Making cities

Economies of production and urbanization in Mediterranean Europe, 1000–500 BC

Edited by Margarita Gleba, Beatriz Marín-Aguilera & Bela Dimova
Making cities
Making cities
Economies of production and urbanization in Mediterranean Europe, 1000–500 BC

Edited by Margarita Gleba, Beatriz Marín-Aguilera & Bela Dimova

with contributions from
Contents

Contributors ix
Figures xiii
Tables xvii

Chapter 1 Making cities: economies of production and urbanization in Mediterranean Europe, 1000–500 bc 1
 Bela Dimova, Margarita Gleba & Beatriz Marín-Aguilera
 Definitions of urbanism 2
 Urbanism and textiles 2
 Contributions to this volume 3
 Cover illustration 4

Part I Eastern Mediterranean

Chapter 2 Argilos: the booming economy of a silent city 9
 Jacques Perreault & Zisis Bonias

Chapter 3 Regional economies and productions in the Thermaic Gulf area 21
 Despoina Tsiakaki
 Thermaic Gulf economies and production 22
 Ancient Therme and its harbour 26
 Conclusion 34

Chapter 4 Production activities and consumption of textiles in Early Iron Age Eretria 39
 Karl Reber
 Eretria in the Early Iron Age 39
 Eretria’s economic situation 41
 The production and consumption of textiles 41
 Conclusion 45

Chapter 5 Productive economy and society at Zagora 47
 Lesley A. Beaumont

Chapter 6 Making Cretan cities: urbanization, demography and economies of production in the Early Iron Age and the Archaic period 57
 Antonis Kotsonas
 Urbanization 58
 Demography 66
 Economies of production 69
 Conclusion 71

Chapter 7 Production, urbanization, and the rise of Athens in the Archaic period 77
 Robin Osborne

Chapter 8 Making Corinth, 800–500 bc: production and consumption in Archaic Corinth 89
 Ioulia Tzonou
 Eighth century, to the end of the Geometric period and the transition into the Early Protocorinthian, 720 bc 95
 Seventh century, the Protocorinthian and Transitional period into Early Corinthian, 720–620 bc 97
 Sixth century, the Corinthian period, 620–500 bc 98
 Conclusion 100
Part II Central Mediterranean

Chapter 9 Making cities in Veneto between the tenth and the sixth century BC

Giovanna Gambacurta

Urbanization criteria 107
Landscape and population 109
Settlements 110
Necropolei 111
Borders and shrines 112
Inscriptions 114
Myths 115
Conclusion 116

Chapter 10 Attached versus independent craft production in the formation of the early city-state of Padova (northeastern Italy, first millennium BC)

Massimo Vidale & Paolo Michelini

Materials and methods 124
General patterns of industrial location 126
Methodological issues 128
The craft industries through time 130
New craft locations: size and size variations through time 131
Duration of urban craft workshops 132
Ceramic, copper and iron processing sites: size versus duration of activities 133
Discussion 134
A historical reconstruction 138
Onset of proto-currency and the issue of remuneration 141
Conclusion 142

Chapter 11 Resource and ritual: manufacturing and production at Poggio Civitate

Anthony Tuck

Chapter 12 Perugia: the frontier city

Letizia Ceccarelli & Simon Stoddart

Geology and culture 161
History of research 163
The emerging city from the rural landscape 165
The topographical development of the city 166
The city and its hinterland 168
The rural settlements associated with the city 169
Conclusion 172

Chapter 13 Tarquinia: themes of urbanization on the Civita and the Monterozzi Plateaus

Giovanna Bagnasco Gianni, Matilde Marzullo & Claudia Piazzì

Approaching themes of urbanization at Tarquinia 177
On the positioning of the protostoric site of Calvario and its road links 178
The Calvario village on the Monterozzi Plateau and its economic activities during the eighth century BC 180
The process of urbanization based on the evidence for the fortifications 185
The limits of Tarquinia before its fortification, a theoretical approach 188

Chapter 14 Prolegomena to the material culture of Vulci during the Orientalizing period in the light of new discoveries

Simona Carosi & Carlo Regoli

New data from Poggio Mengarelli Necropolis 195
Conclusion 202
Chapter 15 Defining space, making the city: urbanism in Archaic Rome 205
 JEFFREY A. BECKER
 Making civic space – the Forum Romanum and its environs 206
 Monumentality 210
 Peri-urban evidence 211
 Discussion 214

Chapter 16 Commodities, the instability of the gift, and the codification of cultural encounters in Archaic southern Etruria 219
 CORINNA RIVA
 Agricultural surplus and a new funerary ideology 220
 Oversize vessels and fixing the gift 221
 Codification in the encounter 222
 Conclusion 226

Chapter 17 The Etruscan pithos revolution 231
 PHIL PERKINS
 The pithos as artefact 232
 Making pithoi 236
 Using pithoi 240
 Socio-economic agency of pithoi 243
 Pithoi, economic development, and inequality 245
 Pithoi, economic growth and cities 248
 Conclusion 250

Chapter 18 Birth and transformation of a Messapian settlement from the Iron Age to the Classical period: Muro Leccese 259
 FRANCESCO MEO
 The Iron Age village 259
 The Archaic and Classical settlement 266
 The Hellenistic period and the end of the town 276

Chapter 19 Indigenous urbanism in Iron Age western Sicily 281
 MICHAEL J. KOLB & WILLIAM M. BALCO
 Settlement layout 282
 Demographic changes 286
 Production, consumption and exchange 288
 Ritual and cultic activity 290
 Conclusion 291

Part III Western Mediterranean

Chapter 20 Colonial production and urbanization in Iron Age to early Punic Sardinia (eighth–fifth century BC) 299
 ANDREA ROPPA & EMANUELE MADRIGALI
 Colonial production and amphora distribution in Iron Age Sardinia 299
 Case studies: Nora and S’Urachi 301
 Discussion 305
 Colonial economies and urbanization 309

Chapter 21 Entanglements and the elusive transfer of technological know-how, 1000–700 BC: elite prerogatives and migratory swallows in the western Mediterranean 313
 ALBERT J. NIJBOER
 Movement of peoples and goods 314
 Iron 316
 The alphabet 319
 Early monumental architecture 321
 Discussion and epilogue 323
Contributors

David Alensio
Departament de Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, C/ Montalegre 6-8, 08001 Barcelona, Spain
Email: davidasensio@ub.edu

Laura Álvarez Estapé
Independent scholar
Email: laura.alvarezestape@gmail.com

Giovanna Bagnasco Gianni
Dipartimento di Beni Culturali e Ambientali, Università degli Studi di Milano, via Festa del Perdono 7, 20122 Milano, Italy
Email: giovanna.bagnasco@unimi.it

William Balco
Department of History, Anthropology, and Philosophy, University of North Georgia, Barnes Hall 327, Dahlonega, GA 30597, USA
Email: william.balco@ung.edu

Lesley Beaumont
Department of Archaeology, Faculty of Arts & Social Sciences, The University of Sydney, A18, Sydney, NSW 2006, Australia
Email: lesley.beaumont@sydney.edu.au

Jeffrey Becker
Department of Middle Eastern and Ancient Mediterranean Studies, Binghamton University – State University of New York, 4400 Vestal Parkway East, PO Box 6000, Binghamton, NY 13902-6000, USA
Email: beckerj@binghamton.edu

