
Software-based approximate computing
for mathematical functions

Nicholas Gerard Timmons

Downing College

This dissertation is submitted on April, 2021 for the degree of Doctor of Philosophy

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work done
in collaboration except as declared in the Preface and specified in the text. I further state that
no substantial part of my thesis has already been submitted, or, is being concurrently submitted
for any such degree, diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the text. It
does not exceed the prescribed word limit for the relevant Degree Committee.

Nicholas Gerard Timmons
April, 2021

Abstract

Software-based approximate computing for mathematical functions
Nicholas Gerard Timmons

The four arithmetic floating-point operations (+, −, ÷ and ×) have been precisely specified
in IEEE-754 since 1985, but the situation for floating-point mathematical libraries and even some
hardware operations such as fused multiply-add is more nuanced as there are varying opinions
on which standards should be followed and when it is acceptable to allow some error or when it
is necessary to be correctly-rounded.

Deterministic correctly-rounded elementary mathematical functions are important in many
applications. Others are tolerant to some level of error and would benefit from less accurate,
better-performing approximations. We found that, despite IEEE-754 (2008 and 2019 only)
specifying that ‘recommended functions’ such as sin, cos or log should be correctly rounded, the
mathematical libraries available through standard interfaces in popular programming languages
provide neither correct-rounding nor maximally performing approximations, partly due to the
differing accuracy requirements of these functions in conflicting standards provided for some
languages, such as C. This dissertation seeks to explore the current methods used for the
implementation of mathematical functions, show the error present in them and demonstrate
methods to produce both low-cost correctly-rounded solutions and better approximations for
specific use-cases.

This is achieved by:
First, exploring the error within existing mathematical libraries and examining how it is

impacting existing applications and the development of programming language standards.
We then make two contributions which address the accuracy and standard conformance

problems that were found: 1) an approach for a correctly-rounded 32-bit implementation of the
elementary functions with minimal additional performance cost on modern hardware; and 2) an
approach for developing a better performing incorrectly-rounded solution for use when some
error is acceptable and conforming with the IEEE-754 standard is not a requirement. For the

latter contribution, we introduce a tool for semi-automated generic code sensitivity analysis and
approximation.

Next, we target the creation of approximations for the standard activation functions used in
neural networks. Identifying that significant time is spent in the computation of the activation
functions, we generate approximations with different levels of error and better performance
characteristics. These functions are then tested in standard neural networks to determine if the
approximations have any detrimental effect on the output of the network. We show that, for
many networks and activation functions, very coarse approximations are suitable replacements
to train the networks equally well at a lower overall time cost.

This dissertation makes original contributions to the area of approximate computing. We
demonstrate new approaches to safe-approximation and justify approximate computation gen-
erally by showing that existing mathematical libraries are already suffering the downsides of
approximation and latent error without fully exploiting the optimisation space available due to
the existing tolerance to that error and showing that correctly-rounded solutions are possible
without a significant performance impact for many 32-bit mathematical functions.

Acknowledgements

This thesis was written during a time in my life, and the world, of both great upheaval and a lot
of isolation. Without the selfless support of people who themselves were going through periods
of great and often quiet difficulty I would not have been able to reach this goal. I would like
to thank those people in my life, with a special mention to my supervisor, Andy Rice, and my
advisor, Alan Mycroft, who have been consistently consistent throughout this process even while
I have been erratically erratic.

I would also like to mention the members of the Cambridge University American Football
Club. While the varying performance of our team on the field has been full of highs and lows, off
the field the support and camaraderie of my teammates has been an endless source of positively
and the purest enthusiasm through every season.

Contents

1 Introduction 15
1.1 Motivation . 17

1.1.1 Approach to Approximation . 18
1.2 Structure . 19

2 Related Work 23
2.1 Key Problems in Approximate Computation 24

2.1.1 Finding Applicable Code . 24
2.1.2 Lack of Generic Techniques . 25
2.1.3 Solution Verification . 26

2.2 Application . 26
2.3 Resiliency . 29
2.4 Current Approximation Strategies . 30

2.4.1 Hardware Approximation . 30
2.4.2 Mandatory Approximation . 31
2.4.3 Mathematical Approximation . 31
2.4.4 Precision Scaling . 32
2.4.5 Memoisation . 33
2.4.6 Function Generation . 34

2.5 Discussion . 34

3 Background 37
3.1 IEEE-754 and Numerical Computing for Elementary Functions 37

3.1.1 The Evolution of IEEE-754 . 38
3.1.2 Rounding Modes . 40
3.1.3 Units-in-Last-Place and Correct-Rounding 40
3.1.4 The Additional Mathematical Operations 42
3.1.5 The Ongoing Influence of FDLIBM 43

3.2 Approximating Real Functions . 45
3.2.1 Range Reduction . 45

3.2.2 Piecewise Functions . 48
3.2.3 Table-Based Approximation . 48
3.2.4 Polynomial Approximation . 50

3.3 Implementing Elementary Functions . 50
3.3.1 Implementing sin & cos . 51
3.3.2 Implementing asin . 52

3.4 Function Equality . 54
3.4.1 Internal Vs External Equality . 56
3.4.2 Input and Output Equality . 57

3.4.2.1 Limited Bits . 59
3.4.2.2 Accuracy Degradation . 59
3.4.2.3 Mixed-Precision Results . 59

3.4.3 Function Transforms . 60
3.4.4 Performance in Input-Output Equality 61
3.4.5 Intersection of Equalities . 61
3.4.6 Application to Approximate Computing Theory 62
3.4.7 Summary . 64

3.5 Conclusion . 64

4 Evaluating IEEE-754 Elementary Functions 65
4.1 The Recommended Functions . 67
4.2 Libraries Evaluated . 68

4.2.1 Julia . 68
4.2.2 Microsoft C Runtime Library . 69
4.2.3 glibc . 69

4.3 Accuracy of 32-bit Functions . 69
4.4 32-bit GPU Functions . 71
4.5 Monotonicity Testing . 75

4.5.1 Duplicated Results . 75
4.6 Examples of Error . 76

4.6.1 Mismatch Example . 76
4.6.2 Procedural Example . 77
4.6.3 Neural network example . 81

4.6.3.1 MNIST Example . 81
4.6.3.2 LSTM Example . 82
4.6.3.3 Neural Network Conclusion 83

4.7 Non-Determinism Between Library Versions 83
4.7.1 The Change . 84

4.7.1.1 Analysis of Change . 84

4.7.1.2 ULP Error of tanf . 84
4.7.1.3 Differences Between Versions 84
4.7.1.4 Real-World Example . 86
4.7.1.5 glibc tanf Summary . 86

4.8 ULP Error, constexpr and Non-Determinism 87
4.9 Conclusion . 89

5 Correctly Rounded 32-Bit Elementary Functions 93
5.1 Current Approaches . 94

5.1.1 CR-LIBM . 94
5.1.2 GNU MPFR . 94

5.2 The Approach . 95
5.2.1 Debunking Simple Approaches . 95

5.3 Methodology . 96
5.4 Results . 97
5.5 Performance Evaluation . 97
5.6 Faster 64-bit tan . 99
5.7 Conclusion . 101

6 Approximate sin to One ULP Max-Error 103
6.1 Sensitivity Analysis Overview . 104
6.2 Julia sin Implementation Analysis . 106

6.2.1 sin Constraints . 107
6.3 Analysing the Sensitivity of the Existing sin Implementation 111

6.3.1 Setting Up Sensitivity Analysis of sin 111
6.3.2 Performing Sensitivity Analysis . 113

6.4 Applying an Optimisation . 116
6.4.1 Removing a Subtraction . 117
6.4.2 Using a Constant . 117
6.4.3 Results . 119

6.5 Conclusion . 119

7 Case Study: Neural Network Activation Functions 123
7.1 Activation Functions . 124
7.2 Activation Function Approximation . 125

7.2.1 tanh . 126
7.2.2 sigm . 127
7.2.3 ReLU . 128

7.3 Performance Results . 128

7.4 Comparison with ultra_fast_sigmoid 131
7.5 Comparison with Word2Vec Lookup Table . 132
7.6 Approximations in TensorFlow . 132
7.7 Threats to Validity . 133
7.8 Conclusion . 134

8 Conclusion 135
8.1 Future Work . 136
8.2 Final Remarks . 137

Bibliography 139

A Standard Mathematical Definitions 153
A.1 Mathematical Approximation Techniques . 153

A.1.1 Table Lookup . 153
A.1.1.1 Direct Lookup . 153
A.1.1.2 Interpolated Lookup . 154
A.1.1.3 Gradient Tables Lookup . 155

A.1.2 Polynomial Approximation . 155
A.1.2.1 Infinite Series . 158
A.1.2.2 Continued Fractions . 159
A.1.2.3 Orthogonal & Minimax Polynomials 159
A.1.2.4 Performance & Accuracy 164

A.2 Function Properties . 166
A.2.1 Transcendental Functions . 166
A.2.2 Continuous Functions . 166
A.2.3 Periodic Functions . 167

A.3 Accuracy and Error . 167
A.3.1 Absolute or Relative . 167
A.3.2 Minimum, Maximum or Average . 168

A.3.2.1 Min/Max Error . 168
A.3.2.2 Average Error . 169

A.3.3 Ranges and Domains of Error . 169
A.3.4 Deterministic Error and Uncertainty 170

Chapter 1

Introduction

When computers were first becoming popular tools, one of their first uses was scientific com-
puting. There was no standard for representing real numbers or how to compute elementary
functions correctly in these new numerical systems. This caused many libraries to be written
with different standards of error and with different approaches to representing real numbers. As a
result, it was fairly standard to use arbitrary approximations which produced results good enough
for the task to be used.

Approximations were a necessity for the computation of some mathematical problems in
a reasonable time. The need for very high precision for most tasks did not exist, and many
computers were specialised in those tasks for which they were built. As computers became more
mature and code began to be shared between computing devices, standards started to develop
around how programs should handle numbers and numerical functions. This culminated in,
what is for this dissertation at least, one of the most important and still developing standards for
numerical computing, the IEEE-754 Standard for floating-point arithmetic (IEEE-754). This
defines how floating-point numbers should be represented and handled and it also specifies
important mathematical functions used in scientific computing.

Today we have settled on floating-point as the numerical system for representing real numbers
in most scenarios. This is defined as part of the still-evolving IEEE-754. The mathematical
functions used in scientific computing are also defined in this standard. Importantly for our
research into approximate computation, the standard requires the mathematical functions to be
correctly rounded — they should return the closest representable value to the true value for the
given rounding mode.

We know that many applications require results that are precise, deterministic and portable,
while other applications are not only tolerant to error but are infeasible to be run without it. A
motivation for this work was to provide methods for the use of safe approximations alongside
the correctly-rounded implementation. Programmers should have the ability to specify the level
of error which is acceptable to them beyond the constraints of simply switching between 32-
and 64-bit data types so that code can be written more efficiently and save on operations that

15

calculate an answer beyond the precision needed. For any given program, there is also a level of
error in the final output that will be accepted. For some programs it is zero, for others it is a lot,
and some engineers may want to trade some level of accuracy for a gain in performance.

-In many ways, CPU performance gains are less and less each year; the so-called ‘Free
Lunch’1 is over. Where we could once rely on increasing performance to reach new heights of
processing, it is now again necessary to look to where we can cut corners, not waste calculations
and get the answers just a little bit wrong in ways which may not matter so that we can reach our
performance goals, just as the first computing engineers had to do. This means better optimisation
and not wasting performance doing things that do not need to be done. When approximate
computation is mentioned, the initial thoughts may be about getting the answer close enough, or
not as correct as it could be. A better way to think about it that is more representative of the work
currently in the field, is doing close to the optimal amount of work for the task. When you use an
approximation in place of a high-precision result and it does not negatively affect the outcome
from the program, you have not calculated the wrong answer. Rather, you have optimised away
many redundant calculations. The true optimal solution for a program can achieve the desired
output with the minimum amount of work.

This motivated my research into approximate computing for elementary mathematical func-
tions and the accuracy of existing popular mathematical libraries. I hoped to find approaches
suitable for an engineer when it would be possible to switch to an approximation for additional
performance when needed.

A surprising finding when I began investigating the implementation of elementary functions
in popular mathematical libraries was that they were already approximations. Not in the sense
that they approximate to the level of precision of the floating-point data type we are using, but
that they were implemented to not produce the correctly-rounded answer at their given precision.
I learned that this was by design, for performance reasons — the exact goal I had set to provide
to engineers, but only when it was safe to do so.

This was unexpected because the IEEE-754 standard explicitly states that these functions
should be correctly-rounded. In not following this aspect of the standard, the libraries’ functions
will produce different results for the same inputs for a significant range of their input domain.
This means that if one computer links to one library and another links to a different library,
despite the standard guaranteeing that they should get the same results, they might not. In part
this is due to not all languages implementing this standard, by design, choosing not to follow the
correct-rounding guarantee of the standard.

A major part of the work in this dissertation is revealing the existing level of accepted
(knowingly or otherwise) error that is present but mostly undocumented in common standard
mathematical libraries and then showing the negative effects of this on programs that rely on

1A term referring to a programmer not having to overly worry about the performance of the program they were
writing, because by the time they spent any significant effort optimising it then there would already be a faster CPU
on the market that made the gains insignificant.

16

those functions being accurate. In doing so, I show that there is already an accepted level of
error for these functions in some uses and I argue it should be exploited for better run-time
performance.

While finding that the standard implementations of the mathematical functions were inaccu-
rate was surprising, it shows that even in modern real-world computing, errors can be accepted.
The reasons given for this by developers who work on these libraries was that the performance
cost of correct-rounding in these functions was not worth the small amount of additional accuracy.
This is particularly important. It shows that real developers are not only willing to sacrifice
accuracy for performance gain, but are already doing so in key functions. This draws us towards
an interesting question, which this dissertation attempts to explore and provide some answers to:
If a small amount of error went almost unnoticed for a long time in widely used functions, then
where is the true error threshold, and how much error is acceptable?

In this dissertation, I analyse the existing error which is tolerated in the elementary functions
of standard mathematical libraries. In doing so I make two arguments.

First, I argue that we do need the correct answer sometimes. Correctly-rounded solutions
should be available because it is in the standard and expected. I present a method for achieving
this cheaply on modern hardware. If we do not have correct answers in the standard implementa-
tions, it makes it extremely hard to argue for approximations because the current solutions (which
many people believe to be correct) are already running as fast as an approximation, because they
are an approximation. I back up our claims for the need for correct-rounding by showing the
existing issues caused by the inconsistencies between implementations. In particular, I show how
it affects the portability and determinism of some algorithms and programs.

Second, I argue that sometimes the exact correct answer is not needed. I present a better
approximation for the same error-bounds present in the current implementations of an elementary
function, and in doing so show a method for finding safe approximations with tools I have
developed. I then demonstrate that the activation functions within a neural network are very
error-tolerant and that by taking advantage of the acceptability of that error, significantly reduced
training times can be achieved when compared to the accurate solutions without any penalty to
the result.

I believe that this makes a significant contribution to the current understanding of approx-
imation for numerical computing. I reveal the current state of play, show how to fix it and
how to move forward if you do want to use approximations to gain better performance in the
mathematical software which uses them.

1.1 Motivation

In Hyde’s book, Write Great Code [82] he states:

17

As computer system performance has increased from megahertz to hundreds of

megahertz to gigahertz, computer software performance has taken a back seat to

other concerns. Today, it’s not at all uncommon for software engineers to exclaim,

“You should never optimise your code!” Funny, you don’t hear too many software

users making such statements.

Optimisation is important to making good software. Code that is not optimal is uneconomical.
When code takes a long time to run, fewer experiments or programs can be run at the same
time. Slow code wastes time.2 It also makes for steeper hardware requirements to perform tasks,
which means spending more money on cloud computing time or in-house hardware.

Non-optimal code externalises the costs from the engineer of the code to the user in terms
of time, hardware and energy. This work was motivated by a desire to find techniques and
develop tools that can help to reduce this cost by providing new approaches to approximation
that can be easily adopted when writing or maintaining mathematical code. In the search for
these techniques, I found that many mathematical libraries which were expected to be accurate
were producing small errors. This motivated us to find out where the error in these libraries
was coming from and how tolerated it is and bring that together with our existing research into
sensitivity analysis and approximations.

This gave a target of widely used elementary mathematical functions which were already
resilient to some level of error to investigate further optimisation, both in isolation and within
larger applications. This helps to reduce the larger problem of approximations for mathematical
software down to a small number of functions that have well-defined standards and a long history
of how they are used and approximated.3

With this more limited scope, there is a task approximate functions to the optimal level of

work, a target the elementary functions provided by standard mathematical libraries and a metric
for success the programs being faster and not causing detrimental output. This is the direction
from which I have approached this work. It is direct, with a lot of scope for investigating how
different approaches to output in different uses result in varying boundaries and classifications
for the acceptability of the output.

1.1.1 Approach to Approximation

There is a reason that approximations are not widely applied when it comes to mathematical
computing: good approximations are hard.

Making an approximation is easy. A stopped clock is an approximation of a working clock,
it is correct twice a day. But clearly, that approximation is unhelpful. Approximations must

2See xkcd 303. https://xkcd.com/303/
3And by long history, I mean the oldest approximation investigated were ancient Babylonian approximations

of
√

2 to approximately six base-10 digits that were found on a clay tablet (YBC 7289) from roughly 1600 years
BCE [54].

18

first give a benefit to the application in some way (usually run-time performance or memory
use), they must gain this benefit without adversely hindering the results beyond the acceptable
error for all valid inputs, and they must be stable. If the approximation is unable to meet these
requirements, it is unlikely to be adopted.

The next difficulty is that the approximation must advertise its flaws. It would be easy
to create a whole library of fast mathematical functions that were ten times the speed of the
standard implementations, but if you do not tell the users that they are only accurate to 10% of
the true answer for that function the user will use them in places that require more accuracy and
again you have a problem. Approximations need well-defined conditions for their creation and
well-advertised descriptions of how they can be used. Without this, it is natural for a developer
to not trust approximations. Any developer would be frustrated if they ran into bugs in a library
because it did not behave how they expected it to behave.

In the past4, approximations have been used either implicitly without informing the user, or
explicitly with no guarantees of actual behaviour. This has led to distrust when people encounter
them. Consider your feelings if you saw a check-in to your favourite repository with the message
‘5x run-time improvement, only got the answer wrong a little’. You would likely be somewhat
concerned.

If we are approaching a time where the rate of the increase of performance in computing is
slowing and there is a practical and ethical need to more efficiently use the available computing
power, then it is time for approximations to be made public, easy to understand and easy to
safely apply. I want to remove the stigma by providing tools, methodologies and proof of the
effectiveness of appropriate and safe approximations. Without a solid basis for approximations
to be applied, they are just messy hacks and will generally not be used.

Some people have approached approximation as an analytical, mathematical problem to solve,
using formal proofs or interval arithmetic to provide well-defined solutions for well-defined
problems. For some areas of computing, this is possible and incredibly useful. However, I am
more interested in approaches that treat source-code generically without the formal bounds you
would find in proofs. Approaching approximation more empirically because so much code used
in the real world is ill-defined and the domains, rules and use-cases where it is executed can
change as a project develops. For this reason, I am interested in providing tools and approaches
that would work with less well-defined scenarios so that they can be adapted for use in modern
real-world projects looking for improved performance.

1.2 Structure

I begin in Chapter 2 with a review of existing approaches to approximations in modern computing
and a short discussion of how our work fits within that context.

4Generally, with a few notable exceptions.

19

Chapter 3 goes into further detail on the more relevant background topics needed to un-
derstand the work in this dissertation by looking at the historical background of mathematical
computing, numerical standards, approaches to approximation and some small examples of the
different types of approximations that have been used and how they require different understand-
ings of acceptable error. This background also covers the current views of equality for functions
and data in a computing environment so that we have grounding when suggesting it is acceptable
to replace a function with a close approximation.

The differences in how I consider equality is pivotal when considering approximation. If

refactoring a function results in minor changes to the floating-point behaviour, are the two

versions still equal? A compiler would say no (except under compilation with explicit flags to
allow floating-point error5) and not allow this transform, whereas it is something programmers
routinely change in day-to-day code maintenance. Effectively defining the different types of
equality in software and providing a language for it allows the later chapters to explain more
precisely what I mean by replacing a function with an ‘equal’ approximation.

The next chapters begin our contributions to the field, starting in Chapter 4 with an analysis
of existing error in the elementary mathematical functions used in common mathematical
libraries which ship with popular operating systems6. I demonstrate the existing problems with
the undocumented errors in these libraries by providing a few examples of simple programs,
including neural networks, which are not portable or which produce incorrect results because
of the approximation error and the different position of the errors between implementations.
I show how the error is inconsistent and undocumented between versions of the same library,
causing security and portability risks. The mathematical libraries are compared to similar GPU
implementations to show that the problem only gets worse when moved to a device more devoted
to competing on overall performance.

In Chapter 5, to show that some of the problems caused by incorrect-rounding can be
avoided without excessive cost I provide a correctly-rounded 32-bit solution for the mathematical
functions which has better or equal performance to the existing 64-bit implementations. I show
that these new implementations are not much more expensive than the current incorrectly-rounded
solutions and argue for them to be included in place of the existing solution.

Now that correctly rounded solutions have been provided for where they are needed, in
Chapter 6 I provide a better performing one-ULP7 max-error solution for the sin function to
be used in current applications which are tolerant of the one-ULP max-error present in existing
mathematical libraries. I use the ApproximateComputations.jl library that I have developed to
analyse the accuracy and performance of the Julia implementation of the function and show

5For example, GCC, Clang and MSVC all provide compiler flags to allow optimisations which allow some error
in floating-point calculations. This is the ‘-fast-math’ flags for GCC and Clang, and ’/fp:fast’ for MSVC

6You might be surprised to know there is error in these libraries; it is not well advertised or documented.
7ULP is Unit-in-the-Last-Place. A measure of the distance between one floating-point value and the next based

on the smallest representative value for a given floating-point value. Full explanation in Section 3.1.3.

20

how to improve the implementation when aiming for the actual worst-case error they already
exhibit, instead of aiming for correct-rounding. I then show how a more optimal function can be
generated where the average ULP error is higher but never exceeds the one-ULP max-error limit.

Finally, to show this work in a real-world context. In Chapter 7, approximations of varying
behaviour and accuracy of the standard activation functions used in neural networks are produced
and used in place of the standard implementations. Through a number of benchmarked networks,
I show that coarse approximations with bounded behaviours are safe to use and produce equally
well-trained networks with a significant reduction in the overall training time. I then show that
using the same functions for inference will improve the run-time performance of many neural
networks.

21

22

Chapter 2

Related Work

Approximate computation approaches are diverse and varied. Many focus upon the use of
domain-specific techniques which are designed for implementation within highly specified
contexts. These techniques are not flexible, and although valuable for research applications, they
are in many cases unsuitable for generalised use and few attempts have been made to resolve
the challenges that limit the applicability of approximate computation techniques to mainstream
software development [113].

In modern software development, source-code is written and then processed in many different
forms before it becomes an executable. From the source-code to the compilation process and
final execution there are many stages where it is possible to introduce approximations. Each
stage presents its own constraints and limitations. Some of these stages, such as hardware, are
highly specific. If these stages are targeted as the main point of approximation, the ability of the
technique to reach a mainstream audience is reduced to those who can meet the exact hardware
requirement.

As a result, to investigate new techniques in approximate computation the current solutions
available need to be considered and determine what stage of the software pipeline they effect
and how they can be more widely applied. This way, we will have the understanding to be able
build upon the current research and consider more generally applicable techniques.

This chapter first focuses upon key ideas and problems in the field. I then consider reliability
analysis, error-resilience and the common methods used to approach measuring them. Existing
AC Approximate Computing techniques which are influential and form the motivation for this
research are then covered in detail.

This chapter gives a high-level overview of current approximate computing research, showing
which areas I am building on and places my work in that context.

23

2.1 Key Problems in Approximate Computation

There are three important problem areas in approximate computing which have been identi-
fied [115] as discouraging to mainstream acceptance and spread of AC as standard computational
technique.

• Finding applicable code

• Lack of generic approaches

• Solution verification

Each is covered in detail below.

2.1.1 Finding Applicable Code

This represents the challenge of identifying particular segments of a target application which
could be viable for approximation. This would be code which can be altered without negatively
impacting the output of the application. Code-bases are very complex and therefore to find such
segments the approaches needed would have to be in some automated tool [136].

To identify these segments of code an analysis of the potential impact to the code-base is
required. One proposed way of doing this is through code-injection to determine for different
code segments the sensitivity they have in relation to the final output. This is known as the
perturbation-output problem [159]. The impact of changes made to the code must be understood
to predict how the changes will propagate error through the program, and to determine the affect
on the output.

Code segments which are resilient to error are considered ‘robust’ and the extents of that
property are widely explored [77, 78, 30, 100, 112]. Works in this area demonstrate the tolerance
to error of different patterns of coding [93] and the different algorithms they use. Through this
analysis they are able to produce approaches and algorithms for fault-tolerant computing [131].
These research approaches all consider execution on systems which are free from external
influence, in the real-world their is the concept of AVF (architectural vulnerability factor) which
refers to the vulnerability of hardware to random changes caused by particle strikes. These
random events can also effect the resiliency of a system if they are not handled correctly [117].
Chapter 6 shows a framework for programmer guided resilience analysis to try and reduce the
overall workload and allow for targeted optimisation.

This problem of robustness is difficult to approach for different types of applications and at
scale. For large solutions, testing every section of code for every possible input can become com-
putationally difficult, with some studies reporting compute times of many days with workloads
spread over hundreds of machines [159].

24

When looking at the limits of resilience you reach a critical error when the error leads to an
unacceptable output or crash (see Section 2.3). In the field of security the analysis of errors is
very important, one taxonomy on error and dependable computing lays out definitions for many
different categories of software error [9]. From that taxonomy we get the definition of Latent

Errors, ‘Errors that are present but not detected’. An optimal approximation solution aims to
reach the best performance by producing only latent errors – a non-trivial task.
As such, the challenge of finding applicable code lies in identifying sections of code which
would:

• Produce a benefit if altered
Which can only be identified by measuring the performance of each code-segment.

• Be resilient to some form of error
Which is identified by performing sensitivity analysis of the whole code-block in relation
to the final output (the “perturbation-output” problem).

• Change would not result in a complete breakdown of the application
Through criticality testing for the domains of the code-segments being changed we need
to ensure they will not result in the erroneous, unexpected or abnormal termination of the
program [131].

If this criteria can be met by a code-segment then it is a candidate for approximation.

2.1.2 Lack of Generic Techniques

In areas where approximation is not compulsory, there are a lack of generic approaches for
practical applications [139]. Many approaches are highly specified and focus upon limited
applications; this results in large overhead, strict hardware requirements (such as the inclusion of
specific approximation capable hardware [29]), and custom language extensions [138, 140]. As
a result, exploitation of AC for mainstream applications is not possible while the existing modern
techniques are incompatible with standard development environments or hardware configurations.
This makes many techniques functionally ineffective – especially to deploy at scale without a
high development or end-user cost. As a result, exploitation of AC for mainstream applications
is not possible while the techniques are incompatible with standard development.

Additionally, the lack of generic approaches means that general tooling to analyse software
and resolve the challenge of finding applicable code for specific techniques, are either non-
existent or are frequently over specified for specific techniques or a single heuristic [77]. This
is one of the causes for developers to implement ad-hoc approximation solutions which are
not robustly explored as correct or safe such as screen-space only ray-tracing [108], screen-
space ambient occlusion [12], approximate anti-aliasing [105] and approximate mathematical
functions [104].

25

2.1.3 Solution Verification

It is challenging to verify if a program executes correctly across its entire possible input domain
– especially in large multivariate systems [132]. A common approach in systems development
involves heavy reliance upon testing for verification through hand-selected targets [106], which
can result in limited coverage of error testing, and therefore may not identify all problems [67].

Applying approximation increases the scope of unexpected changes in behaviour which may
not have been covered by testing. For an approximation technique to be valid, it must fit within
acceptable parameters for error and stability, without producing silent data corruption1). For
a complicated function, it is near-impossible to acceptably ensure verification for every input-
output pair, and is made more complex when considering acceptable error bounds. Research and
development aimed at containing this problem for certain techniques has been attempted [167],
but no consensus for generic approaches has been developed for generic application without
human intervention.

In my work I verify solutions within the limited domain which results from the change
applied using my framework for guided identification of approximation sites. I also limit work
to 32-bit floating-point for most cases and perform isolated code-transforms so that only small
areas of code need to be validated. For approximations which are more open-ended (such as
improvements to neural network computations in Chapter 7) I rely on verification of the final
output rather than the steps in between. They are inconsequential as only the final result has any
impact.

2.2 Application

In this section, the standard approaches and considerations for applying AC to a program are
presented. Beginning with the motivation for using approximation, followed by a breakdown of
when it is possible to be applied. This high-level view of the area will provide the background
knowledge which may be assumed in Section 2.4 covering specific AC techniques.

When looking to apply approximation, it is important to consider the motivation for using it.
For some intractable problems, an approximation is mandatory [139], in these scenarios a “good-
enough” [141] answer is used and for many common problems – these are well documented [33].
For other cases, where it is not essential to use approximation, other factors are incentives to apply
the techniques. In this section we will cover the different motivations for using approximation
and where they are generally applied.

Approximation Is Required. As mentioned, approximation can sometimes be a requirement.
The majority of instances of approximation that are presently encountered are cases of mandatory

1See Section 2.3 for more details

26

approximation. Common use-cases include machine-learning, simulations and low-cost real-
number calculations.

For these types of problems AC is a natural solution as the result is not required to be
absolutely correct, there is a high-level of tolerance to specific inaccuracy and computing the
absolute correct answer would be either impossible, impractical or unnecessary.

The application is error-resilient. Some software has a high-level of resilience to error. This
is often the case for applications which rely on sensors or noisy data [148]. These setups have an
inherent error-tolerance which can be exploited for an energy or performance benefit.

A common example of this would be a graphics application which renders images to a
low-precision buffer. If the difference in absolute value between the actual result and the low-
precision result is lower than the viewers ability to perceive it, then the application has reduced
the cost of rendering without a negative impact [137].

Error-resilience proves to be a beneficial, motivating characteristic for a programmer to
intentionally use AC techniques [30].

Efficiency Gains. Some applications need to increase performance and are willing to pay an
accuracy cost for it. This is of particular value to a developer working on limited hardware, such
as those developing for mobile devices.

A simple example of this is a developer working on a video encoder and decoder. The user
of the mobile device may be willing to accept visual artefacts in the decoded video if it allows
the playback of video at an acceptable quality at a lower processing cost.

Quality Control. AC techniques can allow for scalability of the final Quality of Result (QoR).
It can be desirable for a program to target multiple performance levels of hardware. Approxi-
mation can allow for automatically lowering the performance cost to match the hardware with
understood consequences. In this way a developer is able to tune the performance-QoR trade-off
appropriately for each target platform.

Once it is established that AC is an option then it must be considered if the problem falls into
a classification where it can be reasonably applied.

It is most important that the part of the program targeted for approximation does not result in
a Golden Answer [161]. A Golden Answer is one which must be absolutely correct for any given
input and any deviation from this would be a critical failure of the program [159].

If an application does not have a Golden Answer then it will have some margins of acceptable
error, known as resilience2 [30].

Once resilience has been established the approximable properties which an AC technique
could exploit can be considered. These include:

2Resilience is further explored in Section 2.3 of this chapter.

27

• Resilient Results When a program contains stages where a bounded level of error will
not negatively effect the QoR. This is a common property of programs which use noisy or
unreliable data-sources. Such as sensors in mobile devices which may disregard anomalous
data outside of a fixed range or programs which only require a low-precision output to
function correctly [148].

• Stochastic/Probabilistic Results This property is exhibited by a program which will
converge onto the correct result, in possibly an infinite number of steps. A common
example would be Monte-Carlo based probabilistic algorithms [57].

• Self-Correcting Stages Similar to stochastic programs, this property is expressed through
error from approximation which is then later “corrected” by a more costly update. This
pattern is common to algorithms that rely on prediction from uncertain data [148].

• Fail-Rare Or Fail-Small If a program can support small errors or infrequent errors, it will
fall into this category [30]. Real-time software often falls into this category. Where a small
error will only have a small impact on the final result and is acceptable to the end-user. A
common example would be a video decoder which may have incomplete data resulting in
small error per-frame output.

With this it is possible to reasonably establish which type, if any, AC technique is suitable for a
program.

Approximation techniques are heavily reliant on understanding error propagation and re-
silience. As this behaviour is expressed differently at different levels of code abstraction, AC
techniques are grouped into different levels; operation-, type- and algorithm-level [30].

• Operation-level. Low-level hardware or type interaction overrides, such as voltage scaled
hardware [76].

• Type-level. Approximate data representations, such as bit truncation or lower-precision
types [38].

• Algorithm-level. Skipping tasks, such as loop perforation or memoisation as well proba-
bilistic approaches such as Monte-Carlo simulation [109].

Knowing which level of approximation is best to approach for a problem, informs how to measure
error, as well as which techniques would be suitable and how viable they would be.

Understanding of the key motivation, use-cases and classes of techniques is important to the
selection of approximation techniques. In my work I show examples of work at all three levels of
approximation. In Chapter 6 I show operation level tweaking of existing functions to selectively
remove code that is providing more accuracy than required in resilient use-cases. In Chapter 5 I

28

show type- and algorithm-level approximations when different internal precision levels are used,
as well as different curve-fitting algorithms to find implementations of mathematical functions
with different amounts of error for use in a fail-small algorithm3. And finally, in the last work
chapter, Chapter 7 primarily algorithm-level approximations of known activation functions are
used to improve the performance of self-correcting machine learning algorithms.

2.3 Resiliency

A recurring problem in AC is defining an objective quality metric from which deviance or error
can be measured [139]. As a result, determining whether a section of code is safe to approximate
is difficult. Analysis techniques which attempt to measure the error and determine limits on the
amount of error that can be introduced to a section of code are referred to as Resilience Analysis.

