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GIGYF1 loss of function is associated with clonal
mosaicism and adverse metabolic health
Yajie Zhao 1, Stasa Stankovic 1, Mine Koprulu1, Eleanor Wheeler 1, Felix R. Day 1, Hana Lango Allen1,

Nicola D. Kerrison1, Maik Pietzner 1, Po-Ru Loh 2,3, Nicholas J. Wareham 1, Claudia Langenberg 1,

Ken K. Ong 1 & John R. B. Perry 1✉

Mosaic loss of chromosome Y (LOY) in leukocytes is the most common form of clonal

mosaicism, caused by dysregulation in cell-cycle and DNA damage response pathways.

Previous genetic studies have focussed on identifying common variants associated with LOY,

which we now extend to rarer, protein-coding variation using exome sequences from 82,277

male UK Biobank participants. We find that loss of function of two genes—CHEK2 and

GIGYF1—reach exome-wide significance. Rare alleles in GIGYF1 have not previously been

implicated in any complex trait, but here loss-of-function carriers exhibit six-fold higher

susceptibility to LOY (OR= 5.99 [3.04–11.81], p= 1.3 × 10−10). These same alleles are also

associated with adverse metabolic health, including higher susceptibility to Type 2 Diabetes

(OR= 6.10 [3.51–10.61], p= 1.8 × 10−12), 4 kg higher fat mass (p= 1.3 × 10−4), 2.32 nmol/L

lower serum IGF1 levels (p= 1.5 × 10−4) and 4.5 kg lower handgrip strength (p= 4.7 × 10−7)

consistent with proposed GIGYF1 enhancement of insulin and IGF-1 receptor signalling. These

associations are mirrored by a common variant nearby associated with the expression of

GIGYF1. Our observations highlight a potential direct connection between clonal mosaicism

and metabolic health.
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Mosaic loss of the Y chromosome in leukocytes (LOY) is
the most common form of clonal mosaicism, first noted
over fifty years ago1,2. It has been associated with the

risk of a number of complex diseases and traits, however, the
biological mechanisms underpinning these observations are
unclear3–10. Like other forms of clonal mosaicism, LOY is
strongly associated with age, reflecting greater opportunity for
mitotic errors in hemopoietic stem cell division and subsequent
clonal expansion to occur. Predisposition to LOY also has a
heritable component and to date, over 150 associated common
genetic variants have been identified11–14. These loci have
implicated genes involved in cell-cycle fidelity and DNA damage
response (DDR), supporting the idea that LOY is a readily
detectable manifestation of subtle defects in these processes12,13.
We have hypothesized that the predisposition to genomic
instability that is shared across multiple cell types, including
leukocytes, may explain the observational associations between
LOY and other health outcomes13. This concept is most apparent
for CHEK2 loss of function, which both promotes LOY in men
and extends reproductive life in women through the shared
mechanism of inhibiting DNA damage sensing and apoptosis.
Identifying novel genetic determinants associated with LOY has
the potential, therefore, to not only increase our knowledge of
clonal hematopoiesis but also to identify loci that underlie sus-
ceptibility to other complex traits through shared biological
mechanisms. We previously demonstrated this with Type 2
Diabetes (T2D), where overlap with LOY highlights loci which
likely impact cellular homeostasis in metabolic tissues. For
example, alleles in CCND2 increase the risks of both T2D and
LOY13, with this gene encoding the major D-type cyclin that is
expressed in pancreatic β-cells and is essential for adult β cell
growth15.

To date, genetic studies for LOY have focussed on genotype-
array imputed common genetic variation, which largely misses
the contributions of rarer, often more deleterious, alleles11–13.
Here, we report an exome-sequence GWAS for LOY, assessing
the role of rare protein-coding variation. We extend and confirm
previous observations supporting the role of CHEK2 and addi-
tionally identify an association with GIGYF1 loss of function,
highlighting an intriguing link between LOY and metabolic
health.