Zisis Bonias
Ephorate of Antiquities of Kavala-Thasos, Erythrou Stavrour 17, Kavala 65110, Greece
Email: zbonias@yahoo.gr

Simona Carosi
Soprintendenza Archeologia Belle Arti e Paesaggio per l’area metropolitana di Roma, la provincia di Viterbo e l’Etruria meridionale, Palazzo Patrizi Clementi, via Cavalletti n.2, 00186 Roma, Italy
Email: simona.carosi@beniculturali.it

Letizia Ceccarelli
Department of Chemistry, Materials and Chemical Engineering ‘G.Natta’, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: letizia.ceccarelli@polimi.it

Bela Dimova
British School at Athens, Souidias 52, Athens 10676, Greece
Email: bela.dimova@bsa.ac.uk

Manuel Fernández-Götz
School of History, Classics and Archaeology, University of Edinburgh, William Robertson Wing, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK
Email: M.Fernandez-Gotz@ed.ac.uk

Eric Gailledrat
CNRS, Archéologie des Sociétés Méditerranéennes, UMR 5140, Université Paul Valéry-Montpellier 3, F-34199, Montpellier cedex 5, France
Email: eric.gailledrat@cnrs.fr

Giovanna Gambacurta
Dipartimento di Studi Umanistici, Università Ca’ Foscari Venezia, Palazzo Malcanton Macorà, Dorsoduro 3484/D, 30123 Venezia, Italy
Email: giovanna.gambacurta@unive.it

David García I Rubert
Departament de Prehistòria, Història Antiga i Arqueologia, Universitat de Barcelona, Carrer Montalegre 6, 08001 Barcelona, Spain
Email: dgarcia@ub.edu

Margarita Gleba
Dipartimento dei Beni Culturali, Università degli Studi di Padova, Piazza Capitanio 7, Palazzo Liviano, 35139 Padova, Italy
Email: margarita.gleba@unipd.it

Karina Grömer
Natural History Museum Vienna, Department of Prehistory, Burgring 7, 1010 Vienna, Austria
Email: karina.groemer@nhm-wien.ac.at
Figures

