ITERATIVE TECHNIQUES FOR
RADIAL BASIS FUNCTION
INTERPOLATION

by
ANITA CHRISTINE FAUL
of

CHURCHILL COLLEGE

A dissertation presented in fulfilment of the requirements for the degree of

Doctor of Philosophy of the University of Cambridge

ITERATIVE TECHNIQUES FOR RADIAL BASIS FUNCTION
INTERPOLATION
A.C. Faul

Summary

The problem of interpolating functions comes up naturally in many areas of
applied mathematics and natural sciences. Radial basis function methods
provide an interpolant to values of a real function of d variables and are
highly useful in many applications, especially if the function values are given
at scattered data points.

The need for iterative procedures arises when the number of interpolation
conditions n is large, since hardly any sparsity occurs in the linear system
of interpolation equations. Solving this system with direct methods would
require O(n?) operations.

This dissertation considers several iterative techniques. They were devel-
oped from an algorithm described by Beatson, Goodsell and Powell (1995),
which is examined first. By gaining more and more theoretical insight into
the original algorithm, new algorithms are developed and connections to
known methods are made. We establish the important role a certain semi-
inner product plays in the convergence analysis of the original algorithm, and
the first proof of convergence is given. This leads to a new technique using
line searches described later. Then it is shown that the original algorithm
is equivalent to solving a certain symmetric and positive definite system of
equations by Gauss—Seidel iterations. Thus iterative techniques like Jacobi
iterations and conjugate gradient methods follow. This symmetric and posi-
tive definite system of equations can be derived from the original system of

equations by preconditioning it with a certain matrix. The preconditioned

1

conjugate gradient algorithm was first suggested for this problem by Dyn et
al. (1983, 1986), motivated by the variational theory of thin plate splines.
It is helpful to view the original algorithm as a linear operator working on a
certain linear space equipped with the aforementioned semi-inner product.

The original algorithm had the drawback that the residuals had to be
updated at several stages during each iteration. Another algorithm defers
the updates till the end of each iteration, which usually improves efficiency
greatly, but divergence occurs in some cases. Therefore a line search method
is developed that ensures convergence.

The last technique described is a Krylov subspace method which proved
to be very successful. It can be applied to any algorithm that fulfils certain
criteria. If the underlying algorithm is convergent, the Krylov subspace tech-
nique speeds the convergence up. In cases of divergence, the Krylov subspace
method enforces convergence. It is shown that the Krylov subspace method
applied to the algorithm where updating the residuals is deferred till the end
of each iteration is analogous to the conjugate gradient technique applied to
the aforementioned symmetric and positive definite system of equations.

All algorithms are related to each other and theoretical insight into some
properties of one algorithm leads to an improved algorithm. These consider-
ations provide a highly useful theory, linking different techniques for iterative

radial basis function interpolation.
Declaration

In this dissertation, all of the work is my own with the exception of Section 2
of Chapter 3 and Chapter 6 which contains results of my collaboration with
Professor M.J.D. Powell. This collaboration was approved by the Board
of Graduate Studies. No part of this thesis has been submitted for a degree

11

elsewhere. However some parts have appeared, or will appear, in journals. In
particular, we refer the reader to Faul and Powell (1998,1999). Furthermore,

several chapters formed a Smith’s Prize essay in an earlier incarnation.
Preface

It is a pleasure to acknowledge the support I have received during my doctoral
research.

First, I would like to thank my supervisor, Mike Powell, for his support,
patience and understanding. His enthusiasm, insight, precision and wide
mathematical knowledge have always inspired me. His guidance will be a
lasting benefit. Also Rick Beatson and George Goodsell made highly im-
portant contributions to the original algorithm. Indeed, Rick had the idea
originally of an iterative procedure for revising the coefficients of a radial
basis function interpolant, and George wrote the computer program that
guided the development of the technique into its present form. I am also
very thankful for the input by Will Light.

Acknowledgement is also due to the different sources of financial support
towards my studies. During my PhD I was financed through the EPSRC,
the Cusanuswerk and the Cambridge European Trust. Visits to various con-
ferences were made possible by the financial support from Churchill College,
Cambridge, the Department of Applied Mathematics and Theoretical Physics
and the fund of the John Humphrey Plummer Chair of Applied Numerical
Analysis.

I also want to thank my parents Helmut and Marieluise Faul and my

fiancee James Briginshaw for their continuous support.

Contents

1 Introduction

1.1
1.2

2.1
2.2

3.1
3.2
3.3
3.4
3.5

4.1
4.2

4.3

Approximation theory

Contents of the thesis

Radial basis functions

The radial basis function method

Semi-inner products.

Algorithm A

Description
Convergence analysis
A different view of Algorithm A
The iteration matrix of Algorithm A

Algorithm A as a linear operator

Algorithm B

Description
Analysis and the iteration matrix of
Algorithm B oo

Algorithm B as a linear operator

v

20

30
30
37
41
50
52

CONTENTS %

5 Other methods 65
5.1 Linesearch 66
5.2 Conjugate gradients 71

6 Krylov subspace methods 78
6.1 Description Lo 79
6.2 Analysis 81
6.3 The choice of search directions 85

6.3.1 The general choice of search directions 86

6.3.2 The choice of search directions for a self-adjoint operator 87

6.4 The Krylov subspace technique applied to Algorithm B 88
7 Numerical examples 92
7.1 Two dimensions 92
7.2 Three dimensions 101
7.3 Final remarks, 106
8 Conclusions 109
References 112

List of symbols 117

Chapter 1

Introduction

1.1 Approximation theory

Interpolation of data, which might have been gathered by measurements
of a physical quantity, or by sampling a function at scattered or periodic
points of several variables, is a problem that occurs in many areas of science
and engineering. Weather stations, for example, measure the atmospheric
pressure above the earth surface and these data are then used to construct
a contour map of the atmospheric pressure. Especially in cases where the
data are sampled by measurements, they are scattered, which means that
the positions of the data points do not obey any regular pattern. Generally,
a discrete set X = {z;,...,2,} of points in d-dimensional space R? and
real valued data f;, ¢ = 1,...,n, are given, and the task is to construct a
continuous or sufficiently differentiable function s* : R? — R that satisfies

the interpolation equations

s*(z;) = fi i=1,...,n. (1.1.1)

CHAPTER 1. INTRODUCTION 2

If s* depends linearly on n parameters, these equations define a n x n system
of linear equations.

Apart from approximating an unknown function, where only function
values at the data points in X are known, there are other applications of
interpolation methods. For example the underlying function might be too
complex for many evaluations on a computer, and it might be necessary to
replace it with a simpler function, retaining certain properties of the original
function, in order to keep computing time low. One also might find that one
has a set of data that is unacceptably large for computer storage. We then
choose X to be a subset of that data and s* is used to estimate the remaining
data, which is a form of data compression.

Another issue occurs when we know that the data f;, 1 = 1,...,n, are
subject to errors, which are often called noise, as we cannot “hear” the real
information properly. In this case interpolation is not necessarily desirable.
Then the interpolation equations (1.1.1) can be relaxed and replaced by the
condition

max{|s*(z;) — fil ;i =1,...,n} <e¢, (1.1.2)

where € is the known magnitude of the errors.

In other cases, we might want to choose a smooth s* which depends
on fewer than n parameters. We then have an under-determined system of
equations and one option to choose the function s* is by minimizing the sum
of the squares of the residuals s*(z;) — f;, ¢ = 1,...,n, which is

n

;(S*@i) — fi)*. (1.1.3)

This method is known as least-squares fitting or data-smoothing. The sum of

squares is a functional acting on the difference s* — f. In other applications

CHAPTER 1. INTRODUCTION 3

it might be more suitable to choose a different functional which is minimized
to determine s*.

Another possibility is known as quasi-interpolation. There we let s* be
the sum of rapidly decaying functions, each of which is centred at a data
point x, and is premultiplied by the factor f; in the sum. Here it is assumed
that s*(x) depends little on f; if x is far away from z;. In general, s* does
not satisfy the interpolation conditions (1.1.1) in this case.

These methods are important in both practice and theory, but this dis-
sertation is restricted to interpolation. There are many different techniques
of interpolation and we give some examples here.

When interpolating with polynomials, we choose a linear space, say P,
of polynomials in d variables which is spanned by pq, ..., p,, where n is the
number of interpolation conditions. Then an interpolant s* : R? — R of the

form

s*(z) = icipi(x)» z € R, (1.1.4)

exists if and only if the n x n matrix P with entries Pj; = p;(z ;) is invertible.
In more than one dimension, i.e. if d > 1, this property depends on the
positions of the data points x,,...,x,, which presents a difficulty. One
possibility to overcome this difficulty is to choose a particular geometry of
the data points. In two dimensions for example, one might require that
the data points form a finite square grid or more generally a “tartan grid”.
Here we are given real numbers ;1 < -+ < zp and y; < --- < y;. Let
n=kxl, X ={x,;=(v,y;):i=1,...,k,j=1,...,1} and let the data be
given by fi;, i =1,...,k, 7 =1,...,1. Further we let L,,;, i =1,...,k, and

Ly, j=1,...,1, be the usual univariate Lagrange interpolating polynomials

CHAPTER 1. INTRODUCTION 4
defined by

Lyi(za) = 0ia, i,a € [1,k]

)

Ly,j<yb) = 0jb; j)b € [17”7 (].].5)

where d;, is the Kronecker symbol. Then our interpolant s* : R? — R is given

by
k1
=3 fij Lai@) Ly (y), z=(2,y) R, (1.1.6)

=1 j5=1
Thus the interpolant is formed using a tensor product. This method can be

extended to any number of dimensions d. It is not restricted to polynomials.

We can choose suitable univariate functions P, ;, i = 1,...,k, and @, ;,
7 =1,...,1, and let our interpolant take the form
koo
:ZZCWP Qy,J(), z = (z,y) € R (1.1.7)
i=1j=1
The coefficients ¢y, . . ., ¢, are obtained by solving the interpolation equations

(1.1.1). The functions P, ;,i=1,...,k,and Q,;, j = 1,...,l, can be chosen,
for example, to be univariate B-splines, if extra points are added outside the
two intervals [z, zx] and [y1, yx]-

These methods are important if the data are given on a tartan grid, but
what if the data points are in general positions. Some useful techniques in this
case are finite element methods. When d = 2 for example, a triangulation
of the data points is chosen, i.e. triangles are constructed such that every
data point lies on the vertex of some triangle, but not in the interior or on
the edge of any triangle. Then a polynomial is constructed on each of the
triangles using function values and partial derivative values at the vertices of
the triangulation and possibly additional points. Some of these values have to

be estimated. Usually we require that the interpolant is smooth in some way.

CHAPTER 1. INTRODUCTION 5

Thus it is not trivial to construct polynomials such that they satisfy some
global differentiability property. As an example we refer to the Powell-Sabin
element. The Delaunay triangulation might be used in two dimensions for
example. Fast methods for constructing triangulations in higher dimensions
are not known and this limits this technique to two or three dimensions.
This dissertation considers a class of interpolants, known as radial basis
function interpolants. They are introduced in the next chapter and some of

their properties that will be useful later are established there.

1.2 Contents of the thesis

Radial basis function interpolation has the disadvantage that the matrix is
dense. Computing s* by direct means would require O(n?) operations. Thus
the work may become prohibitive for large n. Hence the need for fast iterative
methods arises.

We begin this thesis by describing interpolation by radial basis function
and show some of their properties which are important to our analysis.

We then first consider the algorithm developed by Beatson, Goodsell and
Powell, which will be called Algorithm A here. The first section of the third
chapter describes the ideas which lead to this algorithm and the algorithm
itself. Numerical experiments were very promising, but no proof of conver-
gence existed. The beautiful proof of convergence, which is the subject of the
next section, still excites the author. This work was done in collaboration
with Mike Powell. The semi-norm || - ||, which will be introduced in Section
2.2 is the key to the understanding of the convergence properties of Algo-
rithm A. In every stage of each iteration the semi-norm of the difference of

the required interpolant s* and the current approximation s is minimized in

CHAPTER 1. INTRODUCTION 6

a way to give a better approximation. It still fascinates the author that such
a beautiful theory appears for an algorithm whose development was based
on numerical experiments.

Then we show that Algorithm A is equivalent to solving a certain sym-
metric and positive definite system of equations by Gauss—Seidel iterations.
This system can be obtained from the original system by preconditioning
it from the left and from the right with certain matrices. We briefly men-
tion other choices of preconditioners such as suggested by Powell (1996) for
thin plate spline interpolation. Having established the system of equations
which is solved by Gauss—Seidel iterations, it is straightforward to find the
iteration matrix by which the vector of residuals f; — s(z;), i = 1,...,n,
at the beginning of an iteration is multiplied to give the vector of residuals
after the iteration, where s denotes the current approximation to s*. The
spectral radius of this iteration matrix gives a measurement for the speed of
convergence.

We conclude the third chapter by considering Algorithm A as a linear
operator acting on a certain finite dimensional linear space equipped with a
semi-inner product. Some properties of the linear operator are established.
These give more insight into the algorithm and allow us to apply the Krylov
subspace method described in Chapter 6 to Algorithm A.

The next three chapters consider improvements to Algorithm A and new
techniques which arose from the insights gained from the analysis of Al-
gorithm A. One drawback of Algorithm A is that the residuals f; — s(z;),
1 =1,...,n, have to be updated at several stages during each iteration. This
can be very time consuming. An obvious way to speed the algorithm up
is to delay the updates till the end of each iteration. This leads to a new
algorithm, called Algorithm B, which is the subject of Chapter 4. We show

CHAPTER 1. INTRODUCTION 7

that this method is equivalent to solving the aforementioned symmetric and
positive definite system by Jacobi iterations. Algorithm B can also be viewed
as a linear operator acting on the aforementioned linear subspace and it has
some properties in common with the linear operator associated with Algo-
rithm A. It has the additional property that it is self-adjoint. Unfortunately,
however, Algorithm B has the disadvantage that it diverges in certain cases.

Chapter 5 considers two more techniques. The idea of minimizing the
semi-norm leads to a new technique using line searches. By adding a line
search to Algorithm B, we can ensure convergence. The conjugate gradient
technique is an established method to solve symmetric and positive definite
systems. We apply it to the aforementioned preconditioned system and es-
tablish certain properties of the preconditioners. The conjugate gradient
technique is considered in detail here, because we show later that the Krylov
subspace technique applied to Algorithm B is equivalent to the precondi-
tioned conjugate gradient method.

The next chapter is the culmination of this work. The Krylov subspace
technique developed from the idea to use orthogonal search directions. It
can improve the convergence properties of any given algorithm provided it
fulfils certain criteria. We show how it is applied to Algorithm A and B
in particular. The Krylov subspace technique ensures that after the ¢-th
iteration, £ = 1,2, ..., the current approximation is a best approximation to
s* from a certain /-dimensional subspace of the aforementioned linear space.

Chapter 7 finally considers some numerical experiments and compares the
different techniques presented in this thesis both in two and three dimensions.

To show the development of ideas is important to the author. Analysing
the concepts behind the original method gives rise to new, improved tech-

niques. Mathematical insight gives us a beautiful and useful theory to work

CHAPTER 1. INTRODUCTION

with in practice.

Chapter 2

Radial basis functions

2.1 The radial basis function method

Radial basis function methods provide interpolants to function values given
at irregularly positioned points for any value d, i.e. they can be applied
in any dimension. Often these interpolants are excellent approximations
to the underlying function. This makes these techniques very attractive.
Franke (1982) compares some thirty interpolation methods, including radial
basis functions. Compared to other tested methods, radial basis function
techniques obtain excellent accuracy when interpolating scattered data. The
range of fields in which radial basis function methods are used is very large,
including geophysics, signal processing, meteorology, orthopaedics, pattern
recognition and computational fluid dynamics, for instance (Hardy, 1990).
The amount of data which needs to be processed gets also larger and thus
the demand for faster methods grows.

We are given a fixed univariate, continuous function ¢ : R>y — R, which

is called a “radial basis function”. A radial basis function interpolant s* is a

CHAPTER 2. RADIAL BASIS FUNCTIONS 10

linear combination of translates of the function x — ¢(|| z ||2), z € R?, where
here and throughout || - ||2 denotes the Euclidean norm. Written explicitly,

s* has the form
s'(z) =Y No(ll z —zll2), zeRY, (2.1.1)
=1

The function z — ¢(|| z ||2), € R?, is “radially symmetric”, since it clearly
depends only on the length of the vector £ measured in the Euclidean norm. If
we define ® to be the n xn matrix that has the elements ®;; = ¢(|| z;—z,2),
[to be the vector (fy,. .., f)T in R™ whose elements are the right hand sides
of the interpolation equations (1.1.1), and A* to be the vector (\},...,)T

in R", then the interpolation equations (1.1.1) provide the linear system
A = f. (2.1.2)

For several important choices of ¢, the matrix ® is invertible under rather
mild conditions on the positions of the interpolation points x,...,x,.

The matrix & associated with the Gaussian radial basis function ¢(r) =
exp(—cr?), where c is a positive constant, is positive definite, if all the data
points are distinct. If the distances ||z; — 2|2, 7 # k, are very large, the

positive definiteness follows from the diagonal dominance. Otherwise, we can

express the (j, k)-entry of ® as

d/2
e—cllz—zell3 — (C) / / e—clltly p2eitTz; —2cit"zy gy (2.1.3)
T teR? N
Let vj, j = 1,...,n, be the components of a general vector v € R". Then the

above identity provides the formulae

T e\ —cl||t)|? 2citTe . —2citTx
vidy = | — E vjvk/ e Clitlz et L5 o722 k¢
d
T k=1 teR

/2
_ <C> / ocltl3
™ teR?

2
dt, (2.1.4)

n T
j=1

CHAPTER 2. RADIAL BASIS FUNCTIONS 11

which yields vT®v > 0, because the final integrand is nonnegative. Since
the integrand is a continuous function of ¢ € R?, v7 ®v vanishes only if the

integrand is identically zero, which implies
> v e2it'z; — 0 for all teR™ (2.1.5)
j=1

We can choose a > 1 such that the distances || az; — axll2, j # k, are
large enough so that the matrix &, with entries (®,);; = e~z —az i3 ig

diagonally dominant. Now equation (2.1.5) implies

/2
VD = <C> / el
m teR

2

dt =0, (2.1.6)

n
Z Uj e 2ci o@ng

j=1

from which v = 0 follows, since ®, is positive definite. Hence expression
(2.1.4) vanishes only if v = 0, so ® is positive definite.

For practical purposes, there are reasons to avoid this radial basis function
and it is therefore not considered in this thesis. For example, it is very
sensitive to the choice of the constant ¢ as Franke found in 1982. On the other
hand its smoothness, rapid decay and probabilistic interpretation induces
many to use it in spite of its drawbacks.

Next we consider the choice ¢(r) = (r? + ¢?)¥2, r > 0, where ¢ is a
positive constant. It is known as the “multiquadric radial function” and it
is highly useful in practice. By setting ¢ = 0, we obtain the “linear radial
function” ¢(r) = r, r > 0. The matrix ® associated with these two radial
basis functions is nonsingular for all choices of d and n provided that the
data points are all different and that n > 2 if ¢ = 0. We can express the
entries of ® by the formula

1 <o —ac? _—allz;—z, |3
(bjk: 2\/%/O (0% 3/2 (1—6 € ”*J *kH2)dO{. (217)

CHAPTER 2. RADIAL BASIS FUNCTIONS 12

Let v be any nonzero vector in R” whose components sum to zero. Thus v

lies in an (n — 1)-dimensional subspace of R", and we can write

n
2 2
7,k=1

oy = L / -
- 2/ Jo
= 2_\/17? OOO a~3emo¢ L%T; vjvke_o‘”xﬂ'_xkgl do. (2.1.8)
From the analysis of the Gaussian radial basis function we know that the
term inside the square brackets is positive for 0 < a < oo. Thus the strict
inequality v7®v < 0 follows. It is now possible to deduce that ® has n — 1
negative eigenvalues. Furthermore, the trace of ® is nonnegative and hence
® has one positive eigenvalue too. Therefore the matrix is nonsingular.

The multiquadric radial basis function has beautiful polynomial repro-
duction properties discovered by Buhmann (1990). The main result is that
the degree of polynomials reproduced by interpolation on an infinite regular
grid is d + 1, so it is actually an increasing function of the dimension d.

In practice, the choice of the parameter ¢ gives some difficulties. Franke
(1982) tested the multiquadric basis function on distributions of data points
in two dimensions such that the smallest and the largest nearest neighbour
distances did not differ too much. He obtained excellent results when ¢ was
close to the average distance between nearest neighbours, so he recommends
this choice for ¢. Thus the constant ¢ is made suitable for the interpolation
problem. We do not consider the multiquadric radial function in this thesis,
but the linear radial basis function is tested.

Another interesting choice for the radial basis function is the “inverse
multiquadric radial function” ¢(r) = (r? +)72, r > 0, where c is a

positive constant. Again the entries of ® can be expressed using an integral,

[/OO a12e=0¢ =allz; 24 B, (2.1.9)
0

CHAPTER 2. RADIAL BASIS FUNCTIONS 13

Then for any nonzero vector v € R” we can write

vIPy = 7r_1/2/ P [Z Ujvke_awj_xk”%] dao. (2.1.10)
0 .
7,k=1

The analysis of the Gaussian radial function shows that the term in square
brackets is positive for 0 < a < 00, if all the data points are distinct. Hence
we can deduce that ® is positive definite for this choice of radial function.

The inverse multiquadric function can provide excellent approximations
(Franke, 1982). As for the multiquadric radial function, the choice of ¢ may
be difficult. This function was not included in the experiments.

There are radial basis functions for which the matrix ® is not always
invertible. One example is the “thin plate spline basis function” ¢(r) =
r?log r which was introduced by Duchon (1975,1976). If one data point lies
at the centre of the unit sphere and the others are distinct points on the unit
sphere, then one row and column of ® consist entirely of zeros and thus @ is
singular. Fortunately, it is possible to remove this difficulty by augmenting
(2.1.1) by adding a polynomial of degree at least one. The interpolant s*
then has the form

s*(z) IZNIAW(H z—z,l2) +p*(z), z€RY, (2.1.11)
j=1

where p* is at least a linear polynomial. This approach is not limited to the
thin plate spline radial function. Every radial basis function approximation
can be augmented by a polynomial term of degree at most m, i.e. it lies in the
space I1,,,(R?), for some fixed nonnegative integer m. As we will see later this
augmentation is very important for our purposes. We can view the translates
of the function ¢ and the polynomials in II,,,(RY) as the bricks with which we

build our interpolant s*. Suitable values of m will be given.

