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Abstract

We introduce a new class of semiparametric dynamic autoregressive models for

the Amihud illiquidity measure, which captures both the long-run trend in the

illiquidity series with a nonparametric component and the short-run dynamics with

an autoregressive component. We develop a GMM estimator based on conditional

moment restrictions and an e�cient semiparametric ML estimator based on an

iid assumption. We derive large sample properties for both estimators. We further

develop a methodology to detect the occurrence of permanent and transitory breaks

in the illiquidity process. Finally, we demonstrate the model performance and its

empirical relevance on two applications. First, we study the impact of stock splits on

the illiquidity dynamics of the five largest US technology company stocks. Second,

we investigate how the di↵erent components of the illiquidity process obtained from

our model relate to the stock market risk premium using data on the S&P 500 stock

market index.
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1 Introduction

Liquidity is a fundamental property of a well-functioning market, and lack of liquidity is

generally at the heart of many financial crises and disasters. Common ways of measuring

liquidity using high frequency data include bid-ask spreads, e↵ective spreads, realized

spreads, depth, weighted depth, and transaction volume. There is a big literature that uses

such measures to compare market quality across markets, across time, and before and after

interventions of various sorts. For example, it has been a big part of the debate around

high frequency trading, i.e., whether such trading activity has improved or degraded

market liquidity, see e.g. Brogaard (2010), Hendershott et al. (2011), Beddington et al.

(2012), O’Hara and Ye (2011). There are many complex issues in working with high

frequency trade and quote data in a legally integrated market such as the US, where

separate venues exist without synchronized timestamps so that for example establishing

the time priority of messages across di↵erent venues is di�cult. There are several methods

widely used to measure liquidity using lower frequency data, i.e., daily data, see Goyenko

et al. (2009) for a review of such measures. We focus on the Amihud illiquidity measure as

proposed in Amihud (2002). This measure has proven to be very popular in the empirical

literature. It is easy to implement and by all accounts relatively robust. It has been shown

to influence the cross-sectional asset returns through the so-called illiquidity premium, see

the review of Amihud and Mendelson (2015).

We propose a dynamic semiparametric model for illiquidity as measured by the daily

component of the Amihud measure. Specifically, we propose a multiplicative model that

contains a nonparametric long-run trend and a parametric short-run autoregressive pro-

cess as in Engle et al. (2012). The trend part is important for many datasets where

liquidity has improved in a secular fashion such as the S&P500 over the last hundred

years and Bitcoin over the much more recent period of its operation. The nonparametric

trend is comparable with the conventional monthly averaged measure that is widely used

in the literature, except that our measure is available daily and the implicit length of av-

eraging is controlled by a bandwidth parameter to be chosen by the practitioner. Further,

1



the dynamic component of the model measures the short-run variation in liquidity that

may be of equal interest.

We approach estimation through GMM based on the first conditional moment restric-

tion, as well as through a semiparametric likelihood procedure that assumes i.i.d. shocks.

In the latter approach we consider two cases, one where the shock distribution is para-

metric such as the Weibull distribution and a further case in which the shock distribution

is not specified and is treated nonparametrically. We develop the distribution theory and

e�ciency bound in both cases.

We also develop methodology for detecting permanent and transitory changes in liq-

uidity that might arise from structural changes in financial markets such as the upgrade

of a stock exchange’s matching engine or from stock specific events such as stock splits.

In our approach, permanent e↵ects are captured by discontinuous changes in the non-

parametric trend function, whereas temporary e↵ects are measured by dummy variables

in the dynamic part of the process. We develop the inference tools required to test for the

null hypothesis of no changes versus the alternatives of permanent or temporary shifts in

the illiquidity process.

In the spirit of Amihud (2002), who studies the e↵ect of expected and unexpected

illiquidity on stock excess returns, we also consider the regression modelling of the market

risk premium driven by the separate components of liquidity from our model. In particu-

lar, we study the link between the stock excess returns and the long-run trend, short-run

dynamics as well as the unexpected shocks of the illiquidity process.

We implement our framework on a panel composed by the five largest US technology

company stocks and the Bitcoin asset. We demonstrate the model performance in terms of

fitting the relevant features of the illiquidity data, and provide various model diagnostics

and specification tests. We show that the e�cient semiparametric maximum likelihood

estimator, assuming a parametric Weibull distribution for the error term, captures well

the salient features of the illiquidity process. In addition, we also demonstrate that using

a nonparametric density estimator for the error term can further improve the model

estimation in terms of likelihood.
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We study the impact of stock splits on the illiquidity dynamics of the five largest

US technology company stocks. One explanation for why companies split their stock

is the theory that this creates “wider” markets, that is, reducing the price level makes

it easier for a wider pool of retail investors to buy into the stock and allows existing

investors more easily to sell part of their holding to other investors thereby increasing

the investor base and the volume of transactions. This in turn should lead to greater

liquidity as measured for example by the Amihud measure. However, there are other

theoretical arguments presented in Copeland (1979) that may point to a decrease in

liquidity following a stock split, and as he says “liquidity changes following stock splits

is an empirical question”. Copeland (1979) found: nonstationarities in trading behavior,

volume increases less than proportionately, brokerage revenues increased, and increases

in proportional bid-ask spreads following stock splits. He argues that “these results lead

to the conclusion that there is a permanent decrease in liquidity following the split”. Our

results broadly support these findings in our more recent sample data on a special subset

of stocks, the tech stocks. Specifically, we document that stock splits cause significant

shifts in the long-term illiquidity trend while no significant e↵ects on short-run liquidity

dynamics are detected.

We also investigate how the di↵erent components of the illiquidity process obtained

from our model relate to the stock market risk premium using data on the S&P 500 stock

market index. We find that the detrended market risk premium is positively a↵ected by

the anticipated short run illiquidity process and negatively associated with the unantic-

ipated component of market illiquidity in agreement with the results of Amihud (2002)

(which were based on an AR model fit to monthly illiquidity).

The remainder of the paper is organized as follows. In Section 2, we discuss the Amihud

illiquidity measure and its time series properties. Section 3 introduces our DArLiQ model

and we discuss in Section 4 estimation via GMM based on the first conditional moment

restriction, as well as through a semiparametric likelihood procedure that assumes i.i.d.

shocks. The large sample properties of our procedures are provided in Section 5. We

develop in Section 6 the methodology to detect permanent and temporary changes in
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the liquidity process and in Section 7 the framework to study the e↵ect of illiquidity

components on risk premium. Section 8 presents a detailed empirical application of the

model, and Section 9 concludes. Theoretical materials including proofs of the theorems are

collected in Appendix A to Appendix D. Additional tables and figures for the empirical

application are presented in Appendix E.

2 Amihud illiquidity

The Amihud (2002) illiquidity measure of a stock at time t, At, is defined as

At =
1

nt

ntX

j=1

`tj , `tj =
|Rtj |
Vtj

, (1)

where Rt is the stock return and Vt is the (dollar) trading volume at time t. Intuitively,

the Amihud measure captures the fact that a stock is less liquid if a given trading volume

generates a larger move in its price. Typically, the measure is computed over periods

ranging from a day to a year by averaging the daily illiquidity ratio `tj over the corre-

sponding period nt. The Amihud illiquidity measure is a good proxy for high-frequency

measures of price impact (Goyenko et al. (2009); Hasbrouck (2009)) with the advantage

of only requiring daily data on stock prices and trading volumes.

We show in Figure 1 the daily stock log illiquidity series for the five largest US in-

formation technology companies (the “Fab 5”) – Amazon, Apple, Facebook, Google, and

Microsoft – over the period from May 2012 to October 2021. Note that there is spike in

the illiquidity series for Google around end-March 2014 which is caused by a stock split

on March 27, 2014.1 As this event caused irregularity in the trading activities for a few

days, we replace the volume data on those dates using the average volume level of the day

before and the day after that period. The daily log illiquidity series using the adjusted

data are shown in Figure 1b. The illiquidity time series appear broadly stationary during

this period, although a slight downward trend can be observed. To gain more insights into

1
The two-for-one stock split was associated with the introduction of a new non-voting share class

(Class C shares). See press release.
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the conditional dynamics the data, we fit an AR(5) model with a quadratic polynomial

trend function to the scaled illiquidity series, yt = `t ⇥ 1010, i.e.

yt = ↵ + �(t/T ) + �(t/T )2 +
5X

j=1

�jyt�j + "t,

where the coe�cients � and � respectively capture the linear and quadratic components

of the polynomial trend. The estimated coe�cients with their corresponding t-statistics

are provided in Table 1. We observe that most of the autoregressive coe�cients are statis-

tically significant, indicating some degree of persistence in the stock illiquidity dynamics.

In addition, the coe�cient estimates for the trend function are also significant. One

exception is the quadratic term for Microsoft, meaning that this stock exhibits a linear

trend over the sample period. Consistent with the visual inspection of Figure 1, all the

estimated polynomial trend functions are overall downward trending.

Trends in illiquidity series are not circumscribed to the Fab 5 stocks used in our

illustration. To emphasize how prevalent this feature is across financial markets, Figure 2a

shows the evolution of log `t for the S&P500 stock market index over a longer period (1950–

2021) and Figure 2b for Bitcoin-USD (2014–2021) – both exhibiting strong downward

trends over their respective sample periods. Taken together, these evidence point to the

existence of factors driving low-frequency variations in illiquidity dynamics in addition to

higher-frequency variations.

This motivates our modelling approach for the Amihud illiquidity measure which weak-

ens the requirement on stationarity and develop a new class of dynamic autoregressive

liquidity (DArLiQ) models. A key feature of our framework is that it captures both the

slow-varying long-term trend and short-run autoregressive components relevant for the

modelling of illiquidity series.
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(b) Data of Google stock processed.

Figure 1: Fab 5 daily log illiquidity – log `t.

6



Table 1: Estimated parameters of an AR(5) with trend.

Facebook Amazon Apple Google Microsoft

AR(1)
0.055 0.004 0.025 0.002 0.028

(2.683) (0.175) (1.222) (0.095) (1.339)

AR(2)
0.196 0.003 0.019 0.102 0.029

(9.720) (0.136) (0.929) (4.961) (1.398)

AR(3)
0.146 0.088 0.106 0.168 0.025

(7.182) (4.295) (5.218) (8.306) (1.235)

AR(4)
0.170 0.097 0.027 0.113 0.075

(8.426) (4.730) (1.316) (5.506) (3.647)

AR(5)
0.122 0.061 0.097 0.063 0.053

(5.971) (2.953) (4.723) (3.053) (2.592)

Con
0.059 0.131 0.010 0.029 0.072

(8.946) (16.206) (9.969) (8.235) (15.583)

t/T
-0.169 -0.297 0.027 0.049 -0.062

(-7.263) (-13.433) (6.405) (3.539) (-5.076)

(t/T)2
0.131 0.178 -0.031 -0.060 -0.001

(6.346) (10.402) (-7.482) (-4.411) (-0.118)

Adj. R2 0.475 0.499 0.086 0.104 0.245

Note: Models are fitted on yt = `t ⇥ 10
10
. The numbers in parentheses are

the t-statistics of the corresponding parameter estimates.
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Figure 2: Daily log illiquidity – log `t.
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3 The model

We suppose that `t, t = 1, . . . , T is an observed non-negative stochastic process. We

assume that the observed daily series `t follows a multiplicative process as in Engle and

Gallo (2006).