Results
Previous studies have quantified LOY using either a quantitative
measure derived from the mean log2-transformed R ratio of
signal intensity (mLRR-Y)11 or more recently a more-powered
dichotomous measure (PAR-LOY) using allele-specific genotyp-
ing intensities in the sex chromosome pseudo-autosomal region
(PAR)13. We note that both measures are proxies for the abun-
dance of Y chromosome genetic material in the measured bio-
logical samples, derived from intensity data which contains much
experimental ‘noise’. As these measures are independent—one
relies on PAR genotypes only whilst the other excludes them—we
hypothesized that an aggregate of the two would further help
improve the signal-to-noise ratio of these measures and therefore
increase statistical power to detect genetic associations. We name
this combined quantitative measure PAR-LOYq (Online Meth-
ods) and estimated it in the same UK Biobank participants who
were previously studied for PAR-LOY (N= 205,011 men). As
expected PAR-LOYq calls provided a more powerful measure for
discovery analysis, with a median 10.6% increase in chi-square
association statistic for the 156 LOY loci previously identified by
PAR-LOY (Supplementary Data 1)13.

To identify genes associated with LOY, we performed gene
burden analyses for PAR-LOYq in 82,277 male UK Biobank

participants with exome sequence data (Online Methods). Two
models were tested exome-wide, by collapsing together rare
(MAF < 0.5%) loss of function or moderate-impact variants in
each individual gene. The association of the burden test in two
genes, CHEK2 and GIGYF1, were statistically significant exome-
wide (p < 1.6 × 10−6) across these analyses (Supplementary
Data 2, Fig. 1). Loss of function variants in CHEK2 (N= 543
carriers, effect= 0.23 SD higher PAR-LOYq between rare allele
carriers vs. non-carriers, p= 3.4 × 10−9) have previously been
implicated with LOY as the most common frameshift variant
(1100delC, MAF~0.2%) is well captured by GWAS imputation
and directly genotyped on the UKBB array. This single variant
accounted for 76% of loss of function carriers and the CHEK2
association was nominally significant when it was excluded (p=
0.02, effect= 0.18 SD). An independent burden test of rare
moderate-impact alleles in CHEK2 (not including 1100delC and
other loss of function alleles) was also associated with PAR-LOYq
(Supplementary Data 2, N= 1057 carriers, effect= 0.11 SDs, p=
1.7 × 10−4).
GIGYF1 loss of function (N= 40 male carriers) was associated

with a 0.93 SD (0.64–1.21, p= 1.3 × 10−10) higher PAR-LOYq.
This burden signal combined the effects of 27 rare variants
(Supplementary Data 3); a single base insertion frameshift with
10 carriers, 4 doubletons, and 22 singleton rare alleles. No indi-
vidual variant was more significant than the overall GIGYF1 test
result, which remained significant in a leave-one-out analysis of
each variant (Supplementary Data 4). Rare moderate-impact
alleles were not associated with LOY in aggregate (p= 0.70),
however, several individual moderate-impact variants exhibited
nominally significant associations (Supplementary Data 3). We
note that missense alleles likely represent a heterogeneous col-
lection of loss of function, gain of function, and benign effects. As
with CHEK2, bioinformatic filters poorly predicted which mis-
sense variants in GIGYF1 were associated with LOY (Fig. S1).
Further genome-wide burden analyses in STAAR (see methods),
weighting each variant by its CADD score, did not identify
additional LOY-associated genes (Supplementary Data 5).

We next performed several sensitivity analyses to further
explore the genetic architecture of this GIGYF1-LOY association.
Firstly, we observed consistent effects using the two previous LOY
traits, with a 6-fold (OR= 5.99 [3.04–11.81], p= 6 × 10−7) higher
risk of a PAR-LOY dichotomous call and a −0.038 (~0.81 SD, p
= 8.8 × 10−9) reduction in mLRRy. Secondly, in a sensitivity
analysis, PAR-LOYq association results were highly consistent
when excluding multi-allelic sites (p= 8.4 × 10−9) or indels (p=
9.9 × 10−3) and when restricting to high-confidence loss of
function variants defined by LOFTEE (p= 4.1 × 10−13)16.
Sequencing quality control parameters for each individual variant
appeared robust (Supplementary Data 3). Thirdly, we reproduced
the same association signal using a second analytical pipeline
implemented in STAAR (p= 1.73 × 10−10)17. Finally, we showed
that GIGYF1 loss of function was not associated with any
genetically derived principal component and carriers were geo-
graphically dispersed across the UK (Figs. S2–S3).

