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Abstract

Product design for formulations is an active and challenging area of research. The new

challenges of a fast-paced market, products of increasing complexity, and practical translation

of sustainability paradigms require re-examination the existing theoretical frameworks to

include the advantages from business and research digitalization. This thesis is based on

the hypotheses that (i) new products with desired properties can be discovered by using a

robotic platform combined with an intelligent optimization algorithm, and (ii) we can the

connect data-driven optimisation with physico-chemical knowledge generation, which will

result in a suitable model for translation of product discovery to production, thus impacting

on the process development steps towards industrial applications. This thesis focuses on two

complex physicochemical systems as case studies, namely the oil-in-water shampoo system

and sunscreen products.

Firstly, I report the coupling of a machine-learning classification algorithm with the

Thompson-Sampling Efficient Multi-Optimization (TSEMO) for the simultaneous optimiza-

tion of continuous and discrete outputs. The methodology was successfully applied to the

design of a formulated liquid product of commercial interest for which no physical models are

available. Experiments were carried out in a semi-automated fashion using robotic platforms

triggered by the machine-learning algorithms. The proposed closed-loop optimization frame-

work allowed to find suitable recipes meeting the customer-defined criteria within 15 working

days, outperforming human intuition in the target performance of the formulations. The
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framework was then extended to co-optimization of both formulation and process conditions

and ingredients selection.

Secondly, I report the methods for the identification of new physical knowledge in

a complex system where a prior knowledge is insufficient. The application of feature

engineering methods in sun cream protection prediction was discussed. It was found that

the concentration of UVA and UVB filters are key features, together with product viscosity,

which match with the experts’ domain knowledge in sun cream product design. It was also

found that through the combination of feature engineering and machine learning, high-fidelity

model could be constructed. Furthermore, a modified mixed-integer nonlinear programming

(MINLP) formulation for symbolic regression method was proposed for identification of

physical models from noisy experimental data. The globally optimal search was extended to

identify physical models and to cope with noise in the experimental data predictor variables.

The methodology was proven to be successful in identifying the correct physical models

describing the relationship between shear stress and shear rate for both Newtonian and

non-Newtonian fluids, and simple kinetic laws of chemical reactions.

The work of this thesis shows that machine learning methods, together with automated

experimental system, can speed-up the R&D process of formulated product design as well as

gain new physical knowledge of the complex systems.
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Chapter 1

Introduction

1.1 Background

Formulated products consist of a blend of ingredients, processed to achieve a set of desired

performance and appearance characteristics [1]. The aim of formulated product design is to

�nd a product that exhibits a behaviour, corresponding to desired, customer-de�ned functional

properties [1]. Formulations are ubiquitous in daily life, ranging from medicines to cosmetic

creams and gels, from detergent powders and liquids to processed foods, paints, adhesives,

lubricants, pesticide granules, and many more. Because of the signi�cance of formulations

markets, the developments in formulation technologies is attracting attention of both academia

and industry [2]. In 2009, chemical product engineering has been introduced as the third

paradigm within the �eld of chemical engineering [3]. The design of formulated products

involves identi�cation of target product attributes, determination of product form, selection

of ingredients, development of processing steps, as well as economic and environmental

analyses [4]. As a result of this conceptual and empirical complexity, research has focused

on identi�cation of a theoretical framework for formulated products design, taking into

consideration all of these interlined areas [5]. Within this general framework, it is clear
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that access to: (i) a large number of reliable and repeatable data, and (ii) better models,

would be key elements for faster and ef�cient formulated products development. The former

challenge can be addressed by adopting robotic automated high-throughput experimentation,

whereas the latter can be met by the adoption of data ef�cient statistical machine learning

(ML) models. The automation of chemical experiments and advances in machine learning

algorithms to guide automated experiments has recently emerged as a new paradigm for

chemical R&D [6, 7] in robotic experimental platform for nanomaterial discovery [8, 9],

design of experiments for high-dimensional statistical learning [10], synthesis planning

[11, 12], discovery of reactions [13], and optimisation of process conditions through machine

learning [14]. Automation and digitalisation of R&D are also offering signi�cant advantages

to discovery and optimal design of formulated products [15, 16]. The anticipated bene�ts

stem from avoiding human bias and automating routine operations, while exploring highly-

complex multidimensional input space. As a result, these approaches are particularly suited

to address the new challenges of a fast-paced market, especially with the emerging constraints

of sustainability and ethics, for which rapid discovery and development are fundamental

requirements.

This project is initiated in collaboration with BASF SE. It aimed at developing a novel

methodology, which rapidly explore chemical and material space in order to �nd optimal

design with desired functions. This new approach have wide application from consumer

products, to pharmaceuticals.

The key proposed innovation in this project is that:

1. A methodology was proposed which allows to optimise new products with desired

properties using a novel robotic platform to sample the large experimental space,

and by directing the random discovery process much faster by means of data-driven

statistical machine-learning optimisation algorithms.
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2. Physical knowledge can be generated and connected to data-driven optimization,

which will result in a model, suitable for translation of product discovery to production,

optimisation and control, the necessary steps towards industrial applications.