1.1 Map indicating the volume coverage. 4
2.1 Argilos, aerial view. 10
2.2 Argilos, general plan. 10
2.3 Small furnace in building E. 11
2.4 View of building L. 12
2.5 Plan of Koulloudis area with buildings H, L, P, and Q. 13
2.6 Building L, press-bed in room 4. 13
2.7 Building Q, room 1. 14
2.8 Building L, room 11, crushed amphorae. 16
2.9 Dividing wall between L7–L8 with remains of clay over the lower courses of stone. 17
2.10 Building L, facades of L2–L3. 18
3.1 Thermaic Gulf region. 22
3.2 Iron sword, grave offering, Nea Philadelphia cemetery, late sixth century bc. 24
3.3 Miniature iron wagon, grave offering, Sinos cemetery, late sixth century bc. 25
3.4 Methone. Pottery kilns in Building A at Sector B. 26
3.5 Ancient settlement at Karabournaki, aerial view. 27
3.6 Ancient settlement at Karabournaki, storeroom with pithoi. 28
3.7 ‘Eggshell’ type vases made at the pottery workshop at Karabournaki. 29
3.8 Karabournaki settlement metal workshop. 30
3.9 Weaving tools from the Karabournaki settlement. 31
3.10 Loom weight with stamp depicting a satyr, Karabournaki settlement. 32
3.11 Karabournaki: distribution of textile production tools within the excavated area. 33
4.1 Map of Geometric Eretria. 40
4.2 Plan of the Sanctuary of Apollo in the eighth century bc. 40
4.3 Spindle whorl with dedication, from the Sanctuary of Apollo. 42
4.4 Cruche à haut col C41 (tankard) from the Aire sacrificielle. 42
4.5 Cruche à haut col C37 (tankard) from the Aire sacrificielle. 43
4.6 Fragment of linen from Grave 10 in the Heroon Necropolis. 44
4.7 Close-ups of wool weft-faced textiles from the Heroon Necropolis. 45
5.1 View of Zagora promontory from the northeast. 48
5.2 Plan of Zagora. 49
5.3 Aerial view of Trench 11, partially excavated. 52
6.1 Map of Crete showing sites mentioned in the text. 58
6.2 Plan of Karphi. 59
6.3 Plan of the Knossos valley. 62
6.4 Plan of Prinias. 64
6.5 Plan of Azoria. 65
6.6 Knossos North Cemetery: maximum and minimum number of cremation urns over time. 68
6.7 Knossos North Cemetery: number of cremation urns per year. 68
6.8 Fortetsa Cemetery: number of burials over time. 68
6.9 Fortetsa Cemetery: number of burials per year. 68
6.10 Reconstruction of the pottery workshop at Mandra di Gipari, near Prinias. 70
7.1 Attica, 1050–900 bc. 80
7.2 Attica, 900–800 bc. 80
7.3 Attica, 800–700 bc. 81
7.4 Attica, 700–600 bc. 81
7.5 Attica, 600–500 bc. 85
8.1 Map of the northeast Peloponnese showing sites mentioned in the text. 90
8.2 Corinth: Geometric Period multiphase plan (900–720 bc). 91
8.3 Corinth: Protocorinthian to Transitional Period multiphase plan (720–620 bc). 91
8.4 Corinth: Corinthian Period multiphase plan (620–500 bc). 92
8.5 Corinth: fifth century bc multiphase plan. 93
8.6 Corinth: multiphase plan up to 400 bc. 93
8.7 Corinth: Forum, all periods. 94
8.8 South Stoa, Tavern of Aphrodite Foundry. 99
8.9 Late Corinthian kraters from the sixth-century bc floor. 101
8.10 The Arachne aryballos, Late Early Corinthian or Middle Corinthian (600 bc). 102
9.1 Maps of Veneto. 108
9.2 Maps of cities with different orientations: a) Oderzo; b) Padova. 110
9.3 Este, clay andirons with ram’s heads. 112
9.4 Padova, funerary stone monuments: a) Camin; b) Albignasego. 114
9.5 Padova, via Tadi, boundary stone with Venetic inscription on two sides. 114
9.6 Padova, via C. Battisti, boundary stone with Venetic inscription on four sides. 114
9.7 Padova, via Tiepolo–via San Massimo 1991, Grave 159, bronze figured belt-hook. 115
9.8 Este, Casa di Ricovero, Grave 23/1993 or Nerka’s grave. 116
9.9 Isola Vicentina, stele with Venetic inscription. 117
10.1 Location of Padova and the study area in northeastern Italy. 124
10.2 Padova, general cumulative map of the craft locations, c. 825–50 bc. 125
10.3 Padova, location of the craft areas and workshops in the early urban core. 127
10.4 Padova, the extra-urban location of craft industries in Roman times. 129
10.5 New manufacturing areas per different craft. 131
10.6 Maximum total area occupied by craft production sites. 132
10.7 New craft areas activated in each period. 132
10.8 Frequency distribution of dimensional class of craft areas per period. 132
10.9 Padova, Questura, site 2, northeast sector. 133
10.10 Workshop size and duration of activity. 134
10.11 Padova, Questura, site 2. Ceramic tuyère. 136
10.12 Padova, Questura, site 2. Cluster of fine feasting pottery. 137
10.13 Padova, Questura, site 2. Antler combs from the metallurgical workshop. 137
10.14 Sherds of Attic pottery from workshop areas in Padova. 138
10.15 Padova, Piazza Castello, site 3: vertical kiln and modular perforated grid. 139
10.16 Part of an elite grave’s furnishings from Padova, end of the eighth century bc. 140
10.17 Vessels from the cemetery of Piovego, Padova, fifth century bc. 141
11.1 Map of central Italy. 148
11.2 Early Phase Orientalizing Complex Building 4 (c. 725–675 bc) reconstruction. 149
11.3 Orientalizing Complex (c. 675–600 bc) reconstruction. 149
11.4 Archaic Phase Structure (c. 600–530 bc) reconstruction. 149
11.5 Orientalizing Complex roofing elements. 150
11.6 Partially worked and complete bone, antler and ivory. 150
11.7 Unfired cover tiles with human footprints. 151
11.8 Distribution of variable sized spindle whorls. 152
11.9 Carbonized seeds from Orientalizing Complex Building 2/Workshop. 153
11.10 Fragment of statuette from Orientalizing Complex Building 2/Workshop. 153
11.11 Frieze plaque depicting banqueting scene, Archaic Phase Structure. 155
11.12 Elements of a banquet service from the Orientalizing Complex. 155
11.13 Compote with incised khi. 156
11.14 Map of Poggio Civitate and surrounding traces of settlements or other human activity. 157
12.1 Location of Perugia. 162
12.2 The immediate environs of Perugia with key sites. 162
12.3 The geological context of Perugia. 163
12.4 Plan of the city of Perugia. 166
12.5 Hierarchical relationship of Perugia to its territory. 169
12.6 Civitella d’Arno survey area. 171
12.7 Montelabate survey area. 172
13.1 Positioning of the structures of the Calvario. 179
13.2 Tarquinia and its territory around the middle of the eighth century bc. 180
13.3 Plan of the Villanovan village on the Monterozzi Plateau. 181
13.4 Plans of some of the Villanovan huts. 183
13.5 Finds from the huts. 184
13.6 Walls, gateways and roads of ancient Tarquinia. 185
13.7 Tarquinia, Bocchoris Tomb, lid. 189
13.8 Location of the excavation area at Vulci. 196
13.11 Textile fragment from the ‘Tomb of the Golden Scarab’. 198
13.12 Detail of the grave goods from Tomb 35 during excavation. 199
13.13 Tomb 29 during excavation. 200
13.14 Tomb 29: detail of the traces of cloth on the lid of the sheet bronze stamnos. 201
13.15 Tomb 72: a textile with colour pattern of small red and white checks. 202
15.1 Plan of Rome’s territory in the Archaic period. 206
15.2 Area of the Volcanal and the Comitium in the seventh and sixth centuries bc. 207
15.3 Reconstructed plan of Rome within the so-called ‘Servian Wall’. 208
15.4 Sketch plan of the area of the Forum Boarium and Velabrum in the seventh century bc. 210
15.5 Phase 1 of the so-called ‘Auditorium site’ villa. 212
15.6 Phase 2 of the so-called ‘Auditorium site’ villa. 212
15.7 The Republican ‘Villa delle Grotte’ at Grottarossa. 213
16.1 White-on-red pithos with lid, Cerveteri. 223
16.2 Figurative decoration of the Gobbi krater. 224
16.3 Black-figure amphora, Vulci, side A. 226
16.4 Black-figure amphora, Vulci, side B. 226
17.1 Pithos types 1–6. 233
17.2 Distribution map of Etruscan pithoi within the study area in Etruria. 240
17.3 Comparison between the altitude of pithos find spots and the range of altitude. 241
17.4 Map of sample area. 242
17.5 Distribution of architectural terracottas, pithoi, amphorae, and tiles. 249
18.1 Muro Leccese and the other Iron Age settlements in the Salento peninsula. 260
18.2 Muro Leccese, find spots of Early Iron Age and Archaic ceramics and structures. 261
18.3 Muro Leccese, Cunella district, traces of two huts. 262
18.4 Muro Leccese, DTM with location of the Iron Age ceramics and structures. 263
18.5 Vases and decorative motifs characteristic of matt-painted ware from Muro Leccese. 264
18.6 Vases imported from Greece and Greek apoikiai. 265
18.7 The Messapian era road network in the Salento peninsula. 267
18.8 Muro Leccese, Palombara district. 268
18.9 Muro Leccese, Palombara district. Vases. 270
18.10 Muro Leccese, Cunella district. Plan of the residential building. 272
18.11 Diorama of the place of worship in the archaeological area of Cunella. 273
18.12 Muro Leccese, Masseria Cunella district. Tombs 1 and 2. 274
18.13 Muro Leccese, fourth century bc walls. 275
19.1 Map of Sicily, showing the Bronze Age sites mentioned in the text. 282
19.2 The defensive wall at Bronze Age site of Mursia, Pantelleria. 283
19.3 The Late Bronze Age excavations at Mokarta. 283
19.4 Monte Bonifato, showing its steep approaches. 284
19.5 Map of western Sicily showing the Iron Age sites mentioned in the text. 284
19.6 The urban layout of Eryx. 285
19.7 The urban layout of Segesta. 286
19.8 The orthogonal grid and Iron Age/Classical/Hellenistic finds of Salemi. 287
19.9 The archaeological sites of Salemi territory. 287
19.10 The temple of Segesta, facing west. 291
20.1 Map of Sardinia showing sites mentioned in the text. 300
20.2 Plan of Nora and the Punic quarter under the forum. 301
20.3 Main amphora types discussed. 302
20.4 Dating profiles of amphora types. 303
20.5 Plan of nuraghe S’Urachi and cross-section of the ditch in area E. 304
20.6 Dating profile of the amphora types from the case study at nuraghe S’Urachi. 305
20.7 Dating profiles of Phoenician amphora types. 306
21.1 Early iron and the distribution of Huelva-Achziv type fibulae on the Iberian Peninsula. 317
21.2 Three copper alloy bowls dated to the decades around 800 bc. 319
21.3 The Phoenician, Euboean, Etruscan and Latin alphabetic letters. 320
21.4 Early monumental architecture in Italy and Spain. 322
21.5 Provenance of ceramics from the ninth century bc, pre-Carthage Utica (Tunis). 324
22.1 Fürstensitze north of the Alps and selected sites in Mediterranean Europe. 330
22.2 The Heuneburg agglomeration during the mudbrick wall phase. 331
22.3 Indicative lifespans of selected Fürstensitze sites. 331
22.4 Aerial view of the gatehouse of the Heuneburg lower town during the excavation. 332
22.5 Large ditch at the south foot of wall 3 at Mont Lassois. 333
22.6 Reconstructed monumental building in the Heuneburg Open-Air Museum. 334
22.7 Fired clay loom weight and spindle whorls from the Heuneburg. 335
22.8 Comparison between grave textiles and other textiles. 337
22.9 Tablet-woven band, reproduced after a textile from Hochdorf. 338
22.10 Functions of textiles in graves. 339
23.1 Map of the south of France showing the main settlements of the Early Iron Age. 346
23.2 Mailhac (Aude). 350
23.3 Examples of apsidal floorplans of wattle-and-daub (a) or cob houses (b–d). 352
23.4 Examples of rectangular floorplans of houses with one or more rooms. 353
23.5 Pech Mało (Sigean, Aude). 355
23.6 Examples of functional combinations of apsidal and rectangular floorplans. 356
23.7 Early examples of urban planning combining blocks of houses with a system of streets. 357
23.8 a–c) Examples of rectangular floorplans; d–e) houses of La Liquière. 359
23.9 Montlaurès (Narbonne, Aude). 360
24.1 Map of northern Iberia showing the sites mentioned in the text. 368
24.2 Pottery workshop of Hortes de Cal Pons. 371
24.3 Bases of Iberian amphorae. 372
24.4 Les Guàrdies (El Vendrell). 373
24.5 Castellet de Banyoles. 375
24.6 Mas Castellar de Pontós. 376
24.7 Coll del Moro de Gandesa. 378
24.8 Sant Antoni de Calaceit. 379
24.9 Els Estinclells. 380
25.1 General location of the area under study. 386
25.2 View of Sant Jaume. 387
25.3 Plan of Sant Jaume. 387
25.4 Aerial view of La Moleta del Remel. 389
25.5 Aerial view of La Ferradura. 389
26.1 Tumulus ‘A’ at Setefilla. 396
26.2 Sample of matrices and tools from the so-called goldsmith’s graves at Cabezo Lucero. 397
26.3 Iberian tombs with grave goods connected with weighing metal. 398
26.4 Spatial distribution of tools in rooms of Iberian oppida. 400
26.5 Iberian funerary pillars crowned by heraldic beasts. 402
26.6 Enthroned Iberian ladies: a) Cerro de los Santos; b) Baza. 403
26.7 Reconstructions: a) La Bastida de les Alcusses; b) El Castellet de Banyoles. 403
26.8 Bronze horseman from La Bastida de Les Alcusses and reconstruction as a sceptre. 404
27.1 Map of the study area showing the main sites mentioned in the text. 410
27.2 Metallurgical workshop at La Fonteta. 412
27.3 Plan of Alt de Benimaquia and local amphorae. 413
27.4 Plan of El Oral. 414
27.5 The territory of El Puig d’Alcoi and the secondary rural settlements. 416
27.6 Different furnaces for iron metalwork from La Cervera. 416
27.7 Plans of walled settlements: a) Covalta; b) Puig d’Alcoi; c) La Bastida de les Alcusses. 417
27.8 Aerial view of the storerooms at La Bastida de les Alcusses. 418
27.9 Plan of Block 5 at La Bastida de les Alcusses. 419
27.10 Weapons ritually ‘killed’ in the West Gate, La Bastida de les Alcusses. 419
28.1 Cancho Roano: a) general plan; b–c) reconstructions of the external rooms. 427
28.2 Map of sites considered as post-Orientalizing palatial complexes. 427
28.3 La Mata. 428
28.4 Post-Orientalizing settlements: a,d) El Chaparral; b) La Carbonera; c) Los Caños. 431
28.5 Millstones and amphorae from post-Orientalizing sites in Middle Guadiana. 433
28.6 Storage building at the Orientalizing site of El Palomar, Oliva de Mérida. 434
28.7 Greek pottery from Cancho Roano, late fifth century bc. 436
28.8 Antique (sixth-century bc) goods in post-Orientalizing contexts. 437
28.9 The Orientalizing site of Medellín. 439
28.10 Ancient toponymy in southwestern Iberia. 440