CHAPTER 2. RADIAL BASIS FUNCTIONS 14

From (2.1.11) one sees that s* depends linearly on the n real coefficients
Aj, j =1,...,n. The other part of s*, the polynomial p*, depends linearly
on M parameters, where M = (dtlm) is the dimension of II,,(R?). Thus s*
depends on n + M parameters, but the interpolation equations (1.1.1) give
only n restrictions. It is usual to take up the remaining degrees of freedom

by imposing on the coefficients A} the orthogonality conditions
Y Nqlz;) =0, VqellL,(RY). (2.1.12)
j=1

There are also some other approaches, for example minimizing the sum of
the squares of the coefficients A%, j = 1,...,n. Conditions (2.1.12), however,
will be used throughout this dissertation.

If a basis of II,,(R?) is chosen, then the above conditions (2.1.12) and the
interpolation equations (1.1.1) can be written as an (n+ M) x (n+ M) linear
system of equations. Specifically, let py, ..., py be a basis of II,,(R?) and let
P be the n x M matrix whose i-th row is (p1(x;) - -+ pam(z;)). If A" is the
vector (A},...,A*)T in R", then the additional constraints (2.1.12) can be
expressed in the form

PTX* =0. (2.1.13)
Thus A\ lies in the null space of PT. If ¢* is the vector in RM whose compo-

nents are the coefficients of the required polynomial
pi(z) =cpi(z) + - + cypu(z), z €RY, (2.1.14)
then the interpolation equations (1.1.1) are in matrix form
DN+ P = f. (2.1.15)
Combining (2.1.13) and (2.1.15), we obtain
IAYES f

L) (2.1.16)
PT‘ 0 o 0

CHAPTER 2. RADIAL BASIS FUNCTIONS 15

It is important to ask whether the matrix in (2.1.16) is nonsingular. As
we will see, this question was answered by Micchelli (1986). To explain this

point further we need the concept of “conditional definiteness”.

Definition 2.1.1 (conditional definiteness) A function 6 : R? — R with
O(—z) = 0(z), x € R?, is conditionally positive (or negative) definite of order
m on RY, if, for all sets X = {x,,...,z,} C R? with n distinct points and all
nonzero vectors A* = (\j,..., \%)T € R™ subject to the conditions (2.1.12),

or equivalently (2.1.13), the quadratic form

DD NNz —) (2.1.17)
J=1 k=1

is positive (or negative). Therefore, if (2.1.12) holds and (2.1.17) is zero, then
AT =0.

For radial basis functions with 6(x) = ¢(|| z|2), z € R?, (2.1.17) simplifies
to A*T®)*. The term “conditionally” is used, because we do not require the
quadratic form (2.1.17) to be positive (or negative) for all nonzero vectors in
R™. Attention is restricted to vectors of coefficients that lie in the null space
of PT,

We choose ¢ such that the function 0(z) = &(|| z|2), z € RY, is con-
ditional positive (or negative) definite of order m. This property is very
important since it enables us to define a certain semi-inner product which is
the main ingredient in the analysis of the following chapters. Thus we ensure
that A’ ®)* is positive (or negative) for all nonzero vectors A* satisfying
(2.1.13). We then refer to ® as being conditionally positive (or negative)
definite. We further ensure that the positions of the interpolation points
Tq,...,x, cause P to have its maximum rank of M. That is equivalent to

the requirement that the data points do not lie in the zero set of a nonzero

CHAPTER 2. RADIAL BASIS FUNCTIONS 16

polynomial of degree at most m, i.e. we require that X is polynomially uni-
solvent — which is a rather mild condition and which implies that m is small
enough to ensure M < n. It is now easy to deduce that the matrix in (2.1.16)
is nonsingular.

We need to show that if f = 0, then it follows that A* and ¢* are zero. Mul-
tiplying (2.1.15) by A*" from the left and using A*' P = 0, we get A* ®)* = 0
which implies that A* equals zero, since A*T ®A* > 0 (or < 0) for all nonzero
vectors A" satisfying (2.1.13). Inserting A* = f = 0 in (2.1.15) gives ¢* = 0,
since P has full rank.

Micchelli (1986) establishes a link between conditionally definite functions
which are derived from radially symmetric functions, and strictly completely

monotonic derivatives.

Definition 2.1.2. (complete monotonicity) An infinitely differentiable
function f defined on R is strictly completely monotonic if and only if each

2

derivative in the infinite sequence of derivatives f(©, f_ £ has no zeros

and if these derivatives alternate in sign.
Micchelli proves the following significant result:

Theorem 2.1.1. (Micchelli’s Theorem) Let the function ¢ be defined
by ¥(r) = ¢(r'/?), r > 0. Let further my be the least integer such that
the (mg + 1)-th derivative of v is strictly completely monotonic, then the
inequality

(=)™ T PN <0 (2.1.18)
holds for every nonzero vector * that satisfies PTA* = 0. Hence ® is con-
ditionally positive definite if mq is odd and conditionally negative definite if
myg is even (mg # 0). For my = 0, ® is negative definite. Considering the

function (x) = ¢(|| 2 |2), z € RY, it follows that it is conditionally definite.

CHAPTER 2. RADIAL BASIS FUNCTIONS 17

We choose m to be greater or equal to mg. For example, in the case of the
thin plate spline function ¢(r) = r?logr, ¥ (r) is the function 1rlogr with
derivatives M (r) = Jlogr + 1 and ¢®(r) = L(=1)F(k — 2)! r'7% & > 2.
Although the first derivative 1)) changes sign, the second derivative 1 is

1
2

strictly completely monotonic, so we require m to be greater or equal one.
Therefore we include at least a linear polynomial p* in expression (2.1.11),
which ensures that the linear system (2.1.16) is nonsingular. In this case the
matrix ¢ is conditionally positive definite. The second derivative of ¢ is also
completely monotonic in the case of the cubic radial basis function, ¢(r) = r3.
For the multiquadric and linear radial basis functions the first derivative of
1) is strictly completely monotonic and thus a constant polynomial is added
to achieve conditional negative definiteness of ®, while if) is defined for the
Gaussian or inverse multiquadric function, then v itself is strictly completely
monotonic. This implies that in latter two cases the matrix ® is positive
definite - as we have seen already - and no polynomial term is added.

Conditional definiteness is very important for our purposes. Therefore
we always add a suitable polynomial to achieve the conditional definiteness
of @, which is used in the next section to define the important semi-inner
product on which our analysis is based.

Considering the more general case of interpolation using shifts of a con-
ditionally positive (or negative) definite basis function § : R? — R of order
m, we let © be the n x n matrix with entries 0;; = 6(z; — gj). Since
O(—z) = 0(z), x € RY, holds, the matrix © is symmetric. In this general case

we have the system of equations

o P\ (x)_ (1 | (2.1.19)
PT\ 0)\ ¢ 0

which is nonsingular if P has rank M, where M is the dimension of IT,,(R?),

CHAPTER 2. RADIAL BASIS FUNCTIONS 18

provided that M < n, since # is conditionally definite. We also refer to © as
being conditionally positive (or negative) definite.

We let
A | B

(2.1.20)
BT|C

be the inverse of the matrix given in (2.1.19) and we obtain the formula
AT =Af. (2.1.21)

Setting f to the k-th coordinate vector ej, we obtain the coefficient vector

A = (Ak1, o5 Agn) T of the Lagrange function

n M
Xe(x) =D A0z — ;) + Y cpypi(z), zer’ (2.1.22)
s =1
that satisfies the Lagrange conditions xx(z;) = i, ¢ = 1,...,n, where d;

is the Kronecker delta. Since A, is the k-th column of A and since A is
symmetric, Ap; = Aj; follows. This property of coefficients of Lagrange
functions over the same set of data points will become useful later.

The following properties of A are important to several algorithms. For
example they are put to good use by Dyn and Levin (1981, 1983).

The symmetry of © and the definition of A imply that A is also symmetric.
Multiplying the two matrices given in (2.1.19) and (2.1.20) gives

o |p A B\ [ea+pPB|eB+PC L] o

prlo J\ BT|C A | Pt) oy
where [denotes the k x k identity matrix, k& = n, M. Inserting equation
(2.1.21) on the right of A** ©A* and using the remark OA = I,, — PB”, we
find

TN = T f - NTPBTf. (2.1.24)

CHAPTER 2. RADIAL BASIS FUNCTIONS 19

The second term vanishes, since * lies in the null space of PT. Therefore
(2.1.21) implies A*"OX* = fTA f. It follows that f"A f inherits the con-
stant sign of A*’ ©)*. Thus all the eigenvalues of the symmetric matrix A
are nonnegative (or nonpositive). Further, iTA [is zero if and only if the
interpolation conditions (1.1.1) allow s* to be a polynomial of degree at most
m. This is the case if f lies in the M-dimensional subspace of R" spanned by
the columns of P, and then the vector of coefficients * is zero. Therefore A
has M eigenvalues of zero, the remaining n — M eigenvalues being positive
(or negative). System (2.1.19) causes A* = Af to satisfy PTA* = 0 for every
f € R", which is equivalent to the condition PTA = 0. The symmetry of A
yields AP = 0.

The methods of Dyn and Levin (1981, 1983) generate an estimate, W
say, of A, which has the properties of A given in the previous paragraph. To
be specific, W is also an n x n symmetric matrix with M zero eigenvalues
and n — M positive (or negative) ones that satisfies PTW = 0. Then W
is used as a preconditioner in a conjugate gradient method which calculates
approximations to the required vector of coefficients A*. The basic idea for

generating W arises from the fact that radial basis functions of the form

2mt1)—d if d is odd and d < 2 1
oy =4 " Camoatan (m+1) . (2.1.25)

r2miD=dlogr if d is even and d < 2(m + 1)

which are known as “polyharmonic splines”, are related to the Dirac (+)
distribution. Indeed, a multiple of this distribution occurs if the m-th iterated
Laplacian operator V™ is applied to ¢(|| z|), z € R?. Therefore, W is
constructed from discrete approximations of the iterated Laplacian.

We will also consider preconditioned conjugate gradient methods, but
we use a different choice of preconditioner, which arises from the algorithm

developed by Beatson, Goodsell and Powell (1995).

CHAPTER 2. RADIAL BASIS FUNCTIONS 20

Summarising, we have seen that interpolation by radial basis functions
leads to a linear system of equations with a conditionally definite submatrix,
the system being nonsingular as long as the set of data points X is not in
the zero set of a nonzero polynomial of degree at most m. Further useful

properties of these interpolants will be established in the next section.

2.2 Semi-inner products

We have mentioned already that we intend to use the conditional definite-
ness of ®, or more generally ©, to define a certain semi-inner product. To
introduce it we present a beautiful result by Duchon (1977). Duchon’s treat-
ment is somewhat abstract, using sophisticated techniques from distribution
theory. We follow an alternative approach introduced by Powell (1992).
One of the most popular radial basis function in two dimensions is the
thin plate spline basis function ¢(r) = r?logr for r > 0 and ¢(0) = 0, with

an added linear polynomial, which gives the form

n
s*(z) =Y N ||z —z;|3log || — z; || + linear polynomial, — z € R®.
=1

(2.2.1)

The additional constraints (2.1.12) can be written as

n n
YA =0 and Y Nz;=0. (2.2.2)
=1 j=1

The points z,, ¢ = 1,...,n, must not lie in the zero set of a nonzero linear

polynomial. In other words, they must not be collinear.
One reason for the success of thin plate spline interpolation is that s* is
the solution of an optimal recovery problem (Duchon, 1977). Specifically, s*

provides the least possible value of the semi-inner product (s*, s*) subject to

CHAPTER 2. RADIAL BASIS FUNCTIONS 21

the interpolation conditions (1.1.1), where for functions f and g with square

integrable second derivatives the semi-inner product (f, g) has the value

_ O f(x,y) 8g(x,y) P flz,y) Pg(z,y)
(f.9) _87r//2 ox? 2 +2

ox Jdxdy O0x 0y
*f(z,y) Pg(z,y)
0 0 dx dy, (2.2.3)

which vanishes if either f or g are linear polynomials, x and y being the
components of z € R?. The thin plate spline s* has square integrable second
derivatives, since for large ||z || the moduli of the second derivatives of s* are
bounded above by a multiple of ||z ||3?, which can be shown be expanding
the second derivatives of the function 3 || z — z,[]3log || — z ;|3 in inverse
powers of || z ||2, using the identity

H2

lz =zl =Nzl |l - 7 + : (2.2.4)

and the constraints (2.2.2). Indeed, we obtain expansions of the second
derivatives of s* in inverse powers of || x |2, where constant terms, terms
increasing in modulus or terms decreasing in modulus slower than || z |32
cancel due to the additional constraints (2.2.2).

Minimizing (s*, s*) for the semi-inner product (2.2.3), subject to the inter-
polation conditions (1.1.1), means that the interpolant minimizes the bend-
ing energy of the surface, which can be regarded as the “smoothest” surface
through the data.

We find a useful form of (f,g), by applying integration by parts to the
integral (2.2.3). There are no contributions from the boundary conditions at
infinity. Therefore integrating the second derivatives of f twice and differen-

tiating the second derivatives of g twice provides the formula

(f.9) = 817T/ e f(2) Vig(z) dx dy, (2.2.5)

CHAPTER 2. RADIAL BASIS FUNCTIONS 22

where V4 = (88—; + 5—;2)2.
To prove the optimal recovery property, we consider V40(x) where 0(z) =

¢z l2) =zl log [z]2, z € R®.

Lemma 2.2.1. The function 6(x) =]z ||3log ||z |2, € R?, has the deriva-

tives
V¥(z) =4 +4log ||z], and V?*(x) =8rd(z), z€R? (2.2.6)
where §(z), x € R?, is the delta function.

Proof: When r > 0, the radial symmetry of 6, setting r = || x ||2, supplies the

derivatives
d d?
2 _ o L e 2
V<0(x) (7" o + dr2> (r*logr)

= r Y2rlogr+7)+ (2logr + 3)

= 4+4logr (2.2.7)
and

Vi(z) = ’r’li + L (4+4logr)=4r2 —4r2=0 (2.2.8)
- dr dr?) o

Therefore it remains to establish the behaviour of V40(z) at z = 0.

Let f : R2 — R be a four times continuously differentiable function that
has the properties f(xz) =1 for ||z |2 < 2 and f(z) =0 for ||z ||2 > 3. Such
functions are known to exist and are called bump functions. We consider
the semi-inner product (f,), and can restrict the range of integration to the
square [—3, 3] x [=3, 3]. The zero boundary conditions of f make integration
by parts straightforward and, since V40(z) = 0, z # 0, and f(0) = 1, we

deduce

(f,0) = ;T//Rz V49(z) dz. (2.2.9)

CHAPTER 2. RADIAL BASIS FUNCTIONS 23

The second derivatives of f vanish for ||z [|s < 2, since f(x) = 1 in this
region. Therefore, letting 6 be a smooth function that is free of singularities
and that coincides with 6 for || z|» > 1, it satisfies (f,0) = (f,6), which

gives the equation

//R2 V0(x) dz = 87(f,0) = 87 (f.0) = //R2 V() dz. (2.2.10)

Now let D be the disc {z :||z || < 2}. Since V40(z) = V*0(z) =0, ||z |, > 1,
we can restrict the range of integration to D. We chose 6 such that V4é(g)

is continuous. Thus the divergence theorem provides the identity

//Dv4é(g)dg = //DVQ(VQQA@))C@

— f nTV (V20(z))ds, (2.2.11)
where ¢ denotes the integral around the perimeter of D and where n is the
outward pointing normal z / || z ||o. When || 2|2 > 1, which includes the
perimeter of D, we have the identity V20(z) = V20(z) = 4 + 4log || z |2,
which implies V(V20(z)) = 4z /|| 2. Thus the integrand n”V(V20(z))
takes the value (z /|| z||2)(4z /| z|]3) = 2, since the radius of D is 2. The
length of the perimeter of D is 47. Thus

//R2 V4 (z)dz = 8, (2.2.12)

which gives the required result V*0(z) = 87d(x). O
We express the optimal recovery property as a theorem.
Theorem 2.2.2. (Optimal recovery) Let s*(z), x € R?, be the thin

plate spline that interpolates the data f; at the points x,, + = 1,...,n, and

let t(z), = € R%, be any function different from s* with square integrable

CHAPTER 2. RADIAL BASIS FUNCTIONS 24

second derivatives that also satisfies the interpolation equations t(z;) = f;,

1 =1,...,n. Then the strict inequality
(s*,s") < (t,1) (2.2.13)

holds. Thus s* is the unique function with square integrable second derivatives

that minimizes the semi-inner product subject to the interpolation conditions

(1.1.1).

Proof: We let g be the function ¢ — s* which vanishes at the interpolation

points z,, ¢ = 1,...,n. A lower bound on (¢,t) is provided by the inequality
(t,t) = (g+s",9+s") = (9,9)+2(g, s")+(s", %) > 2(g, s")+(s",s"). (2.2.14)

Therefore it is sufficient to deduce that (g,s*) is zero and that, if (¢,t) =
(s*,s%), it follows from (g,g) = 0 that ¢ = 0 and thus t = s*.

Treating the semi-inner product (g, s*) by integration by parts, there are
no contributions from the boundary conditions at infinity, due to the decay of
the second and the third derivatives of s*(z) as ||z |2 — co. We have already
mentioned that the moduli of the second derivatives of s* can be bounded
above by a multiple of ||z || for large || z ||2, while the third derivatives of
s* are of magnitude || z||5® for large || z ||o. Thus, following Powell (1992),

we deduce the formula

05) = o [o) Vs @) dedy
= o] fo@ XN 0z =zl ey

B //R?g(@ i)‘fé@—ii) dz dy

i=1

= > Ngla,) =0, (2.2.15)
=1

CHAPTER 2. RADIAL BASIS FUNCTIONS 25

since g vanishes at the interpolation points.

The semi-inner product
9%g(gz,)" [P9(z.y)]
+ 2 | = —2 22 dxd
(9.9) 87r//2 0:52] [oz 0y + 0y? vy

(2.2.16)
vanishes only if g is a linear polynomial. On the other hand, ¢ is zero at x;,

i =1,...,n, which are not collinear. Thus, if (g,g) = 0, it follows that ¢ is

identically zero and hence s* and t coincide. O

We are now regarding z,, i = 1,...,n as fixed. With ¢(r) = r?logr,
r > 0, and ¢(0) = 0, let S be the n-dimensional linear space that contains

functions of the form
z) :fjlx (Il z—zl2) +p(z), zer (2.2.17)
whose coefficients]s;tisfy
zn: Aj=0 and zn: Ajz; =0, (2.2.18)
j=1 j=1

where p(z), x € R? is a linear polynomial. The results of Theorem 2.2.2
show that, because s* has the form (2.2.1), it is the unique element in S
that interpolates the data f;, ¢ = 1,...,n. The semi-inner product de-
fined by (2.2.3) exists on this space S of thin plate splines, since thin plate
splines have square integrable second derivatives. Further, if t(z) = >7_, v;

é(|| £ — z||2) + q(x) is another function in S, then, by integration by parts
analogous to (2.2.15), the semi-inner product has the value

(s.8) = iwsm):iwm

=1

I
M:

N v z;—x;l2) +q(z;)
=1

1

J

> Aol zy -z ll2) = ATy, (2.2.19)

1i=1

I
M:

.
Il

CHAPTER 2. RADIAL BASIS FUNCTIONS 26

where A = (A1,...,\) and v = (14,...,1,)7.

Unfortunately, other explicit forms of semi-inner products that are mini-
mized by the other radial basis function interpolants are not known generally.
We refer the reader to Schaback (1999). However, let 6 : R? — R be any con-
ditionally definite function of order m and let X = {z,,...,2,} C R be a
fixed set that does not lie in the zero set of a nonzero polynomial of degree at
most m. Then, guided by the above paragraph, we define an n-dimensional

linear space Sy which contains functions of the form

s(z) =D Nz —z;) +plz), zeRrR (2.2.20)
j=1
where p € II,,,(R?), and where the coefficients \;, j = 1,...,n, are required

to satisfy the constraints
Yo Njqlz;) =0, VqeTlL,(RY). (2.2.21)
j=1

On Sy we define the semi-inner product that is introduced by Schaback
(1993). Specifically, letting t(z) = >0, v; 0(xz—x,;)+q(z), x € R, be another

function in Sy, the semi-inner product between s and ¢ is the bilinear form

(s,t)g = o9y Ntlz;) =00 vis(z;)
j=1 i=1
= 09> Y Nz, —z;) = o9 A O, (2.2.22)
j=1i=1
where oy is chosen to be +1 if 6 is conditionally positive definite and oy = —1

if 6 is conditionally negative definite. The semi-inner product vanishes if s or
t lie in II,,,(R?), because then \ or v is zero. A simple rule for the semi-inner
product is that it is the sum of the coefficients of one function times the
function values at the data points of the other function, with a change of

sign in the conditionally negative case.

CHAPTER 2. RADIAL BASIS FUNCTIONS 27

Forming (s, s)g gives a9 >°7';_; \i\;0(x; —x ;), which is nonnegative by the
choice of oy. Thus Sy has the semi-norm

Isllo=(s,9)", s€S (2.2.23)

This semi-norm has a fundamental property, taken from Schaback (1993),
which can be compared to the optimal recovery property of thin plate splines.
We define a larger space Sy by letting s be in Sy if it can be written in the
form

§z) =" N0z —i,)+pla), xecrY (2.2.24)
j=1

where p € I1,,(R?) and where the parameters are subject to the usual con-
straints

S Nal@;) =0, Vg€ TIL,(RY. (2.2.25)
j=1

Here 6 is as before, but n can be any finite number and much larger than n
and the set {#,:7=1,...,7} can consist of any points in R?. This freedom
in the set implies that the dimension of Sp is infinite, but each 7 is finite.
Further, the original space Sy is an n-dimensional subspace of Sp.

