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Abstract 

Machine learning and remote sensing applications to shoreline dynamics 

Martin Samuel James Rogers 

Coastal communities and land covers are vulnerable receptors of erosion, flooding, or both in 

combination. The accurate, automated, and wide-scale determination of shoreline position, and 

its migration at the engineering scale (10-1 – 102 km), is imperative for future coastal risk 

adaptation and management.  The recent increase in the acquisition and availability of Big 

Datasets, including multispectral remote sensing imagery, is providing new opportunities to 

monitor engineering scale rates of shoreline change and other constituents of coastal risk, 

including changes to human coastal population densities. This increase in data availability 

comes with novel challenges to devise and utilise methods to store, process, analyse and extract 

information from these Big Datasets. This thesis assesses the suitability of different Big Data 

approaches, namely Machine Learning (ML) and non-ML based tools, for the automated 

extraction of the coastal vegetation edge in remote sensing imagery. Compared to the 

instantaneous waterline, few vegetation edge methods have been developed and analysis of the 

coastal zone processes that can be detected using the shoreline proxy remain understudied.  

This thesis initially investigates whether non-ML methods are suitable for the extraction of the 

coastal vegetation edge from multispectral remote sensing imagery. A novel non-ML tool is 

introduced and applied, CoasTool, which considers the proximity of the instantaneous water 

line during vegetation edge extraction. CoasTool performance is compared to the outputs 

derived from well-established threshold contouring techniques and kernel-based methods as 

well as one form of ML, Support Vector Machines (SVM). Limitations in the performance of 

these tools, particularly along shorelines with discontinuous or graded vegetation boundaries, 

provide justification for the application of a separate form of ML, convolutional neural network 

(CNN), to this task. A novel CNN, VEdge_Detector, is trained and applied to extract the coastal 

vegetation edge and its outputs are compared to ground-referenced measurements and 

manually digitised vertical aerial photographs. VEdge_Detector is applied to a time series of 
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images to detect annual to decadal scale shoreline dynamics discernible using the coastal 

vegetation edge.  

Shoreline change constitutes one element of coastal risk, and this thesis subsequently 

investigates the viability of integrating multiple ML-derived datasets, pertaining to different 

aspects of risk, to calculate relative coastal population exposure to shoreline change.  The 

Guiana coastline, northern South America, is one of the most dynamic stretches of coastline in 

the world and a region where greater than 90% of its population live below 10 m elevation. 

The identification of locations where coastal populations are at greatest risk to coastal retreat 

in this region is thus very important to inform coastal risk management decisions. Accordingly, 

decadal-scale rates of shoreline change calculated using VEdge_Detector derived shoreline 

positions are combined with secondary, ML-derived, population datasets (WorldPop). The 

integration of the two ML-based datasets aids the identification of population exposure hotspot 

locations and discover, previously unpublished, locations where forced migration due to 

shoreline change has occurred.  

In concluding, the relative merits and drawbacks of using ML verses non-ML techniques to 

detect the coastal vegetation edge are discussed as well as considering the suitability of the 

coastal vegetation as a proxy of shoreline position. Further discussion is given on the different 

considerations coastal stakeholders will have when choosing the most suitable tool to use in 

shoreline detection tasks, including tool performance, speed, transparency, and ease of use. 

Remaining research gaps and future research requirements are emphasised, including the need 

for collaboration between different research institutions to suitably train and apply ML tools in 

the geosciences.  

 

 

 



vii 

 

 

 

Acknowledgements 

 

Firstly, I would like to thank my lead supervisor, Mike Bithell for the time he has dedicated to 

me throughout my PhD. He has provided unparalleled guidance and support, particularly when 

I have been overcoming, sometimes daunting, machine learning problems. I also want to thank 

my second supervisor, Tom Spencer, for his expert knowledge of coastal systems, which has 

ensured that I have remained focussed on the coastal zone questions I have been answering. 

Thank you also to Iris Möller and Geoff Smith for their support and guidance in setting out the 

original aims for my thesis, and to Sue Brooks for her expert advice on processes and datasets 

available in Suffolk.  

 

I will never forget the unique and testing period during which I have completed this PhD, 

brought on by the outbreak of Covid-19 and the associated lockdown. I will forever be thankful 

to the Cambridge Coastal Research Unit and wider members of the Department of Geography, 

University of Cambridge, for continuing to provide a sense of community via virtual zoom 

meetings and coffee breaks.  

 

Thank you finally to my partner, Jamie, who has provided me with unconditional support 

during the entirety of my PhD. From assuring and believing in me that I could do it, to telling 

me to ‘make a plan’, your support has been second to none. I look forward to our next 

challenges together with our newly adopted daughter, Paris.  



viii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

 

 

 

 

Funding Acknowledgments 

 

This work was funded through the UKRI NERC/ESRC Data, Risk and Environmental 

Analytical Methods (DREAM) Centre for Doctorial Training, Grant/Award Number: 

NE/M009009/1 and is a contribution to UKRI NERC BLUECoast (NE/N015924/1; 

NE/N015878/1). 



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

Table of contents 

 

Declaration ............................................................................................................................... iii 

Abstract ...................................................................................................................................... v 

Acknowledgments..................................................................................................................... ix 

Funding Acknowledgements ..................................................................................................... v 

Chapter 1. Coastal processes and monitoring ............................................................................ 1 

1.1. An introduction to the coastal zone and coastal shoreline change .............................. 1 

1.2. Risk in the coastal zone ............................................................................................... 5 

1.3. Big Data in the coastal zone ........................................................................................ 7 

1.3.1. Big Datasets pertaining to shoreline position ...................................................... 8 

1.3.2. Big Data applications to shoreline change ......................................................... 10 

1.3.3. Big Data applications to human dynamics in the coastal zone .............................. 13 

1.4. Thesis outline ............................................................................................................ 15 

1.5. Research questions and objectives ................................................................................ 18 

Chapter 2. Machine learning applications to coastal risk ........................................................ 20 

2.1. What is machine learning? ............................................................................................ 20 

2.2. Principles pertinent to multiple forms of machine learning.......................................... 21 

2.3. Support Vector Machines ............................................................................................. 23 

2.4. Random Forests ............................................................................................................ 25 



xii 

 

2.5. Convolutional Neural Networks ................................................................................... 27 

2.6. Machine learning applications to coastal risk ............................................................... 30 

2.6.1. Machine learning applications to coastal zone population dynamics .................... 30 

2.6.2. Machine learning applications to coastline change ............................................... 33 

2.6.3. Combining multiple aspects of risk using ML ....................................................... 37 

2.7. Thesis rationale ............................................................................................................. 37 

Chapter 3: Vegetation edge detection using Support Vector Machines and non-machine 

learning approaches ................................................................................................................. 41 

3.1. Introduction ................................................................................................................... 41 

3.2. Methods......................................................................................................................... 43 

3.2.1. Imagery used .......................................................................................................... 43 

3.2.2. NDVI threshold contours ....................................................................................... 44 

3.2.3. Edge detection operators .................................................................................... 45 

3.2.4. Validating kernel operator performance ............................................................ 46 

3.2.5. Support Vector Machines .................................................................................. 47 

3.2.6. CoasTool ............................................................................................................ 49 

3.3. Results ....................................................................................................................... 53 

3.3.1. NDVI threshold and threshold based methods .................................................. 53 

3.3.2. Edge detection operators ........................................................................................ 56 

3.3.3. Support Vector Machines .................................................................................. 65 

3.3.4. CoasTool ................................................................................................................ 67 

3.4. Discussion ................................................................................................................. 73 



xiii 

 

3.4.1. CoasTool performance ........................................................................................... 73 

3.4.2. SVM performance .................................................................................................. 75 

3.4.3. NDVI threshold contour performance ............................................................... 75 

3.4.4. Edge detection operator performance ................................................................ 76 

3.4.5. Further research requirements............................................................................ 78 

3.5. Conclusion ................................................................................................................. 80 

Chapter 4. VEdge_Detector: Automated coastal vegetation edge detection using a 

convolutional neural network .................................................................................................. 81 

4.1. Introduction ................................................................................................................... 81 

4.2. Materials and Methods .................................................................................................. 85 

4.2.1. Remote sensing imagery data sources ................................................................... 85 

4.2.2. Holistically-Nested Edge Detection (HED) training ............................................. 85 

4.2.2.1. Manual digitisation of the vegetation line .......................................................... 86 

4.2.2.2 Data Augmentation .............................................................................................. 87 

4.2.2.3. Holistically-Nested Edge Detection (HED) training .......................................... 88 

4.2.3. Validation ............................................................................................................... 90 

4.2.3.1 Validation image locations .................................................................................. 93 

4.2.4. Determining the optimum spectral band combination ........................................... 94 

4.2.5. Shoreline change detection .................................................................................... 99 

4.2.6. Comparing shoreline proxies ................................................................................. 99 

4.3. Results ......................................................................................................................... 100 

4.3.1. Manual, ground-referenced and VEdge_Detection measurements ..................... 100 



xiv 

 

4.3.2 Digital shoreline change analysis.......................................................................... 106 

4.3.3. Comparing shoreline proxies ............................................................................... 110 

4.4. Discussion ................................................................................................................... 111 

4.4.1. VEdge_Detector performance ............................................................................. 111 

4.4.2. Shoreline change analysis using VEdge_Detector .............................................. 114 

4.5. Conclusions ................................................................................................................. 116 

Chapter 5. Risk hotspots across the Guiana coastline, northern South America. .................. 117 

5.1. Introduction ................................................................................................................. 117 

5. 2. Methods...................................................................................................................... 124 

5.2.1. Study site and image selection ............................................................................. 124 

5.2.2. Image pre-processing: cloud detection and edge removal ................................... 126 

5.2.3. Shoreline detection across the Guiana coastline .................................................. 127 

5.2.3.1. VEdge_Detector ................................................................................................ 127 

5.2.3.2. Moving window algorithm ............................................................................... 127 

5.2.3.3. VEdge_Detector predictions post-processing ................................................... 129 

5.2.4. Shoreline change analysis using Landsat data ..................................................... 130 

5.2.5. Weighted Population Score.................................................................................. 130 

5.2.6. Identifying risk hotspots ...................................................................................... 131 

5.2.7. High resolution shoreline change analysis in hotspot locations .......................... 132 

5.2.7.1. Planet imagery .................................................................................................. 132 

5.2.7.2. Cloud removal in Planet imagery ..................................................................... 132 



xv 

 

5.2.8. Statistical analysis of shoreline change drivers ................................................... 133 

5.2.9. Identifying regional scale dynamics .................................................................... 134 

5.2.9.1. Correlations with Sinnamary site ...................................................................... 134 

5.2.9.2. Erosion rates near Mana.................................................................................... 134 

5.3. Results ......................................................................................................................... 135 

5.3.1. VEdge_Detector performance ............................................................................. 135 

5.3.2. NSC and EPR along the Guiana coastline ........................................................... 135 

5.3.3. Weighted Population Score.................................................................................. 142 

5.3.4. Coastal risk........................................................................................................... 144 

5.3.4.1 Coastal risk scores.............................................................................................. 144 

5.3.4.2 Annual scale shoreline dynamics ....................................................................... 146 

5.3.5. Statistical relationships between EPR and the NAO and ENSO indices ............. 152 

5.3.6. Regional scale dynamics ...................................................................................... 155 

5.3.6.1. Correlations with Sinnamary site ...................................................................... 155 

5.3.6.2. Mana ................................................................................................................. 157 

5.4. Discussion ................................................................................................................... 158 

5.4.1 Shoreline response to extraneous forcing factors ................................................. 159 

5.4.2. Shifting erosional hotspots ................................................................................... 162 

5.4.3. Identifying populations exposed to shoreline change .......................................... 163 

Chapter 6. Potential developments of machine learning to shoreline change and coastal risk

................................................................................................................................................ 164 

6.1. Is machine learning the way forward? ........................................................................ 165 



xvi 

 

6.1.1 How does tool performance compare? ................................................................. 165 

6.1.1.1. Tool accuracy and generalisability ................................................................... 166 

6.1.1.2. Specificity ......................................................................................................... 168 

6.1.2. Can shoreline detection tools cope with Big Data? ............................................. 169 

6.1.3. How onerous is it to train and develop a tool? ..................................................... 172 

6.1.4. How does it work? Peering into the “black box” of machine learning ................ 174 

6.1.5. What resolution imagery can the tools be used on? ............................................. 176 

6.1.6 So is ML the way forward? ................................................................................... 178 

6.2. Different shoreline proxies, different coastal dynamics ............................................. 179 

6.3. Perceiving coastal risk through the machine learning lens ......................................... 182 

6.4. Concluding remarks .................................................................................................... 186 

6.4.1. Machine learning in the geosciences: future potential and collaborations .......... 186 

6.4.2. Making the most of the rise in Big Data .............................................................. 188 

6.4.3. Predicting our future coast ................................................................................... 190 

References .............................................................................................................................. 193 

 

Supplemental Materials A………………………………………………………………..…214 

Supplemental Materials B………………………………………………………………......237 

 

 

 



xvii 

 

 

 

List of Figures 

 

Chapter 1: 

Figure 1.1: The different spatio-temporal scales of coastal morphological change (Cowell and 

Thom, 1984). .............................................................................................................................. 5 

Figure 1.2: Comparison of the different properties of multispectral imagery…………….….10 

Figure 1.3: Schematic of the structure of this thesis. ............................................................... 17 

Chapter 2: 

Figure 2.1: Key features pertaining to SVM ............................................................................ 24 

Figure 2.2: Overview of Random Forests (RF) architecture. .................................................. 26 

Figure 2.3: Key constituents of a CNN. ................................................................................... 28 

Chapter 3: 

Figure 3.1: Edge detection operator kernels ............................................................................ 45 

Figure 3.3: Overview of Coastal Methodology. ...................................................................... 50 

Figure 3.4: Visual representation of the two kernels used in CoasTool .................................. 52 

Figure 3.5: NDVI threshold contour outputs ........................................................................... 55 

Figure 3.6: Outputs from applying edge detection operators to NDVI and greyscale image at 

Holderness, East Yorkshire ...................................................................................................... 58 

Figure 3.7: Outputs from applying edge detection operators to NDVI and greyscale image at 

Porthallow, Cornwall ............................................................................................................... 59 



xviii 

 

Figure 3.8: Outputs from applying edge detection operators to NDVI and greyscale image at 

Blakeney, Norfolk .................................................................................................................... 62 

Figure 3.9: Outputs from applying edge detection operators to NDVI and greyscale image at 

Dunwich, Suffolk ..................................................................................................................... 64 

Figure 3.10: Outputs produced by the best performing SVM model ...................................... 66 

Figure 3.11: Cross-shore variability in NDVI pixel values for 100 rows of the NDVI image of 

Dunwich, Suffolk, UK ............................................................................................................. 67 

Figure 3.12: Cross-shore variability in pixel values at Dunwich, Suffolk............................... 68 

Figure 3.13: Vectorised CoasTool outputs .............................................................................. 70 

Figure 3.14: Histograms of error values produced by CoasTool, NDVI threshold contours and 

SVM ......................................................................................................................................... 72 

Chapter 4: 

Figure 4.1: Holistically-Nested Edge Detection (HED) architecture ...................................... 82 

Figure 4.2: Overview of the three stages of VEdge_Detector training and application .......... 86 

Figure 4.3: Transformations used in data augmentation……………………………………..88 

Figure 4.4: Example of 0.05 (yellow), 0.55 (orange) and 0.95 (red) confidence contours 

produced by VEdge_Detector .................................................................................................. 91 

Figure 4.5: CNN predictions when trained with different spectral band combinations at Cromer, 

UK. ........................................................................................................................................... 96 

Figure 4.6: CNN predictions when trained with different spectral band combinations at Varela, 

Guinea-Bissau .......................................................................................................................... 97 

Figure 4.7: CNN predictions when trained with different spectral band combinations on the 

Frisian Islands, Germany ......................................................................................................... 98 



xix 

 

Figure 4.8: Comparison of VEdge_Detector tool predictions to field measurements of 

vegetation line ........................................................................................................................ 102 

Figure 4.9. VEdge_Detector outputs at sites where ground-referenced measurements were not 

collected. ................................................................................................................................ 105 

Figure 4.10: (a) VEdge_Detector outputs for a 2010 (red) and 2020 (purple) image of the 

Covehithe cliffs, Suffolk ........................................................................................................ 107 

Figure 4.11: Shoreline change at Covehithe, Suffolk using VEdge_Detector outputs .......... 108 

Figure 4.12: Comparison of Net Shoreline Change (NSC) values generated using 

VEdge_Detector 0.95 confidence contours and manually digitised aerial imagery .............. 109 

Figure 4.13: Comparison of the change in the position of the water and vegetation line at three 

transects, (a) – (c), across the Covehithe cliffs between 2010 and 2020 ............................... 110 

Chapter 5: 

Figure 5.1: Global distributions of population densities and rates of shoreline change ........ 118 

Figure 5.2: Population densities and locations with recorded rates of shoreline change greater 

than 1500 m between 1984 and 2015 across the Guiana coastline ........................................ 120 

Figure 5.3: Study site of the Guiana coastline ....................................................................... 125 

Figure 5.4. Overview of the steps taken to calculate rates of shoreline change, population 

densities and risk indices in the Guiana Coastal zone………………………………………126 

Figure 5.5: Cloud detection in Landsat imagery. ................................................................... 127 

Figure 5.6: Waterline produced using NDWI threshold contouring method ......................... 129 

Figure 5.7: Comparison of the at-sensor radiance of pixels in red and NIR wavebands 

pertaining to locations with (blue) and without (green) clouds cover ................................... 133 

Figure 5.8: Net shoreline change across the Guiana coastline between 1990 and 2020 ....... 137 

https://nercacuk-my.sharepoint.com/personal/marrog_bas_ac_uk/Documents/Documents/phd/Rogers_PhdThesis_amended.docx#_Toc98355936
https://nercacuk-my.sharepoint.com/personal/marrog_bas_ac_uk/Documents/Documents/phd/Rogers_PhdThesis_amended.docx#_Toc98355942


xx 

 

Figure 5.9: End point rates along the shoreline of Guyana.................................................... 138 

Figure 5.10: End point rates across the shoreline of Suriname.............................................. 139 

Figure 5.11: End point rates across the shoreline of French Guyana .................................... 140 

Figure 5.12: Histogram of end point rates across the Guiana coastline................................. 142 

Figure 5.13: Population living within 10 km of each transect along the Guiana shoreline ... 143 

Figure 5.14: Variation in Risk Index across the Guiana coastline ......................................... 145 

Figure 5.15: Vegetation line position identified by VEdge_Detector at Sinnamary, French 148 

Figure 5.16: Vegetation line position at Paramaribo, Suriname ............................................ 150 

Figure 5.17: Vegetation line identified by VEdge_Detector at Shell Beach, Guyana ........... 152 

Figure 5.18: Comparison or NAO index, ENSO index and rates of shoreline change.......... 153 

Figure 5.19: Scatter plots of EPR verses NAO index ............................................................ 154 

Figure 5.20: Locations (in green) where end point rate (EPR) values had a strong positive 

correlation with EPR values at Sinnamary, French Guyana .................................................. 156 

Figure 5.21: Comparison of EPR values for each of the four time periods within the study near 

Mana ...................................................................................................................................... 157 

Chapter 6: 

Figure 6.1: Relative speed of five tools used in this thesis to detect the position of the coastal 

vegetation edge ...................................................................................................................... 170 

 

 

 

https://nercacuk-my.sharepoint.com/personal/marrog_bas_ac_uk/Documents/Documents/phd/Rogers_PhdThesis_amended.docx#_Toc98355949


xxi 

 

 

List of Tables 

Chapter 1: 

1.1: Key characterises of Big Data ............................................................................................ 7 

Chapter 3: 

3.1: Locations and key features of images used in this chapter. .............................................. 44 

3.2: Difference between NDVI contours and manually digitised vegetation lines. ................ 54 

3.3: Sobel, Laplacian, Roberts and Canny edge detection operator performance at the five test 

sites .......................................................................................................................................... 57 

3.4: Comparison of CoasTool, NDVI threshold contours and SVM contour error values ..... 71 

Chapter 4: 

4.1: Locations of Holistically-Nested Edge Detection validation images ............................... 94 

4.2: VEdge_Detector accuracy at the three field sites ........................................................... 101 

4.3: VEdge_Detector accuracy at the four validation sites .................................................... 104 

Chapter 5: 

5.1:Correlation between shoreline change rates and extraneous forcing factors at Sinnamary 

and Paramaribo ...................................................................................................................... 154 

 

 





1 
 

 

 

 

Chapter 1. Coastal processes and monitoring 

 

1.1. An introduction to the coastal zone and coastal shoreline 

change 

Coastal zones are located at the interface between land and sea, and are composed of either 

rocky (Finkl, 2004), sandy (Scott et al., 2011), or muddy (Allen, 2000) substrate, providing 

habitat for complex ecosystems (Barbier et al., 2011). Their composition includes subtidal, 

supratidal and intertidal zones, each of which is inundated by water at different frequencies 

and durations, which are in turn connected to the continental shelf and more inland regions 

(Swift, 1974). The Low Elevation Coastal Zone (LECZ) is defined as the contiguous areas 

of land bordering the sea up to 10 m in elevation (McGranahan et al., 2007). The LECZ 

covers approximately 2% of the Earth’s land mass but contains 10-15% of the global human 

population (Liu et al., 2013; Oppenheimer and Hinkel, 2018). Coastlines provide global 

benefit; on the oceanic side human civilisations have benefitted from fisheries and 

aquaculture (FAO, 2015; Blanchard et al., 2017), energy production (Reguero et al., 2015), 

trade (OECD, 2013), and tourism (Spalding et al., 2017). In adjacent coastal zones, flat 

topography, fertile land and freshwater sources has enabled agriculture, industry and 

urbanisation (Neumann et al., 2015; Corine Land Cover, 2018). Coastal habitats also 

provide a range of ecosystem services, including tourism, recreation, carbon sequestration 

and educational opportunities (Barbier et al., 2011). Despite their benefit, coastlines are 

dynamic and changeable. 

Meteorological, hydrological, geomorphological, and anthropogenic forces can shape the 

coastline. Coastal change associated with meteorological events include low pressure 

weather systems, storms and hurricanes (Plant and Stockdon, 2012; Brooks et al., 2016). 

Marine hydrological impacts on the coastline are primarily associated with elevated sea 
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levels that can inundate coastal regions, caused by long-term, chronic global mean sea-

level rise (SLR) (Rahman et al., 2011; Passeri et al., 2015; Le Cozannet et al., 2019), and 

shorter-term acute processes, including storm surges (Brooks et al., 2016), wave height and 

direction (Vitousek et al., 2017) and tides (Pugh, 2004). Geomorphological processes cause 

coastal change via cliff failure and landslide (Hapke and Plant, 2010), fluvial sediment 

supply (Allison and Lee, 2004) and cross-shore sediment transport (Jackson et al., 2005; 

Bergillos et al., 2017). Finally, human activity can influence coastal morphology via 

construction (Basco, 2006), land reclaimation and artificial sediment abstraction or 

nourishment (Stronkhorst et al., 2018).  

Major inter-annual atmospheric-oceanic circulations drive weather and climate patterns 

across coastal regions, including the El Niño Southern Oscillation (ENSO) and the North 

Atlantic Oscillation (NAO) (Hurrell and Deser, 2010; Barnard et al., 2015). ENSO is driven 

by differences in sea surface temperature and meteorological pressure between the east and 

west tropical Pacific (Wardlaw et al., 2007; Santoso et al., 2017) and is attributable to ±0.4 

m differences in water level elevation (Barnard et al., 2015). Negative Southern Oscillation 

Index (SOI) years (El-Niño) correspond with warmer waters in the Eastern Pacific, causing 

stormier conditions in South America and drier conditions in Australia, conversely positive 

SOI (La-Niña) years commonly correspond to the reverse (Ropelewski et al., 1986). NAO 

is dependent upon meteorological pressure differences between the subpolar (Iceland) and 

subtropical (Azores) Atlantic Ocean (Hurrell and Deser, 2010). Strong positive phases of 

the NAO correspond to increases in precipitation, storminess, wave conditions and mean 

surface water elevations in the UK and Northern Europe (Olsen et al., 2012). Conversely, 

colder and drier conditions are commonly observed during negative phases of the NAO 

(Hurrell and Deser, 2010). In addition to oceanic circulations, there are astronomical cycles 

that have major implications on tidal height. The most well-known of these events are the 

diurnal to semi-diurnal cycles (Short, 1991), spring-neap 28-day cycles, and the 18.6 year 

lunar cycle which globally affects tidal range by an average of 2.2 cm (Baart et al., 2011). 

These external forcing factors are perturbed by anthropogenic climate change and 

associated SLR (Slangen et al., 2016). 

Anthropogenic climate change and SLR affect coastal storm magnitude and frequency 

(Committee on Climate Change (CCC), 2018), and NAO and ENSO magnitude and 

direction (Cai et al., 2015); however, the degree to which anthropogenic actions perturb 
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these processes remains an area of active investigation. Tidal gauges have measured an 

average increase in sea levels of 1.81 mm yr-1 in the last century (Church and Clarke, 2013, 

p.1138; Wadey et al., 2014); and SLR rates since 1990 are double those since 1900 

(Oppenheimer et al., 2019). SLR reduces the ‘freeboard’ between sea levels and coastline 

elevations, meaning the same magnitude storm event more severely impacts the coastal 

zone (Haigh et al., 2016). Coastlines with high tidal ranges contain intertidal habitats which 

are already exposed to large fluctuations in water height, potentially making them more 

resilient to SLR (Kirwan and Guntenspergen, 2010; Schuerch et al., 2018), but it is 

unknown where the greatest rates of coastline change rates due to SLR will be. In locations 

where human shoreline modification structures, such as sea walls, have been constructed, 

intertidal habitats may be subject to ‘coastal squeeze’, whereby they cannot migrate inland, 

restricting their ability to respond to SLR (Pontee, 2013). Some coastlines also exhibit a 

self-regulating response to SLR and other external forcing factors, caused by the presence 

of feedback loops.   

Feedback loops exist between external forcing factors, sediment movement and coastline 

change dynamics (Cowell and Thom, 1994), which influences how a shoreline responds to 

the same external forcing factor. Antecedent coastline position, geology and topography 

influences how external forcing factors move sediment, or cause water inundation 

(Loureiro et al., 2012; Stokes et al., 2020), producing spatial heterogeneity in coastline 

response to the same external forcing factors (Loureiro et al., 2012; Robinet et al., 2020). 

Coastline position and morphology affects the frequency, extent and duration of coastal 

zone inundation by dissipating wave height and energy (Dongeren et al., 2007; Shepard et 

al., 2011; Möller et al., 2014), or by facilitating wave height build-up and directional change 

(Stokes et al., 2020). Coastlines may retain a dynamic equilibrium by accumulating 

sediment lost during storm events, via cross-shore connectivity, in meteorologically calmer 

periods (Short and Jackson, 2013). Coastal morphology can moderate or amplify the 

impacts of both coastal flooding and erosion, highlighting the need to study coastline 

evolution at a nested range of spatio-temporal scales.  

Coastline change can occur instantaneously, driven by individual wave events, through to 

millennial scale change, caused by fluctuations in mean sea levels driven by glacial- inter-

glacial cycles (Cowell and Thom, 1984; Miller and Dean, 2004). The “engineering scale” 

relates to coastal change at monthly to centennial timescales (10-1 – 102 years), along 
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regional to national stretches of coastline (100 – 102 km) (Cowell and Thom, 1994; Figure 

1.1). Coastal dynamics at this scale can acutely impact upon coastal zone receptors, 

including coastal communities, land covers and intertidal habitats (Miller and Dean, 2004), 

and human activities in the coastal zone can profoundly affect engineering scale coastal 

dynamics (Cowell and Thom, 1984). The alongshore connectivity of coastlines means 

engineering-scale dynamics should be monitored both in isolation, and when nested within 

supra-national to global scale dynamics (Dawson et al., 2009).     
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Figure 1.1: The different spatio-temporal scales of coastal morphological change (Cowell 

and Thom, 1984). 

Globally, coastlines are thought to be eroding faster than they are accreting (Pekel et al., 

2016; Mentashi et al., 2018; Luijendijk et al., 2018; Vousdoukas et al., 2020), although net 

rates of change remain disputed (Cooper et al., 2020). The impacts of recent major disasters 

in the coastal zone highlight their severity to human populations and land covers (CCC, 

2018). For example, the 2013 North Sea Storm surge event caused flooding to over 2500 

properties in the UK (Environment Agency, 2016), and since the year 2000, hurricanes 

have caused more than USD $50 billion of damage to coastal regions in the USA 

(Klotzbach et al., 2018). In coastal zones globally, 4.6% of the world’s population are 

projected to be flooded annually by 2100 without the implementation of measures to reduce 

these impacts (Hinkle et al., 2014).  The strong linkages between shoreline position and 

coastal flooding and erosion emphasises how coastline change is an important concept 

assessing the impacts of coastal hazards to coastal receptors.  

 

1.2. Risk in the coastal zone 

Coastal risk is defined as the probability of a natural event occurring and the severity of the 

corresponding impacts to receptors in the coastal zone (Kron, 2013; Rumson et al., 2018). 

There are three main constituents of risk: hazard, exposure and vulnerability. A hazard is a 

natural occurrence which has the potential to cause adverse impacts to receptors in the 

coastal zone (Dawson et al., 2009); but risk only arises when there are vulnerable receptors 

exposed to it (Kron, 2013). Exposure is the presence and socio-economic ‘value’ of all 

receptors which could be adversely impacted by the natural hazard, including population 

density, businesses, infrastructure, agricultural land and ecological sites (Penning-Rowsell 

et al., 2014; Calli et al., 2017). Without the presence of human populations or other 

receptors exposed to the natural hazard, there is no risk (Kron, 2013). Vulnerability relates 

to physical, socio-economic, political and environmental factors that determine a receptor’s 

susceptibility to the impact of hazards, including health, wealth and mobility (Dwyer et al., 

2004; McLaughlin and Cooper, 2010; Bukvic et al., 2020). The two most prevalent and 

destructive forms of hazard to coastal zone receptors are flooding and erosion (Kron, 2013).   
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The current global impacts of coastal zone flooding (Dawson et al., 2009), and their rate of 

increase (Vitousek et al., 2017), are an estimated order of magnitude greater than erosion; 

but coastline position and dynamics are a key constituent of risk to both coastal flooding 

and erosion (Section 1.1; Möller et al., 2014). Coastal flood risk schemes, which frequently 

have not considered changes to coastline position and morphology, have inadvertently 

exacerbated coastline change rates in adjacent regions by affecting the rate and direction of 

alongshore sediment movement (Kench, 2013; Nunn et al., 2021); highlighting the 

interconnected nature between flooding, erosion and coastline position. Section 1.4. 

outlines the main methods by which shoreline position and its change over time can be 

monitored. 

The impacts of coastline change can only be assessed by concurrently determining the 

receptors, including human populations, exposed to the hazards.  Increases in coastal risk 

have primarily been attributed to population growth in the coastal zone, instead of an 

increase in the frequency or intensity of hazards (Pielke et al., 2008; Neumann et al., 2015; 

Klotzbach et al., 2018). Population growth rates in LECZ’s are double those in the 

hinterlands (McGranahan et al., 2007; Neumann et al., 2015), and coastal populations are 

projected to increase from over 710 million people in 2015 (Colenbrander et al., 2019) to 

greater than 1.1 billion by 2100 (Merkens et al., 2016; Brown et al., 2018; Kulp and Strauss, 

2019). In some countries, including island states and countries in northern South America, 

the entire urban population live in the LECZ, reducing the infrastructure available to 

support any inland migrations forced by coastal hazards (Colenbrander et al., 2019).  

Measures are required to enable populations in the coastal zone to mitigate and adapt to the 

impact of coastal hazards, including increased storminess and coastline change.   

Factual evidence is required to determine the coastal populations at greatest risk from 

coastline change (Rumson and Hallett, 2018). Information is needed about a range of 

disparate processes, from population demographics to historic and current coastline change 

dynamics. The multifaceted, constantly evolving nature of coastal risk highlights the need 

for multi-dimensional, high spatio-temporal resolution data to make evidence-based risk-

management decisions and inform operational-level emergency response procedures 

(Meyer et al., 2013; Smith et al., 2017). Datasets pertaining to coastal risk are becoming 

increasingly publicly accessible, providing new opportunities to gain insight on levels of 

coastal risk (Rumson and Hallett, 2018; Pollard et al., 2018).   
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1.3. Big Data in the coastal zone 

Big Data refers to datasets containing certain traits, most pertinently high volume, high 

velocity (data collected and available in near real time) and high variety (containing 

structured and unstructured data) (Miller and Goodchild, 2015; Kitchen and McArdle, 

2016). Although no specific definition of Big Data has been unanimously agreed upon, a 

range of traits have been devised that distinguish Big Data from other large-volume datasets 

(Table 1.1). Suitable methods are required to store, pre-process, analyse, visualise and 

extract knowledge from high-volume, high-velocity coastal datasets (Li et al., 2016; Pollard 

et al., 2018). This section provides an overview of key datasets pertaining to the two aspects 

of risk explored within this thesis: shoreline change and coastal zone populations. The 

approaches employed to extract information and knowledge pertaining to shoreline change 

and coastal zone populations from Big Data is then explored.  

 

Table 1.1: Key characterises of Big Data, and descriptions of differing levels of these traits. 