The chapters presented in this thesis address different aspects of the novelty described

above and structured as follows:

In Chapter 1, existing approaches to formulated products design was reviewed, as well

as the state art of automated closed-loop systems for discovery and optimization. It also

states the role of the automation of chemical experiments and advances in machine learning

algorithms to guide automated experiments approach within the already existing theoretical

framework for formulated product design, and to discuss the different aspects of the hardware

and the software to accomplish the full automation and digitalisation in the �eld.

In Chapter 2, a closed-loop systems was developed for the ef�cient optimization of the

recipe of a complex formulated product of industrial interest, within which time saving and

highly reproducible robotic experiments were coupled with machine learning algorithms.

In the machine learning algorithm pipeline, The naïve Bayes classi�er combined with the

TS-EMO algorithm allowed to take into account in the optimization procedure binary discrete

outputs, also avoiding waste of time and material resources. The optimization procedure

outperformed human experts' intuition and suggested more convenient and low-priced

solutions within 15 working days.

In Chapter 3, the optimization scheme proposed extends its application to both product

and process design. The integration of product and process design is crucial due to the fact

that speci�c formulated product microstructural attributes strongly depend on the selected

manufacturing technologies and respective operating conditions. Also, the economic factor

was also considered in the proposed scheme. Moreover, a bridge design approach was

developed, in order to handle such problems in formulated product design, where a large a
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large number of components are possible to choose from, but only a few components in �nal

composition is sought. Both of the extensions were illustrated with the shampoo case study

as introduced in Chapter 2.

In Chapter 4, I report a methodology using machine learning to capture chemical intuition

that researchers normally develop in their search experimentally. Sunscreen formulated

products were used as the case study. Multiple feature engineering methods were applied

for feature importance analysis. It is shown that with the prior knowledge learning from the

system, the model prediction accuracy can be signi�cantly improved.

In Chapter 5, a modi�cation to the mixed-integer nonlinear programming (MINLP)

formulation for symbolic regression was proposed with the aim of identi�cation of explicit

physical models from noisy experimental data. The methodology was proven to be successful

in identifying the correct physical models describing the relationship between shear stress

and shear rate for both Newtonian and non-Newtonian �uids, and simple kinetic laws of

chemical reactions.

In Chapter 6, an overall conclusion as well as the outlook on future work is provided.

1.2 Theoretical Framework for Formulated Products De-

sign

During the past decades, enormous efforts have been made in order to develop methods and

tools for product design and development in various disciplines, such as material science,

chemical engineering, marketing and management. Ng, Gani and Dam-Johansen identi�ed

the following three approaches for product design, which are classi�ed based on their solution

strategies [17]:

1. Experiment-based trial-and-error approach.
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2. Physical model-based approach.

3. Integrated experiment-modelling approach.

These three approaches are discussed in the following. The experiment-based trial-and-error

approach is the preferred and most common one for the design of formulated products. By

performing experiments at all steps during the development of a formulation, the product

with desired properties can be developed. One previously reported explicative example is the

development of the inkjet formulation [18]. In this case, with only few key ingredients, and a

set of typical solvents and dispersants, it was possible for an experienced researcher to develop

the optimal blend on a lab-scale, and eventually use the gathered experimental data to generate

a model for future use [19]. However, this approach suffers from two main drawbacks: (i)

it requires a large amount of resources and is highly time-demanding, (ii) it is critically

dependent on the level of expertise of an experimentalist, the past knowledge, both formal

and tacit as identi�ed by Chandrasegaran et al. [20]. In particular, tacit knowledge, consisting

of subjective insights, intuition and heuristic qualitative rules is not easily transferable and is

usually lost with the loss of the experts in product development. Therefore, this approach

would be bene�cial if the number and the type of ingredients and processes conditions

were limiteda priori and skilled experts are involved in the process. On the other hand,

computational methods, i.e. physical model-based design of formulations, were proposed

in order to reduce the experimental cost and to speed up the R&D process. In the last few

years, various attempts have been made to establish systematic methodologies. Computer-

aided methods have been proposed for solvent design [21], mixture design [22], general

molecular design [23] and etc.. A review of computer-aided molecular design (CAMD)

methods for product and process design was published by Gani [4], while Ng et al. reviewed

signi�cant developments, current challenges, and future opportunities in the �eld of chemical

product design using the CAMD tools [24]. A key concept in CAMD is to utilize different

chemical property models for possible chemical species in the pool, formulated as a mixed-
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integer linear/nonlinear programming (MILP/MINLP) optimization model, then solved with

numerical optimization techniques [2]. The suitability of these structures for a particular task

or process can be evaluated with respect to a chosen criterion (for instance, the solubility

of the target compound), while considering physical and chemical constraints, as well as

process constraints of varying complexity. From the solution of the optimization model, the

optimal product is obtained. It has been �rst applied to the design of single molecule species,

and witnessed a huge success. The applications vary from the design of refrigerants [25]

to surfactants [26]. The CAMD method was then extended to the design of mixtures and

composite chemical products, and identi�ed as computer-aided blend design (CAMbD) [27]

also reported as computer-aided mixture design (CAMxD) [28, 29]. Typically, almost all

CAMD/CAMbD methods use group contribution (GC) based property prediction methods

[30, 31] to evaluate the generated compound with respect to the speci�ed set of desirable

target properties. UNIFAC [32, 33] and SAFT-g [34] demonstrated to be accurate and useful

in calculating solubility, phase equilibrium, partition coef�cients, and various other properties.