We let 5 and £ be the functions (2.2.24) and {(z) = ¥_, ;0(z—i ;) +q(z),
z € RY, respectively, where 7 can be different from 7 and the points Z;,
i = 1,...,7, can be any points in R?. We let the set {Z, : i = 1,...,7}
be the union of the two sets {Z, : ¢ = 1,...,n} and {&,; : i = 1,...,n}.
We define)\; to equal j\j if 2; = 2; for some j € [1,7] and to equal zero
otherwise. The coefficient 7; equals ; if Z; = &, for some j € [1,7] and
is zero otherwise. We then can write §(z) = Y7, X 0(z — Z;) + p(z) and
tz) = X0 70(z — &;) + q(z), 2 € RY. Now the analogue of expression

(2.2.22) is

(§,7§)9 = U@ZS\]f(i]):OpZﬂz§<iz)
j=1 i=1

CHAPTER 2. RADIAL BASIS FUNCTIONS 28

= 09> > N b(E; — I). (2.2.26)
j=1i=1

The fundamental property that corresponds to the optimal recovery prop-
erty for thin plate splines is that, if § is any function in Sy that interpolates
the data f;, i = 1,...,n, then (8, §)y is never less then (s*, s*)y. It is proved
as follows.

An element § € Sy interpolates the data f;, ¢ = 1,...,n if and only if
it can be written in the form 3 = s* + ¢, where s* € Sy is the required
interpolant and where { € Sy satisfies {(z;) = 0,4 = 1,...,n. By introducing
zero coefficients if necessary, we let ¢ have centres at the points {Z, : i =
1,...,n} ={z, :i=1,...,nyU{z; : i« = 1,...,n}. We consider the

semi-inner product)
(s*,1)s = 09 > N E(Z,), (2.2.27)
i=1

where * equals A if Z; = x; for some j € [1,n], but otherwise A is defined
to be zero. Thus 5\;* is nonzero only if Z; is one of the given interpolation
points z ;, j = 1,...,n, and in this case £(Z;) is zero. Thus expression (2.2.27)

vanishes, which gives the required bound
(5,8) = (s* + 1,8 +1)g = (s%,5%)9 + ({,£)g > (5%, 5%)s. (2.2.28)

Equality occurs when (f,1)y = o 223:1 U, 0;0(&; — Z,) is zero. In this

case 7; = 0, 1 = 1,...,7, since 6 is conditionally definite, and hence f is a
polynomial of degree at most m. It follows from #(xz;) = 0,4 =1,...,n, and
from the polynomial unisolvency of the set X = {z,:i=1,...,n} that { is

identically zero. Therefore s* is the unique interpolant in Sy that minimizes
(s*,5)g.
We are going to consider iterative methods that construct a sequence of

approximations in the space Sy. The sequence should converge to the desired

CHAPTER 2. RADIAL BASIS FUNCTIONS 29

interpolant s* € Sy. The next chapter describes one such algorithm. It makes

good use of the native semi-inner product defined above.

Chapter 3

Algorithm A

Algorithm A was developed by Beatson, Goodsell and Powell in 1995 af-
ter experimenting with several ideas, which included multigrid techniques.
The version presented here is based on the implementation that is described
by Powell (1997), which was highly successful in numerical experiments.
Particular choices of the ordering of the interpolation points, the sets Ly,
k=1,...,n—q, which we introduce in the following section, and a stopping
condition are specified there. Here a more general description is given. The
technique was first developed for thin plate splines in two dimensions, but

we present it for a general conditionally definite function from R to R.

3.1 Description
Suppose that
s(z) = > N0z —xz,) +p(z), zeR, (3.1.1)
j=1

is an approximation to the required interpolant s*. If the residuals f; —s(z;),

1 = 1,...,n, are small enough, the calculation terminates. Otherwise, an

30

CHAPTER 3. ALGORITHM A 31

iteration of Algorithm A revises the coefficients \;, j = 1,...,n, and the
polynomial part p by adding suitable corrections to s.

Each iteration is divided into three steps. Step 1 is composed of n — ¢
stages, where ¢ is a prescribed integer less than n and greater than the
dimension of IT,,(R?) which has the value M = (dzm) A typical value for g
is 30. For k =1,...,n — ¢, the principal task of the k-th stage is to provide
a new value for \p. Once we have adjusted \i, we do not want it to be
altered by any subsequent calculations. Thus the corrections that are added
to s in the k-th stage are functions with centres only at the interpolation
points z, ..., xz,, since otherwise some of the already revised coefficients A ;,
7=1,...,k—1, would be changed.

The second step of each iteration adjusts A\;, j =n—¢+1,...,n, and
p by adding a correction which has centres only at the last ¢ data points
ZTypg+1s- >, This does not alter any of the coefficients revised in Step
1. The method is analogous to forward substitution, since, once the value
of \p, Kk =1,...,n, has been revised, we accept it for the remainder of the
iteration. The corrections of Step 1 and Step 2 are separated, because they
are calculated in fundamentally different ways.

Step 3 checks whether the residuals f;—s(z;), j = 1,...,n, are sufficiently
close to zero, where s denotes the current approximation. If this is the case,
termination occurs. Otherwise another iteration is performed.

We now consider the corrections in detail. In the k-th stage of Step 1, we

want to calculate a new value for \,. Suppose that the first £ — 1 coefficients

are correct, i.e. that \;, = A}, i =1,...,k — 1. The function s* — s then has
centres only at the last n — k + 1 data points x,...,z,. Therefore, if we
add to s the interpolant o of the residuals f; — s(z;), i = k..., n, we achieve

s = s*. Thus the required correction to Ay is the coefficient of 6(z — z;,) in

CHAPTER 3. ALGORITHM A 32

o. For each integer j =k, ..., n, we let
n M

V(@) =D MOz —z,) + > ewjipilz), zERY (3.1.2)
i=k i=1

be the function in Sy defined by the Lagrange conditions xx;(z;) = d;j,

1 ==k,...,n. Then o can be written as

NE

f; = s(a,)] ()

o(z) =)

<.
Il

Il
H M:

Z [J)} O(z — z,;) + polynomial, x € R?. (3.1.3)
ki=k

Thus the coefficient of (z — ;) in o is the sum >7_; Nejilf; — s(z;)]. Now,
by a remark following equation (2.1.21) about the symmetry of A, we know
that S\kjk equals S\kkj. Hence only the coefficients S\kkj, Jj=k,....,n, of xrr
are needed to calculate the coefficient of f(x — x ;) in o.

Unfortunately, it is too costly to calculate all the coefficients j\kkj,] =
k,...,n, when n is large. Therefore we choose, for each integer k in [1,n—q],
aset Ly C{k,...,n} of size |Lx| = ¢ which contains k. The function y is
then approximated by

M
=Y Maible—z,) + D Gupi(z), zer’ (3.1.4)

1€Ly

which is the solution of the interpolation equations
As usual, the coefficients of y; are required to satisfy the constraints

S Mg(z;) =0, Vg€l (R, (3.1.6)

€Ly

CHAPTER 3. ALGORITHM A 33

so that xp isin Sy for k = 1,...,n — q. All the coefficients {5\;{] 1 j € Ly},
k=1,...,n—q, are calculated explicitly before the iterations of the algorithm
are begun. The k-th stage replaces Ay by Ax + px, where py is the number
e =Y. Akj [fj — s @])} . (3.1.7)
JELK
If the residuals f; — s(x;), j € Ly, are available, py can be found in only
O(q) operations.

To revise A\, any function in Sy with centres only at the interpolation
points 4, ..., z, and coefficient yy in front of 6(z — ;) can be added to s.
Now Xy is available and we ensure that A is nonzero for k = 1,...,n—qby
requiring the set £ to have the property that the points {z; : j € Ly, j # k}
do not lie in the zero set of a nonzero polynomial of degree at most m.
Therefore, X} is not an element of I1,,(R%), so the semi-inner product (X, Xx)o
is strictly positive. Further, since the semi-inner product is oy times the sum
of the products of the coefficients of one function with the function values of

the other function, equations (2.2.22), (3.1.4) and (3.1.5) provide the value

(e Xk)o = 00 A > 0. (3.1.8)

In the case of thin plate splines in two dimensions, for example, the points
{z;:j € Ly j# k} are not allowed to be collinear. This can be achieved
by ordering the points x,;, ¢ = 1,...,n, initially so that the last three are
not collinear. Then for k = 1,...,n — ¢, we include not only k& but also the

indices n — 2,n — 1,n in the set L;. Algorithm A uses the function

Mk o0(@), zeRrY (3.1.9)

kk

which has py, as coefficient in front of §(x —x), as the correction to s(z), x €

R?. We will see later that this choice gives excellent convergence properties.

CHAPTER 3. ALGORITHM A 34

Examples of graphs of the functions yx, k = 1,100, 600,800 for n = 900
for 8(z) = &(|| z|]2) =/ z |2 in two dimensions are displayed in Figure 3.1.
The sets £ are chosen to contain the indices of the ¢ data points in {z;
j > k} which are closest to z, including x,, itself. For k& = 1, £; contains
the indices of the ¢ data points nearest to z; and x; is very similar to the
Lagrange function x; defined by xi(z;) = d1;, i = 1,...,n. For larger values
of k the choice of indices is restricted by the condition £, C {k,...,n},
which causes the function y; to become broader with increasing values of
k. We will see later that, for good performance of Algorithm A, we do not
require |xg(z;)| to be small for i € {1,...,n}\Ly, but it is important for the
semi-inner products (X, X;)s to be small for j # k. If, instead of restricting
the size of Ly, we let £ = {k,...,n}, then xx = X, £ = 1,...,n — ¢q.
In this case, \; = A}, @ = 1,...,n, holds at the end of the first iteration.

Further, the semi-inner product (Xgk, Xj;)e is zero for n —q > j > k > 1,

since X;; has centres at x;,...,z, and X vanishes there. By a similar
argument, Xxx, K = 1,...,n — ¢, is orthogonal to all functions with centres
only at 2, ,41,...,2,, with respect to the semi-inner product (2.2.22). It

will be proved in Theorem 3.2.3 in Section 3.2 that convergence occurs in
one iteration, if these orthogonality conditions hold.

In Step 2, the interpolant o of the residuals f;—s(z;), j = n—q+1,...,n,
is calculated, where s denotes the current approximation, and o is added as

the correction to s. We know from a condition on £,_, that the points

{z;:i=n—q+1,...,n} are polynomially unisolvent and thus o is defined
uniquely. At the end of each iteration, s satisfies s(z;) = fi = s*(z;),
1=n—q+1,...,n, and it remains in Sy.

A more detailed description of the above outline of Algorithm A is given

below. We let ¢ denote the iteration number. The /-th iteration generates a

CHAPTER 3. ALGORITHM A 35

0.8 08

Figure 3.1: Examples of the functions yy.

CHAPTER 3. ALGORITHM A 36

new approximation stV from s, where s(!) = 0 initially. The steps are as

follows.

¢
Step 0 Set £ =1 and s (O)EO.

(6)

Step 1 For £k =1,...,n — ¢, replace s,(fll by s,.” according to the rule

s = s 4 — Z Mej [= s ()] e (3.1.10)

(6+1) (¢)

Step 2 Generate s“+Y by adding to s, , the solution o € Sy of the

interpolation equations
¢ .
a(z)@j):fj—sélq@j), j=n—q+1,...,n. (3.1.11)

Step 3 Terminate if the residuals fj—s(“l)@j), j=1,...,n, are sufficiently
close to zero. Otherwise, increase ¢ by one, set 8(04) = 5 and return to

Step 1.

Note that the correction term of Step 1 is taken from equations (3.1.7)
and (3.1.9) Withs:sk Lk=1,...,n—q.

Experiments with thin plate splines in two dimensions gave very good
results (Faul and Powell, 1998, Powell, 1997). Some numerical tests with
multiquadric and linear functions in two dimensions and with thin plate
splines and linear functions in three dimensions have been tried recently.
The results are reported in Chapter 7 and are highly successful.

The description of Algorithm A is complete. The next section gives a

proof of convergence.

CHAPTER 3. ALGORITHM A 37
3.2 Convergence analysis

The analysis of convergence for Algorithm A was thought to be difficult.

Attempts were made to establish properties of the n x n matrix, R4 say,

such that the vector of residuals f; — s“*V(z,), i = 1,...,n, at the end
of the (-th iteration, ¢ = 1,2,..., is R4 times the vector of residuals f; —
s (x;), i =1,...,n, at the beginning of the iteration. The spectral radius

of Ry is considered briefly by Beatson, Goodsell and Powell (1995), because
convergence occurs if it is less than one. The iteration matrix R4 will be
derived in Section 3.4.

Here we present a different approach, however, which led to success fol-
lowing Faul and Powell (1998). The proof of convergence depends mainly on

the following lemma.

Lemma 3.2.1 Let s and s,(f), (=1,2,..., k=0,...,n—q, be calculated

by the algorithm of Section 3.1. Then, after each stage in Step 1 of every

iteration, the semi-inner pmduct (s* s,(f),s — sfg o has a value less than

or equal to (s* — sg)l, s* — s,C 1)9 fork=1,....,n—q and also the inequality

(5% — s g% — sl) < (5% — sgﬁq, s* — Sn_q)g holds.

Proof: For k =1,...,n — q, the k-th stage of Step 1 calculates s,(f) accord-

ing to rule (3.1.10), which gives (s* — s,(f), §* — s,(f))g = (s* — 3,(21 — Pk Xk,
s*—sY % h
k-1 — Pk Xk)o, where

Akkﬂk Moy [£ = sia ()] - (3.2.1)

Now it is elementary that the quadratic (s* — sfle — P Xk, S* — 3,(521 — P Xk)os

p € R, is least when p has the value

N 0 .
(s _Slgzl?Xk)G

G ile (3.2.2)

p:

CHAPTER 3. ALGORITHM A 38

and fortunately this number is just py. Indeed, the identity (X, Xr)o = 0o Mk
is noted in equation (3.1.8). Further, definition (2.2.22) and equation (1.1.1)

imply the formula

(5" = si e = o0 3 A [87(20) — sy (2y)]
€Ly
= o0 > My i —sia(zy)]- (3.2.3)
JELK

Thus these stages of Step 1 provide the monotonicity of (s* — s,(f), s*— 5,(5))9,

k=0,...,n—q.
It remains to consider Step 2 of an iteration, where the solution o of
the equations (3.1.11) is added to s, ® , to form s“*Y. Now o lies in the

subspace Ty of Sy which consists of functlons of the form

7(z)= Y. 7;0(z—z;)+ polynomial, z € R" (3.2.4)

Using the definition of the semi-inner product (2.2.22) as before, and the
interpolation equations (1.1.1) and (3.1.11), we find that o) has the property

n

(5" =5y =0 mo =00 3 7 [s7(x;) = sglay) — 0(zy)] =0,
Jj=n—q+1
(3.2.5)
for any element 7 in Ty. Therefore ¢ is the element of Ty that minimizes

(s* — sglq — 7,5 — siflq —7)g, T € Ty, and hence (s* — s+ g% — s(+1)), <

(s* — sfﬁq, s* — sgﬁq)g holds. The proof is complete. O

The proof of Lemma 3.2.1 shows that the k-th stage, k=1,...,n —q of

Step 1 projects the difference s* — s,(le onto the subspace of Sy consisting of

all functions orthogonal to xi. Step 2 projects the difference s* — sgﬁ

q onto
the subspace orthogonal to Ty. Some other projection methods are examined
by Beatson, Light and Billings (1999). We now turn to the main theorem of

this section.

CHAPTER 3. ALGORITHM A 39

Theorem 3.2.2 Let Algorithm A specified in Section 3.1 generate the se-
quence of functions s, £ =1,2,.... Then s\¥ converges to s* in the linear

space Sy as { tends to infinity.

Proof: Since Sy is a finite dimensional space, all norms are equivalent. For

our purposes we choose
| s l|max = max{|s(z;)|:i=1,...,n}, s€ Sy, (3.2.6)

as a norm on Sy. This is well defined, since interpolation by conditionally
definite functions is unique. Hence, if || s* — 5| ax tends to zero as £ — oo,
then s) converges to s* in Sy. Thus it is sufficient to prove that s (z,)
tends to s*(x;) fori=1,... n.

Since (s* — sgf), s* — SEf))(, is monotonically decreasing by Lemma 3.2.1,
and since it is bounded below by zero, it converges to a limit. Hence the
difference between (s* — 3,(5), st — s,(f)) and (s*— s,(le, st — s,(le) tends to zero.

Because the method gives pj, the value (3.2.2), it provides the identity

(" =55 =5 = (5" = 5ili = ke 8" — iy — i)
(*) * (0)) (S* - Sl(f—)la)A(k)z (3 2 7)
= (" —s.20,8 —Sp21)0 — —= . (3.2
o B (X X)o
It follows that (s* — s,(le, X&) tends to zero as £ — oo for k=1,...,n—q.

At the beginning of the (-th iteration, s) = sé@ and thus, due to the
(-th iteration, (s* — s, ¥1)s converges to zero as ¢ tends to infinity. At
the beginning of the second stage of Step 1 of the ¢-th iteration, the current
approximation is the function s + (%1, 1) ' (s* — 59, %1)s X1, s0 we find

the property

* _ o) ¢ >
lim (57 — 5© — (&= Xa)o X %2)o = 0. (3.2.8)

=00 ()217&(1)9

CHAPTER 3. ALGORITHM A 40

It follows from (s* — s, ¢1)g — 0 that (s* — s, x3)g also tends to zero.
Proceeding in the same manner, one can deduce that (s* —s), y,)g converges
to zero as ¢ tends to infinity for every integer k in [1,n — q].
Now the definition of the semi-inner product (2.2.22) gives the condition
(5" = s“ K)o = 09 3 iy [s7(z5) — sO(x)] (3.2.9)
J€Lk
so we can write the conclusion of the last paragraph in the form

lim {Z Aej [s"(z;) — 3(6)@]»)] } =0, k=1,...,n—g, (3.2.10)
=k

£—00

where S\kj is defined to be zero for j ¢ L. We consider the equations (3.2.10)
in reverse order, remembering 3(4)@1-) = s*(z;),j=n—-q+1,...,n, and
Aok # 0. Tt follows by induction on k that s*(z,) — s (z) tends to zero as
¢ — oo for k=n—¢qn—q—1,...,1. Thus the required convergence of s

to s* in the linear space Sy is obtained. O

The following theorem considers a special case, where convergence is

achieved within one iteration.

Theorem 3.2.3 If all xi, k=1,...,n—q, are orthogonal to each other and
to all functions in Ty with respect to the semi-inner product (2.2.22), then
s = s* occurs at the end of the first iteration of Algorithm A.

Proof: Since the functions xx, £ = 1,...,n — ¢, are orthogonal to each
other and to all functions in 7Ty and since Ty has dimension ¢, the functions
Xk, kK =1,...,n — q, together with a basis of Ty, form a basis of Sy. The
required interpolant s* can therefore be written uniquely in the form s* =
Yot af x; + 7, where 7 € Tp. It will be shown by induction on £ that the
identity

n—q

s* — 3,(:) = > o+ (3.2.11)
Jj=k+1

CHAPTER 3. ALGORITHM A 41

holds for k = 1,...,n — ¢. Firstly, equation (3.2.11) is true for k = 0, since

5(()1) = 0. Suppose equation (3.2.11) holds for some integer k € [1,n — ¢ — 1].

The (k+ 1)-th stage adds a multiple of Y41 to s* — s,(cl) and projects s* — sg)

onto the subspace orthogonal to Xj1. It follows that the coefficients a7, j =

k+2,...,n—q, are left unchanged and that the new coefficient multiplying

Xk41 i §* — 5&21 is zero. Thus (3.2.11) holds, if & is increased by one.

2,

Step 2 of the first iteration of Algorithm A adds the solution ¢ € T} of the

interpolation equations oV (z,) = s*(z;) — sglq@i), i=n—q+1,...,n,

as correction to s,(ll_)q. It follows by the uniqueness of interpolation with

Equation (3.2.11) for k = n — ¢ gives the identity s* — = 7*. Now

conditionally definite functions that o = 7*. This yields s? = s q+0(1) =

n—

s* and the theorem is proved. O

The important role of the semi-inner product in the convergence analysis
inspired the line search technique described in Section 5.1. The next section,

however, presents Algorithm A in a different light.

3.3 A different view of Algorithm A

Having established the convergence of Algorithm A via minimization of the
semi-inner product, we will see in this section that Algorithm A is equivalent
to an iterative technique to solve a certain system of linear equations with a
symmetric and positive definite matrix. We take a closer look at this system
of equations. We show how it can be derived from the original system (2.1.19)
and how this approach is related to other known methods. It is then easy to
derive the iteration matrix R4 that is mentioned at the beginning of Section
3.2. The analysis of this section leads to an alternative proof of convergence

and to the development of the technique that will be described in Section

CHAPTER 3. ALGORITHM A 42

5.2.

First we choose further functions X,_qt1,-.., Xn—m as follows such that
X1s---,Xn—Mm are linearly independent in Sy. By a condition on £, _,, we
know that the last ¢ points z,,_,.1,..., 2, are not in the zero set of a nonzero

polynomial of degree at most m. Reordering the points if necessary, we
may assume that the last M data points z,_j/.1,...,2, are polynomially
unisolvent. For k =n—q+1,...,n— M we define Ly, to be the set {k,..., n}

and

M
Xe(@) = > Mg bl —z,)+ > éypi(z), zeR? (3.3.1)
j=1

JELK
to be the unique function in 7y which satisfies the interpolation equations

Xk(2;) = 0 for ¢ € L. This definition is analogous to (3.1.4) and (3.1.5).
Thus the function yx, k =n—q+1,...,n — M, vanishes at the last n — k
data points. Further, the semi-inner product (X, X:)s is zero for n — M >
k > i > n—q, because the least index in the first sum in (3.3.1) is j = k and
all of the values x;(z;), j = k,...,n, are zero, and because the semi-inner
product is the sum of coefficients of one function times function values of
the other. The polynomial unisolvency of z,_j/41,...,2, ensures that xx,
k =n—q+1,...,n—M, isnot a polynomial, and hence (xx, Xx)g = ool > 0.