`t = �t⇣t (2)

�t = ! +
pX

j=1

�j�t�j +
qX

k=1

�k`t�k, (3)

where ⇣t is a sequence of positive random variables with conditional mean one and finite

unconditional variance. Provided ! > 0, the process �t � ! > 0 with probability one

(provided the initialization is also positive). Furthermore, provided
Pp

j=1 �j +
Pq

k=1 �k <

1, the process `t is stationary in mean and follows an ARMA(p,q) process. We may further

assume that ⇣t has constant conditional variance denoted �2
⇣ , in which case E(`t|Ft�1) = �t

and var(`t|Ft�1) = �2t�
2
⇣ , i.e., both zt and z2t �1 are martingale di↵erence sequences, where

zt = ( `t�t �1)/�t�⇣ . We may further assume that ⇣t is i.i.d. with Lebesgue density function

f on the positive real line.

In practice, it may be important to account for nonstationarity or trend. We allow for

a nonparametric trend, so let

`t = g(t/T )�t⇣t (4)

�t = ! +
pX

j=1

�j�t�j +
qX

k=1

�k`
⇤
t�k, (5)

where g(.) is a smooth but unknown function of rescaled time, and `⇤t = `t/g(t/T ) is the

rescaled liquidity. There is an identification issue because we can multiply and divide the

two components g,� by constants. We suppose that E(�t) = 1, which is achieved by

setting ! = 1 �
Pp

j=1 �j �
Pq

k=1 �k. The series `⇤t = �t⇣t possesses the same stationarity

properties as `t from the model without a trend. Likewise, the error process ⇣t may possess

a constant conditional variance or even be i.i.d. with some density function f. This is

important for estimation but it may also be important for calculation of “Liquidity at

Risk”, which would require some further assumption about the conditional quantiles of

⇣t. Note that in this model, the process `t actually depends on T and forms a triangular

9



array, `t,T , but for notational economy we generally suppress this from the notation. We

note that the process `t,T is locally stationary according to Vogt (2012). In the sequel, we

suppose that p = 1, q = 1 for simplicity.

We may wish to consider the e↵ects of interventions at some times t1, . . . , tJ .We model

temporary e↵ects by dummy variables in the dynamic equation, that is, we let

�t = ! + ��t�1 +
JX

j=1

↵jDjt + �`⇤t�1,

where Djt is one if an intervention occurs in period tj. The null hypothesis of interest here

is ↵1 = · · · = ↵J = 0 in which case the model collapses to Equation (5). We may allow

the possibility of permanent e↵ects by allowing the function g to be discontinuous at a

known point u0 = t0/T, that is,

lim
u"u0

= g�(u0), lim
u#u0

= g+, (u0)

are both well defined but g�(u0) may not be equal to g+(u0). The size of the jump is the

magnitude of the permanent e↵ect (that is, the e↵ect that remains permanently in the

absence of further changes). The null hypothesis of interest here is that g�(u0) = g+(u0)

in which case the analysis of the trend is may exploit this property.

4 Estimation

Estimation is guided by assumptions made about the error ⇣t. The minimalist approach

is to assume only that with probability one

E(⇣t � 1|Ft�1) = 0,

and E(⇣2t ) = �2
⇣ < 1. In that case, one can estimate the function g(.) and the identi-

fied parameters �, � by conditional mean smoothing of `t and by the GMM approach.

Provided that additional high level weak dependence conditions are satisfied, one can

ensure a CLT for the resulting estimators. One may wish to additionally specify a sec-

ond conditional moment restriction whereby E(⇣2t � (1 + �2
⇣ )|Ft�1) = 0 with probability
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one. This additional moment restriction permits more e�cient estimation provided this

restriction is true, but if it is not true, using this additional moment restriction will bias

the parameter estimates.

We may further assume that ⇣t is i.i.d. with a Lebesgue density f. In this case,

we may either assume that f is of unknown functional form or we may assume that

f is parametrically specified, i.e., f' for some unknown shape parameters ' such as

Exponential, Weibull, Gamma etc. The enlarged vector (�, �,')
|
can be estimated by

MLE. In the semiparametric case, one needs also to estimate the error density f(.) along

with the trend g(.) and the identified parameters . For forecasting future values of `t,

one does not need the shock distribution, but predicting intervals and LAR (Liquidity at

Risk) requires the estimation of some features of the error distribution.

Finally, we note that under the smoothness conditions on g(.),

`t,T
`t�1,T

=
�
1 +O(T�1)

� �t⇣t
�t�1⇣t�1

is approximately stationary and one could design a model specification test based on this

“di↵erencing” along the lines of Yatchew (2000).

4.1 Estimation based on conditional moment restriction

We have the unconditional moment restriction

E(`t) = g(t/T ).

We first use this condition to obtain an initial consistent estimators of g by kernel smooth-

ing method, specifically

bg(u) = 1

T

TX

t=1

Kh(t/T � u)`t, (6)

whereK is a kernel function symmetric about zero supported on [�1, 1] satisfying
R
K(u)du =

1 and
R
K(u)u2du < 1, while h is a bandwidth sequence. Because of the equally spaced

observations in time, the denominator of the Nadaraya-Watson estimator is unnecessary

here (this may also be called the Priestley-Chao estimator). Another estimator of his-

torical interest is the Gasser-Müller (1979) estimator for time trend. One could use local
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linear or local polynomial estimators here to manage the boundary issue or alternatively

modify the kernel in the boundary region [�1,�1 + h] [ [1� h, 1]. One can interpret the

widely computed measure At defined in Equation (1) as a crude estimator of g at the

appropriate time point. We define the detrended liquidity b̀⇤t = `t/bg(t/T ), t = 1, . . . , T.

Second, we use the GMM approach to estimate the parameters from the conditional

moment restriction

E(`⇤t |Ft�1) = �t,

where `⇤t = `t/g(t/T ), t = 1, . . . , T. We work with et(✓) = `⇤t � �t(✓), where ✓ = (�, �)|,

which is a martingale di↵erence sequence at the true parameter values � = �0, � = �0. In

practice, we define bet(✓) = b̀⇤t � b�t(✓) and

b�t(✓) = 1� � � � + ��t�1 + � b̀⇤t�1.

Then we define ⇢t(✓, bg) = zt�1(b̀⇤t � b�t(✓)) and

MT (✓, bg) =
1

T

TX

t=1

⇢t(✓, bg)

b✓GMM = argmin
✓2⇥

��MT (✓, bg)
��
W
,

whereW is a weighting matrix, while zt 2 Ft are instruments. This provides initial consis-

tent estimators of ✓. One can optimize the GMM procedure by choosing the instruments

and weight matrix optimally, but we shall not pursue this here.

Given consistent estimates of ✓, one can improve the estimate of g. Note that

E

✓
`t
�t

◆
= g(t/T ),

which provides an alternative local moment condition for estimation, that is, we let

eg(u) = 1

T

TX

t=1

Kh(t/T � u)
`t
b�t
, (7)

where b�t = b�t(b✓GMM , bg) are estimated in the previous procedure. We may repeat to

update the estimates of ✓.

The other approach to this is to use profiling, that is, for given ✓, we estimate g✓(u)

by smoothing `t/�t(✓, g✓) against time and then we optimize the profiled GMM objective

function. This approach is more time consuming and we prefer the direct approach here.

12



4.2 Estimation based on i.i.d. assumption

In this case, we assume that the error is i.i.d. with mean one and density f . We consider

several cases. First, where f is known completely. Second, where f is known up to a

vector of parameters '. Third, where f is of unknown form. Drost and Klaassen (1997)

suppose that ⇣t is a scale random variable with ⇣t = �⇣zt + 1, where zt is a standardized

random shock with mean zero and variance one and density f0. The density f0 may be

treated parametrically, i.e., depending on unknown shape parameters ' or it may be

treated nonparametrically.

In the case where f is treated parametrically, one may prefer to work directly with

⇣t and parameterize f. In that case, we have a semiparametric model with parameters

✓ = (�, �,'|)
|
and unknown functions ⌧(.) = g(.). In the case where f is of unknown

form, we have a semiparametric model with parameters ✓ = (�, �)
|
and unknown functions

⌧(.) = (f(.), g(.)). In that case, we can equivalently write the model in terms of parameters

✓ = (�, �, �2
⇣ )

|
and unknown functions ⌧(.) = (f0(.), g(.)).

4.2.1 Parametric density case

Suppose that f depends on some unknown parameters ', denoted as f'. If g(.) were

known, the log likelihood function is apart from a term to do with g(.) that does not

depend on parameters equal to

L(✓,'|`1, . . . , `T ) = �
TX

t=1

ln�t(✓) +
TX

t=1

ln f'
�
⇣t(✓)

�
,

⇣t(✓) =
`t

�t(✓)g(t/T )
.

In practice, given a consistent estimate of g(.), we maximize an estimated version of this

likelihood. In fact, in the semiparametric model, the e�cient score functions (derived in
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the appendix) for ✓,' in the presence of unknown g(.) are

L⇤
✓ =

TX

t=1

`⇤✓t, `⇤✓t = s2(⇣t)
1

�t

0

B@
@�t
@✓

�
E
h
@�t
@✓

1
�2t

i

E
⇣

1
�2t

⌘

1

CA (8)

L⇤
' =

TX

t=1

`⇤'t, `⇤'t =
@f' (⇣t) /@'

f' (⇣t)
�

E
⇣
@f'(⇣t)/@'

f'(⇣t)
s2(⇣t)

⌘
E
⇣

1
�t

⌘

I2(f)E
⇣

1
�2t

⌘ s2(⇣t)
1

�t
. (9)

To obtain fully e�cient estimates of ✓,', we use one-step updating from initial root-T

consistent estimates. Denote ⌘ = (✓,') and e⌘ = (e✓|, e')| and let `⇤⌘t = (`⇤|✓t , `
⇤
't)

|, then let

e⌘ = b⌘ +

0

@ 1

T

TX

t=1

`⇤⌘t(b✓, b', bg)`⇤⌘t(b✓, b', bg)|
1

A
�1

1

T

TX

t=1

`⇤⌘t(b✓, b', bg) (10)

`⇤✓t(b✓, b', bg) = bs2(b⇣t)
1
b�t

0

@@
b�t
@✓

�
1
T

PT
t=1

@ log b�t
@✓

1
b�t

1
T

PT
t=1

1
b�2t

1

A

`⇤'t(b✓, b', bg) =
@fb'

⇣
b⇣t
⌘
/@'

fb'

⇣
b⇣t
⌘ �

1
T

PT
t=1

@fb'(b⇣t)/@'
fb'(b⇣t)

bs2(b⇣t) 1
T

PT
t=1

1
b�t

1
T

PT
t=1 bs22(b⇣t) 1

T

PT
t=1

1
b�2t

bs2(b⇣t)
1
b�t

bs2(⇣) = �
 
1 + ⇣

f 0
b'(⇣)

fb'(⇣)

!
, b�t = 1� b� � b� + b�b�t�1 + b�

`t�1

bg((t� 1)/T )
.

Note that we may obtain initial consistent estimates of ' by the method of moments. For

example, in the gamma case, parameterized to have mean one, the parameter ' can be

estimated as one over the variance.