However, one signi�cant issue is that they rely on binary interaction parameters for every

pair of groups in solution, often not available in thermodynamic properties databases [35].

An alternative way is using quantum chemistry calculation for thermodynamics estimation.

The COSMO-RS and COSMO-SAC are two of the most popular post-processing methods

in COSMO solvation model, where the estimation of thermodynamics only relies on the

composition-independent charge density distributions, also known as sigma pro�le, and

molecular volume. Detailed review on those methods can be found in Refs. [29, 36, 37].

Furthermore, a systematic review on available computer-aided methods and associated

software tools for formulated product design can be found in Ref [38]. Brie�y, the model-

based approaches are able to ef�ciently �nd feasible candidates within the application range

of the available models. However, since the function-materials-structure-processing relations

have not been developed for complex formulations, including the ones determined by nano
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or microscale, some target properties are hard to predict with computational tools only [39].

As a result, the third and �nal integrated experiment-modelling approach was proposed,

which consists in combining the computer-aided model-based techniques with heuristic-

based experimental testing and improvements of the formulation design. The integrated

approach usually consists of three stages: the problem de�nition stage, the model-based

design stage, and the experiment-based veri�cation stage [40]. In the problem de�nition stage,

the targets are translated into a set of thermophysical properties and into a list of categories of

ingredients, which are to be included in the formulation via a robust knowledge base. In the

model-based design stage, structured databases, dedicated algorithms, and property physical

model library are employed for designing a candidate base case formulation. Finally, in

the experiment-based veri�cation stage, the properties and performances of the proposed

formulation are tested experimentally. Through this systematic list of stage action, the

formulation is then validated.

By limiting candidate formulations to be tested and verifying the design in the last

stage, the integrated approach is convenient by saving the time and resources (compared

to experiment-based trial-and-error approach) and increasing the accuracy of the results

(compared to physical model-based approach).

In this framework for formulation design, the integration of robotic experiments and

statistical ML models would be a further step in the improvement of the integrated approaches.

In this sense, this approach would combine the time and resource ef�ciency of robotic

platforms with the fact that predictions of statistical models are only based on data, with no

need of extensive �rst principles physical knowledge.

The approaches reviewed so far are related to the core product design, and they are based

on the assumption that the target properties and the �nal market destination have already been

identi�ed and analysed. That is, the core design approaches are part of a broader theoretical
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framework, taking into account different co-existing levels within a complex decision making

hierarchy. These have been proposed by several papers and �rst reviewed by Gani and Ng in

2015, focusing on product conceptualization [41]. Interesting hierarchical models integration

in this broader framework was identi�ed by Fung et al., who proposed a grand model for

chemical product design, which indicates the relationships between different aspects [1].

It consists of a process model, a property model, a quality model, a cost model, a pricing

model, an economic model, as well as factors such as company strategy, government policies,

and regulations. Further elements have been added by Seider et al., proposing a model

considering issues such as sustainability, company strategy, aesthetics, human senses, and

so on [42], while Zhang et al. included supply chain analysis for optimization of selection

of product ingredients [43]. Despite the large number of problem aspects included in the

grand structure, there are �ve common key elements included in these high level integration

approaches [5]. For the modelling part, a physico-chemal model (material properties, product

structure, process condition and etc.), a rule-based model (supply chain, economics analysis)

and databases are involved. For the experimental part, experimental and analytical tools are

also considered within the superstructure for the validation of design.

In Fig. 1.1, we illustrate the integration of the methodologies described in this thesis in

the pre-existing theoretical framework reported by Zhang et al. [38]. Brie�y, the market

needs to de�ne the product and its desired properties, that can be translated into quanti�able

properties functions. Once identi�ed, the next step in the general product design is to analyse

the existing knowledge in terms of preliminary information, tacit knowledge in the form of

operators' expertise, and formal knowledge, derived from �rst principles and the available

models, to de�ne the objective functions to optimize. It is important to stress that commercial

formulated products are often complex mixtures for which no predictive models are available,

and the complex interactions between different ingredients and process variables are not

easily translatable into predictions of the �nal properties, even by experienced formulators.



