






shown in Fig. 1, Bottom. These diverse systems involve various
types of interactions; feature bulk, interface, and confinement
regions; and go up to a chemical composition of four elements.
In all cases, the training set of the model is exclusively based on a
set of structures generated by AIMD simulations, as described in
detail in Materials and Methods. Given that input, all six models
have been generated without further adjustments. For all these
systems, convergence was achieved with a compact training set of
roughly 300 structures, highlighting the advantages of the active
learning procedure.

Automated Quality Assessment of Committee Neural
Network Potentials
An automated training procedure calls for an efficient and robust
validation protocol. Through extensive comparisons of our mod-
els to the underlying ab initio reference trajectories we have
identified a general set of properties that serve to provide a
stern test of our models. These can be evaluated for any sys-
tem of interest and provide a broad overview of the performance
of a MLP, while further tests are included in SI Appendix. The
selected properties exemplify the performance of the models
for structural and dynamical properties as well as the preci-
sion of the force prediction. Specifically, the performance for
structural properties is assessed by the match of the radial dis-
tribution functions (RDFs) for all involved species comparing
the ab initio reference to the model prediction based on molec-
ular dynamics simulations. All RDFs of a given system provide
a comprehensive summary of the structural arrangement of the
system of interest and are thus ideal to evaluate the performance
of the machine learning model for thermodynamic properties.

Dynamical properties are validated by comparing the species-
resolved vibrational density of states (VDOS) obtained with the
model and the reference, which gives a comprehensive overview
of intermolecular and intramolecular motions. Finally, the force
prediction of the model is validated by the force root mean
square error (RMSE) of a randomly selected subset of struc-
tures from the ab initio reference simulation. This quantity is
chosen since the forces ultimately drive the molecular dynamics
simulations when using the model. In order to make these prop-
erties comparable for all systems, they are reduced into a score
by suitable difference measurements and subsequent averaging
over the involved species as described in detail in SI Appendix.
The entire testing protocol functions in an automated manner
and efficiently provides a condensed summary of the accuracy of
each model.

The resulting summary of the quality assessment for all six
studied systems is shown in Fig. 2. From this analysis it is clear
that all models reproduce the three selected properties with
rather high precision, where the RDF score ranges between 100
and 98%, the VDOS score between 98 and 96%, and the force
score between 95 and 86%. To illustrate the meaning of these
values, we depict the individual functions (RDF and VDOS) and
the force correlation for the solvated fluoride ion C-NNP model
along with the total scores in Fig. 2, while all other properties for
the remaining models are compiled in SI Appendix. This compar-
ison shows that the selected properties are reproduced with good
agreement to the ab initio reference method by our six C-NNP
models. In addition, all C-NNP results included in this perfor-
mance summary are based on substantially extended simulation
times compared to the AIMD references as described in detail

Fig. 2. Performance assessment of the C-NNP for six different aqueous systems. (Left) Bar plot featuring the summary of the accuracy for the RDFs, the
VDOS, and the force predictions (Force) in percent for each system. (Right) The species resolved functions (RDF and VDOS [in logarithmic scale]) and the
force correlation of the C-NNP model with respect to the reference method for the solvated fluoride ion (F� −H2O) C-NNP model, which are condensed
into the three scores for the fluoride/water C-NNP model, shown in Left. Details of the suitable difference measure and reduction for the three properties
can be found in SI Appendix.
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in SI Appendix. This highlights the robust nature of our models,
enabling reliable predictions over long time scales. We note that
statistical fluctuations due to the more converged nature of our
C-NNP simulations account only for very minor changes of the
final property scores on the order of 0.5%.

Besides the three sets of properties that we have quantitatively
validated here, we have performed additional performance tests,
in particular for the more complex systems of water confined in
nanotubes and between MoS2 sheets as well as water on TiO2.
These tests include the detailed analysis of the global structure
of the solid and liquid subsystems, as encoded by the density pro-
files, the hydrogen bonding of water in the various systems, and
the orientation of water with respect to the involved interfaces.
For all these tests, which are presented in detail in SI Appendix,
we observe good agreement between our C-NNP results and the
AIMD reference simulations within the statistics of those shorter
AIMD runs. We are therefore confident that our performance
overview, presented in Fig. 2, underlines the high quality of our
C-NNP models.