Columns provide a description of a dataset having low, medium or high degrees of each 

trait. For example, a dataset with low temporal coverage (column 1) may only have entries 

spanning one month, but a dataset with high temporal coverage (column 5) will have 

centennial scale records.   
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1.3.1. Big Datasets pertaining to shoreline position 

Datasets used to monitor shoreline position and dynamics can be split into three main 

categories: satellite remote sensing imagery, unmanned aerial vehicles (UAVs) 

photographs and ground-referenced measurements (Boak and Turner, 2005). Remote 

sensing relates to the acquisition of imagery of the Earth’s surface using devices not in 

contact with the target (Boak and Turner, 2005; Toure et al., 2019). Multispectral remote 

sensing imagery is captured by passive sensors and records the intensity of electromagnetic 

radiation reflected and emitted from the Earth’s surface. Radiation intensity is monitored 

at discrete wavebands, including red, green, blue (RGB) and near infrared (NIR) (Gao, 

1996; McFeeters, 2013). Remote sensing can refer to imagery captured using UAVs and 

satellite platforms (Toure et al., 2019), but this thesis only refers to satellite imagery when 

using the term remote sensing.  The spatial-temporal resolution and coverage of UAV and 
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remote sensing imagery varies depending upon the platform used to capture the image 

(Figure 1.2).  

 

Figure 1.2: Comparison of the different properties of multispectral imagery captured from 

UAVs and the four satellite platforms used in this thesis: PlanetScope, RapidEye, Sentinel 

II and Landsat 5 – 8 (Marta, 2018; European Space Agency (ESA), 2021; United States 

Geological Survey (USGS), 2021). *: the number of spectral bands and spatio-temporal 

resolution of imagery captured using UAVs will depend upon the UAV used and the 

frequency of data collection. ** RapidEye was decommissioned in 2020, but images were 

captured approximately every week until this date. 

One of the world’s largest ground-referenced datasets of coastline position is the repository 

of cross-shore elevation profiles (EP) collected by the Environment Agency, which is an 

executive, non-departmental public body, sponsored by the Department for Environment, 

Food and Rural Affairs (Defra) (Environment Agency, 2010; Environment Agency, n.d).  

This monitoring programme has collected high veracity (± 10 mm positional accuracy), 

biannual profiles along the East Coast of England at 0.5 km transect intervals since 1991 

(Environment Agency, 2010; Environment Agency, n.d). The EP dataset, therefore, 

contains high volume, veracity and temporal coverage, but contains other Big Data traits to 

a lesser degree than remote sensing imagery (Table 1.1).   

Some Big Data traits contained more within remote sensing imagery than EP, which are 

useful in engineering-scale studies of coastline change, are exhaustivity, scalability and 

velocity. The EP dataset has low exhaustivity, because it contains samples from discrete 
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locations, rather than capturing an entire system, meaning shoreline positions must be 

interpolated between these discrete monitoring locations. Remote sensing provides more 

consistent spatial coverage of a study area (Cenci et al., 2018). The low scalability in EP 

data exists because data is only located within a finite location (Humber to Thames Estuary, 

England) (Environment Agency, n.d.), meaning coastal dynamics outside of the study area 

are not captured. Except for high latitude regions, most satellite platforms provide imagery 

of the entire globe, including locations which are inaccessible or dangerous to get to 

(Gorelick et al., 2017).  EP samples contain low velocity because they are only collected 

every six months. This precludes the use of the dataset to, for example, determine the 

impact of an individual storm event, unless data was fortuitously collected in the immediate 

aftermath of the event. Some satellite platforms now collect daily remote sensing imagery, 

which is made publicly available within 24 hours (Marta, 2018), making it suitable to 

investigate the impact of storm events (Splinter et al., 2018), if suitably cloud-free imagery 

is available. As such, whilst the use of remote sensing imagery should never replace the 

collection of ground-referenced measurements of shoreline position, satellite imagery 

provides the best opportunity to monitor shoreline position and change at the engineering 

scale. It is necessary, therefore, to explore the range of methods available to extract the 

shoreline position from remote sensing imagery.   

1.3.2. Big Data applications to shoreline change 

Methods are required to extract engineering to global scale shoreline position from remote 

sensing imagery.  The coastlines of smaller (100 – 101 km) study areas have been manually 

digitised (Ferreira et al., 2006; Theiler et al., 2013) but these methods are unpractical and 

time-consuming when applied to Big Datasets consisting of coastlines longer than 10 km, 

or to multiple short stretches of coastline, meaning automated techniques are required. 

Before applying automated shoreline detection techniques, it is necessary to determine 

which feature will be extracted to represent coastline position (Toure et al., 2019).   

A shoreline proxy is a visibly discernible feature in multispectral remote sensing imagery 

(Boak and Turner, 2005). Shoreline proxies can be broadly classified into coastal zone 

geomorphological, vegetation, water or human features (Toure et al., 2019; Pollard et al., 

2020). The instantaneous waterline position is the dominant shoreline proxy extracted from 

optical remote sensing imagery (Boak and Turner, 2005), because it is present in all coastal 

zones and closely relates to the coastline as the land-water interface (Vos et al., 2019a). 
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However, collating a time-series of instantaneous water line position in isolation does not 

necessarily provide an indication of engineering-scale net shoreline migration. The 

amplitude of horizontal change in waterline position caused by diurnal or semi-diurnal tidal 

cycles can vary depending on beach gradient, which in turn is often linked to beach 

sediment size and sorting (McLean and Kirk, 1969; Komar, 1998). So, depending on where 

in the tidal frame the image was captured, tidal range potentially has a greater effect on 

waterline position than decadal shoreline accretion or erosion (Pugh and Woodworth, 

2014). Crucially, this means large-scale changes in waterline position may have no bearing 

on the level of risk coastal population face to coastline change, erosion and flooding.  

Methods have been devised to try and overcome these limitations in detecting the waterline 

position from remote sensing imagery. The mean waterline position has been extracted 

from multiple, temporally adjacent, images (Almonacid-Caballer et al., 2016) but this 

removes the ability to detect short-term variability and, even then, there are spring-neap, 

equinoctial and nodal tide cycles operating at different timescales. Waterline position can 

be tidally corrected by considering slope profile and tidal stage during image capture (Vos 

et al., 2019a); although approximate slope profiles are required when concurrent datum-

based measurements are not available.  Thus, given the difficulties of deriving a robust 

waterline position indicator, there is potential value in seeking out alternative shoreline 

proxies from remote sensing imagery to quantify temporal rates of shoreline change.  

The vegetation line represents the most seaward extent of plant species and communities 

(Allen, 2000; Miller et al., 2010). It can be flood-responsive, representing the limits to 

spring high tide flooding, or erosion-responsive, delineating the boundary between the 

upper beach and the base of sand dunes or soft rock cliffs (Pollard et al., 2019b; Toure et 

al., 2019). The proxy remains heavily understudied compared with the waterline (Toure et 

al., 2019), because it commonly forms a discontinuous and heterogeneous boundary. The 

vegetation line, however, is more stable than the waterline, and can provide insight into 

backshore dynamics, which are processes associated with extreme wave and tide events, 

and which cannot be detected by focussing solely on the land-water interface 

(Grzegorzewski et al., 2011; Toure et al., 2019). Vegetated coastal ecosystems, including 

sand dunes and salt marshes, commonly act as the first line of defence for landward coastal 

populations (Grzegorzewski et al., 2011; Wagner et al., 2017). Vegetation line position and 

dynamics are therefore intrinsically linked to the current and future risk of populations to 
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coastal hazards which justifies the development of new automated methods for its 

detection.    

Automated methods used to extract the waterline, which have yet to be applied to 

vegetation edge detection include threshold contouring, classification of land covers and 

kernel-based operators. Threshold contouring applies a discrete value to a spectral band, or 

combination of bands, and contours at this value to estimate coastline position (McFeeters, 

1996; Hagenaars et al., 2018). Land cover classification clusters remote sensing image 

pixels into discrete groups, corresponding to different land cover classes, including water, 

vegetation, sand and urban categories (Pekel et al., 2016). Kernel-based operators pass a 

filter, commonly a 3 × 3 grid, over the image to identify locations with the greatest gradient 

change in spectral values (Pardo-Pascual et al., 2012). Classification and threshold 

contouring are discussed in more detail in Chapter 3, and kernel-based methods are 

described in Chapters 2 and 3. There is a need to determine the performance of these well-

established tools against other newly emerging tools, namely machine learning.    

Machine learning (ML) is a Big Data approach that identifies patterns and relationships in 

datasets (Goodfellow et al., 2016). ML tools are inductive and determine relationships 

between inputs and outputs to derive predictions (Goldstein et al., 2019; Kim et al., 2019). 

This inductive reasoning distinguishes ML tools from the above-mentioned methods that 

require human input to manually define rules (Jordan and Mitchell, 2015). For example, 

the threshold-value in threshold contouring (Vos et al., 2019b), and the number of classes 

in image classification (Wickham et al., 2013), both require inductive reasoning. ML may 

overcome the limitations of other tools where the heterogeneity of the spectral properties 

of coastal features, forces manual rules in non-ML tools to be iteratively updated (Liu et 

al., 2019). This could frustrate the automated nature of non-ML tools detecting the coastal 

vegetation edge, because the spectral properties of the coastal vegetation will vary 

substantially due to differences in vegetation species, phenology, composition and density 

(Unberath et al., 2019). However, despite their perceived advantages, ML tools have been 

criticised for being difficult to train and interpret (Rudin, 2019).  

ML tools are often considered to be ‘black box’ tools, where it is not easy to determine how 

they derive their outputs (Rudin, 2019). Inconsistencies in ML tool performance may also 

be difficult to explain, where a ML tool accurately predicts outputs from one dataset but 

cannot generalise to others (Jabbar and Khan, 2015). An ML tool is considered to be 
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‘fragile’ when the output predictions for two separate, but similar, images varies greatly 

(Jabbar and Khan, 2015). In edge detection this could lead to, for example, a trained ML 

tool being able detect shoreline position in one set of remote sensing images but not in other 

images. Poor or inconsistent performance in ML is commonly attributed to the tool not 

being exposed to a sufficiently large dataset to learn patterns (Saravanan et al., 2018).  It is 

unknown whether there is a sufficient quantity or variety of remote sensing data available 

to train a ML tool to automatically detect the coastal vegetation edge, or whether the volume 

of imagery required is too large to make the task feasible. Further investigation will help 

determine whether ML or non-ML tools are more suitable for the automatic detection of 

the coastal vegetation edge in remote sensing imagery. ML tools and their applications to 

coastal risk are described in more detail in Chapter 2.  

 

1.3.3. Big Data applications to human dynamics in the coastal zone 

Alongside shoreline change dynamics, there is a need to identify the size and distribution 

of the population exposed to this hazard. Identifying coastal populations at greatest risk to 

shoreline change is necessary because financial, infrastructural, technical, and physical 

barriers prevent the implementation of many mitigation and adaptation schemes that would 

reduce the impacts of shoreline change to coastal populations (Hinkel et al., 2014). A 

limited source of funding poses the main barrier to the implementation of schemes to reduce 

the impacts of shoreline to coastal communities (Hinkel et al., 2018), particularly when 

stakeholders disagree on who should pay (Aerts et al., 2014), which receptors are the most 

important to protect (Barquet and Cumiskey, 2018) or whether the costs of a scheme 

outweighs the benefits (Hinkel et al., 2014; Penning-Rowsell et al., 2014; Hinkel et al., 

2015). These barriers highlight the importance of identifying suitable datasets and Big Data 

approaches to that can identify populations at greatest risk to coastline change to target risk 

reduction schemes.  

Two datasets providing information on coastal zone population are the census (e.g. Office 

for National Statistics (ONS), 2021), and auxiliary data e.g. night light and land cover maps, 

which provide a proxy of population density (Stevens et al., 2015). The census is a well-

cited example of a large-volume dataset of population dynamics which does not contain 

many other Big Data characteristics Kitchin and Lauriault, 2015).  The UK census dates 
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back to 1801, providing unrivalled temporal coverage (ONS, 2021), and high exhaustivity 

of the UK population system (Kitchin and Lauriault, 2015); but census data is only 

collected every ten years in the UK (low velocity), is inconsistently collected between 

nations (low relationality), and is spatially aggregated when made publicly available 

(coarse spatial resolution) (Fotheringham and Wong, 1991). The lack of some Big Data 

traits within census data has previously limited its use in coastal risk studies, for example 

it could not be used to detect localised human landwards migration caused by coastal 

hazards (Hauer et al., 2019), prompting the use of other population datasets in coastal risk 

studies. 

Datasets which could provide a proxy of population density include night light maps, road 

and infrastructure network maps, and multispectral remote sensing imagery classified into 

different land cover (Stevens et al., 2015; Tatem et al., 2018). Machine learning based 

methods available to generate gridded population density maps from these auxiliary 

datasets are detailed in Section 2.7.1. Compared to the census, these auxiliary datasets 

generate higher velocity, higher variety and finer spatio-temporal resolution population 

data; but they contain lower temporal coverage and do not capture the entire population: 

for example, informal settlements that have little permanent street lighting (low veracity) 

(Wang et al., 2019). The high veracity of census data means it remains a robust information 

source in locations where population growth has remained stable (Jäger et al., 2018); 

however, where census data is missing, or an area experiences rapid population 

accumulation, other datasets containing Big Data traits may be more suitable.  

In summary Big Datasets such as satellite remote sensing imagery and auxiliary datasets 

are opening new opportunities to monitor changes in shoreline position and coastal zone 

populations with higher spatial-temporal frequency and coverage. For example, terabytes 

of remote sensing imagery is collected every day, enabling regular monitoring of shoreline 

dynamics and coastal zone populations over spatial scales for which it is unfeasible to 

collect ground-referenced measurements (Gorelick et al., 2017; Tamimina et al., 2020). 

The high velocity of Big Datasets also provides promise in detecting the impacts of coastal 

hazards or forced human migrations in real-time, which could be very informative for 

affected communities and risk-management authorities (Pollard et al., 2018). Appropriate 

methods are required to extract knowledge and information from these Big Datasets. 

Machine learning based approaches have been shown to provide insight from Big Data in 
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a range of disciplines spanning medicine and navigation (Jordan and Mitchell, 2015), yet 

applications into coastal zone dynamics remain relatively under explored. Further 

investigation is required to determine the additional knowledge, pertaining to coastal risk, 

which can be gleaned using Big Datasets and Big Data approaches such as machine 

learning.   

 

1.4. Thesis outline 

This thesis assesses the suitability of different ML and non-ML based tools for the 

automated extraction of the coastal vegetation edge in remote sensing imagery. The 

viability of integrating multiple ML-derived datasets, pertaining to different aspects of risk, 

is investigated.  

Chapter 2 provides a description of the key forms of ML used in this thesis. It reviews 

current applications of ML to different aspects of coastal risk, including coastal hazards, 

namely flooding and erosion, receptor vulnerability and exposure. ML applications to 

coastal risk are in their infancy, and this chapter highlights persisting research gaps which 

are explored in the rest of the thesis.   

The framework for data Chapters 3, 4 and 5 is visualised in Figure 1.3.  Chapter 3 

investigates whether non-ML methods are suitable for the extraction of the coastal 

vegetation edge from multispectral remote sensing imagery. A novel, non-ML tool is 

introduced and applied, CoasTool, which considers the proximity of the instantaneous 

water line during vegetation edge extraction. The tool is applied to four locations across 

the United Kingdom, representing different forms of intertidal habitat and morphology. 

These results are compared to outputs derived from well-established threshold contouring 

techniques, kernel-based methods and one form of ML, Support Vector Machines (SVM). 

The first research question thus investigates the relative performance of these different ML 

and non-ML tools in identifying the position of the coastal vegetation edge via remote 

sensing imagery.  

The results of Chapter 3 provide justification for further training and application of a 

separate form of ML, convolutional neural network (CNN), to this task. Chapter 4 trains 

and applies a novel CNN, VEdge_Detector, for the automated extraction of the coastal 
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vegetation edge. A dataset containing greater than 30,000 images is generated to train 

VEdge_Detector. To assess performance, VEdge_Detector outputs are compared to 

ground-referenced measurements and manually digitised vertical aerial photographs across 

seven test sites. VEdge_Detector is used to identify the vegetation edge in satellite images 

of soft rock cliff margins at Covehithe, Suffolk, U.K, captured over multiple years, to detect 

annual to decadal scale shoreline dynamics. Shoreline change results are discussed in the 

context of recent major North Sea storm events. To further address research question 1, the 

performance of VEdge_Detector is compared to that of all ML and non-ML tools outlined 

in Chapter 3. Research question 2 specifically determines whether it is possible to train and 

apply a CNN to the task of automated vegetation edge detection, and whether CNN outputs 

can be used to determine rates of shoreline change.  

Chapter 5 upscales VEdge_Detector by applying it to the entire Guiana coastline, northern 

South America, spanning three countries and a coastline length greater than 1500 km. The 

Chapter beings by justifying why the Guiana coastline is studied, namely that greater than 

90% of the total population, or approximately 1.5 million people, in the Guianas live in the 

LECZ, and that the Guiana coastline is home to one of the most dynamic coastlines globally 

(Mentashi et al., 2018; Colenbrander et al., 2019). The vegetation edge is extracted from 

imagery captured between 1990 and 2021, determining annual to decadal-scale trends in 

shoreline change. Shoreline dynamics are statistically correlated against the North Atlantic 

Oscillation index, the El-Niño Southern Oscillation index and the 18.6-year nodal cycle. 

Total populations living in close proximity to the Guiana coastline are calculated using 

secondary gridded population datasets: WorldPop (Stevens et al., 2015; Section 2.7.1). 

These population and shoreline change datasets are combined to identify exposure hotspot 

locations and discover, previously unpublished, locations where forced migration due to 

shoreline change has occurred.  Research question 3, accordingly, asks whether a CNN can 

be applied to detect shoreline change at a supra-national scale. It investigates what coastal 

dynamics can be gleaned using supra-national scale studies, compared with using local-

scale shoreline change datasets, and determines whether different datasets can be integrated 

to ascertain relative populations exposed to shoreline change,  

Chapter 6 summarises and synthesises the findings of the thesis. It emphasises remaining 

research gaps and future research requirements, particularly in relation to the training and 
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application of ML tools in coastal risk studies. The need to improve the transparency of 

ML methods to increase uptake is also discussed.  

 

 

Figure 1.3: Schematic of the structure of this thesis.  
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1.5. Research questions and objectives 

 

Aim 

To evaluate the extent to which machine learning (ML) and remote sensing tools can be 

used to improve understanding of the different levels of risk to coastal populations arising 

from shoreline change.  

 

Research questions and objectives 

1. Which techniques can be used to automatically detect the coastal vegetation edge 

via multispectral remote sensing imagery? 

a. To review the range of ML and non-ML based techniques that could be used 

to extract the coastal vegetation edge in multispectral remote sensing 

imagery. 

b. Compare the performance of a range of pre-existing and novel non-ML 

techniques for detecting the coastal vegetation edge. 

c. Evaluate the performance of non-ML tools and a ML-based pixel 

classifier, support vector machines, at detecting the coastal vegetation edge 

across a range of intertidal habitats.  

 

2. Can ML techniques, namely convolutional neural networks, be used to detect the 

coastal vegetation edge and rates of change using remote sensing imagery? 

a. Review the differences in using an object-based classifier, such as 

convolutional neural networks, to detect the coastal vegetation edge 

compared with pixel-based classifiers.  

b. Train a convolutional neural network to automatically extract the coastal 

vegetation line from multispectral imagery, considering the impact of input 

image spectral band selection on tool performance. 

c. Calculate decadal-scale rates of water and vegetation line change. Identify 

different coastal zone processes that can be detected using the different 

shoreline proxies. 
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d. Examine the differences in the expertise and resource required to build, train 

and apply different ML and non-ML tools to coastal vegetation edge 

detection.  

 

3. Can multiple ML tools be integrated to estimate relative levels of coastal 

populations exposed to shoreline change at a supra-national scale? 

a. Use convolutional neural networks to extract the coastal vegetation edge and 

calculate decadal, supra-national scale rates of shoreline change across the 

Guiana Coastline, northern South America. 

b. Review the range of Big Datasets available to calculate supra-national scale 

patterns in coastal zone populations.  

c. Examine the suitability of combining ML-based datasets pertaining to 

shoreline change and coastal population densities to identify areas of high 

population density lying adjacent to rapidly retreating stretches of coastline.  
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Chapter 2. Machine learning applications to 

coastal risk 

 

Chapter 1 summaries examples of pre-existing tools, which do not use machine learning 

(ML) techniques, to extract the position of the shoreline from multispectral remote sensing 

imagery. These non-ML based tools that could be applied to detect edges in remote sensing 

imagery, including threshold contouring and kernel-based operators, are described in more 

detail in Chapter 3. ML tools are a suite of methods, separate to non-ML tools, whose 

performance at detecting the coastal vegetation edge remains unstudied. Prior to applying 

ML tools to this task, it is necessary to define ML, distinguish between the different forms 

of ML, and review the current applications of ML to coastal risk.  

 

2.1. What is machine learning? 

Machine learning (ML) is a form of artificial intelligence that uses data to train a computer 

system to learn patterns and processes (Goodfellow et al.,2016). ML tools improve their 

performance through experience, whereas other forms of statistical and process-based 

modelling rely on humans to manually define key terms and values (Jordan and Mitchell, 

2015). This point can be illustrated using one prominent example of ML: driverless cars. 

As a computer system is provided with more images of road scenes manually labelled by 

humans, (e.g. “car”, “pedestrian” and “lamppost”), the system can increase its ability to 

automatically identify these features in new, unlabelled images; reducing the need for 

human intervention (Janai et al., 2020). ML tools have been applied to many domains, 

including computer vision, finance, healthcare and astronomy (Jordan and Mitchell, 2015; 

Miotto et al., 2018; Carleo et al., 2019), but applications to coastal risk remain in their 

infancy (Goldstein et al., 2019). 

There are multiple forms of ML, but this thesis uses two types: convolutional neural 

networks (CNN) and support vector machines (SVM). These types of ML are used 
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alongside secondary population data derived using a separate form of ML, random forests 

(RF) (Tatem et al., 2017). These tools have been used in various data analytical tasks, 

including image classification, pattern recognition, identifying correlations and causality 

between variables and parameter predictions; LeCun et al., (2015) and Goldfellow et al., 

(2016) provide an overview of ML functions. The mathematical formulas underpinning 

these ML tools have been established for many decades (LeCun et al., 1989; Corpes and 

Vapnik, 1995; Breiman et al., 2001; Wang and Raj, 2017) but recent advances in computer 

processing power, and the availability of real-time environmental data, is opening new 

opportunities to use these ML tools. Packages have been developed in R, Python and other 

programming languages enabling researchers to train and develop ML tools in a few 

hundred lines of code, thus making them more accessible to different research domains 

(Abadi et al., 2016). After discussing key principles relevant to all ML tools, this section 

describes CNN, SVM, and RF. Subsequent sections will then review applications of these 

ML tools to different aspects of coastal risk, with a focus on coastline change and 

population dynamics.  Another ML technique, Bayesian Networks (BN), which allows the 

developer to include prior knowledge on the relationship between particular parameters, is 

not used in this thesis but studies that have used BN are also contained within this chapter.    

 

2.2. Principles pertinent to multiple forms of machine learning 

There are two main sub-categories of ML: supervised and unsupervised learning. 

Supervised ML tools are provided with both the input and corresponding output datasets 

(Goldstein et al., 2019) whereas unsupervised ML tools are only provided with the input 

data (Alloghani et al., 2020). Unsupervised ML tools are primarily used to classify data 

into subgroups, reduce dimensionality in the input dataset, or identify underlying patterns 

or signals in the data (Gentlemen and Carey, 2007). Due to the availability of ground-based 

and remote sensing derived output data on shoreline position, this thesis exclusively uses 

supervised forms of CNN, SVM and RF.   

Supervised ML tools are trained to determine formula weights which produce outputs that 

adequately reach the output data values when provided with the input data (Glorot and 

Bengio, 2010; Goodfellow et al., 2016). In its simplest form, linear regression is an example 

of supervised ML. When provided with a dataset containing input and output values, the 
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computer determines the line gradient, m, and intercept, c, which minimises the difference, 

or error, between the predicted and observed output values. Supervised ML training 

consists of three stages: training, validation and testing. During the training stage, a large 

proportion of the available dataset, commonly 70 – 80%, is used to iteratively update the 

function weights and bias (analogous to m and c), in order to reduce the error, or loss, 

between the predicted and observed output data values (Glorot and Bengio, 2010). During 

validation, predictions are made by the trained tool on some 20% of the remaining data, 

previously unseen by the tool.  The errors between predicted and observed output data 

values are calculated and used to further update the formula weights (Larochelle et al., 

2009). This validation stage checks for overfitting- where a ML tool is very capable at 

deriving the output from the input values in the training dataset but is not able to generalise 

well to previously unseen data entries. A ML tool overfits the training dataset, and is said 

to have high variance, if its performance substantially differs when applied to different 

datasets (Geman et al., 1992). During testing, tool performance is assessed on the final 5 – 

10% of the data. This final stage checks for bias within the validation dataset, i.e. the 

validation dataset may have inadequately represented the range of values contained within 

the entire dataset (underfitting) (Dietterich and Kong, 1995). The aim of supervised ML 

training, validation and testing is to reduce both the bias and variance contained within the 

ML tool (Larochelle et al., 2009). 

Using small training datasets can lead to the ML tool overfitting because it has not been 

exposed to a range of possible variable values and combinations (Larochelle et al., 2009). 

In this circumstance, data augmentation methods can be used to artificially increase the size 

of the dataset. Augmentation methods include bootstrapping, whereby the ML tool is 

trained multiple times on a different, randomly generated, sample of the training dataset 

(Efron and Tibshirani, 1994). The sample is commonly the same size as the original dataset 

but there may be duplicate entries within the subset, enabling a ML tool to be trained on a 

different combination of data entries multiple times (Efron and Tibshirani, 1994). In image-

based ML tasks, augmentation can including flipping, rotating or subsetting the image 

(Perez and Wang, 2017). These methods can reduce variance and bias in trained ML tools 

when an otherwise small training dataset would be available (Perez and Wang, 2017). 

The time-consuming nature of training a supervised ML tool, including deriving a training 

dataset via data augmentation techniques, justifies an initial investigation into the 
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performance of non-ML methods in automatically detecting the coastal vegetation edge. A 

potential benefit of some ML methods, including SVM and RF, is that they can be trained 

using smaller training datasets compared with CNNs (Elgohary et al. 2017).  The recent 

advances in computer vision accomplished using CNNs, including object detection in 

visible imagery (Janai et al., 2020), justifies investigation into their ability to detect edges 

in remote sensing imagery if other ML and non-ML tools cannot achieve this task with 

adequate precision and accuracy. The following sections accordingly discusses some of the 

key principles of SVM, RF and CNN in turn.  

 

2.3. Support Vector Machines 

Support Vector Machines (SVM) categorise data entries into two or more categories, and 

have commonly been used to, for example, classify pixels in multispectral remote sensing 

imagery into different land cover categories (Maxwell et al., 2018; Mountrakis et al., 2011). 

SVM derive a hyperplane which separates the data entries into discrete classes in feature 

space (Figure 2.3 (a); Cortes and Vapnik, 1995). The ‘support vectors’ are the individual 

data entries in each class which lie closest to the separating hyperplane (Maxwell et al., 

2018). During training, SVM aims to minimise classification error and maximise the 

distance between the support vectors and the hyperplane (Elnabwy et al., 2020). After each 

iteration of SVM model training, the misclassification errors and distances between the 

hyperplane and the support vectors are calculated and this informs the model on how to 

alter the position of the hyperplane during the next iteration (Mountakis et al., 2011).  
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Figure 2.1: Key features pertaining to SVM. (a) Simple example of how SVM produce a 

hyperplane separating all data entries into two categories. Comparison of hyperplane 

produced when using a (b) high and (c) low regularisation parameter (λ) value.  

A number of hyperparameters, most notably the regularisation parameter (λ) and kernel 

function, alter SVM performance and may be manually tuned prior to SVM training. A 

larger λ value increases the penalty applied when a data entry is misclassified by the model 

(Figure 2.1 (b) – (c); Maulik and Chakroborty, 2017). A higher λ value results in fewer 

misclassified pixels in the training dataset, but if λ is set too high the model is liable to 

overfit the training dataset, reducing performance when applied to a testing dataset (Figure 

2.1 (b)).  By contrast, a low λ may produce a hyperplane which is too smooth, and the 

model may misclassify a high proportion of data entries, resulting in high model bias 

(Figure 2.1 (c); Mountrakis et al., 2011; Zhang et al., 2013). Establishing the most suitable 

λ is commonly derived from testing a number of candidate values and choosing the value 

with the lowest error term (Maulik and Chakroborty, 2017). SVM can generate linear 

hyperplanes, or kernels, including polynomial kernels, can be used to generate non-linear 

hyperplanes (Suthaharan, 2016; Choung and Jo, 2017; Maulik and Chakroborty, 2017). 

Suthaharan (2016) provides a contemporary summary of SVM theory and applications.  

SVMs are a form of ML that can be used to classify pixels in remote sensing imagery.  They 

provide promise in classifying and detecting features in remote sensing imagery because 
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they can process high dimensional datasets and outperform other classifiers, such as 

Maximum Likelihood Estimator (MLE), when trained using a small training dataset 

(Elgohary et al., 2017). Unlike MLE, SVM are non-parametric and do not assume the 

training dataset is normally distributed. This is pertinent for satellite imagery which 

commonly contains high levels of noise (Maulik and Chakroborty, 2017). The training data 

requirements of SVM provide promise in the method being able to detect the coastal 

vegetation edges in remote sensing imagery, and accordingly justifies investigation into 

their ability to conduct this task.     

 

2.4. Random Forests 

Random Forests (RF) consist of an ensemble of decision trees which individually split a 

dataset into increasingly homogenous categories (Genuer et al., 2017). Decision trees, also 

known as Classification And Regression Trees (CARTs), split the dataset multiple times 

into smaller sub-classes using threshold values (Figure 2.2 (a); Bayram et al., 2017; Cutler 

et al., 2012). Bootstrapping is commonly applied so that each decision tree is trained on a 

different random sample of the original input dataset (Figure 2.2 (b)); Breiman et al., 2001). 

During training, a decision tree starts with all data at the root node, and the tree ‘grows’ by 

splitting the data via decision nodes to terminal nodes (Figure 2.2 (b); Breiman et al., 2001). 

The decision trees are independently grown, meaning each tree has a different architecture 

and data entries in their root nodes.  
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Figure 2.2: Overview of Random Forests (RF) architecture.(a) Schematic of an individual 

decision tree. (b) Ensemble of decision trees combined to produce a RF. In this example, 

output class 3 is the most commonly predicted class by the decision trees, so this class 

forms the RF prediction.  

 

The trained decision trees contained within a RF individually assign an output class to a 

previously unseen data entry. Where the output class predicted by the decision trees is not 

unanimous, the output class predicted by the most decision trees is assigned as the RF 

predicted class (Figure 2.2 (b); Genuer et al., 2017). If a single decision tree is used, there 

is a risk of high variance and overfitting in the model. This is because the tree is only 

capable of splitting the data that it has been provided with. Because the ensemble of 

decision trees in the RF have all been trained on a different dataset, the likelihood of 

overfitting in RF predictions is reduced (Breiman et al., 2001). See Breiman et al., (2001) 

for more detailed descriptions of RF architecture, training and functions.  

This thesis uses third party WorldPop data, generated using RF, which provides population 

dynamics at 100 m spatial resolution (Tatem et al., 2017). These datasets have been selected 
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because RFs are non-parametric prediction models, meaning they do not assume any 

predetermined relationship between the input predictor variables and the dependent 

variable (Breiman et al., 2001; Stevens et al., 2015). RFs are also able to conduct analysis 

using many input predictor variables. This ability is advantageous when using multiple 

remote sensing datasets, with variable resolutions, in different coastal locations. A separate 

form of ML, Convolutional Neural Networks, are also well suited to the analysis of multi-

dimensional remote sensing data.  

 

2.5. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) have larger training requirements that SVMs and 

RFs, but their ability to derive semantic information via convolution, as discussed below, 

provides promise in them being able to detect features in remote sensing imagery. CNNs 

have been applied to remote sensing images to detect features, extract edges and conduct 

pixel-based classification (Kattenborn et al., 2021). The architecture of a CNN is 

constituted of its input layer, hidden layer(s) and output layer. Each layer contains a 

different number of nodes and synapses connect the nodes in one layer to nodes in adjacent 

layers (Figure 2.3 (a)). Deep learning refers to CNNs which contain two or more hidden 

layers (Chen et al., 2016). Where a synapse links two nodes together, its weight, w, 

corresponds to the number to multiply the node value by, to get the value for the node in 

next layer (Figure 2.3 (b)). The activation function, σ, enables the CNN to determine non-

linear relationships between input and output variables (Ramachandran et al., 2017). 
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Figure 2.3: Key constituents of a CNN. (a) Architecture of a very simple CNN containing 

an input layer (two nodes), hidden layer (four nodes) and output layer (one node). (b) 

Outline of how the values of nodes in one layer are multiplied by their corresponding 

weight to derive the value of nodes in the next layer. The sum of the weight-multiplied 

node values from the previous layer is passed through the activation function, σ, to 

determine non-linear relationships. 