1.2 Theoretical Framework for Formulated Products Design 9

The most common situation would be the availability of a small preliminary data set, which

can be used to de�ne reasonable constraints in the input variables space. The preliminary

data can be used in combination with DoE techniques to run a �rst batch of experiments

to maximize the information gain and start the iterative process for the multi-optimization

problem. In this regard, there is still an urgent need to have fast DoE algorithms to maximize

the information on different con�icting continuous and discrete targets at the same time. The

lack of predictive models for most of the complex interactions and properties of formulated

products suggests the superiority of DoE algorithms based on the use of data-driven surrogate

statistical models, as discussed in Section 1.3.3. Based on predictions of such models,

trained on the available experimental data, robotic platforms can quickly and reliably run

experiments to generate samples. Automated analytics can then generate a new data set

and use it to iteratively train the algorithms until satisfactory conditions are found. The

underpinning assumption is that the adoption of automated machinery and statistical models

would signi�cantly speed up the discovery of new products and the optimization of the

conditions leading to a faster release of the product in the market.
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1.3 Closed-loop systems for formulations: state of art and

challenges

The recently reported combinations of process automation, arti�cial intelligence and statisti-

cal models in closed-loop optimization are potentially very promising in reducing the release

time of new products in the market without the need for a detailed physical knowledge of

new complex systems [45, 46, 10]. However, at present, only a very few papers started to

address the challenges and applications of computer-guided closed loop optimization in the

�eld of formulated products and there is a general lack of discussion on the role of these

new tools in the more general framework of product design, already outlined in the literature.

In this Section, a brief overview of the existing techniques were provided, identifying the

challenges for future research. For a thorough review of closed loop optimization in the �elds

of chemistry and chemical engineering the reader can refer to Mateos et al. [46], Houben

and Lapkin [47] and Horbaczewskyi et al. [48].

The common features of automated closed loops reported in the literature are Fig. 1.1:

1. A robotic platform to run experiments in an automated fashion.

2. An automated on-line and in-line analytical tools to evaluate the outcome of experi-

ments.

3. An algorithm suggesting new experiments to carry out, based on the predictive results

of surrogate models, ideally cheap to evaluate. The trade-off between exploitation and

exploration is of crucial importance in reducing the time and the resources needed for

product development.
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1.3.1 Robotic Platforms

First automated hardware for chemistry can be dated back to the late 1960s [49]. Since then,

considerable advances have been made to expand the potentialities of such a tool. For a

detailed historical excursus, the reader can refer to Ref [49]. Robotic platforms proposed in

the academic literature are mostly developed in the �eld of chemical reaction and very little

has been proposed for the generation of complex formulated products, for which physico-

chemical interactions between the ingredients have less obvious outcomes compared to

reactions between chemical species. The state-of-art hardware can be grouped into two main

categories: (i) automated continuous micro�uidic platforms and (ii) modular batch operations

[50]. Advantages and drawbacks of both con�gurations are widely discussed in the existing

literature [51, 52] and are beyond the scope of the present paper. However, it must be

highlighted that, whilst the former continuous �ow devices seem extremely promising for

investigating reaction conditions in an ef�cient and resource-undemanding way, the latter

possess great advantages for the mixing, the processing of emulsions, handling of solids,

and for the investigation of thermodynamics-related properties [53], e.g. stability. For most

formulated products, the process determining the �nal structure, thermodynamic state, and

properties, consists in a combination of rigorously controlled mixing of ingredients at a

certain temperature, and stepwise addition of different ingredients at different stages of

the process. Therefore, the main challenges for the application of automated hardware to

formulated products design, can be identi�ed as:

1. producing a large number of batch samples in a relatively short time;

2. the stringent control of mixing and temperature;

3. accurate handling of solid ingredients;

4. transferring samples between different bays for different unit operations (dispensing,

processing, analysis, etc.);
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5. standardized �exible robotic hardware that can be easily adapted to the speci�c work-

�ow.

High-throughput production of batch samples has developed at different speed and with

different purposes and philosophy in industry and academia. Interesting automated systems

with applications for formulated products are represented by the robotic platform currently

developed by Unilever and the University of Liverpool, and the FORMAX system, proposed

by ChemSpeed Technologies. The latter seems to be one of the more �exible platforms

on the market for formulation preparation; it consists of 30 exchangeable robotic tools and

up to 36 formulation vessels. Each formulation vessel is equipped with a stirring system

with speeds up to 6,000 rpm and precise temperature control. They also include liquid and

gravimetric solid handling, high viscous liquids dispensing, high shear homogenization, and

other robotic features like capping, crimping, gripping. Another commercially proposed

solution is the GEOFF automated formulation robot by LABMAN, with a productivity of 24

formulations per day. Despite great potential, the lack of academic papers describing in detail

such systems or adopting them to exploit their full functionality suggests that their integration

into existing laboratories is not always straightforward, affordable, or convenient. This poses

a serious question about the “democratization” of such tools for their easy exploitation and

wider impact in research.

In this direction, pioneering work in the development of batch modular systems has

been described by Cronin and co-workers [54, 55, 52] that could be adapted to the speci�c

requirements of this type of products. To date, the developed hardware has only been used to

investigate chemical reactions, with the only exception of the study of physical interactions

determined by thermodynamics, which then manifests itself in complex dynamic behaviour

of oil droplets in a continuous water phase [56, 53]. Being developed for different purposes,

these platforms are only able to produce one sample at a time with interstage automated

cleaning of the reactionware/containers. An attempt to overcome this limitation can be found



14 Introduction

in the recent studies [57], where an automated rotating wheel, coupled with a 3D-printed

dispensing element and automated syringe pumps, can allocate batches of 24 vials per run.

The potential of using 3D printing technologies to build inexpensive hardware was also

highlighted [58].