Tables

7.1 Sites in Attica, late eleventh to seventh century bc. 78
8.1 Dates: abbreviations and chronology. 90
9.1 List of criteria for defining cities. 108
9.2 Inventory of houses and buildings with their shape, dimensions and chronology. 111
10.1 Variations through time of principal type of craft occupation. 128
10.2 Variations through time of the maximum area of all craft occupations. 129
10.3 Padova, average duration in years of the main craft occupations for each period. 129
10.4 Padova, the development of craft industries as monitored in 29 craft workshops. 130
10.5 Positive correlation between size and duration of activity of craft workshops. 134
10.6 The composition of funerary vessels in the earliest graves from Padova. 140
17.1 Type 1. 234
17.2 Type 2. 234
17.3 Type 3. 235
17.4 Type 3A. 235
17.5 Type 3B. 235
17.6 Type 3C. 236
17.7 Type 4. 236
17.8 Type 5. 237
17.9 Type 6. 237
17.10 Chaîne opératoire of Etruscan pithos manufacture. 238
21.1 Number of iron artefacts per phase at Torre Galli (c. 950–850 bc). 318
Chapter 5

Productive economy and society at Zagora

Lesley A. Beaumont

The Early Iron Age settlement site of Zagora is located some 160 m above sea level atop a rocky promontory on the central-west coast of the Cycladic island of Andros. A fortification wall stretching across the narrow neck of the headland encloses an area of 6.49 ha (64,860 sq. m), while steep cliffs protect the site on its other three sides (Fig. 5.1). The earliest systematic archaeological excavation of the site was carried out by Nicolas Zapheiropoulos in 1960 (Zapheiropoulos 1960). He located and initiated excavation of a temple at the centre of the site, which proved to have been constructed in the second quarter of the sixth century BC, following the abandonment of the settlement by its residents c. 700 BC. He also excavated a number of Geometric-period domestic units to northwest of the temple, and a further two units built against the inner face of the fortification wall (Beaumont et al. 2012, 44, fig. 2). Between 1967 and 1974, Alexander Cambitoglou and a team from the University of Sydney, in collaboration with the Archaeological Society of Athens, further investigated the sanctuary area and extended the excavations to uncover additional Geometric-period houses to northwest and southeast of the temple. They also revealed parts of the fortification wall, including the gate at its south end, and further buildings constructed against the west face of the wall (Cambitoglou et al. 1971; 1981; 1988). By 1974 some seven per cent of the total settlement area had been excavated (Cambitoglou et al. 1981, 22, fig. 3).

Between 2012 and 2014, the award of an Australian Research Council Discovery Project Grant (DP120102257) and the issuing of a fieldwork permit by the Hellenic Ministry of Culture enabled the Australian Archaeological Institute at Athens (AAIA) and the Department of Archaeology of the University of Sydney to re-open field research at the site after a hiatus of almost 40 years. The fieldwork undertaken by the Zagora Archaeological Project during this three-year period focused on site reconnaissance, surface survey, geological and geophysical analysis, satellite imaging analysis, and excavation of six selected areas that aimed to investigate potential domestic, communal, industrial and commercial spaces (Beaumont et al. 2012; 2014; Miller et al. 2013; 2019/20; Paspalas et al. 2014; 2015; 2016; Sarris 2014). By the end of the 2014 field season, some eight per cent of the total site had been uncovered (Fig. 5.2). Analysis and full publication of the results by the Zagora Archaeological Project team is ongoing.

Using the results of the above fieldwork that spans the years from 1960–2014, this chapter aims to present a synthetic overview of what we can so far say about Zagora’s productive economy and the social context within which it operated in the settlement. It begins with some comments on the site’s available resources, the chronology of its occupation and its likely population size. It then goes on to discuss the range of economic activities that can be identified in the settlement’s archaeological record – agricultural production, animal husbandry, maritime exploitation, metalworking, pottery manufacture, flaked and ground stone tool production, textile making, and trade and exchange. Finally, an attempt is made to situate these economic activities within their social context by considering the evidence for wealth distribution and status differentiation across the settlement, the question of craft specialization, and indications of communal organization and activities.