 

During the training stage of a CNN, the weights connecting nodes are iteratively updated 

in two stages: feedforward and back propagation (Goodfellow et al., 2016). During the 

feedforward stage, input data is provided to the input nodes, with each input node 

corresponding to one pixel in the original image. The input layer node values are multiplied 

by the corresponding weights to generate the hidden layer node values (Xie and Tu 2015). 

The hidden layer node values are then multiplied by a separate set of weights to derive the 

output layer node values(s). When the feedforward stage is complete, an output is predicted, 

and this is compared to the corresponding observed output value contained within the 

original dataset (Xie and Tu 2015).  

The second stage of CNN training, back propagation, starts with the calculated loss, or 

difference, between the predicted and observed output value (Kokkinos et al., 2015; LeCun 

et al., 1989). This loss is consecutively fed back through each layer of the CNN, updating 

the weight values, via gradient descent algorithms, until the input layer is reached (LeCun 

et al., 1989). The feed forward stage then commences again using the updated weights. An 

epoch refers to one feedforward and back propagation cycle, and CNNs are commonly 
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trained over hundreds or thousands of epochs. CNNs are a form of neural network (NN), 

which all contain the abovementioned feed forward- back propagation stages. Compared 

with other forms of NN, CNNs contain an additional process, convolution, which is 

relevant to image processing (Kattenborn et al., 2021; Xie and Tu, 2015).  

In convolution, a kernel is passed over an image using a pre-set function to generate a new 

output image (Dumoulin and Visin, 2016). The convolution kernel is placed in the top left-

hand corner of the input image (Figure 2.4 (a)). The value of each pixel in the convolution 

kernel is multiplied by the corresponding pixel value in the input image. These 

multiplications are summed to derive the pixel value in the output image (Figure 2.4 (a)). 

This process is repeated as the kernel iteratively passes to the right (Figure 2.4 (b) – (d)), 

and on subsequent rows to produce the final output image (Figure 2.4 (e); Dumoulin and 

Visin, 2016).   CNNs convolve thousands of kernels with different weights and dimensions 

over the input image.  LeCun (2015) provides a good overview of NN, CNN, deep learning 

and their constituents.  

Figure 2.4: Overview of convolution. (a) – (d) kernel iteratively passes over image. (e) final 

output. In this example, the weight values contained within the convolution kernel result in 
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the higher values in the output image corresponding to edge locations in the original input 

image 

The iterative feedforward-back propagation process, combined with convolutions, can 

provide CNNs with semantic information, whereby the repeated comparison between the 

prediction and observed output layer enables a CNN to exclusively detect features of 

interest, instead of identifying all features with similar spectral properties (Kokkinos et al., 

2015). This feature of CNNs could be particularly important when detecting edges in 

remote sensing which contain a high density of edges. The onerous nature of CNN training 

means it is beneficial to initially determine whether SVM or non-ML techniques can detect 

the coastal vegetation edge.  

2.6. Machine learning applications to coastal risk 

The main ML tools applied to date in coastal risk studies are described in Sections 2.3 - 

2.6. The complex, multifaceted nature of coastal zone dynamics (Section 1.1), combined 

with the recent increase in Big Data pertaining to coastal risk (Section 1.3), has prompted 

studies investigating whether ML tools can improve our understanding of coastline position 

and coastal population dynamics (Goldstein et al., 2019). This chapter individually 

discusses applications of ML to calculate population distributions (Section 2.7.1), and 

coastline position and dynamics (Section 2.7.2).  Studies which have integrated multiple 

ML tool outputs to calculate relative coastal risk are then highlighted in Section 2.7.3. 

Persisting research gaps are summarised in the thesis rationale (Section 2.8).   

 

2.6.1. Machine learning applications to coastal zone population dynamics 

Fine spatio-temporal resolution datasets of population distributions in the LECZ are 

required to inform operational level risk management decisions (Le Cozannet et al., 2020). 

Census data provides population data with high veracity and exhaustivity, but census data 

is commonly only collected every decade, and when made publicly available, is heavily 

spatially aggregated. Rapid population growth and migration in the LECZ (McGranahan et 

al., 2007; Neumann et al., 2015), means census data can quickly become outdated. This has 

sparked interest in applying ML tools to alternative datasets to generate finer resolution, 

real-time datasets of coastal zone population distributions (Stevens et al., 2015). This 
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section discusses three applications of ML tools to generate high resolution coastal 

population datasets: (i) RF to identify relationships between population vulnerability 

indices and the recorded impacts of storm events; (ii) natural language processing to 

generate real-time population distributions using social media; and (iii) dasymetric 

modelling, using RF algorithms, to disaggregate census data using auxiliary datasets. 

The vulnerability of human populations to coastal erosion or flooding has traditionally been 

calculated by numerically combining multiple indices, perceived to represent vulnerability, 

including the age, wealth and health of the population (Cutter et al., 2003). The accuracy 

of output vulnerability values is, however, affected by subjectivity in vulnerability metric 

selection, weighting and method of combination (Willis and Fritton, 2016; Bukvic et al., 

2020). More recently ML tools, including RF, have been applied to identify the statistical 

relationships between different vulnerability indices and the recorded economic damage 

(Yoon and Jeong, 2016; Heβ et al., 2017) or building damage (Foti et al., 2015) caused by 

historic coastal hazards. The relative importance of vulnerability indices in determining 

damage values has been ascertained by iteratively removing variables during ML training 

(Dwyer et al., 2004; Boruff et al., 2005; Abson et al., 2012; Yoon and Jeong, 2016; Uddin 

et al., 2019). Whilst these inductive ML-based approaches are insightful, they cannot be 

trained on impacts which cannot be enumerated, for example restricted access to healthcare 

facilities (Meyer et al., 2013). Further, these methods retrospectively determine population 

demographics most acutely affected by a historical coastal hazard, but do not estimate total 

populations at risk of future events. To estimate population distributions at risk to future 

coastal hazards, recent studies have used social media to provide real-time information on 

population dynamics.  

Natural Language Processing (NLP) is a separate form of ML which uses social media data 

to estimate coastal population distributions and their vulnerability in real-time. NLP has 

been used to identify the age and gender of people affected by a coastal hazard (Mandel et 

al., 2012; Tellman et al., 2020), determine coastal tourist hotspots and changes in their 

population density between seasons (Deville et al., 2014; Li et al., 2016), and generate a 

time-series trajectory of the locations of people impacted by a storm as it passes over a 

region (Sit et al., 2019). Twitter usage has depicted flood extent, and the population 

impacted, in locations devoid of river gauges or other monitoring equipment (Smith et al., 

2017). NLP can not, however, detect all vulnerable individuals because social media is not 
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used universally, resulting in some flooded locations not being referred to in any Tweets 

(Pollard et al., 2018; Smith et al., 2017).  The average social media user is better educated, 

wealthier, younger and more physically mobile than the general population (Li et al., 2012; 

Wang et al., 2019), and social media is more commonly used by tourists than local residents 

(Martín et al., 2020). Using NLP approaches in isolation can, therefore, result in an under-

representation of the spatial impacts of coastal hazards on more vulnerable groups (Boyd 

and Crawford, 2012; Wang et al., 2019). The lack of exhaustivity in NLP datasets has led 

to research continuing to apply ML tools to disaggregate census data, which is renowned 

for capturing information on virtually the entire population.  

Dasymetric modelling redistributes aggregated census population density data into finer 

resolution gridded estimates by utilising relationships between population density and other 

ancillary datasets (Nagle et al., 2015; Tatem et al., 2017). Traditional dasymetric models 

have used conventional statistical methods to apply areal weighting factors to different land 

cover classes, i.e. giving urban areas a high weighting and forested areas a low weighting 

respectively (Wu et al., 2005; Azar et al., 2010).  In some settings, strong correlations 

between population and land use have allowed the total population to be proportionally 

disaggregated within an authority boundary (Wu et al., 2005; Azar et al., 2010).  However, 

unrealistic population distributions are produced when models cannot distinguish between 

urban surfaces and other land covers, primarily soil and sand (Wickham et al., 2013; Nagle 

et al., 2014). This has prompted the use of ML tools in dasymetric modelling to 

disaggregate census population data using a greater diversity of ancillary datasets, 

including surface roughness maps, night lights, climate zone information and proximity to 

infrastructure and healthcare facilities (Stevens et al., 2015).  

RF have been used to combine multiple spatially explicit ancillary datasets to generate the 

WorldPop maps, which are global population density maps at annual temporal, and 100 m2 

spatial, resolution (Sorichetta et al., 2015; Stevens et al., 2015; Gaughan et al., 2016; Sinha 

et al., 2019). These RF-based dasymetric models significantly outperform dasymetric 

models exclusively using land cover and urban extent maps (Stevens et al., 2015; Gaughan 

et al., 2016; Bai et al., 2019). Validating model performance, however, depends on the 

availability of ground-referenced municipal population data, meaning the tool predictions 

are potentially skewed towards generally richer countries where validation data is available 

(Sinha et al., 2019). Whilst these limitations require consideration, ML-derived gridded 
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population datasets have enabled estimations of total global populations living in the LECZ 

(Kulp and Strauss, 2019). When compared to other datasets, WorldPop provides more 

accurate estimates of the number of people affected by previous coastal flood events 

(Reguero et al., 2019) or total populations benefitting from flood protection services 

provided by intertidal habitat (Menéndez et al., 2018). This highlights the potential of 

integrating WorldPop datasets with ML-based datasets pertaining to coastline position, to 

determine populations at risk to coastline change.  

By considering the methods utilised, and outputs produced, by the three abovementioned 

techniques to produce finer resolution layers of population dynamics compared with census 

data, it was decided to use population layers generated via dasymetric modelling in this 

thesis. This was primarily due to dasymetric modelling utilising datasets that are 

consistently available globally, including multispectral remote-sensing imagery for land 

use classification and night lights (Stevens et al., 2015). In comparison, using RF to identify 

the relationship between vulnerability metrics and coastal hazards is dependent upon the 

availability of in-situ data pertaining to the socio-economic impacts of coastal hazards. 

Likewise, NLP inconsistently represents different coastal communities, with those who less 

commonly use social media, such as the elderly, also likely to be the most vulnerable 

communities (Li et al., 2012; Wang et al., 2019). An additional benefit of dasymetric 

modelling is that it can produce consistently gridded outputs of population dynamics 

(Tatem et al., 2017). This form of data is well suited to being integrated with datasets 

pertaining to different aspects of coastal risk, including, most appropriately for this thesis, 

rates of shoreline change.   

 

2.6.2. Machine learning applications to coastline change 

ML applications to coastal change have primarily focussed on (i) determining coastline 

position; (ii) hindcasting and predicting coastline erosion and accretion, and (iii) identifying 

the most important meteorological, hydrological, geomorphological or anthropogenic 

external forcing factors driving observed coastline change (Goldstein et al., 2019). The 

main non-ML tools applied to automatic coastline detection via multispectral remote 

sensing imagery are summarised in Section 1.4.1. This section details applications of ML 

tools to this task, before summarising ML tools applied to hindcasting and predicting 
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shoreline change.  Shoreline detection is an example application of image-based edge 

detection, a well-established area of research in computer vision (Arbelaez et al., 2007; 

Stanford Vision Lab, 2016). In computer vision research, edges contained within red-green-

blue (RGB) images of everyday objects (e.g. house, car, cat, dog) have been identified 

(Simonyan and Zisserman, 2015) but additional challenges exist when applying the same 

task to multispectral remote sensing imagery. Remote sensing imagery contains more 

spectral bands, more noise and a higher density of edges compared to natural images (Liu 

and Jezek, 2004). The multi-dimensional nature of remote sensing imagery has sparked 

interest in using ML tools to automatically identify shorelines from them.  

Analogous to non-ML applications, most ML-based automated shoreline detection 

methods have extracted the instantaneous waterline from remote sensing imagery (Toure 

et al., 2019). Previous studies have used RF (Bayram et al., 2017; Demir et al., 2017) and 

SVM (Kalkan et al., 2013; Zhang et al., 2013; Choung and Jo, 2017; Elnabwy et al., 2020) 

to categorise remote sensing images into land and water pixels and assign the waterline 

position as the boundary between the two surface cover classes. Choung and Jo (2017) 

found the mean error in waterline position to be lower using SVM compared to NDWI 

threshold contouring but SVM outputs contained a lot of ‘speckle’, attributable to the 

similar spectral properties of shallow water, sand and rock surfaces. The application of RF 

by Demir et al. (2017) identified a continuous waterline but large mean errors (greater than 

22 m) were recorded between manually digitised shorelines and RF derived shorelines, 

attributed to noise contained within the input images. Elsewhere, SVM and RF 

classification performance has been adversely affected by heterogeneity in the spectral 

properties of water between images, caused by differences in atmospheric scattering, solar 

radiation incidence angle and azimuth (Chen et al., 2014). SVM and RF also rely on feature 

selection, including choosing the correct spectral bands to use during training, reducing the 

autonomy of the tools (Yu et al., 2017). These difficulties have resulted in increased 

attention being placed on using CNN in edge detection.   

CNN techniques have also been used to automatically extract the instantaneous water line 

from coastal remote sensing imagery (Yu et al., 2017; Li et al., 2018; Liu et al., 2019; 

Erdem et al., 2021). CNN have commonly outperformed SVM and RF at edge detection 

and classification tasks in remote sensing imagery (Chen et al., 2014; Gao et al., 2018; 

Sothe et al., 2020). High CNN performance has been attributed to their use of moving 
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kernels, meaning they simultaneously consider a neighbourhood of pixel values, rather than 

conducting pixel-wise classification (Gao et al., 2018). This enables CNN to detect scale-

invariant features, whereby features and their edges will be in the same location, 

irrespective of the size of the kernel convolving over the image (Chen et al., 2014; Sothe et 

al., 2020). Noise and speckle are only likely to be considered as potential features when 

using smaller kernels and so are discarded when larger kernels convolve over the image 

(Sothe et al., 2020). Deeper CNN, which convolve kernels with a greater range of sizes 

over the image, have outperformed shallower CNN because they can detect features at 

different scales (Hasan et al., 2019). 

While CNN provide potential in outperforming other ML tools in detecting the edges of 

coastal features, their reported high performance must be considered within the context of 

their limitations. Most pertinently, CNN require very large training datasets and are prone 

to overfitting when trained on small datasets (Chen et al., 2016), resulting in SVM and RF 

outperforming CNN when trained on small datasets (Liu et al., 2018). CNN are slower to 

train and more difficult to interpret than SVM and RF (Maxwell et al., 2018; Rudin, 2019). 

The time-consuming, black box nature of CNN training means it is logical to initially 

determine whether non-ML tools, or more conventional ML tools such as SVM, are capable 

of exclusively detecting the coastal vegetation edge.  Appropriate ML tool selection is 

essential to accurately detect shoreline positions; these shorelines can then be used by 

separate ML tools to hindcast or predict future shoreline position.  

ML tools have been used to hindcast and predict shoreline change at multiple spatial scales 

from sediment flux on sandbars (Pape et al., 2007), and beach response to storm events 

(Hashemi et al., 2010; Plant and Stockton, 2012; Wilson et al., 2015; Lopez et al., 2018), 

to national scale shoreline erosion and accretion (Giardino et al., 2019; Goldstein et al., 

2019). Shorelines derived from ground-based measurements (Dickson and Perry, 2016; 

Wilson et al., 2019), or abovementioned ML techniques (Calkoen et al., 2021), have been 

used to generate a time series of antecedent shoreline positions at discrete transects. These 

time series have been combined with data on historical meteorological or hydrological 

conditions and human shoreline modification factors to hindcast, or predict, shoreline 

response to extraneous forcing events (Beuzen et al., 2018; Goldstein et al., 2019). At all 

spatial scales, ML tool selection has been shown to affect prediction performance (Dickson 

and Perry, 2016; Montaño et al., 2020). In one of the few studies to compare the 
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performance of different ML tools, SVM and RF performance was identified to be less 

sensitive to training dataset sample size than BN and NN when predicting landslide 

positions (Perry and Dixon, 2018). These findings reinforce the necessity to develop a large 

dataset for CNN training and to compare the performance of different ML tools.   

Alongside tool selection, input parameter selection has also been shown to be an important 

determinant of ML performance. Anthropogenic factors have commonly been highlighted 

as the most important factors influencing the predictive capability of ML tools (Wilson et 

al., 2015). Anthropogenic beach nourishment parameters most significantly influenced the 

capability of BN to predict future waterline position along sandy beach coastlines (Wilson 

et al., 2015; Wilson et al., 2019; Giardino et al., 2019). Lower BN performance in predicting 

rates of cliff retreat was attributed to the lack of training data available pertaining to human 

interventions (Hapke and Plant, 2010). Changing the parameters used to train ML tools has 

also provided insights into the most important parameters affecting shoreline change 

(Beuzen et al., 2018). BNs identified wave power and antecedent beach width to be the 

most important predictors of shoreline change (Beuzen et al., 2018). These principles were 

already well established using numerical modelling approaches (Harley et al., 2009), but 

BNs were able to quantify the relative importance of these factors (Beuzen et al., 2018). 

Parameter selection is, therefore, an important determinant of ML performance when ML 

tools are used to detect or predict shoreline position.  

In summary, applications of ML to shoreline detection have primarily focused on the 

identification of the waterline. This is attributed to its consistent presence along all 

coastlines globally, and the close relationship between the waterline and the widely 

accepted definition of the coastline as the interface between the land and the sea. The 

relative lack of automated methods to automatically detect the coastal vegetation edge is 

attributed to the inconsistent presence of vegetation in the coastal zone, and heterogeneity 

in the coastal vegetation species and other properties, causing variability in the spectral 

properties of coastal vegetation (Belluco et al., 2006). Despite these challenges, there is 

potential for the position of the coastal vegetation edge to represent backshore dynamics 

not detectable using the waterline (Pollard et al., 2020), justifying further investigation into 

the development of automated tools in this thesis.   
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2.6.3. Combining multiple aspects of risk using ML 

Sections 2.7.1 and 2.7.2 discuss applications of ML tools to coastal population dynamics 

and shoreline change in isolation but calculations of populations at risk from coastal change 

require the integration of datasets pertaining to natural hazards, receptor exposure and 

vulnerability (McLaughlin and Cooper, 2010; Bukvic et al., 2020). Multi-criteria 

assessments combine these dataset values (e.g. by weighted summing or multiplication) to 

identify ‘risk hotspots’, or locations at greatest risk of coastal flood and erosion (Viavattene 

et al., 2015; Ferreira et al., 2016; Christie et al., 2018). These studies have integrated 

datasets derived from statistical-based models (Hurdle and Stive, 1989; Chang et al., 2011), 

hydrological modelling (Jana and Hedge, 2016; Christie et al., 2018; Jäger et al., 2018; 

Jiménez et al., 2018), or data clustering methods (Camus et al., 2011; Villatoro et al., 2014; 

Calil et al., 2017; Bukvic et al., 2020). The use of thematic layers derived from non-ML 

tools may impact upon the scalability of the risk calculations. For example, the performance 

of hydrological modelling can reduce when transferred to separate coastlines, particularly 

when large differences in physical conditions exist between locations (Heuvelmans et al., 

2004; Broderick et al., 2016; Yang et al., 2019).   

In the only known study to use multiple thematic layers derived from separate ML tools, 

thematic layers of historic tide and rainfall data, coastal flood extent and projected urban 

extents were integrated to predict future risk scores of population to flooding across South 

Korea (Park and Lee, 2020). The ability to update values relating to all aspects of risk as 

new data becomes available, and to transfer the trained ML tool to other coastlines, was 

highlighted as a benefit of using ML tools to generate multiple thematic layers (Park and 

Lee, 2020). The above mentioned study, however, focussed exclusively on flood risk. The 

potential to integrate multiple ML-based datasets pertaining to coastline change and 

population dynamics, to ascertain levels of populations at risk from coastline change, has 

not been examined to date and is, therefore, investigated further within this thesis. 

 

2.7. Thesis rationale 

This chapter and the preceding one have detailed research relating to the extraction of the 

coastline from multispectral remote sensing imagery. The generation of ML and non-ML 
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tools for the automatic extraction of the coastal waterline has been well researched (Boak 

and Turner, 2005; Toure et al., 2019), but automated methods to extract the coastal 

vegetation edge via remote sensing imagery remain largely unexplored. Despite their 

recorded success in detecting the instantaneous water line (Liu et al., 2019), and classifying 

vegetated land covers from remote sensing imagery (Maxwell et al., 2018), CNN have not 

been applied to the detection of coastal vegetation edges. This is attributed to the relatively 

understudied nature of the coastal vegetation edge, compared with other shoreline proxies 

such as the waterline (Toure et al., 2019). Each shoreline proxy provides representation of 

different processes occurring at the transition between land and sea, and overdependence 

upon one proxy, such as the waterline, generates an oversimplified representation of coastal 

processes (Pollard et al., 2020). This thesis explores the development of tools to 

automatically detect the coastal vegetation edge. Tool outputs are extracted from time series 

of imagery of different coastal locations to investigate whether the proxy can detect 

different coastal zone processes compared with the waterline.  

Few studies compare the performance of ML and non-ML tools in detecting features in 

remote sensing imagery; but the most accurate, robust tool for detecting the coastal 

vegetation edge by other researchers and coastal stakeholders can only be determined 

through these comparisons. Non-ML methods (Section 1.4.1) are relatively straightforward 

to implement and explain, and threshold contouring in particular has been extensively 

applied to instantaneous waterline detection (Pekel et al., 2016; Vos et al., 2019b), but their 

performance at detecting the coastal vegetation edge has not been examined. One property 

universal in all coastal vegetation edges globally, which has never been considered to aid 

vegetation edge detection, is that it is the vegetation situated closest to the waterline. For 

this reason, this thesis creates a new non-ML based tool, which aims to identify the position 

of the coastal vegetation edge in remote sensing imagery by considering the proximity of 

the vegetation line to the waterline. The performance of this tool in detecting the coastal 

vegetation edge in remote sensing imagery is initially compared with other non-ML 

techniques, namely threshold contouring and kernel-based operators.  

ML has proven successful in detecting edges and features in natural RGB images (Guo et 

al., 2018), but applications using remotely sensed imagery are in their infancy. SVM, RF 

and CNN are the main forms of ML used previously used in shoreline detection studies, 

with SVM highlighted as the tool least affected by training sample size (Dickson and Perry, 
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2016; Perry and Dickson, 2018). This attribute may be beneficial in the environmental 

sciences where dataset sizes are still relatively small compared with other research 

domains. CNN provide potential benefits over more conventional ML tools such as SVM, 

including their ability to detect scale-invariant features (Dumoulin and Visin, 2016; Xie 

and Tu, 2015), and their ability to assimilate semantic information, enabling a CNN to 

exclusively identify edges of interest, instead of all edges (Mountrakis et al., 2018; Liu et 

al., 2019). CNN have many drawbacks, however, especially the onerous training 

requirements and black-box nature (Maxwell et al., 2018; Rudin, 2019). It is logical, 

therefore, to initially investigate the performance of non-ML tools and conventional ML 

tools, namely SVMs, at automatically detecting the coastal vegetation edge.   

Section 2.7.2 highlighted how input parameter selection can increase ML tool performance 

and increase transparency in how the ML tool derives its output values. This has been 

achieved by, for example, determining the most important parameters required by a ML 

tool to predict rates of shoreline change (Beuzen et al., 2018). This approach to parameter 

selection has not been applied to ML studies detecting shoreline position using remote 

sensing imagery. When using multi-spectral imagery, it is commonly not possible to train 

the ML tool using all available spectral bands (Kokkinos et al., 2015; Liu et al., 2019), 

necessitating the selection of remote sensing bands prior to ML training. Further 

investigation is therefore conducted in this thesis to determine the influence of different 

spectral band combinations on ML performance in shoreline detection tasks. 

Applications of ML tools to coastline detection remain restricted to relatively short 

stretches of coastline and to locations which commonly already benefit from ground-

referenced measurements. The longest stretch of shoreline to which ML tools have been 

applied is the 100 km long waterline of the heavily urbanised Jiaozhou Bay, China (Liu et 

al., 2019). However, most studies hindcasting and predicting shoreline change have 

commonly used study sites shorter than 100 km in length. The ability to apply ML tools to 

detect coastline position at supra-national to global scales, or to transfer trained ML tools 

to other locations, are widely highlighted as key benefits of ML over ground-referenced 

studies (Elnabwy et al., 2020) but this has yet to be fully tested. Initial trials of ML tools 

for smaller-scale coastlines rich in ground-referenced measurements is necessary to 

validate tool performance but subsequent applications to larger areas, or areas not 

benefitting from a wealth of ground-referenced measurements, remains limited.  The ability 
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of ML tools to detect the coastal vegetation edge at a supra-national scale is investigated in 

this thesis. Subsequent shoreline change analysis determines whether there are particular 

coastal dynamics that are only discernible when studying shoreline change at these larger 

spatial scales. 

The combination of thematic layers derived from multiple ML tools to ascertain relative 

levels of risk in the coastal zone remains understudied (Section 2.7.3). This thesis identified 

one example study conducting this task (Park and Lee, 2020), but this study considered 

flood risk in isolation and did not consider risks posed by coastline change. Coastline 

position and morphology has been identified as an important constituent of both coastal 

flooding and erosion risk (Dawson et al., 2009; Möller et al., 2014) making the inclusion 

of coastline change data in coastal risk studies an important consideration. This thesis 

integrates the outputs of two separate ML tools relating to ascertain levels of populations 

exposed to shoreline change. These two ML tools include a CNN derived to automatically 

detect the coastal vegetation edge, and its change over time, and WorldPop, a third-party 

dataset, derived using RF, used to estimate population densities at 100 m gridded spatial 

resolution (Stevens et al., 2015).  
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Chapter 3: Vegetation edge detection using 

Support Vector Machines and non-machine 

learning approaches 

 

3.1. Introduction 

The coastline is commonly defined as the interface between the land and the sea but the 

complex and hierarchical nature of coastal zone processes means that they cannot be 

adequately represented by one single proxy (Pollard et al., 2019a). Visual proxies can 

include the instantaneous water line, vegetation line and beach berm line (Boak and Turner, 

2005). As discussed in chapter 1 and 2, the waterline is the dominant shoreline proxy used 

in shoreline change studies (Toure et al., 2019) whereas methods to extract the coastal 

vegetation edge primarily remain restricted to manual digitisation (e.g. Leatherman, 2003; 

Theiler et al., 2013; McLoughlin et al., 2015). The potential for the coastal vegetation edge 

to represent backshore dynamics, combined with the time consuming and subjective nature 

of manual digitisation, justifies further investigation into the development of automated 

tools to detect shoreline position from multispectral remote sensing imagery.   

Edge detection is a fundamental research focus in computer vision and multiple kernel-

based edge detection operators have been developed that can be applied to satellite imagery, 

including Sobel, Roberts, Laplacian and Canny edge detection (Canny, 1986; Al-Amri et 

al., 2010; Toure et al., 2019). These operators identify the locations with the greatest change 

in greyscale intensity (Katiyar and Arun, 2014). Sobel and Roberts are examples of first 

derivative operators which identify locations with the steepest gradient in greyscale 

intensity. Second derivative operators, including Laplacian and Canny Edge detection, 

identify locations where the sign of the second derivative changes (Shin et al., 2001). In 

Canny edge detection, a thinning process, known as non-maximal suppression, 

subsequently removes all pixels which are not local maxima (Canny, 1986; Heene et al., 

2000). When comparing operator performance, Canny edge has been shown to be more 
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accurate than Sobel and Roberts in detecting urban edges, as a result of the operator being 

less sensitive to noise (Katiyar and Arun, 2014); however, comparison of edge operator 

performance has not been conducted on coastal scenes. Canny edge detection has been 

applied to waterline detection, (Heene et al., 2000; Liu and Jezek, 2004) but no 

investigation of edge detection operator performance to vegetation line extraction has been 

conducted.  

More recently, supervised machine learning techniques, including Support Vector 

Machines (SVM) have been used to both classify coastal remote sensing imagery 

(Mountakis et al., 2011) and detect coastal waterline edges (Zhang et al., 2013; Chong and 

Jo, 2017; Elnabwy et al., 2020). There has, however, been no previous application to 

extracting the coastal vegetation edge. Few studies have compared the performance of 

different SVM kernel functions although Zhang et al., (2013) determined that polynomial 

SVM models outperform linear models in classifying remote sensing pixels into land and 

water classes.  Further investigation is required to determine whether SVMs are capable of 

separating pixels into those both landwards and seawards of the coastal vegetation edge.  

An additional method which has long been associated with identifying pixels 

corresponding to a vegetated land cover is the Normalised Difference Vegetation Index 

(NDVI). Counter-intuitively, NDVI threshold contours have been used to demarcate the 

coastal waterline from high resolution (less than 5 m) imagery (Dominici et al., 2019; 

Parente and Vallario, 2020) but the method has not been applied to the coastal vegetation 

edge. One key consideration with NDVI contours is the subjective choice of threshold 

value. An increase of 0.1 in NDVI threshold value led to a greater than 7% reduction in the 

area of land classified as vegetated in the Vellore District, India, for example (Gandhi et 

al., 2015). Further investigation is required into the influence of NDVI contour threshold 

value on coastal vegetated line position.   

A limitation of using NDVI threshold contours, SVMs and common edge detection 

operators is they are unable to consider the proximity of the vegetation line to the land-

water interface. There is potential that the coastal vegetation edge could be detected more 

accurately in high (less than 5 m) resolution imagery if consideration is given to the pattern 

of spectral values when traversing from the waterline inland: Most notably, the coastal 

vegetation line is the closest feature to the water line with elevated NDVI pixel values. This 

chapter thus aims to investigate and compare the performance of different tools in 
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exclusively detecting the coastal vegetation edge. Each tool is tested on five different 

multispectral remote sensing images, comprising different coastal landforms. The efficacy 

of three separate methods is investigated: (a) generating NDVI threshold contours, (b) 

using four well-established edge detection operators: i) Laplacian, ii) Sobel, iii) Roberts 

and iv) Canny edge detection and (c) applying SVM to classify pixels landwards and 

seawards of the coastal vegetation edge. A novel kernel-based method, CoasTool, is then 

described and applied to the same images, which considers proximity to the waterline when 

identifying pixels corresponding to the coastal vegetation line. The performance of all 

methods are assessed by comparing outputs to manually digitised vegetation lines.   

 

3.2. Methods 

3.2.1. Imagery used 

Images from five different locations across the UK were used to test the performance of 

the different edge detection tools. The sites were chosen to test the efficacy of the methods 

on a range of coastal settings with different shoreline curvatures: i) rocky coast headland, 

ii) tidal flat fronting a salt marsh, iii) rapidly retreating soft rock cliff, iv) sandy/ shingle 

beach dune system and v) barrier island (Table 1). This study used a combination of Planet 

3 m resolution PlanetScope and 5 m resolution RapidEye multispectral imagery.   
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Table 3.1: Locations and key features of images used in this chapter. 

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

3.2.2. NDVI threshold contours 

The vegetation edge was also detected by contouring the NDVI of the original image at 

different threshold values. To investigate the sensitivity of the method to different NDVI 

threshold values, contours were produced at five NDVI threshold values: 0.0, 0.025, 0.05, 

0.075 and 0.1.  The NDVI of each image was produced using Python’s numpy package 

(Equation (3.1)). 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
                                 (3.1) 

 

Site 

Dominant form 

of intertidal 

habitat 

Length of 

shoreline in 

image (km) 

Planet imagery 

used 

Porthallow, 

Cornwall 

Hard rock cliffs 

and bays 
4.4 

3 m 

PlanetScope 

Hornsey, Essex 
Salt marsh and 

tidal flat 
4.3 

3 m 

PlanetScope 

Holderness, 

East Yorkshire 

Soft rock cliffs 

with fronting 

sand beach 

1.4 
3 m 

PlanetScope 

Dunwich, 

Suffolk. 

Sandy shingle 

dune 
4.1 5 m RapidEye 

Blakeney Point, 

Norfolk 
Barrier island 10.9 5 m RapidEye 



45 

 

where NIR and R are the pixel values for the near infrared and red wavebands respectively.  

Python’s gdal.contourise() method was used to produce the NDVI threshold contours. The 

method initially produced multiple contour lines. To retain only the coastal vegetation line, 

an assumption was made that the coastal vegetation edge would be the longest contour in 

each image; all shorter contours and ring contours were automatically removed. Remaining 

output contours were subsequently imported into ArcGIS 10.5.1 and overlaid onto the 

original image.  

 

3.2.3. Edge detection operators 

Four pre-existing kernel-based edge detection operators were used to identify edges in the 

remote sensing imagery: Laplacian, Sobel, Roberts and Canny edge detection (Figure 3.1). 

The edge detection operators all required a single-band image as input. Two different 

single-band images were derived from the original multispectral imagery: i) the NDVI of 

the image (Equation (1)) and the greyscale image. The greyscale image was calculated as 

the mean of the values for red, green and blue in each pixel (Equation (3.2)). 

𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 = (0.33 ×  R) + (0.33 × G) +  (0.33 × B)            (3.2) 

Where R, G and B are the pixel values in the red, green and blue wavebands respectively.  

 

 

Figure 3.1: Edge detection operator kernels: (a) Laplacian, (b) Sobel x and Sobel y, (c) 

Roberts x and Roberts y, (d) Canny edge detection.  

The operators were applied to each image using Python’s Scipy package. The objective of 

the edge detection operators is to find and elevate the value of pixels corresponding to 
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edges, which are characterised as locations with steep gradients in pixel values (Katiyar 

and Arun, 2014). For the Sobel, Laplacian and Roberts operators, the output images were 

therefore filtered and only the pixels with the top 5% of values were retained. The Canny 

edge detector produced a binary raster layer with edge locations = 1 and non-edge = 0, so 

the Canny Edge outputs were not filtered for the top 5% of pixels. The initial output images 

and filtered images were subsequently imported into ArcGIS 10.5.1.  