For k=1,...,n — M, we define x to be the function
1 d

Xk(z) = m?(k(x)7 z €RY, (3.3.2)

which is well-defined since og Ay, > 0. This normalisation causes (XK, Xk)o tO

take the value one. We require the following lemma.

Lemma 3.3.1 Every function s(z) = ¥5_; Aj0(z — z;) + p(z) € Sp can be

expressed uniquely in the form

s(z) = :i_: arXk(z) +r(z), zeR’ (3.3.3)

CHAPTER 3. ALGORITHM A 43

where r is a polynomial of degree at most m. Formulae for o and the
polynomial v € 11,,(RY) are given in the proof. (Thus the functions Xy, k =
1,....,n— M, and a basis of I1,,,(R?) form a basis of Sp.) If Xp, k= 1,...,
n — q, are orthogonal to each other and to every function in Ty with respect

to the semi-inner product (2.2.22), then ax = (s,Xk)o, k=1,...,n — M.

Proof: For j =1,...,n,let M; be the set of all indices & such that j is an
element of L. Since Ly C {k,...,n} and since it contains k, it follows that
M;c{1,....,5},7=1,...,n,and that j € M;, j=1,...,n— M. Now the
definitions (3.1.4), (3.3.1) and (3.3.2) imply

1 .
Z Akj 0(x — z ;) + polynomial, z € R%

n—M
> Xilz) = 3 o ——=
k=1 k=1 \ Ok JELK

(3.3.4)
Rearranging the summation, we see that the coefficient of 6(z — z;), j =
1,....,n—M,is
Akjs (3.3.5)

>, =
keM; O'g)\kk

which has to equal \;. Thus, using j € M;, j=1,...,n— M, and j\jj #0,

we deduce
o] 1 N
Oéj = ——)‘j — Z (673 =)\kj y (336)
V ooAj; ey ToAkk
which defines the coefficients a;; uniquely for j = 1,...,n — M in a recursive

way, since M; C {1,...,j}.

Now the coefficients of the basis functions 0(z —z;), j = 1,...,n — M,
of the function t = s — 7™ a; ¥4 vanish. Thus ¢ has centres only at
the last M data points z,,_j;,1,...,2,. Let r be the unique polynomial in

I1,,(R?) that interpolates t at these points. By the uniqueness of interpolation

CHAPTER 3. ALGORITHM A 44

with conditionally definite functions over R?, t+ = r has to hold. Therefore
s =M e + 7 s valid.

If xx, k=1,...,n—gq, are orthogonal to each other and to every function
in Ty, then all the functions xx, k = 1,...,n — M are mutually orthogonal.
It follows that (\;, Xx)o = djx and

ZOJJ X],Xke—a/k, k:zl,...,n—M. (337)
7=1

Therefore the last assertion is true, which completes the proof. O

Restricting our attention to the subspace Ty of Sy, we see that yi, k =
n—q+1,...,n — M, together with a basis of II,,(R?), form a basis of Tj.
Any element ¢ € Ty can be written as

n—M

t = Z (t,)Zk)g)N(k + 7, (338)

k=n—q+1

where r is the unique polynomial in II,,(RY) interpolating ¢ at the last M
data points, since Xp—g4+1, .-, Xn—m are orthonormal and vanish at the last
M data points.

The following theorem establishes that Algorithm A is equivalent to an
iterative technique for solving the system of linear equations that is given in

the theorem.

Theorem 3.3.2 (Gauss—Seidel iteration) Let s* = Sr2M af X +r* be the
desired interpolant, and let s) = Y7~ ak XH—T(‘] be the estimate genemted
by Algorithm A at the beginning of the E-th iteration, starting with sV = 0.
Then every iteration adjusts the vector of coefficients o9 = (ozgz), ceey ozglM)T

n a way that is analogous to performing one Gauss—Seidel iteration to solve

CHAPTER 3. ALGORITHM A 45

the linear system

(X1, X1)e 0 (X1s Xn-M)o (5™, X1)e
: ' : o = : . (3.3.9)
(X1, Xn—m)o -+ (Xn—Ms Xn—M)e (8% Xn—n)e

starting with oV = 0, where o = (o, ..., a* ;). This means that a,(fﬂ)

s given by
(¢+1) e &
o =05 Xk — Yoo (X Xk)e — DL oy (X, Xe)e|, (3.3.10)
J=1 Jj=k+1

using (X, Xx)o =1, k=1,....,n— M.

Proof: The k-th stage, k = 1,...,n — ¢, of Step 1 of Algorithm A changes

the current approximation by a multiple of x;, which gives

k n—M
§ = a5+ 3 a4 (33.11)
j=1 Jj=k+1

Specifically, the k-th stage, k = 1,...,n — ¢, is equivalent to updating the

coefficient oz,(f), which multiplies y, to give oz,(fﬂ) by adding to s,(fll the term

(oo hme) "1 (s* — ngll, Xk)o Xk = (8% — ngll, Xk)o Xk (3.3.12)

where the left hand side is derived from equations (3.1.10) and (3.2.3). The

0 (+1)

coefficients «; ;7 J < k, and the polynomial part r®

, 7 >k, and «
are left unchanged. Further, using (3.3.11) with k& replaced by k£ — 1 and
(Xk, Xx)o = 1, we deduce, for k=1,...,n—gq,

a}(f—i—l) _ &](f) + (3*—5&1,)@)9

k—1 n—M
* o~ V4 ~ ~ 0, ~ ~
= (5" Xn)o —Za§- +1)(Xj»Xk)6 - > a§)(Xj7Xk)9, (3.3.13)
=1 j=k+1

CHAPTER 3. ALGORITHM A 46

which establishes equation (3.3.10) for k£ < n —q.
Step 2 of Algorithm A adds to s,, © , the element o € T, that is defined
by the interpolation equations (3.1.11). Now, by equation (3.3.8) and since

0¥ € Ty, we have the formula

n—M n—M
0'(6) = Z (0'(6), Xk)g >~<]g + q(e) = Z (S - S’Ez)qa Xk)@ Xk + q((3 3. 14)
k=n—q+1 k=n—q+1

where ¢'¥ is the unique polynomial in IT,,(R?) that interpolates o) (z,) =

s*(z;) — s gx;),i=n—M+1,...,n. The second identity depends on the

fact that o) (z;) = s*(z;) — Sg)q(iﬂ),i=n—q+1,...,n. Therefore a,(fﬂ),

k=n—q+1,...,n— M, can be calculated by adding (s* — sﬁ)q,xk)g to

¢ . l n— 12 ~ ¢
a,ﬁ). Thus, using sglq =i Oég» v Xj + ZJ =n—q+1 O‘§')

k=n—-—q+1,....n—M,

X; + 9, we find, for

C(lgprl) = al(f) + (S* - 8g1q7>2k)9
—q (0+1) n—M ®
= (XKoo — D a; (X Xw)e — D o, (Xj, Xu)e
j=1 J q+1
i#k
n—M o
= 5 Xk 6 — Za X]an: 0 — z o ()zj,)zk)o, (3.3.15)
j=k+1

where the last identity depends on (X;,Xx)e = O for integers j # k in
n—q+1,n— M].

The last lines of equations (3.3.13) and (3.3.15) describe a Gauss—Seidel
iteration for solving the system (3.3.9), since (Xx, Xx)o =1, k=1,...,n—M.

The assertion of the theorem is proved. O

Next we derive the system of equations (3.3.9) from the original sys-
tem (2.1.19). Let V be the n x (n — M) matrix whose (7, j)-th entry is
(agj\jj)’l/QS\ji it i € £; and zero otherwise. Thus the j-th column of V' con-

tains the vector of coefficients of x;. The matrix V' is sparse, since at most

CHAPTER 3. ALGORITHM A 47

q elements in each column are non-zero. It is also lower triangular, since

L; C{j,...,n}. Lemma 3.3.1 provides the formula

A=Va, (3.3.16)
where a = (v, ..., a,_n)7 and A = (A,...,\)T. Remembering that P is
the n x M matrix, whose i-th row is (py(x;) - - - pm(z;)) for a basis p1, ..., py

of II,,(R%), the matrix V also has the property VTP = 0. Indeed, for any
polynomial p € I1,,(R?), the sum
> Vigplzs) = (00hi) 2 - Niplz) = 0 (3.3.17)
i=1 iGﬁj
due to the conditions (3.1.6) on the coefficients of the approximate Lagrange

functions. Thus, multiplying the interpolation equation
ON' + Pc" = f, (3.3.18)

which is the first part of formula (2.1.19), by oy VT from the left and inserting
A" = Va*, we obtain

opVIeva* = o, VI f. (3.3.19)

This is exactly the system of equations (3.3.9) shown in Theorem 3.3.2, be-
cause
- i \ij
(Xk;Xl) = 0y Z Z = jA
i€LK JELL \| Tg Ak \ ToAu

= 05> > ViO(z, —x,)Vy, 1<ki<n—M, (3.3.20)

i=1j=1

9(&1’ _£j>

and because (s*, Xx)o = 09 > jcr, (00 Aer) 20 s*(x;) = 09 25— Vir fj-
The matrix © in (3.3.18) is preconditioned from the left with opV7 and
from the right with V' such that the original system of equations (3.3.18) is

CHAPTER 3. ALGORITHM A 48

replaced by the modified system (3.3.19) in order to obtain better convergence
properties when (3.3.19) is solved by an iterative method. In general, one
tries to choose preconditioners such that the modified matrix is close to the
identity matrix. Indeed, if the functions xx, £k = 1,...,n—q, were orthogonal
to each other and to all functions in 7Ty with respect to the semi-inner product
(2.2.22), then 0,VTOV would be the (n — M) x (n — M) identity matrix.
Thus convergence would occur within one iteration, as proven in Theorem
3.2.3 in the previous section.

Since at most ¢ elements in each column of V' are non-zero and since V
has only n— M columns, the product V7OV can be formed in of order (2n —
M)(n — M)q operations. The following lemma states some other important

properties of opVTOV .
Lemma 3.3.3 The matriz ooV OV is symmetric and positive definite.

Proof: Since © is symmetric, the matrix V7OV is obviously symmetric. If
is any non-zero vector in R"~ we let A € R" be the vector given by (3.3.16),
and with this choice 0g T VTOVa = 0y ATO). Now) is non-zero, since the
columns of V' are linearly independent, because V' is lower triangular and its
diagonal elements Vj; = 09\/@ are nonzero. The property VP = 0 pro-
vides PT)\ = 0. Thus oy Mo)is positive due to the conditional definiteness
of ©. It follows that oy o VIOV« is also positive, which completes the proof
of the positive definiteness of oyV7OV. O

This lemma provides an alternative proof of convergence of Algorithm A.
Indeed, the approximations generated by Gauss—Seidel iterations applied to
a symmetric and positive definite system of equations converge to the unique
solution (Iserles, 1996), which proves that the coefficients oz,(f) converge to

aj as £ — oo. Further, by the construction of s we know that s* — s

CHAPTER 3. ALGORITHM A 49

vanishes at the last ¢ data points for £ > 2. Hence fori =n—q+1,...,n
and ¢ > 2,

s*(z;) — s9(z;) = ni_: (o — a\Nxu(zy) + 1 (z;) — rP(z,) = 0. (3.3.21)

We can choose the basis pi,...,pa of II,,(RY) such that PiZ p_prtj) = Oijs
i,j € [1, M], and then (3.3.21) implies

M n—M

* é '3 ~
= =373 (o) — af) Rz o) b (3:3.22)
i=1 k=1
It follows from the convergence of al(f) to af, k = 1,...,n — M, that r©

converges to r* as ¢ tends to infinity, which completes the alternative proof.

Some other algorithms employ different n x (n — M) matrices V' such
that oy VIOV is positive definite. Powell (1996), for example, considers thin
plate spline interpolation in two dimensions, where M = 3 and oy = 1. He
generates V' by deleting the first three columns of an n x n orthogonal ma-
trix, Q say, where has the property that the n x 3 matrix Q7 P is upper
triangular. Thus the columns of V' are linearly independent and span the
null space of PT, which implies * = Va* for some vector a* € R"™. The
condition that Q7 P is upper triangular allows 2 to be a product of at most
3 Householder rotations or 3n — 6 Givens rotations, which has the advantage
that Q7@ Q can be formed in O(n?) operations, and VT ®V is just the bot-
tom right (n —3) x (n— 3) submatrix of Q7® Q. Powell also recommends the
solution of the resulting positive definite system by calculating the Cholesky
factorisation of VT®V when n is small as proposed by Sibson and Stone
(1991). When n is large, however, it is more efficient to use conjugate gradi-
ents, which receives attention in Section 5.2. Chapter 4 considers a method
that solves (3.3.9) by Jacobi iterations, in order to avoid the cost of updating

the current approximation on every stage.

CHAPTER 3. ALGORITHM A 90

3.4 The iteration matrix of Algorithm A

In this section we determine the nxn iteration matrix R by which the vector
of residuals f; — s“~V(z,), i = 1,...,n, at the beginning of the (¢ — 1)-th
iteration, £ = 2,3, ..., is multiplied to give the vector of residuals f;—s (),
1 =1,...,n, at the end of the iteration. The previous analysis makes this
task straightforward.

Inserting equation (3.3.22) into the identity

n—M
s =50 =3 (af — N gp + 17 —r® (3.4.1)
k=1
gives
n—M © M n—M ©
st — sl = Yo (g —a)Xk =) (ap — o) Xe(@n-nryd) piy (3.4.2)
k=1 i=1 k=1
where we retain the basis p1,...,py of IL,(R?) such that p;(z, ;) = 0.

We let X be the n x (n — M) matrix with entries X;; = ¥;(z,), we let X
be the M x (n — M) matrix whose rows are the last M rows of X', and we
let s = (s¥(z,),...,5%(x,))T. Then, remembering s*(z;) = f;, it follows
from equation (3.4.2) that the vector of residuals f — s can be expressed

as
f—s"=(x-PX) (@ —a"), (3.4.3)

where P is still the n x M matrix whose i-th row is (p1(z;) - -+ pm(x;)).

% is calculated using Gauss-Seidel iterations to solve the

The vector afl
system (3.3.19). Hence, letting 0yV7OV = L+U, where L is lower triangular

and U is strictly upper triangular, we obtain the formula

o —a = LW (a* —a* V). (3.4.4)

CHAPTER 3. ALGORITHM A o1

Thus the vector of residuals can be written as

f-s9=(X~PR)(~L7U) (@’ — o). (3.4.5)

Equation (3.3.6) in the proof of Lemma 3.3.1 shows that, given any func-
tion s(z) = Y21 anxe(z) +7(z) = -y \j0(z — z;) + p(z) in Sp, then the
coefficients o, k = 1,...,n— M, are uniquely determined by the coefficients
Aj, 3 =1,...,n— M. These on the other hand are uniquely determined by
the function values s(z;), i = 1,...,n. Therefore there exists an (n— M) xn
matrix,) say, such that

a=Ys, (3.4.6)

where @ = (v, ..., a,_3)" and s = (s(z4),...,s(z,))".

Equations (3.4.5) and (3.4.6) allow us, for ¢ > 2, to derive a formula
which relates the vector of residuals f— s at the end of one iteration to the
vector of residuals [— s~ at the beginning of the iteration. The relation

is the expression

f-s9=(x-PR)(~LU) Y (f - s“V). (3.4.7)

Therefore the matrix (X — PX)(—L~'U)Y is the iteration matrix R4. Fur-

ther, we deduce

i_ﬁ(a — (X _ ng) (@ — a®)
= (x-PX)(-L70)" (@ —a)
= (¥-PX) (—LflU)Z_ly(i—g(”). (3.4.8)

It follows that the speed of convergence depends on the spectral radius of
the (n — M) X (n — M) matrix L™'U. Examples of the size of this spectral

radius for different numerical experiments are given in Chapter 7.

CHAPTER 3. ALGORITHM A 52
3.5 Algorithm A as a linear operator

Algorithm A takes an element of Sy, s* — s, and generates, using linear
operations, a new element s* — s+, Thus Algorithm A can be viewed
as a linear operator form Sy to Syp. We employ the same notation for this
operator as for the iteration matrix R, introduced in the previous section,
because they are related by the one-to-one relation between s € Sy and the
vector of function values s = (s(z;),...,s(z,))’. Specifically, we let Rus,
s € Sy, be the function in Sy whose values at the interpolation points are the

components of the vector R4s. Therefore we write
s* — s = Ry(s* — 59). (3.5.1)
The following theorem establishes several useful properties of R 4.

Theorem 3.5.1 The operator Ry : Sy — Sy annihilates polynomials of
degree at most m. Further, it is a contraction mapping with respect to the

semi-norm (2.2.23), which means that the condition
I Rasllo <1l sllo (3.5.2)

holds for all s € Sy, with equality only if s € I1,,(RY). For any nonzero
s € Sy, Ras does not equal s. Also the inequality

(s,Ras)g < (8,5)s (3.5.3)
is achieved for all s € Sy, s € I1,,,(RY).

Proof: Let s be any polynomial of degree at most m. Then the coefficients
ar, k = 1,...,n — M of the representation s = Y7~ a; Yy + r vanish.

Equation (3.4.6) then yields Ys = 0. Now the matrix R4 is the product

CHAPTER 3. ALGORITHM A 93

(X — PX)(—L~'U)Y. Hence Rys = 0, which proves the first assertion of the

theorem.
We know by Lemma 3.2.1 with £ = 1 that || s* — sfcl) log < s* — 521_)1 llo,
k=1,....,n—gq, and that || s* — s® ||y <|| s* — 37(11_),1 llo. It follows from

equation (3.5.1) that
I's* = 5@ lo =[| Ra(s™ = s) lo <l s* = s [lo. (3.5.4)

Therefore, because s* can be any function in Sy and because sV is zero,
inequality (3.5.2) is satisfied. Suppose now that we have equality. Then,
for k =1,...,n — g, the difference between || s* — s,(cljl lg and || s* — s,(gl) IE
is zero. It follows from the proof of Theorem 3.2.2 that all stages leave the
current approximation unchanged and hence s* = s*—s,(gl), k=0,1,...,n—q.
Therefore equations (3.2.7) and (3.2.9) yield

(s, Xk)o = 0a XEZ Aij s'(z;) =0, k=1,...,n—q. (3.5.5)

JELK,

Also the difference between || s* — s ||y and || s* — 57(11_)(1 |lo is zero, which
implies that || o™ ||, vanishes, where o) interpolates the data s*(z;) —
sill_)q(gi) =s*(z;),i=n—q+1,...,n. Thus ¢V is a polynomial of degree
at most m, say p, and s*(z;) = p(z;), i =n—q+1,...,n. Now the sum
Yiety Aij p(z ;) vanishes due to (3.1.6). Hence, using (3.5.5), we can write
> Ay (s7(z) = play)) =0. (3.5.6)
JELK
We consider equations (3.5.6) in reverse order, remembering s*(x;) = p(z;),
i =n—q+1,...,n, and Ak # 0 and that L is a subset of {k,... ,n}
containing k. It follows by induction on k that s*(x,) = p(z;) for k =
n—gqmn—q—1,...,1, which yields s* = p. Hence condition (3.5.2) is
satisfied as an equality only if s* = s € IL,,,(R?).

CHAPTER 3. ALGORITHM A o4

If s is not a polynomial of degree at most m, then Ras # s, since in-
equality (3.5.2) is strict in this case. If, on the other hand, s € II,,(R%), then
Rss = 0. Hence Rys # s for all nonzero functions s € Sp.

The Cauchy—Schwarz inequality and condition (3.5.2) provide
(s, Ras)o <l sllo || Rasllo <l s = (s,5)e. (3.5.7)

and we have found already that the second inequality is strict if s € Sy is
not a polynomial of degree at most m. Therefore the last assertion of the

theorem is also true. O

These properties of the operator R4 are important to the work of Chapter
6, where Krylov subspace methods are considered. In the next chapter we
turn to another algorithm that was developed from Algorithm A by not

updating the vector of residuals at intermediate stages.

Chapter 4

Algorithm B

Establishing convergence for Algorithm A was a major step forward, but
unfortunately every iteration requires much computation. Specifically, since,
for k = 1,...,n — q, the k-th stage of Step 1 of Algorithm A employs the
residuals f; — s\, (z;), j € Ly, and since the residuals f; — s,(flq(gj), Jj=
n—q-+1,...,n, are interpolated in Step 2, the approximation s to the required
interpolant s* is updated frequently. Then the above residuals are calculated
whenever they are required. Unfortunately the work of evaluating s € Sy
at some point z € R? is usually O(n), unless the support of 6 is sufficiently
small. Therefore techniques, known as fast multipole methods (Beatson and
Newsam, 1992, Powell, 1993, Beatson and Light, 1997, Beatson, Cherrie
and Mouat, 1999) were developed to reduce the cost of radial basis function
evaluation. These methods use truncated Laurent series or Taylor series
expansions to generate s(z), s € Sp, € R?, to within a given precision e.
The cost to calculate all the Laurent coefficients of any s is only O(nlogn).
Then O(logn) operations are needed to estimate s(x) for any x € R?. Still,

wherever possible the evaluation of residuals should be avoided, since this

95

CHAPTER 4. ALGORITHM B o6

feature dominates the processing time. Therefore the idea of Algorithm B
is to try to solve the system (3.3.9) by Jacobi iteration. It is usually more
efficient than Algorithm A. Further, it converges in the majority of cases,
but we will present some numerical experiments where this does not happen.
A useful extension to Algorithm B that forces convergence is proposed and
studied in Section 5.1 and Chapter 6.

In the following sections we give a description of Algorithm B, then anal-
yse it and derive the iteration matrix. We conclude the chapter by viewing

Algorithm B as a linear operator acting on the space Sp.

4.1 Description

The concept of Algorithm B is to use f; — s'(z;) instead of f; — s,(le(gj)
in formula (3.1.10) for the k-th stage, & = 1,...,n — ¢, of Step 1, and
also instead of f; — sgﬁq(gj) in formula (3.1.11) of Step 2 of Algorithm A.
Therefore the residuals do not need to be updated until the end of each
iteration. Specifically, Algorithm B revises the approximations s} in the

following way.
Step 0 Set £ =1 and s\ = 0.