First let us consider the available natural resources which shaped the productive economy at Zagora. As previously noted, Zagora occupies a secure location high above the sea and, situated on the west coast of Andros, was positioned on major maritime routes leading northwest to Euboea, west to the Greek mainland, and south to the Cycladic archipelago. It was...
connected to these routes via its access to two small harbours directly adjacent to north and south of the rocky promontory. Thanks also to its topographical position, this was an exposed spot that bore the brunt of fierce northeasterly prevailing winds.

While our evidence for habitation at Zagora is confined to the protected area inside the fortification wall, its hinterland is amply provided with good agricultural and grazing land. Excellent building stone in the form of schist is also available in the hinterland, while the Zagora promontory itself is topped with low-grade grey marble.

Though the fortified settlement itself contains no natural running water source, nine springs are located within a short walking distance to north, east and south (Knight & Beaumont 2018, 61, fig. 2). These springs would have already been in existence during the Early Iron Age since they were created by the process of erosion that was earlier responsible for producing the Zagora peninsula. Thanks to the work of Michael Knight, Emeritus Professor of Hydrogeology at the University of Technology Sydney, we are now able to identify Spring 5 as the most likely main running water source for the Zagora inhabitants, since it has the largest groundwater catchment area of 155,000 sq. m (Knight & Beaumont 2018). In addition to making daily water collection visits to this spring, which lies some 370 m uphill to the northeast of the settlement, the Zagora residents would almost certainly have in some way utilized the flat roofs of their houses to harvest rainfall (Cambitoglou et al. 1981, 19), and probably also had access to additional rainwater that collected at least temporarily in still visible dolines or sinkholes in the bedrock (Bassiakos in Beaumont et al. 2012, 48–52; Knight & Beaumont 2018, 67–8).

Climate was, of course, a critical factor in the availability of water at Zagora and, in this context, it is important for us to note that a major global climate change took place during precisely the period of Zagora’s occupation and abandonment. Known as the Homeric Grand Solar Minimum, this was caused by shifts in the orbital position of the earth and sun and caused a reduction in the amount of heat energy reaching the earth (Speranza et al. 2002; Mauquoy et al. 2004; Vieira et al. 2011; Neugebauer et al. 2015). This impacted atmospheric pressure, temperature, wind and
rainfall, with effects varying across the globe: Europe became wetter and colder, while the Middle East and Africa became drier and hotter. Climate modelling suggests that Zagora was located on the boundary of these two weather systems and indicates that it is likely that, between about 850 and 700 BC, Zagora received a mean rainfall increase of about 30 mm per month, providing the Zagora inhabitants with plentiful water and climatic conditions favourable to repeated good harvests (Knight & Beaumont 2018).

The dates of the Homeric Grand Solar Minimum not surprisingly coincide with the chronological development of the Zagora settlement. While human occupation at the site is first attested archaeologically in the Late Protogeometric period (925–900 BC) in the area of the later fortification wall and a spot (indicated as Trench 9 on Fig. 5.2) located some 25 m to southwest of the later gate through the fortification wall (Cambitoglou 1981, 103; Paspalas 2016; Miller et al. 2019/20), it is only in the Middle Geometric period (850–750 BC) that the archaeological evidence recovered to date bears witness to human settlement spreading across the Zagora promontory, and only in the Late Geometric I (750–735 BC) and Late Geometric II (735–700 BC) periods that population density intensifies (Cambitoglou et al. 1988, 158–61). Favourable climatic change and resulting increased crop yields doubtless made a major contribution to the growth not only of the Zagora settlement but also to the well-noted marked population increases across the Greek world at this time (Morris 2007). Climate change alone cannot, however, account for the massive growth in Zagora’s population that occurred in the last 20 or 30 years of the eighth century BC. By this stage, the archaeological evidence suggests that the whole extent of the space inside the fortification wall was intensively occupied,

Figure 5.2. Plan of Zagora showing all areas excavated between 1960–2014, with the 2014 trenches numbered (R.C. Anderson, J.J. Coulton, M. McCallum & A. Wilson, © Zagora Archaeological Project).
with previously one or two room houses also now being expanded and/or remodelled to create multi-room complexes (Green 1990; Beaumont et al. 2012; Mann 2014).

Estimating the likely population size of Zagora in this late eighth century BC phase is a useful exercise in shedding light on the scale of the settlement’s resource needs and economy. To date, some 25–30 dwellings have been fully or partially excavated at the site: a more precise count is impossible due to the agglutinative nature of most of the structures that sometimes results in difficulties in identifying discrete household units. Since only some eight per cent of this 64,860 sq. m site has so far been excavated, the total number of houses within the Late Geometric II settlement can therefore be estimated to have numbered between about 300–360. Working with a likely mean household size of four to six individuals, as suggested by admittedly later ancient evidence and pre-industrial era ethnographic data (Laslett 1972; Gallant 1991, 22–27; Knight & Beaumont 2018), we can consequently calculate a population for late eighth century Zagora that lies within the range of 1200–2160 persons. This does not, however, factor in any open or empty spaces that existed within the settlement, meaning that the number of inhabitants is unlikely to have ever reached the range maximum.

Supplied with plentiful water until the ending of the Homeric Grand Solar Minimum about 700 BC, the expanding and thriving settlement of Zagora would consequently have been very seriously affected by reduced rainfall with the local springs no longer able to satisfy many of the demands placed upon it by the now sizeable population. Zagora’s agricultural economy would also have suffered badly from the drier climate as crop yields decreased. As a result, we are now able to offer an explanation for why the inhabitants gradually at the end of the eighth and beginning of the seventh century BC packed up their households and left, presumably in search of a better-watered home (Knight & Beaumont 2018, 68).

That core staples of the Zagoran agricultural economy were cereals and olives is evidenced by Evi Margariti’s ongoing archaeobotanical study of flotation samples from the 2012–2014 excavations. Architectural and ceramic evidence recovered from the Late Geometric houses at Zagora strongly suggests that each household was self-sufficient in these foodstuffs. Each house was equipped with storage facilities in the form of a stone bench built against one or more of its internal walls, and provided with shallow pot emplacements into which vessels of different sizes were set (Cambitoglou 1988, 147; McLoughlin 2011). Such raised benches were necessary because, with very few exceptions across the site, there was insufficient depth of soil into which to bed the storage vessels in order to ensure their stability and insulation.

Hamish Forbes has estimated on the basis of twentieth-century ethnographic evidence from the small agrarian community of Methana in the Peloponnes that an individual requires at least 150 kg of grain per year. At Methana, households aimed to store enough grain to last them for two years to protect them against crop failure, and enough oil to last them for four years (Forbes 2017). We can usefully assume similar statistics for Zagora.