Under the i.i.d. structure, one can also improve the estimation of g by using local

likelihood. Suppose that f, ✓ were known, then the local likelihood estimator of g(u)

based on data `t is given by the maximizer of

TX

t=1

Kh(t/T � u)
⇣
ln f

�
⇣t(g)

�
� ln g

⌘
, (11)

⇣t(g) =
`t
�tg

, t = 1, . . . , T, (12)
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with respect to the parameter g 2 R+. Following Fan and Chen (1999), we may update

the estimator of g by

egLL(u) = bg(u)� bL�1
gg (bg(u); u)bLg(bg(u); u), (13)

where bLg(g; u) = @bL(g; u)/@g and bLgg(g; u) = @2bL(g; u)/@g2 with

bL(g; u) =
TX

t=1

Kh(t/T � u)

✓
ln fb'

⇣
e⇣t(g)

⌘
� ln g

◆
(14)

e⇣t(g) =
`t

g�t(b✓, bg)
, t = 1, . . . , T. (15)

4.2.2 Nonparametric density case

Suppose we have initial consistent estimators of ✓, g(.). Then, one can estimate the density

function f using the residuals

b⇣t =
`t

bg(t/T )b�t(b✓)
, t = 1, . . . , T.

In particular, the kernel estimator of the density is given by

bf(⇣) = 1

T

TX

t=1

Khf

⇣
b⇣t � ⇣

⌘
,

where hf is another bandwidth sequence.

Next, one may proceed in a fourth step to improve estimates of all parameters and

the function g using the estimated density bf as the basis of a likelihood estimation. The

e�cient score function (derived in the appendix) for ✓ in the semiparametric model with

unknown f, g is

L⇤⇤
✓ =

TX

t=1

`⇤⇤✓t ,

`⇤⇤✓t = s2(⇣t)

0

BB@

0

B@
@ log �t
@✓

� E

✓
@ log �t
@✓

◆
�
 

1

�t
� E

✓
1

�t

◆! E
h
@ log �t
@✓

1
�t

i

E
⇣

1
�2t

⌘

1

CA

1

CCA

+
⇣t � 1

�2
⇣

0

B@E

✓
@ log �t
@✓

◆
�

E
⇣

1
�t

⌘
E
h
@ log �t
@✓

1
�t

i

E
⇣

1
�2t

⌘

1

CA .
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E�cient estimation can be conducted by two-step estimation based on initial consistent

estimates of ✓, f, g :

ee✓ = b✓ +

0

@ 1

T

TX

t=1

`⇤⇤✓t (b✓, bf, bg)`⇤✓t(b✓, bf, bg)|
1

A
�1

1

T

TX

t=1

`⇤⇤✓t (b✓, bf, bg) (16)

`⇤⇤✓t (b✓, bf, bg) = bs2(b⇣t)

0

BB@

0

B@
@ log b�t
@✓

� 1

T

TX

t=1

@ log b�t
@✓

�

0

@ 1
b�t

� 1

T

TX

t=1

1
b�t

1

A
1
T

PT
t=1

@ log b�t
@✓

1
b�t

1
T

PT
t=1

1
b�2t

1

CA

1

CCA

+
b⇣t � 1

b�2
⇣

0

@ 1

T

TX

t=1

@ log b�t
@✓

�
1
T

PT
t=1

1
b�t

1
T

PT
t=1

@ log b�t
@✓

1
b�t

1
T

PT
t=1

1
b�2t

1

A .

where b�2
⇣ =

PT
t=1(

b⇣t � b⇣)2/T with b⇣ =
PT

t=1
b⇣t/T.

In practice, we may update the estimator of g by the one-step improvement

eegLL(u) = bg(u)� bL�1
gg (bg(u); u)bLg(bg(u); u),

where bLg(g; u) = @bL(g; u)/@g and bLgg(g; u) = @2bL(g; u)/@g2 with

bL(g; u) =
TX

t=1

Kh(t/T � u)

✓
ln bf

⇣
e⇣t(g)

⌘
� ln g

◆
, (17)

e⇣t(g) =
`t

gb�t(b✓)
, t = 1, . . . , T. (18)

These procedures can be iterated, that is, given consistent initial estimators of g, ✓,

we estimate f. Then we use the estimated f to update our estimate of ✓ taking the initial

estimator of g, then we update our estimator of g using the estimated f and updated ✓.

We can continue this operation until it meets the defined criteria of convergence.

4.3 Sieve semiparametric estimation procedure

An alternative approach is based on the sieve method, Chen (2007). The advantage of this

method is that it only requires a single optimization, albeit one with many parameters

to choose. We just consider the cases where the error ⇣t is i.i.d. with mean one and

16



density f : (a) f is parametric with f' that reflects the unit mean constraint; (b) f is

nonparametric. We suppose in both cases that

ln g(u) =
1X

j=0

 jHj(u)

for some basis functions Hj defined on [0, 1]. In case (b) we will also consider

ln f(v) =
1X

j=0

↵j�j(v)

for some basis functions �j defined on R+.

We first consider case (a) where f is parametric (and ' is a scalar). In that case, the

sieve log likelihood for ⌘ = (✓|,', |)| is

L(⌘|`1, . . . , `T ) = �
TX

t=1

ln�t(✓)�
TX

t=1

MX

j=0

 jHj(t/T ) +
TX

t=1

f'(⇣t(✓, )),

⇣t(✓, ) =
`t

�t(✓) exp
⇣PM

j=0  jHj(u)
⌘ ,

where M = M(T ) is the truncation parameter. We just maximize this criterion function

with respect to ⌘ 2 RM+3. Under some restrictions, the estimates b✓, b' of ✓,' are consistent

and asymptotically normal with mean zero and finite variance, while we can show that

the estimated function

bg(u) = exp

0

@
MX

j=0

b jHj(u)

1

A

is also consistent and asymptotically normal at a slower rate. Specifically, the standard

errors are calculated as follows. Define the matrices

bI⌘⌘ =
@2L(b⌘|`1, . . . , `T )

@⌘@⌘|
, bI�1

⌘⌘ =

0

BBBB@

bI✓✓ bI✓' bI✓ 

bI'✓ bI'' bI' 

bI ✓ bI ' bI  

1

CCCCA
.

Then it can be shown that

⇣
bI✓✓
⌘�1/2 ⇣b✓ � ✓

⌘
=) N(0, I2),

⇣
bI''
⌘�1/2

(b'� ') =) N(0, 1), (19)
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⇣
H|bI  H

⌘�1/2

exp(�bg(u))
�
bg(u)� g(u)

�
=) N(0, 1), (20)

where H = (H1, . . . , HM)| and we have suppressed the dependence on u.

We now turn to case (b) where f is treated nonparametrically. In this case we also

need to impose the restrictions that f is a density and that ⇣ has mean one. In this case,

the restricted sieve log likelihood for ⌘ = (✓|, |,↵|, �)| is

L(✓, ,↵, �|`1, . . . , `T ) = �
TX

t=1

ln�t(✓)�
TX

t=1

MX

j=0

 jHj(t/T ) +
TX

t=1

NX

j=0

↵j�j(⇣t(✓, ))

� ln

0

B@
Z

exp

0

@
NX

j=0

↵j�j(z)

1

A dz

1

CA� �

0

B@
Z

z exp

0

@
NX

j=0

↵j�j(z)

1

A dz � 1

1

CA ,

where ⇣t(✓, ) is as defined above and � is a Lagrange multiplier parameter that imposes

the unit mean restriction on f. We find the solution to the first order condition with

respect to ⌘ 2 RM+N+2. Define for this ⌘ the matrices

bI⌘⌘ =
@2L(b⌘|`1, . . . , `T )

@⌘@⌘|
, bI�1

⌘⌘ =

0

BBBBBBB@

bI✓✓ bI✓ bI✓↵ bI✓�

bI  bI ↵ bI �

bI↵↵ bI↵�

bI��

1

CCCCCCCA

.

Then it can be shown that

⇣
bI✓✓
⌘�1/2 ⇣b✓ � ✓

⌘
=) N(0, I2), (21)

⇣
H|bI  H

⌘�1/2

exp(�bg(u))
�
bg(u)� g(u)

�
=) N(0, 1), (22)

⇣
�|bI↵↵�

⌘�1/2

exp(� bf(⇣))
⇣
bf(⇣)� f(⇣)

⌘
=) N(0, 1), (23)

where H = (H1, . . . , HM)|, � = (�1, . . . ,�N)|, and we have suppressed the dependence

on u, ⇣.

The di�culty with this approach is the potential high dimensional parameter space

that has to be navigated when the truncation parameters M,N are large.
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5 Large sample properties

The distribution theory for this requires some extension of Hafner and Linton (2010).

The presence of two nonparametric functions g, f, albeit scalar ones, makes this a little

challenging. We make some assumptions.

Definition. A triangular array process {Xt,T , t = 0, 1, 2, . . . , T = 1, 2, . . .} is said to

be alpha mixing if

↵(k) = sup
T�1

sup
A2Fn

�1, B2F1
n+k

|P (AB)� P (A)P (B)| ! 0, (24)

as k ! 1, where Fn,T
�1 and F1

n+k,T are two �–fields generated by {Xt,T , t  n} and

{Xt,T , t � n+ k} respectively. We call ↵(·) the mixing coe�cient.

We suppose that `⇤t is stationary and alpha mixing. This can be shown to hold under

the parameter restrictions provided ⇣t. It may also hold when ⇣t itself is only described as

a stationary mixing process although this can be di�cult to establish. Instead, one can

work with the more general near epoch dependence condition, see Lu and Linton (2007).

We define the long run variance for a stationary mixing process xt as

lrvar(xt) =
1X

j=�1

cov(xt, xt�j).

5.1 Conditional moment restrictions

We first consider the properties of the GMM estimator based on the first conditional

moment restriction. This estimator makes the weakest assumptions about the process ⇣t

and so it is more robust than the subsequent procedures we analyze. We do not address

the e�cient use of this information but it follows from standard arguments.

5.1.1 Nonparametric trend

We first consider the estimator bg(u), u 2 (0, 1), that is based on smoothing of the raw

liquidity. Let vt = �t⇣t � 1.

Assumption A1. Suppose that g is twice continuously di↵erentiable at u 2 (0, 1).
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Assumption A2. Suppose that {vt} is an alpha mixing sequence with E(vt) = 0 and

E(|vt|2+�)  C < 1 for some � > 0 for t = 1, 2, . . . . such that

1X

k=1

↵(k)
�

2+� < 1.

Assumption A3. Suppose that K is symmetric about zero with compact support

[�1, 1] and K is di↵erentiable on its support.

Theorem 1. Suppose that assumptions A1-A3 hold and that h ! 0 and Th ! 1. Then

p
Th
�
bg(u)� g(u)� h2b(u)

�
=) N

�
0, V (u)

�
,

V (u) = g2(u)||K||2 ⇥ lrvar(vt).

This estimator is consistent and asymptotically normal with a potentially optimal

rate of T�2/5 based on the smoothness assumption. The bandwidth that achieves this

rate is of order h = T�1/5 and balances squared bias with variance. We know that `⇤t =

`t/g(t/T ) = �t⇣t is an ARMA(1,1) process with A(L)`⇤t = B(L)et for some MDS shock et

and lag polynomials A,B. In this case, the long run variance of `⇤t is �
2
e(B(1)/A(1))2 and

it could be estimated by the plug in of estimated ✓ from the second step.

Instead, it may be preferable to work with the refined estimator eg(u) that is based on

the estimator of ✓. We have for this estimator the following CLT.