GIGYF1 is named after its known binding to growth factor
receptor-bound protein 10 (GRB10) and interacts with both the
insulin and IGF1 receptors18. We, therefore, postulated that loss
of function alleles may also impact metabolic health, and,
therefore, tested GIGYF1 burden test association analyses across
17 metabolic-health related traits in men and women (Supple-
mentary Data 6). GIGYF1 loss of function (N= 64 carriers) was
associated with higher susceptibility to T2D (OR= 6.10
[3.51–10.61], p= 1.8 × 10−12) and higher acute and longer-term
average levels of glycemia in non-diabetic individuals (random
glucose p= 2.6 × 10−5 and HbA1c p= 6.6 × 10−7). Of the 64
carriers, 19 (30%) had T2D, compared to 7.1% in the population
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of UK Biobank in whom sequence data was available. Carrier
status was also associated with a 1.85 kg/m2 higher body mass
index (p= 5.3 × 10−4), 4 kg higher fat mass (p= 1.3 × 10−4), 1.85
kg higher lean mass (p= 5.2 × 10−3), 0.04 higher waist-to-hip
ratio (p= 1.8 × 10−6), −0.01 lower sitting to standing height ratio
(p= 4.3 × 10−7), 4.5 kg lower grip strength (p= 4.7 × 10−7) and
2.32 nmol/L lower serum IGF1 levels (p= 1.5 × 10−4). The T2D
association was largely unattenuated by adjustment for BMI (OR
5.07 [2.78−9.27] p= 8.9 × 10−11) and the clinical characteristics
of the rare allele carriers with T2D did not provide any evidence
of a phenotype distinct from typical T2D (Supplementary
Data 7). Notably, GIGYF1 loss of function was not associated
with birthweight, puberty timing, childhood body size, or adult
height (p > 0.05).

We next examined whether common genetic variation in
GIGYF1 was also associated with LOY and metabolic health
parameters. We observed that an intergenic variant (rs221781,
MAF= 11% Supplementary Data 8 and Fig. S4) ~25 kb from
GIGYF1 was significantly associated with higher glucose (P=
4.80 × 10−15) and HbA1c (P= 3.40 × 10−10) in UK Biobank.
This same allele was associated with a higher risk of T2D19 (OR
adj BMI= 1.06 (1.04–1.09), p= 8.50 × 10−8) and LOY (p=
3.00 × 10−6), but with lower circulating LDL (p= 3.40 × 10−10)
and HDL (p= 1.90 × 10−18) levels. The variant was not asso-
ciated with BMI (p= 0.09). The lead signal for T2D (rs221781)
is also the lead conditionally independent eQTL for GIGYF1
across a number of GTEx tissues including subcutaneous adi-
pose (Fig. S5), in which we observed that higher expression of
GIGYF1 was associated with a lower risk of T2D. The lead eQTL
for GIGYF1 is rs221792 in cultured fibroblasts (p= 1.3 × 10−32)
which is in high LD (r2= 0.71, D’= 1) with rs221781. The
association of common GIGYF1 variants with T2D was also
confirmed in Million Veteran Program data, in which we found

a previously reported lead SNP for T2D was in high LD with
rs221781 (rs534043, r2= 1, P= 8.03 × 10−10) with a consistent
direction of effect20.

Discussion
In summary, this exome-wide approach identified rare loss of
function alleles in GIGYF1 exhibiting an effect on LOY ~5 times
larger than any genetic variants previously identified by GWAS.
Similarly, these alleles confer effect sizes on a number of meta-
bolic outcomes far larger than those previously identified by
imputed GWAS and other smaller sequencing studies. For
example, rare variants in PDX1, CCND2, SLC30A8, and PAM are
associated with double the odds of T2D21–23, whereas GIGYF1
loss of function is associated with a six-fold increased risk (OR=
5.96 [3.43–10.38]). The majority of common variants associated
with T2D confer much more modest effects (OR < 1.5)19.