Systems for carrying out reactions in parallel under different conditions have been

implemented by Chemspeed, Hel Ltd., and other vendors [59–76]. Speci�cally, high-

and medium-throughput facilities have been implemented in the pharmaceutical industry,

where large numbers of compounds and reactions should be screened. Some examples are

represented by high-capacity storage facilities handled by moving robots and/or robotic arms

and miniaturised prototypes for synthesis and testing [77]. Researchers at Merck [78] have

recently proposed a 96-well metal microtiter plates to screen large numbers of reactions on a

small scale, still highlighting that automated liquid handling requires signi�cant investment

and training, whereas solid handling is both slow and inaccurate. Novartis Pharma developed

a high-throughput robotic system based on the use of deep well microplates with up to 480

samples [79].

Dispensing of ingredients is followed by or is simultaneous with processing of the

mixtures. In most academic papers, mixing seem to be ef�ciently automated using magnetic

stirrers activated by software-controlled magnets [58, 52]. However, in all the presented

solutions, temperature control is not ensured and, in some cases, mixing appears to be far

from ideal, stressing the need for standard thermostated mixing devices to explore different

effects of mixing and shear stress on the �nal product. In this sense, continuous �ow

microdevices might be advantageous due to the �ne control of the shear stress and the

�exibility in attaining different mixing regimes on a small-scale. However, also in this case,

the challenge of reaching similarly high mechanical stresses typical of a shaking process

is still an issue, also considering that most formulated products are processed on a long

time scale not easily achievable in continuous �ow micro-devices. Some continuous �ow
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high-shear mixers have been proposed [80–82], also for formulated products.

To the best of our knowledge, the only reported example in the literature of closed-

loop robotic optimization for formulated products [83] involves the use of an off-line non-

automated incubator to ef�ciently process samples, once again demonstrating that this

remains an open challenge in academia. Integration of all the main aspects of sample

preparation, i.e. liquid and solid dispensing, mixing, heating, and weighing, in the same

platform has been achieved in some commercial systems, the most notable platforms being

Chemspeed and Symyx [84], GEOFF automated formulation robot by LABMAN.

Assuming that different operations cannot be easily carried out in the same part of an

automated platform, the next problem to address is the automated transfer of samples from a

bay/station to another. Li et al. proposed the use of automated guided vehicles for transferring

operations in automated labs [85]. Another common solution, robotic arms with multiple

degrees of freedom, is not without its own challenges, since these are often expensive and

designed to carry out only speci�c repetitive operations with a reduced �exibility. The

problem was effectively solved in the work by Steiner et al. [52], for reactive mixtures:

reactive mixtures were transferred from a batch unit operation to another (reaction, separation,

puri�cation and etc.) by pumping through automatically controlled connection channels.

In the �eld of synthetic chemistry another industrial example of automated laboratory can

be found in the system developed by Aventis Pharma [86], based on the use of robotic

transferring shuttles on a rail system between different work stations. The automated lab

could ef�ciently carry out synthesis, mixing and temperature control, and auxiliary operations

such as weighing, capping and uncapping, as well as separation operations, like liquid-liquid

extraction, evaporation, �ltration and drying. However, formulated products pose new

challenges, such as the �ow of highly viscous products, the presence of dispersed solids,

multiple heterogeneous phases, and the formation of inter-molecular structures (core-shell

particles, entangled molecular chains, micelles, etc.) that might be dramatically affected by
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the shear effects in continuous �ow.

Solids handling is of primary importance in automated platforms for the optimization

of formulated products, considering that solid ingredients are often dissolved in a liquid

matrix or present in the �nal product in the form of solid dispersions or solid blends [87, 88].

However, none of the reviewed papers in the �eld of robotic platforms for the optimization,

discovery, and development of chemical processes has ef�ciently addressed the issue, despite

the fact that it would be bene�cial also for chemical reactions. Several technical solutions

commercially available in drug discovery had been described [89]. Trap-door mechanisms

with holes of different diameter are described as surprisingly accurate methods of solid

dispensing, although in�exible and dependent on the packing of the material in the holes,

which makes it unreliable for powders of different size distributions. Solid handling pipettes

rely on vacuum [90], or electrostatic forces [91] which makes them dif�cult to install and

limits their applicability, whereas more traditional devices are based on the use of Archimedes

screws [87]. Other commercially available solutions are included in the Chemspeed's

gravimetric dispensing unit, the Mettler-Toledo's dispensing stations, and the Zinsser Analytic

Calli robotic powder handling; at present, there are no publications reporting their integration

in robotic platforms for reaction and formulations development and is was recently stressed

that no general automated solid handling solution currently exists [78].

One �nal remark is the need for standardized unit platforms to be combined together

in different ways for a faster and cheaper exploitation of robotic laboratory technology.

Standardization is a fundamental requirement for commercialisation and application of

technologies on a large scale. Moreover, standardization of robotic hardware and software

would enable faster implementation of communication between different platforms, ef�cient

collaboration between researchers with different backgrounds, and creations of networks

of different platforms working on the same task, even remotely. The need of modularity

[51, 52] and standardization [54] has been already highlighted and partially tackled in the
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�eld of reaction development. However, future research is fundamental to extend the range

of applications and to make this relatively new tool accessible, available, and usable for

scholars with different expertise.