In this context, the resilience for a part of an application is it’s maximum tolerance for error
before the application no longer performs adequately. Some promising modern approaches have
looked at measuring this through bit-level fault-injection [77, 78]. This allows for independent
analysis of the tolerances of each section of code, and gaining a reasonable understanding of the
magnitude of error in a system when it is produced at different code-positions. Through experi-
mentation (within known input ranges) this can be used to produce an estimate of acceptable
error bounds.

When approaches are looking to measure resilience, applications are grouped into two
categories, those which are inherently resilient and those which are not [30]. Inherently resilient
applications are often those which implement software containing compulsory approximation,
resulting in some leniency in the final results. Non-inherently resilient applications are those
where we are interested in if that leniency exists. Resiliency is easier to measure when it is
inherent as any working application can be estimated from the programmers ‘expectations’ [48].
‘Expectations’ is an approach which allows for the relaxation of accuracy constraints by taking
the assumptions of implied error in the types and mandatory approximation techniques being
used and using them to assume a specific minimal level of resilience within specific code section.
In non-inherent applications the maximum errors which are acceptable must be determined in
more complex ways, as the code is written to be accurate and no assumptions can be made.

A useful tool for determining the objective quality for non-inherently resilient applications
is the concept of a Comfort Zone which was proposed by M. Rinard [133]. He proposed that
analysis should be performed within fixed acceptable input ranges for a function or part of
a code-base. Within this range there should be robust testing and acceptable bounds can be
established. This was originally proposed to allow for the separation of core functionality of an
application from unstable elements, but the concept holds for determining acceptable bounds

3In this case, the fail-small scenario is converting from 64-bit to 32-bit, where small errors are likely to be
cancelled out by being unable to be represented at the lower precision.

29

of input for other transformations and approximations and is further explored in other papers,
sometimes related to Good-enough Computing [132].

When testing the Comfort Zone input range to determine the resilience, it is to determine if
the injected error results in error in the output of the application that is either silent, detectable or
critical [159]. A data change which is silent means that error has not had a measurable impact
on the output meaning the Golden Answer is maintained, a detectable error is one which does
affect the output to some degree but within acceptable limits and a critical error is unacceptable
or causes other problems which prevent the output being measurable (e.g. segmentation faults).

If testing is thorough, then it is possible to calculate the degree by which different parts of
the application can be changed if there is an appropriate way to understand the results of the
application – with caveats on the type of approximation technique that will be applied and the
type of data that is being accessed but further work for a standardised approach is still needed.

2.4 Current Approximation Strategies

The problem of approximation has been explored by researchers from diverse backgrounds and
different areas of computer science, this is reflected in the variety and difference of the many
approaches.

A major difference between techniques is the strictness they take to performing the transfor-
mations. There is also a wide discrepancy in which level of abstraction each approach chooses
to apply its changes to produce the approximation. The techniques vary, with the lowest level
requiring physical changes to the hardware, and other techniques for every stage of compilation,
and even some designed to exploit behaviour in the hardware drivers.

These differences in approach will be expanded on below for each technique that is described.
With the analysis and characterisation of select techniques in the field I hope to show clearly
where gaps exist in the current techniques.

2.4.1 Hardware Approximation

Many of the optimisation techniques which use approximation have attempted to explore changes
in hardware to facilitate the use of approximation in the source-code. This tends to have good
results [140] but this limits to the possible distribution of the techniques beyond machines with
specific and uncommon hardware – unless the technique is adopted into hardware by a major
distributor.

As the aim of our proposed research is to find solutions to key problems which prevent
the safe and reliable application of approximation in general use, any hardware changes are
out-of-scope, and potentially adverse to the goals.

30

For thoroughness, the reader can be directed to the body of work on this subject, which
appears to be more active than current software developments in approximation [76, 168, 110,
140, 148, 27, 92]. For now, the reader only needs to understand that these techniques can be
effective and they provide an additional avenue to approach the problems at the cost of being
very limited in applicability in the main-stream.

2.4.2 Mandatory Approximation

Approximation, in the general sense, has been very common in computing for a long time in the
form of floating-point numbers. Floating-point representation is considered one of the oldest
forms of approximation that is ubiquitous in modern computing [165]. Without approximation it
would be less practical to represent real numbers in real-time applications. Using floating-point
gives programmers the option to choose an arbitrary level of accuracy that is suitable to solve a
problem with a very strictly defined behaviour and representations [3].

When considering mandatory approximate computing, it is for the cases where hard real-time
constraints clash with computationally difficult problems without a “golden answer”. This has
resulted in some forms of approximation being reasonably well-defined and integrated into
specific paradigms [69, 109]. Floating-point numbers have been mentioned, but other examples
of mandatory approximation include: real-time graphics [96] (which are often not formally
defined), machine learning [128, 147], probabilistic algorithms [57, 100, 63, 46] and sensor-data
handling [148, 61].

Approximation has often been seen as a negative approach for introducing error into a system
when it is not absolutely required, but it is surprisingly spread throughout modern systems. This
is important to recognise to build a case for bringing AC into mainstream software development.
As it is now, approximation is mandatory in some areas for reasonable performance but it is
strongly bound to those areas and application of it outside of those specific regions can be
dangerous due to the lack of verification processes [139].

Real-time graphics has shown that there is an abundance of use-cases that do not have to be
formally defined to be safe and effective, and that in the real-world ad-hoc usage approximations
may be made safe through simpler verification to allow for a larger optimisation space than
stricter definitions in other mandatory approximation techniques.

2.4.3 Mathematical Approximation

Mathematical approaches are one of the more established areas of approximation, with floating-
point representation being a good example. When IEEE floating-point hardware was becoming
standard on CPUs, J. Blinn introduced approaches which allowed for the approximation of a
few simple mathematical functions [18] which are still valuable today. Based upon exploiting

31

how data is stored in IEEE floating-point representation he was able to produce small functions
which outperform the standard implementations with a varied loss of accuracy.

More modern approaches, such as MetaLibm [97] have approached similar problems. Met-
aLibm seeks to map the entirety of the C Math Library [88] into approximate functions with a
degree of control over the precision. It represents some of the most robust function replacement
available in the field, although the approach is limited to functions which can be represented as
being continuous due to the reliance on curve-fitting and validated Taylor models.

Even with the limited scope of MetalibM, some of the results are very accurate to the
functions that are being replaced, with performance improvements of upto 5.8x at arbitrary levels
of precision.

Strict mathematical approaches provide solid evidence for the replacements that they create.
This makes testing and evaluation much simpler. Mathematical transforms are also simple
to represent at different levels of abstraction, allowing for a more generic approach, partic-
ular when generating full replacement functions. This is of particular value to our aims as
it validates function replacement and shows the viability in performance and applicability of
function/algorithm-level approximation approaches. This is explored in more detail, with robust
examples in Section 3.2.

2.4.4 Precision Scaling

Changing the precision of the data-types used to represent data in an application is an obvious
early target for approximation, especially when using floating-point.

One approximation system developed to target this area of techniques is EnerJ [140], with
the aim to reduce power usage through approximation. This system identified the need to keep
approximate data separate from accurate data. By keeping the data expressly separate they can
store the approximate data in lower-power approximate-precision storage hardware.

Allowing a separation in the storage hardware of the data forces the programmer to explicitly
control the transform from approximation back into regular data flow. Control of the approximate
hardware is exposed to the programmer through an extension for the Java [71] language type-
system and introduces specific annotations to the language to allow for control of the behaviour
of the approximations.

The software aspects of EnerJ are implemented as a language extension for Java, working
on type-level approximation. It relies on strict verification through static source-code analysis.
Giving express control of approximate hardware and integrating the tools into the Java type-
system EnerJ is shown to be effective at allowing basic precision scaling for approximation.

This approach is somewhat limited for large scale deployment because of approximate/low-
power storage hardware is not widely available as well as the technical cost involved in upgrading
the language that is being used and annotating an existing code-base.

32

Additionally, with EnerJ only targeting type-level approximations it still requires large
amounts of human effort to implement the approximate algorithms which use the approximate
types shown in the paper. The introduction of an automated system to generate the replacement
functions to handle the algorithm-level changes would reduce the cost of implementing the
software side of this technique, if sufficient guarantees could be assured in the static analysis of
the generated result.

In my work I have taken the influence of precision scaling and applied it to manually select
the precision of approximations at different stages through their algorithm. This can be seen in
Section 5.6 where I use a similar approach to produce correctly rounded 32-bit mathematical
functions implementations by scaling the internal precision of the polynomials being used at the
root of their algorithm.

2.4.5 Memoisation

Memoisation is a technique that allows the skipping a call to a function with a specific input and
returning a stored result if that function has already been called before with the same input. The
function being memoised, usage pattern, and the hardware being used for execution all change
the scale of performance benefits this may produce and decide whether or not this is an efficient
optimisation for the target.

Applying this simple concept to AC gives two different areas to target. It is possible apply
approximation to the output, which can be done by interpolating between results and varying the
granularity of the results tables that are being used. This alters the QoR of the functions which
are being called. Or, it is possible to allow for approximation on the input of the function, so that
similar inputs produce the same output.

A key paper in this field advocates for a Clumsy Value Cache [92]. This technique is
specifically targeted for mobile GPUs. They note that the high-precision outputs for different
sections of a fragment shader have a high level of variance. As a result they look to only memoise
small sections of the fragment shader which fit into a very specific criteria to maximise the chance
of the multiple hits to the same stored table index. They also reduce the number of matching
bits for an input to be considered the same as another input. With this strategy any similar input
values for sections of a fragment shader can be replaced at run-time with the stored results. This
is particularly effective at reducing the high-cost of texture reads but can also degrade the QoR
more because of high-frequency data that is often stored between nearby UV-coordinates in a
texture.

The results of generating an efficient clumsy value cache shows a reduction of around 13.5%
in the number of instructions that must be executed on the GPU. The drawback of this specific
approach to memoisation, and lots of the techniques discussed in this chapter, is that it requires a
specific change to the way that code is compiled for the GPU and potentially specific hardware
to be effective at changing the run-time performance cost due to the high-cost of frequent reads

33

and writes to the value cache. A compilation change would require it to be compatible with
existing driver software if it is an aim of the developer to integrate these changes into existing
code which may be reliant on specific behaviours of the driver that is currently being targeted.

In my work I am trying to avoid specific hardware or compiler changes as this reduces the
ability of the technique to be generically applied to existing software and places constraints on
where the resulting software can be used. However, the approach to use a clumsy value cache is
interesting to our research aim – if applied in a more general way.

This area of approximation influenced our development of table-based mathematical function
implementations, although in the end I have not fully applied approximate table look-ups.

2.4.6 Function Generation

Full function generation has taken a few forms, commonly this is performed through mathemati-
cal pattern matching and replacement (as is found in optimising compilers [103]). Others have
taken the form of sub-function replacement, like those of H. Massalin’s SuperOptimiser [107],
the basis for modern peephole optimisation with a search space of possible replacements from
which a new sub-function can be constructed with preferable performance characteristics. Build-
ing upon these ideas there have been approaches in randomisation to find function replacements
which take into account accuracy when considering the replacement [170].

With the rising popularity of machine learning, interest in applying approximation into
function generating techniques are also on the rise [160, 169, 116]. While the results of this new
work do produce programs that are effectively building functions, the lack of control over the
production and inability to modify them in specific ways after they have finished the learning
process makes them inappropriate for standard software development.

Of the approaches in this category, the approach for the SuperOptimiser is most relevant to
the approaches that I would consider for a generic approach. However, that method is limited by
the number of instructions it is possible to process in reasonable time for each peephole that it is
trying to rewrite. Which must be solved to build upon this for a generic approximation solution.

2.5 Discussion

From covering the current material in the field, I have been able to identify approaches which are
more or less applicable to the real-world and may help form the basis of a new technique which
will be more suitable for mainstream adoption.

I found that to be suitable for mainstream adoption, I should be targeting a solution which
works at either the source-code or compilation stage with minimal changes to the existing
language. This will allow the users to continue to work without having to do significant changes
to existing code-bases.

34

The new technique should work at the function-level. This aids in the analysis of the
code, making finding applicable code sections simpler and gives the potential for larger-scale
optimisations which lower-level approaches such as peephole optimisation, and approximations
in that area, would miss due to the limited scope.

There is also a need for generic tools for measuring error in existing solutions so that areas
of code that can be approximated are easy to identify and validate.

This research guides the work in the rest of the thesis. I have developed a framework
(Chapter 6) for detecting resiliency and applicability of approximation at a function-level in
existing code-bases, thus averting the difficult problem of having to generate entirely new
functions from scratch. I provide a background of the existing error in the functions we want
to approximate (Chapter 4) to understand the landscape of the problem being targeted for
approximation (and justify that any approximation in this area is acceptable). Finally these
approaches are applied to improve the implementations of a number of functions used in
mathematical computing (Chapters 5, 6 and 7).

This places our work in line with the current trends and findings in approximate computing
so that any further work with the tools or results presented here can be easily adopted by those
working in the field.

35

36

Chapter 3

Background

Approximation lies at the heart of any numerical computation which makes heavy use of floating-
point numbers.

Here the development of floating-point and how approximations have been core to the
engineering of mathematical libraries is covered in detail, as well as covering any relevant
features and topics related to numerical computing for mathematical functions. The aim is to
give the background information needed to provide the context for our work in later chapters.

I adopt standard definitions of common mathematical terms and summarise these for reference
in Appendix A.

3.1 IEEE-754 and Numerical Computing for Elementary Func-
tions

The IEEE-754 Standard for Binary Floating-Point Arithmetic is the de-facto standard for the
representation of real numbers in computer systems. Among other things it defines a binary
representation for real numbers, the behaviour of arithmetic operators, and the behaviour of
additional mathematical functions. These functions are the building blocks for a huge range of
numeric programs and so provide a natural focus for optimisation and approximation.

The standard’s stated aims include:

“Encourage experts to develop and distribute robust and efficient numerical programs
that are portable, by way of minor editing and recompilation, onto any computer
that conforms to this standard and possesses adequate capacity”

and

“Enhance the capabilities and safety available to programmers who, though not
expert in numerical methods, may well be attempting to produce numerically sophis-
ticated programs” [2]

37

In its goals, it has been highly successful: modern software is ported between devices and
used with floating-point libraries with impunity and little noticeable consequences despite many
software developers have no formal training in numerical methods.

Later revisions of the standard included guidelines for the development of suggested elemen-
tary functions due to their importance for numerical computing with floating-point numbers.

3.1.1 The Evolution of IEEE-754

The standard began with an original proposal [89] and subsequently has evolved through two
further revisions. The hardware implementations and software libraries that support it have
evolved in tandem and early work seems to have hugely influenced the modern implementations
which I have studied. Here the major milestones are summarised as context for a later discussions
on the performance of modern floating-point libraries.

The 1960s to late 1970s were the early years of generic automated mathematical computing.
The only widely available generic numerical computing solutions were very specialised and
limited software-based [55] solutions and access to specialised hardware was very limited. It
was not until near the end of this period that hardware implementations began to be discussed
and seriously implemented.

The software that was available at the time was developed by scientific institutes [47, 58, 16]
and universities [58, 51, 52] all of which followed their own guidelines for accuracy, performance,
and reliability, making their own decisions about what functionality to include. As a result, much
of the software was non-portable [58] and made specific to the tasks that each institution were
facing [17].

At the end of the 1970s, the development of specialised hardware for some key mathematical
functions began [149, 134]. For there to be generic hardware to process mathematical functions
it was also required that the standard for representing the real numbers they would generate was
agreed upon. This was part of the reason for the formation of the IEEE-754 working group and
the subsequent standard [144]. By the early 1980s hardware implementation of some of the
trigonometric functions began to be widespread. One example is the 8087 instruction set [124]
which contained CORDIC [124] based implementations of tangent and arctangent.

These hardware implementations were significantly less accurate than the standard (which
followed them) would later request and while these implementations were in development at
the same time as the IEEE-754 standard, they do not conform to the modern interpretation of
the standard. They are significantly less accurate than correctly rounded [121] solutions. In the
early 1990s, some CORDIC implementations were replaced with polynomial implementations
to improve accuracy [50].

The IEEE-754 standard for Binary Floating-point arithmetic was officially released in 1985,
although major hardware manufacturers had been preparing their own conforming hardware
starting years earlier. There was some disagreement during the development of IEEE-754 as

38

Figure 3.1: A brief outline of the relationship and development of modern mathematical libraries.

39

Rounding Mode Description
Round to Nearest, Ties to Even The default and most widely used rounding mode
Round to Nearest, Ties Away from Zero Similar to the default, but ties round to ±∞

Round Towards Zero Rounds towards zero. Effectively a truncation.
Round Up Rounds towards +∞

Round Down Rounds towards −∞

Table 3.1: The provided rounding modes of IEEE-754.

many manufacturers had concerns about the complexity and performance costs of the implemen-
tation [171], but in the end, the standard generally required operations to have the best possible
accuracy for the chosen representation. To assist in the adoption of the standard, in the early ’90s,
Kahan and his students at the University of California, Berkeley worked together to produce
FDLIBM as a reference numerical computing library using IEEE-754 floating-point numbers.
FDLIBM has proven hugely influential to the development of floating-point libraries and later I
show how its legacy can still be seen in modern source code.

The 2008 revision of the standard (originally planned for 2001) included the significant
addition of “Recommended correctly rounded functions” which are a focus of this work and
covered in detail in Section 4.

The standard was again updated in 2019 with some minor changes and improvements to
clarity in some of the language. Notably, the term ‘additional mathematical operations’ was
introduced to replace ‘recommended function’. The 2019 revision is the most recent version of
the standard at the time of writing.

3.1.2 Rounding Modes

In the IEEE-754 standard, there are five rounding-modes to choose from, they are shown in
Table 3.1. The standard rounding mode is ‘Round to Nearest, Ties to Even’ which is intuitive
with how rounding numbers is usually handled in the real world. Other rounding modes are
useful for specific mathematical techniques and to assist in interval arithmetic [68].

In this dissertation ‘Round to Nearest, Ties to Even’ (RtoN-TtoE) is used, as it is the default
and most commonly used approach in most systems. Any other rounding mode usage will be
explicitly signalled.

When it is stated that an answer is correctly rounded, it means that in the context of the
rounding mode. It means that the resulting value has been rounded to the nearest representable
value to the true value as dictated by the rounding-mode.

3.1.3 Units-in-Last-Place and Correct-Rounding

The term correct-rounding refers to selecting the best representable floating-point value for a
given real number, in a specific rounding mode. Unit-in-last-place (ULP), are used to measure

40

error in terms of the smallest possible change of value for a number of that value. The ULP
error for the Round-to-Nearest rounding mode , where n0 and n1 represent the two straddling
floating-point representable values that could be rounded to, can be given as:

Round-to-Nearest ULP error = |(xrounded− xreal)|/|n0−n1|

When comparing a real value to the possible representable values in floating-point a result
of ≤ 0.5 ULP error is produced when rounding the real value results in the correctly rounded
representation. As such, stating the resulting value has ≤ 0.5 ULP error, is often the same as
saying the value is correctly rounded.

The diagram below shows a real value x which is of a higher-precision than the floating-point
numbers represented on the number line. If it is desired to convert x to a number on the number
line we must select a value that we can represent. In this case that would be accomplished by
rounding to one of the two straddling values of x: n0 or n1.

n−2 n−1 n0 = 1.0 n1 = 1.1 n2

eps(x) = |n0−n1|

x = 1.02

The correctly rounded value can be selected by using the ULP error equation above:

If we choose n0 as the rounded result:

εn0 = |(x−n0)|/|n0−n1|

εn0 = |(1.02−1.0)|/|1.0−1.1|

εn0 = 0.02/0.1

εn0 = 0.2

Or, if we choose n1:

εn1 = |(x−n1)|/|n0−n1|

εn1 = |(1.02−1.1)|/|1.0−1.1|

εn1 = 0.08/0.1

εn1 = 0.8

This shows that n0 is the correctly rounded value for x because εn0 ≤ 0.5.

41

There are some pitfalls to this method of ULP error measurements. In particular, care must
be taken when rounding at the boundaries of IEEE-754 floating-point binades1. Consider the
example below where n1 is the correctly rounded result and x is a real input:

n−1 n0 n1 n2 n3

eps(x) = |n1−n2|eps(n) = |n0−n1|

binade0 binade1

x

The value of n1 sits at the border of a binade, the values to the left have half the distance
between them to those on the right. If we use the ULP step size of x and repeat the calculations
above we would find that n1 is still the closest result, but both neighbouring values would be
≤ 0.5 ULP error - which cannot be true. To avoid this error, the eps function used must return
the ULP error in relation to the final floating point number. If this is performed correctly in the
above example x will have a ULP error of > 1 for n0.

Due care must be taken when calculating ULP error to ensure the error is in the correct space
and binades do not accidentally cause a result to appear to be correctly rounded when it is not.

3.1.4 The Additional Mathematical Operations

All revisions of the standard since 2008 specify a set of required functions. In the current (2019)
standard these are referred to as “Additional mathematical operations” [3] and previously in the
2008 revision “Recommended correctly rounded functions” [2]. This set includes the exceptions,
cases, domains and special values for these functions as well as stating the requirement for
correct rounding.

In this work, I focus on a subset of these functions: the single-input exponential, logarithm
and trigonometric functions. These functions were selected because they are: a) commonly
used in a wide range of applications including graphics and neural networks (See Chapter. 7);
b) transcendental (cannot be expressed as a finite number of algebraic operations) and thus
challenging to implement correctly; c) possible to fully empirically evaluate in 32-bit floating-
point precision.

In the (2008) revision the terminology of recommended function could be considered confus-
ing with an alternative interpretation that the correct-rounding is only recommended. However,
there is evidence of the modern interpretation in the text:

“inexact: Functions should signal the inexact exception if the result is inexact.

Functions should not signal the inexact exception if the result is exact.”

and
1A binade is the set of all IEEE-754 numbers which have the same exponent.

42

“A conforming function shall return results correctly rounded for the applica-

ble rounding direction for all operands in its domain. The preferred quantum is

language-defined.” [1]

This means that a language/library must signal inexact answers and may choose a larger ULP
error to use for correct-rounding if required. None of the implementations investigated later take
either of these routes.

This is further refined to be clearer that correct-rounding is the goal in the 2019 revision of the
standard where it states that the standard requires that these additional mathematical operations
are correctly rounded:

“A conforming operation shall return results correctly rounded for the applicable

rounding direction for all operands in its domain.” [3]

3.1.5 The Ongoing Influence of FDLIBM

FDLIBM was written by William Kahan and his students at Berkeley in 1994 as an early
reference implementation of elementary functions using IEEE-754 floating-point2. The library
describes itself:

“FDLIBM is intended to provide a reasonably portable (see assumptions below),

reference quality (below one ulp for major functions like sin,cos,exp,log) math

library.”

[151]
Although not mentioned above, the library is only accurate to one ULP when using the round-to-
even rounding mode. This conformed to the IEEE-754 standard at the time since the requirements
for correct rounding were not added until the 2008 revision.

Despite the library being intended as a reference, it saw a lot of use, especially as the
mathematical library provided with some Linux distributions, some Java distributions and Java’s
StrictMath package [90]3. Some of this usage continues to this day with project dependencies on
particular versions of FDLIBM requiring even modern projects like Android to continue to ship
this package [70].

A tale of FDLIBM in 2020

2There is an earlier implementation of an IEEE-754 compliant maths library called IBM Accurate Portable
Mathlib (also known as Ziv’s libultim) which provides correctly rounded results. It went on to be part of the early
basis for glibc but did not see the wide-scale adoption of FDLIBM [37]

3Java’s specific non-compliance with IEEE-754 is noted with some passion by Kahan in this presentation:
http://people.eecs.berkeley.edu/~wkahan/JAVAhurt.pdf

43

http://people.eecs.berkeley.edu/~wkahan/JAVAhurt.pdf

In the writing of this work developers at Google working on the Android Operating System were
contacted to correct a mismatch in headers for version 5.1 of FDLIBM which were being used
with version 5.3. This is a very minor mistake, but one that appears to have been in the Java
Math source code for over twenty years. Another interesting quirk of the legacy of FDLIBM
being adopted into libraries is that the ‘libc’ used in Android included a ‘math.h’ header file

referencing FDLIBM 5.1 despite all related FDLIBM code in that library having been replaced.
This issue has also now been resolved4 [70].

.

This continued use of FDLIBM is far from ideal as the final release (version 5.3) was made
around February 20045, four years before the release of the (2008) revision of IEEE-754 which
requires correct-rounding.

This means that when this library is being used in programs purporting to be IEEE-754
compliant—it would only be compliant with the latest standards by coincidence. This is par-
ticularly true for the jump from IEEE-754-1989 to IEEE-754-2008 where the standard was
significantly expanded upon.

Other libraries have continued to use implementations of functions directly taken from
FDLIBM. This is evident from the source code of FreeBSD msun [56], OpenLibm [86], Julia [14]
and glibc [65]. Section 4.3 also shows how the error distributions of some closed-source libraries
suggest the same provenance.

The influence of FDLIBM on the development of functions in mathematical libraries means
that one ULP error-bounds seems to have become the standard for acceptable error.

Not only does this not comply with the standard but introduces the problem of correctly
rounded libraries having to compete with a widespread “good-enough” solution—to quote a
Julia core developer in the Julia Slack channel on the topic of switching to correctly rounded
elementary functions: “Do you want to answer the thousands of e-mails we will receive about
the performance loss?”.

There are two implications of the fact that one ULP error-bounds is accepted (or unnoticed)
by most applications. Firstly, it provides evidence that approximation is acceptable in many
cases, which allows for an optimisation space between zero and one ULP error (which is taken
advantage of in Section 6). Secondly, it suggests that there are latent errors in existing systems
that might someday cause an issue. This is explored in Section 4 showing the impact on neural
networks arising from a lack of portability.

4The commit for this change with the updated comment and removed redundant ‘define’ can be found
here: https://android-review.googlesource.com/c/platform/bionic/+/1430135/1/lib
c/include/math.h

5An exact date is difficult here as the dates in the header are inconsistent between different sites hosting the
library.

44

https://android-review.googlesource.com/c/platform/bionic/+/1430135/1/libc/include/math.h
https://android-review.googlesource.com/c/platform/bionic/+/1430135/1/libc/include/math.h

Correctly rounded libraries do exist, such as CRLibm (Correctly Rounded Libm) [35]. But
this correct-rounding comes at a performance cost and CRLibm has yet to see wide-scale
adoption. Figure 3.1 shows the relationship and development of the common mathematical
libraries in use today. This gives an idea of the influence of the different libraries, such as
FDLIBM, over time and how they have influenced each other to reach the current state of play.

3.2 Approximating Real Functions

Providing a correctly rounded implementation of a real-valued function is in itself an approxima-
tion process. Correct-rounding is simply the best possible approximation given the limitations of
the underlying representation. There is therefore lots of overlap between the methods used by
those implementing floating-point libraries and the methods used for more extreme approxima-
tions.

Here existing techniques are surveyed for building approximations which are then later
exploited in this work.

3.2.1 Range Reduction

A periodic function has many values in its range that map to the same value in its domain and so
considerable benefit arises from first reducing the range to a single cycle of the function.

Consider the function f (x) which has a valid input domain of [0,∞] but its output is a
repetition of the [0,2] range. To get the best precision possible for the output we would want to
calculate f (101.5) as f (1.5) as this would let us use smaller floating-point numbers which are
more accurate.

This reduction from 101.5 to 1.5 can be naively implemented as

reduce(x) = x− (b x
2.0
c∗2.0)

This is an implementation of ‘additive reduction’, the general form of this reduction is
xr = x− kC [118].

Naively, this seems to be a good solution. Unfortunately, working with computers always
brings problems of limited precision—especially when working with floating-point. As the
input value of x moves away from zero there is a greater chance that the rounding after each
operation results in an incorrectly reduced argument due to the floating-point step size increasing
and the reduced chance of the result of any operation being exactly representable in the given
floating-point precision.

For a range-reduction algorithm that takes only small input values and has small values for
k and C this is less likely to cause problems because the error will be smaller. It can also be
partially remedied in some configurations by increasing the internal precision of the calculations

45

to be large enough that the rounding error is insignificant after the final result is converted to the
original lower-precision, for example:

If we wanted to range reduce into π/4 quarters, as is common in many trigonometric function
implementations, a naive 32-bit implementation in the zero to 2π range results in 1.8879∗107

incorrect range reductions. If we perform the same operations in 64-bit and then round to 32-bit
precision, it results in zero incorrect results.

However, for the full binary32 floating-point input range there are 1.070 ∗ 109 incorrect
results for the 32-bit implementation and 8.394∗108 for the 64-bit implementation.

One improvement available is the FMA (Fused Multiply-Add) instruction.
FMA instructions can perform a multiplication and an addition in one step. Combining these

operations causes the floating-point rounding which occurs after any mathematical operation to
only happen once instead of twice. This further reduces the chance of incorrect rounding.

Using FMA can change output of a mathematical operation and as such is documented in
and C/C++ to be controlled through the FP_CONTRACT pragma so that the engineer can specify
which types of operations are desired.

In a short investigation I found that many modern compilers do not always respect this
specific flag as expected. Microsoft Visual C++, gcc and Clang were tested and for my test cases
I was only able to cause FMA instructions to be output from simple arithmetic when flags (such
as -mfma and -ffp-contract=on) were set at the compiler level.

There is also the FP_FAST_FMA constant which is a requirement in C++11.6 This flag can
be defined to inform the engineer that FMA instructions execute faster than the multiply and add
operation it would be replacing, for the target architecture. This is important to know if you care
more about speed than accuracy. However, this flag appears to have fallen out of support for
some compilers. Tests showed it appears to not be defined in the latest release of Clang (11.0.1)
whereas it was defined in the latest release of gcc (10.2) for the same code and architecture target.

I present this information to the user to show the current state of accurate mathematical
computing is one where the tools relied on are not always behaving as we would expect, and
care must be taken when implementing the algorithms shown here to ensure that your compiler
is producing the instructions you expect. In this dissertation where FMA are mentioned I have
verified the output instructions and ensured that the hardware used has this capability7.

Rounding without FMA:
xr = round(x− round(kC))

Rounding with FMA:
xr = round(x− kC)

6It is listed within the <cmath> header synopsis.
7It is fairly uncommon for a modern CPU to not have support for FMA instructions in 32- and 64-bit, support

for larger data types is more varied.

46

This upgrade of internal precision is a great benefit for many inputs, but does not solve the
problem completely when dealing with the full range of floating-point inputs. To reach the
accuracy required to handle the full input domain, more complex algorithms are required.

Cody-Waite Reduction
The Cody-Waite Reduction [32] is a method to improve the working precision of the reduction

by splitting the kC calculation into two parts using two constants, C1 and C2 instead of one. So
that the new calculation is:

where C =C1 +C2

xr = x− kC1− kC2

kC1 is a number exactly representable in the floating-point format and therefore will not
result in any rounding error. This changes the rounding error formula from

xr = round(x− round(kC))

into

xr = round(x− round(kC1)− round(kC2))

Which due to kC1 being exactly representable becomes:

xr = round(x− kC1− round(kC2))

The rationale behind this approach is that the input, x, is exact but the kC component of the basic
range reduction cannot be represented exactly in finite precision and therefore will induce some
rounding error, whether it is significant to the final result or not. As the input value x increases,
more data will be lost in the subtraction due to the inexact kC component. The Cody-Waite
reduction method aims to reduce this error by simulating higher-precision arithmetic. The input
does not benefit from higher-precision as it is already correctly represented, only the constant
subtraction.

With this approach, C1 is generally much larger than C2, and rounding only occurs on kC2,
so any rounding error which may occur is significantly diminished. This approach gives greater
than working precision and can be generalised to n-number of terms to try and increase the
precision even further as needed.

Even more accurate reduction
This can be even further improved on, but with algorithms which are not so simple to

summarise as those presented here. More complicated range-reductions are used when even a

47

number of steps of Cody-Waite reduction is not enough to reach the working precision needed,
or for when dealing with large ranges of inputs for scaling factors which do not nicely fit into the
Cody-Waite scheme.

For many algorithms in the standard mathematical libraries analysed in this dissertation
they use an approach called Modular Range-Reduction which is fully described in fixed- and
floating-point in a paper by Muller et al. [36].

3.2.2 Piecewise Functions

While some approaches to approximating a function are cheap, they cannot always be made
accurate enough to replace the whole domain of a function. As such, many implementations
make use of multiple sub-functions to reconstruct the target function.

Careful choice of sub-functions allows authors to hide the discontinuity between the pieces
to meet requirements of differentiability at any point, continuity, or monotonicity.

This can be seen in the Julia 32-bit sin function. Figure 3.2 shows the location of one of the
discontinuities of this piece-wise implementation. Without looking closely the discontinuity is
not visible, however, the closer views in that figure show each individual 32-bit floating-point
input at the discontinuity and compares it to the 64-bit implementation in the same input range.
Although there is a minor gradient change at the discontinuity the correctly rounded output is
still -chosen. The same figure also show an error graph of the 32-bit implementation at the
discontinuity. The graph show that error begins to increase as the discontinuity approaches but
never significantly enough to change the output detrimentally.

3.2.3 Table-Based Approximation

Some approximations, where accuracy is not the first priority and memory access is fast, may
opt for a lookup from a table of pre-computed answers. Tables can be of an appropriate size to
meet the accuracy and memory usage requirements of the application, and extra information can
be added to assist in reconstruction.

These methods vary from a direct lookup into a finite table, to more complex table which
model the interpolation between data-points to best match the function which is trying to be
approximated.

Techniques like this are used when memory is available and access is fast-enough to produce
equally good results as direct computation in a similar amount of time. These techniques are also
used when the mathematical function required is computationally expensive to calculate and the
result of a single lookup is used multiple times in different places. The latter case is commonly
seen in GPU-based algorithms where functions of two inputs are stored in 2D textures and the
specialised image processing hardware can be exploited to implement the interpolation between
results.

48

Fi
gu

re
3.

2:
A

cl
os

e
an

al
ys

is
of

th
e

va
lu

es
at

on
e

of
th

e
s
i
n

di
sc

on
tin

ui
tie

s
an

d
th

e
as

so
ci

at
ed

er
ro

rw
ith

ea
ch

.