Step 1 For k =1,...,n — g, calculate the term

1 .
o0 = < Y [fj _ S(@@j)} _ (4.1.1)
kk jeLy

Step 2 Calculate the solution 0¥ € Ty of the interpolation equations

o) =f;—sz;), j=n—qg+1,...,n (4.1.2)

CHAPTER 4. ALGORITHM B 57
Step 3 Define s+ by the formula

n—q
s = 5O L 5 g% + 00, (4.1.3)
k=1
Step 4 Terminate if the residuals fj—s(“l)@j), j=1,...,n, are sufficiently

close to zero. Otherwise, increase ¢ by one and return to Step 1.

Using equation (3.2.3) with 3,@1 replaced by (), we deduce from (4.1.1) and
(4.1.3) that

—q

n 1 “
S(“_l) = S(Z) + Z e Z >\kj {f] — 5(8) (ij)})A(k + U(Z)
k=1)‘kk’ JELy

n—q .
= 4 2(09)\%)_1(5* — 59 Xu)o Xp + o
k=1

n—q
= SO+ 3 (5" = s K)o e + 0, (4.1.4)
k=1

remembering X = (Uej\kk)_l/ 2% As before, s* denotes the desired inter-
polant that is defined by the interpolation equations (1.1.1). Moreover, as in

(3.3.8), 0 can be expressed as

n—M n—M
o= 3 (6 xexe+d = > ("= t)exu+q", (4.15)
k=n—q+1 k=n—q+1
where ¢ is the unique polynomial of degree at most m which satisfies

¢Nz,;) =W (z,;) = s*(z;) —sD(x;), i =n—M+1,...,n. As before, we
reorder the points if necessary so that the points z,_»41,...,2, are poly-
nomially unisolvent. The second identity of expression (4.1.5) depends on
equations (4.1.2) and (1.1.1) and on the fact that xx, k = n—q+1,...,n—M,
has centres only at the points x, ..., z,. Equations (4.1.4) and (4.1.5) yield

n—M
s = 5O 4 3™ (5" = 59 5u)o Xn + ¢ (4.1.6)
k=1

CHAPTER 4. ALGORITHM B o8

The description of Algorithm B is complete. Next we consider some of its

properties.

4.2 Analysis and the iteration matrix of

Algorithm B

The following theorem is the analogue of Theorem 3.3.2. for Algorithm A.

Theorem 4.2.1 (Jacobi iteration) Let s* = =M ok xp+1* be the desired
interpolant, and let s\ Zk 1 ak Xk 4+ 1O be the estimate generated by
Algorithm B at the beginning of the (-th iteration, starting with stV = 0.
(agf) B))T

Then every iteration adjusts the vector of coefficients o9 = oG

i a way that is analogous to performing one Jacobi iteration to solve the

linear system (3.3.9), starting with oY = 0. This means that a(T s given
by
n—M
a,(fﬂ): 5", Xk)o a X]an , E=1,....,n—M. (4.2.7)
J=1j#k

Proof: Tt follows directly from equation (4.1.6) that, for k =1,...,n — M,

= a4 (5 = 5O)
n—M
= Oél(f) + Oé XJ? Xk
7j=1
n—M E
= 7Xk’ O‘ X]7 Xk (428)
J=1j#k

where we use the identity (Xx, Xx)o = 1. O

CHAPTER 4. ALGORITHM B 99

maximum absolute value | spectral

moe of off-diagonal elements | radius
10 0.7302 33
20 0.6896 9.7
400 30 0.6528 6.0
50 0.6287 3.3
10 0.7614 70
20 0.7134 24
200 30 0.6987 14
50 0.6576 7.6

Table 4.1: Maximum value of the off-diagonal elements and the spectral

radius of I,,_y; — 0pVTOV for O(z) =|| z||31log || 2|2, z € R*.

We recall from equation (3.3.20) that the systems (3.3.9) and (3.3.19) are
the same. Therefore, since the diagonal entries of o9V 7OV take the value one
due to the normalisation of the approximated Lagrange functions, it follows

from Theorem 4.2.1 that
o — o = (I_y — agVTOV) (o — a¥), (4.2.9)

where I,,_p is the (n — M) x (n — M) identity matrix. Hence convergence
depends on how near gyVTOV is to the identity matrix. The smaller the
off-diagonal elements are, the better the orthogonality properties and the
better the performance of the algorithm, but if the off-diagonal elements are
too large, divergence might occur.

It was very difficult to find an example to show failure of Algorithm B. If,
however, the points z,,...,z, € R? are equally spaced on one eighth of two

concentric circles, half of the points being on each circle and the radii of the

CHAPTER 4. ALGORITHM B 60

circles being 1 and 1 + 1075, then Algorithm B with 0(z) =|| z ||31og || z |2,
z € R?, fails to converge. Table 4.1 gives the maximum absolute value of
the off-diagonal elements and the spectral radius of I,,_; — ogV' OV for this
experiment for various choices of n and ¢.

The following theorem considers the situation when the functions g,

k=1,...,n— q, are orthogonal to each other and to all functions in Tj.

Theorem 4.2.2 If all functions x,, kK = 1,...,n — q, are orthogonal to
each other and to all functions in Ty with respect to the semi-inner product

(2.2.22), then Algorithm B achieves convergence in at most 2 iterations.

Proof: 1If the functions xx, k = 1,...,n — g, are orthogonal to each other and
to every function in Ty, then opVTOV = I, 5, and it follows from (4.2.9)
with £ = 1 that o/® = o*. Thus s* and s® differ only by a polynomial of
degree at most m. Then, using (1.1.1), (4.1.1) with ¢ = 2 gives p,(f) = 0,
k=1,...,n—q, due to the constraints (3.1.6), while (4.1.2) with ¢ = 2 gives
0@ = s — 5@ Hence s® equals s* by (4.1.3) with ¢ = 2 and the method

converges in at most two iterations. O

Returning to the case where xi, £k = 1,...,n — ¢, are not necessarily
orthogonal to each other and to functions in Tj, we let s = Y= a,(f) Xk +
r® and analyse the convergence properties of the polynomial part) of s().
Recalling (4.1.6), the difference between 7+ and r® is ¢). Hence, for

i=n—M--+1,...,n, we have

T(ZH)(L') —r® (z;) = q(g) x;)=s"(z;) — S(Z)(L’) (4.2.10)
n—M
= 3 (of — o) wlay) + (@) — O (xy),
k=1

remembering that ¢ is the unique polynomial of degree at most m inter-

polating s* — s at Tp_drs1s-- -, 2T, Therefore, choosing py,...,py as the

CHAPTER 4. ALGORITHM B 61

basis of II,,(R?) such that p;(z,,_as,;) = 6;; for integers i, j € [1, M], we can

write
M n—M

rD =373 () — af) Xz o) pr (4.2.11)

i=1 k=1

Thus, if a® converges to a*, then r (£+1) converges to r*.

The previous results facilitate the derivation of the matrix, Rz say, such
that, for ¢ = 1,2,3,..., the vector of residuals s* — s+ at the end of the
(-th iteration is R acting on the vector of residuals s* — s at the beginning
of the iteration. The analysis is very similar to the derivation of the iteration
matrix for Algorithm A in Section 3.4.

Using equation (4.2.11), we obtain

n—M

§*— s = > (g — oz,(fﬂ)) X + 1 — (4.2.12)
k=1
n—M €+1 M n— M
= > (m—a I%-D — i) Xk(@n-ar) P
k=1 i=1 k:l

Employing the matrices X and X defined in Section 3.4, and remembering
that P is the n x M matrix whose i-th row is (p1(z;) - -+ pm(z;)), it follows
from equation (4.2.12) that

f—s" =X(a" — o tY) - PX(a" — o), (4.2.13)

where sHD = (s (x,), ..., s D (2, NT.
Now, remembering equation (4.2.9) and the matrix) introduced in (3.4.6),

we deduce
f=s = (X Ly — opVTOV) = PX) Y (f = 51). (4.2.14)

Therefore the matrix (X (I,_y — 0gV7OV) — PX)Y is the iteration matrix
Rp. Further, employing (4.2.9) and the identity o) = 0, we derive

f = s = (X (Liy — 0pV"OV) = PX) (2" — o) (4.2.15)

CHAPTER 4. ALGORITHM B 62

= (X (Lo-as = o9V7OV) = PX) (Lt — UQVT@V)Z_l o

(
(

Hence the spectral radius of the (n— M) x (n— M) matrix I,,_p—0c,VIOV

= (X (Ln-as — 09V"OV) = PX) (Lt — aeVT@V)H Yf.

determines the convergence properties, some examples being given in Table
4.1. Chapter 7 presents some more numerical examples of the value of this
spectral radius. The changes made to Algorithm A, which gave rise to Algo-
rithm B, led to divergence in certain cases as shown in Table 4.1. If, however,
the functions xx, Kk =1,...,n — q, are sufficiently close to being orthogonal,
then Algorithm B converges and is usually a highly efficient alternative to

Algorithm A.

4.3 Algorithm B as a linear operator

Algorithm B can also be viewed as a linear operator acting on S, since it

takes the element s* — s of Sy and generates a new element s* — s(“+1)

, using
linear operations. Again our notation for this operator is the same as for the
iteration matrix Rp derived in the previous section. Indeed, Rgs, s € Sy, is
the function in Sy whose values at the data points are the components of the

vector Rps, so we write
s* — s = Rp(s* — sWY). (4.3.1)

Therefore, equation (4.1.6) provides the explicit expression

n—M

Rps=s— > (8 Xr)oXe — P, (4.3.2)
k=1

where, in order to satisfy equations (4.1.2) and (4.1.5), p is the unique poly-
nomial of degree at most m that interpolates s(z;), i =n—M +1,...,n.

The following theorem establishes some useful properties of the operator Rp.

CHAPTER 4. ALGORITHM B 63

Theorem 4.3.1 The operator Rg from Sy to Sy defined by (4.3.2) annihilates
polynomials of degree at most m. Further, it is self-adjoint with respect to

the semi-inner product (2.2.22). The strict inequality
(s,Rps)g < (s,5)g (4.3.3)

is achieved for all s € Sp, s & 11,,(R?). Also Rgs # s holds for all nonzero

functions s € Sy.

Proof: Let s € 11,,,(R?). Then the sum in (4.3.2) is zero, since the semi-inner
product vanishes if one of the arguments lies in II,,,(R?). On the other hand,
p = s, since p(z;) = s(z;), i =n— M+ 1,...,n, and since the last M data
points are polynomially unisolvent. Hence it follows that Rgs = 0.

Let s,t € Sy. We write Rpt =t — 7= M (¢, X)oXex — 7, where r € T1,,,(R%).

Using expression (4.3.2), we then deduce

S

n—

(Rps,t)g = (s,t)o— D> (5, Xr)o(t; Xx)o — (p;1)o (4.3.4)

S o=
LM

= (5,0)o— > (s, Xw)o(t, Xu)o — (5,7)9 = (5, Rpt)s,

1

i

since (p,t)g = (s,7)g = 0 due to p,r € II,,(R?). Thus the self-adjointness of
Rp is established.

Next we derive from equation (4.3.2)

—M
(s,Rps)o = (s,5)p Z 5, Xk)s < (s,5)s- (4.3.5)

Consider the equality case. Then (s, Xy)¢ vanishes for all k =1,...,n — M,
since all terms of the sum are nonnegative. By Lemma 3.3.1, the functions
Xk, k = 1,...,n — M, form, together with a basis of II,,(R?), a basis for

Sy. It follows that s is orthogonal to all functions in Sy and hence s is a

CHAPTER 4. ALGORITHM B 64

polynomial of degree at most m. Thus inequality (4.3.5) is strict for all
s € Sy, s € 1, (RY).

It follows directly from (4.3.3) that Rps # s for any s € Sy which is
not a polynomial of degree at most m. On the other hand, Rgp = 0 for all
p € I,,(RY). Hence Rps # s for all nonzero s € Sy and the proof of the

theorem is complete. O

The self-adjointness of the operator Ry is highly useful when the Krylov
subspace method described in Chapter 6 is applied. Algorithm B has the
advantage over Algorithm A that it needs a smaller number of operations
per iteration, but it has the disadvantage that it diverges in certain cases as
seen in Table 4.1, while convergence has been established for Algorithm A.
In the first section of the next chapter and in Chapter 6 we will present the

useful techniques that enforce convergence for Algorithm B.

Chapter 5

Other methods

The last two chapters described two algorithms and their properties in de-
tail. This chapter presents two more techniques which were developed from
insights gained from the analysis of Algorithm A. The convergence analysis
in Section 3.2 shows the important role of the minimization of the semi-inner
product. The first section of this chapter takes this concept further and
introduces a line search. It is demonstrated in Section 3.3 that Algorithm
A is equivalent to solving the positive definite system of equations given by
(3.3.19) using Gauss—Seidel iteration. The second technique described in this
chapter is a conjugate gradient method for solving (3.3.19). This method is
more efficient than the Gauss—Seidel iteration for large n— M (Iserles, 1996).
We describe a different implementation of the conjugate gradient technique
using the matrix W = VVT following Powell (1996), where V is defined after
the proof of Theorem 3.3.2 in Section 3.3. We establish some properties of
W, in order to justify further the preconditioning of © by oyV7 from the left
and by V from the right.

65

CHAPTER 5. OTHER METHODS 66
5.1 Line search

It is shown in Section 3.2 that the key to understanding the convergence of
Algorithm A is that the sequence (s*—s, s* — (), decreases monotonically.
Therefore, instead of letting the new approximation at the end of the ¢-th

iteration be s + ¢ we define

s = 5O 4 OO (5.1.1)
where w® is chosen to minimize (s* — s — wt® s* — s —wWt), w €R.
When (¢t ¢()), > 0, this choice gives w®) the value

o _ (57 =s9,11),

(tO, 1), (5-1.2)

W

and can be regarded as a line search along ().

The semi-inner product (¢,)y is zero if and only if t©) € II,,(R%).
Therefore, attention has to be paid to the case when ¢\ is some polynomial
of degree at most m, because then (s* — s — wt® s* — s — W t®), takes
the value (s* — s, s* — 5), for all w € R. Therefore we will only consider

algorithms where
t© e 11, (R?) implies s* = s + . (5.1.3)
For Algorithms A and B we deduce from equations (3.5.1) and (4.3.1) that

S%H) — ¥4 (I —Ra)(s" — sff)),
SUHY = 9 4 (1 — Rp)(s* — sW), (5.1.4)
where the subscript denotes the algorithm which generates the sequence.

Specifically, if Algorithm A is the underlying algorithm, then t =
(I —Ra)(s*—s9) and thus s* = s 4+t + Ry (s* — s), but if Algorithm B

CHAPTER 5. OTHER METHODS 67

is used, then) = (I — Rp)(s*—s¥) and hence s* = s+ + Rp(s* —5*).
If t € I1,,,(R%), then

(5" — 5O — 1O 57 — sO); = (57 — s s* — 51, (5.1.5)

since the semi-inner product vanishes on II,,(R?). Now for Algorithm A,
5% — 50 —t) = R (s* — s) and for Algorithm B, s* — s — () = Rp(s* —
5()). Tt follows in both cases from equations (3.5.3), (4.3.3) and (5.1.5) that
s* — 5 € II,,,(RY). By Theorems 3.5.1 and 4.3.1, both operators R, and Rp
annihilate polynomials of degree at most m and therefore s* = s 4 ¢t if
t® € I, (R%).

We avoid the zero dominator in formula (5.1.2) by including the following

stopping criterion. If there exists w € R such that
max{|s*(z;) — s9(z,;) —wtO(z;)|:i=1,...,n} < TOL, (5.1.6)

where TOL is the specified accuracy, then the final approximation s is
set to s + wt® and the algorithm terminates, the scalar w being chosen
as follows. For all 4 = 1,...,n such that t®)(z,) = 0, it is checked that the
inequality |s*(z;) — s)(z;)| < TOL holds. If this test is successful, then
we seek the borders of the interval [a, b] in which w should lie. Let j be the
least integer such that t*)(z ;) # 0. It is not possible that ¢)(z;) = 0 for all
i = 1,...,n, because this implies by (5.1.3) s (z,) = s*(z,), i = 1,...,n,
and the method would have terminated on the previous iteration. We let a

be the smaller and b be the larger of the two ratios
s*(z;) — s (z,;) — TOL s*(z;) — s9(z;) + TOL
and .
z,) 1z,)

Similarly, for i = j +1,...,n such that t®)(z,) # 0, we calculate the interval

(5.1.7)

a, Z;], where is the smaller and b is the larger of the two ratios
s*(z;) — s (z,;) — TOL q s*(z;) — s (z;) + TOL
() . 0(z;) |

(5.1.8)

CHAPTER 5. OTHER METHODS 68

We then replace the interval [a, b] by the intersection of [a, b] with [a, b], if it
exists. Otherwise there is no w € R such that (5.1.6) holds, so the technique
sets w¥ to the value (5.1.2) and lets s(“*!) be the function (5.1.1). When
there exists a final interval [a,b], the scalar w is set to its midpoint, i.e.
(a+0)/2.

If the specified accuracy TOL is greater than zero, then this may allow
termination when s* # s 4+ ¢ If however, s* = s + ¢t then the
technique calculates the intersection of the intervals with boundaries 1 —
TOL/t¥(z,) and 1+ TOL/t®¥)(z;) for j = 1,...,n such that ¢t)(z;) # 0,
where the upper boundary is the larger of the two values. The midpoint of
the intersection is 1 and thus w is set to 1 and the algorithm terminates with
S — g0 40 — gx.

The numerical experiments of Chapter 7 show that Algorithm B may
diverge. The following theorem, however, proves that the given line search

enforces convergence.

Theorem 5.1.1 The algorithm described in this section with TOL > 0, which
generates a sequence of estimates s, (= 1,2, ..., following rules (5.1.1) and
(5.1.2), starting with s; = 0 and letting ') = (I—Rp) (s* —s'9), achieves the

stopping criterion (5.1.6) for some w € R after a finite number of iterations.

Proof: Suppose the algorithm fails to terminate. Each choice of w = w®
minimizes (s* — 5O — wt® g+ — 5O — wt(g))g, w € R. Therefore the sequence
(s* — s s* — (D), £ =1,2,..., is infinite and is monotonically decreasing.
It is also bounded below by zero and thus converges to a limit as ¢ tends
to infinity. This implies that the difference between two elements in the

sequence tends to zero as £ — oo. The definitions of s in (5.1.1) and w®

CHAPTER 5. OTHER METHODS 69

in (5.1.2) provide the formula

(8* o S(Z)’ s* — S(E))g o (S* . S(Z+1),S* . S(€+1)) _ (

for this expression that tends to zero as ¢ tends to infinity.
Using the definition ¢ = (I — Rp) (s* — s() and equation (4.3.2) with

s = s* — 5 the square root of the numerator in (5.1.9) can be written as

(s* — s, 1)y = (s* — 59 (I = Rp) (5" — s(e)))e

-M
= Z s* — s)z (5.1.10)
The denominator on the other hand is

(#9,4)y = ((I = Rp)(s* = s“), (I - Rp) (s* — s))

0
n—M
= Z (8" — 3(@,)@)9 (5" — 5@)7563')9 ()Zi,f(j)a
i,j=1
< C Z st — s X)2, (5.1.11)

where C' is a positive number that is independent of ¢. It follows that ex-
pression (5.1.9) is bounded below by C—' S 7=M(s* — s y;.)2. Therefore,
fork=1,...,n— M, we deduce

(s* — s Xp)e = 0 as £ — oo. (5.1.12)

Let p be the unique polynomial of degree at most m that interpolates
s* — s at Tpo M41s--->Ly,. Since the semi-inner product vanishes on the

space IT,,,(R?), (s* — s — p®) ¥.)g equals (s* — s, {1)g, K =1,...,n— M.

6)

Hence (s* — s — p ¥)s also tends to zero as ¢ tends to infinity.

CHAPTER 5. OTHER METHODS 70

Now the definition (2.2.22) of the semi-inner product and equation (3.3.2)

give the condition

(s" — s —p(e),f(k)e = 00(00;\kk)_1/2 Z ;\kj {S*@j) - 3(4)(%) —p(e)(lj)})
JEL
(5.1.13)

so we can write the conclusion of the last paragraph in the form

Jim {Z;ij [s"(z;) — s (z;) — P (z;)] } =0, k=1,...,n=M,
J:
(5.1.14)
where 5\;@- is defined to be zero for j ¢ L) and where we drop the constant,

~1/2 " As in the proof of convergence for Algorithm

nonzero factor 09(09;\%)
A in Section 3.2, we consider the equations (5.1.14) in reverse order, remem-

bering the identity
s'(z;) —sO%) —pQ(x,) =0, j=n—M+1,....,n, (5115)
and that each S\kk is nonzero. It follows by induction on k& that

gli,%lo {s*(gk) —s9(z}) —p(e)(gk)} =0, k=n—-Mn-M-1,...,1.
(5.1.16)
On the other hand, using equation (4.3.2) with s = s* — s(¥), we find that
the definition ¢ = (I — Rp) (s* — s) yields t©) = 7= M (s* — 5 1) i +
p®, since p(z,) = s*(z;) — s (x;),i=n—M+1,...,n. Thus

lim {#©(z,) - p“(z,)} = lim {"Z (s* — 59, 2o Xk(xi)} —0, (5.1.17)

f—r00 {—r00 el
the last identity being due to the property (5.1.12). Equations (5.1.15),
(5.1.16) and (5.1.17) imply

lim max{|s*($i) —sOz,) —t9(z,)i=1,... ,n} = 0. (5.1.18)

l—00

CHAPTER 5. OTHER METHODS 71

Therefore, for sufficiently large ¢, the choice w = 1 satisfies the stopping
criterion (5.1.6). It follows that the theorem is true O

The Krylov subspace method presented in Chapter 6 extends the idea of
line searches even further. There the search directions are modified so that
they are mutually orthogonal with respect to the semi-inner product (2.2.22).
The self-adjointness of operator Rp makes this construction easy, but more
effort is needed when using operator R 4.

Each iteration of Algorithm B with a line search requires far fewer opera-
tions than an iteration of Algorithm A, and we have proved the convergence
for both methods. Thus, if ¢ is suitably large, Algorithm B with an added
line search is usually much more efficient than Algorithm A. The next section

considers another version of these algorithms.