 

3.2.4. Validating kernel operator performance 

The position of the filtered kernel operator output pixels were compared to the manually 

digitised vegetation line. The pixel-based evaluation metrics used were user accuracy 

(Equation (3.3)), producer accuracy (Equation (3.4)) and F1 (Equation (3.5)):  

𝑈A =
𝑃True

𝑃True+𝑃False
    (3.3) 

 

𝑃A =
𝑃True

𝑃True+𝑁False
     (3.4) 

 

𝐹1 =
𝑃A×𝑈A

𝑃A+𝑈A
      (3.5) 

where UA and PAare the user accuracy and producer accuracy values respectively.  PTrue = 

True Positive and NTrue = True Negative, each corresponding to correctly classified pixels 

and PFalse = False Positives and NFalse = False Negative, each corresponding to incorrectly 

classified pixels. UA is related to the ‘precision’ of the kernel operator output; the value of 

UA decreases if pixels not corresponding to the manually digitised line are identified as the 

vegetation edge. PA represents the proportion of manually digitised pixels which were 

correctly identified by the kernel-operators; the PA value reduces if pixels corresponding to 

the manually digitised line are missed.  

A pixel incorrectly identified to be the vegetation line by the kernel operator will be 

classified as a false positive pixel, irrespective of the distance from the manually digitised 
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line. To account for ‘near-misses’, where pixels elevated by the kernel operators are close 

to the manually digitised line, the manually digitised lines were buffered to be three (9 – 

15 m) and five (15 – 25 m) pixels wide (instead of one). Relaxed UA, PA and F1 scores were 

calculated by comparing kernel operator filtered outputs to the buffered manually digitised 

vegetation lines.  
 

3.2.5. Support Vector Machines 

To train the Support Vector Machines (SVM) models, a training dataset was first generated 

which assigned all pixels as being either landwards or seawards of the coastal vegetation 

edge. To produce the training dataset, field-based measurements of the coastal vegetation 

edge were collected using a real-time kinematic global positioning system (RTK-GPS) with 

horizontal positional accuracy of 30 mm from three locations along the Suffolk coastline: 

Walberswick, Dunwich and Covehithe. RTK-GPS measurements were collected on 7 

September 2019. To ensure there was a least one RTK-GPS measurement per Planet image 

pixel, measurements were collected every two metres, or when there was a notable change 

in the direction of the vegetation edge. The ground-referenced line was overlaid on 3 m 

PlanetScope images collected on 12 September 2019 (Figure 3.2 (a)). Between 7 and 12 

September 2019 waves approached from a dominant north easterly direction and rarely 

exceeded 1 m significant wave height (maximum peak significant wave height at 

Southwold Approach was 1.45 m (Cefas, 2020)). Due to these wave conditions, there is a 

high degree of confidence that the vegetation line remained stable over this time period. 

The RTK-GPS measurements were converted to raster format (Figure 3.2 (b)) and all pixels 

landwards and seawards of the vegetation line were assigned a value of one and zero 

respectively (Figure 3.2 (c)).   The arrays of ones and zeros were concatenated with the 

original four-band planet training images. The images were subsequently unravelled so that 

each pixel was represented as a single five column row in a table (Figure 3.2 (d)). The first 

four columns represented the pixel values in the red, green, blue (RGB) and nir wavebands, 

and the fifth column stated whether the pixel was landwards (one) or seawards (zero) of 

the vegetation line.  

By applying the same method to all three sites containing ground-referenced 

measurements, over 1.1 million pixels were generated for the training dataset. Prior to SVM 
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model training, any rows in the training table (Figure 3.2 (d)) corresponding to pixels with 

NaN values were removed using python’s numpy library.  

SVM training and predicting was conducted using python’s scikit-learn library (Pedregosa 

et al., 2011). In light of previous findings that polynomial outperform linear SVM models 

(Zhang et al., 2013), the performances of a linear and polynomial SVM model were 

compared. For both SVM model types, performance was analysed using a regularisation 

value of one, two, three and four. All SVM models were separately trained using the 

abovementioned process and used to predict the location of pixels landwards (pixel value 

= one) and seawards (pixel value = 0) of the coastal vegetation edge.  

To compare the position of the SVM predicted vegetation line and the manually digitised 

vegetation line, the SVM outputs were contoured using a value of one. The resulting 

contour map had to be semi-manually reviewed to remove contours not corresponding to 

the coastal vegetation edge, for example removing ring contours or other contours situated 

inland of the coastline. The validation method using the Digital Shoreline Analysis System 

(DSAS) is outlined in detail in section 2.6.  

Figure 3.2: SVM training stages. (a) Original four-band Planet image. (b) Rasterised 

vegetation line derived from ground-referenced RTK-GPS measurements. (c) All pixels 

landwards and seawards of the vegetation line were assigned a value of 1 (yellow) and 0 

(blue) respectively. (d) Tabulation of pixel values for SVM training. Each row represents a 
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different pixel in the training dataset. The first four columns provide the image intensity 

values for every spectral band. The fifth column specifies whether the pixel was located 

landwards (1) or seawards (0) of the coastal vegetation edge.  

3.2.6. CoasTool 

3.2.6.1.Extracting the waterline 

CoasTool considers the proximity of the vegetation line to the instantaneous waterline. The 

first step was, therefore, to detect the approximate location of the land-water interface using 

a Normalised Difference Water Index (NDWI) threshold contouring method, as applied in 

other studies (Equation (3.6); Kuleli et al., 2011; Vos et al., 2019b). The waterline was 

extracted by first calculating the NDWI of each image (McFeeters, 1996). A double-peaked 

NDWI histogram was formed, where water pixels had a positive NDWI value close to one 

and land pixels had a near-zero or negative value. The image-specific threshold separating 

land and water pixels was determined as the NDWI intensity value with the minimum value 

between the two lobes. This intensity value represents the relatively low number of pixels 

at the transition between land and water (Vos et al., 2019b; Figure 3.3).   

𝑁𝐷𝑊𝐼 =
𝐺 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
                                 (3.6) 

 

where G and NIR are the pixel values for the green and near infrared wavebands 

respectively.  

The NDWI image was contoured using the image-specific threshold value and Python’s 

gdal.contourise() method to produce a vector polyline of the waterline. The ocean 

constituted the largest cluster of connected pixels above the NDWI threshold in every 

image. To remove waterlines surrounding inland waterbodies or clouds with high NDWI 

values, contours produced around smaller clusters of pixels above the NDWI threshold 

were automatically deleted. The pixels corresponding to the waterline were defined as those 

pixels which were overlaid by the remaining NDWI contour polyline (Figure 3.3). 
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Figure 3.3: Overview of Coastal Methodology. Top: NDWI threshold method for 

extracting the waterline. Bottom: Method to convolve kernels over NDVI of the input 

image to elevate the value of pixels at the vegetation line. Right: The vegetation line is 

defined as those pixels with elevated values closest to the waterline. 
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3.2.6.2.Identifying vegetation line pixels 

Prior to performing the following steps, every image was rotated so that the coastline ran 

approximately top to bottom, with the land on the left-hand side of the image. Two 1-D 

kernels convolved from left to right and top to bottom over the image with a pixel stride 

length of one. Kernel 1 contained the pixel of interest whose value was being calculated, j, 

and the four pixels immediately to the left (landwards) [j, j+1, j+2, j+3, j+4]. Kernel 2 

contained the four pixels immediately to the right (seawards) of j and the value 0.0: [j-1, j-

2, j-3, j-4, 0.0] (Figure 3.4). As pixels containing vegetated land covers have high NDVI 

values, it was hypothesised that at the vegetation line there would be a large difference 

between the maximum and minimum value in kernel 1, and a small difference in pixel 

values in kernel 2. To amplify the values of pixels at the vegetation line, the value of every 

pixel in the image was calculated using Equation (3.7):  

𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 =
𝐾𝑒𝑟𝑛𝑒𝑙 1 𝑟𝑎𝑛𝑔𝑒

𝐾𝑒𝑟𝑛𝑒𝑙 2 𝑟𝑎𝑛𝑔𝑒
                         (3.7) 

Non-maximal suppression was then used to remove most pixels. A 1-D sliding window 

five pixels wide was passed over the output image. Pixels retained their value if they had 

the highest value in this sliding window with all other pixels being assigned a value of 0.0. 

To further discard pixels unlikely to be the vegetation line, all pixels within a five pixel 

buffer of the water line pixels were set to 0.0 and all pixels outside of a five pixel buffer of 

the 0.0 NDVI contour were set to 0.0. 

Finally, to find the vegetation line pixels, the Euclidean distance function was used to find 

the nearest pixel with value greater than 0.0 from every waterline pixel.  To generate a 

vectorised representation of the vegetation line, the resulting layer from every image was 

imported into ArcGIS 10.5.1. The Raster to Point and then Point to Line functions were 

used to convert the remaining vegetation line pixels into a vector vegetation polyline.  
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Figure 3.4: Visual representation of the two kernels used in CoasTool. Kernel 1 contained 

the values within the pixel of interest and the four landward pixels. Kernel 2 contained the 

values of the four seaward pixels. Image background shows a zoomed in section of 

Dunwich, Suffolk. Green pixels to the left are vegetation, white pixels in the centre are the 

sandy/ shingle beach and dune system and the brown pixels to the right are water.  

3.2.6.3.Validation  

To validate the accuracy of CoasTool, NDVI threshold contours and the contoured SVM 

outputs, outputs were compared to manually digitised vegetation lines. The vegetation lines 

in the five images were manually digitised in ArcGIS 10.5.1. To improve the positional 

accuracy of the manually digitised lines, visual reference was made to high spatial 

resolution vertical aerial imagery (50 cm) during digitisation to aid with the identification 

of vegetated features not readily discernible in the 3 – 5 m resolution Planet imagery. The 

NDVI of each image was also overlaid at high transparency to aid identification of the 

coastal vegetation edge.  

The ArcMap plugin Digital Shoreline Analysis System (DSAS; (Thieler et al.,, 2009; 

USGS, 2018)) v5.0 was used in ArcGIS 10.5.1 to calculate distance between i) manually 

digitised shorelines and ii) CoasTool outputs and iii) NDVI threshold contours.  Distances 

between lines were calculated along transects running perpendicular to the dominant 

shoreline direction at 10 m alongshore spacing. To reduce transect crossing on sinuous 

coastlines, each transect was drawn orthogonal to a smoothed baseline that was drawn 
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seawards of the shoreline position. This was generated by calculating mean baseline angle 

over a 200 m interval, with the transect location at the midpoint. 

The average error or distance between the manually digitised line and edge detection 

outputs across all transects was calculated using Root Mean Squared Error (RMSE, 

Equation (3.8)) and Mean Absolute Error (MAE, Equation (3.9)): 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑖 − 𝑝𝑖)2𝑛

𝑖=1       (3.8) 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑜𝑖 − 𝑝𝑖|

𝑛

𝑖=1

                        (3.9) 

where oi and pi refer to the observed and predicted vegetation line position respectively and 

n is the number of transects where the different between the observed and predicted lines 

were measured.   

3.3. Results 

 

3.3.1. NDVI threshold and threshold based methods 

The NDVI contours produced using every threshold value, 0.0, 0.025, 0.05, 0.075 and 0.1, 

were overlaid on the original Planet image used for that site (Figure 3.5). At every site, the 

difference or error was calculated between each NDVI threshold contour and the manually 

digitised vegetation line (Table 2). NDVI threshold contours produced the smallest RMSE 

and MAE values at Dunwich and Holderness using the 0.0 threshold (Dunwich: MAE = 

4.23 m; Holderness: MAE = 2.13 m; Table 2). The MAE values produced by the 0.0 NDVI 

contour were far larger at the other three sites (Blakeney Point = 107.61 m, Hornsey = 

25.34 m and Porthallow = 58.02 m). The difference in error value when using different 

thresholds was most notable at Blakeney (0.0 contour RMSE = 186.21 m; 0.1 contour 

RMSE = 368.83 m). With the exception of Porthallow where the 0.0 NDVI contour 

produced the largest errors, the 0.0 NDVI threshold contour produced the smallest error 

values at every site (Porthallow 0.0 contour RMSE = 116.51 m and MAE = 58.02 m). 
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Table 3.2: RMSE and MAE between NDVI contours and manually digitised vegetation 

lines. Error values were calculated for NDVI contours using threshold values 0, 0.025, 0.05, 

0.075 and 0.1.

 

 

RMSE values were consistently larger than MAE values at every site. The largest 

discrepancies in RMSE and MAE values were generated by the 0.1 contours. For example 

at Holderness, RMSE was 0.18 m larger than MAE for the 0.0 NDVI threshold contour 

(RMSE = 2.31 m, MAE = 2.13 m), but was 22.63 m larger for the 0.1 contour (RMSE = 

42.21 m, MAE = 18.58 m).  

The insets in Figure 3.5 emphasise locations where the use of different NDVI threshold 

values led to large discrepancies in contour position. In general, the contours pertaining to 

the higher NDVI threshold values were situated further inland than the lower-valued 

threshold contours. At Porthallow, the 0.0 NDVI contour was situated seawards of the 

waterline along some transects (Figure 3.5 (a)). Large differences in NDVI contour position 

were generated for much of the marsh area at Hornsey (Figure 3.6 (b)), and to the north 

west of the image at Holderness (Figure 3.5 (c)). At Blakeney, it was only possible to detect 

the vegetation along the westerly edge of the barrier island using the 0.0 NDVI threshold 

contour (Figure 3.5 (e)).  
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Figure 3.5: NDVI threshold contour outputs at (a) Porthallow, (b) Hornsey, (c) Holderness, 

(d) Dunwich and (e) Blakeney Point. All five images use the same colour ramp for the 

different contour threshold values. Insets emphasise locations with large discrepancies in 

contour location.   
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3.3.2. Edge detection operators 

Edges in the NDVI and greyscale images were detected using the edge detection kernels at 

all five sites (Figure 3.6, 3.7, 3.8, &3.9). The edge detection operators did not perform 

consistently better or worse when using either the greyscale or NDVI image as input. At 

Holderness (Figure 3.6) and Porthallow (Figure 3.7), higher UA, PA and F1 values were 

achieved when detecting edges in the NDVI images (Table 3). Conversely, at Blakeney 

(Figure 3.8), Dunwich (Figure 3.9) and Hornsey, higher UA, PA and F1 values were 

achieved when the operators detected edges in the greyscale image (Table 3.3). See 

Supplemental Materials A to view all filtered and unfiltered outputs produced by the edge 

detection operators at the five sites when using the NDVI and greyscale images.   

The greatest UA score was generated by the Sobel and Roberts kernels over the greyscale 

image at Hornsey (UA = 0.96, PA = 0.14), meaning the kernel operators correctly identified 

96% of the pixels corresponding to the manually digitised vegetation edge. The Sobel 

kernel was also the best performing kernel over the NDVI image at Porthallow (UA = 0.86, 

PA = 0.31). The highest PA scores were produced by the Canny edge detector at three of 

the five sites (Table 3.3). For the other three kernel operators, the highest PA score recorded 

was 0.31, meaning less than one out of three pixels were correctly detected as the vegetation 

edge.  The Laplacian kernel consistently performed the worst at every site when applied to 

both the NDVI and greyscale image. When the vegetation line was not buffered, the 

maximum PA value recorded at all sites using any kernel was just 0.13 (Canny edge 

detection at Holderness). For the other three edge detection operators, the largest PA value 

recorded was 0.06 (Sobel edge detection using NDVI image at Porthallow).  
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Table 3.3: Sobel, Laplacian, Roberts and Canny edge detection operator performance at the 

five test sites. Operator performance when detecting edges in the NDVI and greyscale 

images is compared. Green boxes highlight which kernel operator performed the best at 

each site, and whether the operator was detecting edges in the NDVI or greyscale image. 

Column headers ‘1’, ‘3’ and ‘5’ correspond to the buffered pixel-width of the manually 

digitised vegetation line.  
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Figure 3.6: Outputs from applying edge detection operators to NDVI and greyscale image 

at Holderness, East Yorkshire. Outputs from applying (a) Canny edge, (b) Roberts, (c) 

Laplacian and (d) Sobel edge detection to the NDVI image.Outputs from applying (e) 

Canny edge, (f) Roberts, (g) Laplacian and (h) Sobel edge detection to the greyscale 
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image.Blue and red correspond to pixels determined to be an edge with high and low 

confidence respectively. 

 

Figure 3.7: Outputs from applying edge detection operators to NDVI and greyscale image 

at Porthallow, Cornwall. Outputs from applying (a) Canny edge, (b) Roberts, (c) Laplacian 

and (d) Sobel edge detection to the NDVI image. Outputs from applying (e) Canny edge, 

(f) Roberts, (g) Laplacian and (h) Sobel edge detection to the greyscale image. Blue and 

red correspond to pixels determined to be an edge with high and low confidence 

respectively.  
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Figure 3.8: Outputs from applying edge detection operators to NDVI and greyscale image 

at Blakeney, Norfolk. Output images have been filtered so only the 5% of pixels with the 

highest values after applying the kernels are shown.  Outputs from applying (a) Canny 

edge, (b) Roberts, (c) Laplacian and (d) Sobel edge detection to the NDVI image. Outputs 

from applying (e) Canny edge, (f) Roberts, (g) Laplacian and (h) Sobel edge detection to 

the greyscale image. Blue and red correspond to pixels determined to be an edge with high 

and low confidence respectively.  
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Figure 3.9: Outputs from applying edge detection operators to NDVI and greyscale image 

at Dunwich, Suffolk. Output images have been filtered so only the 5% of pixels with the 

highest values after applying the kernels are shown.  Outputs from applying (a) Canny 

edge, (b) Roberts, (c) Laplacian and (d) Sobel edge detection to the NDVI image. Outputs 

from applying (e) Canny edge, (f) Roberts, (g) Laplacian and (h) Sobel edge detection to 



65 

 

the greyscale image. Blue and red correspond to pixels determined to be an edge with high 

and low confidence respectively.  

3.3.3. Support Vector Machines 

Linear and polynomial Support Vector Machines (SVM) models were applied to the five 

test sites. The linear models consistently outperformed the polynomial SVM models and at 

Hornsey, Holderness and Dunwich, the best performing model was the linear SVM model 

with a regularisation parameter value of one (Figure 3.10 (b) – (d)). At Porthallow, the 

linear SVM model with regularisation parameter value of two outperformed all others 

(Figure 3.10 (a)). All outputs produced by the eight SVM models (four linear, four 

polynomial) at each site have been produced in Supplemental Materials A. The output of 

the best performing SVM model at each site for the four abovementioned sites is shown in 

Figure 3.10 (a) – (d).  

The polylines produced at the same four sites by contouring the SVM outputs were 

compared to the manually digitised lines. SVM performed the best at Dunwich, (RMSE = 

5.78 m, MAE = 4.23 m; Table 3.4). SVM performance was substantially worse at Hornsey 

compared with the other three sites (RMSE = 61.99 m, MAE = 31.47 m; Table 3.4). At 

Hornsey, the SVM prediction was less than 20 m from the manually digitised line at more 

than 80% of the transects. However, very large seawards error values were detected along 

some transects pertaining to exposed muddy substrate seawards of the coastal vegetation 

edge (Figure 3.10 (d); Figure 3.14 (l)). At all sites, the SVM models primarily predicted 

the coastal vegetation edge to be seawards of the manually digitised line, and at Holderness, 

the SVM prediction was seawards of the manually digitised line at every transect (Figure 

3.14 (c), (f), (i) and (l)).  

At Blakeney, no SVM model produced an output from which a vector polyline of the 

vegetation edge could be produced. With the exception of the linear model with 

regularisation parameter of 1, all models predicted a very small proportion (less than 5 %) 

of the entire image to be landwards of the coastal vegetation edge. The small number of 

pixels which were predicted to be landwards of the vegetation edge primarily corresponded 

with agricultural fields instead of the barrier island vegetation (see Supplementary 

Materials A). 
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Figure 3.10: Outputs produced by the best performing SVM model at (a) Porthallow, (b) 

Hornsey, (c) Dunwich and (d) Holderness. Green pixels correspond to locations predicted 

to be landwards of the coastal vegetation edge. The red line represents the manually 

digitised line.  
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3.3.4. CoasTool 

3.3.4.1. Row-wise NDVI pixel pattern 

The cross-shore pattern in NDVI pixel values at Dunwich was determined by plotting the 

NDVI values for each row separately (Figure 3.11). For every cross-shore transect, NDVI 

values were negative in water, increased steeply at the waterline, plateaued near 0.0 across 

the beach before rising sharply again at the vegetation line. Cross-shore transects 

demonstrated that the vegetation line was situated at the transition between a set of adjacent 

pixels with relatively consistent, near-zero, NDVI values and a set of pixels whose NDVI 

values increased rapidly when traversing inland.   

 

 

 

 

 

 

 

 

 

Figure 3.11: Cross-shore variability in NDVI pixel values for 100 rows of the NDVI image 

of Dunwich, Suffolk, UK. Land pixels are to the left of the image and sea pixels to the right. 

Each line represents a separate row in the image. The vertical blue and green lines represent 

the approximate water and vegetation line locations respectively. Each tick on the x-axis 

corresponds to a pixel. 

 

Waterline 

Vegetation line 



68 

 

Cross-shore variability in pixel values after passing the two kernels over the NDVI image 

and applying Equation (7) is shown in Figure 3.12. The application of Equation (7) leads 

to the generation of a small peak in pixel values close to the waterline, and a more distinct 

peak in pixel values at the vegetation line. The values of pixels inland of the vegetation line 

are approximately equivalent to the value of pixels seawards of the water line (Figure 3.12).  

Figure 3.12: Cross-shore variability in pixel values at Dunwich, Suffolk, UK after passing 

the two 1-D kernels over the NDVI image and applying Equation (7). The vertical blue line 

denotes the approximate location of the water line and all pixels to the right of this line are 

seaward of the waterline. The major peak correspond to the approximate location of the 

vegetation line. All pixels to the left of the peak are landwards of the vegetation line peaks. 

The peaks are not aligned due to differences in beach width. Each tick on the x-axis 

corresponds to a pixel. 

 

3.3.4.2. CoasTool performance 

At all five sites, continuous vegetation lines were produced by CoasTool (Figure 3.13). 

RMSE and MAE values generated by CoasTool are shown in Table 4. Errors were lowest 

at Dunwich and Holderness (Dunwich: RMSE = 8.09 m, MAE = 6.61 m; Holderness: 

Waterline 
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RMSE = 4.75 m, MAE = 3.80 m). Errors were larger for the other three sites (Hornsey, 

Porthallow, Blakeney), being greatest at Blakeney (RMSE = 39.09 m, MAE = 23.26 m).  

When comparing RMSE and MAE values across the three methods, CoasTool performed 

best at Hornsey and Blakeney, NDVI threshold contours performed the best at Holderness, 

and SVM outperformed the other two methods at Porthallow and Dunwich (Table 4). Errors 

produced by CoasTool were similar, but slightly larger, at Dunwich and Holderness than 

the errors produced by the 0.0 NDVI contour and SVM (CoasTool RMSE at Holderness = 

4.75 m, 0.0 NDVI threshold contour RMSE = 2.31 m, Table 4). However, CoasTool errors 

at Blakeney and Hornsey were substantially lower than those produced using NDVI 

threshold contours and SVM (e.g. Hornsey CoasTool MAE = 17.33 m, 0.0 NDVI threshold 

MAE = 25.34 m, SVM MAE= 31.48 m; Supplementary Materials A).  
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Figure 3.13: Vectorised CoasTool outputs at the five test sites (a) Porthallow, (b) Hornsey, 

(c) Holderness, (d) Dunwich and (e) Blakeney.  
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To further identify the scale and direction of the errors produced by CoasTool, NDVI 

threshold contours and SVM, histograms of error values for each site using each method 

are shown in Figure 3.14. The largest standard deviation (σ) value produced by the 

CoasTool is 37.95 m compared with 155.40 m by NDVI thresholds and 49.49 m by SVM. 

Very large σ values (greater than 90 m) were recorded by the NDVI threshold contours at 

Hornsey, Blakeney and Porthallow, corresponding to large negative (landward) errors in 

NDVI threshold contour location. SVM contour σ values were less than 11 m at three out 

of five sites, with most errors being seawards (positively) skewed (Figure 3.14). All three 

tools performed the best at Dunwich and Holderness, with MAE less than 9.97 m and σ 

less than 7.01 m values produced by each tool (Table 3.4, Figure 3.14).  

 

Table 3.4: Comparison of CoasTool, NDVI threshold contours and SVM contour RMSE 

and MAE values at the five test sites. The best performing NDVI threshold contour is used 

at each site. The results of the best method at each site are highlighted in green.  
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Figure 3.14: Histograms of error values produced by CoasTool, NDVI threshold contours 

and SVM. Positive and negative values correspond to transects where the tool outputs are 

seawards or landwards respectively of the manually digitised line. The red vertical lines 

denote a value of 0 m, where the manually digitised line and tool outputs overlap. Standard 

deviation (σ) values are provided for reference. Each site has a different scale on the x and 

y-axis, but every tool uses the same value range for both axes at each site. Note: No 

vectorised coastal vegetation edge could be produced at Blakeney.  
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3.4. Discussion 

By considering the relative performance of different edge detection tools, more informed 

decisions can be made about the best tool to use in future studies. This chapter has described 

and applied a new edge detection tool, CoasTool, for the automatic extraction of the coastal 

vegetation line. The performance of CoasTool was compared to NDVI threshold contours, 

SVM classification and well-established edge detection operators. All tools accurately 

detected the coastal vegetation edge in multiple test images, generating RMSE less than 11 

m or two image pixels. However, every tool produced RMSE greater than 35 m at one or 

more sites (Table 3.4).It is necessary to discuss the reasons for this varied performance 

before suggesting an alternative tool, convolutional neural networks.  

The performance of all tools was assessed by comparing their output to manually digitised 

vegetation lines. Direct calculation of errors derived from manual digitisation was not 

possible because RTK-GPS measurements could not be taken from all five study sites. In 

a comparable study, Li et al., (2001) calculated mean positional errors of ± 8.5 m when 

manually digitising 4 m resolution IKONOS imagery. In Chapter 4, manually digitised 

vegetation lines are compared to ground-referenced measurements at three sites in 

Suffolkto derive a maximum RMSE of 4.13 m. The errors derived from manually digitising 

vegetation lines in this Chapter is therefore estimated to be 4.13 – 8.5 m.    

 

3.4.1. CoasTool performance 

This chapter applied CoasTool to five sites, each representing a distinct coastal setting.  

CoasTool uniquely considers the proximity of the coastal vegetation line to the land-sea 

interface and at all five sites CoasTool produced a continuous vegetation line with a Mean 

Absolute Error (MAE) less than 23.3 m. CoasTool was also able to take into account local 

variations in NDVI pixel values, instead of simply extracting pixels above or below a 

particular value, as in NDVI threshold contouring. CoasTool outperformed NDVI threshold 

and SVM contours at the two sites with the highest shoreline curvature: Blakeney, and 

Hornsey (Table 3.4) and also outperformed NDVI threshold contours at Porthallow. At 

Holderness and Dunwich, CoasTool performance was slightly worse but comparable to the 

NDVI threshold and SVM techniques. Although earlier studies have quantified errors 
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derived from manually digitising coastal vegetation lines (Hapke et al., 2010; Leatherman, 

2003; Li et al., 2001; Theiler et al., 2013), no study could be found which has quantified 

coastal vegetation edge positional errors using an automated technique. Error values 

derived from extracting the coastal waterline from remote sensing imagery with similar 

resolutions have been shown to range between 7.3 – 12.7 m using NDWI thresholding 

(Kuleli et al., 2011; Hagenaars et al., 2018; Vos et al., 2019a) and between 4.7 – 7.4 m 

using unsupervised classification (Garcia-Rubio et al., 2015). The results in this chapter are 

therefore comparable to those derived in other studies.  

Along the relatively straight stretches of shoreline at Dunwich and Holderness, CoasTool 

produced small errors, less than two image pixels in size (Holderness MAE = 3.80 m; 

Dunwich MAE = 8.09 m). At these sites, the relatively consistent angle of the shoreline 

across the entire image enabled the 1-D kernels to detect the cross-shore patterns in NDVI 

values that this chapter has discovered (Figure 3.11); namely that the coastal vegetation 

line is situated at the interface between adjacent pixels with near-zero NDVI values and 

pixels which rapidly increase in NDVI value further inland.  In contrast, along more 

complex coastlines exhibiting a higher curvature, the pattern of pixel values described in 

Figure 3.11 was not consistently found. This led to CoasTool performing worse at the three 

sites containing a more complex shoreline, most notably Porthallow (MAE = 14.83 m, 

RMSE = 23.37 m, Figure 3.13 (a)).  

CoasTool was also susceptible to elevating the value of pixels not corresponding to the 

vegetation line but which were situated in a row of pixels exhibiting the same cross-shore 

pattern identified in Figure 3.11. This led to pixels corresponding to the drift line at 

Dunwich and boundaries between sand and rock at Porthallow being erroneously detected 

as the vegetation line (Figure 3.13 (a) and 3.13 (d)). Erratic fluctuations in vegetation line 

position were detected at some locations, e.g. at Hornsey and Blakeney (see insets Figure 

3.13 (b) and 3.13 (e)), resulting in CoasTool output pixels being greater than 100 m inland 

of the manually digitised vegetation line along some transects (Figure 3.14 (j) and 3.14 

(m)). This is attributable to CoasTool detecting a more rapid increase in NDVI pixel values 

inland of the most seaward coastal vegetation line. This aligns with studies looking at cross-

shore gradients in vegetated land cover in salt marsh habitats, where the most abrupt 

increase in vegetation cover (and correspondingly pixel NDVI values) is situated inland of 

the most seaward salt-tolerant species (Feilhauer et al., 2020; Unberath et al., 2019).  
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3.4.2. SVM performance 

 

SVM outperformed CoasTool and NDVI threshold contouring at two of the five sites 

(Dunwich and Porthallow), although a very large number of pixels seawards of the 

vegetation line were erroneously predicted to be landwards by the SVM (Figure 3.10 (c)). 

This high performance shows promise in using supervised machine learning methods to 

detect the coastal vegetation edge, attributed to their ability to iteratively learn the 

relationship between spectral values and class, use all spectral bands and be trained using 

a relatively small dataset (Elnabwy et al., 2020; Mountrakis et al., 2011). By comparison, 

the other three methods were restricted to using a single-band image as input.  

 

SVM performed the worst at Hornsey where exposed muddy substrate was erroneously 

predicted to be landwards of the vegetation edge (Figure 3.10 (b)) and at Blakeney where 

no vectorised vegetation line could be produced. The poor performance of SVM at these 

sites is attributed the very graded coastal vegetation boundary at Hornsey and Blakeney, 

emphasised by the large distance between NDVI threshold contours at these sites. This 

corresponds to the results of Choung and Jo (2017) where the performance of SVM at 

predicting the coastal waterline position were lowest where the waterline boundary was 

less distinct, primarily corresponding to shaded locations and locations with shallow beach 

gradient. Hornsey and Blakeney also represent coastal settings very distinct from those 

contained within the training dataset. Blakeney is a gravel spit with adjoining salt marshes 

(Hardy, 1964, Pollard et al., 2020) and Hornsey contains salt marsh vegetation species with 

fronting muddy substrates (Scrimshaw et al., 1996). The spectral differences in the 

vegetation and substrate may explain the poorer performance of the SVM models at these 

two sites. This highlights the fact that alongside considering the size of the training dataset, 

the training images need to encompass a range of coastal settings if SVM models, or indeed 

other supervised machine learning tools, are to generalise to accurately predict the coastal 

vegetation edge location in multiple locations.  

 

3.4.3. NDVI threshold contour performance 

The position of the vegetation line produced by NDVI contours was sensitive to the 

threshold value used. At Hornsey and Blakeney Point, the salt marsh and barrier island 
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vegetation commonly had NDVI values below 0.05. At Hornsey, the 0.1, 0.075 and 0.05 

NDVI threshold contours detected the back barrier of the salt marsh. At Blakeney, large 

stretches of the westerly edge of the barrier island could only be detected using the 0.0 

NDVI threshold contour (Figure 3.5 (b) and 3.5 (e)). Whilst the 0.0 NDVI threshold contour 

produced the smallest errors at four out of the five sites, the 0.0 contour produced the largest 

errors at Porthallow (Table 3.2). At this site, the 0.0 contour was situated seawards of the 

waterline along some transects, likely due to the presence of macroalgae or other substrates 

in the water column elevating the corresponding NDVI pixel values (Figure 3.5 (a)). This 

highlights how NDVI threshold contour position is sensitive to biotic factors including 

plant species, composition and phenology and environmental factors including soil 

moisture content and substrate composition (Belluco et al., 2006; Gandhi et al., 2015; 

Rahman et al., 2011).  