49

If you are unfamiliar with how interpolation is used to improve the accuracy of the function
being approximated, see Appendix Section A.1.1. In that appendix an approximation of sin is
shown to different levels of precision using different techniques.

3.2.4 Polynomial Approximation

Creating approximations using polynomials is an alternative to tables when computations are
cheap and memory lookups are expensive. It is also possible to use them in conjunction with
tables (similar to the example with gradient interpolation shown in Appendix Section A.1.1.3).

The polynomial approaches can generally be broken into a few different classes. Those
which are mathematically proven to converge on the correct answer (Infinite Series, Continu-
ous Fractions), rough approximations (basic Taylor series/rational function fitting) and error
minimising approaches (Chebychev/Remez).

The mathematically proven solutions require a large number of precise terms to converge
correctly, and many identities quickly become limited by the precision of the floating-point
representations.

Taylor series approximations can be suitable for small sections of a curve but the error they
exhibit can be extreme and not equally distributed.

Error minimisation polynomials, such as orthonormal polynomials, are an improvement over
basic Taylor series approaches as the error exhibited is more evenly distributed. Meaning, if
the fit of the function exhibits a worst-case error smaller than what is representable in the final
output precision then you will have a correctly rounded polynomial fit.

In this dissertation I rely on these approaches when looking into how to generate good-enough

approximations, particularly in Chapters 6 and 7. If you are unfamiliar with these approaches
and how they are applied to approximate a function for a given range of inputs, Appendix
Section A.1.2 gives a thorough demonstration and explanation for many different approaches
used as well as a brief outline of the performance and accuracy implementations of each.

3.3 Implementing Elementary Functions

For many programmers, the elementary function implementations provided by their mathematics
package may not be something they ever think about. But, to fully understand how it is possible
to modify or improve these functions it is necessary to know and understand how they are
currently implemented.

The implementations require specific approaches to achieve a high level of accuracy and
the expected behaviour. To cover this I will go through the implementations of a number of the
functions using the Julia mathematical functions as a reference.

50

3.3.1 Implementing sin & cos

The sin function is the cos function shifted by −π

2 .

sin(x) = cos(x− π

2
) (3.1)

As a result of their similarity, the two functions can be implemented similarly. One might
implement one and then when calling the other simply offset the input. However, this is likely to
result in incorrect rounding as either the input value may be in a less precise binade in floating-
point or the offset may cause rounding of the input and therefore produce the result for the wrong
input. Because of this, each function is still implemented as its own method, but the functions
look very similar.

Alternatively, you might be familiar with the Taylor function representation of Sine and
Cosine (see the earlier Section 3.2, which covers basic approximations):

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ ...

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ ...

Besides the high cost of these functions (which may be somewhat mitigated with correct
constant expression evaluation), it is difficult to determine the absolute number of steps necessary
to give the precision needed for all potential inputs without having to have an arbitrarily large
number of steps. Figure A.4a shows how even with a relatively high number of terms accuracy
is still relatively low and quickly degrades for large input. This could be mitigated somewhat
by efficient range-reduction to the [0,2π] range, but this would still not be correctly rounded
without further work.

To simplify this, the general approach to writing these functions is to break the function into
parts. First, consider special cases for inputs near zero. For cos where inputs are close to zero
the function returns one. For sin, for inputs very close to zero the function will return the input.
These early out steps work due to the very close to zero and very close to one gradient when
at the start of cos and sin respectively. With these gradients and the low precision of 32-bit
floating-point numbers, there is not enough precision for there to be a difference. These cut-off
values for an early out can be empirically tested.

If the input value is not close to zero, then more work is needed. sin and cos are repeating
periodic functions which can be represented by as a piece-wise curve of two distinct sub-functions.
Those sub-functions being (a), the close to one gradient as the functions makes its most direct
path from minus one to one, and (b), the rounded caps as the curve changes direction. Each
sub-function, (a) and (b) only need to be computed for the first half of their domain as they are

51

also symmetric. The sub-functions and how they are used to construct the full curve are shown
and covered in more detail later in Chapter 6 and shown in Figure 6.2.

Both of these half-sections can be represented by a polynomial very accurately (see Sec-
tion 3.2). With this knowledge, the problem then becomes one of selecting the appropriate
section of the curve based on the input when calling sin or cos. This is achieved with the
range-reduction step of the algorithm. The input is divided by π

2 and the quadrant of the range,
as well as the remainder, is returned. The quadrant value tells us which section of the curve the
input value lies in, and the remainder is the input to the reduced section sub-function.

If the range-reduction and polynomial representation of the sections are “good-enough” then
this will result in a good sin and cos function.

3.3.2 Implementing asin

The inverse sine function, asin, is flipped and symmetric around x = 0.0. This means to
implement the function, only asin(|x|) is required to be computed. asin where x < 0.0 is
computed by calling asin(|x|) and flipping the sign of the result.

In the early years of numerical computing a formula was constructed based on Chebychev
polynomials to approximate the 0≤ x≤ 1 range [80]. That formula is:

asin(|x|) = x
2
−
√

1− x∗ (a0 +a1x+a2x2 . . .anxn)

Example constant values for the 4 term implementation:

a0 = 1.5707288

a1 =−0.2121144

a2 = 0.0742610

a3 =−0.0187293

This gives the result shown in Figure 3.3 and these maximum errors when using the constants
from the original Princeton University monograph [80]8:

8While history is not the focus of this dissertation, I find it is important to bring to the attention to the reader
the significance of this particular document. The simple algorithmic approximations, derived constants and magic
numbers found in this paper are incredibly influential and turn up in mathematical textbooks, public source-code and
mathematical libraries for decades after its publication. This is quite remarkable given the relatively low precision
of the constants and very simple algorithms provided.

52

Terms Max. Absolute Error
4 6.7678×10−5

5 8.5521×10−6

6 1.3411×10−6

7 5.3644×10−7

Figure 3.3: An implementation of the asin function as described by Hastings et al. in the
Princeton University 1955 publication on the implementation of mathematical functions on
digital computers.

53

This gives a relatively small number of operations to construct a very good (but not correctly
rounded) approximation of asin. The downsides of this approach are the inaccuracy and the
reliance on a good existing sqrt functions.

The modern implementations of this function use more steps to try and increase accuracy.
Firstly, as this is asin the function asin(x) == x can be used when x is small. This is the same
trick used by sin.

Next, the asin(|x|) can split the curve in half, so that there is a relatively straight part where
x < 0.5 and then a curved section where x > 0.5.

The straighter section, |x| ∈ [0.0,0.5], uses a simple rational polynomial to approximate the
curve. For 32-bit floating-point, the curved section uses a modified version of the formula used
in the simple Princeton University example except the Chebychev polynomial is replaced with a
rational polynomial using more terms. This provides enough accuracy in 32-bit. For the 64-bit
implementation, the curve is split again before the point of highest change of gradient and a
different polynomial is used for each of the parts of the curved section.

When these piece-wise functions are placed back together the result is much higher accuracy
than the simple direct implementation. The difference in the error when using 32-bit can be seen
in Figure 3.4 where both implementations are compared to the correctly rounded solution. While
the more in-depth modern implementation provides more accurate results for most inputs, it is
still interesting to see that for a few select inputs the simple Chebychev direct polynomial can
still produce a better result.

3.4 Function Equality

In this section we introduce different views on equality of functions, define how we will be
assessing functional equality for use with approximate computing theory and showing where
these definitions of equality matter in industry applications.

Defining how we understand equality is important for enabling safe, sensible approximate
computing approaches. Without it we would not be able to replace one procedure with another
and guarantee an equal result. There would be no metrics available to prove that the new
procedure is equal to the original in a meaningful way.

My approach in this section is to begin with defining equality of the state of the input and
output to a function, definition of functions themselves and then move onto definitions which
rely on the state of the inputs and outputs of objects using those functions. We will then show
how each of these different definitions for equality work together and how they can be applied in
the field of approximate computing.

54

Figure 3.4: A comparison of absolute error from the correctly rounded results of the current
asin implementation in the Julia programming language as it compares to the seven term
version of the 1955 Princeton University function definition.

55

3.4.1 Internal Vs External Equality

During software development it is common to refactor functions, change or update libraries and
to provide multiple type interfaces to a single function. Looking at code from a high-level this
allows for the programmer calling function f (X :: TypeT) with known pre- and post-conditions
to assume that the function being called is the one expected even though the exact implementation
of function f may be different in the underlying implementation based on how TypeT is defined.

In type theory, treating all implementations of a function with the same interface as the
same function is known as extensional equality. That is, implementations of f as f1 and f2 are
considered the same function if from the calling position they exhibit the same name and type
inputs, even if the underlying implementation differs.

Working with complex codebases relies on extensional equality so that different implemen-
tations of the same function can be used on different systems but still be confident that the
functions will perform the same action, even if the action is not performed with an identical set
of instructions. One of example of this might be compiling against a different implementation of
a standard library. Each implementation should be following the same standard and providing
the same interface and therefore should behave as the user expects. It also allows for program-
mers to refactor functions internally to provide better performance on some systems or unlock
functionality specific to a platform without having to change the way the code is accessed at the
higher level where to the end-user the function is equal.

Fundamentally, this is also why an optimising compiler is able to perform its optimisation
pass transforms in a stable manner. It changes the internal structure of the code to be more
optimal while guaranteeing the same rules that the programmer requires at the higher level.

For extensional equality to be applied the rules for it must be defined, as different use-cases
may require different rules. For example, f (x :: int32) may be considered extensionally equal
to f (x :: size_t) when size_t is equal to int32, or if there is a valid implicit constructor for int32
from size_t. The definition of extensional equality is therefore coarse [158] and needs to be fully
defined for each use-case before actions can be taken to change the code.

The opposite of extensional equality is intensional equality. For two functions to be inten-
sionally equal they must be exactly equal in their implementation as well as their definition.
This means that a function defined by a standard library which is implemented in two separate
libraries with the same guidelines and rules would not be considered equal unless the source-code
(or compiled object) were identical.

This is a much stricter definition of equality. If this standard of equality was to be enforced
then applications would require specific implementations and dynamic linking to alternative
implementations would not be possible.

However, this type of equality testing is still in use for some software, in particular crypto-
graphically signed applications [40] and files and software used in piracy protections [26].

56

1 int f(int x)
2 {
3 int sum = 0;
4 for(int i = 0; i < x; i++)
5 sum += 2;
6 return sum;
7 }
8

9 int f(int x)
10 {
11 return 2 * x;
12 }
13

Figure 3.5: Example of extensionally equal implementations

An example of this for software is the video-game “MOTHER 2 / EarthBound” which
implemented its own anti-piracy DRM (Digital Rights Management) using checksums of machine
code instructions. By producing a checksum of a specific range of instructions they attempt to
ensure that the functions at those addresses are intrinsically equal to what was originally assigned
to the disk. If the checksum values do not match, the video game is able to determine that the
instructions may have been altered in a way to circumnavigate copy protection or to enable
unspecified behaviour (such as cheating). As a result, the game will then not work as intended
and results in a detrimental play experience for the user.

This summarises the two types of equality defined by the state of the function implementation
and definition that we are interested in. One where the user is agnostic to the state of the internal
working as long as the function is conforming to some defined standard of behaviour, and another
where the user requires absolute identical instructions at a specific level.

3.4.2 Input and Output Equality

When covering extensional equality it was mentioned that the input and outputs of a function
would conform to a standard so that, to the user of the function, the internal state did not matter.
That is to say for any implementation of f0...n, which followed a specification defining how f

behaves, then an input of x should always return a y conforming to the standard regardless of the
underlying implementation. Also, all input values which are valid for f0 will also be valid for f1,
no valid value input to f0 should fail on f1.

If we were to consider only the inputs and outputs of a function when judging the equality of
two functions we would be interested in three things:

• First, the Domain of function f . This is all the valid inputs to function f .

• Secondly, the Co-domain of f . This is all the valid outputs of the function f

57

• And finally, the Range of f . This is all the valid outputs of f which are are a result of the
inputs from the Domain.

You will note that the Co-domain and Range are very similar concepts. However, it is
important to distinguish all possible results of a function from those which are valid within the
Co-Domain as some functions may be defined to only be valid within specific boundaries. For
example, a function which takes a temperature in Kelvin and converts it to Celsius will not
accept values below zero as input even though the instructions may not fail when processing it,
therefore no output values would exist in the Range for input values below zero but they would
exist in the co-domain.

With these three key identifiers we can begin to define equality for given functions based
on input-output pairs. In this context an implementation of a function is considered equal to
another implementation, regardless of method or definition, if the input domain and the range
are identical. If the co-domain of the function did not match this would not be a problem as the
function may be undefined at the input positions which would result in some values which may
be contained within the co-domain.

In practice, a specification or standard will often define the valid input ranges for a given
function and the expected behaviour for each which would produce the range. The functions
then implemented have a clear definition to use to test if they conform and are equal to function
defined by the specification.

In pure mathematics this approach is very simple and easy to define. When this approach is
then applied to software development however, the definitions can become somewhat complicated
by the nature of numerical representations on a computer with finite bits to correctly represent
values.

Starting with an uncomplicated example, the function f (x) = x+1 may be defined for inputs
0→ ∞. Mathematically, this is fine, we can easily define the range to be 1→ ∞+1 and then any
other implementations of f which have the same domain and range will be valid equal functions
by our current definition of equality as they would be identical.

Unfortunately, on a computer this is not so easy. We must assign some way of representing
the input x in hardware so that we may perform the necessary computation. If the input is
represented an 8-bit unsigned integer then we have a problem — we are only able to create a
function with a domain of 0-255 and a range of [[1-255], 0]. This is wrong for two main reasons,
firstly we do not match the domain as we are only able to represent inputs up to an integer value
of 255 and secondly we produce an error as an input of 255 will return 0, not 256, so we are not
even equal to the original function f for the reduced domain of [0-255].

This is obviously a trite example as any decent specification would define an integer input
between the largest and smallest representable values of the data-type, but it works as an example
of the kind of differences in domain, co-domain and range we need to consider next: dealing
with finite representations of real numbers when considering equality.

58

Floating-point is the most widespread representation of real numbers used in computers
today [119]. Specifically, most hardware implements floating-point numbers by the IEEE-754

Standard for Binary Floating-Point Arithmetic [3]. A more detailed explanation for how this
standard works and affects the accuracy and performance of functions can be found in Chapter 4
or alternatively a detailed explanation outside the context of approximation can be found here [6].
For this section, we can summarise the main limitations of IEEE floating-point that we care
about as:

3.4.2.1 Limited Bits

The number of bits which can be used to represent the number are limited which results in an
inability to correctly represent all possible numbers. This can be resolved with variable length
encoded floating point [163] but this is not commonly available in hardware [19] and is very
costly to implement in software making it practically unusable for some performance critical
applications.

3.4.2.2 Accuracy Degradation

Due to IEEE floating-point numbers being based on an exponential curve, as the number to
represent moves away from zero the distance between each representable number becomes larger.
As a result, calculations involving larger numbers may cause less accurate results. This makes
comparing the equality of a theoretical implementation with the floating-point implementation
difficult as the result may diverge due to rounding to a representable value at many stages
through the implementation. Where this rounding takes place can often be dependent on specific
hardware or software implementations which vary in how calculations are handled.

3.4.2.3 Mixed-Precision Results

The IEEE-754 standard gives certain guarantees about the result of basic arithmetic when using
floating-point numbers. However, due to different hardware implementations the same code
may produce different results on different platforms depending on where the rounding takes
place [127]. This type of error is caused when the numbers being calculated are held in a larger
precision registers to perform the calculation. The precision of that register may result in a
different value being found to be the result of the calculation which may then round to a different
result when it is passed back into the lower-precision register.

Further differences can occur if the computing device supports SIMD or fused multiply-add
(FMA) instructions. As each of these approaches can result in different outputs depending on
how they are implemented.

59

SIMD may cause different results by using different size intermediate registers, or performing
its rounding at different stages.

Fused multiply-add keeps the results in the higher precision registers across two operations,
effectively removing one possible incorrect rounding step. This results in more accurate answers
which are therefore not equal to those produced by simply performing a multiple and then an
addition through regular floating-point arithmetic instructions. This discrepancy is actually
one of the benefits of this optimised instruction, and is used in numerous algorithms, such as
optimised range-reduction, to produce improved results [118].

This means that SIMD and FMA, which may be valid transforms when we are only ensuring
extensional equality to a lenient standard and would still be considered equal, would result in
different answers when we compare the implementations based on the domain, co-domain and
range.

With these three limitations we can show that functions even as simple as f (m,x,c) = mx+c

could give different results depending on how it is compiled and what hardware is being used.
This also shows that as the values for m, x and c move away from zero, the error in rounding
is also more likely to occur. As a result, two functions written in a high-level language and
compiled may not share domain, co-domain and range values and under the form of input/output
equality would not be considered truly equal, while at the same time appearing extensionally
equal.

3.4.3 Function Transforms

So far, the co-domain has not proven too useful in identifying function equality. The co-domain
becomes useful when we start to consider function transforms. Remembering back to studying
basic algebra, the function f (x) = x2

x can be simplified to f (x) = x. This is fairly obvious and
we could say that the functions would be equal. So lets take these two implementations and
compare them for a short range of inputs:

Input f (x) = x2

x f (x) = x

-2 -2 -2

-1 -1 -1

0 NaN 0

1 1 1

2 2 2

And there is the problem! These two implementations which by basic mathematical logic
should be thought of as equal are here shown to be not equal for the input value of zero when
processed on a computer, as we are unable to divide 02 by zero. For examples like this we

60

say that the functions are not equal because there exists a value in the co-domain which is not
shared between both implementations. These differences may occur from simple mathematical
rules like this but can also be caused by transforms which would not be valid under IEEE-754
floating-point rules.

This is a problem in the co-domain and not the range because the input value of zero may not
be in the domain, but in the event of an incorrect input it would result in an exception that the
user would not expect. These types of errors of equality can be catastrophic in some cases [125].

3.4.4 Performance in Input-Output Equality

For some classes of programs, such as security and cryptography, where input-output equality is
a necessity, performance is also a metric for equality. To be secure, many functions are required
to finish in the same amount of time for the same inputs.

As an example, consider the well known timing attack example of a string comparison
function.9 It is possible to return false as soon as a single character is identified to not be the
same. By returning out of the function early some performance has been saved but it has made
the system vulnerable to a timing attack [22] by revealing information regarding the content of
the string being compared by how quickly the function returns.

As a result, despite the same input-output pairs a function which might return early or in
other ways perform a different number of actions depending on the input function will reveal
information about the input or the methods used to process it. Therefore these functions, in terms
of results, are extensionally equal. But provide extra information due to intensional inequality in
how data is processed.

3.4.5 Intersection of Equalities

What has been explained in the preceding sections can be demonstrated through a list of simple
examples to show how these two types of equality interact.

Extensionally Equal and I/O Equal
Implementation A: f (x :: Int) = x+ x+ x+ x

Implementation B: f (x :: Int) = 4∗ x

As integers do not incur loss on addition without valid input ranges. This function exposes two
equal definitions with differing internals which do not result in a different input-output pairs.

Extensionally Equal and I/O Not Equal
Implementation A: f (x :: Float) = x+ x+ x+ x

9This style of timing attack and similar examples were made popular by Paul Kocher with his cryptography
research demonstrating the weakness when comparing RSA tokens [94].

61

Implementation B: f (x :: Float) = 4.0∗ x

In floating-point, x+ x+ x+ x is not equal to 4x as each addition may result in rounding which
could impact the final answer. As a result, this implementation is extensionally equal (if the
function has a tolerant standard) but not I/O Equal.

Intensionally Equal and I/O Equal
On Intel x87 80-bit extended precision without FMA operations
Implementation A: f (x :: Float) = 2.0∗ x+1.0
On Intel x87 80-bit extended precision without FMA operations
Implementation B: f (x :: Float) = 2.0∗ x+1.0

Both of these implementations are intensionally the same, that is to say they have the same
implementation and definition. They are also running on the same platform. Therefore they will
result in the same input-output pairs.

Intensionally Equal and I/O Not Equal
On Intel x87 80-bit extended precision without FMA operations
Implementation A: f (x :: Float) = 2.0∗ x+1.0
On Intel AVX 128-bit extended precision with FMA operations
Implementation B: f (x :: Float) = 2.0∗ x+1.0

This is the same implementation as above, but running on different platforms. Due to the different
extended precision used on each platform this calculation may have different outputs on the
different machines. The output may also differ if an optimised compiler is used which converts
the multiply and add to a fused multiply-add operation. Both methods would change how or
where rounding takes place and cause a mismatch in input-output pairs.

Generally, these changes may not result in a change of value that the user would find signifi-
cant, but it is important to consider these inequalities when looking at understanding how error is
tolerated and where it can be exploited based on what is important to the user.

3.4.6 Application to Approximate Computing Theory

This chapter has given a high-level overview of different ways of considering equality of functions
and shown some simple examples of how these apply in different combinations with software
implementations to produce scenarios with output non-equal results while still being considered
equal in some way. I now want to elucidate how this all applies to the field of approximate

62

computation and how these known and accepted inequalities can be exploited to produce more
efficient but still equal functions.

In software engineering, the error from functions is more common than a lot of programmers
may realise as the average programmer may not consider the full stack of language, compiler,
optimiser and hardware when writing a program - sometimes to the point of resulting in death [8]!

Despite this many programs exist with significant error without any catastrophic conse-
quences. Intuitively this tells us that the programs which exist with error must be exhibiting error
within a tolerable range and this is key when thinking of approximating a function.

Generally, a program that exhibits error but does not cause a crash is not designed to exhibit
that error. This means that the program is likely aiming to use the most accurate methods possible
to reach its result. So, let us format this in terms of the equality that have been discussed so far.

For most applications we encounter, we do not have the full information for the use-case of
that function or knowledge of everywhere which it may be used. As such, the best information
usually available is the error that is exhibited in existing implementations.

Given an implementation that exhibits some error that is being used in an application, we will
call this ImplError(x :: TypeT) that is an implementation of the function Impl with no error which
we can call ImplPrecise(x :: TypeT). The implementations differ but share the same definition, so
that makes them extensionally equal. They also share an input domain, but they do not share the
same output range, so they are not I/O equal.

This tells us that, in the program in which this implementation exists, it is acceptable for the
function Impl to exhibit, at least, up to the error of Implerror. If we want to quantify that error,
we may consider the average error, min-max error or the individual error per input depending
on the context of the program (see Section A.3) by comparing the function to a more precise
version, in this case, Implprecise. For simplicity here, we will consider the maximum error of the
set of the whole range of ImplError. This tells us that this function gives a maximum error of:

x = [...]

errrange = max1≤i≤N (ImplPrecise(xi)− ImplError(xi))

So this shows that the function being implemented supports at least this level of error.
Therefore, if we wanted to create a faster implementation of the ImplError function we would

choose to focus on making the implementation as fast as possible within the constraints of the
error limit that ImplError currently exhibits.

Any function that could be implemented which results in an error less than or equal to errrange

at a faster run-time performance would be an improvement to the program and by our equality
constraints, it would be considered equal and therefore not negatively impact the program.

63

Taking this further, we could explore the true equality limit. That is, to test where the true
maximum acceptable error exists. If the full context and use-cases of the function are known,
this can be explored by increasing the difference in the range between ImplPrecise and a new
implementation until the program no longer performs satisfactorily. This may give a much larger
optimisation space to work with without violating the extensional equality and gives a better
limit to the I/O equality. This approach is demonstrated in Chapter 6.

As most programs are not written with the maximum acceptable error taken into account, our
defined rules for equality allow us to exploit mathematical functions to find a function which
better fits with the true requirements of the program. This area of computing is sometimes known
as good-enough computing, where the target of the program is to do only the required work and
nothing more.

3.4.7 Summary

In this section, the different ways we consider functions to be equal has been defined, which
guides how it is appropriate to modify existing functions within a program when looking to apply
approximate computing optimisations. This outline can be used for reference in how the impact
of approximations as function replacements are considered in the rest of this dissertation.

3.5 Conclusion

This chapter has provided a detailed overview of the specific work and ideas introduced in
Chapter 2. I have covered in detail the history of the numerical systems used for mathematical
functions, how they are defined, how I will measure error and what restrictions it places on the
development of these functions.

Different mathematical approaches which are commonly used in the development of mathe-
matical functions are then covered. This is necessary to understand for when I will be changing
and modifying them so that there is an understanding of the performance and accuracy trade-offs
being made. Examples of how mathematical functions are commonly implemented are then
presented, showing the strengths and weaknesses of different approaches.

This is concluded by giving a detailed background to what it means to be equal in software
and how this effects approximation and even non-approximation approaches to editing and
improving mathematical function implementations.

This should provide enough grounding for the chapters which follow where I will be applying
approximation techniques and discussing where correct answers are important and where the
correct answers are not important.

64

Chapter 4

Evaluating IEEE-754 Elementary
Functions

As was shown in the Chapter 3, accurate and reliable elementary functions are important to the
correctness and portability of mathematical software and current implementations are guided by
the IEEE-754 standard for floating-point numbers. That standard provides a list of recommended
functions, which are a subset of elementary functions. The latest version of this standard comes
with a list of recommended elementary functions to be implemented and guidelines on how they
should behave. This includes: the function input domain, the types of exception which should
be produced, and a requirement that the returned result is correctly rounded for the selected
rounding-mode. The list of single-input functions which are recommended by IEEE-754 in Table
4.1.1

For some elementary functions, absolute correct-rounding can be very difficult to achieve
with good performance due to what is known as the Table-maker’s Dilemma [102] which shows
it is impossible to know how many digits of precision are needed in advance.

In this chapter, function accuracy will be measured using Units-in-Last-Place (ULP). This is
the measure of the distance between two floating-point numbers (see Section 3.1.3). The result
of a calculation is correctly rounded when the ULP error is less than or equal to 0.5 (when in
Round-to-Nearest rounding mode).

The current standard mathematical libraries used in Clang, glibc, Microsoft C Runtime and
Julia are shown to not be correctly rounded and do not follow the definitions of mathematical
functions, which require correct-rounding, in the IEEE-754-2019 standard, with the majority of
the functions being in the 1 to 2 ULP range and two functions with an error of 3 ULP.

Many practitioners consider a 1 or 2 ULP error in a floating-point number to be irrelevant as
the mathematics of floating-point numbers means any arithmetic using the result may be likely
to incur this error anyway. In some cases, this is a fair assumption, but in many other cases, it
is not as some algorithms require bit-precise answers. The problem is compounded because

1Excluding the helper functions for working in degrees instead of radians, such as sinPi, cosPi, and tanPi.

65

not only are these functions incorrect, but they are incorrect for different input values between
implementations. This means that the results are not consistent between libraries, and any further
mathematics on a result may cause different compounding errors. As the absolute error is small,
this is unlikely to result in a significant change of result in most applications, but it does still
affect many which rely on bit-perfect results.

Consider the computer graphics imagery used in many modern movies. In the rendering
process, many computers are used in parallel to calculate the final frames that are composited
into the final video. Each frame requires a large amount of texture data for the 3D assets
and some parts of those assets are procedurally generated (think of scratch patterns and dirt
textures) to reduce the memory impact across the many computers. We might distribute frame
one to computer A which dynamically links to library X and frame two to computer B which
dynamically links to library Y. If those two libraries generate different patterns and then we stitch
the rendered images together in the final movie, we would see a flickering pattern between the
two different results.

This is exactly the type of portability problem which the IEEE-754 standard was introduced
to prevent, and it has for arithmetic, but for the recommended functions it seems to have been
ignored possibly for performance gains or because the impact on the majority of programs is
considered by the community to be negligible. Compliance with the standard is important for
allowing the production and sharing of stable and portable software. Not following the standard
moves the responsibility of testing onto the programmer who may be unaware that testing is
required and that could result in broken software being released unknowingly.

A thorough breakdown of the IEEE-754 standard and the history and motivations for its
development can be found in Chapter 3. As covered in that chapter, it is noted that the later
versions of the standard (2008 and 2019) are more strict with the requirements for recommended
functions and in this chapter, results are presented which show that it appears common mathe-
matics libraries have not kept up as many floating-point mathematical libraries are not complying
with the requirement to be correctly rounded.

My initial investigation into this, upon discovering that the standard may not be currently
adhered to, led me to speak to some maintainers of these projects who told me that the reasons
for not complying with the standard were down to performance constraints. I did not believe
the performance to be a limitation to compliance and believe that either we should seek out a
correctly rounded implementation that has desirable performance characteristics or we should
provide evidence for the IEEE committee so that the standard can be changed to reflect the actual
performance constrained state of the industry. In particular, I want to ensure that the results from
different libraries provided the same outputs for the same inputs so that the portability benefits
of the standard can be safely maintained.

In this chapter, the current behaviour of 32-bit single-input mathematical functions in three
modern CPU implementations are analysed, one older pre-2008 implementation and one popular

66

Function Domain
sin

(−∞,∞)cos
tan
asin

[−1,+1]
acos
atan

[−∞,∞]

sinh
cosh
tanh
asinh
acosh [+1,∞]

atanh [−1,+1]

Function Domain
exp

[−∞,∞]

expm1
exp2
exp2m1
exp10
exp10m1
log

[0,∞]
log2
log10
rSqrt
logp1

[−1,∞]log2p1
log10p1

Table 4.1: All single input IEEE-754 recommended functions, excluding the functions which
take degrees as input.

GPU implementation. After the current implementations which produce incorrect-rounding
have been shown, three distinct use-cases where incorrect rounding results in non-portable code
is presented: direct mathematics, procedural content generation and a convolutional neural
network. This work is followed with a simple to implement correctly rounded solution for 32-bit
floating-point elementary function in Chapter. 5, and an implementation which exploits the one
ULP max-error bound implied by these libraries in Chapter 6.

4.1 The Recommended Functions

Table 4.1 lists all the functions specified by the IEEE-754 standard along with the valid ranges
of input for each. These functions were first specified in the 2008 revision of the standard [2].
Before that, the 1985 version only mentions the elementary functions in the foreword, which
states that one of the guiding reasons for the development of the standard is to “Provide for the
development of . . . standard elementary functions such as exp and cos”.

The introduction of the list of recommended functions in the 2008 revision are in Section “9.2
Recommended correctly rounded functions” with the requirements that “A conforming function
shall return results correctly rounded for the applicable rounding direction for all operands in its
domain”. For this work, only the single-input functions are considered because the domain of the
functions taking two inputs is larger than it is possible to test every possible input in a reasonable
time. This is also the reason only the 32-bit implementations are considered and not the 64-bit
implementations. Advances in computer performance mean that it is possible to evaluate every
possible input of a single-input 32-bit function in a few hours. I have also found examples of

67

incorrect rounding in 64-bit but it is not possible to comprehensively test all possible inputs as
the sheer number of values would mean it would take an infeasible amount of time.

32-bit floating-point is widely used where the performance or memory usage is a major
consideration. It is common in legacy software, GPGPU (General Purpose GPU processing),
machine learning and is the default size of the float type in C and C++ [84, 85].

4.2 Libraries Evaluated

The following libraries are used and analysed for understanding approximation and conformance
with IEEE-754:

• Julia

• MCRT (Microsoft C Runtime Library)

• gnulibc

• FDLIBM

4.2.1 Julia

Julia is a relatively new programming language aiming to be used for data science and other
technical mathematical use-cases. Its goal of being used for mathematics is clear even in its
syntax which allows for writing code that is visually similar to formal mathematical equations.
Interest in this library is due to many of its mathematical function implementations being newly
written (post-IEEE-754) and not simply a reuse of code from older libraries.

Originally, Julia was linking to OpenLibm which itself is evolved from glibc with some
updates. However, one of Julia’s advantages over other static languages is the JIT (Just-in-Time)
compiler and other compiler features which allow for function specialisation. As a result, it is
desirable for the language to implement its mathematical functions directly in Julia so they can
gain a performance benefit from the JIT at runtime. This means that any implementations which
are not a direct translation into Julia have been implemented with the current knowledge and
goals of the functions in mind. Unlike other libraries which can claim ‘legacy’ implementations
as a reason for non-conformance with IEEE-754, Julia’s conformance or non-conformance will
be deliberate as the functions are written after the new requirements of the IEEE-754 standard.

While Julia is a relatively new language, it has a large user base and is beginning to see
wider use. Notably, Julia now provided as a pre-packaged container on the NVIDIA GPU Cloud
platform and as of 2020, it is seeing real-world use at NASA.

68

4.2.2 Microsoft C Runtime Library

The Microsoft C Runtime Library is provided with all Microsoft Windows installations. For the
latest Windows release, that represents over 1 billion installations. Unlike other libraries being
analysed this one is closed source.

This library is being used for analysis of current approximations because of its widespread
adoption and use.

4.2.3 glibc

GNU Lib C is the standard C and mathematical library that is supplied with a number of
distributions of Linux. Particularly, it is the standard library provided with the popular Ubuntu
and Debian Linux distributions.

This implementation was chosen as a counter-point to Microsoft CRT because it also has
wide scale usage. This library is open source which allows us to understand the behaviour easier
than the Microsoft CRT counterpart.

4.3 Accuracy of 32-bit Functions

Each 32-bit single-input function was brute-force evaluated for all valid 32-bit floating-point
inputs and compared against the correctly rounded result from GNU MPFR[172]. The worst
case ULP error and the total number of input values that yield an incorrect answer were recorded.

In Table 4.2 the results are shown and colour coded in the ULP column to highlight how
compliant each implementation is with the IEEE-754 standard, and more subjectively highlighted
in the ‘Incorrect (%)’ column to mark the frequency of mismatches with 0% being highlighted in
green, < 1% in yellow, < 10% in orange and any larger values in red. In the ULP columns, the
majority are 1 ULP. There are a surprising fourteen instances of 2 ULP functions as well as a
few larger errors exclusive to the Microsoft CRT library.

Note that the exp10 function is correctly rounded in glibc but not correctly rounded in
Julia. Both have a history of implementations which are taken from FDLibm and the FDLibm
implementation of exp10 is also correctly rounded. For example, glibc’s tan function appears
to be identical to the FDLibm implementation and Julia is based on OpenLibm which itself is
related to FDLibm. In this test, the FDLibm and glibc exp10 show the same error distribution,
ULP values and percentage mismatch which leads to the conclusion that they are most likely the
same functions. So it is unclear how Julia, with a similar history, has resulted in a less accurate
implementation.