The quality assessment for the six different systems included in
this work clearly highlights that our simple and straightforward
process to develop MLPs is able to provide robust and accurate
models for the selected thermodynamic condition. Compared to
the typical DFT setups employed here, the evaluation of the
potential energy and atomic forces is usually four to five orders
of magnitude faster with the C-NNP model. As a consequence,
all chosen systems could now be studied in detail using exhaus-
tive simulations that are accessible with the developed models.
Given the focus on general properties in the testing protocol,
we expect that it could prove useful for the development of
potentials for various other solid–liquid systems of technological
and/or scientific interest.

Reaching Longer Length and Time Scales
Let us finally showcase the potential of the presented methodol-
ogy to extend the length and time scales of molecular simulations
and thus further the understanding of a system of interest. For
that purpose we investigate structural and dynamical properties
of water in contact with rutile TiO2(110). This system is of sci-
entific and technological importance due to the application of
TiO2, for example, in photocatalysis or self-cleaning coatings and
sensors. In addition, it is an established prototypical oxide system
in surface science (63) and a rather controversial benchmark sys-
tem both for theory and experiment (64). For example, the extent
of the mobility of water in the contact layers, relevant, e.g., for a
detailed understanding of catalytic processes, has been the focus
of substantial research (65–69).

In order to shed light on these questions, we have used the
developed C-NNP model to simulate rutile TiO2(110) in contact
with water. The model was constructed from a 30-ps AIMD sim-
ulation at 300 K with the optB88-vdW functional (70), involving
a four O-Ti-O trilayer slab in contact with 80 water molecules,
forming a 1.5-nm water film on the surface. After the develop-
ment and benchmarking of the C-NNP model as shown in the
previous section, we made a 2 × 2 model of the interface (result-
ing in a TiO2/H2O setup with 1,728 atoms) and ran 5 ns of
MD. Reaching such length and time scales with AIMD simula-
tions would represent an enormous computational burden, while
they can be routinely performed with the C-NNP models. Fur-
ther details of these simulations can be found in Materials and
Methods.

First, we analyze the water structuring by looking at the den-
sity profile of water on the TiO2 surface shown in Fig. 3B.
The first important observation is the close match between
the crude density profile obtained for our AIMD simulation
and the statistically converged profile obtained with the signifi-
cantly extended C-NNP simulation. Overall, we observe a highly

A

B

C

D

E F

Fig. 3. Properties of water on the rutile TiO2 (110) surface. (A) A represen-
tative section of the simulation cell including the four distinct adsorption
sites at the interface (Ti5c, fivefold coordinated titanium; Ti5c, sixfold coordi-
nated titanium; O3c, threefold coordinated oxygen; and Obr, oxygen bridge
site). (B) The mass density profile based on all water atoms, (C) the water
diffusion constant separated into parallel (xy) and perpendicular (z) com-
ponents, and (D) as a function of the distance from the surface, the C-NNP
atomic force error estimate for structures from the C-NNP simulation and
for all structures from the original AIMD simulation. This error estimate
is obtained as a direct product of the committee disagreement σF and a
scaling factor α to match the force RMSE of a validation set as proposed
in ref. 50. The Inset in D depicts the average atomic force error estimate
of the water atoms as a function of the simulation time. (E and F) The
free energy profile of the water adsorbed in the two contact layers from
AIMD and C-NNP simulations, respectively. Titanium atoms are shown in
gray, oxygen atoms are shown in red, and hydrogen atoms are shown
in white.
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structured arrangement of water in the first two layers, which cor-
respond to the water adsorbed on the 5-coordinated titanium
site for the first peak and the water above the bridging oxy-
gen site for the second peak, as shown in the snapshot in Fig.
3A. This density profile is substantially more structured than
for AIMD simulations of water on rutile (66) with the PBE
functional, which highlights the complex dependence of inter-
facial properties on the chosen functional. Given the improved
understanding of the dependence of the properties of water
on the DFT functional, in particular regarding the inclusion
of dispersion interactions (55), we conclude that modern DFT
approaches predict a highly structured arrangement of water
on the rutile surface reaching up to about 1 nm into the liq-
uid. This is also in good agreement with the density profiles
obtained from MLP simulations of water on the anatase (101)
surface (37) that used the SCAN functional as the reference
method.