Theorem 2. Suppose that assumptions A1-A3 hold and that b✓ is
p
T - consistent. Suppose

that h ! 0 and Th ! 1. Then

p
Th
�
eg(u)� g(u)� h2b(u)

�
=) N

�
0, V (u)

�
,

V (u) = g2(u)||K||2 ⇥ var(⇣t).

In this case, the limiting variance is proportional to the variance of ⇣t, which is generally

smaller and easier to estimate. When ⇣t is i.i.d.,

E(�2t (⇣t � 1)2) = E(�2t )⇥ var(⇣t) � var(⇣t),
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because by assumption E(�t) = 1. For this estimator, consistent standard errors can be

based on

bV (u) = eg2(u)||K||2 ⇥ b�2
⇣ , (25)

where b�2
⇣ is an estimator of the unconditional variance of ⇣t such as defined above.

5.1.2 Parametric Components

Let ✓ = (�, �)| and let W be some given positive definite weighting matrix. Let

wt = �t(⇣t � 1)zt�1 +
1� � � �

1� �
(�t⇣t � 1)E(zt�1).

We consider for any function g

MT (✓, g) =
1

T

TX

t=1

⇢t(✓, g), ⇢t(✓, g) = zt�1

✓
`t

g(t/T )
� �t(✓, g)

◆

�t(✓, g) = 1� � � � + ��t�1 + �
`t�1

g((t� 1)/T )
=

1� � � �

1� �
+ �

1X

j=1

�j�1 `t�j

g((t� j)/T )
.

Assumption A4. Define:

M(✓, g) = lim
T!1

E
�
MT (✓, g)

�

�1(✓, g0) =
@M(✓, g0)

@✓

�2(✓, g0) � (g � g0) =
@

@⌧
M(✓, g0 + ⌧(g � g0)),

which are assumed to exist in all directions ✓, g.

Assumption A5. For all � > 0, there is a an ✏ > 0 such that

inf
k✓�✓0k>�

��M(✓, g0)
�� � ✏.

Uniformly for all ✓ 2 ⇥, the function M(✓, g) is continuous in g (with the respect to the

L2 metric) at g = g0. Furthermore,

sup
✓2⇥,kg�g0k�T

��MT (✓, g)�M(✓, g0)
�� = oP (1).
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Assumption A6. For all sequences of positive numbers �T ! 0

sup
k✓�✓0k�T ,kg�g0k�T

��2
T

��M(✓, g)�M(✓, g)� �2(✓, g0) � (g � g0)
��  C

sup
k✓�✓0k�T ,kg�g0k�T

��1
T

���2(✓, g0) � (g � g0)� �2(✓0, g0) � (g � g0)
�� = o(1)

sup
k✓�✓0k�T ,kg�g0k�T

p
T
��MT (✓, g)�M(✓, g)�MT (✓0, g0)

�� = oP (1)

Theorem 3. Suppose that Assumptions A1-A6 hold. Then as T ! 1

p
T
⇣
b✓ � ✓

⌘
=) N(0, V )

⌦ = lim
T!1

var

0

@ 1p
T

TX

t=1

wt

1

A , � = lim
T!1

1

T

TX

t=1

E

✓
@et(✓0)

@✓
zt�1

◆

V = (�|W�)�1 (�|W⌦W�) (�|W�)�1 .

In general, the asymptotic variance will depend on the long run variance of the process

wt and so inference procedures are complicated by that.

5.2 iid Shocks

We suppose here that ⇣t is iid with mean one and density f. Define the so-called Fisher

score functions and informations

s1 (⇣) =
f 0 (⇣)

f (⇣)
, s2 (⇣) = 1 + ⇣

f 0 (⇣)

f (⇣)
(26)

Ij(f) =

Z
s2j(⇣)f(⇣)d⇣, j = 1, 2. (27)

We suppose that we have initial consistent estimators of g(.), ✓ available from the GMM

procedure described above, say.
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5.2.1 Parametric Density

In the case where f is parametrically specified with parameters ', the model is semipara-

metric with parameters ⌘ = (✓|,')| and unknown function g. We first consider the local

likelihood estimator of the trend function. We note that regarding the estimation of g(.) it

may be assumed that the error density is known, whether this is estimated parametrically

or nonparametrically, Linton and Xiao (2001).

Theorem 4. Suppose that assumptions A1-A3 hold and that b✓ is
p
T - consistent. Suppose

that h ! 0 and Th ! 1. The local likelihood estimator has for some bias b(u),

p
Th
�
egLL(u)� g(u)� h2b(u)

�
=) N

�
0, V (u)

�

V (u) = ||K||2I�1
2 (f)g(u)2.

To construct pointwise confidence bands we use:

eV (u) = ||K||2I�1
2 (fe')eg(u)2,

I2(fe') =
1

T

TX

t=1

0

B@1 + ⇣
f 0
e'

⇣
e⇣t
⌘

fe'

⇣
e⇣t
⌘

1

CA

2

,

where e⇣t are the estimated residuals.

We next turn to the properties of the estimated parametric components. Define the

e�cient information matrix:

I⇤
⌘⌘ =

0

B@
I⇤
✓✓ I⇤

✓'

I⇤
'✓ I⇤

''

1

CA , I⇤
✓✓ = E

�
`⇤✓t`

⇤|
✓t

�
, I⇤

'' = E
⇣
`⇤'t`

⇤|
't

⌘
, I⇤

✓' = E
⇣
`⇤✓t`

⇤|
't

⌘
.

Theorem 5. Suppose that Assumptions A1-A6 hold. Then as T ! 1

p
T (e⌘ � ⌘) =) N(0, I⇤�1

⌘⌘ ).

Furthermore, the asymptotic variance may be estimated by eI⇤�1, where

eI⇤
⌘⌘ =

1

T

TX

t=1

`⇤⌘t(e✓, e', eg)`⇤⌘t(e✓, e', eg)|.
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5.2.2 Nonparametric Density Case

In the case where f is nonparametrically specified, the model is semiparametric with pa-

rameters ✓ and unknown functions g, f. First, the large sample properties of the estimated

g are as if f is known. We turn to the properties of the estimated parametric components.

Define the e�cient information matrix

I⇤⇤
✓✓ = E

�
`⇤⇤✓t `

⇤⇤|
✓t

�
.

Theorem 6. Suppose that Assumptions A1-A6 hold. Then as T ! 1

p
T

✓
ee✓ � ✓

◆
=) N(0, I⇤⇤�1

✓✓ ).

Furthermore, the asymptotic variance may be estimated by eI⇤�1, where

eI⇤⇤
✓✓ =

1

T

TX

t=1

`⇤⇤✓t (e✓, ef, eg)`⇤⇤✓t (e✓, ef, eg)|.

The presence of unknown ⌧ does not a↵ect the e�ciency of ✓ once the scale �2
⇣ is accounted

for, but the scale does a↵ect the achievable e�ciency.

6 Testing for Temporary and Permanent Shifts

We can estimate the function g allowing for a discontinuity at the point u0 = t0/T by

considering

bg+(u) = 1

T

TX

t=1

K+
h (t/T � u)`t, bg�(u) = 1

T

TX

t=1

K�
h (t/T � u)`t,

where K+ is a kernel supported on [0, 1] with
R
K+(u)du = 1 and

R
K+(u)udu = 0 and

K� is a kernel supported on [�1, 0] with
R
K�(u)du = 1 and

R
K�(u)udu = 0. We may

test for the presence of a discontinuity by computing

⌧(u0) =
p
Th

bg+(u0)� bg�(u0)p
b�2+(u0)||K+||2 + b�2�(u0)||K�||2

,
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where b�2±(u0)||K±||2/Th are estimates of the asymptotic variance of bg±(u0). In general,

b�2±(u0) = bg±(u0)
2 ⇥ [lrvar(�t⇣t),

because `t � g(t/T ) = g(t/T ) (�t⇣t � 1) has smoothly varying variance that is exactly

g2(t/T ) and because the series �t⇣t is in general weakly dependent. On the other hand if

we work with the improved estimator that works with a smooth of `t/b�t, we can assume

that the error process is a MDS and so the variance of the estimator is proportional to

g±(t/T )2�2
⇣ . That is, we may define

eg+(u) = 1

T

TX

t=1

K+
h (t/T � u)

`t
b�t
, eg�(u) = 1

T

TX

t=1

K�
h (t/T � u)

`t
b�t
.

In this case, we may choose

e�2±(u0) = eg±(u0)
2 ⇥ b�2

⇣ .

Likewise for the local likelihood estimator, but this also takes care of the error shape

and heteroskedasticity. Given the studentized statistic, ⌧(u0) we compare this with the

standard normal distribution as in Delgado and Hidalgo (2000). Under the null hypothesis

this should lie between ±z↵/2 with probability 1� ↵.

We also consider how to include a control group to eliminate common trends at the

change time. This amounts to a di↵ in di↵ test. Specifically, suppose that we have a

“treatment” stock labelled with an S subscript and a “control” stock labelled with an C

subscript. We suppose that model (4) holds for both stocks and that ⇣St and ⇣Ct may be

correlated. We define the di↵-in-di↵ statistic as

⌧did(u0) =
p
Th

�
eg+S (u0)� eg�S (u0)

�
�
�
eg+C (u0)� eg�C (u0)

�
r⇣

e�2+
S (u0) + e�2+

C (u0)� 2e�+
S,C(u0)

⌘
||K+||2 +

⇣
e�2�
S (u0) + e�2�

C (u0)� 2e��
S,C(u0)

⌘
||K�||2

,

where:

e�±
S,C(u) = eg±S (u0)eg±C (u0)⇥ b�⇣S ,⇣C ,

b�⇣S ,⇣C =
1

T

TX

t=1

✓
b⇣St � b⇣S

◆✓
b⇣Ct � b⇣C

◆
.
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What happens if we reject this test at some point u0 = t0/T? Note that the above

procedures (estimation of ✓) can allow bg(u) to be inconsistent at a finite number of points,

because the estimators of ✓, f are averages of bg(t/T ) over all points t = 1, . . . , T. However,

the rate of convergence may be a↵ected, since the jump points will contribute a bias of

order O(h) rather than the usual order O(h2). Therefore, one should choose a smaller

bandwidth such that
p
Th ! 0 instead of

p
Th2 ! 0. Having identified the jump points

one can use this information in the rescaling. We suppose in general that the function

g is continuous from the right with limits from the left. In that case for t � t0 we may

normalize by bg+(u) and for t < t0 we normalize by bg�(u). That is, we let

b̀⇤
t =

8
><

>:

`t
bg+(t/T ) t = t0, . . . , T

`t
bg�(t/T ) t = 1, . . . t0 � 1

,

and proceed to estimate the dynamic parameters as before.

We next discuss the estimation of temporary e↵ects in the dynamic equation

�t = 1� � � � + ��t�1 +
J�1X

j=0

↵jDjt + �`⇤t�1,

where J is fixed. Here, Djt are dummy variables indicating times t0, . . . , tJ�1 and we focus

on the case where tj = t0 + j. In this case it is not possible to consistently estimate the

parameters ↵j, however, it is possible to provide a consistent test of the null hypothesis

that ↵1 = . . . = ↵J = 0 against the general alternative even in the full semiparametric

model. The e�cient score function with respect to ↵ in the semiparametric model with

known f is

TX

t=1

`⇤✓t =
TX

t=1

s2(⇣t)
1

�t

0

B@
@�t
@↵

�
1
T

PT
t=1 E

h
@�t
@↵

1
�2t

i

E
⇣

1
�2t

⌘

1

CA

where

@�t(✓,↵)

@↵j
= �

@�t�1(✓,↵)

@↵j
+Djt =

8
><

>:

�t�tj if t � tj

0 if t < tj.