Microsoft CRT library has two interesting results, sinh and cosh. cosh is correctly
rounded whereas sinh is correctly rounded with the exception of one input value, 0.0005589425.

69

Worst ULP Incorrect(%)
Julia MCRT glibc 2.27 Julia MCRT glibc 2.27

sin 1 1 1 0.01 0.07 >0.00
cos 1 1 1 0.02 0.07 0.11
tan 1 1 2 7.10 0.01 1.95
exp 1 1 1 0.76 >0.00 0.01
expm1 1 3 1 0.53 6.95 0.53
exp2 1 2 1 >0.00 8.67 0.01
exp10 1 N/A 0 0.57 N/A 0.00
log 1 1 1 0.01 0.01 0.02
log2 1 2 1 0.54 0.69 0.01
log10 1 1 2 0.58 0.11 1.39
asin 1 1 1 0.20 0.12 0.22
acos 1 1 1 0.27 0.03 0.25
atan 1 1 1 0.15 >0.00 0.49
sinh 2 1* 2 3.29 >0.00 3.19
cosh 1 0 1 0.97 0.00 0.80
tanh 2 1 2 2.77 0.10 5.36
asinh 2 2 2 12.59 14.37 14.48
acosh 2 2 2 22.65 23.28 22.67
atanh 1 2 2 2.40 6.47 2.44
* MCRT sinh has only a single 1 ULP error mismatch and is otherwise correctly

rounded.

Table 4.2: This table shows the Max-ULP accuracy, and percentage of mismatches with the
correctly-rounded result for all valid input 32-bit floating-point numbers. The table shows tan
having worst-case 1 ULP of error for Julia and MCRT but 2 ULP for glibc. However, the
percentage mismatch shows even though MCRT and Julia have the same error in ULP they do
not have the same percentage of correct answers, with Julia having approx. 7% of answers return
with incorrect rounding compared to the 0.01% of MCRT.

70

The result is shown below:

Correct Ans.= 0 01110100 00100101000011000000000

MCRT Ans. = 0 01110100 00100101000010111111111

This is the result of the value being rounded down instead of up. This is one of the trickier
numbers to find the correct answer for as a single change of the value of the last bit leads to the
chain of flipping of ten other bits. This is almost half the 23 mantissa bits from a single rounding
value change.

It was also unexpected to see up to 3 ULP in the Microsoft C Runtime as it is a library with
ongoing development and that level of error could result in problems that are not as easy to be
dismissed as 1 ULP.

The highest percentage of mismatches were found in the asinh, acosh and atanh

functions where nearly a quarter of some functions return an incorrectly rounded result for their
defined domain. The Julia implementation of tan also showed a high level of mismatches with
7% compared to the much lower values of other libraries. Figure 4.1 shows the distribution of
the mismatches which were found in six functions. The distribution of the mismatches provides
hints at the implementation. sin and cos for each library clearly appear to be shifts of each
other and between libraries, we can see similar distributions which would result from similar
implementations with some variation depending on the distance from 0.0 f . A good example of
this would be the Julia and MCRT implementations of log which appears to have similar density
of bands at the same positions — with the exception of Julia appearing to correctly handle inputs
that return values near 0.0.

The combination of unique ULP, mismatch and distribution patterns poses an interesting
security concern in the possibility of an information side-channel. With knowledge of the specific
error distributions of each library, it would be possible for a user to fingerprint which maths
library is being used by an application. This might reveal system properties to an attacker, for
example, with the result from an MCRT function it may be possible for an attacker to identify if
a remote machine running some software they can connect to is using that library and reasonably
assume they are running a version of Microsoft Windows, which would help to identify which
vulnerabilities may be open to that machine.

4.4 32-bit GPU Functions

While most libraries that are commonly used do not openly state how close they are to correct-
rounding, NVidia does for their CUDA Toolkit. In their CUDA Toolkit v11.1.1 documentation,
Section F.1. Standard Functions provides full tables of the mathematical functions with both
single and double precision max ULP error.

71

Fn.
Julia

M
C

R
T

glibc
2.27

s
i
n

c
o
s

t
a
n

l
o
g

l
o
g
2

l
o
g
1
0

Figure
4.1:Sam

ple
ofelem

entary
functions

show
ing

the
distribution

ofincorrectly
rounded

results
on

the
C

PU
forJulia,M

SV
C

and
glibc

2.27.
D

ifferentlibraries
produce

errorin
differentplaces,m

eaning
f(x)

in
one

library
m

ightnotbe
equalto

f(x)
in

anotherlibrary
forsom

e
inputs

—
this

is
a

threatto
portability.N

O
T

E
:In

this
table

a
translucentverticalorange

line
is

draw
n

for
each

incorrectly
rounded

result,for
som

e
graphs

such
as

Julia
s
i
n

,w
here

there
are

relatively
few

incorrectly
rounded

results
the

errors
are

quite
faint.This

is
needed

so
thatm

ostfunctions
w

ith
lots

oferror
are

notallan
orange

bar.

72

NVidia Docs. Our Results (NVidia 1080 GTX)
Function Input Range Max ULP Err Max ULP Err Mismatch Count Incorrect (%)
sinf (−∞,∞) 2 1 426 015 575 9.96
cosf (−∞,∞) 2 2 429 339 511 10.04
tanf (−∞,∞) 4 3 836 917 130 19.56
asinf [−1,1] 4 2 21 377 944 1.00
acosf [−1,1] 3 2 162 888 434 7.64
atanf [−∞,∞] 2 2 181 296 104 4.24
sinhf [−∞,∞] 3 3 38 349 070 0.90
coshf [−∞,∞] 2 2 65 355 938 1.53
tanhf [−∞,∞] 2 2 39 501 004 0.92
log10f [0,∞] 2 2 763 162 985 35.68
log2f [0,∞] 1 1 12 044 078 0.56
logf [0,∞] 1 1 72 516 689 3.39
expm1f [0,32] 1 1 16 148 303 1.46
exp10f [0,32] 2 2 60 512 159 5.46
exp2f [0,32] 2 1 60 454 446 5.46
expf [0,32] 2 2 59 176 502 2.77

Table 4.3: Comparison between the reported max ULP error in the CUDA Toolkit documentation
and our empirical results for all valid 32-bit floating-point numbers. The exponential functions
are only tested for a subset of the IEEE-754 range due to out-of-range errors when testing larger
inputs.

This data was validated for the functions which were analysed in the CPU mathematical
libraries and can be seen in Table 4.3.

When analysing the results, the NVidia documented results appeared to be conservative
and stated higher maximum ULP Error than was able to be reproduced (see cosf, asinf and
exp2). Generally, it was found that the ULP error in the CUDA Toolkit mathematical functions
had a higher max ULP error than the CPU equivalents and even when the max ULP is the same
the percentage of incorrectly rounded results is significantly higher.

Looking at the error distributions in Figure 4.2, it is clear that the error is not only more
frequent but also more consistent across the domain. Unlike the analysed CPU functions where
the error diminishes as the input value increases. The error distribution in the GPU results would
be a typical pattern of error for a function that has a less precise range-reduction algorithm
in-place. However, as the CUDA Toolkit is closed source, it is only possible to speculate on the
actual implementation.

These findings show that the problems mentioned about the portability of code will be
more likely to appear when porting code to the GPU using CUDA due to the higher number of
incorrectly rounded results which will not align with those of another library. This means that
porting sensitive code from the CPU to the GPU using the CUDA framework is not trivial and

73

Fn. Julia CPU NVidia CUDAToolkit GPU

sin

cos

tan

log

log2

log10

Figure 4.2: Sample of incorrectly rounded results on the GPU using NVidia CUDA Toolkit
compared to the Julia implementations on CPU.

74

there may be minor errors and inconsistencies related to the use of the supplied mathematical
functions.

I believe this will be currently having an impact on machine learning frameworks that allow
for CPU/GPU interoperability.

4.5 Monotonicity Testing

One concern when seeing high ULP error is that the error may result in incorrect-rounding in
the wrong direction, causing a loss of monotonicity. This would cause problems with many hill
climbing or gradient descent models which rely on the functions maintaining correct gradients.

All the specified 32-bit single-input functions which should be monotonic in Julia, MCRT
and FDLibm were tested and it was found that they were all correctly monotonic in their domain
(specified in Table 4.1).

4.5.1 Duplicated Results

Recommended functions are typically implemented with the input type being the same as the
return type and most of the recommended mathematical functions are continuous. A result of
this is that when the gradient of the continuous function is less than one there are more input
values than output values in that range. This means that more than one input is mapped to one
output. For example:

sin(1.5939530) = 0.9997319

sin(1.5939529) = 0.9997319

sin(1.5939528) = 0.9997319

When closely observed it has frequent plateaus of two or three repeated values, this is
especially evident when the input is below one where the ratio of input to output values is 1 : 1
so any gradient below 1.0 is guaranteed to produce repeated results. In the [0.0,2.0π] range of
sin 0.7% of all results are part of a duplicate (see Figure 4.3).

As the input values increase there are fewer floating-point values in the range of inputs and
therefore the number of duplicates is reduced until it is only present where the gradient is equal,
or is very close, to zero.

Figure 4.3 shows the areas of duplicated results and how they quickly diminish as the ratio of
input to output changes.r

These duplicated value plateaus can affect programs that rely on gradient descent where it may
possibly not correctly calculate the gradient when given only a small window for differentiation.

75

Figure 4.3: Locations of sequential equal output values. Showing how the number of duplicates
decreases as the ratio of input to output values for each period of the 32-bit sin function.

Unlike other problems addressed in this chapter, this one can be shown to also affect higher
precision types. Floating-point numbers are affected in this situation because there is more
precision required in the output than the input when the gradient is less than one and the number
of representative values for input is equal or larger than the output. As a result, this is a problem
that cannot be solved by moving to a higher-precision representation.

One solution that is available to address this limitation in the representation of the recom-
mended functions is to allow for higher-precision outputs from lower-precision inputs when the
function is within known areas of misrepresentation by duplication. This is acceptable under the
current IEEE-754 standard as the input and output types are not restrictively defined. With this
approach, a 32-bit function would return 64-bit but only compute greater than 32-bit when in an
area of known duplication. This would provide the same performance for the vast majority of
inputs but allow for the correct behaviour of algorithms that rely on accurate gradient calculation
for a particular function. To ensure this the areas of duplication were tested in 64-bit for all
32-bit floating-point inputs in that area and it was found to produce zero duplication, meaning
there is a continuous gradient of at least 32-bit precision.

4.6 Examples of Error

This section covers the real-world examples of where being correctly rounded does result in
meaningful change in the output value. There is a focus on visual results to be able to more
easily convey the divergence.

4.6.1 Mismatch Example

The first example of this section of real-world problems caused by not following the standard
is loss of inter-library determinism. Table 4.4 shows the function tanh implemented in three
different libraries and each result is different. If these were three different systems trying to find
the same answer using different libraries - they could not have a consensus. In this example,

76

Microsoft CRT provides the correctly rounded result and the two other libraries (Julia and glibc
2.27) round in opposite directions.

With this error in place, safe distributed computing across libraries is not possible for any
calculations which need bit perfect results.

Function Input (32-bit float) Result (binary32 bit representation)
tanh (CRLibm) 0.058622412 0 01111010 11011111101011110111100
tanh (Julia) 0.058622412 0 01111010 11011111101011110111011
tanh (MCRT) 0.058622412 0 01111010 11011111101011110111100
tanh (glibc 2.27) 0.058622412 0 01111010 11011111101011110111101

Table 4.4: This table shows a single input to the tanh function giving different results from our
main testing libraries. Microsoft CRT is correctly-rounded where as Julia and glibc both round
in opposite directions.

4.6.2 Procedural Example

Procedural generation techniques are used to generate data programmatically. They are com-
monly used in computer graphics for everything from generating textures to whole environments.
Outside of this, they are also useful in computer vision, path-finding and other research areas
which rely on generating a large amount of realistic content for testing. Reproducibility is a
major factor in procedural generation. Generated new data must be able to be recreated from
the same inputs again regardless of the device on which it is being computed. Without this
guarantee, it is impossible to reliably use the procedural content as the output may not be what
was expected.

The video game Elite:Dangerous is a known example of widespread and complex procedural
content being used across different platforms. It is set in a virtual procedurally generated 3D
scale model of our galaxy [21]. Due to the reproducibility nature of the procedural generation,
many players can play the game in the same ‘world’ without having to transmit the entire map to
each other or worry about getting mismatching results. This gives the users a larger play space
than would be possible without procedural generation.

That is possible because the procedural techniques, in this case, repeated combinations of
different procedural noise patterns being used, such as Perlin Noise [126], are stable, i.e. they
can be implemented to produce the same results in different environments. If they were not
stable, as is the case for many elementary functions, then the combination of multiple levels of
procedural noise pattern (such as Perlin Noise) would result in increasingly divergent results
between machines.

The field of procedural generation has many different approaches for mathematically repro-
ducible output – but for commercial applications, some of these may result in an error when

77

being used due to the differences in output from the elementary functions and it is something
programmers must consider.

Consider the Chaos Game [10, 87], a method of creating fractal patterns used in the study
of fractals and strange attractors [114, 7, 11, 45]. A pattern is generated by taking an initial
position and then applying a function to it to produce a new position. Over many iterations, this
results in a pattern. These types of iterative procedures are common in procedural generation
in computer graphics [145]. If the function applied in each step produces different output on
different systems then the final output is not equal.

pn+1 = f (pn)

It was found that when using elementary functions which do not conform to the IEEE
standard the final output images of the Chaos Game converged on different outputs to the
correctly rounded solution. This effectively makes these approaches non-portable.

Figure 4.4(a) shows the result of a Strange Attractor which uses both sin and cos in it’s
calculations.

xn+1 = d ∗ sin(xn ∗a)− sin(yn ∗b)

yn+1 = c∗ cos(xn ∗a)− cos(yn ∗b)

The incorrectly rounded solution is noisier than the correctly rounded solution. It has failed to
converge as evenly and appears to show clustering patterns (Figure 4.4) inconsistent with the
correct result. The erroneous result is caused by repeated missteps due to the small errors in the
sin and cos calculations.

The Reaction-Diffusion algorithm is commonly used to create organic-looking patterns, wave
simulations and procedural noise. This algorithm uses a convolutional kernel with two buffers
to ‘grow’ a pattern from an initial state. It can be used to create organic-looking patterns, wave
simulations and procedural noise.

Figure 4.5 shows that when the underlying elementary functions do not match it leads to
compounding errors that cause divergence in the pattern being generated. Unlike the Chaos
Game example where the error simply resulted in a lower quality image, the error here results in
a different result between implementations.

By not being correctly-rounded the uses of procedural generation may have been limited, as
only approaches which do not use the elementary functions, such as Perlin Noise, can be used in
real applications that require reproducibility or portability between systems.

78

(a) Correctly-rounded Reference

(b) Correctly-rounded Sample (c) Julia Sample

Figure 4.4: This shows a zoomed in view of the edge of part of the strange attractor in the Chaos
Game demonstrating how a small amount of error in the functions can lead to a failure to correctly
converge and form the smooth distribution. It shows clustering in the Julia implementation that
occurs due to the incorrect values of the Julia implementation.

79

Step Julia MCRT Difference

1

100

200

500

Figure 4.5: This table shows the Reaction-Diffusion Algorithm using tanh to generate wave
patterns with the Julia and Microsoft CRT libraries. It demonstrates the lack of portability of the
code as it results in different outcomes from different libraries. The simulation diverges around
step 100 and begins to produce visually dissimilar outputs. If the IEEE standard is followed, this
simulation would not diverge.

80

Conv{3,3} (tanh)

Conv{3,3} (tanh)

Max Pool

Conv{3,3} (tanh)Max Pool

Max Pool

Dense (288,10)
{identity}

Soft Max

Convolutional Model

Output

Figure 4.6: The convolution model design that was used to produce differing results when the
‘tanh’ function is implemented with different libraries.

4.6.3 Neural network example

Key to algorithms used in neural networks is a function to provide some non-linearity, these are
called activation functions [123]. For this example we are concerned with the tanh elementary
function, a standard function recommended for implementation by IEEE-754. This activation
function is integral to the popular LSTM (long short-term memory) [62] and convolutional
networks and is widely used [74, 152, 75]. Activation functions are used in the training of
models as well during inference. Models in machine learning often use lower-precision floating-
point numbers, such as 32-bit floating-point, for performance reasons [79] and for GPGPU
support [5].

It is common for the weights of a model to be trained on one machine and then transferred to
another for either further training or to be used for inference.

It is possible to show that training using tanh from different implementations results in
different weights in the resulting network. This was tested using a convolutional neural network
where the activation on the convolutional layers is tanh. The shape of the network that was
used can be seen in Figure 4.6.

It was also found that placing the weights from a model trained with implementation A into
a model using implementation B may result in differing one-hot encoded results.

4.6.3.1 MNIST Example

MNIST is a standard dataset for training the recognition of hand-written numerical characters.
Figure 4.6 shows a commonly-used design of model for classifying the MNIST dataset. I created
two versions of this model and both are seeded with the same starting weights. One uses the
Julia implementation of tanh as the activation function in the convolutional layers, while the
other uses the Microsoft CRT implementation.

81

They are both initialised with the same starting weights and optimiser state. They are then
trained for one epoch with the MNIST dataset [39] and then the outputs are compared and the
number of misclassifications are then counted.

The two implementations resulted in different overall accuracy. This shows that the produced
model is meaningfully different despite being composed of what should be interchangeable
parts. The two versions were also not interchangeable, weights for each model are then swapped
and the model is tested again. This results in different values for the resulting one-hot encoded
outputs as shown in Table 4.5.

4.6.3.2 LSTM Example

LSTM networks are commonly used when the next inference result will be dependent on past
results, or other scenarios where some sort of memory-like behaviour is desired in the model.
These types of models are particularly susceptible to diverging behaviour when the activation
functions being used is changed from one implementation to another. Any difference in result
are now stored and can potentially impact each subsequent result in a chain, leading to greater
divergence over time.

To test this, models were implemented with three LSTM layers and a final densely connected
layer. Each implementation had different sized LSTM layers (32, 64, 128 and 256). Each model
was trained to reproduce text similar the sample text it was trained on. Once the model was
trained and outputting fairly coherent text the model was then used to generate a large sample
text. The generation of the sample text was then repeated with the tanh activation function used
in training changed to the tanh function from another library. The differences in the generated
text were then compared.

It was found that after switching the activation function the early results remained the same,
but the longer that the LSTM was run the more frequently results would be different, resulting
in higher occurrences of differing output characters. The rate of this divergence and whether
the error resulted in a different output varied depending on how long the model was trained.
With a relatively untrained model the weights are quite random, meaning the difference between
picking one output character and another is, on average, high relative to the error in the LSTM
occurring from small differences in the activation function output. However, it was found that
the occurrences of different character output increased as the network was further trained and the
difference in weights used for the selection of one output or another would be small.

This hints at the possibility that for LSTM networks based on text generation, or similar tasks
where there can be multiple valid outputs for a given scenario, may be more likely to exhibit
non-deterministic results caused by the unexpected differences caused by the different activation
functions used.

More generally, this shows that LSTM networks are non-deterministic when they are linked
to mathematical functions from different libraries.

82

MNIST ID tanhjulia tanhcr Diff.
0 -0x1.78f706p-1 -0x1.78f6fap-1 0x1.8p-22
1 0x1.5e8a0cp+2 0x1.5e8a12p+2 0x1.8p-20
2 0x1.a710acp+3 0x1.a710a4p+3 0x1p-18
3 0x1.1ceff6p+2 0x1.1ceffcp+2 0x1.8p-20
4 -0x1.f960aap+2 -0x1.f960a2p+2 0x1p-19
5 -0x1.821d5ep+1 -0x1.821d54p+1 0x1.4p-20
6 -0x1.f2787p+2 -0x1.f2786cp+2 0x1p-20
7 -0x1.418a82p-2 -0x1.418aa2p-2 0x1p-21
8 -0x1.fbab0ap-1 -0x1.fbab0ap-1 0x0p+0
9 -0x1.9176d8p+1 -0x1.9176d6p+1 0x1p-22

Table 4.5: MNIST Classification Example. This shows the difference in a one-hot encoding of a
convolutional neural network trained using Julia’s tanh function and then evaluated with that
function and a correctly rounded implementation.

4.6.3.3 Neural Network Conclusion

The different result and changing behaviour when weights are transferred is a worrying sign for
quiet errors which may exist in current system which rely on weight portability or continuous
training across different devices. As it is fairly common for models to be deployed across
different platforms (particularly in heterogeneous mobile devices), it could result in some
deployed machine learning systems working with small errors that may be unknown to the
developers as this is assumed to be correct.

This is particularly a concern as machine learning starts to be used in safety critical applica-
tions such as self-driving cars and medical diagnostic tools. It is essential that such use-cases can
be rigorously tested and that may not be possible if they are relying on disparate implementations
which, unknown to the developers, do not produce the same results.

4.7 Non-Determinism Between Library Versions

Non-determinism is a problem beyond inter-library operability. It can also be a problem between
library versions. In this section, it is showm how a change to the range-reduction algorithm used
for the 32-bit tan function in glibc between versions 2.27 and 2.31 causes different results when
running Ubuntu 18.04 and 20.04.

In the upgrade from Ubuntu 18.04 to 20.04 the version of glibc was changed and this means
to a user who upgrades their system they will be getting a change in the functionality of a key
mathematical function invisibly, and likely, unexpectedly.

83

4.7.1 The Change

The change to the range reduction function in glibc was made in August 2018 [41]. The widely
used function __ieee754_rem_pio2fwas replaced with a version named rem_pio2f [42]
stored locally to the tanf function. Instead of the very large and complex behaviour of
__ieee754_rem_pio2f [43], the new implementation relies on the accuracy of double-
precision to calculate a result with correct-rounding during the reduction when the input is
below 120.0 f , otherwise, it uses a more expensive method similar, but still simpler, than the old
function.

By changing the resulting value of some range-reduced values, the tangent function kernel
which takes the reduced values then produces different (in this case, more correct) results.

4.7.1.1 Analysis of Change

In Figure 4.7 each incorrectly rounded input in the [0.0,2.5π] domain for each library version is
rendered as an orange vertical line. This shows the distributions of incorrectly rounded results.

By comparing the two library versions, the difference becomes apparent around the π

2

intervals. This means that when calling the same code linked against glibc 2.27 instead of 2.31
then some inputs for tanf near the π

2 interval may return different values — meaning the result
of the function can not be determined when compiling the same code on machines using different
versions of the glibc mathematical library. Effectively making generic use of the mathematical
functions non-portable.

4.7.1.2 ULP Error of tanf

Table 4.6 shows that after the 2.27 release the worst case ULP error has been reduced (in
round-to-nearest mode) to one ULP error in versions 2.31 and 2.32, down from two in 2.27.

This is the result of some of the worst approximations being improved for inputs values
close to the π

2 interval and a number of previously incorrectly rounded results are now correctly
rounded.

4.7.1.3 Differences Between Versions

By testing all positive floats in tanf’s domain, Table 4.6 shows that between the 2.27 release
and 2.31 release there is a difference of approximately sixty-nine-thousand fewer incorrectly
rounded results. Figure 4.7 shows where error is distributed for the function in general, and
where these sixty-nine-thousand outputs have been corrected.

84

Figure 4.7: Here it can be seen that the change to the tanf implementation has resulted in
slightly fewer errors in the 0.0 to 2.5π range. The difference is shown in the lower graph where
most error was removed at multiples of π

2 . These are the reflection edges of the piece-wise tanf
kernel.

Version Max ULP Error Mismatch Count Difference
2.27 2.0837 41,774,574 -
2.31 1.4755 41,705,625 68,949
2.32 1.4755 41,705,625 0

Table 4.6: Testing for the ULP error and counting incorrectly rounded results for all inputs in
tanf the positive domain.

85

� �
user@machine$ python3
Python 3.6.9
[GCC 8.4.0] on linux

import numpy
a = numpy.float32(1.5013915)
numpy.tan(a)

>>14.385083� �
(a) Running with gnulibc 2.27

� �
user@machine$ python3
Python 3.6.9
[GCC 8.4.0] on linux

import numpy
a = numpy.float32(1.5013915)
numpy.tan(a)

>>14.385084� �
(b) Running with gnulibc 2.31

Figure 4.8: This example shows running Numpy and using one of the mismatch values identified
in gnulibc to produce different results on Ubuntu 18.04 and Ubuntu 20.04 for the same input.

4.7.1.4 Real-World Example

This has a real impact if two users are running different versions of an operating system and expect
the same result. Take for example SciPy, the framework for scientific computing. It is important
that any two users produce the same answers when using this application because it is used in
areas where accuracy is critical to reproducibility. SciPy wraps Numpy, a library for matrix
and other high-level mathematics in Python, and Numpy doesn’t provide its own mathematical
library implementation. Instead, it relies on dynamically linking to the mathematical library on
the system where it is installed.

Figure 4.8 shows how this can go wrong using one of the tanf mismatches between gnulibc
2.27 and 2.31.

4.7.1.5 glibc tanf Summary

The change to tanf was able to significantly improve the worst-case ULP accuracy of the
function and removed some incorrectly rounded results from the algorithm. The commit message
also reports speedups due to better code inlining with the new implementation. These are all
important (and impressively tidy) changes that are desirable in a mathematical library.

However, due to the library not following the correct-rounding aspects of the IEEE-754
standard, this change has resulted in a breaking difference between the two versions which is
likely unknown, undocumented and highly unlikely to be checked by the end-user.

It has made it so that tanf in 2.27 is both intensionally and extensionally different to the
tanf implemented in 2.31. As a result, a user upgrading their Ubuntu operating system from
18.04 to 20.04 and then recompiling some code they were working on which uses tanf would
result in a new executable which produces different result in subtle and hard to identify ways.

This is likely not a desirable trait for a mathematical library that is so widely shipped and
used. The error caused by this change is likely small and would be expected to not affect the
final output of many applications but it is never the less, a risk to anyone who uses it.

86

1 float f()
2 {
3 return std::tan(1.5013915f);
4 }

(a) C++ input

1 f():
2 movss xmm0, DWORD PTR .LC0[rip]
3 ret
4

5 .LC0:
6 .long 1097214286

(b) Compiled Output

Figure 4.9: Example of the Constant Evaluation optimisation of mathematical functions in gcc
10.2

4.8 ULP Error, constexpr and Non-Determinism

Currently, proposal P1383R0 [135] is being considered by the ISO C++ Standards Committee.
This document proposes that the functions in the <cmath> and <complex> headers should
be made to have the C++ attribute constexpr. This attribute makes the compiler evaluate the
function at compile-time and only store the result of that computation in the output instructions.
As seen earlier in this chapter, most mathematical libraries are not producing correctly rounded
results at run-time. If the libraries cannot agree on canonical results for an input, static evaluation
of that mathematical function will result in mismatches between the static and run-time result
which may cause unexpected behaviour.

This section shows why using the constexpr attribute with existing mathematical functions
implementations would be likely to cause problems. It has been showm that the existing Constant

Folding optimisation is already partly implementing this feature despite it being against the
rules defined in the C++ Standard. It is arguable that this is an existing case of mathematical
error/approximation that is being tolerated within all mathematical programs which do not
statically link to the library which is used at compile-time to generate the static values.

The work showing that the current widely-used mathematical libraries being incorrectly
rounded makes me concerned about the committee proceeding with this proposal before that
problem is solved because it would mean a programmer could use constexpr to compile the
result of a mathematical function into a library at compile-time and then use the result of that
calculation at run-time alongside values computed at run-time potentially with a different library.
If the device which performed the compilation is linking to a different mathematical library than
the library which is being used at run-time, the one or more ULP error in some mathematical
functions could result in the strange situation where sin(x) == sin(x) will return false! The
program result will be non-deterministic as a result of the environment where it is ran — which
is one of the problems which the IEEE-754 expressly aimed to avoid in 1985.

This is only a proposal and concerns have been raised with the committee, however, if you
compile a program now in gcc you will see that mathematical functions are already being
optimised to constants during the Constant Evaluation optimisation pass, shown in Figure 4.9.

87

Compiler Versions
X86/X64 msvc None
Clang 3.8 -> Current
gcc* 4.4.7 -> Current
Djgpp 4.9.4 -> Current
KVX 7.5
Raspbian Buster Current
Raspbian Stretch Current
FRC 2019 Current
FRC 2020 Current

Table 4.7: List of compilers and the first version found with Constant Evaluation of the standard
mathematical functions. Compiler Explorer [66] was used to quickly evaluate a large number of
compilers and compiler versions but the list is not exhaustive for all released versions.
(*) In gcc constant folding with MPFR was introduced in 4.3.0, but this version of gcc was not
available in the test suite used.

This behaviour was unexpected as the mathematical functions as defined in IEEE-754 raise
exceptions — which are a side-effect. Side-effects are not allowed to be disregarded in Constant

Evaluation2 as this would change the behaviour of the program. They can be disregarded if
they are proved to be not observed. This was tested in gcc 10.2 and, even when trying to catch
exceptions around the function call, the compiler still reduced the function call to a constant.

Many C++ compilers have been tested to find which ones exhibit this troublesome optimisa-
tion, shown in Table 4.7. It shows that the vast majority of popular compilers are performing this
action. The exception being much older versions, and X86/X64 Microsoft Visual C++ compiler.

On the surface, this is just a standard non-compliance issue which is fairly common and
compilers have many. What makes this interesting is that compilers rarely implement their own
mathematical functions. This means that if the compiler is dynamically linking to the library for
mathematical results the compiler is unaware of the specific implementation of the function it is
calling to produce the replacement constant and therefore has no guarantees that the function is
side-effect free.

This produces two problems, firstly it means that if a library being linked is not correctly
rounded and then the produced executable is dynamically linked against another library, or
library version, there is a chance that tan(x) 6= tan(x) when one is evaluated at compile time.

Secondly, it is a security issue. It allows someone to change the results being sent from an
external library into the compiler. Which not only compromises the compiler but any programs
it might generate. This is not a new problem, but the attack surface is further increased when
this behaviour will be moved from a compiler specific optimisation that is not in the standard to
something the C++ standard will require in scenarios where constexpr is used.

2Sometimes called Constant Folding.

88

Demonstrating the first problem is quite trivial. You can write a program to call a mathemati-
cal function with a known value that is different in two libraries and disable optimisations on
one of the calls. This will prevent your compiler from evaluating both at compile time. Add in
a comparison that the two functions are equal and then compile the program. On the machine
the program was compiled on, using the same linked library that was used by the compiler to
generate compile-time result, the functions should report as equal. If you move the executable
to a machine with a different mathematical library (or change the link location on the current
machine to point at a different library) and rerun the program you may see the program report
that tan(x) 6= tan(x).

Figure 4.10 demonstrates this using an input to tanf which is known produces different
results in gnulibc 2.27 and gnulibc 2.31 so that the disparity of output between Ubuntu 18.04
and Ubuntu 20.04 can be tested.

Another interesting quirk is that Clang has a bug in its constant folding code (as of version
11). If you compile and run the shown test code with Clang on Ubuntu 18.04 you will get a
mismatch, even though you both linked to the same library.

The bug is caused by Clang compile-time evaluating tanf as a double-precision floating-
point function and then rounding the result back to 32-bit. This causes Clang to emit the correctly
rounded result whereas at run-time glibc 2.27 on Ubuntu 18.04 will produce an incorrectly
rounded value, resulting in a mismatch.

As the correctly rounded result cannot be guaranteed at run-time with the current libraries
available, and some compilers are outputting incorrectly rounded results, it seems that Constant

Evaluation optimisations and constexpr for mathematical functions should be placed behind
the existing -ffast-math flag which is there to allow for optimisations which are non-
compliant with ISO C/C++ and IEEE-754. Without this change users are relying on the programs
which take advantage of this optimisation being error-tolerant up to the value of the difference
between the static compilation mathematical library and whichever library is linked at run-
time. Most users will not be aware that there is a chance of error here as it is not signalled or
documented and it is not possible to know what will be linked at run-time as there is a variance
in compliance with the standards which dictate the behaviour of the mathematical libraries. All
together, that makes this an unsafe mathematical optimisation for the majority of the libraries
which are currently commonly being used.

4.9 Conclusion

The 32-bit, single input, recommended functions from IEEE-754 feature in many applications
on CPUs and GPUs. Four popular libraries were investigated and it was demonstrated that none
of them deliver correct rounding in all cases.

89

� �
#include <cmath>
#include <iostream>

float f()
{

return std::tan(1.5013915f);
}

// Prevent Constant Folding / Constant Evaluation
float g() __attribute__ ((optnone));
float g()
{

return std::tan(1.5013915f);
}

int main()
{

std::cout << "constexpr: f() = "
<< std::hexfloat
<< f()
<< std::endl;

std::cout << "runtime: g() = "
<< std::hexfloat
<< g()
<< std::endl;

std::cout << "f() == g() := "
<< ((f()==g()) ? "TRUE" : "FALSE")
<< std::endl;

return 0;
}� �

(a) C++ Test Code

constexpr: f() = 0x1.cc529cp+3
runtime: g() = 0x1.cc529cp+3
f() == g() := TRUE

(b) Output when compiled against
gnulibc 2.31 and runtime linked to
gnulibc 2.31

constexpr: f() = 0x1.cc529cp+3
runtime: g() = 0x1.cc529ap+3
f() == g() := FALSE

(c) Output when compiled against
gnulibc 2.31 and runtime linked to
gnulibc 2.27

Figure 4.10: Example of Constant Evaluation breaking because of incorrectly rounded results in
common mathematical libraries.

90

It seems that FDLIBM’s (pre-standardisation) approach of 1 ULP worst-case error is almost
ubiquitous. One way to interpret these results is as an operational definition of the required
accuracy, in the next chapter is it shown how one can exploit this to improve performance within
the same error bound. However, some concrete examples of this were given where this will have
an impact on the application and so in Chapter 5 I show how correctly rounded implementations
can be delivered with comparable performance.