In a next step, we evaluate the water diffusion coefficient
resolved by the distance from the TiO2 surface. Specifically,
we make use of the mean square displacement, which we spa-
tially decompose based on the position of each water molecule
at zero delay (71)—an approach made feasible by the exten-
sive statistics provided by our C-NNP model. We then obtain a
local estimate of the diffusion coefficient by the well-known Ein-
stein relation, which can be evaluated separately for the parallel
(xy) and perpendicular (z) directions with respect to the inter-
face. Fig. 3C depicts the resulting water diffusion constant Dxy

and Dz as a function of the distance from the TiO2 surface. As
anticipated from the very structured density profile, the mobil-
ity close to the surface is reduced substantially, where essentially
no diffusion is observed in the strongly adsorbed contact layer.
Beyond the first and second layer, the diffusivity in the xy direc-
tion increases steadily up to the water–vacuum interface. At the
same time, Dz features a plateau around 1 nm from the surface
and a substantial increase in diffusion toward the vapor interface.
Overall, this analysis highlights the strong influence of the TiO2

interface on the water diffusion stretching more than 1 nm into
the liquid.

Next, we address the accuracy of our extended C-NNP simula-
tions by analyzing the intrinsic error estimate of our model, given
by the atomic force committee disagreement σF. Fig. 3D resolves
this local error estimate of the atomic force components for all
water atoms as a function of the distance from the surface. This
error estimate is a product of the committee disagreement σF, as
directly provided by our C-NNP simulations, and a scaling fac-
tor α determined to match the force RMSE of a validation set as
proposed in ref. 50. In addition, we have evaluated this error esti-
mate with our C-NNP model for all configurations of the original
AIMD simulation to assess if the increased system size or C-NNP
generated structures lead to higher errors. Overall, we observe
error estimates between 40 and 80 meV/Å over the entire water
region with only slightly higher values close to the TiO2 surface,
indicating the increased complexity of the involved interactions
in this inhomogeneous region. Furthermore, the error (averaged
over all water atoms) does not deteriorate over the course of the
5-ns-long trajectory, fluctuating around an average of 60 meV/Å,
as shown in Fig. 3D, Inset). Such atomic force errors are sim-
ilar or even smaller than those reported for other developed
MLPs, e.g., for pure water (8–10, 44). At the same time, the error
estimate obtained for the AIMD configurations features essen-
tially the same distance resolved profile, which reveals that our
C-NNP simulations are able to conserve their predictive power,
while substantially extending both time and length scales of the
simulations.

Finally, we analyze the free energy profile of water adsorbed
in the first two contact layers on the TiO2 surface, as depicted in
Fig. 3 E and F for the AIMD and C-NNP simulation, respec-

tively. From the direct comparison between the AIMD and
C-NNP results it is clear that the limited statistics of the shorter
AIMD simulation is insufficient to provide reliable insight into
this property. Only with the extensive sampling enabled by the
C-NNP model, the free energy profile can be fully converged.
The C-NNP free energy profile clearly underlines the strong
preference for water adsorption above the fivefold coordinated
titanium sites in the first contact layer and the slightly weaker
adsorption of water around the sixfold coordinated titanium
and threefold coordinated oxygen sites in the second contact
layer. In between these adsorption sites, substantial free energy
barriers are observed, highlighting the immobile nature of the
two contact layers as also revealed by the analysis of the water
diffusion.