GIGYF1 encodes a member of the gyf family of adaptor pro-
teins. It binds growth factor receptor-bound 10 (GRB10), which is
another adaptor protein that binds activated insulin receptors and
insulin-like growth factor-1 (IGF-1) receptors to negatively reg-
ulate receptor signaling, metabolic responses, and IGF1-induced
mitogenesis18,24,25. Transfection of cells with GRB10-binding
fragments of GIGYF1 leads to greater activation of both the
insulin receptor and the IGF-1 receptor26. Our findings relating
loss of function variants in GIGYF1 to metabolic and anthropo-
metric outcomes are broadly consistent with the notion that in
individuals carrying two functional copies of this gene, GIGYF1
enhances insulin and IGF-1 receptor signaling, leading to greater
handgrip strength (relative to loss of function carriers), sitting
height and circulating IGF-1 levels (due to increased insulin
signaling), and lower % body fat, WHR, HbA1c, glucose levels,
and susceptibility to T2D. We previously highlighted the potential
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Fig. 1 Manhattan and Quantile-Quantile (QQ) plots for exome-wide gene burden test statistics. The dashed red line denotes the exome-wide
significance threshold (p < 1.6 × 10−6). Burden tests performed in N= 82,277 males.
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role of IGF signaling in promoting chromosomal instability and
the cellular accumulation of DNA damage and reported that
genetically higher IGF-1 levels are related to greater LOY27. It
may therefore appear paradoxical that here we find that loss of
function in GIGYF1 (putatively leading to decreased IGF-1 sig-
naling) should be associated with increased rather than decreased
LOY. We hypothesize that GIGYF1 might enhance DDR
mechanisms to protect DNA integrity in the face of IGF-1-
mediated tissue growth and differentiation. GIGYF1 and the
related protein GIGYF2 are implicated in translational
repression28 and translation-coupled mRNA decay29, which
suggests that they may have biological roles beyond insulin and
IGF-1 receptor signaling. Although GIGYF1 is broadly
expressed30, the lack of associations in our data with some
established IGF-1-related traits, such as birth weight and adult
height, might reflect tissue or developmental specificity in its
effects. We anticipate that future experimental work will shed
light on these questions to better understand the links between
clonal mosaicism and metabolic health.

Methods
Phenotype definitions. Until now, there were two established mLOY estimation
methods based on SNP-array data: (1) the median or mean of log R ratio (mLRR-
Y) genotyping intensity values of the probes on the male-specific regions of
chromosome Y (MSY); and (2) the phase-based computational method that esti-
mates allelic imbalance using only the pseudoautosomal regions (PAR-LOY)
detailed previously13. The mLRR-Y and PAR-LOY are independent approaches as
they are estimated from non-overlapping regions of the Y chromosome. Although
there is a considerable correlation in the LOY estimates produced by these two
methods, we sought to combine the independent information considered by the
two approaches to increase power for genetic association analyses. We combined
PAR-LOY and mLRR-Y with an additional measure, the estimated fraction of cells
with LOY(AF-LOY) which was estimated when generating PAR-LOY13. Our new
combined call of LOY (PAR-LOYq) is defined as PAR-LOY+ (3*AF-LOY) –
(3*mLRR-Y) (cropped to the range [0,2]). The intuition behind this formula is to
augment the binary PAR-LOY variable by up-weighting individuals who have a
larger LOY cell fraction (as estimated by AF-LOY and mLRR-Y), which may be
more strongly associated with risk alleles.

We compared the performance of the three LOY estimates derived from the
genotyping array data using the full set of male UKBB participants13. All UK
Biobank participants provided written informed consent, the study was approved
by the National Research Ethics Service Committee North West—Haydock, and all
study procedures were performed in accordance with the ethical principles for
medical research from the World Medical Association Declaration of Helsinki. We
performed association testing with age and ever smoking status, which are two
established risk factors for LOY31,32, and the 156 previously reported LOY-
associated loci13. For both age and smoking status, PAR-LOYq outperformed
the two established mLOY estimation methods using the same sample; the t-test
statistic of PAR-LOYq for age increased by 65.4% and 5.2%, respectively, and the t-
test statistic of PAR-LOYq for ever smoking status increased by 44.9% and 11.1%,
respectively. Improvement of PAR-LOYq over PAR-LOY was also evaluated for the
156 previously identified variants by assessing the median improvement in chi-
square statistic.

Participants were classified as cases of Type 2 diabetes (T2D) according to the
previously published UKBB probable T2D algorithm33 based on baseline self-
reported diabetes or medications, in addition to evidence from electronic health
records (Hospital Episode Statistics or Death Registration) consistent with T2D
(International Statistical Classification of Diseases and Related Health Problems
Tenth Revision code E11). Any possible or probable Type 1 diabetes cases were
excluded. Controls were participants without evidence of T2D as defined above.
The GWAS on random glucose and HbA1C—using the BOLT-LMM pipeline
described below—was performed after excluding individuals with our defined T2D
criteria. The T2D test statistic for the common variant was taken from the
DIAMANTE consortium GWAS meta-analysis19. All other phenotypes used in this
study were available from UK Biobank and any applied transformations
are described in the relevant results tables.