91

92

Chapter 5

Correctly Rounded 32-Bit Elementary
Functions

In the last chapter we showed that for some applications a correctly rounded implementation is
necessary to produce satisfactory results and the currently provided mathematical libraries are
non-compliant with this requirement. This chapter aims to fill this requirement by providing an
implementation for correctly rounded 32-bit results for the mathematical functions.

Through some early testing we found that for many 32-bit functions the correctly rounded
result can be found by simply casting the result from the 64-bit implementation to 32-bit. There
are a small number of inputs where this does not produce the correctly rounded result and these
can be stored and used as special cases. This results in an implementation of 32-bit correctly
rounded mathematical functions which are not as expensive as some of the more numerically
complex correctly rounded implementations and with similar performance to existing 32-bit
implementations on modern CPUs which provide both 32- and 64-bit floating-point hardware
evaluation.

The motivation for this work is that the current 32-bit implementations of common mathe-
matical functions are not correctly rounded which results in them not being inter-operable and
unreliable when the precise answer is expected. A justification for the current implementations
being approximations was given as performance. This means that there exists at least two
use-cases, those which require correctly rounded results and those which do not. The current
correctly rounded implementations which are available [35] are many orders of magnitude slower
than the 32-bit approximate implementations and in some cases do not even support direct 32-bit
output (such as CRLibm).

The approach taken here is to analyse the 64-bit results of a specific implementation when
they are cast to 32-bit to provide a list of the known input values which produce an incorrectly
rounded result. For these specific inputs, as they are few, it is possible to simply perform a table
lookup to return the correct result. If the input is one which does correctly round down from
64-bit floating-point then we cast to 32-bit float and continue.

93

This implementation is tested for all 32-bit inputs and performance results are compared
to existing 32-bit functions to ensure that the implementations are practical and sensible for a
modern application.

5.1 Current Approaches

When wishing to achieve high-precision correctly rounded results for standard floating-point
mathematical functions there are only a few major libraries that are popular and currently being
used in commercial applications. They are CR-LIBM (Correctly rounded Libc) [35], GMP
(GNU Multiple Precision Arithmetic Library) [72], the GMP derived projects MPFR (GNU
Multiple Precision Floating-Point Reliable Library) [53] and MPIR (Multiple Precision Integers
and Rationals) [64].

This work focuses on CR-LIBM and GNU MPFR as they are shipped with Julia.

5.1.1 CR-LIBM

CR-LIBM is designed for provable and well performing implementations of 64-bit floating-point
mathematical functions.

The library is based on the work by Lefèvre and Muller who proposed solutions for the
maximum precision needed to compute the correct-rounded result for several functions [101] —
although only in 64-bit precision.1

The library’s approach is to prove the correct results for a function by calculating a tight
bound on the total relative error. While they provide many proven results, some functions are
only correctly rounded within certain bounds.

With this method, they can provide a bound on the ‘Table-makers Dilemma’ for many
functions in 64-bit precision.

5.1.2 GNU MPFR

An alternative to the CR-LIBM approach is to use arbitrarily high-precision to establish a finite
bound of correct-rounding by moving this bound further and further out — what CR-LIBM
refers to as the “bounds of astronomy” [35].

With this method, the probability of producing the correctly rounded result is increased as
the precision is increased. With the information from CR-LIBM this gives some guarantees
of correct-rounding for some functions but others are only given a high probability of correct-
rounding.

For those where correct-rounding can be achieved the “onion peeling strategy” (also known
as Ziv’s strategy) is used. This approach uses increasingly higher-precision in the approximations

1These were: the exponential, logarithm, sine, cosine, tangent and arctangent.

94

of the target function until the error bounds are such that the correct-rounding direction can be
definitively chosen [173].

GNU MPFR has been used as the high/multiple-precision library for Java to produce high-
precision and correctly rounded results [20].

Unlike CR-LIBM, GNU MPFR is multiple-precision and therefore supports 32-bit direct
output. However, due to its programmable nature it is less performant than CR-LIBM and the
standard library implementations.

5.2 The Approach

My approach to solving the correct-rounding problem for 32-bit is to run the 64-bit implementa-
tion of a function for all 32-bit inputs, round the number to 32-bit precision and then compare
to the correctly rounded results from a correctly rounded implementation. If the results do not
match, the input and correctly rounded output are saved into a table.

Once the full range of inputs has been tested, the table is used to create implementations in
the form:

� �
float fn(float input)

{

if(input in WrongResults)

return CorrectResults(input)

else

return fn((double)input);

}� �
This means that getting the correctly rounded 32-bit result will be the cost of checking if the
current input is a known incorrect 64-bit implementation value and then either the cost of calling
the 64-bit implementation or the cost of fetching the correct return value.

In an ideal situation, as the number of incorrectly rounded results is low, the 64-bit imple-
mentation of the function should be on the fast path and the branch predictor will reduce the cost
of the input value checking.

The above example shows a lookup into a WrongResults tables, for functions with a table of
a small number of entries this can be replaced with an if-else statement for each condition to
further help the compiler to optimise the code.

5.2.1 Debunking Simple Approaches

I approached the creation of this library by noting that for the [0.0,2.0π] range it is possible to
achieve correctly rounded 32-bit sin by simply casting the result of 64-bit sin to 32-bit. In

95

this range, the difference between the two results is not significant enough to result in incorrect
rounding. This solution was tested against MPFR to confirm the results were correct.

The initial assumption would be that this would be true for all the 32-bit single input
elementary functions, so it would be possible to simply cast to 32-bit and that would result in a
nearly identically performant correctly rounded solution.

Next, it was noted that for many functions there is only a minimal performance difference
between 32-bit and 64-bit mathematical functions when running on a modern 64-bit processor,
in my case an AMD Ryzen 7 3750H. It is only the implementations that had significantly more
complex 64-bit implementations that suffer a larger increase in run-time. This can be seen in
particular for the implementation of Julia’s tan function where the 32-bit implementation of
the core kernel is the direct combination of a few simple polynomials (explaining the much
higher rate of incorrect answers compared to other libraries in Table 4.2) whereas the 64-bit
implementation is much more complex with more branching and special conditions. This results
in the 64-bit implementation being nearly double the cost. However, consider that the sin
function the 32-bit and 64-bit implementations are very similar and result in similar overall
performance in Figure 5.1. It appears for implementations that are similarly implemented the 32-
bit and 64-bit operations appear to be of approximately equal cost on modern 64-bit processors.
A rewrite of the 64-bit implementations with this consideration may be able to reduce the cost of
the 64-bit implementations when targeting 32-bit - it may even be possible to allow higher ULP
error in the 64-bit implementation if it does not result in incorrect rounding when reduced to
32-bit.

5.3 Methodology

As with the last Chapter, this work was performed in Julia 1.4 [15]. For each of the functions, all
positive floating-point inputs were analysed to determine the accuracy of the function.

For comparison, the GNU MPFR library was used because of its better support for testing
32-bit functions and so that comparisons of its results could be validated using higher-precisions.
The GNU MPFR is also portable across operating systems whereas CR-LIBM is limited to Linux.
Using a more portable library increases the reproducibility of this work so that it can be easier to
externally validate.

Each 64-bit function is run and rounded to 32-bit, this is then compared against the MPFR
library result. Any mismatch in the result is stored in a table with the input.

With the results, the new correctly rounded 32-bit functions are automatically generated in
Julia. They are then tested using BenchmarkTools.jl [130].

96

Function Mismatch
sin 1
cos 2
tan 0
exp 0
exp2 1
exp10 0
expm1 0
log 1
log2 0
log10 0

Function Mismatch
sinh 1
cosh 0
tanh 0
asin 0
acos 2
atan 1
asinh 3
atanh 0
acosh 2

Table 5.1: Number of incorrectly rounded results when casting the 64-bit Julia implementation
to 32-bit for all positive 32-bit floating-point numbers.

5.4 Results

Table 5.1 shows that the maximum number of mismatches was three for asinh, with nearly
half of all the functions tested having zero mismatches.

This means only a small number of functions needed to be specifically implemented to
include the correct return value lookup to result in a fully correctly rounded result for the
32-bit implementations. The functions without mismatches can be directly rounded to 32-bit
precision without loss of the correctly rounded property without any further intervention, when
in Round-to-Nearest rounding mode.

5.5 Performance Evaluation

Looking at the performance results in Figure 5.1 shows that my performance is near identical to
that of 64-bit implementations with a small cost for the branch — as would be expected.

There are some functions such as tan, tanh and sinh where this cost is significantly
higher than the 32-bit implementation. For these functions a more specifically implemented
correctly rounded solution may be more suitable or better performing, rather than taking on the
significant performance cost of the 64-bit implementation. The implementation of a number of
64-bit functions are a lot more complex than the 32-bit counterparts and may explain the jump in
the cost for a few functions which have been tested.

The relative performance of each implementation will vary on use and the CPU which is
being used. This solution was benchmarked on an Intel i5 6600. If the targeted processor does
not have a 64-bit supported FPU (Floating-point unit) then the relative cost of this approach will
be higher.

97

Figure
5.1:Perform

ance
ofthe

Julia
and

M
FPR

elem
entary

functions
com

pared
to

the
correctly

rounded
32-bitm

ethod.E
rroris

m
arked

as
the

interquartile
range.(B

enchm
arking

tests
perform

ed
on

an
IntelC

ore
i5-6600

C
P

U
@

3.30G
H

z)

98

There is some credence to 32-bit floating-point and 64-bit floating-point having very similar
performance characteristics during processing2. With the major downside to using 64-bit coming
from having to double the amount of memory being used leading to less efficient cache behaviour.
Although, this behaviour will vary greatly depending on individual CPU design. Figure 5.1
shows this in the relative difference in cost between the 32- and 64-bit implementation is for
some implementations.

Others, such as tan have a significant difference in cost due to the significantly more
complex 64-bit implementation. In the next section, it is shown how small 64-bit floating-point
approximations can be used in these cases to produce a different 64-bit implementation with few
incorrectly rounded results when cast back to 32-bit without a significant performance overhead.

5.6 Faster 64-bit tan

The implementations of tan between the 32- and 64-bit implementation vary greatly. The 64-bit
implementation in Julia is very complex with many branching paths and complex mathematics
to try and produce a good 64-bit result. This is how it managed to have zero incorrectly rounded
results when it is cast down to 32-bit.

A result of this is that there is a large difference in the performance of the 64-bit implemen-
tation depending on which paths are taken due to their different complexity. This is visible
in Figure 5.1 as the large error bars which are not seen in most other functions shown here.
Figure 5.2 shows a more detailed breakdown of the different performance at different inputs. The
paths taken for the lower gradient ranges of the tan function are much faster than the steeper
sections which approach infinity.

The function’s irregular performance and being a relatively expensive implementation when
compared to the 32-bit implementation makes it less suitable for use in my proposed correctly
rounded solution. To fix this, I present a Remez-based polynomial approximation replacement
for the tan_kernel sub-function in the Julia implementation of tan which reduces the overall
run-time of the function at the cost of some accuracy.

The new implementation, shown in Figure 5.2a, produces fifteen incorrectly rounded results
when rounded down to 32-bit with a max ULP error of one. This is a significantly higher
number of mismatches than the current 64-bit implementations which have been measured.
There is a cost to using a table of many values or many if statements. Implementing my method
directly results in function with a higher run-time than the existing 64-bit worst-case, even with
a very cheap kernel. To fix this, a binary search approach is used when checking if the input
is one of the known 15 incorrectly rounded results. With this design the new function is now
approximately the same cost as the pure 32-bit implementation. The mismatched values are not

2Particularly moving to a 64-bit number from 32-bit on modern processors [143].

99

(a)C
om

parison
ofthe

run-tim
e

perform
ance

fordifferentinputranges
of

the
32-,64-bitand

fastapproxim
ate

64-bitim
plem

entations
ofthe

t
a
n

function,w
ith

interquartile
error.(B

enchm
arking

tests
perform

ed
on

an
IntelC

ore
i5-6600

C
P

U
@

3.30G
H

z)

1
f
l
o
a
t
3
2

f
a
s
t
t
a
n
6
4
(
f
l
o
a
t
3
2

_
x
)

2
{

3
/
/

G
e
t

t
h
e

r
a
n
g
e

r
e
d
u
c
e
d

v
a
l
u
e

4
i
n
t

p
h
a
s
e
;

5
f
l
o
a
t
6
4

r
e
d
u
c
e
d
v
a
l
;

67
p
h
a
s
e
,
r
e
d
u
c
e
d
v
a
l

=
r
a
n
g
e
_
r
e
d
u
c
e
(
_
x
)
;

89
/
/

C
a
l
l

t
h
e

k
e
r
n
e
l

w
i
t
h

t
h
e

c
o
r
r
e
c
t

i
n
p
u
t

a
n
d

p
h
a
s
e
.

10
i
f

i
s
e
v
e
n
(
n
)

11
r
e
t
u
r
n

f
a
s
t
k
e
r
n
e
l
(
r
e
d
u
c
e
d
v
a
l
,
1
)

12
e
l
s
e

13
r
e
t
u
r
n

f
a
s
t
k
e
r
n
e
l
(
r
e
d
u
c
e
d
v
a
l
,
-
1
)

14
}

151617
f
l
o
a
t
3
2

f
a
s
t
k
e
r
n
e
l
(
f
l
o
a
t
6
4

_
x
,

i
n
t

e
v
e
n
f
l
a
g
)

18
{

19
/
/

R
e
m
e
z

r
a
t
i
o
n
a
l

p
o
l
y
n
o
m
i
a
l
s

20
s
t
a
t
i
c

c
o
n
s
t

f
l
o
a
t
6
4
[
7
]

n
u
m
e
r
a
t
o
r

=
[
.
.
.
.
]

21
s
t
a
t
i
c

c
o
n
s
t

f
l
o
a
t
6
4
[
7
]

d
e
n
o
m
i
n
a
t
o
r

=
[
.
.
.
.
]

2223
/
/

C
a
l
c
u
l
a
t
e

t
h
e

r
a
t
i
o
n
a
l

p
o
l
y
n
o
m
i
a
l

24
r
e
s

=
(
n
u
m
e
r
a
t
o
r
[
0
]

+
h
o
r
n
e
r
(
_
x
,

n
u
m
e
r
a
t
o
r
[
1
:
e
n
d
]
)

)
25

/
(
n
u
m
e
r
a
t
o
r
[
0
]

+
h
o
r
n
e
r
(
_
x
,

n
u
m
e
r
a
t
o
r
[
1
:
e
n
d
]
)

)
;

2627
i
f

k
=
=

1
28

r
e
t
u
r
n

f
l
o
a
t
3
2
(
r
e
s
)

29
e
l
s
e

30
r
e
t
u
r
n

f
l
o
a
t
3
2
(
-
1
.
0
/
r
e
s
)

31
}(b)Pseudo-code

ofthe
im

plem
entation

ofthe
fastapproxim

ate
64-bitim

-
plem

entation.Ituses
the

existing
Julia

range-reduction
butapproxim

ates
the

inner
t
a
n
_
k
e
r
n
e
l

w
ith

a
rationalpolynom

ial.

Figure
5.2

100

evenly distributed, and as a result the function is more expensive in similar areas as the original
64-bit implementation but still significantly cheaper.

Using 64-bit approximations to produce correctly rounded 32-bit results can be investigated
for many of the existing 64-bit implementations if the run-time difference between the 32- and
64-bit is too much of a performance penalty.

5.7 Conclusion

I have shown in this section it is possible to get well performing correctly rounded 32-bit solutions
by taking advantage of the nearly-correctly rounded 64-bit solution.

For most functions the 64-bit implementation is of a similar cost, resulting in only a small
overhead to get correct-rounding. In the cases where the cost of the 64-bit function is significantly
higher than the 32-bit, I have shown it is possible to generate cheaper 64-implementations which
are good-enough to produce only a small number of incorrectly rounded results when cast to
32-bit.

Overall this solution gives the same performance, exception and mathematical behaviours of
the 64-bit implementation while maintaining the correct-rounded result in 32-bit.

For some functions, the jump from 32-bit to 64-bit implementations does not incur a signif-
icant performance penalty and therefore there is little reason to use the more incorrect 32-bit
implementation for a lot of use-cases. For others, such as tan the function is 50% slower in
64-bit and therefore the change in performance may effect some programs if the faster, less
accurate 64-implementation is not available.

In this chapter I have shown how to achieve correct-rounding for the tasks which require it.
In the next chapter I will show how to get better performance while staying within the established
error limits.

101

102

Chapter 6

Approximate sin to One ULP Max-Error

I have shown that existing mathematical libraries do not produce the correctly rounded result
for many functions. This shows wide acceptance for error in single-precision floating-point
functions, even though the latest IEEE-754 standard does not allow for any error in the results of
these functions.

If, to the user, one ULP worst-case max-error is acceptable in all results from a mathematical
function, then the existing strategy of aiming for correct-rounding but not reaching it for all
results is not taking advantage of the optimisation space.

At the moment, the developers have created a situation where we must accept up to one ULP
error for any result from the functions as a way to increase performance - but have not fully
exploited that error towards the maximum performance possible for that level of error.

There likely exists transforms of existing mathematical software implementations which are
less accurate than the existing solutions and provide better performance. Less accurate in the
sense that more of the results are not correctly-rounded but no result exceeds one ULP max-error.
If one of those transforms results in a smaller, cheaper or faster implementation of the function,
then based on our survey of acceptable error in existing libraries, it should be seen as an overall
acceptable improvement.

To explore the optimisation space of functions I developed the ApproximateComputations.jl

package for Julia to help analyse, profile and produce approximations from existing functions. In
this chapter, I use this library to transform the existing Julia sin implementation to allow for a
greater number of one ULP error results as a means to increase the performance of the function.
The key part of the library I will be using are the tools for sensitivity analysis.
For sensitivity analysis our library provides:

Min/Max value tracking to determine whether an instruction or set of instructions is actually
a constant or gives the range of the values that can be represented;

Output fuzzing to identify by how much a value can deviate without the result of the function
exceeding the known acceptable error boundary;

103

Automatic differentiation to assess the sensitivity of the output at positions in the input space;

Generalised code injection to insert custom probes at arbitrary points within the implementa-
tion.

The utilities provided are used to effectively map the sensitivity to error in the existing
solution, determine where sensible changes could be made which are likely to not exceed the
one ULP max-error limit and then verify any changes which are made.

This approach allows for small code changes in sensible places without having to brute-force
test transforms on the entire function. I consider this to be a partial automatic approximation as
the code can be written to automatically perform transforms where sensitivity is low, however, in
this example the tools are shown being used in a supervised setup.

6.1 Sensitivity Analysis Overview

Not all operations in a function contribute equally to the final output of the function. Sensitivity
analysis aims to identify the relative weighting of different operations on the final output of the
functions, as well as considering how the output changes relative to those operations in different
parts of the function domain.

As an example, in f (x) = sqrt(x)+ 1, sqrt(x) will have a diminishing impact on the final
output as x approaches zero. Given an existing implementation of a floating-point function, we
wish to identify appropriate places for approximation. These are sites where reduced precision
has the smallest effect on the output of the function. When the error at these positions is less
than is measurable at the working precision we are able to stop computing it.

When using ApproximateComputations.jl we start with a Julia compatible function as an
expression list. This is then reprocessed into blocks that represent every possible sub-tree of the
function.
As an example:

� �
function example_function(x)

10 + x * 2

end� �
Becomes:

104

Tree ID Expression Tree

1 :(function example_function(x) 10 + x * 2 end)

2 :(example_function(x))

3 :example_function

4 :x

5 quote 10 + x * 2 end

6 :(10 + x * 2)

7 10

8 :(x * 2)

9 :x

10 2

This provides indices for injection points at any sub-expression tree in the function ranging from
the whole function to individual variables or variable names. For the purposes of this explanation
we elide all line numbers or other expression information which is not useful as injection points.

In the sample above, we can see that index one represents the whole function tree, indices
2-4 are the function header tree, and indices 5-10 represents the tree for the whole body of the
function.

The library can remove, modify, or replace any individual expression. For example, to change
or track the use of variable ‘:x’ in the above example we use the NestTree function at index 9
as follows:

� �
function example_function(x)

10 + x * 2

end� �
+� �

NestTree(targetFn, 9, :(TrackBlock))� �
↓� �

function example_function(x)

10 + TrackBlock(x) * 2

end� �
The function TrackBlock is provided to change or track the value of :x at that position.
The results can then be queried at the end of the run to determine the minimum, maximum or
distribution of results for the value :x at that position. From this information, the library can

105

plot the relative weighting of the variable compared to the output and map how it changes based
on input.

It is then trivial to provide this wrapping for any code block in the application to produce a
full mapping of the function.

With this we can easily and automatically inject code for fuzzing the output at different levels
of the AST (Abstract-Syntax-Tree), which gives us the data we need to determine the sensitivity
of every code-point.

6.2 Julia sin Implementation Analysis

In this section our tools are used to analyse the Julia sin implementation. This particular
implementation of sin appears to share some core similarities to OpenLibm [86] which itself is
derived from FDLibm 5.3 [151] and Sun Microsystems’ msun (for single-precision1) [56], with
changes for portability2. The wide reuse of these specific implementations shows that this is
quite a common and widely used approach to implementing the sin function. Julia originally
linked directly to OpenLibm but has since reimplemented many of those functions internally in
the Julia language to gain the benefit from the JIT compiler and multiple-dispatch optimisations.

We now take a detailed look at the implementation before detailing the approximation
analysis process.

The Julia implementation of sin is shown in Figure 6.1 and broadly consists of range-
reduction followed by piece-wise polynomial approximation. Similar to the generic approach
to implementing sin described in Chapter 3, the algorithm used in the function can be broken
down into a number of steps for the input x which are annotated alongside the code in Figure 6.1:

1. Check if the input |x| is less than a very small number

If it is, then return this number. This is because close to zero, sin(x) = x

2. Check if the input is within the acceptable domain of the sine function as given by
the IEEE-754-2019 standard

This means x must be neither NaN nor ∞, and that x must be in the range (−∞,+∞). If it

is unacceptable, then return the appropriate error.

3. Perform range-reduction
1The implementation of sin in msun appears to diverge with FDLIBM with the 5.1 release in September 1993

and has been continually updated as part of FreeBSD.
2This includes extending the implementation to cover the type requirements of IEEE-754-2008 and Microsoft

Windows compatibility.

106

As sine is a repeating pattern and floating-point calculations have better precision near

zero, it is beneficial to try and calculate the value of x in it’s smallest form. A full cycle of

sine covers the range (0,2π) but due to symmetry only a quarter of this is required and so

the range reduction changes the input to a value in the range (-π

4 , π

4).

4. Identify which quarter of the full cycle that x is present within

This determines how to transform the quarter-cycle value to position it appropriately.

5. A piece-wise approximation

Approximation built from two polynomial functions. These two functions are called

the sin_kernel (for the straighter section, Figure 6.2a) and the cos_kernel, Fig-

ure 6.2b (for the curve where the direction changes).

6. Return the result

The curve is separated into four quadrants. Each quadrant is represented by a curve con-
structed from either cos_kernel or sin_kernel. The sin_kernel sub-function repre-
sents the curve during its straighter sections, and the cos_kernel sub-function represents
the curve during the part of the sin curve where the gradient changes direction. This piece-
wise separation allows for a section with a very small change or gradient to be represented
separately to the area of the curve with the highest change of gradient. The source code for
32-bit floating-point sin_kernel and cos_kernel are shown in Figures 6.2a and 6.2b
respectively.

As the current sin implementation is within one ULP of the correctly rounded result we
can trust that the current range-reduction function rem_pio2_kernel is producing accurate
results in the reduced space. We can also validate that the section of the algorithm responsible
for the early return of the input when the input is very small to be correct. This leaves only the
sin_kernel and cos_kernel functions as targets for approximation.

Before exploration can be started, limitations must be set on how this function can be changed.
Without limitations, the approximation space is effectively infinite. The first limitation is that we
do not wish to exceed the worst-case one ULP error. But the new approximate function is still
aiming to otherwise be an IEEE-754 compliant sin function and therefore must also conform to
the rules of an IEEE-754 sin function.

6.2.1 sin Constraints

The sin3 function is a trigonometric function that is most commonly implemented based on the
IEEE-754 standard [3]. In the latest revision of IEEE-754 sin is defined for a floating-point

3I refer to the sin function rather than the real sine function as I am referring to the specific function defined by
the specific Julia 1.3 implementation. Not the real continuous, trigonometric function sine.

107

�
�

f
u
n
c
t
i
o
n

s
i
n
(
x
:
:
T
)
w
h
e
r
e

T
<
:
U
n
i
o
n
{
F
l
o
a
t
3
2
,

F
l
o
a
t
6
4
}

a
b
s
x

=
a
b
s
(
x
)

i
f
a
b
s
x

<
T
(
p
i
)
/
4

#
|
x
|

~
<
=

p
i
/
4
,

n
o

n
e
e
d

f
o
r

r
e
d
u
c
t
i
o
n

i
f

a
b
s
x

<
s
q
r
t
(
e
p
s
(
T
)
)

#
S
t
e
p

1
r
e
t
u
r
n
x

e
n
d

r
e
t
u
r
n

s
i
n
_
k
e
r
n
e
l
(
x
)

#
S
t
e
p

5
a
n
d

6
(
o
p
t
.
)

e
l
s
e
i
f

i
s
n
a
n
(
x
)

#
S
t
e
p

2
(
a
)

r
e
t
u
r
n

T
(
N
a
N
)

e
l
s
e
i
f

i
s
i
n
f
(
x
)

#
S
t
e
p

2
(
b
)

s
i
n
_
d
o
m
a
i
n
_
e
r
r
o
r
(
x
)

e
n
d

n
,

y
=

r
e
m
_
p
i
o
2
_
k
e
r
n
e
l
(
x
)

#
S
t
e
p

3
n

=
n
&
3

#
S
t
e
p

4

i
f
n

=
=

0
r
e
t
u
r
n

s
i
n
_
k
e
r
n
e
l
(
y
)

#
S
t
e
p

5
(
a
)

e
l
s
e
i
f

n
=
=

1
r
e
t
u
r
n

c
o
s
_
k
e
r
n
e
l
(
y
)

#
S
t
e
p

5
(
b
)

e
l
s
e
i
f

n
=
=

2
r
e
t
u
r
n

-
s
i
n
_
k
e
r
n
e
l
(
y
)

#
S
t
e
p

5
(
c
)

e
l
s
e
r
e
t
u
r
n

-
c
o
s
_
k
e
r
n
e
l
(
y
)

#
S
t
e
p

5
(
d
)

e
n
d

e
n
d

�
�

s
i
n
_
k
e
r
n
e
l

c
o
s
_
k
e
r
n
e
l

-
s
i
n
_
k
e
r
n
e
l

-
c
o
s
_
k
e
r
n
e
l

s
i
n
_
k
e
r
n
e
l

Figure
6.1:This

code
show

s
the

base
function

used
for

F
l
o
a
t
3
2

and
F
l
o
a
t
6
4

basic
floating-pointtypes

in
Julia.A

nnotated
w

ith
step

num
bers

to
reference

in
the

m
ain

text.T
he

function
e
p
s

is
used

w
hich

returns
the

step
size

from
1.0

to
the

nextrepresentable
floating-pointnum

berfor
type

T
(w

here
T

m
ay

be
F
l
o
a
t
3
2

or
F
l
o
a
t
6
4

in
this

function).

108

�
�

@
i
n
l
i
n
e

s
i
n
_
k
e
r
n
e
l
(
x
:
:
F
l
o
a
t
3
2
)

=
s
i
n
_
k
e
r
n
e
l
(
D
o
u
b
l
e
F
l
o
a
t
3
2
(
x
)
)

@
i
n
l
i
n
e
f
u
n
c
t
i
o
n

s
i
n
_
k
e
r
n
e
l
(
y
:
:
D
o
u
b
l
e
F
l
o
a
t
3
2
)

S
1

=
-
0
.
1
6
6
6
6
6
6
6
6
4
1
6
2
6
5
2
4

S
2

=
0
.
0
0
8
3
3
3
3
2
9
3
8
5
8
8
9
4
6
3

z
=

y
.
h
i
*
y
.
h
i

w
=

z
*
z

r
=

@
h
o
r
n
e
r
(
z
,

-
0
.
0
0
0
1
9
8
3
9
3
3
4
8
3
6
0
9
6
6
3
2
,

2
.
7
1
8
3
1
1
4
9
3
9
8
9
8
2
2
e
-
6
)

s
=

z
*
y
.
h
i

F
l
o
a
t
3
2
(
(
y
.
h
i

+
s
*
@
h
o
r
n
e
r
(
z
,

S
1
,

S
2
)
)

+
s
*
w
*
r
)

e
n
d �

�

(a
)s
i
n
_
k
e
r
n
e
l

�
�

c
o
s
_
k
e
r
n
e
l
(
x
:
:
F
l
o
a
t
3
2
)

=
c
o
s
_
k
e
r
n
e
l
(
D
o
u
b
l
e
F
l
o
a
t
3
2
(
x
)
)

@
i
n
l
i
n
e
f
u
n
c
t
i
o
n

c
o
s
_
k
e
r
n
e
l
(
y
:
:
D
o
u
b
l
e
F
l
o
a
t
3
2
)

C
0

=
-
0
.
4
9
9
9
9
9
9
9
7
2
5
1
0
3
1

C
1

=
0
.
0
4
1
6
6
6
6
2
3
3
2
3
7
3
9
0
6

y
2

=
y
.
h
i
*
y
.
h
i

y
4

=
y
2
*
y
2

r
=

@
h
o
r
n
e
r
(
y
2
,

-
0
.
0
0
1
3
8
8
6
7
6
3
7
7
4
6
0
9
9
3
,

2
.
4
3
9
0
4
4
8
7
9
6
2
7
7
4
1
e
-
5
)

F
l
o
a
t
3
2
(
(
(
1
.
0
+
y
2
*
C
0
)

+
y
4
*
C
1
)

+
(
y
4
*
y
2
)
*
r
)

e
n
d �

�

(b
)c
o
s
_
k
e
r
n
e
l

Fi
gu

re
6.

2:
c
o
s
_
k
e
r
n
e
l

an
d
s
i
n
_
k
e
r
n
e
l

co
de

an
d

pl
ot

s
in

ra
ng

e-
re

du
ce

d
sp

ac
e.

N
ot

e:
D
o
u
b
l
e
F
l
o
a
t
3
2

is
a

co
nf

us
in

gl
y

na
m

ed
da

ta
-s

tr
uc

tu
re

in
th

e
Ju

lia
m

at
hs

pa
ck

ag
e

w
hi

ch
ho

ld
s

tw
o

32
-b

it
flo

at
in

g-
po

in
tn

um
be

rs
.O

nl
y

on
e

of
th

es
e

nu
m

be
rs

is
po

pu
la

te
d

in
th

is
fu

nc
tio

n.

109

input domain of values in the range −∞ to +∞ and should output the correctly rounded result as
determined by the rounding mode.

In a previous chapter, it was shown that many implementations of this function do not
produce the correctly rounded result. This results in incorrect rounding at different inputs in
different implementations which means that the same input does not guarantee the same output
between libraries. Many different implementations are used together — this is only possible
due to a tolerance of the error in the difference between the two as they are not intensionally or
Input-Output equal (see section 3.4 for more information on equality of functions).

The IEEE-754 Standard for Floating-Point states in its introduction that the standard will
be provided ‘for the development of common elementary functions’. The function sin is then
defined in ‘Section 9: Recommended Functions’. A brief summary of the requirements stated
for sin to be conforming are:

1. The name given in a specific programming language does not need to match the exact
name given by the standard. This is why sin, sinf, sinl and other variants are often
seen, particularly in languages without multiple dispatch or function overloading.

2. A conforming operation shall return results correctly rounded for the applicable rounding
direction for all operands in its domain.

3. Operation results shall be canonical.

4. A number of exceptions should be handled correctly (i.e. NaN results, NaNs in steps
before the final result, division by zero, etc.)

5. sin will take the input domain of (−∞, +∞)

6. |∞| as an input is an exception. Underflow is an exception.

7. Inputs to sin is in radians (sinpi is a separate function which takes input in degrees and
has its own requirements).

In summary, a conforming IEEE-754 defined sin function is to provide a mapping of the
continuous sine function for (−∞,+∞) into a supported floating-point standard value where the
value is the correctly rounded result (for the current rounding-mode) of the true value for sine at
that position. It will throw appropriate exceptions to inform the user of a problem with the input
or internal processing and it is explicitly stated that the function will not do any work that is not
the minimal needed to achieve the final result.

From this definition of constraints, all the restraints that are currently being followed in the
current implementation are being taken.

110

� �
"""

@horner(x, p...)
Evaluate `p[1] + x * (p[2] + x * (....))`, i.e. a polynomial via Horner's rule.
"""
macro horner(x, p...)

xesc, pesc = esc(x), esc.(p)
:(invoke(evalpoly, Tuple{Any, Tuple}, $xesc, ($(pesc...),)))

end

Evaluate p[1] + z*p[2] + z^2*p[3] + ... + z^(n-1)*p[n]. This uses
Horner's method if z is real, but for complex z it uses a more
efficient algorithm described in Knuth, TAOCP vol. 2, section 4.6.4,
equation (3).� �

Figure 6.3: horner macro from ‘Julia/base/math.jl’

6.3 Analysing the Sensitivity of the Existing sin Implemen-
tation

I will now demonstrate the use of ApproximateComputations.jl to analyse the sub-
functions of the Julia 1.3 sin function implementation.

To approximate a function it is necessary to be able to analyse what is happening at each
stage and determine where a change would result in better performance. This is an exploration
of the optimisation space for this specific implementation. This helps identify if any suitable
better performing changes exist which result in an acceptable error.

In the last section, we identified the sin_kernel and cos_kernel to be suitable sub-
functions to begin to approximate as the higher-level code in the function would be unlikely to
result in any changes which would be beneficial.

6.3.1 Setting Up Sensitivity Analysis of sin

The sub functions sin_kernel and cos_kernel make use of a macro called @horner

which we first need to expand.
The @horner code listed in Figure 6.3 shows how the macro is expanded. It produces a

polynomial of the coefficients in Horner form [25]. Horner form is used because it reduces the
needs to compute and store each subsequent power of the input value. In practice, this results in
a chain of fused-multiply-add operations for the number of inputs. Applying the macro in the
kernel by hand to our sin_kernel gives the output shown in Figure 6.4.