NDVI threshold contours are also unable to overcome small along-shore breaks in the 

vegetation line, often leading to substantial, unnatural migrations of the NDVI contour 

inland (Figure 3.14 (h) and (k)). At Holderness, where a ploughed agricultural field was 

detected, the 0.05, 0.075 and 0.1 contours followed the vegetated margins of the field, 

causing the NDVI contours to be situated up to 108.3 m landwards of the manually digitised 

line (Figure 3.5 (c)). These largescale inland migrations of higher threshold NDVI contours 

explain the larger differences between RMSE and MAE values for 0.1 contours compared 

with 0.0 (Table 3.2). Higher weights are placed on large error values when calculating 

RMSE compared with MAE (Chai and Draxler, 2014). Larger differences in the RMSE 

and MAE values produced by higher threshold contours demonstrates how error values are 

low for the majority of transects but that a low number of transects contain large errors. 

The large variability in NDVI threshold contour position due to gaps in the vegetation line, 

and sensitivity in the threshold value used, precludes the fully automated use of NDVI 

threshold contours to detect the coastal vegetation line position in remote sensing imagery.  

 

3.4.4. Edge detection operator performance 

This chapter has also demonstrated that edge detection operators are not suitable for 

exclusively detecting the coastal vegetation edge in remote sensing imagery. When a non-

buffered vegetation line was used, the highest recorded PA value recorded was 0.13, 
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meaning only 13% of pixels corresponding to the manually digitised vegetation line were 

identified by the kernel operators as being an edge location (Table 3.3). The edge detection 

operators did not perform consistently better when applied to either the NDVI or greyscale 

image. Edge detection operator performance was better when applied to the NDVI image 

at Holderness (Figure 3.6) and Porthallow (Figure 3.7) but performance was better when 

applied to the greyscale images at the other three sites (Table 3.3). It was anticipated that 

edge detection operator performance would be better on the NDVI images because the key 

function of the NDVI function is to distinguish vegetated from non-vegetation land covers 

(McFeeters et al., 1996). It is suggested that the graded nature of the coastal vegetated 

boundary reduced the performance of applying the edge detection operators on some 

images (Feilhauer et al., 2020; Unberath et al., 2019). The most consistent performance by 

the kernels applied to both single-band images was at Porthallow (Sobel NDVI: UA = 0.86, 

PA = 0.31, Roberts greyscale: UA = 0.49, PA = 0.15). This is attributed to the relatively 

steep gradient in both NDVI and greyscale pixel intensity values at this site due to the close 

proximity of the vegetation and water line (Figure 3.7 (a) – (d)).  These findings align with 

other studies which have attributed the poor performance of the edge detection operators to 

the lack of consistent, sufficient contrast in pixel intensity values at the waterline (Liu and 

Jezek, 2004).  

Whilst kernel performance was high at some sites, the inconsistency in performance 

depending on the single-band input image used precludes the fully automated use of the 

edge detection kernels to exclusively detect the coastal vegetation edge. This Chapter’s 

results support previous assertions that the edge detector operators locate the positions of 

the greatest rate of change in pixel greyscale intensity (Liu and Jezek, 2004). The objective 

of this study, however, was not to find the most abrupt edge but the semantically correct 

edge i.e. exclusively the coastal vegetation edge. The key limitation of all the edge detection 

operators at every site is that they also detected other, irrelevant boundaries within the 

image, including the coastal waterline and inland boundaries such as field margins and 

anthropogenic land covers. Sobel and Roberts’ approaches consistently outperformed 

Laplacian methods. This was attributed to the line of zeros contained within the Sobel and 

Roberts kernels which makes them more suitable for finding linear boundary features 

(Figure 3.6 (b) & (d), 3.7 (b) & (d), 3.8 (b) & (d) and 3.9 (b) & (d); Al-Amri et al., 2010). 

Conversely, the Laplacian kernel is better suited to finding individual pixels with 

substantially different values to pixels in all other directions, leading to the ‘speckled’ 
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appearance of many of the Laplacian kernel outputs (Figure 3.6 (c), 3.7 (c), 3.8 (c), and 3.9 

(c)).  

No automated way to derive an image-specific threshold value was found to filter the 

outputs of the edge-detection operator outputs. Instead, this study arbitrarily retained only 

the 5% of pixels with the highest values. Retaining a smaller percentage of pixels would 

have reduced the number of false positives, potentially increasing UA values, but this would 

have also increased the number of false negatives, potentially reducing PA values. The 

lower 95% of pixels were removed because to make the analysis in this Chapter analogous 

to the post-processing steps applied to the outputs of convolution neural network (see 

Chapter 4), where the position of pixels predicted to be the coastal vegetation edge with a 

value ≥ 0.95 were compared.    

 

3.4.5. Further research requirements 

All four tools used in this chapter represented the vegetation edge as a discrete line or single 

pixel. This Chapter questions whether this is the most appropriate way to represent the 

coastal vegetation line. When applying Equation (3.7), CoasTool elevates the values of a 

cross-shore zone of pixels, rather than one individual pixel per row (Figure 12). Likewise, 

when using NDVI contours at Dunwich, where small errors were produced by all contours, 

there was still a maximum discrepancy of 37.6 m in NDVI contour position (Figure 3.5 

(d)). The 0.0 contour was likely to have detected isolated, seaward clumps of pioneer 

vegetation species, whereas the 0.1 contour detected more landwards, continuous land 

cover (Figure 5 (d)). This highlights how the coastal vegetation edge is not an abrupt 

boundary but rather a zone where vegetation cover density gradually increases when 

traversing cross-shore inland from the exposed beach or other intertidal zone.  

The ‘fuzziness’ of coastal vegetation boundaries has led to the application of soft-

classification methods which provide a probabilistic rather than absolute value that a pixel 

corresponds to different coastal vegetation species (Berhane et al., 2018; Wen et al., 2020). 

Probabilistic classification better accounts for the continuum in vegetated land cover, 

typically characterised by an increasing density in vegetation cover when traversing inland 
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(Feilhauer et al., 2020). These soft-classification methods, however, are still unable to 

distinguish between coastal and more terrestrial vegetation species (Rahman et al., 2011).  

Machine learning tools are a potential alternative for dealing with the fuzzy nature of the 

coastal vegetation boundary. Supervised machine learning tools can be provided with initial 

coastal remote sensing input images and corresponding binary edge/ non-edge maps 

(Kokkinos, 2015). This potentially provides the supervised machine learning tools with 

semantic information, required to detect the ‘correct edge’, instead of simply the locations 

with the greatest gradient in pixel greyscale intensity value (Chong and Jo, 2017; 

Kokkonos, 2015; Wan et al., 2019). A form of machine learning, Convolutional Neural 

Networks (CNN), has been used to derive probabilistic outputs that a particular pixel 

represents the position of field boundaries (Waldner and Diakogiannis, 2020); inland 

waterbody boundaries (Chen et al., 2018) and mangrove extent (Wan et al., 2019), but has 

not been applied to detect the coastal vegetation edge in remote sensing imagery.  

Heterogeneity in the spectral properties of coastal vegetation also limited the performance 

of all tools used in this Chapter (Table 3.4). Attributes such as the satellite platform used, 

time of year, time of day and phenology all heavily influence the spectral properties of 

vegetation (Belluco et al., 2006; Rahman et al., 2011). When trained on a substantial 

number of images, supervised machine learning tools have been able to detect field 

boundaries in images captured by different satellite platforms at different azimuths 

(Waldner and Diakogiannis, 2020), and to detect the same inland vegetation margin in 

images captured during all seasons (Watkin and van Niekerk, 2019). The ability to consider 

that vegetation can take a range of spectral values is essential to deriving an automated tool 

which can consistently detect the coastal vegetation edge from multispectral remote sensing 

imagery (Feilhauer et al., 2020; Wan et al., 2019). 

Irrespective of the shortcomings identified in all of the methods used in this Chapter, all 

methods were able to detect a continuous coastal vegetation edge, distinct from the land-

water interface (Figure 3.5, 3.10 and 3.13). This is primarily due to the use of 3 – 5 m 

spatial resolution Planet imagery (Table 3.1). The ability to automatically and 

simultaneously extract both proxies from multispectral remote sensing imagery provides 

promise in further understanding coastal dynamics at annual to decadal timescales. The 

instantaneous waterline can identify very rapid shoreline responses to meteorological and 

hydrological forcing factors, whereas the vegetation line provides a longer-term 
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representation of shoreline dynamics (Zarillo et al., 2008). Further investigation is required 

to understand whether further insights into coastal zone dynamics can be generated from 

simultaneously extracting these two shoreline proxies.  

 

3.5. Conclusion 

This Chapter has described and applied CoasTool to automatically detect the coastal 

vegetation line in remote sensing imagery. CoasTool has been shown to outperform NDVI 

threshold contours and edge detection operators along more complex coastlines with higher 

curvature. However, the three abovementioned tools detected irrelevant boundaries and 

detected the vegetation line as a discrete line or single pixel. This does not represent the 

graded nature of the coastal vegetation edge, although CoasTool and the edge detection 

kernels do tend to elevate a region of pixels near the vegetation edge, rather than an 

individual pixel (Figure 3.12).  Further investigation is required into tools which may better 

represent the graded nature of the coastal vegetation edge.  

A key challenge in detecting the coastal vegetation edge is that the most seaward vegetation 

can exhibit a range of pixel intensity values. CoasTool was able to identify locations where 

the NDVI values increased compared with the exposed intertidal substrates and did not 

need to find absolute NDVI values as in the thresholding methods. However, similar to the 

edge-detection operators, CoasTool lacked semantic information to sometimes differentiate 

between the seaward coastal vegetation edge and other locations with abrupt changes in 

NDVI value, and was susceptible to noise, for example if a drift line was present in the 

intertidal zone. In comparison, SVM outputs tended to be able to discard irrelevant inland 

boundaries (Figure 3.10), primarily attributed to the supervised nature of the tool, but was 

unable to generalise to a range of coastal settings. Further investigation into the ability of 

supervised machine learning methods to exclusively detect the coastal vegetation edge are 

required to identify whether they can address some of the limitations of the methods 

investigated in this Chapter.  
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Chapter 4. VEdge_Detector: Automated 

coastal vegetation edge detection using a 

convolutional neural network 

4.1. Introduction 

Convolutional Neural Networks (CNN) have recently received increased attention as a way 

to effectively detect edges in remote sensing imagery. This is in part because they 

simultaneously consider the value of the pixel of interest and neighbouring pixels 

(Kokkinos, 2016; Zhang et al. 2016). CNNs convolve kernels of different sizes over the 

raw input image. Smaller kernels (e.g. 3 × 3) capture detailed edge structures but suffer 

from high incidence of false positives (noise). Conversely, larger kernels detect only the 

most salient edges, generating blurred boundaries and missing localised detail. Optimal 

fusing of the outputs from different sized kernels subsequently identifies the most likely 

location of true edges and minimises noise by considering that edges will be in the same 

location irrespective of kernel size (Ren, 2008).   

Holistically-Nested Edge Detection (HED) is an example of a CNN which progressively 

reduces image resolution, instead of increasing kernel size, to achieve multi-scale image 

convolution (Xie and Tu, 2015). The HED model architecture contains five separate sets 

of convolutional layers, all using 3 × 3 kernels, which are each separated by 2 × 2 maximum 

pooling layers to reduce image resolution. A side output layer is produced after every set 

of convolutional layers. The first side output contains local boundary detail but is 

susceptible to noise and false inland boundaries. Conversely, side output 5 only detects 

salient boundaries and is robust to image noise but the predicted coastal vegetation edge is 

blurred. These five side output layers are optimally fused to derive the final output, 

predicting the likelihood of each pixel being an edge (Xie and Tu, 2015; see Figure 4.1 for 

a graphical overview of HED architecture).   
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Figure 4.1: Holistically-Nested Edge Detection (HED) architecture. Three spectral bands 

from every satellite image are selected as HED input. Input images are fed through five 

distinct stages of image convolution, and between each stage a max pooling layer decreases 

image size. The squares to the bottom left of the image detail the number of convolution 

kernels at each stage. The side outputs are resized and optimally fused to generate the 

output. 
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Applications of CNN methods, including HED, to detect edges have recently increased in 

number, due to enhanced computer processing power and greater image availability to train 

the CNNs e.g., natural image datasets including the Berkeley segmentation dataset 

(Arbelaez et al. 2007) and ImageNet (Stanford Vision Lab, 2016). The Visual Geometry 

Group Network (VGGNet-16) model is a CNN with a very similar architecture to HED but 

contains no side outputs. The model was trained using the ImageNet dataset to detect all 

objects in natural Red Green Blue (RGB) images e.g., images of animals, humans and 

everyday items (Simonyan and Zisserman, 2015). Applications of HED to detect every 

object in natural images are widespread but remote sensing applications, where images 

contain more noise and a higher density of boundaries, remain highly limited. A key 

research gap is the retraining and fine tuning of these generalist edge detection CNNs to be 

able to differentiate between separate types of edge in remote sensing imagery and 

exclusively extract edges of interest.  

To exclusively detect particular types of edge in remote sensing imagery, some studies have 

updated or fine-tuned the weights within pre-existing CNNs by retraining them with remote 

sensing image pairs. Richer Convolutional Features (RCF), which are CNNs with a similar 

architecture to HED, have been fine tuned to exclusively detect building boundaries in 

remote sensing imagery, achieving a higher accuracy than other generalist edge detection 

algorithms (Lu et al., 2018). In Lu et al.’s study, fine tuning was conducted by training the 

RCF on 1856 image pairs containing an urban scene and a binary image showing building 

edge and non-edge locations.  Similarly, a U-Net neural network was retrained with Landsat 

imagery to predict glacial calving front locations (Mohajerani et al., 2019). Remote sensing 

applications of HED, or modified versions, have been used to detect field boundaries (X.Y. 

Liu et al., 2019) and to derive land cover classification (X.Y. Liu et al., 2019; Marmanis et 

al., 2018). H. Liu et al. (2019) modified the standard convolution structure of HED to detect 

shorelines in heavily urbanised Jiaozhou Bay, China. HED was reported to outperform 

Sobel and Canny Edge Detection (producer accuracy: Sobel = 0.66, Canny = 0.82, modified 

HED = 0.95) but no information was provided on the shoreline proxy used. Furthermore, 

this study trained HED using exclusively RGB spectral bands; further analysis is necessary 

to identify the optimum spectral band combination during HED training. These 

abovementioned studies highlight the potential of retraining a CNN to fine-tune its internal 

weights to exclusively detect a particular type of edge in remote sensing imagery. To date, 

this approach has not been applied to exclusively detect coastal vegetation edges from 
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remote sensing imagery. 

This chapter aims to train and apply a Holistically-Nested Edge Detection (HED) model to 

extract coastal vegetation lines. The objectives of the chapter are to: i) train a HED model 

using coastal remote sensing imagery, namely Planet 3 m and 5 m resolution imagery 

(PlanetScope and RapidEye); ii) assess the performance of HED in extracting the coastal 

vegetation line when trained using different combinations of spectral bands as input across 

a range of coastal settings (Winterton, Norfolk, UK; Perranuthnoe, Cornwall, UK; Bribie 

Island, Australia and Wijk-aan-Zee, The Netherlands); iii) compare the performance of a 

new edge detection tool, Vedge_Detector , against other experimental methods previously 

used to detect the coastal vegetation edge, namely ground-referenced measurements and 

manual digitisation of remote sensing and aerial imagery; and iv) incorporate the best 

performing HED model within VEdge_Detector to detect shoreline change from sequential 

images of Covehithe, Suffolk, UK between 2010 to 2020.  
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4.2. Materials and Methods 

4.2.1. Remote sensing imagery data sources 

A total of 78 Planet images (PlanetScope and RapidEye, with 3 and 5 m spatial resolution 

respectively) were selected for HED training (Planet Team, 2017). Ortho Scene product 

level imagery was chosen, meaning Planet had orthorectified and radiometrically corrected 

images prior to image download. Locations were chosen to encompass a diverse range of 

geomorphic landforms, tidal ranges and vegetation types (see Supplementary Material B). 

Training image sizes ranged from 6.3 km2 to 1557.5 km2 and images were selected from 

all years when Planet imagery was available in the period 2010 to 2020. Multiple images 

were collected from each location to ensure the training dataset contained scenes captured 

at different tidal stages. This ensured that multiple images of the same shoreline, but with 

different beach widths, were contained in the training dataset. 

 

4.2.2. Holistically-Nested Edge Detection (HED) training 

All steps taken in this study were separated into three stages: HED training using coastal 

remote sensing imagery; validation of the trained HED models; and digital shoreline 

change analysis using the best performing HED model. The training and validation stages 

determined the optimal combination of remote sensing spectral bands to train the HED 

model whilst keeping the HED model architecture constant. The best performing HED 

model became the VEdge_Detector tool, developed to extract vegetation lines in the 

shoreline change stage.  Figure 4.2 provides a graphical overview of the three analytical 

stages. 
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Figure 4.2: Overview of the three stages of VEdge_Detector training and application. Four 

Holistically Nested Edge Detection (HED) models were independently trained using 

different spectral band combinations (training). The performance of each HED model was 

evaluated using a separate image set (validation). The best performing HED model, trained 

on images with spectral band combination red, green, near-infrared (RG-NIR), formed the 

VEdge_Detector tool. This tool detected the vegetation line position from multiple images 

of the same shoreline captured over a 10-year period (shoreline change detection). 

 

4.2.2.1. Manual digitisation of the vegetation line 

To generate the training dataset, vegetation lines were manually digitised from all 78 

training images in ArcGIS 10.5.1. The image NDVI was overlaid at 70% transparency to 

aid visual vegetation line identification. Where vegetation lines were interrupted, the 

seaward extent of inland waterbodies or urban areas was used. Vegetation line shapefiles 

were converted into binary raster edge maps (binary images), with edge pixel values set to 

1 and non-edge pixels to 0. Image pairs were subsequently established, containing the 

original image and the binary image.  
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4.2.2.2 Data Augmentation 

A large number of images are required during HED training to refine the internal weights 

within the HED model. Manual digitisation of this number of images would be too time 

consuming; therefore data augmentation was used to substantially increase training data 

size, from 78 to 10 700 image pairs. Larger images were cropped to size 480 × 480 pixels 

(the default image size used by the HED architecture) at multiple locations. The uncropped 

larger images also formed part of the training dataset but were resized to 480 × 480 pixels 

prior to HED training. Image pairs were flipped vertically, rotated by 90, 180 and 270 

degrees and subject to the introduction of Gaussian noise (Figure 4.3). Gaussian noise was 

not added to the binary images. Images were rotated around five different points of origin. 

Image pairs not containing any vegetation line after rotation were automatically discarded. 

All image pairs were shuffled and randomly assigned into training (80%) and testing (20%) 

sets prior to CNN input. The proportion of land cover in each image varied from 2% to 

98%.  
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Figure 4.3: Transformations used in data augmentation (a) original image (cropped to 480 

× 480 pixel size), (b) – (d) original image rotated by 90°, 180° and 270°, (e) original image 

flipped vertically, (f) – (h) flipped image rotated by 90°, 180° and 270°, (i) – (l) Gaussian 

noise added to the flipped images. Transformations (b) – (h) were simultaneously 

conducted on the binary images. 

 

4.2.2.3. Holistically-Nested Edge Detection (HED) training 

HED training was conducted to modify the model’s internal weights to increase the model’s 

ability to exclusively detect coastal vegetation edges. To speed up HED training, non-zero 

weights were initialised prior to training commencement. This study initialised the internal 

weights contained within the VGGNet-16 architecture prior to training. The weights 
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contained within the VGGNet-16 architecture were derived from training the model on 1.2 

million natural images to detect everyday objects e.g. animals, people and urban features. 

Using the weights contained within the VGGNet-16 architecture increased the speed of 

HED training compared to using randomly assigned weights. The key difference between 

the architecture in VGGNet-16 and HED is that HED contains side outputs. The side 

outputs enable deep supervision, whereby every side output is compared to the binary 

image to calculate loss. By comparison, in VGGNet-16 only the final output is compared 

to the binary image. Deep supervision guides the neural network to detect transparent 

objects, i.e., to only detect the edges of objects at a per-pixel level rather than the entirety 

of an object (Xie and Tu, 2015).  

To substantiate the assertion that the default weights in the VGGNet-16 architecture were 

not suitable for detecting exclusively coastal vegetation edges, a HED model containing 

the default VGGNet-16 weights was used to predict the coastal vegetation edge in an image 

of Winterton, Norfolk, UK.  This HED model failed to detect the coastal vegetation line 

and instead detected the water line and other inland boundaries (e.g. roads and field edges). 

This was attributed to the weights in the VGGNet-16 architecture originally being trained 

to classify all objects in a natural RGB image whereas the objective of this study was to 

exclusively extract the vegetation line in remote sensing imagery and discard other 

boundaries. This need reinforced the necessity to retrain the HED model to refine the model 

weights, using the image pairs derived through manual digitisation and data augmentation. 

During every epoch of HED training, the internal weights in the HED model were used to 

predict the coastal vegetation line position from the raw image. The class-balanced cross 

entropy loss function was used to calculate the difference, or loss, between the predicted 

vegetation line position and the binary image. The loss function was class-balanced to 

account for the large imbalance between edge and non-edge pixels; the vast majority of 

pixels in every image were non-edge. To prevent the HED model from achieving very 

accurate results if it predicted all pixels to be non-edge, a scaling factor was used. This was 

calculated by determining the proportion of edge to non-edge pixels in each image. This 

scaling factor ensured that the HED model was penalised proportionately more for 

predicting a false negative (predicting an edge pixel to be a non-edge) than a false positive 

(predicting a non-edge pixel to be an edge).  

HED model training was implemented in Python’s Keras library with Tensorflow backend. 
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The code for the training of HED was modified from Liu (2018) to enable input of 16 bit 

Planet imagery; selection of the desired image band combination; and the calculation of 

NDVI. The HED model was run in parallel on four Tesla P100-PCIE-16GB GPUs for 1000 

epochs, with a running time of seven hours 45 minutes per spectral band combination. The 

VEdge_Detector tool, instructions and input image specifications are freely available from 

GitHub (github.com/MartinSJRogers).  

 

4.2.3. Validation 

The HED model performance was validated by predicting the vegetation line location in 

seven images not previously seen by the model. All output prediction pixel values ranged 

between 0 to 1, representing the range in HED confidence that the pixel represented the 

vegetation line. Confidence contours were used to determine where ground referenced 

measurements were located in relation to predicted vegetation line confidence curves. HED 

outputs were accordingly contoured at 0.1 intervals between 0.05 to 0.95 for subsequent 

model evaluation through comparison with ground-referenced measurements. All contours 

had a landward and seaward line (see Figure 4.4 for a demonstration of the vegetation line 

contours produced). 
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Figure 4.4: Example of 0.05 (yellow), 0.55 (orange) and 0.95 (red) confidence contours 

produced by VEdge_Detector at Winterton, UK. The confidence contours were generated 

from the raw VEdge_Detector output, which is overlaid as the blue colour ramp. Light and 

dark blue pixels represent the locations predicted as being an edge pixel with a high and 

low confidence respectively. The manually digitised vegetation line (black) is displayed for 

visual comparison. Land and sea are found to the left and right of the image respectively. 

Aerial imagery, provided by the Environment Agency with 40 cm resolution, is used as a 

backdrop (Environment Agency, 2020a). 

 

Distance and pixel-based evaluation metrics were used to determine the best performing 

HED model.  Distance-based evaluation of HED performance was conducted by 
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comparing: i) HED model prediction contours (confidence contours) with ground-

referenced measurements of vegetation line location; ii) confidence contours to a manually 

digitised vegetation line of the same image; and iii) ground-referenced measurements to 

manual digitisation.   

The ArcMap plugin Digital Shoreline Analysis System (DSAS; (Thieler et al., 2009; 

USGS, 2018)) v5.0 was used in ArcGIS 10.5.1 to calculate distance between shorelines for 

comparators i), ii) and iii). Distance calculations were made on transects generated at 10 m 

alongshore intervals, orthogonal to the dominant shoreline orientation. To reduce transect 

crossing on sinuous coastlines, each transect was drawn orthogonal to a smoothed baseline, 

generated approximately 200 m seawards of the land-water interface. This was generated 

by calculating mean baseline angle over a 200 m interval, with the transect location at the 

midpoint. RMSE (Equation (3.8)) was used to measure the distance between lines and MAE 

(Equation (3.9)) was used to determine net landward (positive) or seaward (negative) bias 

in prediction contours. MAE values were assigned as negative if the predicted contours 

were consistently seaward of the line derived from ground-reference measurements or 

manual digitisation.   

The pixel-based evaluation metrics used were UA (Equation (3.3)), PA (Equation (3.4)) and 

F1 (Equation (3.5)). All three metrics are suited to classification tasks with imbalance in 

class populations (e.g. non-edge pixels constitute more than 90% of the image). UA values 

are more sensitive to the detection of inland non-coastal boundaries, so are typically lower 

than PA values. A pixel incorrectly predicted to be the vegetation line will be classified as 

a false positive pixel, irrespective of the distance from the manually digitised or ground 

referenced line. To account for ‘near-misses’, where HED predicts the vegetation line to be 

at pixels close to the ground-referenced or manual digitisation measurements, the manually 

digitised and ground referenced lines were buffered to be three pixels wide (instead of one). 

Relaxed user accuracy, producer accuracy and F1 scores were calculated by comparing 

HED outputs to the buffered ground referenced and manually digitised vegetation line 

measurements.  
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4.2.3.1 Validation image locations 

Seven sites were used for HED validation (Table 4.1). High resolution ground 

measurements were collected from three of these seven locations along the Suffolk 

coastline of eastern England on 7 September 2019 (Walberswick, Dunwich and Covehithe) 

using an RTK-GPS with horizontal positional accuracy of 30 mm. Soft sandy cliffs are 

located at Covehithe with sharp cliff-top edge vegetation lines (Brooks and Spencer, 2010). 

In contrast, a more complex vegetation line on a mixed sand and shingle barrier is present 

at Walberswick and Dunwich (Pye and Blott, 2006). To ensure at least one ground-

referenced measurement per pixel, points were captured approximately every 2 m 

alongshore and whenever there was a notable change in vegetation line direction. At 

Dunwich and Covehithe, isolated vegetation patches situated in front of the continuous 

vegetation line were not demarcated. At Walberswick, two vegetation lines were generated 

from ground-referenced measurements: i) a landward continuous vegetation line and ii) 

locations of isolated seaward vegetation patches. Confidence contours were compared to 

both vegetation lines derived from ground-referenced measurements at this site. 

Ground-referenced measurements were compared to HED vegetation line predictions 

generated from a 3 m resolution PlanetScope image, using distance and pixel-based 

evaluation metrics outlined above. The PlanetScope image was captured on 12 September 

2019 and was previously unseen by the HED model. Between 7 and 12 September 2019 

waves approached from a dominant north easterly direction and rarely exceeded 1 m 

significant wave height (maximum peak significant wave height at Southwold Approach 

was 1.45 m (Cefas, 2020)). Due to these wave conditions, there is a high degree of 

confidence that the vegetation line remained stable over this time-period. 

The trained HED model was also used to predict the vegetation line position at four 

additional locations where ground-referenced measurements were not collected (Table 

4.1). At these locations HED output prediction contours were compared solely to manually 

digitised vegetation lines. Images from two locations (Winterton, UK and Perranuthnoe, 

UK) were used during HED training but different image dates were used (training image 

dates: 2018 and 2019, testing image dates: 2010 and 2015). The other two locations were 

previously unseen by the neural network: Wijk-aan-Zee, The Netherlands, and a section of 

Bribie Island, the smallest and most northerly of three major barrier islands, northern 
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Moreton Bay, Queensland, Australia. 

 

 

 

Table 4.1: Locations of Holistically-Nested Edge Detection validation images. Other 

columns provide information on dominant shoreline direction, spring and neap tidal ranges, 

dominant sediment type, geomorphology and climate at each site as well as whether 

ground-referenced measurements of the coastal vegetation edge were collected. 

 

 

4.2.4. Determining the optimum spectral band combination 

The default VGGNet-16 weights can only be initialised in a HED model which accepts 

images with three spectral bands. The performance of the HED model was therefore 

independently trained using four different combinations of three spectral bands: RGB, RG-

NIR, BG-NIR and GB-NDVI. Output predictions from the four HED models were 

compared to select the most appropriate model for vegetation line detection. Figure 4.5, 4.6 
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& 4.7 provide a comparison of HED performance using different spectral band 

combinations at three locations not contained in either the training or the validation dataset: 

Cromer, UK; Varela, Guinea-Bissau and Wyk auf Föhr, North Frisian Islands, Germany. 

The HED models trained on spectral band combinations RG-NDVI and RGB predicted 

every pixel in the image to be the coastal vegetation edge and therefore these models were 

rejected. Only the HED models trained on images with spectral band combinations RG-

NIR and BG-NIR were able to discard pixels not pertaining to the coastal vegetation edge. 

The HED model trained on BG-NIR spectral band images was still unable to discard many 

non-edge pixels and as a result produced very low user accuracy results of 0.06, 0.02 and 

0.02 at Cromer, Varela and Wyk auf Föhr respectively. In contrast, the HED model trained 

using spectral bands RG-NIR was able to predict the location of the coastal vegetation edge 

with a user accuracy of 0.26, 0.59 and 0.25 at Cromer, Varela and Wyk auf Föhr 

respectively. The HED model trained using images with RG-NIR spectral bands was thus 

used to form the basis of the VEdge_Detector tool. 
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Figure 4.5: CNN predictions when trained with different spectral band combinations at 

Cromer, UK.(a) Original 3 m PlanetScope image of Cromer, Norfolk, UK (52°93’58.3 N, 

1°27’18.0 E). Predicted coastal vegetation edge locations using the HED model trained 

with spectral band combination (b) RGB, (c) RG-NDVI, (d) BR-NIR, (e) RG-NIR. 
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Figure 4.6: CNN predictions when trained with different spectral band combinations at 

Varela, Guinea-Bissau. (a) Original 5 m RapidEye image of Varela, Guinea-Bissau 

(12°28’61.0 N, -16°59’45.7 E). Predicted coastal vegetation edge locations using the HED 

model trained with spectral band combination (b) RGB, (c) RG-NDVI, (d) BR-NIR, (e) 

RG-NIR. 
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Figure 4.7: CNN predictions when trained with different spectral band combinations on the 

Frisian Islands, Germany. (a) Original 3 m PlanetScope image of the islands of Sylt, 

Amrum and Föhr, Frisian Islands, Germany (54°68’31.4 N, 8°55’74.4 E). Predicted coastal 

vegetation edge locations using the HED model trained with spectral band combination (b) 

RGB, (c) RG-NDVI, (d) BR-NIR, (e) RG-NIR. 
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4.2.5. Shoreline change detection 

The VEdge_Detector tool was used to predict the vegetation line from 11 images of 

Covehithe spanning the period 2010 to 2020. To minimise the influence of seasonal 

changes to vegetation line location, all selected images were captured in the period between 

May and August of each year. Confidence contours were generated at 0.1 intervals from 

0.05 to 0.95, creating a total of 10 landward and seaward contours per image. 

Vegetation line change was calculated using DSAS in ArcGIS 10.5.1 (USGS, 2018). The 

position of the 10 confidence contours for every year was determined along transects 

running orthogonal to the dominant shoreline direction. Transects were separated by 10 m 

alongshore intervals. Change in the position of the landward and seaward 0.95, 0.55 and 

0.05 confidence contours were calculated to determine rates of vegetation line change. 

Metrics calculated were Net Shoreline Change (NSC = distance between the oldest and 

most recent shoreline position) and End Point Rate (EPR = NSC divided by the time 

interval in years). To minimise geometric errors, ten tie-points were used to ensure 

consistent georegistration in the 11 images used in the shoreline change analysis. The 

locations of stable anthropogenic structures, including road junctions and building corners, 

were used as the tie points and were distributed evenly over the images.  

Vertical aerial imagery of Covehithe, provided by the Environment Agency with 10 to 50 

cm resolution, was manually digitised (Environment Agency, 2020a). NSC values derived 

using DSAS were compared when using vegetation lines produced by the VEdge_Detector 

tool and manual digitisation of aerial imagery. Due to aerial imagery availability, NSC 

values were compared across five baselines: 2010 to 2011, 2013 to 2014, 2015 to 2016, 

2016 to 2017 and 2017 to 2018.  

 

4.2.6. Comparing shoreline proxies 

To determine any difference in the shoreline dynamics detectable using different shoreline 

proxies, the change in position of the waterline and vegetation line was compared at three 

transects alongthe Covehithe cliffs. The waterline was derived using the NDWI threshold 
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contouring algorithm derived by Vos et al., (2019b). The change in position of the water 

and vegetation line was calculated using the DSAS method outlined in section 4.2.5.   

4.3. Results 

4.3.1. Manual, ground-referenced and VEdge_Detection measurements 

Manually digitised vegetation lines were consistently located close to ground-referenced 

measurements (Root Mean Square Error (RMSE) was 1.72 m, 4.13 m and 2.28 m for 

Covehithe, Walberswick (landward) and Dunwich respectively). All sites exhibited a 

landward bias in manual digitisation, with Mean Absolute Error (MAE) of 0.82 m, 3.83 m 

and 1.83 m respectively. Across all sites, more than 93% of transects recorded an error ≤ 2 

image pixels (6 m). At Walberswick, where ground-referenced measurements of two 

vegetation lines were collected, the manually digitised line was located closer to the 

landward continuous vegetation line than the seaward isolated vegetation patches (manual 

digitisation to seaward measurements RMSE = 16.72 m and MAE = 13.83 m). 

VEdge_Detector performance was therefore subsequently compared to the landward 

ground-referenced measurements at Walberswick.  

The VEdge_Detector tool extracted continuous vegetation edges at all three field sites 

(Figure 4.8). For every site the VEdge_Detector 0.95 confidence contours were less than 5 

m from ground-referenced vegetation line measurements (see Table 4.2 for summary of all 

RMSE and MAE values).  