1

T

TX

t=1

E


@�t
@↵

1

�2t

�
=

1

T

TX

t=tj

�t�tjE


1

�2t

�
.
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It follows that the e�cient score function at ↵ = 0 is

@L

@↵j
(✓, �2

⇣ , 0) =
TX

t=tj

s2(⇣t)
1

�t(✓, 0)

0

B@

2

4�t�tj � 1

T

TX

t=tj

�t�tj

3

5

1

CA '
TX

t=tj

s2(⇣t)
�t�tj

�t(✓, 0)
.

In practice we must replace the unknown quantities by estimates. Define the test statistic

(we call CAR to recognize the event study literature where this quantity originates):

[CAR(⌧) =
⌧X

j=0

TX

t=tj

s2(b⇣t)
b�t�tj

�t(b✓, 0)
, ⌧ = 0, . . . , J � 1. (28)

The test statistic does not satisfy a central limit theorem (even when ✓ is known)

because of the summability of
PT

t=tj
�2(t�tj) (that is, essentially only a finite number

of periods matter). Nevertheless, if the distribution of ⇣t were known along with the

parameter values ✓, we can calculate the distribution numerically using data wr(⌧) =
P⌧

j=1

PT
t=r s2(⇣t)�

t�r/�t(✓, 0) for r some time before t0. Let Fw denote the distribution of

the series {wr}. We assume that t0 is large, i.e., t0 ! 1 so that there is a long sample of

data available before the intervention.

We compare [CAR(⌧) with the critical values bF�1
bw (↵/2), bF�1

bw (1� ↵/2), where bF bw(.) is

estimated using the data

bwr(⌧) =
⌧X

j=1

TX

t=r

s2(b⇣t)
b�t�r

�t(b✓, 0)
, r = 1, . . . , t0 � J. (29)

7 Risk premium

Amihud (2002) considers an autoregressive model for annual and monthly liquidity and

then relates this to the stock risk premium. Specifically, he writes

E
�
Rmt �Rft|liqet

�
= a+ b⇥ liqet

liqt = c0 + c1 ⇥ liqt�1 + ⌘t,

where liqet = E(liqt|Ft�1) = c0+c1liqt�1 and liqt is the annual or monthly average that we

have called At. He also considers a specification with unexpected liquidity as a regressor

where liqut = liqt � liqet .
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It seems a bit strange to wait for a whole year to update ones estimate of liquidity.

We may consider the following specification for daily stock returns

E
�
Rmt �Rft|Ft�1

�
= a+ b⇥ g(t/T ) + c⇥ �t + d⇥ ⇣t, (30)

where �t is defined above. This allows the risk premium to depend on long run trend

liquidity on short run predictable dynamic variation and also on unanticipated liquidity

shocks.

We also consider the alternative regression with detrended equity premium, that is,

E
�
Rmt �Rft �m(t/T )|Ft�1

�
= ↵ + � ⇥ �t + � ⇥ ⇣t, (31)

where m(t/T ) = E
�
Rmt �Rft

�
is the time varying unconditional equity premium. In

practice we can estimate m(.) by kernel smoothing methods.

8 Empirical application

The ability to accurately model illiquidity series, and the availability of a framework to

conduct inference on potential structural changes in their dynamics, are useful tools to

investigate liquidity conditions in financial markets and their evolution over time. In

our empirical application, we consider the Fab 5 tech stocks and the Bitcoin asset in-

troduced in Section 2 to analyze their illiquidity series using our DArLiQ model. The

rest of this section is organized as follows: Section 8.1 presents the data description and

the key descriptive statistics of the illiquidity series. Section 8.2.1 covers the estimation

results adopting a GMM approach based on moment restrictions. Sections 8.2.2 and 8.2.3

present the analysis based on a semiparametric ML estimation procedure with, respec-

tively, parametrically specified and nonparametrically estimated error densities. Section

8.3 focuses on the detection of permanent and temporary breaks in the illiquidity series

arising from stock splits. Finally, We investigate in Section 8.4 how market liquidity dy-

namics – particularly short-run autoregressive dynamics and unexpected liquidity shocks

– impact equity risk premia.
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8.1 Data description

We use historical daily return and volume data from a panel composed of the five tech

stocks and the bitcoin asset to compute the Amihud illiquidity series.2 The sample period

starts from the date of the first available data point for each asset until October 7th, 2021.

The descriptive statistics of the illiquidity series are summarized in Table 2.3 It can be

observed that the Bitcoin asset is less liquid compared to the technology company stocks

during this period. In addition, the illiquidity series of Bitcoin is more volatile, exhibits

higher skewness and has thicker tails. We further note that the five tech companies have

comparable levels of liquidity – although Apple stock is slightly more liquid than others.

Moreover, the illiquidity of Facebook stock has higher skewness and thicker tails compared

to the other four tech companies.

Table 2: Summary statistics for daily illiquidity – `t ⇥ 1010.

Facebook Amazon Apple Google Microsoft Bitcoin

Mean 0.0372 0.0313 0.0187 0.0615 0.0424 1.7013

StdDev 0.0295 0.0389 0.0148 0.0499 0.0398 4.1201

Skewness 1.3673 2.5656 1.1146 1.1921 1.6408 4.0626

Kurtosis 6.2978 10.5467 4.1849 4.5345 6.1514 24.9266

We plot in Figure 3 and Figure 4 respectively the illiquidity and log illiquidity series

over the corresponding sample period for each of the six assets. To manage boundary

issues, we obtain an initial consistent estimator of the trend function g(t/T ) using a local

linear estimator. The red curves in the two figures represent respectively the estimated

trend functions and their logarithms. From Figure 3, we observe that the estimated

trend function g(t/T ) serves as a good approximation for the time-varying mean of the

2
Data were retrieved from Yahoo Finance.

3
To make it comparable, we use the daily Amihud illiquidity ratios in the common sample period of

September 19, 2014 to October 7th, 2021 to compute the descriptive statistics for all assets.
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illiquidity series.4 Furthermore, a strong downward trend is observed in the evolution

of most illiquidity series, indicating an overall improvement in liquidity conditions over

time. Lastly, it is worth noticing that a temporary worsening in liquidity conditions is

occurring during significant market events such as the burst of the dot-com bubble and

2007-2009 Global Financial Crisis.

4
Note that the trend function g(t/T ) is the mean level of the illiquidity `t, i.e. E (`t) = g(t/T ), which

is estimated with a local linear estimator. Therefore, g(t/T ) is roughly moving around the mid-level of

`t but this is not the case for the log illiquidity series as log g(t/T ) is higher than the mean level of log `t

due to a Jensen’s inequality e↵ect. In the interest of space, we will focus on the plot of the log illiquidity

series hereafter.
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Figure 3: Fab 5 and Bitcoin illiquidity series and trend functions (⇥1010).
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Figure 4: Fab 5 and Bitcoin log illiquidity series and trend functions.
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8.2 Estimation results

We introduce the detrended illiquidity series, `⇤t = `t/g(t/T ), which are assumed to be

mean stationary. We then estimate the parameters ✓ of the �t process based on moment

restrictions and an i.i.d. assumption for the shock distributions. We consider two model

specifications for �t. Firstly, in the classic specification, we suppose �t = ! + ��t�1 +

�`⇤t�1 and use an expectation targeting approach to obtain ! by setting ! = 1 � � � �.

Secondly, in the specification with asymmetric e↵ect, we suppose �t = !+��t�1+�`⇤t�1+

��`⇤t�1IRt�1<0 where Rt is the return at time t. We further assume that conditional on

Ft�1, Rt has a zero median and is uncorrelated with `⇤t�1. Therefore, it implies that

E
⇥
`⇤t�1IRt�1<0 | Ft�1

⇤
= �t/2 and we can also use a targeting approach for ! by setting

! = 1� � � � � ��/2.

8.2.1 Estimation based on conditional moment restrictions

We use the GMM approach based on the conditional moment restrictions to acquire an

initial consistent estimators of the �t process parameters ✓. We consider the minimalist

case where the model is estimated using only the first conditional moment restriction,

i.e. E
h
`⇤t
�t

� 1 | Ft�1

i
= 0. We further improve the estimates of the g(t/T ) function using

the estimated b�t = b�t
⇣
b✓GMM

⌘
obtained in the previous step. This, in turn, allows us to

further improve the estimates of the ✓ parameters.

We report the obtained estimates with associated t-statistics in Table 3. It can be

observed that the parameter estimates in the classic specification are almost always sta-

tistically significant at the 5% level. However, the � and �� estimates in the asymmetric

model specification are in general not significant. The overall lack of statistical signifi-

cance indicates that the asymmetric e↵ect does not contribute to improving the empirical

fit of the model based on the first moment restriction. We will further investigate whether

including an asymmetric term is beneficial in the case where the models are estimated via

the MLE approach under an i.i.d. shock assumption. Finally, the coe�cient � is close to

one, indicating high persistence in the short-run dynamics of the illiquidity series.
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We improve the estimates of the trend function based on the estimated b�t process. The

log transforms of the initial and updated estimates of the trend function, i.e. log g(t/T ),

are plotted in Figure 7 of Appendix E.1 together with the log illiquidity series. We

observe that the updated trend function estimates – under both the classic model and

the asymmetric specification – are di↵erent from the initial estimate but only to a minor

extent. This observation indicates that a 2-step approach consisting in first using a

local linear estimator for the trend function and then estimating the �t process and its

associated parameters ✓ can be a viable option in empirical applications.

Table 3: Estimated parameters of the �t process based on first moment restriction.

Classic Asymmetric

� � � � �(�)

Facebook
0.951 0.029 0.951 0.029 -0.001

(20.38) (2.06) (27.33) (1.21) (-0.04)

Amazon
0.946 0.052 0.948 0.042 0.014

(71.35) (4.47) (59.21) (1.52) (0.47)

Apple
0.914 0.077 0.914 0.059 0.029

(60.56) (6.75) (69.36) (2.34) (0.84)

Google
0.967 0.028 0.964 0.021 0.010

(64.94) (3.08) (71.51) (1.95) (1.21)

Microsoft
0.945 0.051 0.859 0.016 0.142

(88.26) (5.95) (9.74) (1.50) (1.69)

Bitcoin
0.960 0.036 0.960 0.021 0.025

(74.04) (3.56) (21.68) (0.19) (0.12)

Note: The estimated parameters are ✓ = (�, �) for the classic spec-

ification and ✓ = (�, �, �(�)
) for the asymmetric specification of �t.

The numbers in parentheses are the t-statistics of the correspond-

ing parameter estimates.
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8.2.2 Estimation: i.i.d. error term with parametric density

We estimate the model using an alternative approach – the semiparametric MLE approach

– where we assume i.i.d. error terms. The conditional distribution of the error term ⇣t can

be freely chosen within the class of distributions satisfying the required characteristics,

namely the density having non-negative support with unit mean and variance �2
⇣ . In this

application, we assume that the error term follows a Weibull(�(1 + ')�1,') distribution,

with the parameter ' controlling the shape of the distribution.5 Based on the local

linear estimator of the g(t/T ) function, we first obtain a consistent estimator of the

�t process parameters via the Quasi-Maximum Likelihood (QML) estimation approach.