After applying the macro the function is only dealing with basic operations (+,-,*,/). The
function is also in SSA (single static assignment) form [34] which simplifies analysis by not
having conflicting data assigned to the same variable name. With the @hornermacro operations
unrolled it is possible to proceed with analysing the behaviour of each step of this function for
its input domain.

111

� �
function sin_kernel_unrolled(y::Float64)

S1 = -0.16666666641626524
S2 = 0.008333329385889463
z = y*y
w = z*z
s = z*y
ex = 2.718311493989822e-6
r = z * ex + -0.00019839334836096632
sres = z * S2 + S1

Float32((y + s*sres) + s*w*r)
end� �

Figure 6.4: Unrolled sin_kernel

For this function, we are interested in the ranges of values produced for each step in the
function and their sensitivity in affecting the final returned value.

For example, if we had the function f (x) = x2 +1 which has an input domain of [1,5] then
the min and max values of the code-point x2 would be [1,25] and for the code-point at +1 the
min and max would be 1. When we look at the sensitivity we would see that +1 is linear, a small
change of 1 results in an equal change of output. But for x2 we would find that fuzzing the value
of x would result in a larger change of final result when x is larger due to its non-linearity.

The minimum and maximum range of the code-points are important in identifying constants
or values which do not change very much. And we care about the sensitivity of each code-point
so that we can identify if, and where, in the input domain that a code-point has a significant
impact on the final result.

When we find a variable or code-section that is constant or near-constant we can then
understand what affect changing it to be a fixed constant would have on the final output. This is
profile-guided redundant code elimination.

With the ApproximateComputations.jl library, both of these tests are trivial to implement.
The first is implemented by injecting code to track the value of each branch in the AST and
storing the index of that branch and the two associated values. This can be extended to store
all the values that are returned to get the distribution of returned values compared to the input.
The fuzzing is implemented by injecting code to modify the return value of each AST branch,
one at a time, by a given distribution of fuzzing. The result of the fuzzed implementation is
compared to the original implementation and the difference can be used to plot a 3D graph of
input, difference and fuzz value, which can show whether the sensitivity is large or small, or if
the sensitivity is only high or low in certain input ranges.

As we are dealing with single-input 32-bit floating-point functions it is possible to take a
brute-force approach when profiling the functions we are interested in. More complex functions
or those using larger precise data-types would need a distributed approach, such as Monte-Carlo
sampling, to gain insight into the range sensitivity spaces in finite time.

112

� �
function sintest(x::T) where T<:Union{Float32, Float64}

absx = abs(x)
if absx < T(pi)/4 #|x| ~<= pi/4, no need for reduction

if absx < sqrt(eps(T))
return T(NaN)

end
return sin_kernel_base(x)

elseif isnan(x)
return T(NaN)

elseif isinf(x)
sin_domain_error(x)

end
n, y = Math.rem_pio2_kernel(x)
y = Float64(y.hi)
n = n&3
if n == 0

return sin_kernel_base(y)
elseif n == 1

return T(NaN)
elseif n == 2

return -sin_kernel_base(y)
else

return T(NaN)
end

end� �
Figure 6.5: sin_kernel only sin function.

6.3.2 Performing Sensitivity Analysis

It was shown in Chapter 4, that the majority of incorrectly rounded results are in the input
domain which is handled by the cos_kernel quadrants of the curve. This means that in the
sin_kernel domain there are many more values which could be exploited by decreasing the
accuracy to be closer to one ULP error.

When analysing the sin_kernel function alone, we want to only analyse the inputs from
sin which go down a path involving sin_kernel. We can change the base sin function
to return NaN when not going down a path to the sin_kernel function. This modification,
shown in Figure 6.5, reduces redundant calculations.

We start our analysis of this reduced version of sin by plotting a histogram of the ULP
error for all inputs within the valid domain of the sub-function sin_kernel to explore the
error distribution of the existing implementation. Figure 6.6 shows the error distribution and it is
clear that the vast majority of this sub-function is correctly rounded with only a small number
of values which would round to 1 ULP of error. This is expected and is why we are primarily
looking at the sin_kernel. It has the most correctly rounded values to exploit.

When the sin_kernel function is indexed by the approximation library, it finds 71 points
of the AST which are valid attachment points for code injection or measurement.

If the list of attachment points is filtered to remove constant variables, constructors, operators
and large blocks, a much more manageable list is produced. We avoid measuring these because
they are unlikely to be able to be trivially changed to gain much performance without breaking

113

Figure 6.6: ULP error distribution of a sin_kernel only sin function. Note the small number of
elements with > 0.5 ULP error on the bottom right.

the one ULP max-error limit. The list below shows the injection index and corresponding
code-block for likely optimisation candidates. It shows that we can instrument whole lines or
simply small sections of that line.

Index Code-block

2 sin_kernel(y :: Float64)

14 z = y∗ y

20 w = z∗ z

26 s = z∗ y

37 z∗ ex+−0.00019839334836096632

49 z∗ sresx+S1

60 y+ s∗ sres

35 r = z∗ ex+−0.00019839334836096632

47 sres = z∗ sresx+S1

58 (y+ s∗ sres)+ s∗w∗ r

56 Float32((y+ s∗ sres)+ s∗w∗ r))

67 (s∗w∗ r)
...

...

To start by tracking all the assignments to local variables we can make use of the TrackLocal()
function which will take advantage of the function being in SSA form. TrackLocal() when

114

called will store a snapshot of the current value of every locally declared variable in a function
so that we can access it later.

We are not interested in the return value as we already have that information tracked from
calling the function. So we can use the attachment point 56 which is the point before the final
return line of the function4 and inject our TrackLocal() function there to find the minimum
and maximum values for any variables in the function after it has been executed. That produces
this min-max information for each assignment in the function:

VarName Min Max

:w 1.1781e-15 0.376234

:s -0.48039 0.470575

:S2 0.00833333 0.00833333

:S1 -0.166667 -0.166667

:y -0.783185 0.777815

:z 3.43235e-8 0.613379

:ex 2.71831e-6 2.71831e-6

:r -0.000198393 -0.000196726

:sres -0.166667 -0.161555

From this table we can see that :r and :sres vary by only a very little across the full
domain of the function. This makes them near constant, and therefore the operations which
assign to them are a very interesting target for optimisation:

VarName Min Max Code

:r -0.000198393 -0.000196726 z * ex + -0.000198393. . .

:sres -0.166667 -0.161555 z * s2 + S1

Instrumenting the assignments to :r and :sres to record the value assigned for each valid
input in the domain gives the plots shown in Figure 6.7. The table shows that :r has a very tiny
range, and :sres also only changes in value by a small amount but with a magnitude much
larger than :r. This represents a range of 114556 floating-point steps for : r and 343061 for
:sres.

This shows that :r would be the most likely value to have little impact on the final result.
Removing accuracy from this line of code is more likely to produce a smaller change of result
and the number of possible values covered by this variable is smaller. Therefore, a change is less
likely to break our limit of max one ULP error.

The values of :r are not so small as to be destructively combined with larger floating-point
values within this function5, but the binade of the ranges for values expressed by : r are 4 times

4In Julia if no return is explicitly stated the result of the last line of the function is returned.
5The smallest binade with a step-size equal to or greater than the value of : r does not begin until 2048.0f.

115

Figure 6.7: The results for :r and :res for inputs within their domain. They both represent a
simple and similar curve, but with a different scale.

smaller than the binade of the largest values it is seen in combination with, so some value loss is
highly likely for some input values.

The variable :r represents a scaling factor on the :s and :w variables before they are added
to (y + s * sres) in the final line of the function. From our analysis of the ranges of :w
and :s, it can been seen that :r is scaling what is sometimes a very small number. As such, it is
possible that a small change to the calculation in the already very small value of :r may result
in a viable optimisation that may not significantly change many results.

6.4 Applying an Optimisation

In the last section, we identified that the computation r = z * ex + -0.00019... has
the potential for optimisation to reduce the number of operations while maintaining an overall
max error of one ULP for the sin function.

The line of code uses a single addition and multiplication, reads one variable, and uses two
constants. Our optimisation options are:

1. Using an existing calculation within the function to replace some or all of the variables in
this line. E.g replacing :(z*ex) with :s if it was thought that :s holds approximately
similar values across the function domain.

116

2. Remove parts of this line of code. Such as removing :(z*ex) because the computation
may be so small as to not be significant to the final result.

3. Or, replace the whole calculation with a constant. E.g :(r = 0.1) if the constant gives
good enough results for inputs in the domain.

For replacing with existing values within the function, we are a little out of luck as no other
variable is at the correct scale so we would still need to apply the scaling factor from :ex which
would not save a multiplication.

If we wanted to remove sections of the function it may be possible to remove the final
subtraction from the line which assigns :r. That constant only represents 3% of the total value
space covered by :r, which may not be significant enough to result in a large enough error when
combined with other variables in the final line of the function.

Finally, we may select a constant.
This gives us two tasks that are sensible approaches to investigate to see if they may produce

a valid result. Firstly, remove the subtraction. Secondly, identify if any constant would suffice.
The first approach would save on one subtraction and a constant read. The second would

save on a multiplication as well as the subtraction and constant read. We would like to say that
the constant would remove the need for the ‘:z’ variable but unfortunately, that variable is used
again in the second last line of the function.

6.4.1 Removing a Subtraction

When the constant was removed approximately 70% of the test values did not match with
the correctly rounded result, and further, when the full range of inputs was tested the overall
worst-case ULP was over 600.

This makes this simple change unacceptable. The only remaining optimisation option is to
find a constant to represent z * ex + -0.000198393... which will meet the require-
ments.

6.4.2 Using a Constant

We now instrument the function to set the value of :r and then search for a constant value to
place there that results in less than one ULP max error.

From our analysis, we know the minimum and maximum value that :r is ever assigned:
-0.000198393 to -0.000196726. We assume that if an optimal constant exists it should be within
this range of 114556 32-bit floating-point numbers, of which only 1562 values are ever produced
by the function normally.

117

Figure 6.8: Descending search for the correct constant replacement for the sin_kernel.

� �
function sin_kernel(y)

S1 = -0.16666666641626524
S2 = 0.008333329385889463
z = y * y
w = z * z
s = z * y
r = -0.00019682967f0 % Changed from z*ex + -0.00019839334836096632

% f0 signifies a 32-bit floating-point number.
sres = z * S2 + S1
Float32((y + s * sres) + s * w * r)

end� �
Figure 6.9: Optimised sin_kernel where the calculations for :r have been replaced with the
constant -0.00019682967f0.

Our initial search revealed that there is likely a single minimum. This minimum was
converged upon using gradient descent to find the constant which produced the minimum
worst-case ULP error. Figure 6.8 shows the results of our search.

This search provides us with the constant value of−0.00019682967 which gives a worst-case
ULP error of 0.84924996 for the whole domain, safely less than 1 ULP error. Figure 6.10 shows
the distribution of the ULP values for the range of the sin_kernel function compared to new
modified sin_kernel with the constant. The distributions of values have changed and now
there is a larger number of results greater than 0.5ULP error but none which are greater than
one ULP when compared to the correctly rounded high-precision result. Inserting this constant
into the original sin_kernel gives the source code shown in Figure 6.9 with a ULP error
distribution shown in Figure 6.10.

To confirm that this is an improvement, by the metric of fewer instructions, we need to look
at the code generated. Figure 6.11 shows the comparison between the original sin_kernel
and the new optimised version, where we use fewer instructions after the change.

Simply having fewer instructions is not always a sign that a function may have better
performance, however, in this instance we have only removed existing instructions and not
replaced them with more complex instructions, or instructions which would be less performant.

118

Figure 6.10: Showing the redistributed error when the function is modified to take a constant in
place of the multiplication and additions.

In benchmark comparison (Figure 6.12) we see that there is an 11% performance gain when
using the optimised one-ULP solution.

6.4.3 Results

In our search and testing of the best replacement constant, we have found a large number of
possible values which would result in a ULP max error which is less than one, and we have
found the 32-bit floating-point constant which results in the lowest max ULP.

To conclude the work on the sin function, we have found that for implementations based on
the common FDLIBM/msun implementation of the sin function it is possible to remove some
operations and end up with a function within the same tolerances as is already implemented.

6.5 Conclusion

The current implementation of some mathematical functions accept a one ULP max error bound.
It has been shown here that is it possible to optimise towards this bound, rather than towards
correct-rounding to create a more optimal function within the same error tolerances.

Ideally, values should only be computed up to the precision necessary to perform the task
needed. As this can often be unknown, the target accuracy is so often perfect accuracy as
expressed through correct-rounding. However, when that cannot or should not be achieved for
performance reasons then the true max error bound should be the target. It would be beneficial to
some systems in the future to be able to apply the methods shown here automatically to compile
a written function into a more optimal form for given error parameters and input domains.

119

1 pushq %rbp
2 movq %rsp , %rbp
3 vmulss %xmm0, %xmm0, %xmm1
4 vmulss %xmm1, %xmm1, %xmm2
5 v c v t s s 2 s d %xmm1, %xmm1, %xmm3
6 movabsq $420550232 , %r a x
7 vmulsd (% r a x) , %xmm3, %xmm3
8 movabsq $420550240 , %r a x
9 vaddsd (% r a x) , %xmm3, %xmm3

10 movabsq $420550248 , %r a x
11 vmulss (% r a x) , %xmm1, %xmm4
12 movabsq $420550252 , %r a x
13 v a d d s s (% r a x) , %xmm4, %xmm4
14 vmulss %xmm0, %xmm1, %xmm1
15 vmulss %xmm4, %xmm1, %xmm4
16 v a d d s s %xmm0, %xmm4, %xmm0
17 vmulss %xmm2, %xmm1, %xmm1
18 v c v t s s 2 s d %xmm1, %xmm1, %xmm1
19 vmulsd %xmm1, %xmm3, %xmm1
20 v c v t s s 2 s d %xmm0, %xmm0, %xmm0
21 vaddsd %xmm0, %xmm1, %xmm0
22 v c v t s d 2 s s %xmm0, %xmm0, %xmm0
23 popq %rbp
24 r e t q
25 nop

(a) Original function.

1 pushq %rbp
2 movq %rsp , %rbp
3 vmulss %xmm0, %xmm0, %xmm1
4 vmulss %xmm1, %xmm1, %xmm2
5 vmulss %xmm0, %xmm1, %xmm3
6 movabsq $420550364 , %r a x
7 vmulss (% r a x) , %xmm1, %xmm1
8 movabsq $420550368 , %r a x
9 v ad ds s (% r a x) , %xmm1, %xmm1

10 vmulss %xmm1, %xmm3, %xmm1
11 v a d ds s %xmm0, %xmm1, %xmm0
12 vmulss %xmm2, %xmm3, %xmm1
13 movabsq $420550372 , %r a x
14 vmulss (% r a x) , %xmm1, %xmm1
15 v a d ds s %xmm1, %xmm0, %xmm0
16 popq %rbp
17 r e t q
18 nop l (% r a x)
19
20
21
22
23
24
25 .

(b) Optimised function.

Figure 6.11: Generated assembly for the original and optimised function.

Figure 6.12: Comparison of the performance of the source Julia sin function and our approxi-
mation which replaced an expression with a suitable constant. Benchmark ran on an Intel i5 6600
for inputs in the range which use the sin_kernel sub-function, using BenchmarkTools.jl in
Julia.

120

I have demonstrated the use of supervised automated search techniques for finding these
types of approximations and hope to develop this further to streamline the library to allow for
fully automated optimisation in the future6.

In the next chapter it is shown that further performance gains are available if applications are
tolerate to even higher levels of error.

6Particularly with the increase in support for code-level automatic differentiation in the latest Julia releases.

121

122

Chapter 7

Case Study: Neural Network Activation
Functions

In the previous chapters I have shown the existing problems with the elementary functions
used in standard libraries and shown how functions of differing accuracy can be produced
to match the error requirements of a task. In this chapter I demonstrate how selecting an
approximate mathematical solution for error tolerant applications can result in useful performance
improvements without impacting the quality of the final result. For this case study Neural

Networks are used as the target program due to their inherent error-tolerance, and specifically
targeting the simple mathematical functions used as activation functions between layers.

Neural networks rely on activation functions to provide non-linearity to its training process
but they are not constrained by having to be precise calculations. Recurrent neural networks,
such as LSTMs (long short-term memory) make extensive use of both the hyperbolic tangent
and sigmoid functions. The hyperbolic function is a standard elementary function which have
been profiled in earlier chapters, it was seen that it is one of the commonly more computationally
expensive functions of this set. The sigmoid function is reliant on the function exp, another
elementary function.

I used function approximation techniques to develop replacements for these functions and
evaluated them empirically on three popular network configurations. This chapter shows safe
approximations that yield a 10% to 37% improvement in training times on the CPU. These
approximations were suitable for all cases that were considered, and I believe are appropriate
replacements for all networks using these activation functions. Ranged approximations were
also developed which only apply in some cases due to restrictions on their input domain. The
ranged approximations yield a performance improvement of 20% to 53% in network training
time. The functions also match or considerably out-perform the ad-hoc approximations used in
Theano [13] and the standard reference implementation of Word2Vec [111]. This chapter shows
the application of my work in general approximation of mathematical functions to arbitrary

123

levels of precision in Chapter 6 applied towards the mathematical functions used in the activation
functions of neural networks.

Neural networks are not only inherently tolerant to error but practitioners will admit that
there is a certain art to the selection of activation functions (and other hyper-parameters) and
thus a certain leeway in their accuracy.

Function approximation has been applied to activation functions before. The implementation
of Word2Vec makes use of a lookup table for approximating the exponential function, and the
popular machine learning library Theano included an approximation of the sigm function called
ultra_fast_sigmoid. Google also released some research where they showed a piecewise
approximations of their ‘Swish’ activation function for use in their edge computing TensorFlow
interface which shows the viability of some approximation for limited hardware [81]. However,
this work is the first detailed study on the subject in this area, and shows that approximations can
be used as drop-in replacements for current models. The approximations presented outperform
all of the mentioned alternative approximation approaches.

In this chapter a range of approximations are considered with a trade-off between complexity
and accuracy. The overall impact on training and prediction time for popular neural network
architectures are studied. I identify two approximation options for each: a safe approximation
that works in all cases and a ranged approximation that requires some restrictions to it’s input
domain. For all networks tested it is found that my safe approximations outperform the standard
implementations with an 10% to 37% improvement in training times. Where appropriate the
ranged implementations provide an improvement of 20% to 53%. The training and inference
benchmarks are initially run on CPU as a proof of concept. The performance benefit on GPU
will be different, especially when using the standard elementary functions which are already
optimised for performance over total correct-rounding accuracy as shown in Chapter 4.

I believe that the safe approximations are of particular relevance to neural network library
developers since they are better-performing drop-in replacements for existing functions. There is
also a growing range of specialised hardware designed for accelerating machine learning tasks
and in future work I would like to consider how well my approximations might translate into
hardware implementations.

An open-source implementation of my work is provided, FastApproximations.jl1, in Julia for
use with the Flux [83] machine learning library. I argue that these approximations are applicable
to other libraries too and a brief study using TensorFlow [5] is included as evidence.

7.1 Activation Functions

Activation functions are used in neural networks to introduce non-linearity. For activation
functions with bounded results, the popular choices are logistic, trigonometric and clamping

1Available at: https://github.com/NTimmons/FastActivations.jl

124

https://github.com/NTimmons/FastActivations.jl

functions with the sigmoid (sigm) and hyperbolic tangent (tanh) functions being used most
frequently. For unbounded or partially bounded activations, the ReLU function and it’s variants
are most popular.

ReLU is the dominant choice for an activation function but sigm and tanh still have
significant use as gating functions in feed-forward and recurrent networks.

I focus on sigm and tanh in particular as they are major components of an LSTMs gating
behaviour, which in it’s original form uses three calls to sigm and two calls to tanh [73].

For cases where ReLU is not appropriate (such as LSTMs) the performance impact can be
notable: in micro-benchmarks measuring function execution time I found sigm and tanh to be
3.6x and 7.9x more expensive than ReLU. This chapter focuses on these two functions given
their popularity and relatively high cost.

A significant proportion of CPU time is spent in the computation of values in activation
functions. For example, for a densely connected network with 51,000 trainable parameters
using a sigm activation function with two equal-sized hidden layers it was measured that
approximately 29% of time is spent computing the sigm function. For context, in the paper
which introduced sequence-to-sequence learning for neural networks the authors use a 5-layer
LSTM network which has 380 million trainable parameters [153].

7.2 Activation Function Approximation

A conventional implementation of a mathematical function will aim to compute results which
arise from rounding actual values to the precision of the data-type used. An application might be
able to tolerate considerably more error than this but it can be difficult to prove conclusively. In
this chapter we seek to validate my approximations empirically. We believe this is appropriate
since the ‘correct’ choice of activation function is most often demonstrated empirically too.

In addition to tolerating error in the function’s outputs an application might also restrict the
function’s input domain. This provides further opportunity for approximation since it is only
necessary to mimic the original function within the domain of interest. We therefore develop two
classes of approximation. The ranged approximation produces higher performance under the
assumption that the input domain is approximately -5.5 to 5.5 2. The safe approximation makes
no assumptions about input domain and so perform as a drop-in replacement for all cases. They
do not exceed the output bounds of the original function.

Two different approximation approaches are considered: 1) taking a mathematically derived
approximation of the function and then using the parameters to produce a range of alternative
versions at varying precision; 2) performing a numerical regression to fit the given function. The
mathematically defined approach produces more stable results but can be more complex. The

2These values are where the sigmoid function levels off at the minimum output of 0.0 and the maximum
output of 1.0.

125

-1.0000

-0.5000

0.0000

0.5000

1.0000
Ou

tp
ut

tanh_cont_4 tanh_taylor_9 tanh_padé_4_4 serp+serp_clamped

-4 -2 0 2 40.0000

0.0200

0.0400

0.0600

0.0800

0.1000

Er
ro

r

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

Figure 7.1: Approximation functions for tanh and their associated error calculated as the
absolute difference between the original tanh function per input x.

regression approach produces often faster and simpler functions but the output result is heavily
determined by the input parameters and function that is being replaced.

This section covers what each activation function is and then a proposal on how to optimise
it, both safely and unsafely.

7.2.1 tanh

tanh is the function to compute the elementary hyperbolic tangent function. The output is an
‘S-curve’ in the range -1.0 to 1.0. It is defined as:

tanh(x) =
sinh(x)
cosh(x)

=
ex− e−x

ex + e−x

Four forms of approximation of tanh are considered which are shown in Figure 7.1 and
describe below.

Firstly tanh is implemented as Lambert’s continued fraction. I limit the implementation to
a finite number (n) of iterations depending on the precision desired and then simplify using a
symbolic algebra package. I call this approximation tanh_cont_n.

x

1+ x2

3+ x2
5+...

Two forms of polynomial approximation of tanh are also considered: 1) a Taylor Series of
the form ∑

n
i=0 aixi and; 2) Padé approximants of the form ∑

n
i=0 aixi

∑
m
i=0 bixi . A desired number of terms

126

0.0000

0.2500

0.5000

0.7500

1.0000

Ou
tp

ut

sigm_fastexp_(2,512) sigm_taylor_9 sigm_padé_4_4

-4 -2 0 2 40.0000

0.0005

0.0010

0.0015

0.0020

Er
ro

r

-4 -2 0 2 4 -4 -2 0 2 4

Figure 7.2: Approximation functions for sigm and their associated error calculated as the
absolute difference between the original sigm function per input x.

(n,m) are selected, choose a uniform sample of 5000 values in the range −5.5 to 5.5 and then
determine the values of the coefficients (ai,bi) using the Remez Algorithm.

Using these two techniques yields the approximations tanh_taylor_n and tanh_pade_n_m.
Variations in the number of points sampled and the range covered during fitting of these functions
did not have a big impact on the results.

As a final option for tanh the Serpentine function (serp) is considered and defined as:

y =
2x

x2 +4

As the serp function does not fit tanh beyond the main gradient, a variant serp_clamp
is also introduced which is clamped to the values −1 or 1 for inputs outside of the range −2 to 2.

7.2.2 sigm

The sigmoid function is an S-curve defined as:

sigm(x) =
1

1+exp(−x)

Figure 7.2 shows three approximation forms for the sigm function. These arise from
the approximation of the exp function included within the sigm implementation. Here a
well-known expansion of the exp implementation is shown for an infinite limit.

This is implemented as a function which takes a target, n, for the total number of itera-
tions it should approximate to. Through multiplication rules it reaches the target n in log(n)
multiplications which significantly reduces the computational cost of higher iteration counts.

127

I call approximations of this form sigmoid_fastexp_n.

sigm(x) =
1

1+exp(−x)
exp(x,n) =

(
1+

x
n

)n

I also generate fits for Taylor and Padé polynomials in the same manner as for tanh. This
yields approximations sigmoid_taylor_n and sigmoid_pade_n_m.

Note that there is an alternative approach to the fast computation of the exponential function
based on exploiting the definition of IEEE Floating-Point numbers [142]. This is no longer as
effective as it once was due to it’s reliance on a union structure to treat the floating-point number
as both an integer for some parts and a floating-point number for others. This technique is not
easily transferable to SIMD [120] where arrays of numbers are worked on in parallel and it is
not always trivial to cast between different type representations in memory.

7.2.3 ReLU

ReLU stands for Rectified Linear Unit (ReLU). This is a very complicated name for a simple
function. ReLU is a linear function which returns 0.0 if the input is below zero.

relu(x) = max(x,0.0)

The first consideration for an optimisation of ReLU is one which transforms a max operator
(which may use a branch) to a sum and a division.

relu(x) = (x+ |x|)∗0.5

This may result in changing the return value from x to a value near to x under the rules of IEEE
floating-point arithmetic [1]. The error would come from the multiplication by 0.5 resulting in a
number which could not be accurately represented at the given precision. This optimisation trades
on this accuracy to avoid the branch in the if-statement of the max function. This is unlikely
to result in a significant increase in performance due to fast comparison hardware common in
many modern CPUs, but demonstrates a simple transform to avoid a potential slowdown on some
hardware. In my tests this resulted in an insignificant change and so the standard implementation
of ReLU are used as the baseline.

7.3 Performance Results

In practice it is the performance of the whole network which is important rather than a particular
activation function. For example, when training a neural network the ideal choice of activation

128

function will result in the lowest loss3 for the least training time. This means that when selecting
an approximation we are looking for a trade-off between the computation cost and the resulting
error. Fast approximations with high error might cause a network to take longer to converge than
slower approximations with a lower error.

Earlier in this dissertation an example was given where using library implementations which
were not correctly rounded resulted in networks training towards different values. It is important
to state here that in this test we are not looking for conformance between the different activation
functions used and are instead measuring the difference between them based on their ability to
do the job they are being trained towards. If the approximate activation functions proposed here
were to be adopted they would need to be consistent between their own implementations.

It is currently not possible to analytically determine the best choice of activation function for a
specific network architecture. Similarly it is not possible to prove that a particular approximation
is a better choice in all cases. Instead I seek to empirically justify my choices through end-to-end
measurements on three popular representative machine learning tasks covering three popular
network architectures.

MNIST Classifier I consider the task of classifying images in the MNIST dataset and use a
network comprising convolutional and dense layers inspired by the design of successful neural
network structures [146] based on the implementation from a selection of provided models for
Flux [83]. While ReLU is sometimes used for convolutional image classification tasks for it’s
speed and simplicity, tanh and sigm have been used more commonly in the past [91, 98, 95]
and have some desirable properties which can reduce training times in some scenarios [31].

MNIST Autoencoder Autoencoders are common in the area of generative machine learning
and are often evaluated using the MNIST dataset [99]. I implemented a simple autoencoder
to work with this dataset. Autoencoders are compatible with many different activations when
structured with different configurations [155, 23, 122, 162, 157, 28]. The model used is the
simplest example of an autoencoder and as such is compatible with ReLU, sigm and tanh
activations.

CharRNN Sequence-to-sequence problems are another common task. A common LSTM
network layout with 2 hidden LSTM layers was selected for text generation that takes a text
dataset and learns to generate similar text. LSTM cells make use of both sigm and tanh

activation functions and so approximations for both are considered.

Each approximation was used in turn to train three networks for a fixed number of epochs,
recording the loss and the total time taken. These values were then compared to the non-
approximated activation functions to compute the relative loss and relative time taken (Table 7.1).

3Loss in neural network training is the difference in the output of the network from the correct answer.

129

Loss Time (s)
Activation Abs. Rel. Abs. Rel. Choice

C
on

vn
et

(M
N

IS
T

)

ReLU 25.99 1.000 486.9 1.000
Si

gm
oi

d

sigm 20.23 1.000 889.5 1.000
sigm_fastexp_2 17.21 0.851 643.5 0.723 Ranged
sigm_fastexp_512 20.39 1.008 798.5 0.898 Safe
sigm_taylor_9 ∞ ∞ - -
sigm_pade_4_4 21.00 1.038 702.9 0.790
ultra_fast_sigmoid† 20.63 1.020 743.2 0.836
word2vec† 456.1 22.55 833.9 0.937

Ta
nh

tanh 16.64 1.000 1126 1.000
tanh_cont_4 16.54 0.994 654.0 0.581
tanh_taylor_9 ∞ ∞ - -
tanh_pade_4_4 13.98 0.840 712.8 0.633 Safe
serp 14.93 0.897 523.7 0.465 Ranged
serp_clamp 18.89 1.135 604.8 0.537

A
ut

oe
nc

od
er

(M
N

IS
T

)

ReLU 1.441 1.000 25.87 1.000 -

Si
gm

oi
d

sigm 4.166 1.000 35.54 1.000
sigm_fastexp_2 3.924 1.006 28.33 0.797 Ranged
sigm_fastexp_512 4.167 1.000 31.47 0.886 Safe
sigm_taylor_9 6.788 1.630 32.74 0.921
sigm_pade_4_4 4.161 0.999 30.56 0.860
ultra_fast_sigmoid† 4.210 1.011 32.48 0.914
word2vec† 13.94 3.347 32.58 0.917

Ta
nh

tanh 2.234 1.000 37.14 1.000
tanh_cont_4 2.256 1.010 30.39 0.818
tanh_taylor_9 2.237 1.001 35.73 0.962
tanh_pade_4_4 2.242 1.004 32.48 0.875 Safe
serp 2.147 0.961 28.36 0.770 Ranged
serp_clamp 2.151 0.963 31.36 0.845

C
ha

rR
N

N

L
ST

M

ReLU ReLU NaN - - -
sigm tanh 79.16 1.000 1502.93 1.000
sigm_fastexp_2 tanh 82.30 1.040 1406.603 0.936
sigm_fastexp_512 tanh 77.65 0.981 1401.893 0.933
sigm_taylor_9 tanh ∞ ∞ - -
sigm_pade_4_4 tanh 78.01 0.985 1462.484 0.973
sigm tanh_cont_4 78.68 0.994 1361.133 0.906
sigm tanh_taylor_9 ∞ ∞ - -
sigm tanh_pade_4_4 77.99 0.985 1407.648 0.937
sigm serp 78.29 0.989 1303.92 0.868
sigm serp_clamp 78.46 0.991 1367.542 0.910
sigm_fastexp_2 serp 79.82 1.008 1332.127 0.886 Ranged
sigm_fastexp_2 serp_clamp 82.81 1.046 1184.179 0.788
sigm_fastexp_512 tanh_cont_4 ∞ ∞ - -
sigm_fastexp_512 tanh_pade_4_4 79.34 1.002 1446.656 0.963
sigm_fastexp_512 serp 77.76 0.982 1150.14 0.765
sigm_fastexp_512 serp_clamp 79.24 1.001 1155.745 0.769 Safe
ultra_fast_sigmoid† tanh 78.88 0.996 1450.332 0.965
word2vec† tanh 100.7 1.271 1561.443 1.039

Table 7.1: Performance results for the range of approximations considered. The Rel. columns
indicate performance relative to the replaced function (smaller values are better).
(†) We discuss the performance of ultra_fast_sigmoid and word2vec later.

130

Relative values are with respect to the function being replaced (rather than ReLU) and smaller
relative values indicate better performance. For the MNIST workloads an Intel Xeon E5-2673
v3 @ 2.40GHz (14GB RAM) was used and a dual-core Intel Xeon E5-2673 v4 @ 2.30GHz
(8GB RAM) was used for the RNN workload. The benchmarks ran on Azure cloud machines
and virtual machine images for Azure are provided here4 to allow easy replication of the results.

In most cases the replacement activation functions either converged with similar loss to the
original function or failed to converge entirely (marked ∞ in the table). A few instances were
found (such as sigm_fastexp_2 in ConvNet) for which the loss was drastically lower (15%).
This case is another example of the difficulty of making definitive statements about the correct
choice of activation function. In all cases where the training loss converged (except for my
LSTM Word2Vec), the approximations resulted in a reduced overall training time.

It was found that two functions (sigm_fastexp_512 and tanh_pade_4_4) produced
the best reduction in training time (10%–37%) whilst working in all cases.These are marked
as the chosen safe approximations. Functions (such as sigm_fastexp_2 and serp) were
also found which produced even better reduction in training times (20%–53%) but have such
significant divergence in form from the target functions that it should not be argued that they
are a suitable replacement in all cases. These are marked as ranged approximations suitable for
networks (such as these) where the activation input values are roughly within the range of −5 to
5.

Performance improvements were also found when using approximations for inference rather
than training. For the character-based RNN (LSTM) model the safe approximations offered ~8%
savings where as the ranged approximations allowed for savings of up to 20% when performing
1000 sequential inferences. This is potentially more significant than the reduction in training
times since inference is often performed on restricted hardware such as mobile devices.

7.4 Comparison with ultra_fast_sigmoid

ultra_fast_sigmoid is a fast sigm implementation in popular machine learning frame-
work library Theano [13]. It is implemented as a piece-wise approximation. It is one of only a
few approximations available openly as standard in popular machine learning libraries.

I compared ultra_fast_sigmoid to sigm_fastexp_512. Figure 7.3 shows the
much greater approximation error in ultra_fast_sigmoid. For the Autoencoder and
CharRNN workloads sigm_fastexp_512 results in lower loss in less time. For the Convnet
workload sigm_fastexp_512 is slightly slower but with drastically lower loss.