5.2 Conjugate gradients

By now we have encountered several iterative techniques in our efforts to

calculate the solution

NE
3

s'(z) =

Oz —z;) +p(z)

.
Il

M
= > aixa(e) +r(z), zeRr (5.2.1)
k=1

3

of the interpolation equations (1.1.1). The method described in this section
was developed from the results presented in Sections 3.3 and 4.2. There
we noted that Algorithms A and B calculate approximations to the vector
of coefficients a* = (af,...,a%_,,;)7 by applying Gauss—Seidel and Jacobi

iterations respectively to the system of equations

o VIOVa* =agV'f, (5.2.2)

CHAPTER 5. OTHER METHODS 72

where the n x (n — M) matrix V is specified in Section 3.3. By the inter-
polation conditions, r* is the unique polynomial of degree at most m which
interpolates s* — ZZ;{” agXr at the last M data points, where as before we
assume a reordering if necessary such that z,,_».4,...,2, are polynomially
unisolvent. The vector A* = (A}, ..., A\:)T of radial basis function coefficients
is given by A* = Va*. The polynomial p* can be calculated by adding to r*,
for k =1,...,n — M, the polynomial part of y; multiplied by aj.

It was shown in Lemma 3.3.3 that the (n— M) x (n— M) matrix oo VIOV is
positive definite, since © is conditionally definite. It follows that the solution
a* of the system (5.2.2) can be calculated by the conjugate gradient method.
The details of this approach are as follows.

Let F' be the quadratic function
Fla)=04a"V'f—0¢k VIOV, aecRrR"M, (5.2.3)

which is concave and bounded above. The conjugate gradient method finds
the unique maximizer of F, because equation (5.2.2) is equivalent to the
condition VF(a*) = 0.

We let o =0 initially and a® denotes the estimate of a* at the begin-

ning of the /-th iteration. Termination occurs if the gradient vector

1 =VF(Y) =0y VI f —agVTOVA (5.2.4)

is zero. Then o is the maximizer of F and it is returned as the solution
of system (5.2.2). Otherwise, a search direction ﬁ(z) is chosen. For ¢/ =1,
é(l) is chosen to be the steepest ascent direction 1(1) = 0oVTf. The idea of
the conjugate gradient method is to construct a sequence of search directions

that are conjugate with respect to oyV7 OV, which means

o é(i)TVT@Vﬁ(j) =0, i# 7. (5.2.5)

CHAPTER 5. OTHER METHODS 73

This property with line searches ensures that the conjugate gradient method
finds a* after at most n— M iterations (Fletcher, 1987), except for the effects
of computer rounding errors. The exact choice of 3) is described below.

We let o™ be the vector
oD = O 4 w(£)§(5)7 (5.2.6)
where w® is chosen to maximize

F(@¥ +@pY) = F(a9) + @ Oy — g, 2 0TV TQV B0, m eRr.

(5.2.7)

Remembering o3 = 1, we deduce the value

0T, (0)
0 _ g7y
w' = oy FOTy ey 50" (5.2.8)
Therefore we obtain the relation
(OT . (0)\2

F(a") = F(a9) + oy (E" 1) (5.2.9)

1 P
= = 2 ﬁ(f)TvT@VQ(ﬁ) ’

which is a strict increase if Q(E)Tl(e) # 0, since oyVTOV is positive definite.

Thus we are moving towards the extremum. The new gradient

FEFD) = l(é) oy ww® VT@VQ(” (5.2.10)

is orthogonal to ﬁ(f) by this choice of w®).
In practice, the technique terminates if ||y¥||, is sufficiently small. Oth-
erwise, the method causes the search directions to be conjugate with respect

to the matrix oyV7OV by applying the formula

g0 — 0 BT TVIOVYY
pr=7 g(@—l)TvT@Vé(éfl

A (5.2.11)

CHAPTER 5. OTHER METHODS 74

for ¢ > 2 and 49 # 0.

The description of the basic algorithm is now complete, but the product
W = VVT allows a different implementation, which is important to tech-
niques such as those developed by Dyn et al. (1983, 1986).

Instead of Q(Z), ﬁ(@ and 1(4) in R"M_ we work with the vectors A(e) =
Val¥, H(Z) = Vg(e) and ¥ = Vl(@ in R". The previous choice o) = 0 gives
the values A(l) =0 and

v =V =g, f, (5.2.12)

since 1(1) = opV7T [, for the beginning of the first iteration. Further the
gradient (5.2.4) is zero if and only if

VO = VA0 = 0y W f — 0y WO (5.2.13)

is zero, where the last expression follows from (5.2.4). Therefore in practice
the iterations are usually stopped when || v¥) || is sufficiently small, and
then we let A(Z) be the calculated estimate of A*. Alternatively, when the

search direction for the first iteration is required, it is
pV =V =g, . (5.2.14)

Further, for ¢ > 2, equation (5.2.11) implies that we should pick the vector

(-DTQ,®
0 _ 0 _ K - (-1 5.2.15
Bo=E (DT D) K ()

as the new search direction. Substituting formula (5.2.4) into the numerator
of expression (5.2.8), we see that the step length of the ¢-th iteration has the

value T 0 _ \OTg 0
oo o L7 A7 O (5.2.16)
LOTEuO

CHAPTER 5. OTHER METHODS 75

Finally, by analogy with equations (5.2.6) and (5.2.10), the iteration calcu-

lates

AED = \O 4 w(g),u(e) and Y =0 _ 5,50 W@H(Z). (5.2.17)

In the following paragraph we consider another choice for W. By the def-
inition of the semi-inner product (2.2.22), (s*, s%)g equals o9 37 A\is*(z ;) =
o iTA*, using the interpolation equations (1.1.1). Thus, employing expres-

sion (2.1.21), we deduce
(s*,8%)9 = 09 fTAS. (5.2.18)

If W satisfies f"W f = (s*,s")p for all f € R", then W = oy A. Further, if
W = 0y A, then the first search direction is, using 03 = 1, V) = oy Wf =
Af = X" by (2.1.21) and the algorithm terminates within one iteration. One
of the key ideas of the highly useful method of Dyn et al (1986) in the case
of thin plate splines in two dimensions (gy = 1, m = 3) is to use the relation
(5.2.18) to generate a choice of W that is a reasonable approximation to
A and to use it in the conjugate gradient method. The aim is to find an

approximation such that

(s*,s") = [TWF. (5.2.19)

Dyn et al (1986) estimate the integral (s*, s*), defined by (2.2.3), by a quadra-
ture rule with positive coefficients using a triangulation with vertices at the
data points. The values of the second derivatives required are approximated
on each triangle by a linear combination of the data f;, « = 1,...,n, which
vanishes, if the relevant data can be interpolated by a linear polynomial. Due
to the squares of second derivatives in (s*, s*) and the positive coefficients of
the quadrature rule, this estimate of iTA [is nonnegative and its dependence

on f takes the form iTW [for a particular symmetric n X n matrix W that

CHAPTER 5. OTHER METHODS 76

can be calculated. If we ensure that at least one of the approximations of the
second derivatives is nonzero whenever f does not lie in the column space of
P, then this estimate is zero if and only if all the data can be interpolated
by a constant or linear polynomial. Hence W has n — 3 positive and three
zero eigenvalues. Now the element W;; is nonzero only if at least one of the
second derivative approximations involves both f; and f;. Therefore, since
each approximation is usually derived from a local cluster of interpolation
points, W is generally sparse. These properties make this choice of W highly
useful. In general, every symmetric n x n matrix W with n — M positive and
M zero eigenvalues satisfying W P = 0 is suitable for the conjugate gradient
method (Powell, 1996).

The following theorem gives some of the properties of our choice W =
VVT, which suggest that o4V? and V are very suitable as left and right

preconditioners of ©.

Theorem 5.2.1 The matriz W = VV7T satisfies WP = 0. It is positive semi-
definite with n — M positive and M zero eigenvalues (exactly as the matriz
oo\). If the functions xx, k = 1,...,n— q, are orthogonal to each other and
to every function in Ty with respect to the semi-inner product (2.2.22), then

the estimate iTWi for (s*,s%)g is exact for every f € R™.

Proof: Tt follows from equation (3.3.17) that VI'P = 0 and therefore WP =
VVTP = 0. The matrix V also has maximal rank n — M, since it is lower
triangular and its diagonal elements V;; = agm are nonzero. Hence, since
W =V VT, it follows that W has n — M positive and M zero eigenvalues.
Lemma 3.3.1 states that if xx, kK = 1,...,n — ¢, are orthogonal to each

other and to every function in Ty, then s* = Y7-M afx, + r* with af =

CHAPTER 5. OTHER METHODS 7

(s*, X1)o- Hence in this case, using o3 = 1,

Wi = (oVI) (0oV"f) = nZ (", Xn) "i (5", (5", Xx)oXx)o
k=1 k=1
= (5", D apxu)e = (s, —r")g = (5%, s%)s, (5.2.20)

where the second equation is derived from the fact that the k-th row of V7
contains the vector of coefficients of xx, & = 1,...,n — M, and the last
equation follows, since the semi-inner product vanishes on the space II,,,(R?).

Therefore the last statement of the theorem is also true. O

The conjugate gradient method described here is actually equivalent to
the Krylov subspace method of the next chapter applied to Algorithm B.

Therefore it will receive further attention in Section 6.4.

Chapter 6

Krylov subspace methods

The technique described in this chapter is the culmination of the work that
is presented in this thesis. The idea of line searches, given in Section 5.1, will
be extended by constructing search directions that are mutually orthogonal
with respect to the semi-inner product (2.2.22). The estimate s‘*1) at the
end of the /-th iteration is then the best approximation to s* from a certain
(-dimensional subspace of Sy. We will see that this property ensures conver-
gence within at most n — M + 1 iterations. In practice, this method is very
successful. The number of iterations needed to achieve an accuracy of say
1078 is usually far less than n — M + 1, the actual number being below ten
in most cases.

A description of the method is given in the first section, followed by
a section where we analyse the properties of the technique. In the third
section we describe how the mutually orthogonal search directions are chosen.
Then it is shown in Section 6.4 that the Krylov subspace method applied to
Algorithm B is equivalent to the conjugate gradient method of Section 5.2.

78

CHAPTER 6. KRYLOV SUBSPACE METHODS 79
6.1 Description

An algorithm to which the Krylov subspace method can be applied lets the
new approximation at the end of the ¢-th iteration be

s 4+ L(s* — sY), (6.1.1)

where L is a linear operator from Sy to Sy which has the following properties

s€Sy and s#0 = Ls#0 (nonsingularity)
sell,,(RY) = Ls=s (polynomial reproduction)
s€Sy and s¢Il,(RY) = (s,Ls)g>0 (ellipticity)

(6.1.2)

An additional requirement is that Ls, s € Sy, depends only on values of s at
the data points z{,...,2,.

Employing equation (5.1.4), if Algorithm A is considered, we let L =
I—R 4, whereas if Algorithm B is the underlying algorithm, we let L = I—Rp.
It follows directly from the results of Theorem 3.5.1 and Theorem 4.3.1 that
both operators I — R4 and I — Rp satisfy the requirements (6.1.2). In
particular, (I — Ra)s # 0 and (I — Rg)s # 0 for s € Sy, s # 0, follows from
Rys # s and Rgs # s. The polynomial reproduction property is ensured by
Rup = 0 and Rgp = 0 for all p € II,,,(RY). The ellipticity of I — R4 and
I — Rp follows from (s, Ras)g < (s,$)g and (s, Rps)g < (s,) for all s € Sy,
s ¢ I1,,(R?). Both Algorithms A and B employ only function values at the
data points. Thus the Krylov subspace method can be applied to both of
these algorithms.

We denote the current approximation at the beginning of the ¢-th iter-
ation by s, First s() is set to be identically zero. If f; = s*(z;) = 0 for
1 =1,...,n, which implies s* = 0, the algorithm terminates. In the /-th it-

eration, ¢ > 1, a search direction t() is generated in the following way. First

CHAPTER 6. KRYLOV SUBSPACE METHODS 80

u® = L(s* — s9) is calculated. There is no problem in forming Ls*, since
we only need to know the function values s*(z;) = f;, j=1,...,n. If £ =1
or if, for £ > 1, (u®,t%))y = 0 holds for j = 1,...,£ — 1, t*¥) is chosen to
be u®). Otherwise t¥) is set to a linear combination of) and all previous
search directions t¥), j =1,...,¢—1, with a nonzero contribution from u(®,

such that t© satisfies
Oty =0, j=1,...,0—1. (6.1.3)

This defines t) uniquely up to a polynomial of degree at most m apart
from a scaling factor. In Section 6.3 we will see in detail, how the mutual
orthogonality of the search directions is achieved.

As in Section 5.1, we take care of the difficulty arising from a search
direction that is a polynomial of degree at most m by including the following

stopping criterion. If there exists w € R such that

max{|s*(z;) — s9(z;) —wtO(z;)|:i=1,...,n} < TOL, (6.1.4)

where TOL is the specified accuracy, then the final approximation stV is
set to s +wt® and the algorithm terminates. We will see in Theorem 6.2.1
of the next section that such an w exists if t¥) lies in IT,,(R?). The choice of
the scalar w is described in Section 5.1.

Otherwise, if inequality (6.1.4) does not hold for any w € R, the technique

finds w® by minimizing
(5" — s —wt® s* —sO —wt®)y, weRr (6.1.5)

Thus w® takes the value

o _ (S* — S(Z),t(f))e

o, (6.1.6)

w

CHAPTER 6. KRYLOV SUBSPACE METHODS 81

The possibility (t®),)y = 0 does not occur here, since in this case t) €
I1,,,(R?), so the stopping criterion (6.1.4) would cause termination. The scalar
w® is nonzero, because it is shown in Theorem 6.2.1 below that if (s* —
50, t)y = 0, then termination occurs. The Krylov subspace technique lets
the new approximation s+ be s 4+ w®#®. The choice (6.1.6) of w®
causes s* — s to be orthogonal to t) with respect to the semi-inner
product (2.2.22).

This concludes the description of the Krylov subspace method. The next
section presents the properties which provide its success and gives an analysis

of convergence.

6.2 Analysis

We are going to justify the term “Krylov subspace method”. Let L, be the
Krylov subspace of Sy which is the span of the functions L7s*, j = 1,...,¢.
Thus Ly C Ly C L3 C --- holds. It can be seen by induction that both
t® and s+ are in Ly, the argument being as follows. For ¢ = 1, we have
t) =y = L(s* —sM) = Ls* € Ly and s?) = s 4 0WtM) = W [s* € Ly,
since s = 0. For ¢ > 1, t¥ is a linear combination of L(s* — s*)) and
the previous search directions. Now Ls* € Ly C Ly, Ls® e Ly, since s €
L,_1, and the previous search directions t¢¥) € L; C Ly j=1,....,0—1.
Thus ¢t is an element of L, and the same follows for st = &) 4 (OO
Other properties of the Krylov subspace technique are stated in the following

theorem.

Theorem 6.2.1 For ¢ > 1, let the algorithm specified in Section 6.1 generate
the approzimations sV, ... s by line searches along mutually orthogonal

search directions tV, Then the following statements are true.

CHAPTER 6. KRYLOV SUBSPACE METHODS 82

(a) If (tO 1)y =0, then (s* — s tO)g = 0. If (s* — s, "))y =0, then
there ezists w € R such that inequality (6.1.4) holds, so the algorithm

terminates.
If the algorithm does not terminate in the (-th iteration, then
(b) the subspace Ly of Sy is spanned by tV, ... t®) and

(c) the difference s*—s"*Y is orthogonal to every element in Ly with respect
to the semi-inner product (2.2.22). (Thus sV is the function s that

minimizes (s* —s,s* —s)g, s € Ly.)

Proof: The theorem is proved by induction on ¢. For ¢ = 1, we suppose
(tM tM), = 0 in statement (a). Thus %) € II,(R?) and hence (s* —
s M), = 0. If (s* — sM tM), = 0, then (s*, Ls*)g = 0 follows, since
s() = 0 and since t) = Ls*. Further, the ellipticity of L implies that s* is
a polynomial of degree at most m. Then t) equals s*, since L reproduces
polynomials of degree at most m. We do not have t)(z,) = s*(x;) = 0 for
1 =1,...,n, because this would imply s* = 0 and the algorithm would have
terminated before the first iteration. In this case, the technique described
in Section 5.1 calculates the intersection of the intervals with boundaries
1 —-TOL/s*(z;) and 1 + TOL/s*(x) for j = 1,...,n such that s*(z;) # 0,
where the upper boundary is the larger of the two values. The scalar w is
then chosen to be the midpoint of the final interval. Hence w is chosen to be
1, inequality (6.1.4) holds for £ = 1, and the algorithm terminates.
Alternatively, if there is no termination for ¢ = 1, then the space L; is
spanned by Ls*, and the first search direction ¢! is chosen to be Ls*. Thus
statement (b) is true for ¢ = 1. Turning to statement (c), if the algorithm
does not terminate, then the semi-inner product (s* — s, ¢(1), is zero by

the choice of w™. Thus s* — s is orthogonal to all elements in L.

CHAPTER 6. KRYLOV SUBSPACE METHODS 83

We now suppose that statements (a), (b) and (c) hold for any positive
integer ¢ and deduce that they remain true if ¢ is increased by one.

Considering statement (a), if (t*V,t*+1D), = 0, then t*+V ¢ II,,(R?)
and thus (s* — s+ D), = 0. Now t*+Y is a linear combination of u(“+%
and t¥), j =1,... ¢, with a nonzero contribution from u“+?. Therefore, if
(s* — s $HD), = 0, then the difference s* — s*1) is orthogonal to u(**+1),

(¢+1) is orthogonal to all elements in L, including ¢t ... ¢©.

since s* — s
Further, u“*V) equals L(s* —s*1) and thus (s* — s, L(s* —s+1)), = 0,
so the ellipticity property (6.1.2) of L implies that s* — s+1) is a polynomial
of degree at most m, say p. Since L reproduces polynomials, u*!) = L(s* —
s = s* — s+ = p follows, and (ul*1),t0))y = 0 holds for j = 1,...,¢,

because u“t1) is a polynomial. Therefore t‘+V) is chosen to be w(¢+V

= p.
It is not possible for t“*V(z,) = p(z;) = s*(z;) — s“(x;) = 0 to occur
for « = 1,...,n, because then the algorithm would have terminated in the
previous iteration. Hence the technique described in Section 5.1 sets the
scalar w to the midpoint 1 of the intersections of the intervals with boundaries
1-TOL/p(z ;) and 1+TOL/p(x ;) for j = 1,...,n such that p(x ;) # 0. Thus
inequality (6.1.4) is achieved and the algorithm terminates, so statement (a)
is true.

Statement (b) and the inductive hypothesis imply that the subspace
L,, which is defined to be spanned by L/s*, j = 1,...,¢, is spanned by
tM ..t Therefore it is necessary to prove that L‘*'s* is a linear com-

(4+1)

bination of ¢ and elements of L,. Now t‘+) is a linear combination of

uD and tM, ...t € L, with a nonzero contribution from u*1). We have
utD € Ly, since) = L(s* — s V), Ls* € Ly and Ls"*Y € Lyyy, due

to s+ ¢ L,. If u™) were in Ly, then (s* — s“*Y 1)y = 0 would hold,

0+1)

since s* — sl is orthogonal to all elements in L,. We have seen in the pre-

CHAPTER 6. KRYLOV SUBSPACE METHODS 84

vious paragraph, however, that convergence occurs in this case. Hence, if the
algorithm does not terminate, then uwD lies in Lyyq, but not in Ly,. Thus
t¢+1 is a linear combination of L*'s* and elements of L;, where the term
involving L**'s* does not vanish. The assertion of statement (b) follows.
To prove statement (c), it is sufficient to prove that (s* —s+2) t0))y =0
holds for j = 1,...,¢+1, since Ly, is spanned by t()_ ... 1) When the al-
gorithm does not terminate, the choice of w1 ensures (s* —s\+2) (1), =
0. For j = 1,...,/, we have the identity (s*—s(*+2) 100)), = (s*—s(F1) (), —
WD () $G)),. The first term is zero, because s* — s(*1) is orthogonal

t+1) was chosen

to all elements in L,, and the second term vanishes, since ¢
to be orthogonal to all previous search directions. Thus statement (c) also

remains true if £ is increased by one, which concludes the proof. O

The Krylov subspace technique can be viewed as a conjugate direction
method for minimizing the quadratic form (s*—s, s* —s)y, the variables being
the coefficients of the basis functions subject to the constraints (2.1.12) and
the coefficients of the polynomial of degree at most m. The expression con-
jugate is equivalent to orthogonality with respect to the semi-inner product

(2.2.22). By statement (c) of Theorem 6.2.1, the approximant s*1)

gives
indeed the least value of the semi-inner product (s*—s, s* —s), for all s € L.
Further, the application of the operator L can be viewed as a preconditioner.

We now prove that the given method terminates in exact arithmetic.
The search directions ¢, £ = 1,2, ..., are mutually orthogonal to each other
with respect to the semi-inner product (2.2.22). If the algorithm does not
terminate within / iterations, then statement (a) of Theorem 6.2.1 shows that
(D), t0)y £0,5=1,...,¢ s0t® is not in II,,(R?). In order to establish the
linear independence of the search directions so far, we let p;, j =1,...,¢, be

coefficients such that s = Zle pjt(j) + p is the zero element of Sy, where p is

CHAPTER 6. KRYLOV SUBSPACE METHODS 85

a suitable polynomial of degree at most m. The mutual orthogonality of the

search directions yields

¢
(s,8) =Y p;(t9,t9), = 0. (6.2.1)

j=1
Since tV) ¢ TI,,(R?), we have (t¥) t9)), > 0 and hence every p; is zero.
It follows from s = 0 and the polynomial unisolvency that p is the zero
polynomial. Thus ¢, ... ¢ and basis elements py, ..., pas of IL,(R?) are
(+ M linearly independent elements of Sy, which implies (+M < dim(Sy) =n
for any integer ¢ such that termination does not occur in the /-th iteration.
Thus termination must occur on an iteration whose number is at most n —

M + 1. We present this result as the main theorem of this chapter.