UK Biobank exome-sequence data processing and QC. We downloaded VCF
and PLINK format files for whole-exome sequencing (WES) data of 200,643 UK
Biobank participants, which were made available in October 2020. The overview of
this 200 K WES release is described at https://biobank.ndph.ox.ac.uk/ukb/label.cgi?
id=170. Details of sequence data processing (read alignment, variant calling, etc.)
are described in papers of Szustakowski et al. [https://doi.org/10.1101/
2020.11.02.20222232] and Yun et al. [https://doi.org/10.1101/2020.02.10.942086]

We merged individual VCF files into a single VCF file of each chromosome
using BCFtools v1.934. We converted each chromosome file losslessly to a GDS
(Genomic Data Structure) format file (an RData object) using the seqVCF2GDS()
function from the R package SeqArray v1.30.035. We used SeqArray package and
GDS data object to extract the dosage matrix and perform additional variant and
genotype level filtering below. Such genotype data processing is faster than using a
flat text VCF file because GDS is implemented using an optimized C++ library
and a high-level R interface is provided by the platform-independent R package
gdsfmt35,36.

We used SeqArray package to calculate and extract the QC metrics. Firstly, we
identified and flagged 7,913,671 on-target variants (those defined by the
xgen_plus_spikein.GRCh38.bed file genomic coordinates) among the total of
15,916,398 called variants on autosomes and chromosome X. The UKBB released
VCF file has a number of QC metrics that can be used for variant site and
individual genotype filtering: QUAL (variant site-level quality score, Phred scale);
AQ (variant site-level allele quality score reflecting evidence for each alternate
allele, Phred scale); DP (individual genotype call-level approximate read depth
(reads with MQ= 255 or with bad mates had already been filtered out)); AD
(individual genotype call-level allelic depths for the ref and alt alleles in the order
listed); GQ (individual genotype call-level Genotype Quality, Phred scale). We
additionally calculated the site-level genotype missingness (the number of samples
at each site without genotype call).

After generating the summary statistics of QUAL and AQ metrics, we noted
that the released UKBB 200 K WES data already had some QC filters applied. The
values of QUAL and AQ ranged from 20 (error rate= 1%) to 99 (error rate
<0.0001%) with mean 44.5 (error rate <0.01%). For all chromosomes, the
distributions of the values of QUAL and AQ are nearly the same. We decided not
to apply additional stricter filters on these two site-level metrics. We calculated
summary statistics (minimum, maximum, mean, and 1st, 2nd, and 3rd quartile) for
DP and GQ for each variant based on all 200,643 samples for autosomes and
110,438 female samples for the X chromosome. We recorded the number of
samples with GQ < 20 at each variant. We calculated allelic balance for each
heterozygous genotype calls at on-target bi-allelic sites (ABratio), defined as the
number of alternate allele’s reads (provided in the AD field) divided by the total
depth which equals the sum of reading depths of reference allele and alternative
allele. We then generated the same per-site summary statistics as above for ABratio.
We defined and excluded a heterozygous genotype call as imbalanced if ABratio ≤
0.25 or ABratio ≥ 0.8.

In our sensitivity analysis, we applied three variant-level filters to exclude
variants at potentially poorly performing sites: filter 1: >5% missingness (samples
without genotype calls); filter 2: the maximum of the read depth of genotype calls
(DP) across samples <10; and filter 3: >20% genotype calls with GQ < 20. After
applying these three filters, 1,161,679 (7.3%) of the initial 15,916,398 variants, and
96,640 (1.2%) of the 7,913,671 on-target variants were excluded. For the variants
included in our variant-set analysis, we also generated the same QC metrics
restricted only to rare allele carriers. Ultimately all of these metrics were used to
filter out variants in sensitivity analyses that were initially performed using the
default QC parameters applied to the UKBB released dataset.