This makes ultra_fast_sigmoid appear to be a less appealing approximation.

4https://drive.google.com/file/d/1trqpemv9BScwt88Xd69zpZKGWM2RMXs3/
view?usp=sharing

131

https://drive.google.com/file/d/1trqpemv9BScwt88Xd69zpZKGWM2RMXs3/view?usp=sharing
https://drive.google.com/file/d/1trqpemv9BScwt88Xd69zpZKGWM2RMXs3/view?usp=sharing

-4 -2 0 2 4
Input

0.0000

0.2500

0.5000

0.7500

1.0000

Ou
tp

ut

ultra_fast_sigmoid Comparison
ultra_fast_sigmoid
sigmoid_fastexp_512

-4 -2 0 2 4
Input

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

Er
ro

r

ultra_fast_sigmoid Per-Input Error
ultra_fast_sigmoid
sigmoid_fastexp_512

Figure 7.3: Shape and relative error of Theano’s ultra_fast_sigmoid compared to
sigm_fastexp_512.

0 200 400 600 800
Time

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

ConvNet: 'word2vec' Comparison

sigmoid
sigmoid_fastexp_512
word2vec

0 500 1000 1500
Time

75

100

125

150

175

Lo
ss

CharRNN: 'word2vec' Comparison
LSTM
LSTM(sigmoid_fastexp_512,tanh)
LSTM(word2vec, tanh)

Figure 7.4: Loss over time for the word2vec table based sigmoid function.

7.5 Comparison with Word2Vec Lookup Table

Word2Vec makes use of shallow 2-layer networks to create word embeddings. In these models
the authors used an approximated sigmoid implementation which makes use of a 1000 element
lookup table. I have compared this lookup table to my approximations in my test models.

My results (Table 7.1) show that applying this approximation results in more loss for a similar
or slightly reduced training time. When looking at the loss over time, Figure 7.4 shows that in
some cases training fails to make progress. I believe this occurs due to the lack of interpolation
in the table lookup resulting in quantisation of outputs. As a result small incremental changes to
the weight values may not result in a change of output. This could potentially be mitigated with
use of a different optimiser or by adding interpolation (at the cost of a performance reduction).

Again, sigmoid_fastexp_512 results in lower loss in less training time.

7.6 Approximations in TensorFlow

TensorFlow is one of the most commonly used machine learning libraries. Despite the fact that it
is a Python library it achieves high performance through optimised native code implementation of
the core functions. As such this makes experimentation with novel activation functions difficult:

132

0 1 2 3 4 5
Epochs

0

20

40

60

80

Ti
m

e(
s)

TensorFlow Activation Optimisation Space

~10% Optimisation Space

identity
sigmoid

0 1 2 3 4 5
Epochs

0

20

40

60

80

100

120

Ti
m

e(
s)

Flux Activation Optimisation Space
identity
sigmoid

Figure 7.5: Training time per epoch for the MNIST classifier in TensorFlow and Flux using
sigm and identity activation functions.

one must inject a low-level implementation and then provide a mechanism to reference it from
the high-level code. Flux does not suffer from this issue because the entire system is implemented
in Julia (a relatively high performance language) and alternative activation functions can be
straightforwardly applied on a level playing field with the default options.

Despite being unable to directly evaluate my new activation functions in TensorFlow I was
able to identify the optimisation space by measuring the performance of the simplest possible
activation function, the identity function.

Figure 7.5 shows the time taken to train a simple MNIST classifier (one convolution layer
and two dense layers) when using sigm and identity in both TensorFlow (left) and Flux
(right). The approximations discussed in this paper fall within the region between these two
lines. Even with this simple model this demonstrates that there is scope for improving model
performance in TensorFlow by optimising activation functions.

7.7 Threats to Validity

Although I have tried to evaluate my activation functions on three representative workloads
it is not possible to say for sure how well they will work in the general case. However, the
relative errors in my safe approximations are so small that I would expect them to be drop-in
replacements.

Neural networks are commonly trained offline on large compute clusters whereas inference
happens with interactive latencies and increasingly on limited hardware (such as mobile phone
handsets). The majority of my results focus on training times because training loss provides a
convenient measurement to check that the activation function is performing well. However, I
also found that my approximations improve inference and mention this in Section 7.3.

Our results only consider the performance on CPUs whereas much training (and inference)
happens on GPUs or specialist hardware such as TPUs. I therefore cannot say how the approxi-
mations perform in these circumstances. I argue that the safe approximations are useful even if
only applied to CPUs since they generally reduce training times with no impact on loss. It would

133

be particularly interesting to consider hardware implementations of these approximations for
specialised hardware. This is left for future work.

7.8 Conclusion

I have shown that approximation of activation functions in neural networks can improve the
training and inference time without a negative effect on the accuracy of the network.

I investigated a range of functions and propose two safe approximations sigm_fastexp_512
and tanh_pade_4_4 for sigm and tanh respectively. These approximations produce faster
training and inference times without damaging prediction accuracy. The ranged approximations
produced even larger speedups but will not work for all networks.

As such I think these functions are candidates for inclusion as standard options in machine
learning libraries. I also showed that these functions outperform existing approximations in these
libraries.

In the future I hope to expand on this work by integrating approximation as a standard option
into many machine learning libraries so that it can be used to improve training time on a larger
scale. Additionally I wish to analyse the effect of approximations on large and complex networks
and hardware to understand if there is a structure which may cause approximations to not be
beneficial.

This chapter has shown that approximations of the elementary functions, and the functions
which are derived from them, can provide a tangible benefit without harming the output of
the application. Meaning, that approximations to the appropriate level of error can be a valid
optimisation step.

134

Chapter 8

Conclusion

In this dissertation, I set out to show that approximation is being used in existing mathematical
functions, and therefore that some tolerance to error was already being accepted by the mathe-
matical development community. I theorised that, if the current levels of error are acceptable,
there may be a larger optimisation space to explore if we allow for further error or even if we
further optimised towards existing error tolerances.

I have measured the unreported error in existing mathematical software and used that
information to explore and show the effect those errors are having on existing applications
when bit-perfect reproducibility is required. These errors were shown in places where the
average user may not notice the problems.

To solve the problems where the inaccuracy was causing unacceptable levels of error, such
as where switching mathematical library results in a different neural network output, I proposed
a new approach to calculating correctly rounded 32-bit results for the elementary functions, as
required by IEEE-754. I also demonstrated how the performance of these new correctly rounded
functions could be improved by using coarser approximations at a higher precision than the
target output.

As an alternative to correct-rounding when dealing with programs that are error-tolerant, I
presented tools and techniques to reduce the accuracy of existing implementations to a tolerable
limit to gain a performance improvement. This showed that the existing mathematical library
implementations which are already incorrect were not fully exploiting the worst-case error to
approach the maximum performance available.

I then applied less accurate but better-performing elementary functions to the field of machine
learning by replacing the activation functions in neural networks with fast approximations. In
doing so, I showed that neural networks are not reliant on the activation functions having
correctly rounded results and it is possible to significantly decrease training times by replacing
the activation functions with cheaper alternatives to reduce the cost of the training process
without unacceptably affecting the accuracy of the final trained network.

135

An important highlight of this work was our discovery of the choice to not follow the IEEE-
754 standard by many of the standard mathematical libraries, which not obvious to a regular
user and, for many libraries, not documented. Our highlighting of this behaviour shines a light
on possible silent portability and unexpected errors which may be untested in the wild. The
proposed correctly rounded solution for 32-bit mathematical functions is available to solve this
problem.

I am also keen to bring attention to large performance improvements I was able to show
in neural network training time by identifying that the training process was error-tolerant and
therefore did not need to spend as much compute power on the activation functions which
were being used. I want to encourage developers who train networks for hundreds of hours to
adopt faster alternatives for activation functions so that less time is needed for training. Other
mathematical software which is error-tolerant will also benefit from similar investigations.

Our findings have shown that there is a lot of industry work required for the existing standard
mathematical solutions to meet the levels of quality desired by the standards they are aiming to
follow. Our solutions for one aspect of this problem may help contribute to that, but due to the
pervasiveness of Hyrum’s Law1, many existing solutions inevitably rely either on the current
performance or current inaccuracy in some form, making changes in this domain non-trivial and
potentially breaking some software in what might be subtle or hard to identify ways.

One example of the reliance on existing answers was when I accidentally found that popular
compilers are not returning correctly rounded results when performing performing constant
folding to write results from the system maths library. I want to implement changes to popular
compilers and the C++ standard to prevent this optimisation. We would prefer it was moved
under the -ffast-math flag so that when a developer is using this optimisation they are aware
of the mathematical errors it may incur.

8.1 Future Work

Our findings during the exploration of approximation for mathematical functions have shown
that the area is currently lacking a lot of measurement and tracking of what is actually being
used in real software. I have presented techniques to show how approximation can be used to
get better performance while still within acceptable error boundaries, such as our exploration
of a one ULP max-error implementation of sin, but have only applied to this one function in
this dissertation. I hope that further work is applied to automating the process that was used in
that example so that it can be easily applied to all the elementary functions at arbitrary levels of
error. This would provide a means to track the existing behaviours of elementary mathematical
functions and open the door to research into optimisation design-space exploration and further

1“With a sufficient number of users of an API, it does not matter what you promise in the contract: all observable
behaviours of your system will be depended on by somebody.” [166]

136

ease the adoption of safe approximation into real-world computing by providing information for
pre-made, bounded, safe approximations.

I also applied our approximations to the development of neural network models. Neural
networks are a rapidly growing area of research with many researchers exploring different
numerical representations to minimise the cost of training and using these networks. Our
research shows an avenue of research which has not been investigated in great detail before.
Those looking to gain increased performance in more complex networks than I was able to
explore may find benefit in researching how my, or other, approximations of the activation
functions can improve the performance of their networks without penalty to the final result.

The area I see as having the biggest potential for further work is in the standardisation of
the results of the elementary functions. A significant portion of this work was spent exploring
the existing error in functions which should not be prone to error. There is a lot of work needed
to bring all the commonly used mathematical functions together to return the same results and
conform with existing standards, or alternatively modifying the existing standards to allow for
error. Whichever way the decision is made to bring determinism and portability to mathematical
computing, there is a lot of work to be done.

I want to note the difference between correctly rounded results and deterministic results.
The former will guarantee the same results for all implementation and those results being
correct for the given function and input. But, simply having deterministic results still allows for
approximations to one or more ULP, as long as all implementations produce the same output
for the same input. With the latter, code still remains safely portable without forcing the higher
computational cost of correct-rounding. Choosing a canonical set of results with a ULP error of
one or more for each function is more complicated and would be something that requires further
work to choose what those results should be.

I have attempted to present as detailed discussion and evidence for our approaches as possible,
but as with all things related to performance and optimisation — there are always more machines
and configuration to specialise for.

8.2 Final Remarks

I hope that this dissertation has been able to present not only the current state of approximation
in mathematical functions, but also to have provided interesting insight into how to develop
and apply safe approximations to gain the performance benefit they can bring to error tolerant
programs.

It is my belief that by providing the tools, knowledge and background for new approximation
approaches I can improve the field of approximate computing in a small way, and help to bring
the use of these techniques into the mainstream as part of the normal development process. I

137

see this as one way in which mathematical computing can become more efficient, better utilise
available resources, and help computing achieve better results.

138

Bibliography

[1] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, 1985.

[2] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, 2008.

[3] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019, 2019.

[4] glibc: Known maximum errors in math functions. https://

www.gnu.org/software/libc/manual/html_node/Errors-in-Math-

Functions.html, 2020.

[5] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[6] Mohammed Ba Alawi. What Every Programmer Should Know about Floating Point

Arithmetic. PhD thesis, University of Leeds, School of Computing, 2004.

[7] Jonas S Almeida, Joao A Carrico, Antonio Maretzek, Peter A Noble, and Madilyn Fletcher.
Analysis of genomic sequences by chaos game representation. Bioinformatics, 17(5):
429–437, 2001.

[8] Todd Arbogast. Disasters due to rounding error. https://web.ma.utexas.edu/

users/arbogast/misc/disasters.html.

[9] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE transactions on dependable and

secure computing, 1(1):11–33, 2004.

[10] Michael F Barnsley. Fractal modeling of real world images. In The science of fractal

images, pages 219–242. Springer, 1988.

[11] Michael F Barnsley and Andrew Vince. The chaos game on a general iterated function
system. Ergodic theory and dynamical systems, 31(4):1073–1079, 2011.

139

https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
https://www.gnu.org/software/libc/manual/html_node/Errors-in-Math-Functions.html
https://web.ma.utexas.edu/users/arbogast/misc/disasters.html
https://web.ma.utexas.edu/users/arbogast/misc/disasters.html

[12] Louis Bavoil and Miguel Sainz. Screen space ambient occlusion. NVIDIA developer

information: http://developers.nvidia.com, 6, 2008.

[13] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano:
a CPU and GPU math expression compiler. In Proceedings of the Python for scientific

computing conference (SciPy), volume 4. Austin, TX, 2010.

[14] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[15] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach
to numerical computing. SIAM review, 59(1):65–98, 2017.

[16] DRB Bish and JRA Cooper. Guide to the NPL algorithms library. 1976.

[17] Cheryl M Black, , and Robert Burton Thomas H. Miller. The need for an industry standard
of accuracy for elementary-function programs. ACM Transactions on Mathematical

Software (TOMS), 10(4):361–366, 1984.

[18] James F Blinn. Floating-point tricks. IEEE Computer Graphics and Applications, 17(4):
80–84, 1997.

[19] Andrea Bocco, Yves Durand, and Florent de Dinechin. Hardware support for unum
floating point arithmetic. In 2017 13th Conference on Ph.D. Research in Microelectronics

and Electronics (PRIME), pages 93–96, 2017. doi: 10.1109/PRIME.2017.7974115.

[20] Ronald F Boisvert, José Moreira, Michael Philippsen, and Roldan Pozo. Java and
numerical computing. Computing in Science & Engineering, 3(2):18–24, 2001.

[21] David Braben. Rules can be beautiful. TEDxAlbertopolis, 2012.
https://www.ted.com/tedx/events/7663.

[22] David Brumley and Dan Boneh. Remote timing attacks are practical. Computer Networks,
48(5):701–716, 2005.

[23] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
arXiv preprint arXiv:1509.00519, 2015.

[24] Simon Byrne. Remez.jl source code. https://github.com/simonbyrne/

Remez.jl.

[25] Florian Cajori. Horner’s method of approximation anticipated by Ruffini. Bulletin of the

American Mathematical Society, 17(8):409–414, 1911.

140

https://github.com/simonbyrne/Remez.jl
https://github.com/simonbyrne/Remez.jl

[26] Mark Carney. Signed digital documents, U.S. Patent 20100037062A1, 2010-02-11. URL
https://patents.google.com/patent/US20100037062A1/en.

[27] Luis Ceze and Adrian Sampson. Approximate computing: Unlocking efficiency with
hardware-software co-design. GetMobile: Mobile Computing and Communications, 20
(3):12–16, 2017.

[28] Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei Sha. Marginalized denoising
autoencoders for domain adaptation. arXiv preprint arXiv:1206.4683, 2012.

[29] Vinay K Chippa, Debabrata Mohapatra, Anand Raghunathan, Kaushik Roy, and Srimat T
Chakradhar. Scalable effort hardware design: Exploiting algorithmic resilience for energy
efficiency. In Proceedings of the 47th Design Automation Conference, pages 555–560.
ACM, 2010.

[30] Vinay K Chippa, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan. Analysis
and characterization of inherent application resilience for approximate computing. In
Proceedings of the 50th Annual Design Automation Conference, page 113. ACM, 2013.

[31] Dan Claudiu Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for image
classification. In Twenty-Second International Joint Conference on Artificial Intelligence,
2011.

[32] William J Cody and William M Waite. Software manual for the elementary functions.
Prentice-Hall, 1980.

[33] Pierluigi Crescenzi and Viggo Kann. Approximation on the web: A compendium of NP
optimization problems. In International Workshop on Randomization and Approximation

Techniques in Computer Science, pages 111–118. Springer, 1997.

[34] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth Zadeck.
An efficient method of computing static single assignment form. In Proceedings of the

16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
25–35, 1989.

[35] Catherine Daramy-Loirat, David Defour, Florent De Dinechin, Matthieu Gallet, Nicolas
Gast, Christoph Quirin Lauter, and Jean-Michel Muller. CR-LIBM A library of correctly
rounded elementary functions in double-precision. 2010.

[36] Marc Daumas, Christophe Mazenc, Xavier Merrheim, and Jean-Michel Muller. Modular
range reduction: A new algorithm for fast and accurate computation of the elementary
functions. In J. UCS The Journal of Universal Computer Science, pages 162–175. Springer,
1996.

141

https://patents.google.com/patent/US20100037062A1/en

[37] Florent de Dinechin, Alexey V Ershov, and Nicolas Cast. Towards the post-ultimate libm.
In 17th IEEE Symposium on Computer Arithmetic (ARITH’05), pages 288–295. IEEE,
2005.

[38] Theodorus Jozef Dekker. A floating-point technique for extending the available precision.
Numerische Mathematik, 18(3):224–242, 1971.

[39] Li Deng. The MNIST database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[40] Premkumar Devanbu, PW-L Fong, and Stuart G Stubblebine. Techniques for trusted
software engineering. In Proceedings of the 20th international conference on Software

engineering, pages 126–135. IEEE, 1998.

[41] Wilco Dijkstra. glibc commit: Speedup tanf range reduction. https://

github.com/bminor/glibc/commit/900fb446eb8172c54cdaed85107b

c783ee50673a#diff-bcee6b06b04074527741a2d9241c293eb

b2516e4aa9bb1ea51258dd39c77aa61, 2018.

[42] Wilco Dijkstra. glibc code: tanf new range reduction. https://github

.com/bminor/glibc/blob/master/sysdeps/ieee754/flt-32/

s_tanf.c#L30, 2018.

[43] Wilco Dijkstra. glibc code: old range reduction. https://github.com/

bminor/glibc/blob/60bcac09c0be46f56583e260f5fef849a5845074/

sysdeps/ieee754/flt-32/e_rem_pio2f.c#L90, 2018.

[44] CUDA Toolkit Documentation. Section e "programming guide" v10.1.168. https:

//docs.nvidia.com/cuda/archive/10.1/, 2019.

[45] Junyu Dong, Jun Liu, Kang Yao, Mike Chantler, Lin Qi, Hui Yu, and Muwei Jian. Survey
of procedural methods for two-dimensional texture generation. Sensors, 20(4):1135, 2020.

[46] Arnaud Doucet, Nando De Freitas, and Neil Gordon. An introduction to sequential monte
carlo methods. In Sequential Monte Carlo methods in practice, pages 3–14. Springer,
2001.

[47] Iain S Duff. Some notes on numerical library construction. Technical report, CM-
P00068530, 1979.

[48] Hadi Esmaeilzadeh, Kangqi Ni, and Mayur Naik. Expectation-oriented framework for
automating approximate programming. Technical report, Georgia Institute of Technology,
2013.

142

https://github.com/bminor/glibc/commit/900fb446eb8172c54cdaed85107bc783ee50673a#diff-bcee6b06b04074527741a2d9241c293ebb2516e4aa9bb1ea51258dd39c77aa61
https://github.com/bminor/glibc/commit/900fb446eb8172c54cdaed85107bc783ee50673a#diff-bcee6b06b04074527741a2d9241c293ebb2516e4aa9bb1ea51258dd39c77aa61
https://github.com/bminor/glibc/commit/900fb446eb8172c54cdaed85107bc783ee50673a#diff-bcee6b06b04074527741a2d9241c293ebb2516e4aa9bb1ea51258dd39c77aa61
https://github.com/bminor/glibc/commit/900fb446eb8172c54cdaed85107bc783ee50673a#diff-bcee6b06b04074527741a2d9241c293ebb2516e4aa9bb1ea51258dd39c77aa61
https://github.com/bminor/glibc/blob/master/sysdeps/ieee754/flt-32/s_tanf.c#L30
https://github.com/bminor/glibc/blob/master/sysdeps/ieee754/flt-32/s_tanf.c#L30
https://github.com/bminor/glibc/blob/master/sysdeps/ieee754/flt-32/s_tanf.c#L30
https://github.com/bminor/glibc/blob/60bcac09c0be46f56583e260f5fef849a5845074/sysdeps/ieee754/flt-32/e_rem_pio2f.c#L90
https://github.com/bminor/glibc/blob/60bcac09c0be46f56583e260f5fef849a5845074/sysdeps/ieee754/flt-32/e_rem_pio2f.c#L90
https://github.com/bminor/glibc/blob/60bcac09c0be46f56583e260f5fef849a5845074/sysdeps/ieee754/flt-32/e_rem_pio2f.c#L90
https://docs.nvidia.com/cuda/archive/10.1/
https://docs.nvidia.com/cuda/archive/10.1/

[49] Leonhard Euler. Introductio in analysin infinitorum, volume 2. Apud Marcum-Michaelem
Bousquet & Socios, 1748.

[50] Warren Ferguson, Marius Cornea, Cristina Anderson, and Eric Schneider. The
difference between x87 instructions fsin, fcos, fsincos, and fptan and math-
ematical functions sin, cos, sincos, and tan. Intel Corporation. Available

at: https://software.intel.com/en-us/articles/thedifference-

between-x87-instructions-and-mathematical-functions, 2015.

[51] Brian Ford. Developing a numerical algorithms library. IMA Bulletin, 8:332–336, 1972.

[52] Brian Ford and DK Sayers. Developing a single numerical algorithms library for different
machine ranges. ACM Transactions on Mathematical Software (TOMS), 2(2):115–131,
1976.

[53] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmer-
mann. MPFR: A multiple-precision binary floating-point library with correct rounding.
ACM Transactions on Mathematical Software (TOMS), 33(2):13–es, 2007.

[54] David Fowler and Eleanor Robson. Square root approximations in old babylonian mathe-
matics: Ybc 7289 in context. Historia Mathematica, 25(4):366–378, 1998.

[55] Phyllis Fox, Andrew P Hall, and Norman L Schryer. The PORT mathematical subroutine
library. ACM Transactions on Mathematical Software (TOMS), 4(2):104–126, 1978.

[56] FreeBSD. Freebsd source. https://cgit.freebsd.org/, 2021.

[57] Rūsin, š Freivalds. Fast probabilistic algorithms. In International Symposium on Mathe-

matical Foundations of Computer Science, pages 57–69. Springer, 1979.

[58] L Wayne Fullerton. Portable special function routines. In Portability of Numerical

Software, pages 452–483. Springer, 1977.

[59] Shmuel Gal. Computing elementary functions: A new approach for achieving high
accuracy and good performance. In Accurate scientific computations, pages 1–16. Springer,
1986.

[60] Shmuel Gal. An accurate elementary mathematical library for the IEEE floating point
standard. ACM Transactions on Mathematical Software (TOMS), 17(1):26–45, 1991.

[61] Deepak Ganesan, Deborah Estrin, and John Heidemann. Dimensions: Why do we need
a new data handling architecture for sensor networks? ACM SIGCOMM Computer

Communication Review, 33(1):143–148, 2003.

143

https://software.intel.com/en-us/articles/thedifference-between-x87-instructions-and-mathematical-functions
https://software.intel.com/en-us/articles/thedifference-between-x87-instructions-and-mathematical-functions
https://cgit.freebsd.org/

[62] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with LSTM. 1999.

[63] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain Monte Carlo

in practice. CRC press, 1995.

[64] Brian Gladman, W Hart, J Moxham, et al. MPIR - multiple precision integers and rationals,
2010.

[65] GNU. GNU Libc. https://www.gnu.org/software/libc/, 2021.

[66] Matt Godbolt. Compiler Explorer. www .godbolt.org.

[67] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Random
Testing. In ACM Sigplan Notices, volume 40, pages 213–223. ACM, 2005.

[68] David Goldberg. What every computer scientist should know about floating-point arith-
metic. ACM Computing Surveys (CSUR), 23(1):5–48, 1991.

[69] David E Goldberg and John H Holland. Genetic algorithms and machine learning. Machine

learning, 3(2):95–99, 1988.

[70] Google. Fdlibm package in android. https://android.googlesource.com/

platform/external/fdlibm/, 2021.

[71] James Gosling, Bill Joy, and Guy Steele. The Java language specification. Addison-
Wesley Professional, 2000.

[72] Torbjörn Granlund. GNU multiple precision arithmetic library. http://gmplib. org/, 2010.

[73] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850, 2013.

[74] Alex Graves, Navdeep Jaitly, and Abdel-rahman Mohamed. Hybrid speech recognition
with deep bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition

and Understanding, pages 273–278. IEEE, 2013.

[75] Klaus Greff, Rupesh K Srivastava, Jan Koutník, Bas R Steunebrink, and Jürgen Schmid-
huber. LSTM: A search space odyssey. IEEE Transactions on Neural Networks and

Learning Systems, 28(10):2222–2232, 2016.

[76] Vaibhav Gupta, Debabrata Mohapatra, Anand Raghunathan, and Kaushik Roy. Low-power
digital signal processing using approximate adders. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 32(1):124–137, 2013.

144

https://www.gnu.org/software/libc/
www.godbolt.org
https://android.googlesource.com/platform/external/fdlibm/
https://android.googlesource.com/platform/external/fdlibm/

[77] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran.
Relyzer: Exploiting application-level fault equivalence to analyze application resiliency
to transient faults. In ACM SIGPLAN Notices, volume 47, pages 123–134. ACM, 2012.

[78] Siva Kumar Sastry Hari, Sarita V Adve, Helia Naeimi, and Pradeep Ramachandran.
Relyzer: Application resiliency analyzer for transient faults. IEEE Micro, 33(3):58–66,
2013.

[79] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R Iris Bahar, and Sherief Reda.
Understanding the impact of precision quantization on the accuracy and energy of neural
networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE),

2017, pages 1474–1479. IEEE, 2017.

[80] Cecil Hastings. Approximations for Digital Computers. Princeton University Press, USA,
1955. ISBN 0691079145.

[81] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing
Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenetv3. arXiv preprint arXiv:1905.02244, 2019.

[82] Randall Hyde. Write Great Code, volume 2: Thinking low-level, writing high-level,
volume 2. No Starch Press, 2020.

[83] Mike Innes. Flux: Elegant machine learning with julia. Journal of Open Source Software,
3(25):602, 2018.

[84] ISO/IEC. ISO/IEC 9899:2018: Programming languages — C. 2018.

[85] ISO/IEC. ISO/IEC 14882:2020: Programming languages — C++. 2020.

[86] Andreas Jaeger. OpenLibm, 2016. https://openlibm.org/.

[87] Huw Jones. Dürer, Gaskets and Barnsley’s chaos game. In Computer graphics forum,
volume 9, pages 327–332. Wiley Online Library, 1990.

[88] ISO Jtc. Sc22/wg14. iso/iec 9899: 2011. Information Technology-Programming

Languages-C, 2011.

[89] William Kahan and John Palmer. On a proposed floating-point standard. ACM SIGNum

Newsletter, 14(si-2):13–21, 1979.

[90] William Kahan, Joseph D Darcy, Elect Eng, and High-Performance Network Computing.
How Java’s floating-point hurts everyone everywhere. In ACM 1998 Workshop on Java

for high-performance network computing, page 81. Stanford University, 1998.

145

[91] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neural
network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.

[92] Georgios Keramidas, Chrysa Kokkala, and Iakovos Stamoulis. Clumsy value cache: An
approximate memoization technique for mobile GPU fragment shaders. In Workshop on

Approximate Computing (WAPCO’15), 2015.

[93] Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and Chee Yap. Classroom
examples of robustness problems in geometric computations. Computational Geometry,
40(1):61–78, 2008.

[94] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In Neal Koblitz, editor, Advances in Cryptology — CRYPTO ’96, pages
104–113, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. ISBN 978-3-540-68697-2.

[95] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing

Systems, pages 1097–1105, 2012.

[96] Sunil Kumar, Liyang Xu, Mrinal K Mandal, and Sethuraman Panchanathan. Error
resiliency schemes in H. 264/AVC standard. Journal of Visual Communication and Image

Representation, 17(2):425–450, 2006.

[97] Olga Kupriianova and Christoph Lauter. Metalibm: A mathematical functions code
generator. In International Congress on Mathematical Software, pages 713–717. Springer,
2014.

[98] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back. Face recognition: A
convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1):
98–113, 1997.

[99] Yann LeCun, Corinna Cortes, and Christopher Burges. MNIST dataset. http://

yann.lecun.com/exdb/mnist, 1998.

[100] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A Jacobson, and Subhasish Mitra.
ERSA: Error resilient system architecture for probabilistic applications. In Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2010, pages 1560–1565.
IEEE, 2010.

[101] Vincent Lefèvre, J-M Muller, and Arnaud Tisserand. Toward correctly rounded transcen-
dentals. IEEE Transactions on Computers, 47(11):1235–1243, 1998.

146

http://yann.lecun.com/exdb/mnist
http://yann.lecun.com/exdb/mnist

[102] Vincent Lefèvre, Jean-Michel Muller, and Arnaud Tisserand. The Table Maker’s Dilemma.
1998. [Research Report] LIP RR-1998-12, Laboratoire de l’informatique du parallélisme.
1998, 2+16p. ffhal-02101765f.

[103] LLVM. LLVM’s analysis and transform passes, 2018. URL https://llvm.org/

docs/Passes.html.

[104] Chris Lomont. Fast inverse square root. Technical Report, 32, 2003.

[105] Timothy Lottes. FXAA. NVIDIA white paper, 2:8, 2011.

[106] Lu Luo. Software testing techniques. Institute for Software Research International,

Carnegie Mellon University, Pittsburgh, PA, 15232(1-19):19, 2001.

[107] Henry Massalin. Superoptimizer: a look at the smallest program. In ACM SIGPLAN

Notices, volume 22, pages 122–126. IEEE Computer Society Press, 1987.

[108] Morgan McGuire and Michael Mara. Efficient GPU screen-space ray tracing. Journal of

Computer Graphics Techniques (JCGT), 3(4):73–85, 2014.

[109] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller,
and Edward Teller. Equation of state calculations by fast computing machines. The

journal of chemical physics, 21(6):1087–1092, 1953.

[110] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. Load value approximation.
In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pages 127–139. IEEE Computer Society, 2014.

[111] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed representations of words and phrases and their compositionality. arXiv preprint

arXiv:1310.4546, 2013.

[112] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Rinard. Chisel:
Reliability-and accuracy-aware optimization of approximate computational kernels. In
ACM SIGPLAN Notices, volume 49, pages 309–328. ACM, 2014.

[113] Asit K Mishra, Rajkishore Barik, and Somnath Paul. iACT: A software-hardware frame-
work for understanding the scope of approximate computing. In Workshop on Approximate

Computing Across the System Stack (WACAS), 2014.

[114] Michal Misiurewicz. Strange attractors for the Lozi mappings. Annals of the New York

Academy of Sciences, 357(1):348–358, 1980.

[115] Sparsh Mittal. A survey of techniques for approximate computing. ACM Computing

Surveys (CSUR), 48(4):62, 2016.

147

https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html

[116] Bert Moons, Bert De Brabandere, Luc Van Gool, and Marian Verhelst. Energy-efficient
convnets through approximate computing. In Applications of Computer Vision (WACV),

2016 IEEE Winter Conference on, pages 1–8. IEEE, 2016.

[117] Shubhendu S Mukherjee, Christopher Weaver, Joel Emer, Steven K Reinhardt, and Todd
Austin. A systematic methodology to compute the architectural vulnerability factors for a
high-performance microprocessor. In Proceedings. 36th Annual IEEE/ACM International

Symposium on Microarchitecture, 2003. MICRO-36., pages 29–40. IEEE, 2003.

[118] Jean-Michel Muller. Elementary functions. Springer, 2006.

[119] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-Pierre Jeannerod,
Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien Stehlé, Serge Torres,
et al. Handbook of floating-point arithmetic, volume 1. Springer, 2018.

[120] David Nassimi and Sartaj Sahni. Data broadcasting in SIMD computers. IEEE Transac-

tions on Computers, 100(2):101–107, 1981.

[121] Rafi Nave. Implementation of transcendental functions on a numerics processor. Micro-

processing and Microprogramming, 11(3-4):221–225, 1983.

[122] Andrew Ng. Sparse autoencoder. CS294A Lecture notes, 72(2011):1–19, 2011.

[123] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Activa-
tion functions: Comparison of trends in practice and research for deep learning. arXiv

preprint arXiv:1811.03378, 2018.

[124] John F Palmer. The Intel® 8087 numeric data processor. In Proceedings of the National

Computer Conference, pages 887–893, 1980.

[125] Matt Parker. Humble Pi: A Comedy of Maths Errors. Penguin UK, 2019.

[126] Kenneth Perlin. Standard for Perlin noise, 2005. US Patent 6,867,776.

[127] Eric Quinnell, Earl E Swartzlander, and Carl Lemonds. Floating-point fused multiply-add
architectures. In 2007 Conference Record of the Forty-First Asilomar Conference on

Signals, Systems and Computers, pages 331–337. IEEE, 2007.

[128] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures

on machine learning, pages 63–71. Springer, 2004.

[129] Eugene Y Remez. Sur la détermination des polynômes d’approximation de degré donnée.
Comm. Soc. Math. Kharkov, 10(196):41–63, 1934.

148

[130] Jarrett Revels. Benchmarktools.jl. https://github.com/JuliaCI/

BenchmarkTools.jl, 2021.

[131] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations that discard
tasks. In Proceedings of the 20th annual international conference on Supercomputing,
pages 324–334. ACM, 2006.

[132] Martin Rinard. Obtaining and reasoning about good enough software. In Design Automa-

tion Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 930–935. IEEE, 2012.

[133] Martin C Rinard. Living in the comfort zone. ACM SIGPLAN Notices, 42(10):611–622,
2007.

[134] MRD Rodrigues, JHP Zurawski, and JB Gosling. Hardware evaluation of mathematical
functions. IEEE Proceedings (Computers and Digital Techniques), 128(4):155–164, 1981.