This is achieved by maximizing the log likelihood assuming g(t/T ) is known and ⇣t is

parametrically specified with a Weibull density. The fully e�cient estimates can then

be obtained by using a one-step update approach using the e�cient scores based on the

initial consistent estimators as introduced in Section 4.2.1.

We report the estimated parameters with the corresponding t-statistics in Table 4.

The estimates for the parameters of the �t process are significant and all illiquidity series

exhibit a high degree of persistence as the � coe�cients are close to one. In addition,

the estimated shape parameter of the Weibull distribution for the error terms are ranging

from 1.14 to 1.40, indicating that the volatility of ⇣t is ranging from 0.73 to 0.88. This is

consistent with the observation that the five tech stocks have comparable volatility levels

while the Bitcoin asset has much higher volatility.

Furthermore, we provide diagnostics on the validity of our assumptions for the error

term ⇣t. Concerning the i.i.d. assumption, we plot the autocorrelation function (ACF) of

⇣t in Figure 8 and Figure 9 of Appendix E.2 respectively for the classic and asymmetric

model specifications of �t. Similarly, we plot the ACF of ⇣2t under the two specifications

in Figure 10 and Figure 11 of Appendix E.2. We observe that in most of the cases,

there is no evidence suggesting autocorrelation in the residual or squared residual series.

5
We consider Exponential, Gamma, and Weibull distributions in our analysis as they are commonly

adopted in the literature. To save space, we focus on the Weibull distribution in the paper as it provides

slightly better performance in terms of fit compared to the other two alternative distributions.
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Table 4: Fully e�cient estimates of the parameters for the �t process under the assumption

that the error term ⇣t follows a Weibull distribution.

Classic Asymmetric

� � ' � � � �(�) ' �

Facebook
0.861 0.046 1.378 0.734 0.921 -0.028 0.106 1.398 0.725

(5.98) (4.94) (804.81) (33.88) (-5.77) (9.06) (720.95)

Amazon
0.916 0.080 1.367 0.740 0.928 0.038 0.065 1.379 0.734

(285.12) (28.00) (2204.62) (346.05) (13.18) (21.72) (2131.88)

Apple
0.876 0.095 1.309 0.771 0.891 0.045 0.077 1.310 0.770

(322.41) (68.19) (3151.33) (360.82) (49.13) (27.71) (2434.88)

Google
0.908 0.046 1.284 0.785 0.932 -0.011 0.088 1.302 0.775

(31.83) (8.18) (5624.95) (70.03) (-3.21) (12.27) (5351.82)

Microsoft
0.924 0.067 1.366 0.740 0.927 0.038 0.052 1.370 0.739

(361.55) (33.24) (1332.79) (360.10) (17.58) (20.17) (1217.23)

Bitcoin
0.892 0.061 1.137 0.881 0.892 0.039 0.041 1.143 0.877

(38.07) (8.49) (4774.77) (36.48) (6.64) (7.15) (4895.14)

Note: The estimated parameters are ✓ = (�, �,') for the classic specification and ✓ = (�, �, �(�),') for the asymmetric

specification of �t. ' is the shape parameter of the Weibull distribution which has mean 1 and standard deviation �⇣

of

vuut �
⇣
1+ 2

'

⌘

✓
�2

⇣
1+ 1

'

⌘◆ � 1. The numbers in parentheses are the t-statistics of the corresponding parameter estimates.

Furthermore, we use the probability integral transformation (PIT) to check how well

the assumed Weibull conditional distribution fits the data. The histogram plots of the

PITs shown in Figure 12 and Figure 13 of Appendix E.2 are quite close to a uniform

distribution. All assets exhibit a common pattern where the error term has ticker tail

on the left-hand side and thinner tail on the right-hand side compared to a Weibull

distribution. This issue can be addressed using another more flexible distribution, for

example the generalized Pareto distribution. However, we do not pursue this direction

in our analysis and focus instead on investigating whether using a nonparametric density

help improve the model fit.
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We further improve the estimation of g(t/T ) by maximizing the local likelihood based

on the estimated b�t process and the error density. The log transforms of the initial

and updated estimates of the trend function, i.e. log g(t/T ), are plotted in Figure 14 of

Appendix E.2 together with the log illiquidity series. As in the GMM case (see Section

8.2.1), we observe that the updated trend function estimates are di↵erent from the initial

estimate but only to a minor extent.

8.2.3 Estimation: i.i.d. error term with nonparametric density

We consider whether replacing the parametric assumption for the error density f with

a nonparametric kernel estimator can further improve the fit of our model to empirical

data. We plot in Figure 15 and Figure 16 of Appendix E.3 the estimated nonparametric

density against the Weibull density using the shape parameter estimates from Section

8.2.2. We observe that the estimated nonparametric density curves do not fall between

the two standard deviation bands of the estimated Weibull densities, suggesting that the

di↵erence between the estimated parametric and nonparametric densities are statistically

significant.

The estimated nonparametric density allows us to further improve the maximum like-

lihood estimation results for the �t process. We can obtain the fully e�cient estimates in

the nonparametric density case using the one-step update approach based on the e�cient

scores introduced in Section 4.2.2. The estimates with associated t-statistics are reported

in Table 5 and the parameters are all statistically significant. Comparing the estimated

values for the �t parameters reported in Table 4 and Table 5, we observe that the di↵er-

ence in the estimated parameter values between the parametric and nonparametric cases

are overall quite small. This indicates that the QML estimation approach, combined with

the one-step update based on the e�cient scores to improve e�ciency, provides rather

accurate parameter estimates.

We further present the log likelihood computed using the parameter estimates ob-

tained in the parametric and nonparametric cases in Table 6. We conclude that the ML

estimation approach assuming a Weibull distribution for the error term provides good
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estimation performance, but using a nonparametric estimator for the error density can

further improve performance in terms of the likelihood (the only exception is Microsoft).

Table 5: Fully e�cient estimates of the parameters for �t process when using the non-

parametric estimates of the density of the error term ⇣t.

Classic Asymmetric

� � � � �(�)

Facebook
0.858 0.049 0.904 -0.019 0.102

(7.71) (5.39) (104.54) (-5.42) (11.51)

Amazon
0.916 0.079 0.928 0.039 0.058

(294.21) (24.97) (384.91) (14.50) (20.19)

Apple
0.895 0.083 0.907 0.039 0.067

(175.42) (26.28) (238.28) (14.98) (19.60)

Google
0.911 0.046 0.924 -0.007 0.086

(49.55) (9.07) (210.14) (-3.72) (15.67)

Microsoft
0.929 0.066 0.931 0.042 0.044

(425.62) (33.04) (504.54) (22.95) (18.30)

Bitcoin
0.902 0.064 0.900 0.050 0.025

(66.59) (11.04) (67.85) (8.93) (3.78)

Note: The estimated parameters are ✓ = (�, �) for the classic specifi-

cation and ✓ = (�, �, �(�)
) for the asymmetric specification of �t. The

numbers in parentheses are the t-statistics of the corresponding param-

eter estimates.
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Table 6: Log-likelihood comparison between models using the parametric (Weibull) and

nonparametric estimates of the ⇣t density.

Weibull Nonparametric Di↵erence

classic asymmetric classic asymmetric classic asymmetric

Facebook -2171.12 -2138.88 -2148.38 -2106.34 22.74 32.55

Amazon -4947.87 -4898.92 -4908.41 -4848.90 39.46 50.01

Apple -8860.69 -8790.35 -8664.33 -8579.91 196.36 210.44

Google -4020.91 -3969.86 -3969.77 -3892.27 51.14 77.59

Microsoft -7440.48 -7398.32 -7455.04 -7404.63 -14.56 -6.32

Bitcoin -2397.82 -2389.82 -2384.46 -2379.91 13.36 9.91

Note: The numbers reported are in terms of logLL. The di↵erence is computed as logLL in

nonparametric density case minus logLL in the parametric Weibull density case.
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8.3 Testing for permanent shifts: discontinuity in g function

We test for a potential discontinuity at a given time u0 by estimating the g±(u0) functions

via the local linear approach. We then construct the test statistics ⌧(u0) to detect whether

there is a permanent shift in the illiquidity level occurring at time u0. To facilitate the

computation of the asymptotic variance of ĝ±(u0), we work with the improved estimator

obtained by smoothing out `t, i.e. `t/�̂t. We plot in Figure 5 and Figure 6 the test statistics

⌧(u0) for the five tech stocks and the Bitcoin asset over the corresponding sample period.

We start with a typical stock specific-event, a stock split, and test for permanent shifts

in the liquidity dynamics arising after stock splits. The five tech stocks we consider have

quite di↵erent corporate policies regarding shareholders and in particular their propensity

to split their stock di↵ers. In our study, Facebook never split its stock, Amazon split its

stock three times but the last time being before 2000 (perhaps coincidentally these were

all in the pre-decimal era). Microsoft split its stock 9 times in our sample period but

the last time was in 2002. Google split its stock twice in our sample in 2014 and 2015,

but not before that or since. Apple is a regular splitter with 5 splits in our sample fairly

evenly spaced in time. Each split is marked as a red dot on the curves in Figure 5 and

Figure 6. The majority of the statistics on stock split dates is outside of the 5% critical

value bands, suggesting an overall significance of the stock split events.

In addition, Table 7 provides the average test statistics for each stock on their stock

split dates together with the average across all stock split events for the four considered

stocks. Firstly, we should note that the average test statistic ⌧ is positive in all cases,

indicating an increase in stock illiquidity and thus a corresponding decrease in stock

liquidity after the splits. Secondly, we observe that the average statistic indicates a

significant di↵erence between pre- and post-split long-term trends of the illiquidity series.

This suggests that the decrease in liquidity after stock splits is permanent and significant.

To test for temporary e↵ects of stock splits on the liquidity level, we need to normal-

ize the illiquidity series using the estimated one-sided trend functions bg± (u). Once the

detrended illiquidity series are obtained, we use the consistent test developed in Section
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Table 7: Average statistics for testing permanent breaks in the liquidity series.

Amazon Apple Google Microsoft Average

⌧ 6.481 5.499 5.404 4.423 5.134

6 to test the null hypothesis that ↵1 = ↵2 = . . . = ↵J = 0 against the general alternative

semiparametric model with the assumption that the error terms follow a Weibull distri-

bution. Here, we consider a five-day window, namely from two days before until two days

after the stock split date. We report in Table 8 and Table 9 the test statistic values for the

permanent (⌧LR) and temporary (⌧SR) shifts together with the 2.5% and 97.5% quantiles

of ⌧SR which are estimated based on past data.6 We observe that the e↵ect of stock splits

on the short-term dynamics of liquidity is almost always not significant. The only two

exceptions are for Microsoft stock splits in 1991 and 1996 which were associated with a

significant short-term shift in liquidity dynamics. Therefore, our empirical evidence sug-

gest overall that stock splits of tech companies had a significant permanent e↵ect on the

long-run trend of their illiquidity process but not on the short-run dynamics.

6
Note that for the split events preceded by another one we only consider the period after the first

stock split event for the computation of the ⌧SR quantiles.
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Table 8: Test statistics for detecting permanent and temporary breaks in the liquidity

series of Amazon and Apple stocks.