Beatrice McLoughlin has made a detailed study of the storage pithoi from Zagora, identifying three major types according to their fabric, method of manufacture, decoration and capacity (McLoughlin 2011). The type with the largest maximum capacity, ranging from 200–700 l is the relief-band pithos: its dense low-fired fabric has low porosity and maintains a constant temperature for its contents. McLoughlin convincingly argues that these qualities made the relief-band pithos suitable for grain storage, with two medium-size pithoi able to hold a supply that would feed a family of six for one year. The applied-relief pithos, with a capacity ranging from 200–550 l, has a taller and narrower neck, suggestive of liquid storage. McLoughlin proposes that the liquid in question was wine rather than oil, arguing that since the largest applied-relief pithoi would hold enough oil to maintain a family of six for six years, this would be problematic given that oil has a shelf life of only four years. However, Catherine Morgan has pointed out that this supposes a subsistence economy: if instead some of the oil was being utilized for trade and exchange, then the objection to applied-relief pithoi being used for oil disappears (Morgan 2012). It is hoped that residue analysis of Zagora pithos samples currently being undertaken by Maria Rompou will shed light on this matter. The smallest type of pithos is the rope-band variety with a capacity of 40–110 l: equipped with a flaring rim suited to pouring, it may have held wine or water, though only in the short term due to its porosity (McLoughlin 2011).

McLoughlin’s valuable work on the pithoi and other coarsewares from Zagora is also shining light on the question of local ceramic production. While all three pithos types are made from local clay, differences in the construction techniques and firing of the rope-band and relief-band pithoi on one hand and the applied-relief pithoi on the other, have led McLoughlin to conclude that two distinct groups of potters were at work: local potters manufacturing the rope-band and relief-band pithoi, while itinerant potters produced the applied-relief pithoi. The latter exhibit close similarities to pithoi of the same type found at Xobourgo on Tenos and at Eretria on Euboea (McLoughlin 2011).
McLoughlin and Paspalas have also pointed to the use of local clay in the production of Zagora’s plain and incised kitchen coarsewares, as well as coarseware painted vessels (Paspalas 2012). Though fieldwork at Zagora to date has not located any ceramic kilns either within the Zagora settlement or in the area surveyed immediately to the east of the fortification wall, it must nevertheless remain a real possibility that kilns remain to be located in close proximity to the site.3

Work on the faunal remains from Zagora by Lin Barnetson and Melanie Fillios illuminates the animal husbandry practices of the settlement’s inhabitants (Cambitoglou 1981, 81–2).3 Ovicaprids predominate and while they would certainly have been used for their milk and wool, the fact that they were often being killed between one to three years of age indicates their use also as a source of meat and hides. Pigs similarly were typically slaughtered before reaching full maturity (less than one year). That all parts of goat, sheep and pig skeletons are regularly present in excavated deposits across the settlement suggests that these animals were being butchered in the vicinity of the houses. Osteological evidence of cattle, though not as plentiful, is nevertheless well distributed. Given that most of the bones belonged to mature cattle, they were probably used primarily for their milk and as draught animals, which makes sense in view of the rarity of equid bones at Zagora. Hare, deer and birds are the only game animals faunally recovered at the site. Finds of fish bones, limpet shells and remnants of sea urchins bear witness to the Zagorans’ taste for seafood, and these are now under study by Tatiana Theodoropoulou. The presence of dogs at Zagora is also attested by canid bones. The animal bones from Zagora still have much more to tell us: Rudolph Alagich, a University of Sydney doctoral candidate, is now using them to undertake the first stable isotopic examination of animal management conducted for the Greek Early Iron Age. His work promises to reveal spatial and chronological patterns in animal management practices at Zagora, and to shed light on any variance in social dynamics across different parts of the site and between households.

Evidence of metalworking in the form of slag is distributed remarkably widely across the settlement (Beaumont et al. 2012, pl. 8.2), while smithing hearth bottoms have been excavated. That metalworking was occurring at Zagora during the earliest phases of the site’s occupation is shown by the discovery in Trench 9 of slag dumped together with other metallurgical debris into the lowest levels of a deep cavity in the bedrock located some 25 m to southwest of where the settlement’s entrance gate would later be constructed (Miller et al. 2019/20) (see Fig. 5.1 for Trench 9 location). Doctoral research undertaken by Ivana Vetta in collaboration with work conducted by Yannis Bassiakos of the National Centre for Scientific Research Demokritos, has however found no evidence for smelting activity at the site (Bassiakos in Beaumont et al. 2012, 50–1; Vetta 2020). Smithing however, to judge by the widespread distribution of the metal slags, seems to have been a practice commonly engaged in across the settlement, with only three deposits indicating a concentration of metalworking activities that might suggest the existence of one or more specialized workshops. Two of these deposits, in Trench FW6 and Trench FG3e, are associated with the fortification wall (Cambitoglou 1974; Cambitoglou et al. 1988, 55–6). The third deposit comes from the previously mentioned Trench 9.

In the closing days of the 2014 excavation season, an in situ industrial installation of uncertain function was partially uncovered in Trench 11, located some 8 m west of the fortification wall (Miller et al. 2019/20) (see Fig. 5.1 for Trench 11 location). Geophysical testing of this area in 2012 by a team led by Apostolos Sarris suggested the existence here of a wide road running northeast–southwest and flanked by parallel walls (Beaumont et al. 2012, 47 and pl. 3d). The geophysical results proved remarkably accurate, with our excavations revealing a road-like surface some 6–7 m wide with cobble underpanshaling. At the westernmost end of Trench 11, the road gave access to a small, poorly constructed stone structure, with a maximum internal width of c. 2.3 m. In its northwest corner was found a feature constructed from schist slabs set vertically against the structure’s walls, which in turn had been thickly lined with clay (Fig. 5.3). Directly adjacent to this on the east was an extensive area of burning, comprising layers of thick grey ash containing both industrial ceramics and fine wares. Ceramic finds retrieved from this space date activity here to the Late Geometric II period, though Middle Geometric pottery was found both below this structure and beneath the road surface. With our excavation season drawing frustratingly to a close, we gathered samples from the clay-lined feature for residue analysis, and regretfully carefully backfilled Trench 11 to await continued investigation in a future excavation campaign. In the meantime, we hope that residue analysis of the samples being undertaken by Maria Rompou at the Harokopio University in Athens will assist in identifying what substance was undergoing processing or preparation in this location. However, the fact that a clay-lined installation was required suggests that the process involved liquids, as well as heat as indicated by the ash layers. It is probably therefore no coincidence that a little further to east we found that the road was cut by a stone-lined channel, presumably used for water supply or drainage.
However, the identification of a limited number of obsidian cores and debitage at Zagora suggests that, at times, the inhabitants practiced flaking some lithic tools and retouched those they had previously acquired from the locale (Cambitoglou et al. 1991, 78–80).

In October 2014, we had the pleasure of welcoming to Zagora Joanne Cutler of the University of Cambridge PROCON project, who studied the textile tools from the site. One-hundred-and-thirty textile tools were identified among the finds excavated at Zagora between 1967–2014. These textile tools comprised loom weights, spindle whorls (including beads that may have been used as spindle whorls) and a few pierced sherds. The loom weights, usually fashioned from clay but sometimes from stone, are pyramidal and discoid in shape, and range in weight from 50 g or less to 443 g, leading Cutler to conclude that they would have been used with a variety of thick and thin threads to produce a range of fabric types. By far the greatest proportion of the textile tools studied were, however, manufactured almost entirely in Melian obsidian, have also been found and take the form of blades, bladelets, points and scrapers, and would have been used for cutting, piercing and scraping (Runnels 1988, 245–9; Cambitoglou et al. 1991, 78–80).