At Walberswick and Covehithe, all ground-referenced measurements were located 

between, or seawards of, the 0.95 confidence contours (Figure 4.8 (a) – (b)). The 

VEdge_Detector tool performed best at Covehithe with ground-referenced measurements 

located closest to the seaward 0.95 confidence contour (RMSE = 2.71 m, MAE = -0.02 m). 

A landward bias in the landward 0.95 contour (MAE = 7.98 m) and a seaward bias in the 

0.95 seaward contour demonstrates that ground-referenced measurements at Covehithe 

were primarily located between the 0.95 confidence contours. Ground-referenced 

measurements were closest to the seaward 0.05 confidence contour at Walberswick (RMSE 

= 4.46 m, MAE = -1.11 m). Most ground-referenced measurements were situated between 

the seaward 0.95 (MAE = 4.31 m) and 0.05 confidence contours. The larger RMSE and 

MAE values for landward confidence contours compared to seaward contours shows a 
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slight landward bias in VEdge_Detector outputs at Covehithe and Walberswick. 

 

 

Table 4.2: VEdge_Detector accuracy at the three field sites determined by pixel and 

distance-based metrics from ground-referenced measurements. Shaded pixels in the mean 

absolute error column represent a landward (green) or seaward (blue) bias respectively in 

VEdge_Detector predictions.  Darker colours represent a greater landward or seaward bias. 

Red boxes indicate the confidence contours with lowest RMSE and MAE per site. 

VEdge_Detector outputs are shown in Figure 4.8. 

 

 

The relatively high producer accuracy scores at these two sites (Covehithe = 0.87, 

Walberswick = 0.84) demonstrate that VEdge_Detector correctly detected a large 

proportion of vegetation line pixels derived from ground-referenced measurements. 

However, the lower user accuracy (Covehithe = 0.16 and Walberswick = 0.11) shows that 

a number of pixels inland of the field derived vegetation line pixels were also being detected 

by VEdge_Detector.  
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In contrast to the other two sites, VEdge_Detector predictions were primarily seawards of 

ground-referenced measurements at Dunwich (0.95 landwards confidence contour RMSE 

= 5.98 m, landward MAE = -5.21 m). The field line was located very close to the 0.05 

confidence contour (RMSE = 2.37 m, MAE = 1.03 m). Producer accuracy values at 

Dunwich were consistent with the other two field sites, although a lower user accuracy was 

recorded (producer accuracy = 0.85, user accuracy = 0.07).  

 

 

Figure 4.8: Comparison of VEdge_Detector tool predictions to field measurements of 

vegetation line at (a) Covehithe, (b) Walberswick and (c) Dunwich. Locations of 

photograph (a)i, (b)i and (c)i are show by arrows on corresponding images. The solid black 

lines show the field-delineated vegetation lines at all sites. At Walberswick, the landward 

and seaward vegetation lines derived from field measurements are denoted by a solid and 

dashed line respectively. 

 

The VEdge_Detector tool produced a continuous vegetation line at three of the four sites 

without field data (Figure 4.9). The tool failed to predict a continuous vegetation line along 
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some cliffed sections at Perranuthnoe, but a continuous line was generated along the beach 

sections and the cliffed sections to the right of the image (Figure 4.9 (c)). The tool 

performed best at Winterton and Bribie Island with errors less than 4 m between 0.95 

confidence contours and manually digitised lines (Winterton MAE = -3.83 m, Bribie Island 

MAE = 3.11 m, Figure 4.9 (a) – (b), Table 4.3). Producer accuracy values greater than 0.9 

were recorded at Winterton, Bribie Island and Wijk-aan-Zee, demonstrating a very high 

capability of the tool to detect the manually digitised vegetation line pixels. User accuracy 

was higher at Bribie (0.39) compared with Winterton (0.11), indicating that the tool 

produced a less precise line at Winterton.  

User and producer accuracy values were lower at Wijk-aan-Zee and Perranuthnoe (Table 

4.3) where more complex vegetation lines are present. More inland pixels were predicted 

as the vegetation line at these sites (Figure 4.9 (c) – (d)). There was a greater seaward bias 

in tool predictions at Perranuthnoe (RMSE = 7.14 m, MAE = -6.63 m) whereas distance-

based error at Wijk-aan-Zee was comparable to Bribie and Winterton (RMSE = 4.61 m, 

MAE = 5.57 m).  
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Table 4.3: VEdge_Detector accuracy at the four validation sites without ground-referenced 

data determined by pixel and distance-based metrics. Shaded pixels in the mean absolute 

error column represents a landward (green) or seaward (blue) bias respectively in 

VEdge_Detector predictions.  Darker colours represent a greater landward or seaward bias. 

Red boxes indicate the confidence contours with lowest RMSE and MAE per site. 

VEdge_Detector outputs are shown in Figure 4.9. 

 

 



105 

 

 

Figure 4.9. VEdge_Detector outputs at sites where ground-referenced measurements were 

not collected. (a) Winterton, Norfolk, UK (b) A stretch of Bribie Island, Australia, separate 

to the locations used for training outlined in the Supplemental Materials B (c) Perranuthnoe, 

Cornwall, UK. The red oval indicates the rocky cliff section where the VEdge_Detector 

failed to detect cliff top vegetation, (d) Wijk-aan-Zee, Netherlands. (a) and (b) display the 

predicted vegetation line in red with a confidence ≥0.95. (c) and (d) show examples of all 

VEdge_Detector outputs prior to applying any confidence thresholding. 
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4.3.2 Digital shoreline change analysis 

For Covehithe, the VEdge_Detector tool generated confidence curves of vegetation line 

position from separate images captured in 2010 and 2020 (Figure 4.10 (a)). A continuous 

shoreline was extracted from both images, including where the vegetation line is interrupted 

by the local sand and gravel barriers that enclose Benacre Broad and Covehithe Broad. 

Total change in shoreline position between these two years was measured using the DSAS 

tool and the seaward 0.95 confidence contours (Figure 4.10 (b)). End Point Rates (EPR) 

along the Covehithe cliffs ranged between 2.47 m a-1 and 5.48 m a-1, with an average retreat 

rate of 3.27 m a-1 (Figure 4.10(b)). The total amount of shoreline retreat during this period 

ranged between 24.27 m and 54.38 m; each transect with the smallest and largest retreat 

are shown as location A and B respectively in Figure 4.10 (a) – (b). Cross sections of the 

confidence curves at locations A and B are shown in the two insets in Figure 4.10 (a). The 

stretches of shoreline with the greatest rates of retreat corresponded to areas with no overlap 

in confidence curves. In contrast the confidence curves overlapped up to the 0.2 confidence 

contours at transects where retreat rates were lower.  

The VEdge_Detector tool was subsequently used to generate confidence curves of 

vegetation line position at Covehithe annually between 2010 and 2020. Continuous 

vegetation lines were generated in all years except 2011, 2012 and 2018 when some 

agricultural fields had been ploughed, leading to apparent breaks in the vegetation line. The 

relative position of the annual confidence curves from 2010 to 2020 at the location with the 

fastest rate of retreat is presented in Figure 4.11. The vegetation line retreated landwards at 

a faster rate during the first half of the decade (End Point Rate (EPR) 2010 to 2015 = 6.92 

m a-1, 2016 to 2020 = 4.31 m a-1, Figure 4.11). Individual years with the greatest rates of 

landward retreat were 2010 to 2011 (16.1 m ± 3.67 m), 2016 to 2017 (8.80 ± 3.24 m), 2013 

to 2014 (6.93 ± 4.20 m) and 2017 to 2018 (5.31 ± 3.38 m). The smallest retreat rates were 

recorded in 2014 to 2015 (1.66 ± 2.45 m) and 2018 to 2019 (1.32 ± 3.44 m). The greatest 

distance between 0.95 landward and seaward confidence contours was in 2013 (6.70 m) 

and the shortest distance was in 2018 (1.23 m).  
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Figure 4.10: (a) VEdge_Detector outputs for a 2010 (red) and 2020 (purple) image of the 

Covehithe cliffs, Suffolk. Darker colours represent pixels predicted as the vegetation line 

with a higher confidence. Inset graphs, comparison of vegetation curves at transects 

situated at location i (smallest recorded change in shoreline position) and ii (largest 

recorded retreat in shoreline). Note: The image shows VEdge_Detector outputs with 

confidence values from 0.01 to 1.00, whereas the graphs show values 0.05 to 1.00 because 

the line graphs substantially ‘fan’ between 0.01 and 0.05. B) Rates of landward retreat (End 

Point Rate) at Covehithe between 2010 and 2020. 

 



108 

 

 

Figure 4.11: Shoreline change at Covehithe, Suffolk using VEdge_Detector outputs. Top: 

Vegetation confidence curve position during years 2010 to 2020 at one transect. Bottom: 

Representation of vegetation curves as a line. Dots represent locations of the 0.95 

confidence contours, vertical lines represent locations of the 0.05 confidence contours. 

Insets i and ii: Transect location and all pixels predicted as the vegetation line with 

confidence greater than 0.95 overlaid on the 2020 image. Pixel colour coding by year is 

consistent with line graphs. Some of the colours are occluded in the image due to overlap. 

 

Net Shoreline Change (NSC) values derived using DSAS were averaged across the entire 
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Covehithe coastline using both VEdge_Detector 0.95 confidence contours and manual 

digitisation of aerial imagery. Differences in NSC values obtained using the two methods 

ranged between 1.31 and 4.19 m, with a mean absolute difference of 2.19 m (Figure 4.12). 

An error value of ± 2.71 m was used for VEdge_Detector outputs, the RMSE between 

VEdge_Detector 0.95 confidence contours and ground-referenced measurements at 

Covehithe. Errors from digitising aerial imagery were set at 4.76% of each year’s NSC 

value, consistent with calculations of error determined using the same digitisation method 

in Brooks and Spencer (2010).    

 

 

Figure 4.12: Comparison of Net Shoreline Change (NSC) values generated using 

VEdge_Detector 0.95 confidence contours and manually digitised aerial imagery. The blue 

dots show annual NSC values for the whole of the Covehithe coastline averaged over all 

orthogonal transects. The ovals represent the error associated with the two methods. The 

black line shows the position of the blue dots if there was an exact match between NSC 

values generated using the two methods. 
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4.3.3. Comparing shoreline proxies 

The coastal vegetation edge consistently remained stable or retreated at every transect along 

the Covehithe coastline (Figure 4.13). In comparison, the waterline position fluctuated 

between periods of landwards and seawards migration. The waterline retreated along all 

transects between 2010 and 2014 but subsequently advanced seawards between 2014 and 

2016. At all three transects, the vegetation line position in 2020 was landwards of its 

position in 2010. The waterline in 2020 was landwards of its position in 2010 at two of the 

three transects; however, at the site that had the smallest amount of retreat, the waterline in 

2020 was seawards of its position in 2010 (Figure 4.13 (c)).  

 

Figure 4.13: Comparison of the change in the position of the water and vegetation line at 

three transects, (a) – (c), across the Covehithe cliffs between 2010 and 2020. Transects 

overlaid on 3 m resolution PlanetLab image of Covehithe from 2016. 
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4.4. Discussion 

4.4.1. VEdge_Detector performance 

VEdge_Detector is the first fully automated tool for the digitisation of the coastal 

vegetation line from optical remote sensing imagery, where a trained Convolutional Neural 

Network (CNN) is used to detect the coastal vegetation line. The tool has been adapted 

from the Holistically-Nested Edge Detection (HED) model (Xie and Tu, 2015), a CNN 

trained to identify all objects in natural images. Here HED has been retrained to identify 

exclusively coastal vegetation edges, achieved by training the HED model on a 

comprehensive set of coastal remote sensing images. At six of the seven validation sites, 

VEdge_Detector 0.95 confidence contours were less than 6 m from coastal vegetation 

edges derived from ground-referenced measurements or manual digitisation of aerial 

imagery (Table 4.2 and 4.3). Previous studies have employed semi-automated methods to 

detect coastal vegetation, including thresholding and image classification (Zarillo et al., 

2008; Rahman et al., 2010). VEdge_Detector advances these studies by being able to 

identify the coastal vegetation line in isolation, without requiring further post-processing 

steps to remove inland vegetation land covers and edges.  

VEdge_Detector differs from other shoreline change studies by exclusively using Planet 

imagery with 3 m and 5 m spatial resolution. The combined high temporal and spatial 

resolution and coverage of Planet imagery provides a step-change in the ability to conduct 

shoreline change analysis. Previous studies have been primarily limited to digitising 

shoreline position in Google Earth Engine’s Landsat or Copernicus imagery with 30 m and 

10 m resolution respectively (Gorelick et al., 2017). Improvements in error values when 

using this imagery have been achieved using soft-classification, contouring and other 

methods with sub-pixel precision (Foody et al., 2005; Li and Gong, 2016; Pardo-Pascual et 

al., 2018). Extraction of the coastal vegetation line using imagery with 10 to 30 m resolution 

will remain problematic as one pixel can span the entire width of the coastal zone, 

incorporating numerous shoreline proxies. RMSE values derived in this study (2.37 m to 

7.97 m) are comparable or a substantial improvement to error values derived from sub-

pixel precision methods applied to coarser resolution imagery.  

The combination of the high (up to daily) temporal resolution of the Planet imagery with 
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the VEdge_Detector tool gives new opportunities to analyse the horizontal change in 

shoreline position caused by an individual major storm event or a succession of storm 

events (Roy, 2017). Previously this has only been possible through field or aerial based 

studies (e.g. Spencer et al., 2015). Studies of this nature are rare because data collection 

methods are time consuming, costly and information on shoreline position and profile prior 

to the storm event is only available in isolated, data-rich areas. The passive nature of image 

data collection used in VEdge_Detector, combined with its high spatio-temporal resolution 

opens new possibilities to assess storm damage, or other discrete erosion or accretion events 

in relatively understudied or inaccessible areas.  

VEdge_Detector performed best on relatively simple, straight stretches of shoreline (e.g. 

Covehithe, Winterton and Bribie Island; Figure 4.8 (a) – (b)). Perranuthnoe, Cornwall, UK 

was the only location where VEdge_Detector did not generate a continuous vegetation line. 

This can be primarily attributed to the additional presence of rocky cliffs, because the 

majority of training data images contained only beaches. Whilst additional HED training 

using more images containing rocky cliffed shorelines may improve model performance, 

this may be at the expense of performance along sandy beached sections. Figure 4.9 (c) 

shows that the tool can detect a vegetation line at the base of some of the cliffs at 

Perranuthnoe, possibly due to the presence of macroalgae on the shore platform. It is 

beyond the scope of VEdge_Detector to include these sections, because change in 

macroalgal cover is highly unlikely to reflect an actual landward or seaward migration in 

shoreline position. Similarly, fixed coastal defences will not contain a mobile vegetation 

edge. Hence it is important to note that VEdge_Detector is primarily a tool for efficient and 

rapid extraction of the vegetation line from beach and dune systems over wide spatial 

coverage, from which shoreline change analysis can be performed.  

The small discrepancies presented here between manually digitised shorelines and ground-

referenced measurements from the first three cases studies provided confidence in using 

manually digitised shorelines to assess VEdge_Detector performance at several alternative 

sites where ground-referenced measurement was not possible (RMSE = 1.72 m, 4.13 m and 

2.28 m for Covehithe, Walberswick (landwards) and Dunwich respectively). At 

Walberswick, the manually digitised line was closer to the landward fieldvegetation line 

measurements, indicating that manual digitisation primarily detects the more continuous 

vegetation line boundary landwards of the habitat of pioneer species. It appears that the 
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diffuse nature of the vegetation edge in some locations, with isolated, dis-continuous 

vegetation clumps, can lead to discrepancies between manual digitisation, ground-

referenced measurements and VEdge_Detector results because the best available imagery 

is of 3 to 5 m resolution. 

This study has further shown that the method is robust at detecting the vegetation line on 

both tropical and temperate coasts. To date, the only previous use of CNNs to extract 

shoreline position was limited to a single location (H. Liu et al., 2019). Results presented 

here for seven different validation sites have shown that at six sites, producer accuracy  was 

above 0.85, but user accuracy was lower than producer accuracy at every site (Table 4.2 

and 4.3). This demonstrates how the tool is competent at correctly predicting the vegetation 

line pixel derived from ground referenced measurements but also generates a vegetation 

boundary region instead of a distinct line. These performance metrics are lower than those 

recorded by H. Liu et al. (2019) (user accuracy = 0.94, producer accuracy = 0.95). However 

H. Liu et al. (2019) used far coarser spatial resolution imagery (16 m to 50 m) and thus 

poorer user and producer accuracy results presented here could still result in lower RMSE 

values. Confidence contours were used throughout this study to determine where ground 

referenced measurements were located across predicted vegetation line confidence curves. 

At six of the seven sites, ground referenced measurements were closest to one of the 0.95 

confidence contours, with RMSE less than 6 m (Figure 4.8 and 4.9). This highlights that 

even though a distinct vegetation line is not predicted, VEdge_Detector commonly predicts 

the ground referenced vegetation line with higher confidence than the surrounding pixels.  

Vegetation lines were predicted with higher user accuracy along shorelines with abrupt 

vegetation edges. The fieldwork and additional validation sites with the highest user 

accuracy results were Covehithe (user accuracy = 0.16) and Bribie Island (user accuracy = 

0.38) respectively. Bribie Island has an abrupt vegetation line as bare sand is found 

immediately adjacent to eucalyptus forest and Covehithe has an abrupt cliff-top vegetation 

boundary because cliff line retreat is too rapid for cliff toe vegetation establishment. In 

comparison, VEdge_Detector user accuracy results were lower at Dunwich (user accuracy 

= 0.07), Walberswick (user accuracy = 0.11) and Wijk-aan-Zee (user accuracy = 0.07) 

which all contain graded psammosere community vegetation on beach dune systems. The 

low user accuracy and higher producer accuracy results highlight how the vegetation edge 

is not a true line, but a boundary region graded from the presence of no vegetation to an 
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increasingly dense vegetation cover when traversing inland. Discrepancies in the 

interpretation of vegetation line position occur even when reporting ground-referenced 

measurements. This was demonstrated at Walberswick where producer accuracy increased 

from 0.59, when using the most seaward pioneer vegetation, to 0.84 when using the 

landward continuous vegetation edge (Figure 4.8 (b), Table 4.2). Further investigation, 

supported with ground-referenced measurements, is required to determine whether this tool 

not only identifies vegetation edge location but also whether user accuracy results can 

indicate the degree of abrupt change in a vegetation boundary. An increase in vegetation 

line ‘abruptness’ can imply a loss of pioneer species seaward of dune systems, perhaps as 

a result of erosion under storm impacts or wave action associated with particularly high 

tides. Conversely, increasing widths in vegetation edge can represent relatively stable, or 

prograding, shoreline locations where vegetation has had the opportunity to establish and 

migrate seawards.  

This Chapter also provides the first-ever comparison of the performance of a HED model 

using different spectral band combinations. RG-NIR visually outperformed other spectral 

band combinations, demonstrating the importance of spectral band selection in HED 

training. This finding is complementary to the universally applied vegetation detection 

algorithm, NDVI, which utilises the near infrared and red wavebands (Genovese et al., 

2001). HED and many other CNN architectures only allow the input of images with three 

spectral bands (Simonyan and Zisserman, 2015). Improved performance may be achieved 

by concatenating the outputs of multiple CNNs trained on 3 band images. Marmanis et al. 

(2018) fused the outputs of two CNNs run in parallel, one CNN trained using spectral band 

information and the other trained using digital terrain models. Parallel CNNs were reported 

to automatically classify land covers with 84.8% pixel accuracy but no comparison to single 

CNN performance was provided. Further investigations should compare performance of 

single and multiple parallel CNNs trained exclusively on images with different spectral 

band combinations.  

 

4.4.2. Shoreline change analysis using VEdge_Detector 

The VEdge_Detector tool predicted a consistent landward shift in vegetation position 
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between 2010 and 2020 at Covehithe, Suffolk (Figure 4.10).  Years when the 

VEdge_Detector recorded the greatest rates of landward retreat coincide with North Sea 

storm surge events in December 2013 (Spencer et al., 2015; Wadey et al., 2015) and 

January 2017 (Floodlist, 2017) and the February to March 2018 ‘Beast from the East’ and 

‘mini-Beast’ (Brooks and Spencer, 2019). Average rates of landward retreat at Covehithe 

derived from VEdge_Detector were consistent with results obtained in this study from 

manually digitising vertical aerial imagery. The mean difference in NSC values when using 

VEdge_Detector and digitising vertical aerial imagery was less than one pixel. These NSC 

values are also complementary to values derived along this stretch of shoreline using other 

proxy and datum-based methods (Brooks and Spencer, 2012; Burningham and French, 

2017). This study has demonstrated the aptitude for the VEdge_Detector tool to accurately 

and efficiently detect the vegetation line from a relatively data rich shoreline where it has 

been possible to use other measurements, including aerial imagery, LiDAR data and 

Ordnance Survey data, to validate precision. Further applications of this tool should 

investigate its use in relatively data poor regions of the world or in regions where there is 

a necessity to determine the impact of coastal protection schemes or other anthropogenic 

interventions in the coastal zone. 

A continuous vegetation line was generated at Covehithe for eight out of 11 years. During 

three years the vegetation line was fragmented due to the presence of ploughed agricultural 

land which interrupted the vegetation line. VEdge_Detector has been shown to be able to 

overcome issues of vegetation line fragmentation in other images, for example detecting a 

vegetation edge where agricultural fields had been harvested, although a fully continuous 

vegetation edge was not recorded every year at the landward extent of Benacre Broad and 

Covehithe Broad (Figure 10 (a)). Further studies should increase the ability of the tool to 

generalise, and use urban and water pixels when the vegetation line is fragmented.  

Alongside the sometimes fragmented nature of the vegetation line, it may remain an 

unsuitable proxy to use in shoreline change analysis in circumstances where there have 

been changes in vegetation communities as a result of both natural and anthropogenic 

processes unrelated to shoreline position. Therefore, this chapter suggests future research 

should combine multiple shoreline proxies simultaneously to provide a better indication of 

shoreline change. 
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4.5. Conclusions 

This study has trained a Holistically-Nested Edge Detection (HED) model to produce 

VEdge_Detector, a fully automated tool for the extraction of coastal vegetation lines along 

sandy shorelines from optical remote sensing imagery. The semantic knowledge gained 

during HED training enables VEdge_Detector to discriminate between coastal vegetation 

edges and other inland vegetation boundaries, thus only extracting the coastal vegetation 

line and removing the need for subsequent post-processing. VEdge_Detector produces a 

vegetation confidence curve instead of a discrete line, which better represents how, in 

reality, the coastal vegetation line is not a distinct boundary but a broad zone where 

vegetation becomes a more continuous cover when traversing inland. The low error values 

(RMSE less than 6 m at all sites) between VEdge_Detector predictions and ground-

referenced measurements demonstrates the aptitude for this tool to accurately detect the 

coastal vegetation edge location. VEdge_Detector performance varied depending on 

spectral band selection, with red, green and near-infrared shown to be the most pertinent 

image bands to use for coastal vegetation edge detection. This highlights the importance of 

image spectral band selection during CNN training in any context.  

VEdge_Detector has been used to detect a decadal-scale, consistent landward shift in 

shoreline position at Covehithe, Suffolk, UK. This trend in vegetation line position is 

consistent with measurements obtained through manually digitising aerial imagery. This 

exemplifies how using this tool in different locations which exhibit a larger horizontal tidal 

range, may produce a more robust proxy of shoreline position than using the water line to 

determine net shoreline change. Despite the performance of VEdge_Detector, it has, to 

date, only been applied to relatively short (less than 100 km) stretches of coastline. Chapter 

5 develops this work by investigating the performance of VEdge_Detector at a larger, 

supra-national scale.  

 

This chapter is based on a published paper: Rogers, M.S., Bithell, M., Brooks, S.M. and Spencer, T. 

(2021). VEdge_Detector: automated coastal vegetation edge detection using a convolutional neural 

network. International Journal of Remote Sensing, 42(13): 4805-4835. All analysis was my own work, except for the 

manual digitisation of the aerial imagery supplied by the Environment Agency, which was conducted by Dr Sue Brooks. 

This work is described in the last paragraph of Section 4.2.5 and the data contributed towards Figure 4.12 
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Chapter 5. Risk hotspots across the Guiana 

coastline, northern South America. 

 

5.1. Introduction 

Global-scale datasets pertaining to the distribution of different coastal risk elements are 

becoming increasingly available, including rates of shoreline change (Luijendijk., 2018; 

Mentashi et al., 2018), population densities (Stevens et al., 2015; Tatem et al., 2017), 

intertidal habitat vegetation distribution (Thomas et al., 2017; Hu et al., 2020) and land 

cover (Buchhorn et al., 2020). The interrogation and integration of these datasets can 

identify potential locations where humans are at greatest exposure or are at greatest risk to 

coastal hazards, in turn aiding the identification of locations to target more detailed study. 

The integration of global-scale shoreline change studies and population density maps, 

enables the identification of potential locations where the greatest number of humans are 

exposed to shoreline change (Figure 5.1). This integration highlights the Guiana coastline, 

northern South America as a location where a high proportion of the region’s population is 

potentially exposed to shoreline change (Figure 5.1).  
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The Guiana Coastline consists of the region between the Amazon and Orinoco Rivers. It 

includes the entire coastlines of Guyana, Suriname and the French overseas department of 

French Guyana (Hickey and Weis 2012; Figure 5.2). The Low Elevation Coastal Zone 

(LECZ) of South America, the hydrologically connected, contiguous area below 10 m 

above mean sea level, is projected to be home to 38 million people by 2060 (Neumann et 

al., 2015). In comparison, an estimated 180 - 220 million people currently reside in the 

LECZ of China, making the South American figure relatively small (Kulp and Strauss, 

2019; Figure 5.1). However, alongside the total populations living in the LECZ, another 

important consideration is the proportion of each nation’s population that live in the coastal 

zone.  

Except for Belize, and island states such as the Maldives, Guyana and Suriname are the 

only countries in the world where 100% of their residents, living in urban zones, are situated 

in the LECZ (McGranahan et al., 2007; Colenbrander et al., 2019). Further, 90% of 

Guyana’s population live below sea level (Vaughn, 2017), nearly the entirety of Guyana’s 

agricultural production occurs within 25 km of the coastline (Hickey and Weis 2012), and 

more than 10% of the world’s mangrove forest, important for mitigating incident wave 

energy, as well as providing medicine, fisheries, and fuel, is located in the region (Giri et 

al., 2010). These parameters highlight how acutely dependent the countries constituting the 

Guiana coastline are upon the coastal zone as a habitable space and a zone of economic 

activity. Identifying populations at the greatest risk to shoreline change in this region is, 

therefore, imperative for the targeted implementation of mitigation and adaption measures.     
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Figure 5.2: Population densities and locations with recorded rates of shoreline change 

greater than 1500 m between 1984 and 2015 across the Guiana coastline. Colour ramps and 

red dots correspond to the same features as in Figure 5.1.  
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The Guiana coastline is also one of the most dynamic shorelines in the world. It is 

characterised by the presence of mud banks measuring 10 -1 – 101 km in length, separated 

by 10 – 40 km wide inter-bank regions (Anthony et al., 2010; Walker et al., 2015; Spencer 

et al., 2016). Geochemical analysis has proven that the sediments accumulating on these 

mud banks originate from the Amazon River basin (Anthony et al., 2014), driven 

northwards by the trade wind-driven north equatorial recirculation region (Allison et al., 

2000; Spencer et al., 2016). The spacing of the mud banks along the Guiana coastline has 

led to the hypothesis of a 30-year cycle in sediment deposition. The cycle begins with mud 

bank accretion and mangrove forest establishment followed by wave attack on the trailing 

edge of the mud bank, sediment erosion and mud bank migration (Allison et al., 2000; 

Allison and Lee, 2004; Plaziat and Augustinus, 2004; Spencer et al., 2016). At the wave 

exposed trailing edge of the mud banks, sediment is eroded, undermining the root system 

and eventually removing mangrove forest vegetation. Concurrently, sediment is deposited 

on the leeward, north westerly ends of the bank, resulting in alongshore mud bank 

migration at rates between less than 1 km (Froidefond et al., 1998) and greater than 5 km 

yr-1 (Gardel & Gratiot, 2005) and providing opportunities for renewed mangrove seedling 

establishment and forest development. 

The 30-year cycle in mud bank extent has been attributed to three separate forcing 

mechanisms: the North Atlantic Oscillation (NAO), the El-Niño Southern Oscillation 

(ENSO), and the 18.6 year lunar nodal cycle (Chapter 1; Anthony et al., 2010; Gratiot et 

al., 2008; Walcker et al., 2015). A positive NAO and ENSO index is associated with mud 

bank recession across Guiana caused by high wave-energy events during the northern 

hemisphere winter (December – February) (Gratiot et al., 2008; Walcker et al., 2015). 

Conversely, mud bank accretion has been linked with years with a weakly positive or 

negative NAO or ENSO index, although no analysis of the influence of ENSO and NAO 

on mud bank extent since 2010 has been conducted. The 18.6 lunar nodal cycle causes 

Mean High Water Levels (MHWL) to vary by several centimetres (Walcker et al., 2015), 

which can also influence mud bank extent (Anthony et al., 2010). Further analysis is 

required to determine the relative importance of these extraneous factors in influencing 

mud bank extent along the Guiana coastline, and whether different factors are having a 

greater control in different localities. 
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Shoreline change along the Guiana coastline has been historically measured using ground-

referenced surveys but extracting shoreline position from multispectral remote sensing 

imagery has recently become commonplace (Anthony et al., 2010). Studies using ground-

referenced measurements conducted in-situ topographical mapping of mud bank 

morphology (Allison et al., 2000), used low flying airborne sensors (Lefebvre et al., 2004), 

and collected time-lapse ground-level photographs of mud bank position (Gardel et al., 

2009). These methods collected high accuracy data on mud bank morphology and 

dynamics, but the inaccessibility and remoteness of many locations has precluded the use 

of these techniques at scales larger than 100 – 101 km (Lefebvre et al., 2004). Recent 

increases in the temporal resolution of multispectral remote sensing imagery, combined 

with the availability of web-based platforms such as Google Earth Engine to analyse large 

volumes of satellite imagery (Gorelick et al., 2017), provides potential to map the dynamics 

of the entire 1500 km length of the Guiana coastline at annual to decadal timescales.  

The most common proxy of Guiana shoreline position extracted from multispectral satellite 

imagery is the seaward extent of mangrove forests (de Jong et al., 2021; Gardel and Gratiot, 

2005 & 2006; Jolivet et al., 2019; Walcker et al., 2015).  Several mangrove species, 

including Avicennia germinans, are viviparous, enabling propagules released from adjacent 

forests to rapidly establish on, and stabilise, the new mud banks (Fromard et al., 1998 & 

2004). This adaptive behaviour, combined with mangrove’s ability to colonise the seaward 

limits of mud banks, makes the seaward coastal vegetation edge of mangrove forests a 

robust and commonly applied proxy of shoreline position along the Guiana coastline 

(Fromard et al., 2004; Gardel and Gratiot, 2005; Gratiot et al., 2008; Walcker et al., 2015). 

The instantaneous waterline position has also been estimated in French Guyana by 

classifying satellite imagery pixels into land and water classes (Bhargava et al., 2021). 

However, the automated extraction of the instantaneous waterline position along many 

stretches of the Guiana shoreline remains problematic because the shallow gradients of the 

mud banks make the waterline a difficult boundary to fix with any precision (de Vries et 

al., 2021).   

To date, no study has mapped the seaward extent of mangrove forests across the entire 

Guiana coastline over multiple time periods. Fromard et al., (2004) monitored 50 years of 

mangrove extent and composition along one 20 – 30 km stretch of shoreline near 

Sinnamary, Suriname. The mangrove forests were shown to go through cyclical phases of 
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erosion and accretion, supporting the theory of a thirty-year cycle in mud flat and mangrove 

extent (Fromard et al., 2004). These studies, whilst insightful, were limited to small areas 

of interest (less than 100 km), with no certainty that locations most vulnerable to shoreline 

change were identified. Further, supra-national scale studies of the Guiana coastline have 

the potential to identify dynamics that are not discernible in local scale studies, including 

the identification of spatially distinct stretches of coastline that exhibit similar shoreline 

change signals, and the tracking of the alongshore migrating nature of the mud banks. 

Another important consideration is the use of repeated imagery to map shoreline change at 

a finer temporal-scale over the Guiana coastline. Mangrove position along the entire Guiana 

coastline has been calculated within global-scale studies of mangrove extent (Giri et al., 

2011; Hu et al., 2020; Tang et al., 2018; Thomas et al., 2017; Bunting et al., 2018), with 

some studies highlighting the Guiana coastline as a hotspot for shoreline change (Thomas 

et al., 2017).  However, all these studies only used imagery from one or two dates, 

preventing analysis of the change in rates of shoreline dynamics over multiple time periods. 

Detecting the Guiana shoreline position from satellite imagery captured during multiple 

years is required to identify locations that are consistently eroding or accreting, and areas 

that exhibit cycles of change in shoreline position.  