Theorem 6.2.2 Let the technique specified in Section 6.1 generate the se-
quence of functions s9, £ = 1,2, ..., using a nonsingular linear operator L
which is elliptic and reproduces 11,,(R%). Then inequality (6.1.4) holds for
some £ <n— M + 1, so the algorithm terminates within at most n — M + 1

iterations.

As we will see in Chapter 7 which considers numerical experiments, the
number of iterations in practice is generally far less than n — M + 1. To
achieve an accuracy of TOL = 1078, for example, the number of iterations
needed is less then ten in most cases for large enough ¢, when we apply the

Krylov subspace technique to Algorithms A and B.

6.3 The choice of search directions

This section will describe in detail how mutually orthogonal search directions

are chosen. The section is divided into two parts. First we consider a general

CHAPTER 6. KRYLOV SUBSPACE METHODS 86

nonsingular, elliptic operator L : Sy — Sy which reproduces polynomials of
degree at most m. Next, we examine the case where L enjoys the additional

property of self-adjointness.

6.3.1 The general choice of search directions

Starting with s() = 0, the first search direction is t") = Ls*. Suppose the
approximations s, ... s® to s* and the search directions t(),... ¢t =1
have already been constructed for k£ > 2 such that the search directions are
mutually orthogonal with respect to the semi-inner product (2.2.22), and
suppose termination did not occur in the (k — 1)-th iteration.

The next search direction ¢(*) is then generated in the following way. First
u®) = L(s* — s®) is calculated. If (u®,¢0))y =0 holds for j =1,...,k—1,
then t™® is set to u. Otherwise we let u(()k) = u®). For every integer j in
[1,k — 1], we calculate

ugﬁ) _ u§’i)1 + pt9), (6.3.1)

where p; is chosen to minimize

(ugk_)l + pt¥) — 5" 4 s ugk_)l +ptW) —s* 5By, peRr. (6.3.2)

This gives p; the value

(s — s — ug-k,)l,t(j))g
Pi= (t@), 1)), ’

(6.3.3)

the denominator (tV),t1)), being nonzero, because, if t¥) is a polynomial of
degree at most m, convergence would have occurred already. In other words,
we conduct a line search along t¥) for j = 1,...,k — 1 such that u§-k) lies as

near as possible to the difference s* — s*). The choice (6.3.3) of p; causes the

CHAPTER 6. KRYLOV SUBSPACE METHODS 87

(k)

J

(k)

difference between u;’ and s* — s*) to be orthogonal to t¥). Further, u, ",

satisfies
(u,g@l—s*+5(k),t(j))9:0> j=1,...,k—1, (6.3.4)

k=1 are mutually orthogonal. Also

because the directions tM, ... ¢t
(s — s®) W), j = 1,...,k — 1, vanishes by statement (c) of Theorem
6.2.1 with ¢ = k —1, since t, ... t*Y e [,_;. Thus (u,&@l,t(j))g = 0 holds
for j =1,...,k — 1. Next the new search direction is defined by t*) = u,(i)l
and it enjoys the required orthogonality properties.

As can be seen in Chapter 7, the Krylov subspace technique applied to
Algorithm A, where L = [— R4, results in a very low number of iterations,
but the operational cost per iteration is very high. In the next section we
describe how the search directions are chosen if L is also self-adjoint. We will

find that the self-adjointness property is very useful.

6.3.2 The choice of search directions for a self-adjoint

operator

Constructing mutually orthogonal search directions, when using a linear op-

erator L with the properties (6.1.2) and the self-adjointness property
(s,Lt)g = (Ls,t)g, s,t € Sg, (6.3.5)

is straightforward. The search direction t(!) is chosen to be Ls*. Suppose the
approximations s, ..., s*) and the mutually orthogonal search directions
tM ... t* =1 have already been constructed for & > 2, and suppose the
algorithm did not terminate in the (k — 1)-th iteration. It is enough to let

(u®, #5-0),

(k) — o, (k) _
N NG

=1, (6.3.6)

CHAPTER 6. KRYLOV SUBSPACE METHODS 88

where u®) = L(s*—s®). We see that (t*), 1), = 0 holds, so it remains to
prove that (t*) 1))y = 0 is achieved for j = 1,...,k—2. Since (t#=1 ¢0)), =
0 holds for j = 1,...,k — 2, the self-adjointness described by (6.3.5), the
definition u®) = L(s* — s®) and equation (6.3.6) yield

k k—1
(W®, 65 D) ey
(@),)

= (s*=sW LtV =1, k-2 (6.3.7)

(t(k),t(j)>9 — (L(s* _ s(k)) —

The search direction), j = 1,...,k — 2, lies in L; C Ly_s, which implies
LtY) € L. By statement (c) of Theorem 6.2.1 with £ =k — 1, s* — s is
orthogonal to every element in Lj_;. Hence the semi-inner product in (6.3.7)
is zero, so the search direction ¢**) has the required orthogonality properties.

This construction of search directions is used when the Krylov subspace
method is applied to Algorithm B, since by Theorem 4.3.1 Rg and thus [—Rpg
is self-adjoint. The next section considers the Krylov subspace technique

applied to Algorithm B more closely.

6.4 The Krylov subspace technique applied
to Algorithm B

This section shows that the Krylov subspace method applied to Algorithm
B with operator L = I — Rp is equivalent to the conjugate gradient method

(£

of Section 5.2. The radial basis function coefficients of s©, t¥) and u® in

the Krylov subspace method are given explicitly in the expressions

st () = Z)\14)9@ — z;) + polynomial,

t® () = Z,Uie)@@ — ;) + polynomial,

CHAPTER 6. KRYLOV SUBSPACE METHODS 89

Z 2 Z)G) + polynomial. (6.4.1)

Equations (5.2.12), (5.2.13), (5.2.14), (5.2.15) and (5.2.17) on the other hand
give initial values and formulae for the re-estimation of the radial basis func-

tion coefficients in the conjugate gradient method.

Theorem 6.4.1 The Krylov subspace method applied to Algorithm B (L =
I — Rp) revises the vectors A\ = (Aﬁ“, o AT O = (ﬁ), o DT and
v = (yy), o UINT of O 1O and u® in the same way as the conjugate

gradient method of Section 5.2.

Proof: Firstly, since s = 0, both methods pick AY) = 0 initially. Then the
Krylov subspace technique lets the first search direction be the function

n—M
tW(z) = u(z)= (- Rp)s*(z Z s, Xx)oXx(z) + polynomial

n—M
)\k’b)\kj *

= X2

= Z Z oW, fj 0(x — x;) + polynomial, (6.4.2)

z;)0(z — z;) + polynomial

using (4.3.2), (3.3.1) and (3.3.2). The last identity depends on the interpola-
tion equations (1.1.1) and on the fact that W;; equals >j— ()\]“)\k])/(O'gj\kk),
defining A\ to be zero for | & Ly, | = 1,...,n. Hence H(l) =vH =gWf
holds. Comparing this with (5.2.12) and (5.2.14), it follows that both tech-
niques start with the same initial vectors.

We are now going to show that the /-th iterations of both methods gen-
erate identical vectors g“), H(@ and A(ZH) given H(z_n and A“). First the
Krylov subspace method calculates

n—M

U(E)@) = (I —Rp)(s" — st Z s* — sl 7Xk)9Xk() + polynomial
k=1

CHAPTER 6. KRYLOV SUBSPACE METHODS 90

= > Z > == (3*@]') - Sw)(%)) 0(z — z;) + polynomial

b
Il
—
o
m
)

=

<.
m
o

ko
e
=

— Z Z aoWi; (— s® (g])> 6(z — z,;) + polynomial. (6.4.3)

Thus v is the matrix oy times the vector whose components are fi —
s (z;), 7 = 1,...,n. We can neglect the polynomial part of s because
Theorem 5.2.1 states that W satisfies W P = 0. The values of s at the data
points without the polynomial part are the components of the vector ON®

SO
9 = ggW f — apWer?, (6.4.4)

which is just expression (5.2.13).

Theorem 4.3.1 states that Rp is self-adjoint, so [— Rp is also self-adjoint.
Thus, when the Krylov subspace technique is applied to Algorithm B, the
search directions are chosen according to (6.3.6). Using the definition of the

semi-inner product (2.2.22), we deduce for the Krylov subspace technique

0 _ 0 _ Mwl)_ym ZT@““ -0 (6.45)
o Dt TF T Tt -

K

which agrees with equation (5.2.15). Hence both methods calculate v\ and

9 in the same way.

ul
Further, the Krylov subspace method chooses the step length (6.1.6),

which we write in the form

E_(St)e ())9_776_— Ld
O = e (6.4.6)

This is exactly the value of w® given by equation (5.2.16). Thus the step
lengths @w® and w® are the same in both methods. Since sV = 5@ +

w®tO the identity ATV = A0 4 & ”(2 follows, which is the first part

CHAPTER 6. KRYLOV SUBSPACE METHODS 91

of equation (5.2.17). Using this recurrence relation for A¢+Y

and equation
(6.4.4) with £ increased by one, we deduce that the Krylov subspace method

sets

) = oW f — og WO + O u®) = v — gy Weu®, (6.4.7)

which is the second part of equation (5.2.17). The proof is complete. O

The only two differences between the two techniques are that (1) the
conjugate gradient method stops if || v ||, is sufficiently small, while the
Krylov subspace method terminates if (6.1.4) holds for a suitable step length
w, and (2) the Krylov subspace method automatically revises the polynomial
term on every iteration, while the conjugate gradient method calculates the
polynomial term after a good approximation to the vector of radial basis
function coefficients has been found.

The numerical experiments in the next chapter show that the Krylov
subspace technique applied to Algorithm B is very successful, having a small

number of iterations and requiring little time per iteration.

Chapter 7

Numerical examples

This chapter will compare the performances of four algorithms in numerical
experiments, namely Algorithms A and B as described in Chapters 3 and
4 and Algorithms A and B with the Krylov subspace method of Chapter 6
added. All four methods are tested in two and in three dimensions and we
consider two choices of radial basis functions, namely the thin plate spline
basis function 8(z) = ¢(||z ||2) =||z ||3log || z ||2 and the linear basis function
O(z) = o(|| z|l2) =| z|l2, x € RY. It will become clear that the Krylov

subspace technique is highly successful.

7.1 Two dimensions

We consider four kinds of distributions of the interpolation points z;, ¢ =
1,...,n, in two dimensions, which are taken from Faul and Powell (1998). In
Problem I the points are equally spaced on the unit circle {z € R? : ||z || =
1}. The points of Problem II form a square grid in R? that covers the unit

square [0, 1] x [0, 1]. In Problem III the data points are chosen randomly from

92

CHAPTER 7. NUMERICAL EXAMPLES 93

the uniform distribution on the unit disc {z € R* : ||z || < 1}. Problem IV
was found by seeking a case where the convergence of Algorithm A is very
slow. Here the points are equally spaced on one eighth of two concentric
circles, half of the points being on each circle, and the radii of the circles
being 1 and 1 4 107°. These distributions are displayed in Figure 7.1.

In all problems, the right hand sides f;, ¢ = 1,...,n, are independent
random numbers from the uniform distribution on [—1, 1]. The calculation is
terminated when all the moduli of the residuals f; —s®)(z;),i = 1,...,n, are
less than 1078, where s) denotes the approximation to s* at the beginning
of the /-th iteration. The values of n and ¢ that are employed are stated in
Tables 7.1 to 7.9. The calculations are performed in double precision Fortran
on a Sparc 10 workstation.

Tables 7.1 and 7.2 give the average time in seconds for the preliminary
work when thin plate splines, ¢(r) = r2logr, and the linear basis function,
o(r) = r, r =||z||2, are used, respectively. This includes ordering the data
points, constructing the sets £, and calculating the coefficients S\kj, J € L,
k=1,...,n—q. To ensure non-collinearity for thin plates splines, we reorder
the data points if necessary such that the last three points z,,_,, x,_; and z,,
are the data points with greatest and least x-coordinate and the data point
whose perpendicular distance from the infinite straight line through these
two points is the greatest. Then every set Ly, £k = 1,...,n — ¢, contains
these three special points. Apart from these three points, it contains the
data point z; and the ¢ — 4 data points in {z; : n —2 > i > k} that are
nearest to x,. In the case of the linear basis function, the set £, contains z
and the ¢ — 1 data points in {z; : ¢ > k} nearest to z;. We use a procedure
described by Goodsell (2000) to construct sets of nearest neighbours. In

these experiments the data points were ordered so that, if the data points are

CHAPTER 7. NUMERICAL EXAMPLES

+ + + + + + + + + +
*++++++++++++
s
+ +
o kN + + + + + + + + + +
+ +
+ +
+ +
+ t + + + + + + + + + +
+ +
+ +
+ +
+ + + + + + + + + + + +
+ +
+ +
+ +
+ + + + + + + + + + + +
+ +
+ +
+ +
i + + + + + + + + + + +
+ +
+ +
+ +
5 e + + + + + + + + + +
+ +
+ +
+ i
+ + + + + + + + + + + +
+ +
+ +
+ +
*y it
2 " + + + + + + + + + +
e
+ +
+ +
bt
+ - + + + + + + + +

Problem 1

+
N %
2
+ + 4
¥ K
+ + ., 4 A
% * %
B
+ i B
= + 3 PR 4
w P g 3
Ry + ¥
+ + + A
+ 4 %
£ t
$ ot + ’ ’ %
Fe ++ 4
+ 3 ol
* T
4+t M
+ + o4t + o+ ¥
"
+ - t %
4 + 3
i+, + 3
+ + W
+ + o4 " W
+ “ o+ -
+ *
e oo+ +
.t b
+ 4+ %
& + ¥
b
+ 4+ il
* s

Problem III Problem IV

Figure 7.1: Distribution of the data points in the test problems.

CHAPTER 7. NUMERICAL EXAMPLES 95

n 10 20 30 20
400 | 0.22 0.68 1.54 4.62
900 | 0.50 1.59 3.59 11.29

Table 7.1: Average time for preliminary work for ¢(r) = r?logr.

n 10 20 30 50
400 | 0.17 048 1.12 3.74
900 | 0.37 1.19 2.60 9.04

Table 7.2: Average time for preliminary work for ¢(r) = r.

removed in sequence from the beginning of the set X = {z,...,z,}, then
the remaining points provide good coverage of the original set. Therefore,
for j =1,...,n — ¢, a point which has the minimum distance to its nearest
neighbour is removed next from the set of the remaining data points. Any
ties are broken at random. This can be done efficiently in two dimensions
by Dirichlet tessellations, but more work is required for higher dimensions.
This ordering was chosen when Algorithm A was first developed and has
been retained since.

It was noted by Faul and Powell (1998) and in Theorem 3.2.3 that con-
vergence would occur in one iteration of Algorithm A, if the functions Yy,
k=1,...,n — q, were orthogonal to each other and to every function in T}
(we recall that Ty contains the functions in Sy with centres at z,, . 1,...,2,)
with respect to the semi-inner product (2.2.22). In this case, Algorithm B

converges in at most two iterations as shown in Theorem 4.2.2. Therefore

CHAPTER 7. NUMERICAL EXAMPLES 96

n | q I IT III IV

10 1 0.0373 | 0.3174 | 0.2941 | 0.7302
20 | 0.0009 | 0.0797 | 0.0886 | 0.6896
30 | 0.0003 | 0.0651 | 0.0585 | 0.6528
50 | 0.0001 | 0.0193 | 0.0149 | 0.6287
10 | 0.0377 | 0.2789 | 0.3684 | 0.7614
20 | 0.0011 | 0.0890 | 0.0941 | 0.7134
30 | 0.0004 | 0.0716 | 0.0376 | 0.6987
50 | 0.0001 | 0.0127 | 0.0144 | 0.6576

400

900

Table 7.3: Values of expression (7.1.1) for ¢(r) = r?logr.

we expect a correlation between performance and deviations from these or-
thogonality properties.

Table 7.3 indicates the size of these deviations for the thin plate spline
basis function 0(z) = ¢(||z ||2) =||z||31og ||z ||2, € R?. Each entry in Table
7.3 states the quantity

max {|(Xi, x;)| : 1 <i<j<n—M}, (7.1.1)

which is at most one due to the identities (x;, x;) =1,i=1,...,n— M, and
the Cauchy—Schwarz inequality. We see that this quantity is the maximum
modulus of the off-diagonal elements of the matrix of the system (3.3.9).
We recall from Sections 3.4 and 4.2 that Algorithms A and B are equivalent
to solving that system of equations by Gauss—Seidel and Jacobi iteration
respectively. The convergence of Gauss—Seidel and Jacobi depends on the
spectral radii of the matrices L='U and I,,_y; — o9V OV specified in Sections

3.4 and 4.2, where L is lower triangular and U is strictly upper triangular

CHAPTER 7. NUMERICAL EXAMPLES

q

|

IT

III

1A%

400

10
20
30
20

6.7 x 1073
1.7 x 1074
4.0 x 1075
6.1 x 1076

0.49
0.15
7.8 x 1072
9.3 x 1073

0.51
5.5 x 1072
1.5 x 1072
6.2 x 1073

0.99
0.94
0.88
0.81

900

10
20
30
20

8.5 x 1073
2.0 x 1074
4.9 % 1075
9.5 x 107

0.45
9.4 x 1072
2.6 x 1072
1.4 x 1072

0.59
9.2 x 1072
2.3 x 1072
1.0 x 1072

0.999
0.99
0.96
0.89

97

Table 7.4: The spectral radius of L™'U for ¢(r) = r?logr.

n | q I 11 111 IV
10 | 5.3 x 1072 | 0.85 1.9 33
20 | 5.8 x 1073 | 0.46 0.27 9.7
400 | 30 | 2.5 x 1073 | 0.27 0.13 6.0
5019.0x107*]0.10 | 7.2 x 1072 | 3.3
10 | 6.4 x 1072 | 3.0 2.6 70
20 | 6.5 x 1073 | 0.40 0.35 24
900 | 30 [2.9 x 1073 | 0.19 0.16 14
50 | 1.1 x 1073 0.12 | 9.0 x 1072 | 7.6

Table 7.5: The spectral radius of I,,_y; — aaVTOV for ¢(r) = r?logr.

CHAPTER 7. NUMERICAL EXAMPLES 98

average time

n q I II 111 v . .
per 1teration

10 | 4/4 | 28/14 | 29/18 | %(9.0 x 1074)/64 | 0.77/0.77

20 | 3/3| 10/7 | 7/7 204/32 1.40/1.41
400 |30 | 3/3| 8/6 | 5/5 145,24 2.05/2.14
50 | 2/2| 5/5 | 4/4 85,16 3.47/3.67

10 | 5/5 | 24/15 | 36/20 | %(5.2 x 1072)/111 | 3.89/4.11
20 | 3/3| 8/7 | 8/7 | «(5.9x1077)/53 | 7.09/7.17
900 | 30 | 3/3 | 6/5 | 6/5 443/39 10.34/10.46
50| 2/2| 5/5 | 5/4 155/28 18.51/19.37

Table 7.6: Tteration counts of Algorithm A for ¢(r) = r?logr.

and where L + U = 0yVTOV. These spectral radii are given in Tables 7.4
and 7.5.

Each pair of numbers in Tables 7.6, 7.7, 7.8 and 7.9 gives the number
of iterations needed to achieve the accuracy of 107® and the average time
per iteration in seconds, without/with the Krylov subspace method for thin
plate splines, ¢(r) = r*logr, and for the linear basis function, ¢(r) = r,
respectively. In the cases marked with x the calculations were stopped after
1000 iterations, and the maximum modulus of the final residuals f; — s (z;),
1 =1,...,n, is given in brackets. The cases where divergence occurred are
denoted by div.

As expected, the number of iterations is small when the normalised func-
tions x;, ¢ = 1,...,n— M, have good orthogonality properties. Indeed, when
é(r) = r’logr is employed, the algorithms perform well when expression

(7.1.1) is less than 0.1, this condition being satisfied for ¢ > 20 in Problems

CHAPTER 7. NUMERICAL EXAMPLES 99

average time

n q I II 111 v . .
per 1teration

10 | 8/7 | 112/27 | div/33 | div/70 | 0.10/0.12
20 | 5/5 | 24/14 | 16/12 | div/56 | 0.10/0.12
400 | 30 | 4/4 | 15/10 | 11/8 |div/42 | 0.11/0.12
50 | 4/4 | 10/8 | 9/7 |div/29| 0.12/0.14
10 | 8/7 | div/28 | div/42 | div/87 | 0.52/0.57
20 | 5/5 | 21/12 | 18/13 | div/68 | 0.52/0.58
900 | 30 | 4/4 | 13/10 | 12/10 | div/61 | 0.54/0.61
50 | 4/4 | 10/8 | 9/8 |div/51| 0.56/0.63

Table 7.7: Tteration counts of Algorithm B for ¢(r) = r?logr.

I, IT and III. Expression (7.1.1) exceeds 0.2, however, for ¢ = 10 and n = 400
in Problem III, for ¢ = 10 and n = 900 in Problems II and IIT and for every ¢
in Problem IV. Then Algorithm B diverges and also the rate of convergence
of Algorithm A is slow. That bad behaviour was found before the results of
Table 7.8 and 7.9 were computed, so the excellent performance for the linear
radial basis function ¢(r) = r was unexpected. The advantage of the linear
basis function is that precautions are not taken to ensure that the points
{z;:j € Ly, j # k} are not collinear.

The results also show that the introduction of the Krylov subspace method
is highly useful, especially for Problem IV when ¢(r) = r?logr. We see, how-
ever, that the theoretical termination of the Krylov subspace method within
at most n — M + 1 iterations is irrelevant to practical computation. Indeed,
convergence occurs in practice after far fewer iterations.