1.3.2 Analytics

Automated analytical tools are of crucial importance for the fast and ef�cient adoption of

robotic platforms for formulation development and they represent the ongoing bottleneck to

the wide adoption of such systems in academia and industry. Once again, most of the analytics

automated in the literature has been used for reaction development. A thorough review can

be found in Mateos et al. [46] and Houben et al. [47]. The most common adopted techniques

for reactive systems are UPLC and HPLC [92, 93, 51, 94–98, 45, 99–103, 10, 104, 105],

GC [106, 99], MS [37, 40, 46, 56, 52, 54, 53, 105, 107], IR [51, 55, 107, 108, 99], Raman

[51], and UV spectrophotometry [106, 109, 110]. However, according to the theoretical

framework outlined by Bernardo et al. [39], formulation design is a cycle of inversion and

evaluation of quality, property and process functions. Unlike reaction optimization, in this

case, most of the quality and property functions cannot be easily parametrized and most of

the measurable �nal properties of products are not easily correlated to the concentration of

chemical species in the system, meaning that there is a need for more complex automated

characterization of the obtained samples.

For formulated liquid products, the main general desired properties can be identi�ed

as: stability, aspect (colour and turbidity), viscosity, surface tension, pH, conductivity, zeta

potential and droplets size distribution, in the case of emulsions. Therefore, more complex,

analytical sensors need to be identi�ed and integrated in the robotic platforms to acquire data

about different properties at the same time. Other important properties can be functional

performances. i.e. for example UV protection of solar creams, or other sensory properties like
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odour, stickiness, etc. A �rst step in the automation of sensory properties measurement is rep-

resented by the new robotic tactile systems SynTouch (https://syntouchinc.com/technology/).

One key property of several commercial formulated products, ranging from detergents to

personal care products, is their external appearance, which can be quanti�ed using discrete

and continuous variables. The former can be de�ned as “stability” which is related to the

capability of the system to not show phase separation, whereas the latter can be quanti�ed

considering their absorbance spectra in the visible range and their turbidity value, measured in

Nephelometric Turbidity Unit (NTU). Phase separation can be evaluated through automated

image processing from automated cameras. Automated cameras and image processing

coupled to robotic platforms have already been proposed in other contexts [56, 53].

Very recently, Cao et el proposed a robotic platform to measure turbidity of a commercial

detergent, based on the adoption of a cheap LED and a light sensor on a moving 3D-printed

support [83]. The LED and the light sensor are �xed on the opposite sides of a vial containing

the samples, on a rotating wheel accommodating up to 24 vials. The electrical signal can

be converted to the turbidity value in NTU, based on a calibration with turbidity standards.

Following an analogous protocol, moving probes have been proposed to automatically

measure pH values [57] and the same can be applied to conductivity measurements. pH

measurements can be also carried out by the FORMEX platform by Chemspeed Technologies

and the automated GEOFF Labman platform. At present, there are a few examples of closed-

loop optimisation optimizing particle size [14] and viscosity [83, 111], whereas no example of

zeta potential and surface tension in such loops have been found to date. However, in the few

above-mentioned examples, both dynamic light scattering (DLS) and viscosity measurements

were manually carried out of�ine. A promising alternative to carry out DLS and Zeta potential

analysis in an automated fashion seems to be represented by the new Malvern Zetasizer

coupled with an automated autosampler, however, there are still no examples of integration

of such pieces of equipment in the automated platforms at present. Automation of DLS
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analysis was reported by Zhao et al. [79], using a DynaPro light scattering system (Wyatt

Santa Barbara, California, USA), with an average throughput of 30 samples per hour.

Automated viscosity measurements can be a challenging task, especially for high viscosity

and non-Newtonian �uids. One example of a semi-automated capillary viscometer can be

found in Neumann et al. [110]. In this case, viscosity is calculated from the measurement

of pressure drop in a capillary in which the �uid is �owing. An automated syringe pump

can dispense the �uid sample and the system can perform cleaning cycles with a solvent

in between the measurement runs. The described device has been successfully adopted to

characterize rheology of both Newtonian and non-Newtonian low-viscosity �uids. Desmukh

et al. [112] also proposed a similar system, based on the analysis of the mass �ow behaviour

or modelling of the pressure pro�le along the tips of multiple pipettes. In this case, it is

claimed that the system is rapid and parallelized, allowing analysis of more than 100 samples

in less than an hour, although accurate testing was only shown for Newtonian �uids. The

main challenges associated with this type of devices are the narrow pressure range and solvent

compatibility of pressure sensors, the accurate temperature control, and the need for smooth

and pulseless dispensing to have accurate measurements. Further research will have to extend

the range of usability of these devices and to integrate them in more comprehensive work

�ows, for the autonomous production and analysis of liquid formulations. An alternative

solution is represented by the coupling of robotic arms with traditional rotational viscometers

[113]. Commercially available systems for automating viscosity measurements are illustrated

by the GEOFF robot and the Phil CUP/BOB rheometer by LABMAN automation, and the

high-throughput rheometer Anton Parr HTR 502.