In summary, the extensive simulations with our C-NNP model,
obtained in a straightforward and efficient workflow, provide
detailed insight into the properties of water on the rutile sur-
face. We observe a pronounced water layering effect with strong
density fluctuations and clear evidence of a highly structured
arrangement of water in the first adsorption layers. In addition,
our analysis of the water dynamics reveals almost no water diffu-
sion close to the interface and a strong influence on the diffusion
stretching more than 1 nm into the liquid. The treatment of a
complex interfacial system such as this one requires an accurate
description of the binding at the various adsorption sites as well
as long-time sampling of the dynamics. The C-NNP model devel-
oped here delivers on both fronts, which highlights the potential
of our approach to deepen understanding of technologically
relevant solid–liquid systems.

Conclusion
In this work, we have presented a machine learning frame-
work that makes the generation of MLPs simple. We have
also showcased its versatility for the description of a range of
complex aqueous systems. Making use of committee neural net-
work potentials, we have shown how MLPs can be obtained in
a straightforward and robust process from a single reference
simulation. By essentially removing the need to adjust any hyper-
parameters, a new system of interest can be tackled in a direct,
data-driven way. We have demonstrated the potential of this
approach employing it for six complex liquid and solid–liquid
systems and have evaluated the quality of the resulting models
in detail for various properties underlining the high accuracy
of our models. This important final step is realized with an
automated validation protocol that is fully integrated into our
framework. These developments are directly accessible to the
community as they build exclusively on open-source solutions,
and we make our underlying software package and all templates
available (43).

In its spirit similar to on-the-fly learning techniques, we depart
from the goal of a high degree of transferability or generality
to concentrate exclusively on the thermodynamic condition rele-
vant for the chosen scientific question. Under these constraints,
we have shown how a robust and accurate MLP can be obtained
with limited user input in an uncomplicated process. We note
that we have also explored the application of our models for
elevated and lowered temperatures, which was possible without
problems in a ±30 K regime. During such simulations, the intrin-
sic error estimate of our approach is a very useful tool to gauge
the validity of the results. Due to these promising signs, we plan
to systematically validate the robustness of our models to ven-
ture beyond the chosen thermodynamic state point, for example,
to describe variations in pressure.

We note that we built our development on established compo-
nents, such as an efficient ML structure–energy representation
and active learning concepts. At the same time, we expect that
the concepts laid out in this work are transferable to other MLPs
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and active learning approaches, making it possible to achieve
similar results. Our work presents a change in perspective, where
relatively little effort is put into creating an intermolecular poten-
tial which, despite concentrating on a subsection of phase space,
is still robust and accurate enough to be used to describe the non-
trivial behavior of complex molecular systems. The importance
clearly is not in the individual pieces but rather in the end-to-end
framework and the broad range of applications made possible.
This work therefore enables simulations that were not possible a
short time ago, pushing forward the straightforward and reliable
application of MLPs.

Looking to the future, we have limited ourselves to aqueous
systems with four species in this work. However, we are confi-
dent that systems with more element types can also be tackled
with our approach. In addition, we have not explored reactive
processes in this study. Since MLPs are able to describe bond
breaking and bond making events by design, we again antici-
pate the straightforward application of our methodology to such
situations. This will be especially important to investigate inter-
esting surface reaction phenomena, such as water dissociation
on reactive surfaces or the recently reported reversible hydrol-
ysis of zeolites in contact with water (72). Key to a successful
application in such situations will be the sampling of the rel-
evant reactive process by the initial AIMD simulation used as
input to our active learning protocol. Finally, we are currently
exploring a training protocol in which structures are generated
by classical molecular dynamics as input for our active learning
protocol to minimize the need for expensive ab initio calcula-
tions. In this approach the expensive quantum computing engine
is only used to obtain the ab initio potential energies and atomic
forces for those configurations identified to be most important
for the generation of the model. Such an approach has potential
for additional cost savings over the one presented here and does
not require expertise in AIMD simulations, thus more readily
opening up the approach to researchers from the classical force
field community.