To ascertain the differences in total risk levels that coastal communities are exposed to on 

this coastline, it is necessary to integrate metrics on shoreline change with data on 

population dynamics (Kron, 2013). Few studies have combined measurements of shoreline 

change and population density to identify risk hotspots in the Guianas. Proisy et al. (2021) 

developed a coastal vulnerability index (CVI) of the Suriname coastline as a function of 

the distance between the inhabited shoreline and the seaward mangrove extent, but no 

population metrics were contained in the CVI calculations.  Population censuses for 

Guyana, Suriname and French Guyana have been conducted since 2012 (General Bureau 

of Statistics Suriname (GBSS), 2021; Government of Guyana, 2021; United Nations, 2021) 

but the datasets are heavily aggregated. Thus, for example, data from Guyana and Suriname 

is aggregated into just ten districts (GBSS, 2021; Government of Guyana, 2021). Finer 

resolution (100 m), grids of population density in the Guianas have been generated through 

dasymetric modelling (Stevens et al., 2015; Tatem et al., 2017). Dasymetric modelling uses 

Random Forests, a form of machine learning, trained to identify the relationship between 

population density and other ancillary parameters obtainable using remote sensing imagery 
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and other datasets, including land cover, night lights and road density (Nagle et al., 2015). 

This modelling produces a finer, gridded representation of population density, validated 

using higher spatial resolution population data available from local authorities and other 

courses (Steven et al., 2015). Identifying changes in relative levels of humans exposed to 

shoreline change across the entire Guiana coastline has the potential to identify priority 

locations where resources might be directed towards coastal risk adaptation and mitigation 

measures.  

This Chapter applies VEdge_Detector (Chapter 4), to automatically detect the coastal 

vegetation edge along the entire Guiana coastline from multispectral remote sensing 

imagery, developing the use of the tool from local to supra-national scale analysis (Rogers 

et al., 2021). The position of the seaward extent in mangrove vegetation was detected from 

Landsat imagery from five separate years between 1990 and 2020, Shoreline change rates 

were calculated and integrated with population density data (Stevens et al., 2015) to identify 

risk hotspots: locations with high population densities living near rapidly eroding 

shorelines. In three of these locations: Shell Beach, Guyana, Paramaribo, Suriname and 

Sinnamary, French Guyana, the vegetation edge between 2010 and 2020 was extracted 

from annual 3 – 5m spatial resolution Planet imagery. At these sites, the correlation 

between annual shoreline change rates and (i) NAO index; (ii) ENSO index and (iii) 

MHWL was calculated.  Correlation analysis was conducted to locate stretches of spatially 

distinct shoreline that convey similar rates and direction of shoreline change to those 

identified at Sinnamary. Differences in the rates of shoreline change between each of the 

time periods was used to identify locations with shifting erosional hotspots.  

 

5. 2. Methods 

5.2.1. Study site and image selection 

The Guiana coastline (northern South America) consists of Guyana, Suriname and French 

Guyana (Figure 5.3). This study used Tier 1 multispectral imagery from Landsat missions 

5, 7 and 8, with 30 m spatial resolution, from which it is possible to detect shoreline change 

along the very dynamic Guiana Coastline (USGS, 2019). Landsat imagery was chosen for 

this project due to its relatively long (approximately 50 year) temporal coverage, from 
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which it should be possible to observe the 30-year cycle in mudflat extent. Identification of 

cyclical shoreline change is not possible using Planet imagery because of its current 

temporal range of 10 years (Gorelick et al., 2017; Marta et al., 2018). Tier 1 Landsat data 

was used because it is consistently ortho-rectified and geo-registered, allowing imagery 

from the different Landsat missions to be compared (Young et al., 2017). The region 

spanned eight Landsat scenes (Figure 5.3) between coordinates (8.374 N, -59.85 E) and 

(4.011 N, -51.15E). Scene selection was conducted in Google Earth Engine (GEE) 

(Gorelick et al., 2017), and imagery was collected for the following five years: 1990 

(Landsat 5), 1999 (Landsat 7), 2002 (Landsat 7), 2014 (Landsat 8) and 2020 (Landsat 8), 

resulting in a total of 40 Landsat scenes. Images from other years were not selected due to: 

i) a lack of concurrently captured imagery for all eight scenes (more than 3 month time 

difference between dates of scene capture); ii) high cloud cover; and iii) Landsat sensor 

failures (de Jong et al., 2021). Figure 5.4. provides a summary of the analysis conducted 

within this Chapter.  

 

Figure 5.3: Study site of the Guiana coastline. Red squares depict the Landsat scenes used 

in this study. The capital cities of Guyana (Georgetown), Suriname (Paramaribo) and 



126 

 

French Guyana (Cayenne) are denoted by black squares. Blue points correspond to 

locations referred to in the chapter.  

 

 

Figure 5.4. Overview of the steps taken to calculate rates of shoreline change, population 

densities and risk indices in the Guiana Coastal zone.  

5.2.2. Image pre-processing: cloud detection and edge removal 

Landsat images were filtered by percentage cloud cover in GEE. However, many images 

still contained clouds that needed to be removed to prevent their detection by 

VEdge_Detector (section 5.2.3). Clouds were initially detected in Landsat imagery using 

the Landsat.simpleCloudScore() function in GEE. This function detected clouds using 

Landsat’s Thermal band and produced a binary cloud/non-cloud mask layer (Figure 5.5).  

The value of the pixels corresponding to clouds were modified to at-sensor radiance values 

typical of mangrove vegetation: green = 230, blue = 400, red = 150, near infrared = 3000. 

To smooth the cloud edges, a 15 × 15 kernel was convolved over the image, taking the 

average of the pixels in that kernel using Python’s Astropy package. The pixels 

corresponding to clouds were assigned the values contained within the convolved image, 

with the non-cloud pixels being assigned the pixel values in the original image.   
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Figure 5.5: Cloud detection in Landsat imagery. Left: Original Landsat scene subsets of the 

Guiana coastline. Right: Corresponding binary cloud masks produced by the 

Landsat.simpleCloudScore() function in Google Earth Engine. 

 

5.2.3. Shoreline detection across the Guiana coastline 

5.2.3.1. VEdge_Detector 

For every image, VEdge_Detector (Chapter 4) produced a raster layer with pixels valued 

between 0 and 1, representing the VEdge_Detector confidence that a pixel corresponded to 

the coastal vegetation edge. All VEdge_Detector predictions were performed on a Dell 

Laptop with Intel Core i7 and 32 GB of RAM. VEdge_Detector had a run time of 

approximately 15 minutes to detect the coastline in the Guiana study area, although 

VEdge_Detector training time far exceeds running time (Section 4.2.2). 

 

5.2.3.2. Moving window algorithm 

VEdge_Detector predicted a very wide coastal vegetation edge when applied to the original 

Landsat scenes and an additional pre-processing step was required to produce more precise 
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predictions. The broad predictions were attributed to the Landsat scenes being far larger in 

size (greater than 30,000 km2 or 7500 × 7500 pixels) than the imagery initially used to train 

VEdge_Detector (less than 10 km2, 500 × 500 pixels). All images were resized to 480 × 

480 pixels prior to VEdge_Detector input and it is argued that this downscaling is likely to 

have produced the very broad vegetation edge predictions.   

To overcome these broad predictions, the shoreline was manually digitised in ArcGIS 

10.5.1. A moving window algorithm was produced using Python’s Numpy, Gdal and 

rasterio packages. This algorithm cropped the initial larger Landsat scene into multiple 480 

× 480 pixel tiles, with the centre of a cropped tile positioned every 100 m along the 

manually digitised line. The use of an approximate, manually digitised line ensured that the 

cropped image was centred so as to include the coastline. The generation of an approximate 

shoreline was initially trialled using a well-established Normalised Difference Water Index 

(NDWI) threshold contouring (Chapter 3, Vos et al., 2019b). However, and particularly 

along stretches of coastline with shallow gradient muddy substrate, the NDWI threshold 

contour fluctuated erratically. As a result, not all images in the moving window algorithm 

were centred to contain the coastline (Figure 5.6). Some tile edge pixels were erroneously 

detected to be the coastal vegetation edge. Therefore, all pixels ≤ 10 pixels of the tile 

boundary were set to Not a Number (NaN). The tiles were subsequently mosaicked using 

Python’s Gdal.Warp() function and the highest value was used for overlapping tile pixels.   
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Figure 5.6: Waterline produced using NDWI threshold contouring method produced by 

Vos et al. (2019b) at Wia-Wia Nature reserve, Suriname. NDWI threshold contour overlaid 

on Landsat image captured in 1990 in red, green, near infrared false colour.  

 

5.2.3.3. VEdge_Detector predictions post-processing 

The shoreline change analysis method used in this study required the shoreline positions in 

vector polyline form (section 5.2.4). Python’s gdal.contourise() function was used to 

convert the rasterised VEdge_Detector predictions into polylines. A continuous vegetation 

edge was detected along 90 - 95% of the Guiana Coastline for each of the five years in the 

analysis period 1990 – 2020. Gaps in the vegetation edge contours were interpolated by 

manual digitisation. To aid manual digitisation, the vegetation line was detected using the 

original red-green-blue image and the NDVI of the image. Tiles were inspected in ArcGIS 

10.5.1 to identify and crop any contours corresponding to remaining clouds. The post-

processed vegetation line contours were subsequently used in shoreline change analysis.  
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5.2.4. Shoreline change analysis using Landsat data 

Shoreline change analysis was conducted using the ArcGIS plugin Digital Shoreline 

Analysis System (DSAS, Thieler et al., 2009; USGS, 2018). Net Shoreline Change (NSC 

= distance between the oldest and most recent shoreline position) and End Point Rate (NSC/ 

time in years) was calculated between 1990 and 2020 and for each of the intermediary time 

periods: 1990 – 1999, 1999 – 2002, 2002 – 2014, and 2014 – 2020. Change in the position 

of the shoreline was calculated along transects running orthogonal to the dominant 

shoreline direction. Transects were separated by 100 m intervals. NSC was used to compare 

rates of erosion and accretion over the entire study period. The End Point Rate (EPR) was 

used when comparing rates of change between the intermediary time periods. The length 

of the four time periods varied between three and 12 years, meaning EPR was a more 

suitable metric for comparing rates of shoreline change between the different time periods.  

 

5.2.5. Weighted Population Score 

To derive a population density value for each transect, 2020 population density maps at 

100 m spatial resolution were sourced from the WorldPop dataset (Tatem et al., 2017). A 

moving window was passed over the input population images to calculate the total 

population living within 1 km, 5 km and 10 km of every grid square. A 10 km search radius 

was used because it is analogous to the width of the coastal strip containing most 

agricultural land and populations in the region (Hickey and Weis, 2012; Vaughn, 2017). 

To recognise that people living in closer proximity to transects experiencing shoreline 

change are likely to be more affected by the change, a Weighted Population Score (WPS) 

was calculated (Equation (5.1)): 

WPS = (10 × a ) + (5 × b) + (1 × c)  (5.1) 

 

where a, b and c correspond to the total population living within 1 km, 5 km and 10 km 

respectively of the grid cell. This analysis produced a 100 m resolution raster layer of WPS 

values for the entire Guiana region.  
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5.2.6. Identifying risk hotspots 

To derive the WPS for each transect, the ArcGIS Sample function was used to find the 

value of the grid cell which was overlaid by each transect. To derive the risk index at each 

transect, the log normalised Weighted Population Score (WPS) and 1990 – 2020 Net 

Shoreline Change (NSC) values were multiplied together in the attribute table in ArcGIS 

(Equation (5.2)).  

Datasets were initially log normalised to establish comparable ranges. The WPS was 

normalised to [0, 1] where zero and one represented locations with the sparsest and densest 

populations respectively. NSC values were normalised to [-1, 1], where positive and 

negative values corresponded to net accreting and eroding transects respectively and values 

near zero represented stable shorelines. To normalise the datasets, the log of all values was 

calculated and then all values were divided by the maximum log value to scale all values 

to between 0 and 1. For NSC, where positive and negative values existed, the log of the 

absolute values was calculated and all log values corresponding to eroding transects were 

multiplied by -1. Log normalisation ensured that the small number of transects with very 

large values did not mask the patterns in shoreline change and population density along the 

rest of the Guiana shoreline. Without this step, most transects had normalised values very 

close to zero.  

To generate the Risk Index (RI) score along the Guiana shoreline, the log normalised WPS 

and NSC values were multiplied together (Equation 5.2). Despite the large number of 

studies investigating relative levels of coastal risk or exposure, there is no one method for 

integrating different risk indices (Rameri et al., 2011). This study adopted a similar method 

to that produced in the Coastal Risk Assessment Framework (CRAF) where hazard and 

exposure values are normalised and then multiplied together (Viavattene et al., 2018). This 

method was applied due to the even weighting it gives to the hazard and exposure metrics. 

RI= NSC × WPS (5.2) 
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5.2.7. High resolution shoreline change analysis in hotspot locations  

5.2.7.1. Planet imagery 

At three locations with high Risk Index (RI) scores: Shell Beach, Guyana; Paramaribo, 

Suriname and Sinnamary, French Guyana, annual 3 – 5 m spatial resolution Planet imagery 

was collected. At Sinnamary, an image was collected from every year between 2010 and 

2021, except 2015 when no Planet imagery was available. At Shell Beach and Paramaribo, 

one image was collected from every year between 2012, when the first image was captured 

from these sites, and 2021. VEdge_Detector was subsequently used to detect shoreline 

position in the Planet images using the moving window algorithm outlined in Section 2.3.2. 

EPR rates were calculated using DSAS as outlined in Section 2.4.  

 

5.2.7.2. Cloud removal in Planet imagery 

Most pre-existing cloud detection algorithms take advantage of the high reflective 

properties of clouds in the short-wave near infrared (SWIR) wavebands or low 

temperatures in thermal bands (Zhu et al., 2015; Sun et al., 2017; Frantz et al., 2018). 

Current Planet imagery does not contain a SWIR or thermal layer, so this study devised a 

thresholding algorithm which considered that clouds reflect relatively high amounts of 

radiation in the red and NIR wavebands (Figure 5.7). Pixels in the top 10% of at-sensor 

radiance values in both the red and near infrared spectral bands were designated as cloud 

pixels. A binary cloud mask layer was produced. After the cloud had been identified, the 

same process outlined in Section 5.2.2. was used to smooth the edges of the clouds: i) the 

values of pixels pertaining to cloud covered regions were altered to values typical of 

mangrove forest in Planet imagery; ii) a 15 × 15 smoothing kernel was convolved over the 

altered image to smooth the value of pixels at cloud edges; and iii) cloud-pixels were 

assigned the values contained within the convolved image, with non-cloud pixels being 

assigned the values in the original image.   
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Figure 5.7: Comparison of the at-sensor radiance of pixels in red and NIR wavebands 

pertaining to locations with (blue) and without (green) clouds cover. The scatter graph 

contains the spectral property of approximately 4.5 million pixels.   

 

5.2.8. Statistical analysis of shoreline change drivers 

Correlations between 2010 – 2020 annual EPR values and i) NAO index; ii) ENSO index; 

and iii) MHWL at the Sinnamary and Paramaribo sites were calculated using Python’s 

Scipy library. EPR values were statistically compared with the December January February 

March North Atlantic Oscillation (DJFM NAO) index, (University of East Anglia Climate 

Research Unit (UEA CRU, 2021), and the December January February El Niño Southern 

Oscillation (DJF ENSO) index (NOAA, 2021). The DJFM NAO index is calculated as the 

surface air pressure difference between Gibraltar and Iceland (UEA CRU, 2021) and the 

DJF ENSO index is calculated as the surface air pressure difference between Tahiti, French 

Polynesia and Darwin, Northern Territory, Australia (NOAA, 2021). These indices 

calculated the average index over the respective months and were chosen because the mud 

banks are most mobile during the northern hemisphere winter months (Anthony et al., 

2014). Following Walcker et al. (2015), in order to account for lags in the shoreline 

response to conditions driven by the NAO/ ENSO index value, the average of the index 
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score over the preceding five years was used. The statistical relationship between EPR and 

the extraneous forcing factors was investigated between 2010 and 2020 because this is the 

time period for which annual imagery of shoreline position was available.  

To calculate the statistical relationship between EPR and the 18.6-year nodal cycle, annual 

MHWL were obtained from the Ile Royale tidal gauge positioned at coordinates (5.28 N, -

52.58 E), approximately 20 km east of Sinnamary (National Oceanography Centre, 2021a). 

The Shapiro test for normality was applied to all datasets prior to conducting correlation 

tests (Dytham, 2011). The Pearson’s correlation coefficient was used for normally 

distributed data, and Spearman’s rank was applied to non-normally distributed datasets 

(Dytham, 2011).  For all tests, the null hypothesis was rejected when p < 0.05.  

 

5.2.9. Identifying regional scale dynamics 

5.2.9.1. Correlations with Sinnamary site 

Statistical analysis was conducted to determine whether other stretches of shoreline have 

exhibited the same response to the extraneous forcing factors as Sinnamary. The EPR 

values for all transects across the Sinnamary study site were averaged to provide an overall 

response of the mud bank to external forcing factors. The strength and direction of 

correlation between EPR values at Sinnamary and every other transect along the Guiana 

coastline was subsequently calculated. Correlations were calculated using the Python’s 

Pandas library, using the Pearson’s correlation test. Transects were considered to be 

correlated with the Sinnamary site values when the correlation coefficient value, r, was 

greater than 0.9 and the p-value < 0.05. 

 

5.2.9.2. Erosion rates near Mana 

To investigate the changes in erosion rates between 1990 and 2020 near Mana, French 

Guyana, EPR values at every transect for each of the four time periods were plotted on a 

line graph. The stretch of coastline around Mana contained approximately 700 transects 

and was greater than 70 km in length. The EPR values for every time period were plotted 

using Python’s Matplotlib library.  
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5.3. Results 

5.3.1. VEdge_Detector performance 

VEdge_Detector successfully identified the coastal vegetation edge along more than 90% 

of the Guiana coastline during each of the five years for which Landsat imagery was 

available (1990, 1999, 2002, 2014 and 2020). For all years, a continuous shoreline was 

detected along the entireity of the coastlines of Guyana and French Guyana, with the 

exception of a small (c. 5 km) stretch of shoreline between Mana and Sinnamary, French 

Guyana. In Suriname, VEdge_Detector consistently failed to identify the coastal vegetation 

edge along two separate, approximately 30 km long, stretches of shoreline near the 

Coppename and Wia-Wia nature reserves.  

 

5.3.2. NSC and EPR along the Guiana coastline 

Net Shoreline Change (NSC) between 1990 and 2020 across the entire Guiana coastline 

ranged from 3200 m of accretion at the western edge of the Coppename Nature Reserve, 

Suriname to -2200 m of erosion near Sinnamary, French Guyana (Figure 5.8). In Guyana, 

the greatest rates of retreat over the 30-year period, -1700 m, were situated at Turtle Beach, 

and the most rapid accretion, 1140 m, occurred approximately 60 km south east of Turtle 

Beach. At Shell Beach, North West Guyana a stretch of accreting shoreline (NSC = 900 m) 

was located immediately to the west of a site of rapid erosion (NSC = -900 m) (Figure 5.9).  

Similarly in French Guyana, the very large rates of erosion (NSC = 1200 m) and accretion 

(NSC = -2200 m) occurred immediately adjacent to each other on the Sinnamary mud bank. 

The prograding shoreline was located at the western head of the Sinnamary mud bank, 

whereas erosion was predominantly found in the centre and western edges of the mud bank.  

The highest recorded rates of erosion in Suriname were found near Mana (NSC = -2100 

m).  

The proportion of stable shoreline, defined here as NSC less than ±60 m or two Landsat 

pixels over the 30-year period, varied substantially within each country. In French Guyana, 

972 transects, or 21.9% of the country’s shoreline experienced less than ±60 m net erosion 
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or accretion. Two separate stretches of shoreline near the town of Kourou and the French 

Guyanese capital, Cayenne, were the most stable shorelines across the entire study area 

(NSC less than 15 m). In Guyana and Suriname, 9.3% and 14.8% respectively of the 

countries’ shoreline were stable. In both countries, stable stretches of shoreline were 

predominantly clustered around river inlets and the Guyanese capital, Georgetown.   

Differences in NSC and EPR values between each county were calculated because the 

country boundaries correspond with major river systems, which produce natural breaks in 

the Guiana coastline, and correspond to marked changes in dominant shoreline direction. 
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Figure 5.9: End point rates along the shoreline of Guyana (site (a) in Figure 5.7) between 

(a) 1990 – 1999, (b) 1999 – 2002, (c) 2002 – 2014 and (d) 2014 – 2020. Vertical red and 

green arrows highlight locations which experienced net erosion or accretion during all four 

time periods respectively. Horizontal red arrows highlight locations where a stretch of 

erosion migrated westwards in particular time periods between 1990 and 2020. Shoreline 

change transects are overlaid on a 500 m resolution Terra MODIS surface reflectance image 

classified into land and water classes (ORNL DAAC, 2018). 
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Figure 5.10: End point rates across the shoreline of Suriname (site (b) in Figure 5.7) 

between (a) 1990 – 1999, (b) 1999 – 2002, (c) 2002 – 2014 and (d) 2014 – 2020. Vertical 

red and green arrows highlight locations which experienced net erosion or accretion during 

all four time periods respectively. Horizontal red arrows highlight locations where a stretch 

of erosion migrated westwards in a particular time period between 1990 and 2020. 

Shoreline change transects are overlaid on a 500 m resolution Terra MODIS surface 

reflectance image classified into land and water classes (ORNL DAAC, 2018). 
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Figure 5.11: End point rates across the shoreline of French Guyana (site (c) in Figure 5.7) 

between (a) 1990 – 1999, (b) 1999 – 2002, (c) 2002 – 2014 and (d) 2014 – 2020. Vertical 

yellow arrows highlight shoreline locations which experienced negligible (less than 5 m 

year-1) shoreline change between all time periods.  Vertical green arrows highlight locations 

which experienced net accretion during all four time periods. Horizontal red arrows 

highlight locations where a stretch of erosion migrated westwards in a particular time 

period between 1990 and 2020. Shoreline change transects are overlaid on a 500 m 
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resolution Terra MODIS surface reflectance image classified into land and water classes 

(ORNL DAAC, 2018). 

Many locations along the Guiana coastline experienced consistent erosion or accretion at 

each time period. Stretches of shoreline which accreted during every period included 

Western Shell Beach, Guyana (Figure 5.8) (EPR 1990 – 2020 = 20 - 26 m year-1), Western 

Coppename Nature Reserve, Suriname (Figure 5.10) (EPR = 102 – 110 m year-1) and the 

most easterly peninsula in French Guyana (Figure 5.11) (EPR = 75 – 86 m year-1). Another 

site of consistent accretion was also detected outside of the study area in the Brazilian 

region of Uaça (EPR = 62 – 95 m year-1) (Figure 5.11).  

Shoreline locations that eroded during every time period included central and eastern 

stretches of Shell Beach, Guyana (Figure 5.8) (EPR = -15 – -25 m year-1), Turtle Beach, 

Guyana (EPR = -62 – -95 m year-1) and Paramaribo, Suriname (EPR = -21 - -33 m year-1).  

The shoreline near Kourou and Cayenne, French Guyana, remained stable during every 

time period. Other locations which remained stable during every time period were primarily 

located at river inlets.  

Mean EPR across Guiana did not significantly vary, and remained close to zero, between 

each time period (Figure 5.12). These near-zero values indicate that the coastline is in a 

state of equilibrium, where sediment losses and gains are balanced across the entire Guiana 

coastline. The smallest standard deviation in EPR value between was recorded between 

1990 and 1999 and was almost 40 m less than the largest standard deviation between 2014 

and 2020 (Figure 5.12 (a) – (d)).  
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Figure 5.12: Histogram of end point rates across the Guiana coastline between: (a) 1990 

and 1999, (b) 1999 and 2002, (c) 2002 and 2014, (d) 2014 and 2020. Positive and negative 

values correspond to eroding and accreting transects respectively.  

5.3.3. Weighted Population Score 

The highest Weighted Population Scores (WPS) were found in the major towns and capital 

cities in the region (Figure 5.13). A key component of the WPS is the number of people 

living within 10 km of a stretch of shoreline. Within the three countries, the maximum 

number of people living within 10 km of any transect was higher than 366,000 

(Georgetown, Guyana), 201,000 (Cayenne, French Guyana) and 174,000 (Paramaribo, 

Suriname) (Figure 5.13). The number of people living within 10 km of the shoreline in 

South East Guyana consistently remained above 2500 people, although population 

densities were far lower in the north and west of the country. Fewer than 100 people lived 

within 10 km of 51% of the Surinamese and French Guyanese coastline, although more 

than 30,000 people lived within 10 km of the coastline in major towns including Nieuw 

Nickerie, Suriname and Kourou, French Guyana (Figure 5.13).  
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Figure 5.13: Total population living within 10 km of each transect along the Guiana 

shoreline. Population density transects are overlaid on a 500 m resolution Terra MODIS 

surface reflectance image classified into land and water classes (ORNL DAAC, 2018). 
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5.3.4. Coastal risk 

5.3.4.1 Coastal risk scores 

The two sites with the highest Risk Index were Paramaribo, Suriname (-0.92) and Mana, 

French Guyana (-0.81) (Figure 5.14). Despite the high population densities in cities such 

as Cayenne and Kourou, relatively small NSC rates contributed to a low total risk score 

(less than ±0.19) (Figure 5.14). Conversely, sites with relatively lower population densities 

but very rapid rates of erosion recorded high total risk scores including Shell Beach, 

Guyana (-0.48), Turtle Beach, Guyana (-0.64) and Sinnamary, French Guyana (-0.78) 

(Figure 5.14). The areas with the largest positive risk scores (corresponding to locations 

with high population density and fast rates of accretion included sites to the west of 

Paramaribo, Suriname (0.93) and west of Georgetown, Guyana (0.79), although the 

shoreline immediately adjacent to Georgetown was either stable or slowly retreating (total 

risk score = -0.05 – 0.36) (Figure 5.14). 
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Figure 5.14: Variation in Risk Index across the Guiana coastline. Positive and negative 

values correspond to locations which experienced net accretion and erosion respectively 

between 1990 and 2020. Shoreline change rates within the three black squares at (a) Shell 

Beach, Guyana, (b) Paramaribo, Suriname and (c) Sinnamary, French Guyana are analysed 
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further below. Risk level transects are overlaid on a 500 m resolution Terra MODIS surface 

reflectance image classified into land and water classes (ORNL DAAC, 2018). 

5.3.4.2 Annual scale shoreline dynamics 

Shoreline position and rates of change were subsequently studied at three sites across the 

Guiana coastline with high risk index scores. These locations were: i) the site which 

experienced the greatest fluctuation in the rate and direction of shoreline change 

(Sinnamary, French Guyana); ii) the location with the highest risk index score (Paramaribo, 

Suriname); and iii) one location with a strong positive and negative risk index score 

immediately adjacent to each other (Shell Beach, Guyana). To study the dynamics of these 

shorelines in greater spatio-temporal detail, VEdge_Detector predicted the location of the 

coastal vegetation edge in these locations using annual 3 – 5 m spatial resolution Planet 

imagery (Section 5.2.7.1).   

 

5.3.4.2.1. Sinnamary, French Guyana 

The shoreline northeast of Sinnamary, French Guyana, was the site with the largest 

fluctuation in scale and direction of change during the four time periods (Figure 5.10). 

Using a combination of Planet and Landsat imagery, the position of the shoreline at three 

transect locations across the mud bank at Sinnamary was shown to oscillate between 1990 

and 2021. At all three locations, the vegetation line retreated after 1990, reaching its 

minimum extent in 1999 (Figure 5.15). The mud bank subsequently accreted at all sites 

from 1999. At its westerly terminus (Figure 5.15 (a) i and (b) i), the mud bank reached its 

maximum extent between 2014 and 2016, with an average accretion rate of 245 m year-1 

between 2010 and 2016. Between 2016 and 2021 the head of the mud bank retreated (mean 

EPR = -288 m year-1). By 2021, the vegetation line was less than 400 m seawards of its 

position in 1990.  

The oscillation in vegetation line position at the two transects at the centre and eastern edge 

of the mud bank were four years in front of the oscillation at the westerly mud bank head 

(Figure 5.15 (a) ii, (a) iii, (b) ii and (b) iii). At sites (ii) and (iii), the vegetation line reached 

its maximum extent in 2010, before retreating every year between 2010 and 2021 with 

mean erosion rates of -214 m year-1 and -255 m year-1 respectively (Figure 5.15 (a) ii, (a) 
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iii, (b) ii and (b) iii).  The shorelines at site (ii) and (iii) retreated at slower rates of -56 m 

year-1 and -1 m year-1 respectively between 2019 and 2021. By 2021, the vegetation line at 

sites (ii) and (iii) had retreated to a position landwards of the previous minimum extent 

recorded in 1999.   

Changes in EPR values at all three transects took the approximate form of a sine curve. The 

smallest difference in EPR values between years occurred when the mud bank was close to 

its maximum and minimum extent. Changes in EPR were much larger when the mud banks 

were at an intermediate extent (Figure 5.15). 
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5.3.4.2.2. Paramaribo, Suriname 

Between 1990 and 2020, the vegetation extent at the western edge of the Paramaribo study 

site displayed a similar oscillating pattern, as shown for Sinnamary (Figure 5.16 (i)). The 

shoreline accreted between 1990 and 2002, reaching its maximum extent in 2002 (mean 

EPR = 67 m year-1), before eroding between 2002 and 2020 (mean EPR = -62 m year-1). 

The rate of retreat slowed between 2016 and 2020 (EPR = -18 m year-1). By 2020, the 

coastal vegetation edge position was less than 150 m from its position in 1990.  

In contrast, the shoreline immediately adjacent to the city limits of Paramaribo retreated 

during every time period between 1990 and 2020 (mean EPR = -38 m year-1) (Figure 5.16 

(iii)). The erosion has resulted in the formation of new headlands containing high density 

buildings (Figure 5.16 (a)). In 1990, the distance between the road shown in Figure 5.16 

(a) and the coastal vegetation edge was more than 900 m. By 2020, more than 2.5 km of 

this road was situated less than 110 m from the coastal vegetation edge.  
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Figure 5.16: Vegetation line position at Paramaribo, Suriname, identified by 

VEdge_Detector in 1990 (red) and 2020 (blue), overlaid on the 3 m spatial resolution 

Planetscope image from 2020. Change in shoreline position along three perpendicular 

transects (i), (ii) and (iii) are shown in the inset graphs for 1990, 1999, 2002 and every year 

between 2013 and 2020. For all three inset graphs, 0.0 is the location of the seaward 0.1 
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confidence contour in 1990. The solid circles and vertical bars represent the location of the 

landward and seaward 0.9 and 0.1 confidence contours respectively.  Inset (a) shows the 

position of a headland containing a high density of buildings and coastal road at a larger 

scale 

 

5.3.4.2.3. Shell Beach, Guyana 

The shoreline at the western terminus of the Shell Beach mud bank accreted every year 

between 2010 and 2020 (mean EPR = 104 m year-1). In contrast, the vegetation line at the 

eastern end of the mud bank eroded every year between 2010 and 2020 (mean EPR = 101 

m year-1) (Figure 5.17). Between 2011 and 2016, the shoreline immediately adjacent to 

Shell Beach village, in the centre of the mud bank, remained stable (mean EPR = -2.5 m 

year-1) and in some years the shoreline accreted (2016 – 2017 EPR = 16 m year-1) (Figure 

5.17 (a) – (d)).  From 2017 to 2020, the shoreline at Shell Beach eroded and the entire 

village was lost to the sea (mean EPR = -71 m year-1) (Figure 5.17 (e) and (f)). The most 

westerly transect that recorded a negative EPR (net erosion) value greater than -20 m year-

1 consistently migrated towards and beyond Shell Beach village between 2010 and 2020 

(Figure 5.17 (a)). The distance between Shell Beach and the nearest transect to the east of 

Shell Beach with an EPR greater than -20 m year-1 reduced from 5980 m in 2011, to 269 m 

in 2016. Between 2017 and 2020, this transect migrated from 397 – 1611 m to the west of 

Shell Beach (Figure 5.17).  
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Figure 5.17: Vegetation line position identified by VEdge_Detector at Shell Beach, 

Guyana, in 2010 (red) compared with (a) 2013; (b) 2014; (c) 2015; (d) 2016; (e) 2017; (f) 

2020. The insets show the shoreline position at Shell Beach village at a larger scale. The 

arrows in (a) show the closest transect to the east of Shell Beach which recorded an EPR 

greater than -20 m year-1 for each of the years. The colours of the arrows correspond to the 

colour ramp for the corresponding year.    

 

5.3.5. Statistical relationships between EPR and the NAO and ENSO indices 

During years when the DJFM NAO index was strongly positive, the mud bank at 

Sinnamary retreated. Conversely, when the DJFM NAO index was weakly positive or 

negative, the mud bank at Sinnamary accreted. The maximum rate of erosion (EPR = -267 

m year-1) was recorded in 2018, after four consecutive years with DJFM NAO index greater 



153 

 

than 1.25 (Figure 5.18). The Sinnamary mud bank retreated in most years with a negative 

ENSO index (El-Niño), and accreted in years with a positive ENSO index (La-Niña).   

 

Figure 5.18: Comparison or NAO index, ENSO index and rates of shoreline change. Five-

year average December January February March North Atlantic Oscillation (DJFM NAO) 

index (blue), ENSO index (red) and average end point rates (EPR) (black) along the 

Sinnamary coastline between 2011 and 2021. Black dots show mean EPR rates, the lower 

and upper bar extents show the 10 and 90 percentile values respectively. EPR data is 

missing for 2015 when no Planet image was available. 