Given the proximity of the adjacent Neolithic site of Strofilas located on a headland just northwest of Zagora (Televantou 2008), it is likely that these obsidian tools were acquired there by the Zagorans (Beaumont et al. 2012, 56). Such recycling of earlier lithic artefacts has previously been suggested by Runnels to have occurred at Geometric to Classical Halieis in the Peloponnese (Runnels 1982). However, the identification of a limited number of obsidian cores and debitage at Zagora suggests that, at times, the inhabitants practiced flaking some lithic tools and retouched those they had previously acquired from the locale (Cambitoglou et al. 1991, 78–80).

In October 2014, we had the pleasure of welcoming to Zagora Joanne Cutler of the University of Cambridge PROCON project, who studied the textile tools from the site. One-hundred-and-thirty textile tools were identified among the finds excavated at Zagora between 1967–2014. These textile tools comprised loom weights, spindle whorls (including beads that may have been used as spindle whorls) and a few pierced sherds. The loom weights, usually fashioned from clay but sometimes from stone, are pyramidal and discoid in shape, and range in weight from 50 g or less to 443 g, leading Cutler to conclude that they would have been used with a variety of thick and thin threads to produce a range of fabric types. By far the greatest proportion of the textile tools studied were, however, manufactured almost entirely in Melian obsidian, have also been found and take the form of blades, bladelets, points and scrapers, and would have been used for cutting, piercing and scraping (Runnels 1988, 245–9; Cambitoglou et al. 1991, 78–80). Given the proximity of the adjacent Neolithic site of Strofilas located on a headland just northwest of Zagora (Televantou 2008), it is likely that these obsidian tools were acquired there by the Zagorans (Beaumont et al. 2012, 56). Such recycling of earlier lithic artefacts has previously been suggested by Runnels to have occurred at Geometric to Classical Halieis in the Peloponnese (Runnels 1982).
however, spindle whorls, mostly biconical.3 The preponderance of spindle whorls compared to a much lower incidence of loom weights may suggest that while the warp-weighted loom was clearly in use in the settlement, other types of horizontal and/or vertical looms which require no loom weights may have been preferred. While most of the textile tools studied could be identified as being made of local clay, Cutler was able to identify a small number that were of non-local fabric. One of these has been identified by Stavros Paspalas as a spindle whorl that has parallels at Lefkandi, and leads us to wonder whether it might suggest migration to Andros from Euboea, perhaps in the form of intermarriage between a Zagoran man and a woman from Lefkandi (Paspalas 2017, 233).

That Zagora was connected to the outside world and engaged in maritime trade and exchange is demonstrated by the many imported fine ware ceramics, transport amphorae and other foreign goods excavated at the site. As Paspalas’ work on the Zagora finewares has demonstrated, these imports date from the late ninth century through to the end of the eighth (Attic Middle Geometric/Euboecan Sub-Protogeometric to Late Geometric II) and are dominated by Euboecan vessels and, to a lesser degree, by Attic wares and also some Parian imports (Paspalas 2015, 2017). Excavation has also produced evidence of transport amphorae from Corinth and the northeastern Aegean and also of vessels closely related to Attic SOS amphorae (Paspalas 2017). Interestingly, Paspalas and McLoughlin have identified a concentration of transport amphorae coming from at least four different proveniences in Unit D34, located in Trench 5 at the extreme north of the site and which, measuring 11.5 × 9 m, is one of the largest architecturally defined spaces yet recorded at Zagora (Miller et al. 2019/20) (see Fig. 5.2 for location of Trench 5). Imported exota include among other things a glass eye bead from Unit M3, originally from east Greece or even the Levant (Beaumont et al. 2014, fig. 4), and a scarab of late eighth century date from Unit H25 that may be ‘an East Mediterranean imitation of an earlier Egyptian model’ (Cambitoglou et al. 1988, 235 and pl. 293).

Based on our current understanding of Zagora’s productive economy, what can we say about social and economic complexity at this Early Iron Age settlement? Evidence for trade and exchange, resource acquisition and industrial activity bear witness on one hand to economic complexity, balanced and underpinned on the other by a thriving agricultural and pastoral economy that was carefully husbanded, so that each household was probably largely self-sufficient in at least staples such as grain and oil. While metalworking debris occurs mostly in the domestic context, the dumps of clay hearth fragments and other metallurgical waste excavated in the vicinity of the fortification wall suggest that one or more smithing workshops are yet to be located. The presence of another likely workshop, though this time for production of something other than metals, is also indicated by our previously mentioned discoveries in Trench 11 some 8 m west of the fortification wall. Craft specialization is also detectable in the work of local potters who produced plain and incised kitchen coarsewares, coarseware painted vessels, and rope-band and relief-band pithoi, while itinerant potters produced the Zagorans’ applied-relief pithoi. We might perhaps therefore best interpret the evidence currently available at Zagora as indicative of a community undergoing transition from a subsistence economy to an economy of productive surplus and the growth of craft specialization. Certainly, the Late Geometric II expansion, renovation and sub-division of individual domestic units placed a new emphasis on the concentration of bulk storage space in protected rear rooms within the now multi-room houses (Mann 2015; 2018), while in other cases the location of storage installations in well-lit central rooms equipped with hearths may suggest conspicuous display of surplus in contexts where social interaction is indicated (McLoughlin 2011; Mann 2015). The settlement’s clear population growth of the second half of the eighth century BC would have been a necessary precursor to the emergence of local craft specialization that likely preceded, and continued alongside, the activities of itinerant craftspersons (Konioros 2001, 8–14).

That the occupants of Zagora participated in some forms of communal activities and organization is further evidenced by their creation of roads, the fortification wall and a central open-air sanctuary. Adding to the Cambitoglou team’s earlier identification of a road approaching and leading into the settlement through the fortified gateway (Cambitoglou et al. 1988, 53–62), work at the site in 2014 uncovered in Trench 11 part of a wide road running northeast–southwest through the northeast sector of the settlement (Figs. 5.2 and 5.3). This road, measuring some 6–7 m wide, was constructed in the Late Geometric period and ran perpendicular to the pre-existing fortification wall, whose initial construction can probably be dated to the first half of the eighth century BC, if not slightly earlier (Cambitoglou et al. 1988, 53–62).4 The building of both roads and fortification wall would have necessitated communal agreement, organization and labour. Further evidence of communal engagement is presented by an open-air Late Geometric period sanctuary located centrally and in the highest area of the settlement (Cambitoglou et al. 1981, 82–99; 1988, 175). Ritual practice here appears to have focused around an altar, which subsequently
in the second quarter of the sixth century BC was built over by an Archaic period temple (Cambitoglou et al. 1988, 165–78). Late Geometric offerings recovered from this area include decorated finewares (both local and also Cycladic, Euboean and Corinthian), among which drinking vessels are well represented, terracotta and lead figurine fragments, a seal, bronze fibulae and a miniature ‘Macedonian bronze’ juglet (Cambitoglou et al. 1981, 82–99; Paspalas 2014, 527–39). Communal activities and organization are also illuminated by evidence of the Zagorans’ landscaping practices. Our excavation of Trench 9, located within the settlement some 25 m southwest of the gate through the fortification wall, revealed that the bedrock here drops sharply to a depth of about 2 m below present ground level before resurfacing some 10 m to east (see Fig. 5.2 for location of Trench 9). In response, the Zagorans threw into this natural cavity their refuse containing ceramics, animal bone and horn, shell, slag and obsidian, thus levelling the area for use. Two resulting surfaces have been identified, the earliest dating to the late ninth century BC and the latest to the mid-eighth century (Beaumont et al. 2014; Miller et al. 2019/20). What is notable is that this remained an open communal space throughout the life of the settlement and was not built upon even in the Late Geometric II period when space was at a premium. What, however, we must dismiss when considering communal organization is the long-held erroneous notion that Zagora provides evidence of a planned settlement: it is clear from close study of the architectural remains that it grew organically from a number of different loci across the promontory (Cambitoglou et al. 1988, 150–4, 158–60, 237; Mann 2015, 52–3; 2018).