Amazon

Split 1 Split 2 Split 3

Date 1998-06-02 1999-01-05 1999-09-02

Splits 02:01 03:01 02:01

⌧LR 2.58 16.72 0.15

⌧SR 19.92 4.49 -17.14

Q2.5%
SR -29.38 -30.55 -32.61

Q97.5%
SR 47.28 33.40 6.88

Apple

Split 1 Split 2 Split 3 Split 4 Split 5

Date 1987-06-16 2000-06-21 2005-02-28 2014-06-09 2020-08-31

Splits 02:01 02:01 02:01 07:01 04:01

⌧LR 7.03 3.29 12.45 1.64 3.09

⌧SR 0.18 8.51 -2.94 3.10 8.59

Q2.5%
SR -14.78 -12.81 -10.77 -11.19 -9.74

Q97.5%
SR 18.50 15.31 16.16 10.63 11.99

Note: We report the test statistic values for the permanent (⌧LR) and temporary (⌧SR) shifts

together with the 2.5% and 97.5% quantiles of ⌧SR which are estimated based on past data.
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Figure 5: Test statistics for detecting permanent breaks in the illiquidity series.
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Figure 6: Test statistics for detecting permanent breaks in the illiquidity series.
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Table 9: Test statistics for detecting permanent and temporary breaks in the liquidity

series of Google and Microsoft stocks.

Google

Split 1 Split 2

Date 2014-03-27 2015-04-27

Splits 2002:1000 10027455:10000000

⌧LR 10.17 0.64

⌧SR -2.94 8.79

Q2.5%
SR -20.58 -14.52

Q97.5%
SR 20.76 22.63

Microsoft

Split 1 Split 2 Split 3 Split 4 Split 5

Date 1987-09-21 1990-04-16 1991-06-27 1992-06-15 1994-05-23

Splits 02:01 02:01 03:02 03:02 02:01

⌧LR 12.73 5.28 2.86 2.80 2.57

⌧SR 8.58 -0.54 31.94 6.65 -6.29

Q2.5%
SR -30.60 -20.84 -16.34 -17.61 -17.06

Q97.5%
SR 24.59 20.14 26.16 17.41 20.70

Split 6 Split 7 Split 8 Split 9

Date 1996-12-09 1998-02-23 1999-03-29 2003-02-18

Splits 02:01 02:01 02:01 02:01

⌧LR 3.86 4.76 3.71 1.25

⌧SR 24.00 4.85 9.10 12.17

Q2.5%
SR -15.11 -16.06 -17.81 -19.56

Q97.5%
SR 17.04 17.55 16.24 25.43

Note: We report the test statistic values for the permanent (⌧LR) and temporary (⌧SR) shifts together with

the 2.5% and 97.5% quantiles of ⌧SR which are estimated based on past data.
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8.4 Risk premium

Amihud (2002) studies how illiquidity, captured by his illiquidity measure At introduced

in Section 2, relates to stock excess returns in both the time series and cross-sectional

dimensions. We build on this analysis to investigate the e↵ect of each component of the

S&P 500 index illiquidity process – i.e. the expected long-term and short-term compo-

nents (respectively g(t/T ) and �t) and illiquidty shocks (⇣t) – on the stock market index

excess returns (the market “risk premium”). We consider three frequencies in our analy-

sis – daily, weekly and monthly. The S&P 500 index illiquidity and log illiquidity series

together with the stock market index return data for the three considered frequencies are

plotted respectively in Figure 18, Figure 19 and Figure 20 of Appendix E.4. We note

that there exists a strong downward trend in the illiquidity process while the return series

is somewhat stationary. This suggests that the relationship between the long-run trend

of market liquidity and the stock excess return would be less significant.7 Therefore,

we focus on detrended illiquidity and market excess return series to study the e↵ect of

expected short-run illiquidity variations and unexpected illiquidity shocks on the market

risk premium.

We consider the specification from Equation (31) in Section 7 for the regression of

detrended risk premium on illiquidity components.8 The estimation results for the three

sampling frequencies considered are provided in Table 10. We observe that the estimated �

coe�cients for the short-run expected illiquidity component �t are positive and significant

which indicates that the expected market excess return is an increasing function of the

short-run expected illiquidity process. This observation is consistent with the intuition

that higher expected market illiquidity would make investors demand higher excess returns

on stocks as a compensation for gaining exposure to this source of risk. Moreover, the

estimated � coe�cients for the shock term ⇣t are negative and significant, suggesting that

7
This is confirmed by regression results based on Equation (30) introduced in Section 7. The coe�cient

estimates for the parameter b associated with the long-run trend illiquidity component are not significant.

Results are available from the authors upon request.

8
The time-varying unconditional equity premium m(t/T ) is obtained via a local linear estimator.
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the unexpected market illiquidity has a negative e↵ect on the stock excess return. This can

be explained by the fact that stock prices would likely fall when illiquidity unexpectedly

rises, thus decreasing expected returns.

Table 10: Coe�cient estimates for regressions using daily, weekly and monthly observa-

tions.

Daily Weekly Monthly

↵ �0.0007 �0.0044 �0.0513⇤⇤

(0.0005) (0.0032) (0.0176)

� 0.0017⇤⇤⇤ 0.0066⇤ 0.0561⇤⇤

(0.0004) (0.0032) (0.0177)

� �0.0010⇤⇤⇤ �0.0023⇤⇤⇤ �0.0045⇤

(0.0001) (0.0006) (0.0022)

R2 0.0068 0.0073 0.0187

Adj. R2 0.0066 0.0066 0.0161

Num. obs. 15387 2893 741

Note: We estimate the regression based on Equation (31):

Rmt�Rft�m(t/T ) = ↵+�⇥�t+ �⇥ ⇣t+ ✏t, where m(t/T )

is the time-varying unconditional equity premium. The sig-

nificance level is indicated by
⇤⇤⇤p < 0.001; ⇤⇤p < 0.01;

⇤p < 0.05.
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9 Conclusions

The motivation for this paper stems from the observation that financial market illiquid-

ity dynamics across various asset classes are driven by both low-frequency and higher-

frequency variations, which makes the stationarity assumption unreasonable for illiquidity

modelling. We develop a class of a dynamic autoregressive models that captures the slow-

varying long-term trend with a nonparametric component and the short-run variations

in the illiquidity series with an autoregressive component. We provide estimation theory

for the GMM estimator and the e�cient semiparametric ML estimator for the parametric

and nonparametric error density cases. An empirical application – using the five largest

US technology stocks and the Bitcoin asset – demonstrates the good performance of our

framework in capturing the salient features of illiquidity dynamics.

We further develop a methodology to detect the occurrence of permanent and tempo-

rary shifts in the illiquidity process at a given point in time. We apply this framework to

study how stock splits a↵ect liquidity dynamics. Clearly stock splits are only one of many

events that seem to permanently shift the stock price, quarterly earnings announcements,

new product releases, and macroeconomic news are all known to have big e↵ects on the

prices and trading volumes of these stocks in particular. Nevertheless, we do find a sig-

nificant negative e↵ect of stock splits on the long-run trend level of liquidity around the

time of the stock splits themselves, while the e↵ect on the short-run illiquidity dynamics

is not significant. Our results are broadly consistent with Copeland (1979).

Lastly, we investigate the link between stock market excess returns and the di↵erent

components of illiquidity for the S&P 500 stock market index. We show that, while ex-

cess returns are an increasing function of the expected illiquidity component, unexpected

illiquidity shocks decrease stock prices and returns. Our finding is consistent with the

findings of Amihud (2002) based on his cruder methodology.
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Appendices

A Lemmas

Lemma 1. We have bg(u)� g(u) = VT (u) + BT (u), where BT (u) is deterministic and

sup
u2[0,1]

��VT (u)
�� = OP

 r
log T

Th

!
, sup

u2[0,1]

��BT (u)
�� = O(h2).

Proof of Lemma 1. We write

bg(u)� g(u) =
1

T

TX

t=1

Kh(t/T � u)vt +
1

T

TX

t=1

Kh(t/T � u)g(t/T )� g(u) = VT (u) +BT (u),

(32)

where BT is a deterministic bias term and VT is a mean zero stochastic term. The result

follows by standard arguments.

B Proof of main results

Proof of Theorem 1. From the expansion in Equation (32), we have VT (u) =
PT

t=1 Kh(t/T�

u)vt/T, and we may show that

p
ThVT (u) =) N(0, ||K||22g(u)2�2

v),

where �2
v is the long run variance.

Proof of Theorem 2. First, note that

1

T

TX

t=1

Kh(t/T � u)
`t
�t

� g(u) =
1

T

TX

t=1

Kh(t/T � u)g(t/T )⇣t � g(u)

=
1

T

TX

t=1

Kh(t/T � u)g(t/T ) (⇣t � 1)

+
1

T

TX

t=1

Kh(t/T � u)g(t/T )� g(u)

= V +
T (u) + B+

T (u),

49



where V +
T (u) is a mean zero stochastic term, whereas B+

T (u) = BT (u) is the deterministic

bias term. The term V +
T (u) has a MDS error term and satisfies the CLT

p
ThV +

T (u) =) N
⇣
0, ||K||22g(u)2�2

⇣

⌘
.

We next show that this is the leading term.

We have
������
1

T

TX

t=1

Kh(t/T � u)
`t
b�t

� 1

T

TX

t=1

Kh(t/T � u)
`t
�t

������
=

������
� 1

T

TX

t=1

Kh(t/T � u)
`t
�t

�t(b✓, bg)� �t

�t(b✓, bg)

������

 max
1tT

�����
1

�t(b✓, bg)

�����

������
1

T

TX

t=1

Kh(t/T � u)
`t
�t

⇣
�t(b✓, bg)� �t

⌘
������

 OP (1)⇥

������
1

T

TX

t=1

Kh(t/T � u)
`t
�t

⇣
�t(b✓, bg)� �t

⌘
������

= oP (T
�1/2h1/2),

because

�t(b✓, bg) = �t(✓0, g0)�
����t(b✓, bg)� �t(✓0, g0)

���

� �t(✓0, g0)� oP (1)

by the triangle inequality and the uniform convergence of bg given in Lemma 1.

Proof of Theorem 3. We apply Chen et al. (2003). The key thing is to determine

the contribution of the nonparametric estimation to the variance of the score function.

We have

MT (✓, bg) =
1

T

TX

t=1

⇢t(✓, g0) +
1

T

TX

t=1

zt�1(b̀⇤t � `⇤t � (b�t(✓)� �t(✓))).

We consider

MT (✓, g) =
1

T

TX

t=1

⇢t(✓, g), ⇢t(✓, g) = zt�1

✓
`t

g(t/T )
� �t(✓, g)

◆
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⇢t(✓0, g0) = zt�1�t (⇣t � 1)

�t(✓, g) = 1� � � � + ��t�1 + �
`t�1

g((t� 1)/T )
=

1� � � �

1� �
+ �

1X

j=1

�j�1 `t�j

g((t� j)/T )
.

We have

M(✓, g) = lim
T!1

E
�
MT (✓, g)

�
.

We define

�2(✓, g0) � (g � g0) =
@

@⌧
M(✓, g0 + ⌧(g � g0)).