In our six showcase applications of complex aqueous systems
we have developed models with different DFT functionals, all
of which represent reasonable choices for the aqueous systems
studied. However, this illustrates a broader issue which is that
there is currently no perfect DFT functional for water and com-
plex aqueous interfaces. We believe that the approach developed
here could become a valuable tool in this long-standing quest
to find suitable DFT functionals. Since our procedures provide
the ability to reveal the true converged thermal performance of
any given functional for a realistic system, at a modest cost, the
systematic exploration of the performance of DFT methods for
complex disordered systems becomes feasible. This makes it pos-
sible to go beyond the usual energetic benchmarks of relatively
small systems in the absence of temperature and thus facilitates
direct comparison with experiment. Due to the moderate size
of our training sets, our framework is also expected to be eas-
ily extendable to more expensive ab initio methods, e.g., at the
hybrid DFT level or considering explicit electron correlation,
thus making these methods available for the realistic simulation
of complex interfacial systems.

Overall, the developments reported herein will enable the
investigation of complex aqueous processes such as water struc-
turing in contact with interfaces and wetting or ice formation

on surfaces in a straightforward manner. Although here we
applied it to aqueous systems, we believe that the methodol-
ogy will also prove useful for other materials and liquids in
contact with solids, as well as general solvation phenomena,
enabling the fast screening of different materials at ab ini-
tio accuracy. It will also be particularly useful for situations
where long sampling is required as for the exploration of free
energy surfaces, or calculations of dynamical properties, such
as the friction or viscosity of liquids in contact with inter-
faces. In summary, this work outlines a straightforward strat-
egy for the uncomplicated yet accurate investigation of many
technologically and scientifically relevant systems by molecular
simulations.

Materials and Methods
The introduced machine learning framework has been implemented in the
AML Python package, which interleaves the required simulation packages
and data manipulation steps in a user-friendly environment. The AML pack-
age is available free of charge at https://github.com/MarsalekGroup/aml and
enables the straightforward generation of a C-NNP model given a reference
trajectory as input. With this code all six C-NNP models were developed
for the various aqueous phase systems studied here. NNP optimizations
were performed with the open-source n2p2 code (73) using the optimiza-
tion parameters and symmetry functions as provided in the template file
in the associated data repository for this paper. All additional information
on the C-NNP fitting procedure can be found in SI Appendix, while all
training input files, training sets, and parameters of the final models are
publicly available at https://doi.org/10.5281/zenodo.5235246 (74). The ref-
erence AIMD simulations used as the starting point for our C-NNP models
employed quite different DFT settings, while all having been performed
with the CP2K simulation package (75). We provide full detail about these
reference simulations in SI Appendix, but the typical simulation setups con-
sist of 64 to 110 water molecules reaching simulation times between 30 and
130 ps. MD simulations using the C-NNP models were also performed with
CP2K, which features an open-source implementation of the C-NNP method-
ology since release 8.1. All C-NNP simulations for our validation protocol
were propagated for at least 0.5 ns to allow for the converged computation
of the RDF and VDOS. Further details of the validation protocol and the
associated simulations can be found in SI Appendix, while the validation
can be performed with the AML Python package. The C-NNP simulations of
the TiO2 water system were propagated for 5 ns for a 2× 2× 1 supercell
of the original AIMD setup, resulting in total in 1,728 atoms making up 320
water molecules on four O-Ti-O trilayers in a 23.672, 25.988, 42.0 Å peri-
odic box. This simulation employed a molecular dynamics time step of 1 fs,
while using deuterium masses for the hydrogen atoms. The temperature of
300 K was maintained with a canonical sampling through velocity rescaling
thermostat (76).

Data Availability. Algorithms and computer codes have been deposited
on GitHub (https://github.com/MarsalekGroup/aml), while datasets are
available in Zenodo (https://doi.org/10.5281/zenodo.5235246).
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