Finally, it is worth mentioning other examples of high-throughput automated assessment

of less obvious and easily quanti�able properties of formulated products reported in the liter-

ature: among these: the dirt removal ef�cacy of different cleaning systems [114], and colour,

glossiness, homogeneity, friction, and other mechanical properties of coatings proposed by
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the FORMAX platform by Chemspeed Technologies (https://www.chemspeed.com/formax/).

1.3.3 Algorithms

Robotic platforms can iteratively provide data points to train DoE algorithms, suggesting

new conditions in order to optimize the input variables with respect to one or more target

functions.

There are mainly two large groups of DoE algorithms: static and adaptive [115]. The

static sampling techniques, also known as one-shot sampling, is a type of method wherein all

the sample points are generated at once [116, 117]. Depending on the understanding of the

system and the computational power, it can be further classi�ed into system-free design and

system-aided design. The key criterium for the system-free DoE is its space-�lling ability.

Factorial design, fractional factorial design are the classic system-free DoE methods, which

aim to �ll the space uniformly. To add randomness in the �lling procedure, Monte Carlo

sampling (MCS) was proposed, which uses pseudo-random numbers to generate sample

points for space-�lling. It is then further developed into strati�ed Monte Carlo sampling

(SMCS), Quasi-Monte Carlo sampling (QMCS) and so on, in order to overcome shortcomings

of the classic MCS method. Abundant literature from the �elds of mathematics, statistics and

engineering exists for Monte Carlo type of sampling techniques [118–121]. These methods

inherently aim to space-�ll but lack quanti�cation of space-�lling during the placement,

such as uniformity-based space �lling criteria (SFC) [122, 123], and distance-based SFC

[124, 125]. Therefore, various methods which use the SFC as the objective function in the

placement optimization problem were proposed. McKay et al. developed Latin Hypercube

Design (LHD) also known as Latin Hypercube Sampling (LHS). It was inspired by the

concept of Latin square sampling [126], where an n-by-n matrix is �lled with n different

objects such that each object occurs exactly once in each row and exactly once in each column.
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Further, its variations such as orthogonal array-based LHS [127], orthogonal LHS [128], and

symmetric LHS [128] were also introduced. Johnson et al. proposed two distance-based

designs: maximin and minimax [125]. The maximin design maximizes the smallest distance

between any two points; similarly, the minimax designs minimize the maximin distance

between two points.

Although the system-free DoE techniques are easier to implement and less computational

power is needed, researchers realized the vital importance of incorporating system informa-

tion while generating experimental designs. To generate system speci�c design, scholars

proposed model-based designs in different ways, such as maximum entropy sampling, mean

squared error (MSE)-based designs. Lindly [129] proposed a measure to quantify information

based on Shannon's entropy [130]. This entropy criterion was �rst employed by Shewry and

Wynn to construct system-based designs [131, 132]. The MSE-based design is �rst employed

by Sacks and Schiller [133] as the prediction accuracy of a surrogate model can be improved

by minimizing its integrated mean squared error [134].

Adaptive sampling, also known as sequential sampling has attracted attention from

both research and industrial community. It can overcome the under/oversampling and

poor system approximations resulting from the static sampling methods [135]. It has been

also shown within numerical analysis that the adaptive sampling methods yield superior

surrogate approximation and lower computational expense compared to static techniques

[135]. Researchers have reported adaptive sampling techniques for different surrogate model,

such as support vector machines (SVM) [136, 137], arti�cial neural network (ANN) [138],

and others [139–141]. These are the type of adaptive sampling techniques where sampling

points are placed systematically, yet still stochastically. In contrast, methods which formulate

optimization problem to place new samples were also reported. Cozad et al. [142] proposed

ALAMO algorithm (Automatic learning of algebraic models for optimization), which is a

surrogate modelling tool where a derivative-free optimization problem is solved to maximize
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deviation of the surrogate model prediction error in order to place the next sampling point

[143, 142]. Detailed review of the existing algorithms has been published [115]. Here we

outline the general needs of the formulated product development and identify the key aspects

for future research.

1. Formulations can be complex physico-chemical systems for which no existing physical

models are readily available. The use of cheap-to-evaluate black-box surrogate statisti-

cal models is particularly suited to model the responses of the products to variations in

the input space.

2. In formulation design, it is extremely important to consider multiple, often con�icting,

targets and performance criteria. There is no commercially relevant formulation which

does not have to meet several targets at the same time in terms of �nal properties (aspect,

fragrance, touch, viscosity, stability, etc), costs, and environmental impact. In this

sense, several of the proposed single-objective optimization algorithms are completely

inadequate. Combining several targets in one single objective, i.e. scalarizarion, is a

possibility as shown for example in the multi-objective active learner (MOAL) [144]

methods. However, this is not ideal, since it requires prior knowledge, introduces

bias, and often is not straightforward [145]. Successful implementation of multi-target

optimization has been so far achieved for continuous variables using the Thompson

sampling ef�cient multi-objective algorithm (TS-EMO) [146, 10].