The number of operations per iteration is much smaller when the linear

CHAPTER 7. NUMERICAL EXAMPLES

average time
" d ! 1 i v per iteration
10 | 4/4 | 16/9 | 13/8 | 3/3 1.18/1.18
2013/3| 6/6 | 6/5 |3/3| 217/2.17
400 | 30 [3/3 | 5/5 | 5/4 | 3/3| 3.16/3.17
50 | 3/3 | 4/4 | 4/4 | 3/3 | 5.14/5.26
10 13/3]9/9 | 9/8 | 4/4| 6.01/6.01
201 3/3| 6/5 | 5/5 | 4/4 | 11.03/11.05
900 | 30 | 3/3| 5/5 | 5/4 | 4/4 | 16.09/16.10
50 | 3/3 | 4/4 | 4/4 | 4/3 | 26.34/27.01

Table 7.8: Iteration counts of Algorithm A for ¢(r) = r.

average time

" 1 ! = H v per iteration
10 | 5/5 | 53/15 | 26/13 | 5/5 0.17/0.18

20 | 4/4 | 11/9 9/8 |[5/4| 0.17/0.18

400 | 30 | 4/4 | 9/9 7/6 | 5/4 | 0.19/0.19
50 | 4/4 | T/7 6/5 |5/4| 0.20/0.20

10 | 6/5 | 47/15 | 45/14 | 6/5 0.87/0.93

20 | 4/4 | 13/9 | 11/8 |5/4| 0.88/0.94

900 | 30 | 4/4 | 9/7 9/7 |5/4| 0.90/0.97
50 | 4/4 | 8/7 7/7 | 5/4 | 0.92/0.98

Table 7.9: Iteration counts of Algorithm B for ¢(r) = r.

100

CHAPTER 7. NUMERICAL EXAMPLES 101

operator Rp is used instead of Ry, because function values have to be cal-

culated less often. Indeed, R4 requires the residuals f; — s,(le (z;), J € Ly,

. l .
for k = 1,...,n — ¢ and the residuals f; — s;lq@j), j=n—q+1,...,n,
while Rp requires only the residuals f; — s (z;), j=1,...,n. The average
time per iteration illustrates this difference in efficiency. Thus Algorithm B
combined with the Krylov subspace technique is a very good choice of an

iterative technique for radial basis function interpolation.

7.2 Three dimensions

In three dimensions only one distribution of the data points z; € R?, i =
1,...,n, is considered. The data points are randomly distributed in the unit
ball {z € R® :||z||s < 1}. The function values f;, i = 1,...,n, are in-
dependent random numbers from the uniform distribution on [—1,1]. The
different values of n and ¢ are stated in Tables 7.10 to 7.12. The calcula-
tion is terminated either when all the moduli of the residuals f; — s (z;),
i =1,...,n, are less than 10~% or after 1000 iterations, where s) denotes
the current approximation to s*. The latter case is denoted by x and the
maximum modulus of the residuals at termination is given in brackets. If
divergence occurred, it is denoted by div as before.

Table 7.10 shows the average time for the preliminary work when the thin
plate spline basis function ¢(r) = r? log r and the linear basis function ¢(r) =
r are employed. This includes constructing the sets L, k=1,...,n—¢q, and
determining the coefficients j\kj, J€ Ly, k=1,...,n—q. In the case of the
linear basis function, L, k = 1,...,n — ¢, contains the data point x, itself
and the ¢ — 1 data points in {z, : i > k} nearest to z,. For thin plate splines

we ensure non-planarity by reordering the data points if necessary so that

CHAPTER 7. NUMERICAL EXAMPLES

n | g |o(r)=rlogr | o(r) =r
10 0.241 0.138
20 0.790 0.483
400 | 30 1.76 1.17
50 5.29 3.86
70 11.4 8.77
10 0.640 0.453
20 1.98 1.28
900 | 30 4.33 2.92
50 13.1 9.66
70 29.1 22.7
10 2.10 1.60
20 5.05 3.54
2000 | 30 10.6 7.35
50 31.3 23.3
70 69.4 54.7
10 3.90 3.20
20 8.99 6.23
3000 | 30 16.9 12.1
50 48.4 36.4
70 107 84.6
10 9.17 8.14
20 174 13.3
5000 | 30 31.1 23.7
50 84.8 65.0
70 185 148

Table 7.10: Average time for preliminary work in R3.

102

CHAPTER 7. NUMERICAL EXAMPLES 103

the last four points z,,_s3, £,,_5, £, and z,, are the points with the least
and the greatest x-coordinate, the point whose perpendicular distance from
the infinite straight line through these two points is greatest and the point
whose perpendicular distance from the plane through these three points is
greatest. Every set L, £k = 1,...,n — ¢, contains these four points. The
remaining ¢ — 4 points are chosen to be the nearest neighbours of z; in
{z;, :n—4 > 1>k}, including z, itself. It is more time consuming to
construct the sets L, k = 1,...,n — ¢, in three dimensions than in two
dimensions. Here a standard search for nearest neighbours was used.

Each pair of numbers in Tables 7.11 and 7.12 gives the number of it-
erations needed to achieve the accuracy of 1078, and the average time per
iteration. Four iterative methods were used, namely Algorithms A and B
without and with the Krylov subspace technique. We see that the number
of iterations needed to achieve the specified accuracy is larger for thin plate
splines than for the linear radial basis function, which might be due to the
inclusion of the last four points in each set Ly, k =1,...,n — ¢, in the thin
plate spline case.

If Algorithm A is used, ¢ = 30 is large enough to ensure convergence
within 20 iterations and ¢ = 50 is large enough such that convergence occurs
within 10 iterations. For Algorithm B, ¢ = 50 is usually necessary to ensure
convergence at all and then the number of iterations needed to achieve the
specified accuracy is much larger, but the average time per iteration is much
smaller than in the case of Algorithm A. If the Krylov subspace method
is included, then ¢ = 50 is large enough to ensure convergence within 20
iterations if thin plate splines are used, while for the linear basis function
g = 30 already achieves this. Thus the Krylov subspace method should

always be added. As in the two-dimensional case, Algorithm B requires fewer

CHAPTER 7. NUMERICAL EXAMPLES

104

Algorithm A

Algorithm A

Algorithm B

Algorithm B

" 1 without Krylov with Krylov | without Krylov | with Krylov
10 107/0.904 42/0.914 div/0.107 79/0.109
20 18/1.67 13/1.68 div/0.110 25/0.111
400 | 30 12/2.45 9/2.47 78/0.121 17/0.119
50 7/4.40 7/4.45 17/0.129 12/0.130
70 6/6.42 6/6.43 12/0.139 9/0.140
10 465/4.63 79/4.65 div/0.552 154/0.564
20 23/8.41 11/8.53 div/0.558 32/0.568
900 | 30 14/12.4 11/12.5 div/0.579 15/0.590
50 9/22.8 8/23.2 30/0.601 14/0.627
70 7/33.1 7/33.5 16/0.641 12/0.650
10 722/22.8 118/23.0 div/2.74 242/2.80
20 33/42.0 20/42.4 div/2.76 42/2.83
2000 | 30 16/61.1 12/62.0 div/2.80 17/2.86
50 10/117 9/119 52/2.85 15/2.90
70 8/165 7/167 26/2.90 13/3.03
10 | %(4.2 x 1077)/50.6 169/52.9 div/6.14 341/6.27
20 36/94.1 23/95.3 div/6.16 48/6.16
3000 | 30 16/137 13/139 div/6.24 19/6.53
50 9/264 9/266 78/6.31 17/6.64
70 8/373 7/375 31/6.40 13/6.65
10 | %(6.4 x 1073)/144 249/144 div/17.1 527/17.7
20 48 /263 27/268 div/17.4 57/17.8
5000 | 30 20/385 15/388 div/17.4 31/17.8
50 10/739 9/745 402/17.5 18/17.8
70 9/1006 8/1057 44/17.8 15/17.9

Table 7.11: Tteration counts and times for ¢(r) = r*logr.

CHAPTER 7. NUMERICAL EXAMPLES 105

Algorithm A | Algorithm A | Algorithm B | Algorithm B
" 7 | without Krylov | with Krylov | without Krylov | with Krylov
10 21/1.33 15/1.34 div/0.181 25/0.184
20 11/2.46 9/2.47 380/0.182 16/0.186
400 | 30 7/3.60 7/3.63 27/0.192 12/0.196
50 6/5.90 6/6.30 11/0.202 9/0.205
70 5/9.05 5/9.00 9/0.211 7/0.213
10 30/6.78 20/6.79 div/0.927 33/0.934
20 15/12.6 11/12.6 div/0.937 19/0.937
900 | 30 10/18.4 9/18.4 95/0.950 15/0.952
50 7/32.0 6/32.7 16/0.974 11/0.975
70 6/46.8 5/46.8 11/0.997 9/0.997
10 41/33.5 23/35.2 div/4.60 41/4.60
20 16/61.9 14/62.0 div/4.61 23/4.61
2000 | 30 10/90.9 9/91.0 div/4.66 17/4.68
50 7/163 7/163 20/4.71 11/4.71
70 6/231 6/232 13/4.77 9/4.86
10 66/75.5 28/75.5 div/10.3 48/10.6
20 18/139 13/141 div/10.3 25/10.6
3000 | 30 11/203 10/213 div/10.4 19/10.6
50 7/370 7/378 26/10.5 13/10.6
70 6/522 6/529 15/10.6 10/10.7
10 82/212 32/212 div/28.8 55/29.7
20 23/389 14/394 div/28.9 27/29.9
5000 | 30 13/573 11/578 div/29.0 20/30.0
50 8/1048 7/1065 35/29.1 14/30.1
70 6/1484 6/1550 19/29.2 10/30.1

Table 7.12: Iteration counts and times for ¢(r) = 7.

CHAPTER 7. NUMERICAL EXAMPLES 106

operations per iteration than Algorithm A. This is illustrated by the iteration
times. Hence Algorithm B combined with the Krylov subspace technique is

the best choice.

7.3 Final remarks

We have found that Algorithm B with the Krylov subspace technique is the
best choice of the iterative methods presented here. Unfortunately, however,
the average time for the preliminary work is high compared to the average
time per iteration for the algorithm.

The preliminary work includes constructing the sets L, k=1,...,n—q.
Goodsell (2000) presents a fast procedure for this task in two dimensions,
but efficient ways to compute L, £ = 1,...,n — ¢, in higher dimensions
have to be found. For the experiments presented in the previous section,
the construction of the sets Ly, k = 1,...,n — ¢, required O(ng(n — q))
operations. There exist better algorithms for this task using tree structures.

The coefficients ;\kj, j € Ly, k=1,...,n — q, are calculated before the
first iteration by solving the interpolation problem on £, by direct methods,
which require O(¢®) operations for every set L. Thus this work involves
O(q*(n — q)) operations. It might be better to generate the coefficients ij,
j € Ly, k=1,...,n—q, by an updating procedure. Thus one might take
advantage of the fact that, if the n x n matrix A introduced in (2.1.20) is
known for an interpolation problem on n points, then adding a point and
extending the matrix A for this new interpolation problem can be done in
O(n?) operations.

Experiments with random orderings of the data points (retaining the last

three or four points in the case of thin plate spline interpolation) have been

CHAPTER 7. NUMERICAL EXAMPLES 107

Figure 7.2: Residuals on a square grid after 11 iterations when Algorithm A

with the multiquadric as basis function was used.

tried. No significant changes to the iteration counts were found. Therefore
the work of ordering the data points may not be necessary.

Some preliminary numerical experiments with multiquadric functions in
two dimensions have been attempted, and they were very successful. Figure
7.2 displays the residuals when Algorithm A with the multiquadric as basis
functions was applied to Problem II. It only took 11 iterations to achieve an
accuracy of 107, With multiquadrics the success of the iterative method

depends on the choice of the undetermined positive constant c. If ¢ is set to

CHAPTER 7. NUMERICAL EXAMPLES 108

the minimal nearest neighbour distance, the algorithms perform very well,
but the user might want to choose a larger constant depending on the inter-
polation problem. Therefore the multiquadric radial basis function was not
included in the main stream of numerical experiments.

It is hoped that the importance of the semi-inner product that has been
shown will assist future research on choosing the functions x, k=1,...,n—
q, for the algorithms. A different choice of functions might have better or-
thogonality properties. It will be interesting to see how all the given algo-
rithms will perform with radial basis functions that are different from thin

plate splines and the linear basis function.

Chapter 8

Conclusions

Since their inception (Hardy, 1971), radial basis functions have succeeded in
many areas of science, including geophysics, signal processing, meteorology,
orthopaedics, pattern recognition and computational fluid dynamics (Hardy,
1990). Unfortunately, a drawback is that the direct computation of the co-
efficients of a radial basis function interpolant to n data may require O(n?)
operations. It has been shown, however, that radial basis functions have a key
property which makes the construction of fast iterative techniques successful.
It is that they have a native vector space equipped with a semi-inner product.
This key feature is the essential ingredient of the convergence analysis of the
first algorithm presented here, Algorithm A. Every step either reduces the
semi-norm of the difference between the required interpolant and the cur-
rent approximation or leaves it unchanged. Indeed, Algorithm A constructs
a set of linearly independent functions with good orthogonality properties,
and then every step changes the current approximation by a multiple of one
of these functions, such that the new semi-norm is minimized. To put Al-

gorithm A into a well-known mathematical context, we have shown that it

109

CHAPTER 8. CONCLUSIONS 110

is equivalent to solving a certain symmetric and positive definite system of
equations by Gauss—Seidel iteration. This system was derived from the orig-
inal system of interpolation equations by preconditioning it from the left and
from the right by certain matrices. The transformed matrix contains the
semi-inner products between the chosen basis functions. Thus good orthog-
onality properties are important to the speed of convergence.

Iterations that apply the Jacobi method are an alternative to the Gauss—
Seidel technique, which brings us to Algorithm B. Unfortunately, divergence
occurs in certain cases when Algorithm B is used, but this can be avoided by
including a line search at the end of each iteration such that the semi-norm
of the difference between the required interpolant and the current approxi-
mation is reduced.

The symmetric and positive definite system of equations can also be
solved by the conjugate gradient method. Dyn et al. (1983) suggest a dif-
ferent and very successful choice of preconditioners for this interpolation
problem.

We have demonstrated that the conjugate gradient method described here
is equivalent to the Krylov subspace technique applied to Algorithm B. The
Krylov subspace technique builds up a subspace of radial basis functions,
the current approximation being the best approximation from this subspace.
Each iteration enlarges this subspace by adding a radial basis function which
is orthogonal to the current subspace with respect to the semi-inner product
(2.2.22). The numerical experiments show that the Krylov subspace method
applied to Algorithm B is very successful, giving a low number of iterations,
while at the same time requiring a low number of operations per iteration.
Therefore we recommend this method to compute radial basis function in-

terpolants, but some further research should be conducted to make the pre-

CHAPTER 8. CONCLUSIONS 111

liminary calculations more efficient.

It is hoped that interpolation to hundreds of thousands of data will be-
come a routine calculation. Thus the range of applications which can take
advantage of the smoothness and accuracy properties of interpolation with

radial basis functions will be increased.

References

R.K. Beatson, J.B. Cherrie and C.T. Mouat (1999), “Fast fitting of radial
basis functions: Methods based on GMRES iteration”, Advances in
Computational Mathematics, Vol. 11, pp. 253-270.

R.K. Beatson, G. Goodsell and M.J.D. Powell (1995), “On multigrid tech-
niques for thin plate spline interpolation in two dimensions”, Lectures

in Applied Mathematics, Vol. 32, pp. 77-97.

R.K. Beatson and W.A. Light (1997), “Fast evaluation of radial basis func-
tions: methods for two-dimensional polyharmonic splines”, IMA Jour-

nal of Numerical Analysis, Vol. 17, pp. 343-372.

R.K. Beatson, W.A. Light and S. Billings (1999), “Fast solution of the
radial basis function interpolation equations: Domain decomposition
methods”, Technical Report No. 2000/21, Department of Mathematics

and Computer Science, University of Leicester.

R.K. Beatson and G.N. Newsam (1992), “Fast evaluation of radial basis
functions: 1", Computers Math. Applic., Vol. 24, No. 12, pp. 7-19.

R.K. Beatson and M.J.D. Powell (1994), “An iterative method for thin-plate
spline interpolation that employs approximations to the Lagrange func-

tions”, Numerical Analysis 1993, eds. D.F. Griffiths and G.A. Watson,

112

REFERENCES 113

Longmans (Harlow).

M.D. Buhmann (1990), “Multivariate cardinal interpolation with radial ba-
sis functions”, Constr. Approz., Vol. 6, pp. 225-256.

J. Duchon (1975), “Fonctions-spline du type plaque mince dimension 27,

Technical Report 231, Universite de Grenoble.

J. Duchon (1976), “Fonctions-spline & energie invariante par rotation”,

Technical Report 27, Universite de Grenoble.

J. Duchon (1977), “Splines minimizing rotation-invariant seminorms in So-
bolev spaces”, in Constructive Theory of Functions of Several Vari-
ables, Lecture Notes in Mathematics 571, eds. W. Schempp and K.
Zeller, Springer-Verlag (Berlin), pp. 85-100.

N. Dyn (1987), “Interpolation of scattered data by radial functions”, Topics
in multivariate approrimation, eds. C.K. Chui, L.L. Schumaker and F.

Utreras, Academic Press (New York), pp. 47-61.

N. Dyn and D. Levin (1981), “Bell shaped basis functions for surface fit-
ting”, Approximation Theory and Applications, ed. 7. Ziegler, Aca-
demic Press (New York), pp. 113-129.

N. Dyn and D. Levin (1983), “Iterative solution of systems originating from
integral equations and surface interpolation”, SIAM J. Numer. Anal.,

Vol. 20, pp. 377-390.

N. Dyn, D. Levin and S. Rippa (1986), “Numerical procedures for surface
fitting of scattered data by radial functions”, SIAM J. Sci. Statist.
Comput., Vol. 7, pp. 639-659.

REFERENCES 114

A.C. Faul and M.J.D. Powell (1998), “Proof of convergence of an itera-
tive technique for thin plate spline interpolation in two dimensions”,

Advances in Computational Mathematics, Vol. 11, pp. 183-192.

A.C. Faul and M.J.D. Powell (1999), “Krylov subspace methods for radial
basis function interpolation”, Numerical Analysis 1999, eds. D.F. Grif-

fiths and G.A. Watson, CRC Press LLC, pp. 115-141.

R. Fletcher (1987), “Practical methods of optimization”, John Wiley & Sons
(Chichester).

R. Franke (1982), “Scattered data interpolation: tests of some methods”,
Math. of Comp., Vol. 38, pp. 181-200.

G. Goodsell (1997), “A multigrid type method for thin plate spline inter-
polation on a circle”, IMA J. Numer. Anal., Vol. 17, pp. 321-327.

G. Goodsell (2000), “On finding the p-th nearest neighbours of scattered
points in two dimensions for small p”, Computer Aided Geometric De-

sign, Vol. 17, pp. 387-392.

R.L. Hardy (1971), “Multiquadric equations of topography and other irreg-
ular surfaces”, J. Geophysics Res., Vol. 76(8), pp. 1905-1915.

R.L. Hardy (1990), “Theory and applications of the multiquadric-biharmonic
method”, Comput. Math. Applic., Vol. 19, pp. 163—-208.

A. Iserles (1996), “A First Course in the Numerical Analysis of Differential

Equations”, Cambridge University Press.

W. Madych and S. Nelson (1988), “Multivariate interpolation and con-
ditionally positive definite functions”, Approx. Theory Appl., Vol. 4,
pp. 77-89.

REFERENCES 115

J. Meinguet (1979), “Multivariate interpolation at arbitrary points made
simple”, Journal of Applied Mathematics and Physics, Vol. 30, pp. 292—
304.

C.A. Micchelli (1986), “Interpolation of scattered data: distance matrices
and conditionally positive definite functions”, Constr. Approx., Vol. 2,

pp. 11-22.

J. Levesley and W.Light (1999), “Direct form seminorms arising in the
theory of interpolation by translates of a basis function”, Advances in

Computational Mathematics, Vol. 11, pp. 161-182.

M.J.D. Powell (1992), “The theory of radial basis function approximation
in 1990”, in Advances in Numerical Analysis, Volume II: Wavelets,
Subdivision Algorithms, and Radial Basis Functions, ed. W.A. Light,
Clarendon Press (Oxford), pp. 105-210.

M.J.D. Powell (1993), “Truncated Laurent expansions for the fast evaluation
of thin plate splines”, Numerical Algorithms, Vol. 5, pp. 99-120.

M.J.D. Powell (1994), “Some algorithms for thin plate spline interpolation
to functions of two variables”, Advances in Computational Mathemat-
ics: New Delhi, India, eds. H.P. Dikshit and C.A. Micchelli, World
Scientific Publishing Co. (Singapore), pp. 303-319.

M.J.D. Powell (1996), “A review of methods for multivariable interpolation
at scattered data points”, The State of Art in Numerical Analysis, eds.
[.S. Duff and G.A. Watson, Clarendon Press (Oxford), pp. 283-309.

M.J.D. Powell (1996), “A review of algorithms for thin plate spline interpo-

lation in two dimensions”, Advanced Topics in Multivariate Interpola-

REFERENCES 116

tion, eds. F. Fontanella, K. Jetter and P.-J. Laurent, World Scientific
Publishing Co. (Singapore), pp. 1-20.

M.J.D. Powell (1997), “A new iterative algorithm for thin plate spline inter-
polation in two dimensions”, Annals of Numerical Mathematics, Vol. 4,

pp. 519-527.

R. Schaback (1993), “Comparison of radial basis function interpolants”, in
Multivariate Approximations: From CAGD to Wavelets, eds. K. Jetter
and F. Utreras, World Scientific (Singapore), pp. 293-305.

R. Schaback (1999), “Native Hilbert spaces for radial basis functions 17,
International Series of Numerical Mathematics, Vol. 132, pp. 255-282.

R. Sibson and G. Stone (1991), “Computation of thin-plate splines”, SIAM
Journal on Scientific and Statistical Computing, Vol. 12, pp. 1304-1313.

List of symbols

I,

ij

the real numbers,

the d-dimensional space of real numbers,

all polynomials in d variables of total degree at most m,

the linear space of thin plate splines,

the semi-inner product on S,

the semi-norm on S arising from the semi-inner product (-, -)
the linear space spanned by functions which are translates of a
conditionally definite function 6, and IT,,(R?) for a suitable
integer m,

the semi-inner product on Sy,

the semi-norm on Sy arising from the semi-inner product (-,)y,
takes the value +1 if is conditionally positive definite, and —1
if 6 is conditionally negative definite,

subspace of Sy consisting of functions with centres at the last ¢
data points z,,_ ;41 ..., 2,

identity map on Sy,

k x k identity matrix,

Kronecker delta.

117