We have

�t(✓, g0 + ⌧(g � g0))� �t(✓, g0)

⌧
' ��

1X

j=1

�j�1 `t�j

g0((t� j)/T )

g((t� j)/T )� g0((t� j)/T )

g0((t� j)/T )

and so

lim
⌧!0

E


�t(✓, g0 + ⌧(g � g0))� �t(✓, g0)

⌧

�
= ��

1X

j=1

�j�1 g((t� j)/T )� g0((t� j)/T )

g0((t� j)/T )

' �g(t/T )� g0(t/T )

g0(t/T )

�

1� �

Furthermore,
`t

g(t/T ) �
`t

g0(t/T )

⌧
' � `t

g0(t/T )

g(t/T )� g0(t/T )

g0(t/T )

E

0

@
`t

g(t/T ) �
`t

g0(t/T )

⌧

1

A ' �g(t/T )� g0(t/T )

g0(t/T )

Therefore,

MT (✓, bg) = MT (✓, g0) + �2(✓0, g0) � (bg � g0)

=
1

T

TX

t=1

✓
⇢t(✓0, g0) +

1� � � �

1� �
zt�1

bg(t/T )� g0(t/T )

g0(t/T )

◆
.

We have

1

T

TX

t=1

zt�1
bg(t/T )� g0(t/T )

g0(t/T )
=

1

T

TX

t=1

zt�1
1

T

TX

s=1

Kh(s/T � t/T ) (�s⇣s � 1) +O(h2)

=
1

T

TX

s=1

(�s⇣s � 1)
1

T

TX

t=1

zt�1Kh(s/T � t/T )

' 1

T

TX

s=1

(�s⇣s � 1)E(zs�1).
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It follows that

MT (✓, bg) =
1

T

TX

t=1

✓
�t(⇣t � 1)zt�1 +

1� � � �

1� �
(�t⇣t � 1)E(zt�1)

◆
+ oP (T

�1/2).

Proof of Theorem 4. Let `⇤⇤t = `t/�t then

`⇤⇤t = g(t/T )⇣t.

The local likelihood is apart from a constant

L(g; u) =
TX

t=1

Kh(t/T � u)

 
� log g + log f

✓
`⇤⇤t
g

◆!
.

Let s1(⇣) = �f 0
0(⇣)/f0(⇣) and s2(⇣) = �((f 0

0(⇣)/f0(⇣))⇣ + 1). We have

@L(g; u)

@g
=

1

T

TX

t=1

Kh(t/T � u)

0

B@�1

g
� 1

g

f 0
⇣
`⇤⇤t
g

⌘

f
⇣
`⇤⇤t
g

⌘ `
⇤⇤
t

g

1

CA =
1

T

TX

t=1

Kh(t/T � u)
1

g
s2

✓
`⇤⇤t
g

◆

@2L(g; u)

@g2
=

1

T

TX

t=1

Kh(t/T � u)

 
�1

g2
s2

✓
`⇤⇤t
g

◆
� 1

g2
s02

✓
`⇤⇤t
g

◆
`⇤⇤t
g

!

We have

@L(g0(u); u)

@g
=

1

T

TX

t=1

Kh(t/T � u)
1

g(u)
s2 (⇣t)

@2L(g0(u); u)

@g2
' 1

T

TX

t=1

Kh(t/T � u)
1

g(u)2
s02 (⇣t) ⇣t.

We have s2 (⇣) = 1 + ⇣f 0 (⇣) /f (⇣)

E
�
s02 (⇣t)

�
=

Z
s02 (⇣) ⇣f(⇣)d⇣ = �

Z
s2 (⇣) ⇣f

0(⇣)d⇣�
Z

s2 (⇣) f(⇣)d⇣ = �
Z

s22 (⇣) f(⇣)d⇣ = �I2(f).

C Semiparametric e�ciency

C.1 Known f

Suppose that

`t = g�(t/T )�t(✓)⇣t
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�t = 1� � � � + ��t�1 + ��t�1⇣t�1

where ⇣t is i.i.d. with mean one and density f supported on R+, so that E(�t) = 1 and

E(⇣t) = 1. We suppose that g is unknown but we consider the parameterization by �. We

first suppose that f is known. Let s2(⇣) = �(1 + ⇣f 0(⇣)/f(⇣)).

Consider the log likelihood
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, (33)

⇣t(✓, �) =
`t

�t(✓, �)g�(t/T )
. (34)

Note that �t depends implicitly on �.

We have (at the true values)
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The score functions are

@L

@✓
=

TX

t=1

f 0

f
(⇣t)

@⇣t
@✓

� @ log �t
@✓

=
TX

t=1

s2(⇣t)
@ log �t
@✓

.
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(1� �L)
@�t(✓, �)
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= ut�1

@ log �t(✓, �)

@�
=

(1� �L)�1 ut�1

�t
.

Here, L is the lag operator. We next consider the score wrt �,
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.

The latter argument follows essentially because for a summable sequence { j} and smooth

function g we have
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✓
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Therefore,
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since
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(1� �L)�t = 1� � � � + ��t�1⇣t�1 = 1� � + �ut�1

�t = 1 + � (1� �L)�1 ut�1.

Therefore, the tangent space for g consists of functions of the form

Tg =

8
<

:

TX
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1

�t
h(t/T ) : h 2 L2[0, 1]

9
=

; . (37)

That is, the score wrt g is of the form
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s2(⇣t)
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h(t/T )

for some function h(.). Because of the presence of 1/�t this is di↵erent from our volatility

paper...

The e�cient score function L⇤
✓ for ✓ in the presence of unknown g (but known ') is

the residual from the projection of L✓ onto the tangent space Tg, this is
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This can be verified as for any element of Tg (indexed by h(.)) we have
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C.2 Parametric f

Now suppose that f = f', where ' is unknown and has to be estimated. Then

L(✓,', �|`1, . . . , `T ) = �
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log �t(✓, �)�
TX

t=1

log g�(t/T ) +
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log f'
�
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�
,

where f' is a density function that imposes through its parameterization the unit mean

assumption. We have
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for any parameterization of g and so the e�cient score function for ' in the presence of

unknown g is
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A special case where ' is a scale parameter, i.e.,

f'(⇣) =
1

'
f0

✓
⇣
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◆
.
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We have
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where z = ⇣/'. In that case
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In this case, the e�cient score function for ' is
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C.3 Unknown f

We next consider the semiparametric case where f is of unknown form but has unit mean.

In this case for any parameterization '
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by integration by parts. Furthermore, E(⇣2) = 1 + �2
⇣ and the result follows.

Therefore, the e�cient score function in the model where both g, f are unknown is
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Let ✓ = (�, �) and ⌘ = (✓|, �2
⇣ )

|. The log likelihood function for ⌘ based on known f, g

is
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The e�cient score for ✓ in the presence of unknown �2
⇣ but known g, f0 is
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It follows that the asymptotic variance of the MLE procedure based on known f, g is
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We next show that the score function @L⇤/@✓ is orthogonal to the scores for f, g so that

asymptotically, the semiparametric procedure with estimated f, g is first order equivalent

to the MLE with known f, g.

We suppose that

ln g(u) =
1X

j=0

 jHj(u)

ln f0(v) =
1X

j=0

↵j�j(v).

for some basis functions Hj,�j. Then

L(✓, ⌘; ,↵|`1, . . . , `T ) = �
TX

t=1

ln�t(✓)�
TX

t=1

MX

j=0

 jHj(t/T )�
TX

t=1

NX

j=0

↵j�j(zt)

zt =
`t

�t(✓) exp
⇣PM

j=0  jHj(t/T )
⌘ .

@L

@✓
=

TX

t=1

@ ln�t(✓)

@✓
s2(zt)

@L

@ 
=

TX

t=1

H(t/T )s2(zt)

60



@L

@↵
= �

TX

t=1

�(zt),

where H = (H0, . . . , HM)
|
and � = (�0, . . . ,�N)

|
and s2(zt) =

PN
j=0 ↵j�0

j(zt)zt � 1. We

have
1

T
E


@L

@✓

@L

@✓|

�
= E


@ ln�t(✓)

@✓

@ ln�t(✓)

@✓|

�
I2(f)

1

T
E


@L

@ 

@L

@ |

�
=

Z
H(u)H(u)

|
duI2(f) = IM ⇥ I2(f)

1

T
E


@L

@↵

@L

@↵|

�
= E

h
�(zt)�(zt)

|
i

1

T
E


@L

@✓

@L

@ |

�
= E


@ ln�t(✓)

@✓

� Z
H(u)

|
duI2(f) = I2(f)E


@ ln�t(✓)

@✓

�
(1, 0, . . . , 0)

1

T
E


@L

@✓

@L

@↵|

�
= E


@ ln�t(✓)

@✓

�
E
h
s2(zt)�(zt)

|
i

1

T
E


@L

@ 

@L

@↵|

�
= (1, 0, . . . , 0)

|
E
h
s2(zt)�(zt)

|
i
.
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and this score function is orthogonal to @L/@↵.
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D Risk premium regressions

We consider the population regression model

Rmt � g(t/T ) = a+ b�t + c⇣t + "t,

where in practice we replace g(.) by bg(.) and �t, ⇣t by �t(b✓), ⇣t(b✓). This does not a↵ect

consistency but does a↵ect the limiting distribution and hence standard errors. The

dependent variable e↵ect takes care of itself, the main issue is around the estimated

covariate. We argue as follows. Suppose that

yt = �|xt(✓0) + "t.

By a Taylor expansion we have
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We also have an expansion for our estimators of the form
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Then we regress byt on x⇤
t and use the linear regression standard errors.

E Other tables and figures

E.1 Estimation based on conditional moment restrictions
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Figure 7: Fab 5 and Bitcoin log illiquidity and updated trend function based on the

GMM estimator of �t parameters. The red curve corresponds to the initial estimate of

the trend function and the yellow and green curves correspond to the updated estimates

in, respectively, the symmetric and asymmetric specifications of �t.
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E.2 Estimation: i.i.d. error term with parametric density
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Figure 8: ACF of ⇣t under the symmetric specification for �t.
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Figure 9: ACF of ⇣t under the asymmetric specification for �t.
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Figure 10: ACF of ⇣2t under the symmetric specification for �t.
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Figure 11: ACF of ⇣2t under the asymmetric specification for �t.
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Figure 12: Probability integral transform (PIT) of ⇣t under the symmetric specification

for �t.
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Figure 14: Fab 5 and Bitcoin log illiquidity and updated trend function based on the

semiparametric ML estimator of �t parameters where the error term ⇣t follows a Weibull

distribution. The red curve corresponds to the initial estimate of the trend function and

the yellow and green curves correspond to the updated estimates in, respectively, the

symmetric and asymmetric specifications of �t.70



E.3 Estimation: i.i.d. error term with nonparametric density
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Figure 15: Comparison between the kernel density estimate of ⇣t (solid line) and the

Weibull density (dashed line) under the symmetric specification for �t.
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Figure 16: Comparison between the kernel density estimate of ⇣t (solid line) and the

Weibull density (dashed line) under the asymmetric specification for �t.
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Figure 17: Fab 5 and Bitcoin log illiquidity and updated trend function based on the

semiparametric ML estimator of �t parameters where the density of the error term ⇣t is

estimated nonparametrically. The red curve corresponds to the initial estimate of the

trend function and the yellow and green curves correspond to the updated estimates in,

respectively, the symmetric and asymmetric specifications of �t.73



E.4 Risk premium
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Figure 18: Daily (log) illiquidity series and return data.
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Figure 19: Weekly (log) illiquidity series and return data.
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Figure 20: Monthly (log) illiquidity series and return data.
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