[135] Edward J. Rosten and Oliver J. Rosten. More constexpr for <cmath> and <complex>.
(P1383R0), 2019.

[136] Pooja Roy, Rajarshi Ray, Chundong Wang, and Weng Fai Wong. ASAC: Automatic
sensitivity analysis for approximate computing. In ACM SIGPLAN Notices, volume 49,
pages 95–104. ACM, 2014.

[137] Mehrzad Samadi, Janghaeng Lee, D Anoushe Jamshidi, Amir Hormati, and Scott Mahlke.
Sage: Self-tuning approximation for graphics engines. In Microarchitecture (MICRO),

2013 46th Annual IEEE/ACM International Symposium on, pages 13–24. IEEE, 2013.

[138] Mehrzad Samadi, Davoud Anoushe Jamshidi, Janghaeng Lee, and Scott Mahlke. Paraprox:
Pattern-based approximation for data parallel applications. ACM SIGPLAN Notices, 49
(4):35–50, 2014.

[139] Adrian Sampson. The case for compulsory approximation. In Workshop on Approximate

Computing Across the Stack, 2016.

[140] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze,
and Dan Grossman. Enerj: Approximate data types for safe and general low-power
computation. In ACM SIGPLAN Notices, volume 46, pages 164–174. ACM, 2011.

[141] Adrian Sampson, Luis Ceze, and Dan Grossman. Good-enough computing. IEEE

Spectrum, 50(10):54–59, 2013.

[142] Nicol N Schraudolph. A fast, compact approximation of the exponential function. Neural

Computation, 11(4):853–862, 1999.

149

https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl

[143] Michael Schulte. Floating Point Arithmetic in AMD Processors, 2015. URL http:

//arith22.gforge.inria.fr/slides/s1-schulte.pdf.

[144] Charles Severance. IEEE 754: an interview with William Kahan. Computer, 31(3):
114–115, 1998.

[145] Arthur Shek, Dylan Lacewell, Andrew Selle, Daniel Teece, and Tom Thompson. Art-
directing Disney’s Tangled procedural trees. In ACM SIGGRAPH 2010 Talks. 2010.

[146] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convolutional
neural networks applied to visual document analysis. In Icdar, volume 3, 2003.

[147] Alex J Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for machine
learning. 2000.

[148] Phillip Stanley-Marbell, Martin Rinard, et al. Error-efficient computing systems. Founda-

tions and Trends® in Electronic Design Automation, 11(4):362–461, 2017.

[149] David G Steer and SR Penstone. Digital hardware for sine-cosine function. IEEE

Computer Architecture Letters, 26(12):1283–1286, 1977.

[150] Damien Stehlé and Paul Zimmermann. Gal’s accurate tables method revisited. In 17th

IEEE Symposium on Computer Arithmetic (ARITH’05), pages 257–264. IEEE, 2005.

[151] Sun Microsystems. FDLIBM. https://www .netlib.org/fdlibm/, 1993.

[152] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. LSTM neural networks for
language modeling. In Thirteenth annual conference of the international speech commu-

nication association, 2012.

[153] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems, pages 3104–3112,
2014.

[154] Gabor Szeg. Orthogonal polynomials, volume 23. American Mathematical Soc., 1939.

[155] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint

arXiv:1312.6199, 2013.

[156] Ping Tak Peter Tang. Table-lookup algorithms for elementary functions and their error
analysis. Technical report, Argonne National Lab., IL (USA), 1991.

[157] George Toderici, Sean M O’Malley, Sung Jin Hwang, Damien Vincent, David Minnen,
Shumeet Baluja, Michele Covell, and Rahul Sukthankar. Variable rate image compression
with recurrent neural networks. arXiv preprint arXiv:1511.06085, 2015.

150

http://arith22.gforge.inria.fr/slides/s1-schulte.pdf
http://arith22.gforge.inria.fr/slides/s1-schulte.pdf
https://www.netlib.org/fdlibm/

[158] Anne Sjerp Troelstra. Non-extensional equality. Fundamenta Mathematicae, 82(4):
307–322, 1975.

[159] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry Hari, and Sarita V
Adve. Approxilyzer: Towards a systematic framework for instruction-level approximate
computing and its application to hardware resiliency. In Microarchitecture (MICRO),

2016 49th Annual IEEE/ACM International Symposium on, pages 1–14. IEEE, 2016.

[160] Swagath Venkataramani, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan. Axnn:
energy-efficient neuromorphic systems using approximate computing. In Low Power

Electronics and Design (ISLPED), 2014 IEEE/ACM International Symposium on, pages
27–32. IEEE, 2014.

[161] Swagath Venkataramani, Srimat T Chakradhar, Kaushik Roy, and Anand Raghunathan.
Approximate computing and the quest for computing efficiency. In Proceedings of the

52nd Annual Design Automation Conference, page 120. ACM, 2015.

[162] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extract-
ing and composing robust features with denoising autoencoders. In Proceedings of the

25th international conference on Machine learning, pages 1096–1103. ACM, 2008.

[163] Xiaojun Wang and Miriam Leeser. Vfloat: A variable precision fixed-and floating-point
library for reconfigurable hardware. ACM Transactions on Reconfigurable Technology

and Systems (TRETS), 3(3):1–34, 2010.

[164] Eric W Weisstein. Chebyshev polynomial of the first kind. https://

mathworld.wolfram.com/, 2003.

[165] James H Wilkinson. Error analysis of floating-point computation. Numerische Mathematik,
2(1):319–340, 1960.

[166] Titus Winters, Tom Manshreck, and Hyrum Wright. Software Engineering at Google:

Lessons Learned from Programming Over Time. O’Reilly Media, 2020.

[167] Tao Xie, Kunal Taneja, Shreyas Kale, and Darko Marinov. Towards a framework for
differential unit testing of object-oriented programs. In Proceedings of the Second In-

ternational Workshop on Automation of Software Test, page 5. IEEE Computer Society,
2007.

[168] Hang Zhang, Mateja Putic, and John Lach. Low power GPGPU computation with
imprecise hardware. In Proceedings of the 51st Annual Design Automation Conference,
pages 1–6. ACM, 2014.

151

https://mathworld.wolfram.com/
https://mathworld.wolfram.com/

[169] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and Qiang Xu. ApproxANN: an approximate
computing framework for artificial neural network. In Proceedings of the 2015 Design,

Automation & Test in Europe Conference & Exhibition, pages 701–706. EDA Consortium,
2015.

[170] Zeyuan Allen Zhu, Sasa Misailovic, Jonathan A Kelner, and Martin Rinard. Randomized
accuracy-aware program transformations for efficient approximate computations. In ACM

SIGPLAN Notices, volume 47, pages 441–454. ACM, 2012.

[171] Paul Zimmermann. Why transcendentals and arbitrary precision? IEEE 754 Revision

Committee, 2005.

[172] Paul Zimmermann. Reliable computing with GNU MPFR. In International Congress on

Mathematical Software, pages 42–45. Springer, 2010.

[173] Abraham Ziv. Fast evaluation of elementary mathematical functions with correctly
rounded last bit. ACM Transactions on Mathematical Software (TOMS), 17(3):410–423,
1991.

152

Appendix A

Standard Mathematical Definitions

We adopt standard definitions for common mathematical terms which we include below for
completeness.

A.1 Mathematical Approximation Techniques

A.1.1 Table Lookup

This section gives a step-by-step example of how to apply techniques for function approximation
via table lookup. Ranging from direct to gradient assisted interpolated lookup.

A.1.1.1 Direct Lookup

Direct lookup is a table based approximation approach where samples of the target function are
stored in a table and can be directly queried.

The benefits of direct lookup are the guarantee of correct answers for any result stored in the
table. In the past, this was once the fastest, and sometimes the only viable way to calculate some
elementary functions. However, with the increase in processing power of computers, the relative
lag in memory performance, and the introduction of more complex memory architectures, look-
up performance for this style of implementation can have mixed results. Very fast for sequential
reads, but very slow for random access. Mileage may vary based on your cache behaviour! If we
wanted to guarantee every answer for a specific function, this is the safest way and no longer
prohibitively expensive to store for all 32-bit inputs. Storing all outputs for a 32-bit function
takes approximately 16GB of RAM - – less than is commonly installed on modern high-end
workstations.

A simple demonstration of direct table lookup with a limited table size of twenty elements
can be seen in Figure A.1 where a table of twenty input-output pairs are stored to approximate
the sin function. The highest absolute error can be found at the point on the curve where the

153

LOOKUP TABLE (n=20)
sin Input Output
0.0 0.0
0.3141. . . 0.3090. . .
0.6283. . . 0.5877. . .
0.9424. . . 0.8090. . .
1.2566. . . 0.9510. . .

...
...

k = f loor(x/step)

y = table[k]

Figure A.1: An example of a small table used for direct lookup of n=20 for entries the Sine
function.

gradient is maximum as this introduces the largest difference in output value between the two
straddling values which are stored.

Direct-table lookup has some problems, as large areas of the curve are significantly mis-
matched and the differences in error between results are highly varied.

A.1.1.2 Interpolated Lookup

To improve on the direct table lookup reads, we can use interpolation at the cost of an additional
table read of the previous or next value. For this approach, the enclosing values from the table
for the input being queried are read and the value returned is an interpolation of these two values.

154

This approach is linear and therefore the maximum error shifts from the areas with max
gradient, to the areas with the highest change in gradient (the highest 2nd derivative). This
is shown in Figure A.2. The figure also shows that both absolute and relative error is greatly
reduced, as would be expected.

A.1.1.3 Gradient Tables Lookup

With interpolated tables, the fit to the source is best where the gradient at the two points being
interpolated is similar. When it is not, such as at the peaks and troughs of the Sine function, there
is a significant discrepancy between the true value and the approximation.

At the cost of storing the gradient at each sample position and the cost of another two gradient
look-ups at run-time, it is possible to improve the accuracy at the points where the gradient
changes rapidly. The stored gradients can be interpolated for the current position between the
two samples and used to bias the base interpolated position with the weight of the gradient in
that direction.

An example of the curve reconstruction from the gradients and its error compared to the
correct sin function is shown in Figure A.3. This implementation results in further reductions
to the overall error. The error is still greatest at the maximum change of gradient because the
correction with the gradients is not complex enough to be exact. This approach gives 10x less
absolute error than direct interpretation and 15x better than a direct table lookup. In relative
error, it is 5x better than interpolation alone and orders of magnitude better than direct lookup.

This is just the beginning of what can be done to improve the accuracy of table-based function
implementations. Further improvements can be found to the worst case and average case error.
The number of samples can be computed to find the minimum error, the sample steps can be
changed to be non-linearly spaced to improve precision at positions of high change of gradient,
the sample positions can be shifted to find the global minimum etc.

There is a lot that can be done here! This simple implementation alone gives the worst-case
3% error with only 20 samples. If you wanted to take this further, note that we are using 8 bytes
per table entry, which can be reduced if you use 16-bit floats for the gradient to 6 bytes. A typical
modern cache line is 64-bytes. The instruction and data cache are separate, so the gradients and
constants can be separated to be partially stored as constants in the instructions. This gives a lot
of flexibility if you want to create a very fast table based sin function with minimal memory
access.

A.1.2 Polynomial Approximation

This section gives an example and explanation of different polynomial approaches to approxi-
mating a function for a given domain, and then concludes with a brief explanation of the error
and accuracy considerations of their implementation.

155

LOOKUP TABLE (n=20)
sin Input Output
0.0 0.0
0.3141. . . 0.3090. . .
0.6283. . . 0.5877. . .
0.9424. . . 0.8090. . .
1.2566. . . 0.9510. . .

...
...

k = floor(x/step)
idx0 = k

idx1 = idx0 +1
j = (x− k ∗ step)/step
y = ((1− j)∗ table[idx0])+((j)∗ table[idx1])

Figure A.2: An example of a small table of n=20 input-output pairs for sin used for interpolated
lookup.

156

LOOKUP TABLE (n=20)
Sin Input Output Gradient
0.0 0.0 1.0
0.3141. . . 0.3090. . . 0.9511. . .
0.6283. . . 0.5877. . . 0.8090. . .
0.9424. . . 0.8090. . . 0.5878. . .
1.2566. . . 0.9510. . . 0.3090. . .

...
...

...

k = floor(x/step)
idx0 = k

idx1 = idx0 +1
j = (x− k ∗ step)/step

pred0 = (gradients[idx0]∗ j)+ table[idx0]

pred1 = (gradients[idx1]∗ j)+ table[idx1]

y = ((1− j)∗pred0)+((j)∗pred1)

Figure A.3: An example of a very small interpolated table of input-output pairs with the gradient
at that position stored for the function sin.

157

A.1.2.1 Infinite Series

Many common mathematical functions can be represented by an infinite series:

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ . . .

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ . . .

tan(x) = x+
x3

3
+

2x5

15
− 17x7

315
+ . . .

asin(x) = x+
(

1
2

)(
x3

3

)
+

(
1 ·3
2 ·4

)(
x5

5

)
+

(
1 ·3 ·5
2 ·4 ·6

)(
x7

7

)
+ . . .

etc.

However limitations of storage and precision give rise to the following issues:

1. Cost-per-term
Each step in the series requires a higher power of the input x, which is in turn more
expensive to compute than the last.

2. Finite terms
We can only execute a finite number of terms of the Taylor expansion in finite time.

3. Term Representation
Each term in the series is raised to a larger power. Numbers below one will quickly
reduce beyond the precision of the format being used, and numbers greater than one will
quickly raise to be either unable to be represented or the nearest representable value with
be significantly different than the real number—resulting in error.

4. Constant Representation
Looking at the infinite series representation of sin(x) the input raised to a power is
divided by an increasingly large factorial of an odd number. In any common hardware
supported precision, the result of this factorial is very quickly going to be too large to
represent. For example, 32-bit unsigned integers can only represent up to 12 factorial.
Which limits this approach to six terms if a 32-bit integer is used.

5. Destructive Arithmetic
As the number of terms increase, so does the number of arithmetic operations which will
result in some floating-point error for each additional operation.

For these reasons, direct implementations, even higher precision ones with many terms are not
suitable for most uses as they are expensive and not accurate enough.

158

A good example of this can be seen in the 32-bit implementation (Figure A.4a) where
the limitation of 32-bit floating-point to represent 12! means that only up to six of the terms
with factorials can be evaluated before the next step is not able to be represented. This limits
the function from being able to represent the whole [0,2π] range accurately. It could be used
as a section of a piece-wise function used to reconstruct sin but not directly like the 64-bit
(Figure A.4b) or higher implementations can be.

A full working of an approach for correctly rounded table based approach can be found in the
work of Shmuel Gal where they created the Accurate Tables Method [59, 60, 150] and related
work [156].

A.1.2.2 Continued Fractions

Similar to infinite series are continued fractions. They are a way to represent a function as a
series of continuing divisions. Any convergent infinite series can be represented as an infinite
continued fraction [49].
Here is an example of sin as an infinite continued fraction:

sin(x) = x
1+ x2

2·3−x2+ 2·3x2

4·5−x2+ 4·5x2
6·7−x2+...

Continued fractions give similar arithmetic problems as infinite series, but in the case of some
functions, the constant values can be more suitable for the precision or data type being used. For
example, in the infinite series sin the constant denominator for each term limits the number
of terms that could be used with a low-precision data type. In the continued fraction form the
constants still grow larger with each term but grow at a much slower rate and therefore allowing
for more terms. Although, a division is likely to result in higher floating-point arithmetic error
than addition, so there is a trade-off being made.

Figure A.5 shows a continued fraction implementation of sin. The resulting curves and error
graphs are remarkably similar to those of the infinite series which shows the related nature of the
two approaches. Although, for this example, the continued fraction approach is more stable with
a higher number of terms and only for large values of x.

A.1.2.3 Orthogonal & Minimax Polynomials

Orthogonal polynomial series are a family of polynomials which began with study of continued
fractions by P. L. Chebychev [154].
The orthogonal polynomials have an interesting property that is useful for measuring error in
approximations:

∫
w(x)Pi(x)Pj(x)dx =

c if Pi = Pj

0 otherwise
where w is a weighting function

159

(a)T
he

function
s
i
n

im
plem

ented
in

32-bitw
ith

a
lim

ited
num

berof
term

s
ofthe

infinite
series.

(b)T
he

function
s
i
n

im
plem

ented
in

64-bitw
ith

a
lim

ited
num

berof
term

s
ofthe

infinite
series.

Figure
A

.4:
A

n
exam

ple
ofan

infinite
series

based
s
i
n.

160

Figure A.5: The function sin implemented in 64-bit with a limited number of terms of the
continued fraction.

161

T0(x) = 1
T1(x) = x

T2(x) = 2x2−1

T3(x) = 4x3−3x

T4(x) = 8x4−8x2−1

T5(x) = 16x5−20x3 +5x

Tn(x) = 2xTn−1(x)−Tn−2(x)

Figure A.6: The Chebychev orthonormal polynomials.

The integral of the product of two orthonormal polynomials returns zero if the functions are
not the same. This means that if we replace Pj with f , an approximation of Pi, we can compute a
value which gives the similarity of Pi to f .

Lets demonstrate this using Chebychev polynomials. To use a Chebychev polynomial, we
must first calculate a coefficient kn for each Chebychev term, Tn. This is done by evaluating the
above integral for each n using the Chebychev of the first kind weighting function [164]:

w(x) =
1√

1− x2

This gives us the coefficient value to multiply by each term. Figure A.6 shows the Chebychev
polynomials and how to calculate them for an arbitrary number of terms.

Once the coefficients have been calculated for each term we can construct the approximation.
Figure A.7 shows the calculated coefficients and the resulting approximation of the sin function
using the Chebychev polynomials with 32-bit floating-point numbers.

Like the earlier polynomials, 32-bit suffers from only supporting a limited number of
terms before the smaller terms and constants become meaningless. However, you can see that
approximations with Chebychev provide very stable minimised error generally, although it has
peaks of error at the edge of the chosen domain in this example.

The work of Chebychev in the area of orthogonal polynomials was furthered by Remez [129].
The last algorithm presented in this section is the Remez Algorithm, which is sometimes known
as the Minimax algorithm.1

The Remez algorithm works by taking an existing polynomial and identifying inputs in the
domain where the largest error changes sign. The polynomial weights are then changed to reduce

1Despite there being more than one in this category.

162

Chebychev Coefficients for 6 terms
k0(x) = 2.6597767224800783e−8
k1(x) =−0.5692363722260916
k2(x) = 8.487245297526617e−8
k3(x) = 0.6671667074044133
k4(x) =−2.6354203472300778e−8
k5(x) =−0.11112301543767747

used to approximate sin as:
sin(x)≈ knTn + kn−1Tn−1 + kn−2Tn−2 + . . .+ k1T1 + k0T0

Figure A.7: An implementation of sin for 32-bit floating-point using Chebychev polynomials.

163

the error at the fixed points. The process is then repeated until the error at the found extremes is
reduced below an acceptable threshold.

This can be thought of as iteratively reducing the max error where it is highest and then
finding and reducing the new positions of the maximum error until the total error is as low as
possible and the remaining error is distributed amongst the terms so that the maximum error is at
the lowest possible for a given number of terms.

An example of the results of the Remez algorithm for an implementation of sin can be seen
in Figure A.8. As it is also based on the orthonormal approach, we can see the error distributions
follow a typical orthonormal minimisation pattern of passing through zero between points of
maximum error. More details on the implementation of this algorithm can be found in the
mathematical textbook by Muller [118], or there are easier to follow code examples in the source
code for Remez.jl [24].

A.1.2.4 Performance & Accuracy

On the topic of accuracy, an issue that needs to be addressed is the error occurring from rounding
in floating-point. This is the limiting factor for many forms of polynomials due to the large
power functions used and can lead to cancellation and imprecision errors between the terms.

There are two levels to approach solving this problem: low-level and algorithmic.
Starting with the low-level we can reduce some error by trying to maintain calculations at

a higher-precision before rounding. This is can be done using a FMA(Fused Multiply-Add)
operation (covered in more detail in Chapter 3.2.1). The FMA takes arithmetic in the form
−x+ y∗ z and performs rounding to the hardware precision after both the multiply and addition
operations are complete rather than each add and multiply.

Operations can also be increased in precision and then rounded at the end, for example, y =

f32(f64(x)+ f64(x2)+ f64(x3)). However this comes with a memory and, often, a performance
penalty. Particularly if the precision is not hardware supported.

For the algorithm level, options include Kahan Summation and Horner’s method. Kahan
Summation is an approach to summing a mix of large and small floating-point numbers that
reduces numerical error. The algorithm works by maintaining a running compensation sum
of error which is calculated per operation. This compensation is then applied before the next
operation.

Horner’s method is a way of writing polynomials in code that transforms the regular
form we see polynomials written: a0 + a1x + a2x2 + a3x3 + ...+ anxn and changes it to be
(a0 + x(a1 + x(a2 + x(a3 + x(a4 . . .))))) [25]. This form of the polynomial is very efficient for
computers, especially those which have FMA instructions. It allows degree n polynomials to be
evaluated with n multiplications and additions. A significant improvement over treating each
term individually.

164

Figure A.8: The function sin implemented as a rational polynomial of varying numbers of
terms. The error graphs show the expected over/under pattern that is a result of the minimisation
of orthonormal polynomials. Each version of the implementation uses a different number of
terms for the numerator and denominator. This is denotes as (x,y) in the legend, where x is the
degree of the numerator and y is the degree of the denominator.

165

Figure A.9: Showing continuous sin and discontinuous tan.

A.2 Function Properties

A.2.1 Transcendental Functions

If a function is transcendental it means that it cannot be expressed using a finite number of
algebraic operations. Which is a little bit of a problem as when using a computer we (mostly)
only have access to algebraic operations! This means that it is impossible to ever reach a “correct”
evaluation of a transcendental function at infinite precision - any implementation is by definition
approximating the true answer. However, at less than infinite precision we can find the closest
value to the true answer and return that as the “correctly rounded” result.

A.2.2 Continuous Functions

Continuous functions are those which do not have any discontinuities2. This means that any
relative change of value will not result in an output for which there is no intermediate value
between it and the last value. This is to say that a continuous function is one unbroken curve over
the entire domain of the function. With elementary functions, some are continuous (sin/cos/exp)
while others are not (tan).

A function being continuous gives it an interesting property which is useful to the evaluation
of the function: If a function is continuous and has an output domain between y1 and y2 then
there is an input x for every representable value in the output y range. If an implementation of a
continuous function in a lower precision is not able to output all representable values for that
precision then the implementation is no longer “continuous” in its own numerical space and
therefore, likely, not a correctly rounded solution.

When considering implementing a continuous function we know that it can be approximated
by a polynomial because they are both continuous, but when they are discontinuous special cases
and behaviour need to be considered.

2I am aware this is like asking “What is a natural disaster?” and answering “A disaster which is natural!” but
bear with me on this one...

166

A.2.3 Periodic Functions

A periodic function is one which repeats. In these cases the functions are often implemented for
a small subset of the total range and range reduction is used to set the function input in a relative
place with the reduced range.
We can start by considering some different basic categories of error measurement

A.3 Accuracy and Error

A.3.1 Absolute or Relative

The most basic categorisations of error measurements are whether they are absolute or relative.
In this context, absolute error can be computed as the absolute value difference between the

result from the approximation and the correct answer, i.e. :

abase = fbase(x)

aapprox = fapprox(x)

errorabsolute = abs(aapprox−abase)

Where as relative error is the error relative to some property of the value being evaluated. For
example, ten with a relative error of one gives a 10% error, where as one hundred with an error
of one gives an error of 1%. They both have the same absolute error but it is smaller percentage
relative to the value being measured.

abase = fbase(x)

aapprox = fapprox(x)

errorrelative =
abs(aapprox−abase)

abase

We use absolute error in cases where the absolute error difference is critically important and
we use relative error when the error difference is important in the context of the result being
evaluated.

A good example of when to use absolute or relative error metrics is when using Unit-in-last-
place (ULP) error as a measurement of the accuracy of a floating-point algorithm. ULP error is
measured as the distance of a floating-point error in increments of the smallest possible change.

167

This is a relative error metric as the absolute error of the algorithm is divided by the smallest
step in floating-point units of the correct output:

abase = fbase(x)

aapprox = fapprox(x)

errorul p =
abs(aapprox−abase)

eps(abase)

In this example eps is a function returning the distance to the next floating-point unit.
Why would we want to use ULP error instead of absolute error for floating-point? Take

the function f(x) which for an input of 1,000,000 returns 1,000,000.0625. But for an input
of 10,000,000 return 10,000,001. If we are judging error in absolute terms we may be tempted
to say f(x) is more accurate at 1,000,000 than 10,000,000. But this may be an error because
when we look at the minimum step size in floating point for the two inputs we see 0.0625 and 1.0
accordingly. So while the output absolute error may be larger, the bits representing the function
are each equally incorrect by only one bit. In this case the ULP error at both inputs is the same.
The scale of the absolute error is linked to the scale of the output, therefore when it is decoupled
it gives a representation of the error that is more useful for analysis.

A.3.2 Minimum, Maximum or Average

After deciding on whether the absolute or relative error is most appropriate for an application,
the next decision is how to apply that to more than one data point. Assuming the algorithm being
tested has a domain of more than one input then it is necessary to use some means to reason
about the results together.

A.3.2.1 Min/Max Error

The two easiest to consider are minimum error and maximum error. If you return these, you are
able to tell the user the total scope of the error. For many applications this will be fine, especially
when stating maximum error as it is possible to assume “correct” functions to have a minimum
error of zero for many cases. It is possible to tell a user that no matter what this algorithm will
not exceed a specific value - which is very useful for programmers who care about mapping the
worst case through a program.

Because of the usefulness of this metric some mathematical libraries will provide a table
stating the maximum ULP error for each of the functions they provide [44, 4].

168

A.3.2.2 Average Error

If minimum and maximum error-bounds are not enough information to guide how the program
can be changed then the distribution of the error must begin to be considered. It might be that
the worst case maximum error is very large, but if that worst-case is only one result in a million
and the others are all perfectly correct then this might be a case where that singular large error is
acceptable. Without investigating the distribution, this would not be possible to assess.

We can start with the simple mean of the error (sum(e)/length(e)). If this value is drastically
different than our worst-case error then we might begin to suspect that the worst-case error is not
representative of the general results.

Next we might consider the ‘mode’ average. This return the most commonly occurring error.
If you are dealing with real numbers then this might not be the best approach, but if you are
dealing with ULP error which is often rounded to the nearest whole number to represent the
number of steps after rounding, then this might be useful. If the worst-case error is 5 ULP error
but the mode is 0 or 1 then plotting frequency of each result might give information about the
most common space for error.

Finally, we come to the median result. This is the result which is the middle value of the
sorted array of all errors. Finding the median error is a great tool for discounting outliers as it
wont be affected by outlying low frequency small or large errors, unlike the mean.

Naturally each of these approaches can be extended to explore the data more thoroughly such
as extending the median by also finding the interquartile ranges and other information to provide
more insight into the distribution and spread of the error. But at the moment we want to focus on
why we might care about the average error when functions are supposed to be accurate.

Average error, in all it’s different forms, is useful in the analysis of approximate functions
because many algorithms in the real-world are noisy. They produce output with inaccuracies
for many reasons ranging from the number systems being used to inaccuracies in the hardware
providing some data. In those cases, a sudden large error would likely be ignored and the
program could continue on as normal, but if the average error over many iterations was becoming
very large then it might hint at a larger problem and the system may not be suitable.

A.3.3 Ranges and Domains of Error

Now that we understand how to assign a meaningful value of error to a result and how to consider
that result with regards to other inputs to the same system we next want to consider the domain
of those inputs to the function.

It is not uncommon for a function to work for only a limited range of inputs. Take the sqrt
function for example. If it does not support imaginary numbers then it will only be valid for
positive inputs.

169

When it comes to algorithms which rely on floating-point numbers it is also not uncommon
for them to suffer from larger absolute error as the input values diverge from zero, which may be
important in a lot of cases. A result of this is that we may only be interested in the error around a
certain subsection of the total domain of the function.

Take the fast inverse square root implementation that is presented in Chapter 3. There, input
values below 1/3 had significantly higher absolute error than the rest of the input range. As a
result we may have an implementation which uses a more accurate approximation when the input
is less than 1/3. Therefore, we would only be interested in measuring the error in the specific
input sub-domain of [1

3 ,∞].
This is particularly relevant in Chapter 6 where we demonstrate how to optimise the imple-

mentation of a sin function using approximation. As the implementation of sin is commonly
constructed piece-wise from two polynomials, one representing the ‘caps’ of the curve and
another representing the straighter joining edge. Each of these polynomials are only used in very
specific sub-domain ranges and as such when we measure the error which our approximations
produce we limit the analysis to these ranges.

A.3.4 Deterministic Error and Uncertainty

In computer science error can be deterministic, dependent or stochastic. These needs clarifying
so that error in approximate computation is not misunderstood to always be uncertainty.

A program which represents a continuous function using a discontinuous numerical system
will have a deterministic sum of error for its domain that is known and constant. This error is not
an uncertainty where the error may or may not be present as it would be in engineering when
stating the error of a measuring tool, i.e. a basic ruler having uncertainty in its measurements
of +/- 1.0mm. It is a constant known value that is a result of the construction of the program
representing the continuous function.

However, some error can be bounded by a minimum and maximum error per run of the
program and behave like an uncertainty (in which case we may use standard error analysis
techniques). An example of this would be a function which polls a sensor on the device. The
sensor on the device will have its own uncertainty and tolerance bounds which when polled will
produce a value. In this way, the program would have a non-deterministic error measurement that
would be based on the uncertainty of the sensor as well as factors arising from the implementation
of the program such as numerical accuracy, arithmetic accuracy, compression or other common
error inducing features.

Finally, we must mention dependent error. This is error which is dependent on specific
hardware, software or environment details which change how a constant program is ran. In these
scenarios it can be hard to determine the error (of any category) without full knowledge of the
complete setup. This presents itself often through different implementations of standard libraries,

170

different hardware implementation of functions or programs which may change behaviour based
on external inputs.

An example of software dependent error would be running a program which links to Mi-
crosoft’s C standard library and then running it again but linking to a *nix implementation of the
same library. Small differences may cause side-effects or minor errors in the program which
could result in different outputs.

For hardware dependent error we can consider the implementations of FSIN/FCOS functions
in x86/x87 based CPUs. There implementations vary between chips which can lead to different
outputs for the same inputs depending on where the program is ran [50].

The environmental dependent error is one which is vaguer and can be trickier to detect. This
could refer to thermal interference, solar interference or human interference causing irregularities
in the execution of the program and resulting in different outputs. Many of these can be prevented
through correct and safe hardware configuration so they will mostly be not considered in this
work, but they are worth mentioning as real and important sources of error which need to be
considered for some applications.

171

	Introduction
	Motivation
	Approach to Approximation

	Structure

	Related Work
	Key Problems in Approximate Computation
	Finding Applicable Code
	Lack of Generic Techniques
	Solution Verification

	Application
	Resiliency
	Current Approximation Strategies
	Hardware Approximation
	Mandatory Approximation
	Mathematical Approximation
	Precision Scaling
	Memoisation
	Function Generation

	Discussion

	Background
	IEEE-754 and Numerical Computing for Elementary Functions
	The Evolution of IEEE-754
	Rounding Modes
	Units-in-Last-Place and Correct-Rounding
	The Additional Mathematical Operations
	The Ongoing Influence of FDLIBM

	Approximating Real Functions
	Range Reduction
	Piecewise Functions
	Table-Based Approximation
	Polynomial Approximation

	 Implementing Elementary Functions
	Implementing sin & cos
	Implementing asin

	Function Equality
	Internal Vs External Equality
	Input and Output Equality
	Limited Bits
	Accuracy Degradation
	Mixed-Precision Results

	Function Transforms
	Performance in Input-Output Equality
	Intersection of Equalities
	Application to Approximate Computing Theory
	Summary

	Conclusion

	Evaluating IEEE-754 Elementary Functions
	The Recommended Functions
	Libraries Evaluated
	Julia
	Microsoft C Runtime Library
	glibc

	Accuracy of 32-bit Functions
	32-bit GPU Functions
	Monotonicity Testing
	Duplicated Results

	Examples of Error
	Mismatch Example
	Procedural Example
	Neural network example
	MNIST Example
	LSTM Example
	Neural Network Conclusion

	Non-Determinism Between Library Versions
	The Change
	Analysis of Change
	ULP Error of tanf
	Differences Between Versions
	Real-World Example
	glibc tanf Summary

	ULP Error, constexpr and Non-Determinism
	Conclusion

	Correctly Rounded 32-Bit Elementary Functions
	Current Approaches
	CR-LIBM
	GNU MPFR

	The Approach
	Debunking Simple Approaches

	Methodology
	Results
	Performance Evaluation
	Faster 64-bit tan
	Conclusion

	Approximate sin to One ULP Max-Error
	Sensitivity Analysis Overview
	Julia sin Implementation Analysis
	sin Constraints

	Analysing the Sensitivity of the Existing sin Implementation
	Setting Up Sensitivity Analysis of sin
	Performing Sensitivity Analysis

	Applying an Optimisation
	Removing a Subtraction
	Using a Constant
	Results

	Conclusion

	Case Study: Neural Network Activation Functions
	Activation Functions
	Activation Function Approximation
	tanh
	sigm
	ReLU

	Performance Results
	Comparison with `=12 ultra_fast_sigmoid
	Comparison with Word2Vec Lookup Table
	Approximations in TensorFlow
	Threats to Validity
	Conclusion

	Conclusion
	Future Work
	Final Remarks

	Bibliography
	Standard Mathematical Definitions
	Mathematical Approximation Techniques
	Table Lookup
	Direct Lookup
	Interpolated Lookup
	Gradient Tables Lookup

	Polynomial Approximation
	Infinite Series
	Continued Fractions
	Orthogonal & Minimax Polynomials
	Performance & Accuracy

	Function Properties
	Transcendental Functions
	Continuous Functions
	Periodic Functions

	Accuracy and Error
	Absolute or Relative
	Minimum, Maximum or Average
	Min/Max Error
	Average Error

	Ranges and Domains of Error
	Deterministic Error and Uncertainty