3. The sustainability challenge imposes targets for rapid development of new formulations

or substitutions of some ingredients with others, as environmental legal requirements

and consumers' ethics become more and more stringent [147]. As a result, algorithms

need to be fast and models cheap to evaluate, also in exploring a high-dimensional

combinatorial space. In addition, both discrete and continuous variables and target

performances need to be ef�ciently taken into account at the same time.
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4. The main drawback of black-box surrogate models is that they generally do not provide

any information about the physics underpinning product's functional performance.

In this sense, the use of data collected from closed-loop optimization procedure for

generation of physical knowledge is crucial in gaining a better understanding of the

processes to rapidly adapt and transfer the results to similar systems. Very preliminary

results in this sense can be identi�ed in the physical interpretation of models hyper-

parameters [10], the manual interpretation of Pareto fronts by human experts [148],

and, more recently, the automated capture of chemical intuition transferred between

similar systems [149], and the automated generation of physical laws from data [110].

5. As in the case of hardware, there will be a general need for user-friendly open-source

software interfaces, to enable experimentalists to apply the developed techniques

regardless of their speci�c �eld of expertise and democratize the use of such tools.





Chapter 2

Formulation optimization using robotic

experiments driven by machine learning

DoE

2.1 Introduction

Formulated products are complex mixtures of ingredients, whose time to market can be dif�-

cult to speed, due to the lack of general predictable physical models for the desired properties.

In this chapter we present such closed-loop optimization system as introduced in Section 1.3

for the multi-objective optimization of a commercial formulated product. Here we report

the coupling of a machine-learning classi�cation algorithm with the Thompson-Sampling

Ef�cient Multi-Optimization (TSEMO) algorithm for the simultaneous optimization of con-

tinuous variables enables to simultaneously meet discrete (namely, formulation stability)

and continuous (namely, viscosity, turbidity, and price) targets. The methodology is suc-

cessfully applied to the design of a formulated liquid product of commercial interest for

which no physical models are available. Experiments are carried out in a semi-automated
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fashion using robotic platforms triggered by the machine-learning algorithms. The procedure

allows to �nd 9 suitable recipes meeting the customer-de�ned criteria within 15 working

days, outperforming human intuition in the target performance of the formulations. The

proposed methodology enables to �nd suitable solutions within a relatively short time, i.e.

15 working days, using little empirical prior knowledge about the physical system to de�ne

the constraints of the input variables. This makes the proposed pipeline particularly suitable

for the early stages of the formulated products design.

2.2 Materials and Methods

2.2.1 Case study and materials

The case study under consideration is a commercial formulation consisting of three different

commercially available surfactants (S1 = Texapon SB3, S2 = Dehyton AB30, and S3 =

Plantacare 818), a polymer (P1 = Dehyquart CC7), a polymer (P1 = Dehyquart CC7), and a

thickener (T1 = Arlyon TT). The pH was adjusted using citric acid (ACS reagent,� 99:5%)

from Sigma-Aldrich, used as received. Turbidity standards (1, 2, 5, 10, 100, 500, and 1000

NTU) were purchased from Sigma-Aldrich.

2.2.2 Close-loop optimization procedure

A general scheme for the optimization procedure is given in Fig. 2.1. In Fig. 2.1, continuous

lines represent the materials �ow, whereas dashed lines represent the information �ow. The

formulation was simultaneously optimised with respect to viscosity, turbidity, stability and

price. At each iteration, a batch of 8 different suggested samples is prepared using the Robot

R1. Each batches were run twice to ensure repeatability. The so prepared samples are then

processed to generate the �nal product. The samples are successively transferred to the
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Robot R2, which can automatically perform pH, turbidity and stability tests. The samples

are �nally analysed off-line to measure viscosity. Details on the robotic platforms R1 and

R2, and the experiments are provided in Section 2.2.3. The turbidity and viscosity values

are used to train surrogate Gaussian Processes (GPs) models for prediction of the target

outputs. The price is analytically calculated using the unitary price of each ingredient and

their relative amounts. Based on the predictions, the TS-EMO algorithm generates 8 new

conditions to be tested in order to �nd a compromise between exploitation (�nding the best

conditions to minimize the objectives) and exploration (reducing the uncertainties) of the

input chemical space. The generated temporary suggestions are then tested in silico using

a classi�cation algorithm to predict which samples would be stable. The conditions that

give unstable formulations according to the classi�cation algorithm are discarded, and the

TS-EMO algorithm is reused to generate other suggestions, until an entire batch of 8 stable

conditions is available. The new suggested conditions are �nally added to the data set and

used to trigger a new iteration. Details about the TS-EMO algorithm and the classi�cation

algorithm are provided in Sections 2.4 and 2.5. The �le repository used for this work can be

found to the following GitHub page: https://github.com/sustainable-processes/centripeta.

2.2.3 Robotic platform

Samples preparation and analyses were partially automated by using two modular wheel

platforms (MWPs) adapted from adapted from Sally et al. [150] with modi�cation to the

needs of this projects work. The original platform publication describes the base model as

well as certain additional optional modules. This project utilised a number of these modules

to complete the work�ow. Fig. 2.2 shows a picture of the adopted experimental set-up.

Brie�y, both platforms consist of a laser-cut rotating wheel which can allocate up to

24 sample vials per batch. In R1, a 3D-printed element, equipped with a variable number
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