What, finally, about wealth and status distribution across the settlement? By the Late Geometric II period, Zagora’s domestic architecture encompassed a mixture of multi-room complexes, often focused around an open-air yard, as well as one or two room houses such as those built against the inner side of the fortification wall (Cambitoglou et al. 1988, 150–8; Mann 2014; 2018). Room and house sizes also varied, for example between the generally smaller rooms of the area J houses and more expansive units found in areas D, H and M (Cambitoglou et al. 1988, 157–61; Mann 2014; 2018). The excavations conducted between 2012–2014 further revealed that, in the southernmost sector of the site, the predominant model of schist-built agglutinative architecture seen elsewhere at Zagora gave way here to houses built largely from marble rubble and of apparently freestanding form (Beaumont et al. 2013; Miller et al. 2019/20). Regardless, however, of this variety in domestic architectural form and scale, each household appears to have controlled its own agricultural surplus: storage benches and pithoi are commonly found in all house types across the settlement (McLoughlin 2011). Similarly, imported Euboean and Attic finewares have been documented in every domestic complex excavated to date, as also have kraters and drinking vessels, indicating that wine consumption was uniformly spread across the community (McLoughlin 2011). Area J does, however, manifest a notable difference in its almost complete absence of finds of excavated slag, which contrasts with the ubiquitous presence of metalworking debris across the rest of the excavated areas (Beaumont et al. 2012, pl. 8.2). Obsidian artefacts and debitage are similarly missing from area J (Beaumont et al. 2012, pl. 8.2). While this marked difference suggests that variation of at least some activities, and perhaps also resource access, did exist within the community, the findings at Zagora to date nevertheless generally point towards a remarkable degree of socio-economic equality across the settlement. Given that, by the Late Geometric II period, Zagora likely housed a populace not less than 1200 individuals (see above), the apparent largely socio-economic egalitarian profile of the settlement poses a challenge to Morris’s suggestion that a population size greater than 500 individuals inevitably leads to systems and organization that involve the emergence of ‘permanent social and economic inequality’ (Morris 1987, 145–6; Vink 1997). These preliminary observations from Zagora should therefore serve to challenge the notion that the development of socio-economic hierarchy in the Late Geometric period was a phenomenon that played out, and/or was expressed, uniformly across the Greek world.

We have much yet to learn about Zagora, and we hope that our future fieldwork at the site will enable us to further illuminate the economic profile and socio-political structure of the settlement. Since, to date, only eight per cent of the total site has been excavated, the picture I have presented here could very well change as a result of new discoveries.

Acknowledgements

I am grateful to my Zagora Archaeological Project collaborators Margaret Miller, Stavros Paspalas, Paul Donnelly and Beatrice McLoughlin for reading a draft of this paper and making valuable suggestions for its improvement. I am also grateful to the many colleagues and students who have contributed to the Zagora Archaeological Project. Without their input into the 2012–2015 fieldwork and museum study seasons, shared lengthy debates about the Project’s findings, and numerous published individual research outputs which I reference below, this paper would not have been possible. I also recognize the deep knowledge of
all-things Zagora possessed by the co-authors of the forthcoming Zagora 3 publication of the 1971 and 1974 excavation seasons (Paspalas et al. forthcoming), and thank them for many hours of profitable discussion.

Notes

1 Andrew Wilson has recalculated 64,860 sq. m as being the settlement area enclosed by the fortification wall. This corrects the figure of 78,000 sq. m previously published in Knight & Beaumont 2018.

2 I thank Beatrice McLoughlin for discussing this matter with me.

3 The 1977 faunal report by Lin Barnetson is to be published in Paspalas et al. forthcoming. Melanie Fillios is currently studying and preparing for publication the faunal remains excavated between 2012–2014. Rudolph Alaşık’s 2012 University of Sydney Honours thesis on ‘An Insight into Life at Geometric Zagora Provided by the Animal Bones’ may be accessed at http://hdl.handle.net/2123/8891.

4 Lithics expert Thomas Hikade is currently preparing a report for publication on the stone tools found at Zagora up to, and including, the 2014 field season.

5 I am grateful to Joanne Cutler and her colleagues on the PROCON project for inviting me to give this paper at the 2017 conference they organized in Cambridge on ‘Making Cities. Economies of Production and Urbanisation in Mediterranean Europe 1000–500 BC’. Jo’s subsequent untimely death robbed us of a fine scholar. I acknowledge with gratitude the provision to me by the PROCON project of Jo’s preliminary report on the Zagora textile tools and the permission granted to incorporate into this paper information drawn from Jo’s report.

6 I am grateful to my Zagora Archaeological Project Co-Director, Stavros Paspalas, for his advice on the ceramic evidence for the dating of the initial construction of the fortification wall. This evidence is to be published in Paspalas et al. forthcoming.

References

Making cities

Large and complex settlements appeared across the north Mediterranean during the period 1000–500 BC, from the Aegean basin to Iberia, as well as north of the Alps. The region also became considerably more interconnected. Urban life and networks fostered new consumption practices, requiring different economic and social structures to sustain them. This book considers the emergence of cities in Mediterranean Europe, with a focus on the economy. What was distinctive about urban lifeways across the Mediterranean? How did different economic activities interact, and how did they transform power hierarchies? How was urbanism sustained by economic structures, social relations and mobility? The authors bring to the debate recently excavated sites and regions that may be unfamiliar to wider (especially Anglophone) scholarship, alongside fresh reappraisals of well-known cities. The variety of urban life, economy and local dynamics prompts us to reconsider ancient urbanism through a comparative perspective.

Editors:
Margarita Gleba is a Professor at the University of Padua and Honorary Senior Lecturer at University College London. Beatriz Marín-Aguilera is a Renfrew Fellow at the McDonald Institute for Archaeological Research, University of Cambridge. Bela Dimova is a A. G. Leventis Fellow in Hellenic Studies at the British School at Athens.

Published by the McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK.

The McDonald Institute for Archaeological Research exists to further research by Cambridge archaeologists and their collaborators into all aspects of the human past, across time and space. It supports archaeological fieldwork, archaeological science, material culture studies, and archaeological theory in an interdisciplinary framework. The Institute is committed to supporting new perspectives and ground-breaking research in archaeology and publishes peer-reviewed books of the highest quality across a range of subjects in the form of fieldwork monographs and thematic edited volumes.

Cover artwork by Kelvin Wilson. Cover design by Dora Kemp and Ben Plumridge.

ISBN: 978-1-913344-06-1