Variant annotation and definition of gene burden sets. We annotated variants
released in UK Biobank (UKBB) 200 K whole-exome sequencing (WES) VCF files
using the Ensembl Variant Effect Predictor tool release 99 based on build hg3837.
For each uploaded variant, the default VEP features include consequence and
impact of the variant, overlapping gene, position at cDNA and protein level, and
amino acid change, if applicable. In addition to the default features, the following
plugins from VEP were used: (i) SIFT38, which predicts whether an amino acid
substitution affects protein function based on sequence homology and the physical
properties of the amino acid, (ii) Polyphen-239, which predicts possible impact of
an amino acid substitution on the structure and function of a protein, (iii) CADD40

which provides deleteriousness prediction scores for all variants based on diverse
genomic features, and (iv) LOFTEE16 which provides loss of function prediction
for variants. The variants were annotated for every available overlapping transcript
in Ensembl. We used the most severe variant definition for each variant-gene pair,
which provides the annotation of the variant for the transcript it has the most
severe consequence on.

We defined loss of function variants as those with ‘high impact’ prediction by
VEP. This includes: frameshift variants, transcript ablating or transcript amplifying
variants, splice acceptor or splice donor variants, stop lost, start gained, or stop
gained variants. ‘Moderate impact’ variants include missense variants, inframe
deletion or insertions, missense variants, and protein-altering variants.

Gene association testing. Gene burden scores were created by collapsing all
annotated rare alleles together to define a binary call denoting whether an indi-
vidual carries none vs. one or more rare alleles at a given gene. Reported effect
estimates therefore represent the trait difference between carriers and non-carriers
of these alleles. These dummy variables were then transformed into BGEN file
format genotype call files for association testing using a linear mixed model
implemented in BOLT-LMM41 to account for cryptic population structure and
relatedness. Only autosomal genetic variants that were common (minor allele
frequency (MAF) >1%), passed quality control in all 106 batches, and were present
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on both genotyping arrays were included in the genetic relationship matrix (GRM).
Genotyping chip, age at baseline, and ten genetically derived principal components
were included as covariates. Samples were excluded from analysis if they failed UK
Biobank quality control parameters, were of non-European ancestry or if the
participant withdrew consent from the study.

Secondary association testing. We applied STAAR (variant-Set Test for Asso-
ciation using Annotation infoRmation)17 as a secondary analytical approach for
associated genes. STAAR is a general framework for performing a rare variants
association study at scale, suitable for whole exome or genome population-level
datasets such as UKBB. STAAR accounts for population structure and relatedness,
by fitting linear and logistic mixed models for quantitative and dichotomous traits.
It takes as input individual data frames for genotypes, phenotypes, covariates
including age, age2, sex, chip, PC1-PC10 were generated from the SNP array data
and (sparse) GRM.

We used the basic function of STAAR (with CADD-score weighting
additionally performed in a sensitivity analysis) and set the thresholds of MAF
≤0.5% and ≥2 rare variants count in a gene. The output of STAAR provides p-
values for a number of different rare variant set burden tests including SKAT
(sequence kernel association test), Burden test, and ACAT-V(set-based aggregated
Cauchy association test). In addition, STAAR provides an omnibus test result by
using the combined Cauchy association test to aggregate the association across the
different tests.

To ensure that the individual gene-level result is not disproportionally affected by
a single variant of considerably larger effect and that the others are part of the same
variant set, we performed a drop-one-out analysis using STAAR for our target gene.

Effect estimates for dichotomous traits were estimated by using logistic
regression performed in R (3.3.3). Where these are reported they include the p-
value obtained from the linear mixed-model generated by BOLT-LMM.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All individual-level data used in this study are available from the UK Biobank study upon
application (www.ukbiobank.ac.uk). Full exome-wide summary statistics are reported in
the supplement. The exome sequence data resource is described here: https://biobank.
ndph.ox.ac.uk/ukb/label.cgi?id=170 and mosaic LOY calls here: https://biobank.ndph.ox.
ac.uk/ukb/dset.cgi?id=3094. European GWAS meta-analysis summary results from the
Million Veteran Program and other biobanks are available via dbGaP (NCBI dbGaP
analysis accession pha004945, available to download from https://ftp.ncbi.nlm.nih.gov/
dbgap/studies/phs001672/analyses/). DIAMANTE consortium GWAS meta-analysis
results are available to download from the DIAGRAM consortium website (https://www.
diagram-consortium.org/downloads.html).
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