 0.063 1.345 0.954 0.037 0.326 0.910 0.064 2.062 -1.312 0.946 9.484 0.212
i el el (0.028) (0.018) (0.001) (0.110) (0.006) (0.002) (0.051) (0.019) (0.004) (0.032) | (0.142) (0.003) (0.010) (0.143) (0.016) (0.009) (0.105) (0.057) (0.017) (0.045) | (0.492) (0.008) (0.934)
Table 3: Estimated parameters from fitting the WeibVM distribution to the Galicia Wind Direction and Velocity data either with one (First and Second
line) or two regimes in a DAMM model. The last two lines assumes that the switching probabilty of the DAMM model is driven just by the marginal
Wrapped Cauch distribution of the Wind Direction data.
Hitle—1 Auuq ﬂlL\L—l Hat|t—1 /\ZL\L—I ﬂZL\L—l €L\L—l
Q(1) Q(5) Q(0) | Q) Q(5) Q(20) | Q) Q(5) Q(0) | Q) Q(5) Q(20) | QU Q(5) Q(0) | Q) Q(5) Q(0) | Q) Q(5) Q(20)
S7LFFE 5536%F  14585%FF | 270 5.84 32.20%% | 144.44%%F  506.19%FF  0G8.20%**
15.99%*% 44,21%%* 99.15%** 1.13 5.72 32.53%* 72.35%0% 208.13%** 589.91%**
208.17FF% 734, 12%%F 1 110.11%%F | 205.37%%F  753.47%%F  1.042.69%%F | 478.05%F*  1,968.95%%*  3.884.16™** | 101.16%** 566.21%F*  901.82%** 165.57*%%  577.84%¥%  756.38%FF | 358.68%FF  1,229.61*** 1,582.69%** | 594.25%** 2 561.45%** 5 918.20%**
207.15%%% 723767 1,085.00%%% | 183.18%F%  656.60%*F  865.35%FF% | A75.60%FF  1.864.53FFF  3,380.22%% | 196.21%%F  GO5.6TFFF  1,065.60%%F | 162.70%FF  451.07FFE  5G2.27TFF | 377.03%FF 1 31355%0F 1,GTATRH | 15.20%F  2357R 84 5GHR
0.00 4.35 24.33 1.55 3.83 20.43 88.80*** 212.02%** 292.75%** 0.27 27.75%H* 76.32%%* 0.03 14.99%* 46.16%%* 46.23%%* 213.37%%* 237.71%%* 14.32%%* 15.42%** 36.66**
0.63 3.72 18.59 0.08 3.05 21.02 | 2456%%  BAI5FE 70 81RRK 0.83  30.024%F 138004 1.36 7.90 36.81%F | TO6*FF 43.06%FF  QL4peRr 2.19 5.02 24.26
0.29 2.64 20.82 0.02 1.37 21.79 52.84%%* 130.60%*** 208.45%** 0.88 29.907%H* 75.21%%* 0.83 15.42%** 64.48%%* 68.54*%* 241.10%%* 257.85%%* 76.45%%* 91.24%%%* 131.67*%*
1.42 6.31 19.11 0.04 2.33 18.16 15.62%** 37.60%%* 73.32%%% 7.81%%* 54,710 107.88%** 1.89 3.97 17.90 0.09 23.74%H% 57.81%F%* 67.35%%* 80.46*** 111.98%%*

Table 4: Box-Ljung test for residual correlation on the fitted scores with respect to all the distribution parameters. either static or dynamic. in all the above
model specifications. When the parameter is not modelled dynamically it reports instead the statistics for the simple LM test. ”***”
significant with a confidence level of 0.01. 7**” significant with a confidence level of 0.05. * significant with confidence level of 0.1.

if the test results are
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