 

Transect (ii) at Paramaribo was the only site containing non-normally distributed EPR 

values. At this site, the Spearman’s Rank correlation coefficient was calculated whilst at 

all other sites the Pearson’s correlation coefficient was calculated. A statistically significant 

correlation between EPR and both the NAO and ENSO indices existed at transect (i) and 

(ii) at Sinnamary. At transect (iii) at Sinnamary, EPR was only statistically significantly 

correlated with NAO (Table 5.1). At all transects at both sites, a negative correlation existed 

between EPR and both the NAO and ENSO indices. The strongest negative correlation 

existed between EPR and NAO at transects (i) and (ii) at Sinnamary (r = -0.84 and -0.64 

respectively). At Paramaribo, no statistically significant correlation between EPR and 

either the NAO index or the ENSO index existed at any transect (Figure 5.19 (d) – (f); 

Table 1). Correlation coefficient values were consistently weak, less than ±0.41, at all 
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transects at Paramaribo. No statistically significant correlation between EPR and MHWL 

existed at any site.  

 

 

Figure 5.19: Scatter plots of EPR verses NAO index for (a) – (c) transects (i), (ii) and (iii) 

at Sinnamary (see Figure 5.14) and for (d) – (e) transect (i), (ii) and (iii) at Paramaribo (see 

Figure 5.16).  For (a) – (d) and (f) the Pearson’s correlation coefficient, r, and associated 

p-value is provided. For (e), the Spearman Rank’s coefficient, ρ, and associated p-value is 

provided.  Note: different scales are used on the y-axis for each transect. 

Table 5.1: Pearson’s correlation coefficients, r, between EPR and (a) NAO index, (b) ENSO 

index and (c) MHWL at Sinnamary and Paramaribo. At transect (ii) at Paramaribo, the 

Spearman’s Rank correlation coefficient was calculated because the EPR data at that 

transect was not normally distributed.  

 
Sinnamary Paramaribo 

 
Transect (i) Transect (ii) Transect (iii) Transect (i) Transect (ii) Transect (iii) 

 
r p r p r p r p ρ p r p 

NAO -0.84 0.001 -0.64 0.02 -0.52 0.04 -0.4 0.24 -0.39 0.25 0.11 0.75 

ENSO -0.81 0.001 -0.61 0.03 -0.45 0.14 0.01 0.96 0.05 0.88 0.41 0.24 

MHWL -0.06 0.85 0.68 0.12 0.52 0.11 0.41 0.31 0.52 0.18 -0.37 0.36 
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5.3.6. Regional scale dynamics 

5.3.6.1. Correlations with Sinnamary site 

Across the Guiana coastline, there were four major clusters of transects where EPR rates 

were strongly positively correlated with the EPR values recorded at Sinnamary (Figure 

5.20). These stretches of shoreline were located near Mana, French Guyana, the Wia-Wia 

and Coppername nature reserves in Suriname and stretches of coastline between Nieuw 

Nickerie and Totness, Suriname. No cluster of transects, determined here as ≥ 5 adjacent 

transects, were correlated to the Sinnamary site along the whole of the coastline of Guyana. 

The four main clusters of transects which correlated with Sinnamary were consistently 

spaced between 180 and 190 km apart.  
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Figure 5.20: Locations (in green) where end point rate (EPR) values had a strong positive 

correlation with EPR values at Sinnamary, French Guyana. Transects are coloured green 

when correlation coefficient values, r, are greater than 0.9.  Black stars correspond to 

stretches of shoreline consistently positioned 180 – 190 km apart, where transect EPR 

values are correlated with the Sinnamary site. The Sinnamary site itself is denoted by the 

black arrow.  
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5.3.6.2. Mana 

By producing a line graph of EPR values across a 70 km stretch of shoreline near Mana, 

during each of the time periods, it was possible to deduce a westerly migrating erosional 

hotspot (Figure 5.21, positive values correspond to shoreline erosion). Between 1990 and 

1999, the highest EPR values were found to the east of the study site, adjacent to Organabo. 

The location with the peak rates of erosion subsequently migrated westwards over the 

subsequent three time periods. Between 2014 and 2020, the peak in erosion rates was 

located less than 5 km to the east of Mana (Figure 5.21). The pattern for accretion (negative 

values in Figure 5.20) was less distinct. However, at Organabo, after the high rates of 

erosion between 1990 and 1999, the shoreline consistently accreted during each subsequent 

time period.  

 

 

Figure 5.21: Comparison of EPR values for each of the four time periods within the study 

near Mana. The x-axis corresponds to alongshore position between Mana and Organabo, 

corresponding to approximately 700 transects across the study site. The map represents the 

stretch of coastline studies, with the relative position of Mana, Médeyre and Organabo 
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numbered 1, 2 and 3 respectively. The vertical or left pointing arrows emphasise the peak 

locations with maximum rates of erosion during each of the four time periods. The 

horizontal bars at the top of the graph represent the time period during which rates of 

erosion were greatest for those transects. Positive and negative values correspond to erosion 

and accretion respectively.  

 

5.4. Discussion 

Applications of ML tools to detect shoreline position and associated rates of change have 

typically been restricted to relatively short, less than 100 km, stretches of coastline 

(Goldstein et al., 2019; Elnabwy et al., 2020; Rogers et al., 2021). Despite being insightful 

for understanding local scale dynamics, this Chapter has demonstrated the potential of 

applying ML techniques to detect shoreline position at a supra-national scale, with an 

ability to identify patterns of coastal morphodynamics that are not detectable in local scale 

studies. These morphodynamics included the identification of spatially distinct stretches of 

shoreline that respond in similar ways to the same extraneous forcing factors (Figure 5.20), 

migrating erosional hotspots (Figure 5.21), and locations where the greatest number of 

people are exposed to shoreline change (Figure 5.14). This regional-scale information may 

assist both national governments and international NGOs to identify locations most 

exposed to current and future shoreline change.  

Due to the inability to access this study site, it was not possible to collect ground-referenced 

measurements to ascertain error terms generated in this study. Chapter 4 determined that 

VEdge_Detector identified the shoreline position with a root mean square error of less than 

6 m (two image pixels) at the majority of sites. To account for the coarser Landsat imagery 

used in this study, it is estimated that mean error terms in this study probably range between 

30 – 60 m (corresponding to between one and two image pixels). Further investigation 

could substantiate these error terms via the application of ground- referenced studies.  
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5.4.1 Shoreline response to extraneous forcing factors 

Mean EPR values across the Guiana shoreline were near-zero between each of the four time 

periods when Landsat imagery was available (Figure 5.12, EPR 1990 – 1999 μ= 4.35 m 

year-1, EPR 2014 - 2020 μ= -1.05 m year-1), showing that there was no net trend in erosion 

or accretion during this period. The increasing trend in standard deviation values over time 

(EPR 1990 – 1999 σ = 55.87 m year-1, EPR 2014 - 2020 σ = 93.93 m year-1) reveals that a 

greater number of transects were advancing or retreating by more than 60 m year-1 by 2020. 

This indicates no net sediment loss or gain across the entire Guiana coastline, but local-

scale (10-1 – 101 km) stretches of shoreline are becoming more dynamic, increasing the 

total amount of erosion during interbank phases (Figure 5.15). Greater rates and magnitude 

of shoreline change may impact upon local ecological and human receptors. Greater EPR 

rates along mud banks in French Guiana have, for example, a deleterious effect on sea turtle 

populations by flooding their nesting sites (Caut et al., 2010). Further, human settlements 

that were previously landwards of the minimum extent of mud banks may become more 

exposed to coastal erosion during future mud bank oscillations (Bhargava et al., 2021). 

Consideration of this increase in the amplitude of mud bank oscillations may also be 

beneficial when planning and positioning future human coastal developments.  

Sinnamary, French Guyana, was the most dynamic stretch of shoreline across the entire 

Guiana coastline, where it was identified that vegetation edge position oscillates over time 

(Figure 5.9). A strong negative correlation between EPR values at Sinnamary and the NAO 

(r = -0.84, p= 0.001) and ENSO index (r = -0.81, p= 0.001), indicates that NAO and ENSO 

may have a strong influence on the mud bank and mangrove extent (Figure 5.15, Figure 

5.18, Figure 5.19, Table 5.1). Between 2013 and 2020, rapid retreat (mean EPR greater 

than -100m year-1) coincided with years with consistently positive NAO index values 

(Figure 5.18), with three of the ten highest positive NAO values recorded between 2013 

and 2020 (NOAA, 2021). Reducing EPR values between 2018 and 2020 also coincided 

with weaker NAO and ENSO indexes (Figure 5.18). Other studies have found that stronger 

trade winds (present during years with a strong positive NAO index) can generate larger 

significant wave heights, promoting greater erosional change along the Guiana coastline 

(Young et al., 2011; Young et al., 2019). ML and numerical modelling methods are 

becoming increasingly proficient at predicting NAO index values in future years (Wang et 

al., 2017; Yuan et al., 2019). Increased understanding of the relationship between EPR rates 



160 

 

and NAO index, combined with increased NAO index predictive capability, could provide 

a greater predictive capacity to forsee years when the greatest rates of coastal change may 

occur.  

No statistically significant relationship between Mean High-Water Level (MHWL) and 

EPR was identified at any Sinnamary transect (Table 5.1). Whilst peak MHWL in 1999 

coincided with minimum mangrove extent at Sinnamary, the next peak in MHWL occurred 

in 2010, which coincided with the maximum mangrove extent (Figure 5.15 (a) – (c)). In 

contrast, previous studies have primarily attributed the change in mangrove extent at 

Sinnamary to fluctuations in the Mean High-Water Level (MHWL), driven by the 18.6-

year lunar nodal cycle (Gratiot et al., 2008; Anthony et al., 2014). These previous studies 

used the waterline as a proxy of shoreline position, and the discrepancies between the 

findings presented here and those in previous studies may be due to the close relationship 

between waterline position and MHWL, particularly along shallow-gradient mud bank 

coastlines, where it is difficult to tidally correct waterline position (Bhargava et al., 2021). 

Despite knowledge of its limitations (Burningham and French, 2013), the NAO index may 

prove to be a better predictor of rates of change to the coastal vegetation edge position and 

corresponding risks of coastal flooding and erosion to adjacent receptors. Future work 

should continue to collect detailed data pertaining wind and wave conditions, when 

monitoring mud bank extent at Sinnamary, and identify if the two shoreline proxies 

continue to exhibit different relationships to the extraneous forcing factors.  

Correlation analysis enabled the identification of four spatially distinct clusters of transect 

locations where the shoreline position changed in a similar magnitude and direction to 

Sinnamary between each of the time periods (Figure 5.20). These stretches of coastline are 

consistently spaced approximately 180 – 190 km apart, which is consistent with previous 

assertions that there is a consistent spacing between the dynamic mud banks across the 

Guianas (Allison et al., 2000; Anthony et al., 2010). Large proportions of the Guiana 

Coastline are remote and inaccessible (Gardel and Gratiot, 2005), and the idenfitication of 

spatially distinct stretches of shoreline that have similar rates of shoreline change could aid 

the targeting and optimisation of future monitoring projects to fewer locations. However, 

as discussed below, the coastline of Guyana did not contain any stretches of shoreline that 

exhibited similar dynamics to those at Sinnamary.   
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The coastlines that exhibit dynamics like those at Sinnamary are all considered to be 

relatively undisturbed stretches of shoreline, where few human shoreline interventions have 

been implemented (Figure 5.20). No transects in Guyana had EPR values that correlated 

with those at Sinnamary, where a sea wall has been constructed along nearly the entirety 

of the country’s coastline (Vaughn, 2017). Likewise, at Paramaribo, Suriname the site with 

the highest risk index across the entire Guiana coastline, no statistically significant 

correlation existed between EPR and either the NAO or ENSO index (Figure 5.19; Table 

5.1), despite the presence of a mud bank with similar size and orientation to Sinnamary. 

The weakest correlation between EPR and NAO was identified at transect (iii), where the 

shoreline consistently retreated between each time period (Figure 5.16).  EPR decreased 

between 2015 and 2017 (EPR = 8 m year-1), suggesting that the site was reaching a 

minimum value in shoreline oscillation (Figure 5.16 (iii)). EPR began to accelerate again, 

however, between 2017 and 2020 (EPR = 50 m year-1), despite the NAO index decreasing 

by 2020 (Figure 5.18); indicating that other processes, suggested here to be human 

shoreline modifications, were controlling EPR values at this site. 

The decoupling of EPR rates to the NAO and ENSO index and cessation of the 30-year 

cycle in shoreline position at transect (iii), Paramaribo and across Guyana, may be related 

to the extensive clearance of mangrove forest for agricultural production and construction 

of sea walls along these stretches of shoreline (World Bank, 2018, de Jong et al., 2021). At 

Paramaribo, along more than 6 km of the shoreline adjacent to transect (iii), mangrove 

forest has been removed and agricultural land is situated immediately adjacent to the 

shoreline (Figure 5.16 inset (a)).  Hard engineered sea defences have also been constructed 

around buildings, forming abrupt headlands with high housing density valued at an 

estimated US$ 86 million (Figure 5.16 inset (a); Burke and Ding, 2016). Sea walls have in 

some places enclosed mangrove forests, preventing propagules from being transported 

from these forests to establish on, and stabilise, new mud banks (Anthony and Gratiot, 

2012). Without the establishment of new mangrove vegetation, mud banks are more 

exposed to wave action, leading to greater mud bank liquefaction and disintegration (Lewis, 

2005; Anthony and Gratiot, 2012).The removal of mangrove forest is another route, 

alongside sea wall construction, by which propagules cannot establish on newly formed 

mud banks, to establish their stilted rooted system, trap sediment and reduce incident wave 

power (Anthony and Gratiot, 2012; Winterwerp et al., 2007 & 2013; Brunier et al., 2019). 

To provide further evidence for this relationship between mangrove clearance and 
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continued shoreline retreat, more detailed assessment, combining local knowledge, is 

necessary to understand whether mangrove clearance preceded the continuous erosion now 

present. This information could support the implementation of management options, such 

as preventing further mangrove clearance (de Jong et al., 2021), to improve the likelihood 

of the mud banks’ continued alongshore migration. 

5.4.2. Shifting erosional hotspots 

By identifying the seaward vegetation extent at a supra-national scale between multiple 

times dates, it was possible to determine shifting erosion hotspot features and thus 

potentially predict locations likely to experience increased rates of shoreline retreat in the 

future. The largest scale shifting erosion hotspot was identified near Mana, French Guyana 

where the transects recording the maximum rates of shoreline retreat moved westwards by 

nearly 55 km between 1990 and 2020 (Figure 5.20). As of 2020, this erosional hotspot was 

located approximately 5 km to the east of Mana, meaning that at current rates, the erosional 

hotspot will be immediately adjacent to the town by 2025. This information could be useful 

for town planners, home and business owners and other stakeholders in the region, to ensure 

that further development does not take place ‘in the path’ of this erosional hotspot.  

A shifting erosional hotspot was also located at Shell Beach, Guyana (Figure 5.17). The 

transect nearest to Shell Beach village with an erosional EPR value greater than 20 m year-

1 reduced from 5980 m in 2011 to 269 m in 2016 (Figure 5.17 (a)). This consistent westerly 

migration in the site of erosion could have provided a warning to local governments and to 

the residents and business owners of Shell Beach of the likelihood that the position of Shell 

Beach village would be subject to coastal erosion. In contrast, examination of the Planet 

satellite imagery shows that the size of the Shell Beach settlement continued to expand 

between 2010 and 2016 (see insets Figure 5.17 (a) – (d)). This shifting erosional hotspot 

led to the forced evacuation of Shell Beach village in 2017, consisting of more than 50 

households and numerous tourism businesses (Kaieteur News, 2017; Staebrook News, 

2017). Future research could use automated methods, such as VEdge_Detector, on higher 

temporal resolution Planet imagery to qualitatively identify other stretches of shoreline in 

the ‘path’ of the migrating erosion hotspot, such as Mahaicony, Guyana (Figure 5.9), which 

could then be validated using ground-referenced surveys and local knowledge.  This could 

aid better planning in these locations, including restricting further development in particular 
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areas, or providing enough advanced warning to enact a planned evacuation from these 

stretches of shoreline. 

 

5.4.3. Identifying populations exposed to shoreline change 

Locations where the highest number of people are exposed to shoreline change were 

identified by combining shoreline change data with population indices, obtained from 

WorldPop (Stevens et al., 2015; Figure 5.14). Sites with high absolute exposure values 

included Paramaribo, Suriname and Mana, French Guyana, and sites were also identified 

with high negative risk index values immediately adjacent to sites with high positive values, 

e.g. Shell Beach, Guyana and Mahaicony, Guyana (Figure 5.14). Previous studies have 

assessed the Guiana coastline to be subject to relatively low risks to coastal hazards (Calil 

et al., 2017), although shoreline change metrics were not included in total hazard scores, 

limiting the ability of the study to claim it is generating total risk scores. This highlights 

the importance of considering rates of shoreline change when comparing relative levels of 

coastal risk across an area of interest.   

To develop from exposure to risk scores, population dynamic and shoreline change values 

require integration with data pertaining to other vulnerability and exposure indices (Kron, 

2013). Datasets relating to land cover, the location of ecologically protected areas, as well 

as nationally and internationally significant infrastructural sites located outside of major 

settlements, including roads, airports and power stations, are necessary to make a fully 

informed assessment about the relative levels of exposure receptors face to current and 

future shoreline change.  Receptor vulnerability could be considered using datasets on 

housing quality, levels of deprivation and the location of informal settlements. Despite their 

importance in moderating shoreline dynamics along the Guiana coastline, a publicly 

available dataset pertaining to the location and type of human shoreline modification 

factors employed across the Guiana coastline could not be found. Collaboration between 

local communities, research groups and stakeholders with knowledge on shoreline 

intervention position could aid the development of such as dataset, which could better 

inform future studies on how human interventions are perturbing dynamics across the entire 

Guiana coastline.  
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Chapter 6. Potential developments of machine 

learning to shoreline change and coastal risk 

This chapter explores multiple concepts and discoveries regarding ML and its application 

to coastal risk, focussing on the ability to use ML to further our understanding of shoreline 

position and coastal change. A comparison of the different ML and non-ML tools applied 

in this thesis is explored further. These tools were trained and developed to exclusively 

detect the coastal vegetated edge via multispectral remote sensing imagery. A deeper 

understanding of the relative performance of the different techniques is necessary to inform 

future decisions on the most appropriate vegetation edge detection tool to use by other 

researchers and stakeholders in the coastal zone, and whether these tools require any further 

development or refinement. This decision may also vary depending upon the shoreline type, 

position and scale present in the imagery, as well as the coastal zone dynamics of interest.  

Tool performance, in terms of accuracy, specificity and the ability to generalise to different 

coastlines is a key component of tool selection. The future selection of shoreline detection 

tools will commonly consider other aspects, most notably with the rise of Big Data and the 

frequent capture of global scale remote sensing imagery, the processing speed of the tool, 

and the estimated time required to detect the shoreline position will become increasingly 

important. When multiple tools have similar performance and computational speed, tool 

selection may be determined by their ease of development, interpretability, and their 

transferability to a range of remote sensing imagery with varying spatial resolution. 

Shoreline proxies, which can be extracted from multispectral remote sensing imagery, each 

provide a different representation of coastal zone processes (Chapter 4). Irrespective of the 

performance and attributes of vegetation edge detection tools, they will only be valuable to 

coastal stakeholders if the coastal vegetation edge is a suitable shoreline proxy for 

discerning the coastal dynamics of interest. Coastal stakeholders will commonly be 

interested in utilising the shoreline proxy which best represents how exposed a coastal 
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receptor is to shoreline change.  The multifaceted nature of coastal risk means shoreline 

detection tools cannot be used in isolation to determine relative coastal receptor exposure 

to shoreline change. To derive exposure and risk values, shoreline detection tools require 

integration with other tools pertaining to different aspects of coastal risk. The potential to 

integrate multiple ML tools to ascertain relative levels of risk in the coastal zone needs to 

be explored in the context of the spatio-temporal resolution and spatial scale at which 

relative exposure values can be derived. 

 

6.1. Is machine learning the way forward? 

When selecting a tool to extract a shoreline proxy from multispectral remote sensing 

imagery, some of the key stakeholder questions, alongside tool performance, may include: 

i) ‘how fast will the tool/s detect the shoreline position?’; ii) ‘what training, development 

and computer programming requirements will be needed to set up the tool/s?’; iii) ‘how 

easy will it be to explain, in non-technical terms, how the tool derived its outputs?’; and iv) 

‘will the tool work on multiple types of remote sensing imagery with different spatial 

resolutions?’. By considering these questions, and tool attributes, a more informed 

decision-making process will be engaged as to whether or not machine learning (ML) tools, 

such as Convolutional Neural Networks (CNN) or Support Vector Machines (SVM), will 

be able to provide new insights into coastal risk dynamics. And if new insights do appear 

likely, how will they compare with using more established, non-ML, techniques? 

 

6.1.1 How does tool performance compare? 

The unprecedented availability of global-scale remote sensing imagery makes the use of 

manual methods less viable, increasing the need for automated tools to extract shoreline 

position (Chapter 1; Figure 1.2; Gorelick et al., 2017; Tamiminia et al., 2020). Three 

aspects of tool performance are important during tool selection: i) tool accuracy, in terms 

of precisely identifying the position of the shoreline feature; ii) tool generalisability, or 

whether the tool can robustly detect the coastal vegetation edge in a range of coastal 

locations, and iii) tool specificity, or the ability to distinguish between the coastal 

vegetation edge and other boundaries present within the image. 
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6.1.1.1. Tool accuracy and generalisability 

Tool accuracy is an essential consideration when justifying the use of automated methods 

over more traditional ground-referenced surveys or manual techniques. If error and 

uncertainty values are similar or larger in value than the amplitude of the shoreline 

dynamics of interest, it may be difficult to separate the shoreline change signal from noise, 

limiting the use of a tool’s output (Thieler and Danforth, 1994; Pardo-Pascual et al., 2012). 

The ability of the tool to generalise to detect the shoreline position in a particular location 

will also be a key consideration, particularly if the tool has not been applied in that location 

previously. The accuracy of CNN and SVM and seven non-ML tools in identifying the 

position of the coastal vegetation edge was separately determined throughout this thesis 

(Chapter 3; Chapter 4), but further examination is presented here on their relative accuracy 

and generalisability to inform future tool selection.  

The accuracy of all the tools applied in this thesis was compared across a range of coastal 

environments, using images of a sandy-shingle beach and dune system (Dunwich), a 

gravel-barrier island with salt marsh vegetation (Blakeney Point) and two separate stretches 

of soft-rock cliff, with cliff-top agricultural land cover (Covehithe and Holderness). 

VEdge_Detector, a CNN, produced the smallest RMSE (< 8 m) at every site, although 

NDVI threshold contouring, CoasTool and SVM identified the shoreline with similar 

RMSE (< 11.5 m) at Dunwich and Covehithe (Table 3.4; Table 4.2; Table 4.3). The high 

performance of all of these tools at Dunwich and Covehithe was attributed to the relatively 

short and straight coastlines in these locations, along with relatively uniform vegetation 

cover characteristics (Section 3.4). Images of these types of locations are commonly 

characterised by a consistent alongshorebut abrupt cross-shore change to the pixel values 

at the coastal vegetation edge. This characteristic has previously been identified as a key 

determiner of the performance of threshold contours (Zhao et al., 2008; Bishop-Taylor et 

al., 2019) and SVM (Choung and Jo, 2017) in instantaneous waterline detection. Greater 

differences in the performance of the tools was identified at sites containing more complex 

coastal vegetation boundaries.   

The performance of all non-ML tools and SVM was inconsistent along shorelines with 

graded or discontinuous vegetation edges and shorelines with heterogeneous vegetation 
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properties (Table 3.4). CoasTool, SVM and NDVI threshold contouring produced RMSE 

values greater than 34 m at Hornsey and Blakeney Point. High standard deviations (σ) in 

RMSE values demonstrated how these tools accurately identified the shoreline position in 

some locations but along other frontages the tools’ outputs deviated far from the manually 

digitised shoreline (Figure 3.5; Figure 3.13). This inconsistency in tool performance can be 

attributed to the graded salt marsh vegetation found at these sites, including Salicornia spp., 

which forms isolated clumps at its seaward limit (Möller et al., 2006). This patterning 

results in individual remote sensing pixels containing vegetation, exposed substrate and 

water (Klemas, 2013; Medina Machín et al., 2019). This highlights the inability of currently 

available non-ML and SVM to overcome intra-site variability in the spectral properties of 

vegetation, caused by variability in plant species, composition and phenology, alongside 

environmental factors including soil moisture content and mineral composition (Belluco et 

al., 2006; Rahman et al., 2011; Gandhi et al., 2015; Liu et al., 2020). 

In comparison, CNNs provide promise in being able to generalise to larger scale stretches 

of shoreline consisting of heterogeneous vegetation species. Nevetheless fragmented 

vegetation lines remain problematic. A continuous coastal vegetation edge was identified 

when traversing across vegetation boundaries, including between salt marsh and 

agricultural land at Blakeney Point (Figure 4.5) and mangrove forest and agricultural land 

at Paramaribo, Suriname (Figure 5.13). The ability to traverse different vegetation species 

is an essential trait when applying the tool to new or larger areas because vegetation species 

and composition is variable along most coastlines globally and vegetation species may 

change due to human actions, such as land clearance (Vijay et al., 2016). The ability of 

VEdge_Detector to discern a continuous boundary when vegetation was interrupted was 

less consistent. When vegetation was interrupted by ploughed agricultural land or 

mangrove clearance a continuous edge was produced (Figure 4.8; Figure 5.16) but gaps in 

the vegetation edge position were identified when urban land covers interrupted the 

seaward vegetation boundary (Chapter 5). Current ML and non-ML tools are not able to 

consistently identify a continuous vegetation edge, where the vegetated land cover is 

fragmented. Along coastlines containing very fragmented vegetated boundaries, it may be 

necessary to continue to use manual techniques or use a separate shoreline proxy.   
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6.1.1.2. Specificity 

Alongside tool accuracy, another consideration regarding the performance of a tool is its 

specificity, whether it exclusively detects the feature of interest or also detects other 

irrelevant edges. CNNs show promise in being able to discriminate between the coastal 

vegetation edge and other edges that have similar spectral properties (Chapter 4) whereas 

all kernel-based operators detected many inland boundaries, not related to the coastline 

(Figure 3.8 (a) – (h)). This can be attributed to the kernel-based operators identifying the 

locations with the greatest gradient in pixel values (Liu and Jezek, 2004); these commonly 

include inland agricultural and urban boundaries. In comparison, the training process 

provides supervised CNNs with semantic information, enabling the tool to differentiate 

between the coastal vegetation edge and other vegetation boundaries (Section 4.2.2.3). 

VEdge_Detector could not discard all inland boundaries, for example between exposed 

sand and dune vegetation at Wijk-aan-Zee, Netherlands (Figure 4.9 (d)), and inland 

exposed rock and vegetation in Varela, Guinea-Bissau (Figure 4.6 (d)). This is likely 

attributed to the similar spectral properties between inland rock and sand, and intertidal 

zone substrates. Further research should investigate whether the use of a larger training 

dataset, containing images capturing a more diverse range of coastal locations and features, 

could enhance the ability of a trained ML tool to exclusively detect shoreline positions from 

remote sensing imagery.  

The ability of a trained CNN to exclusively detect a particular feature, such as the coastal 

vegetation edge, is an advantage if stakeholders are interested in this specific task but this 

specificity may hinder the value of the trained tool if the task required is slightly different 

or broader in scope. CNNs can be proficient at conducting very specific tasks but may less 

readily transfer to a separate or broader task compared to non-ML tools (Yosinski et al., 

2014). For example, a CNN trained to exclusively detect one form of edge is less well 

suited to identifying the distance between the shoreline and another land cover boundary 

of interest. In contrast, kernel-based methods and NDVI threshold contours will likely 

detect these other vegetated boundaries as well, from which the distances between the lines 

can be calculated. The ability of CNNs to exclusively detect a particular feature is, 

therefore, only of benefit if this exactly matches the task a stakeholder requires of it.  
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6.1.2. Can shoreline detection tools cope with Big Data? 

The unprecedented rise in publicly available remote sensing imagery poses the question of 

whether a tool can process, and extract the shoreline position from, such Big Datasets fast 

enough to be of use in coastal risk management decision making. Google Earth Engine, for 

example, adds 6000 new images to its catalogue every day and thousands of images of most 

coastlines globally have been captured (Gorelick et al. 2017). As more imagery is captured, 

the time series available for every coastal location is lengthening, in turn increasing the 

length of shorelines which need to be detected in repeated imagery. Where stakeholders are 

interested in determining shoreline position over a large spatial scale and/or use repeated 

imagery at fine temporal resolution, it may be important to consider how long it will take 

for a tool to detect shoreline position from multispectral remote sensing imagery.  

The speed of five tools used within this thesis, VEdge_Detector, SVM, NDVI threshold 

contouring, CoasTool and Canny edge detection, are compared for three sites below. When 

applied to smaller studies sites (shoreline < 5 km), all tools, except SVM, detected the 

coastal vegetation edge at a rate of greater than 1 km shoreline length s-1. Along longer, 

engineering-scale, stretches of coastline, VEdge_Detector speed was almost double the 

speed of threshold contouring and over five times the speed of Canny-edge detection and 

CoasTool. SVM was the slowest tool at all three sites, and nearly 50 times slower than 

VEdge_Detector at Guyana (Figure 6.1). SVM has previously been reported as slower than 

CNN, with some studies needing to subset an image before applying SVM, because SVM 

was so computationally expensive (Hasan et al., 2019).  
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Figure 6.1: Relative speed of five tools used in this thesis to detect the position of the coastal 

vegetation edge. Speed measured as the number of kilometres of shoreline detected per 

second. The speed of each tool was compared at three sites of different sizes.  

Tool speed is an important consideration for investigations into global rates of shoreline 

change. This can be demonstrated by considering the contrast between the findings of this 

thesis and the findings contained within the Intergovernmental Panel on Climate Change 

(IPCC) 6th report. The IPCC report claims that the region containing the Guiana coastline 

has accreted by an average of 0.25 m year-1 between 1984 and 2015, and that many regions 

in and adjacent to the Guiana coastline are projected to prograde during the first half of the 

21st century (Ranasinghe et al., 2021). This contrasts with the finding in this thesis that 65 

% of transects experienced rates of shoreline change greater than ±10 m year-1 between 

1990 and 2020. The disparities in findings is attributed to the recent IPCC report being 

based on papers that have estimated global rates of shoreline change using Landsat imagery 

from just two dates (Mentashi et al., 2018; Luijendijk et al., 2018; Vousdoukas et al., 2020). 

The Guiana coastline was also determined in this thesis to experience negligible net 

sediment loss or gain between 1990 and 2020, but experienced rapid rates of erosion and 

accretion between these times period. The use of images from just two dates, therefore, 
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leads to an underrepresentation of coastal zone dynamics. To ascertain other locations 

experiencing oscillating or non-consistent patterns of shoreline change at a global scale, 

future studies require global shorelines to be extracted from images captured on multiple 

dates, resulting in processing speed being an essential consideration in shoreline detection 

tool selection.  

The importance of tool speed will be dependent upon the length of coastline of interest and 

the frequency of imagery used, which in turn needs to be compatible with the coastal 

processes of interest. The extraction of a time series of shoreline position at supra-national 

scale identified dynamics not detectable using a single image, or imagery with smaller 

spatial coverage. These dynamics included the identification of locations where coastal 

receptors were most exposed to shoreline change, identification of spatially separated 

coastlines with similar shoreline dynamics, and determination of erosional or accretional 

features migrating cross-shore (chapter 5). High temporal resolution imagery is necessary 

to, for example, identify changes in shoreline position driven by fluctuations in fluvial 

sediment supply (Hein et al., 2019), or identify beaches which exhibit a cyclical response 

pattern to successive storm events (Splinter et al., 2014; Scott et al., 2016). The 

instantaneous extraction of shoreline position could also aid real-time operations, such as 

marine navigation and emergency incident response (Yang et al., 2018). Tool speed may 

be a less important consideration if coastal stakeholders only require an individual snapshot 

of shoreline position and/or require information on shoreline position along a short stretch 

of coastline. A low number of images at small spatial scale has, for example, been sufficient 

for identifying coastal buffer zones where new building developments should be limited 

(Defra, 2006), and determining localised shoreline response to the implementation of 

human shoreline modification structures (Hagenaars et al., 2018; Elkafrawy et al., 2021). 

Even in these scenarios, a timeline of shoreline position may further aid understanding of 

shoreline response at local scales, thus increasing the need for a high-speed tool.  

In summary, tools with fast processing speeds will be important for studies interested in 

detecting shoreline change at large spatial scales and at fine temporal resolution. As the 

time series of remote sensing imagery continues to grow, the processing speed will become 

an increasingly important consideration during tool selection, as more and more images 

become available for every area of interest. Alongside the speed at which the trained tools 
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can be applied, it may also be important to consider the time and resource required to train 

and develop the tools in the first instance. 

6.1.3. How onerous is it to train and develop a tool? 

The time, knowledge and expertise required to train and develop a tool will be an important 

consideration when an ‘off the shelf’ tool is not already available to carry out the task 

required. Whilst in this thesis a trained CNN was faster than other ML and non-ML tools 

at identifying the position of the coastal vegetation (Figure 6.1), the training and 

development requirements of CNNs can be very onerous. Here VEdge_Detector required 

greater than 7 hours to train, compared with the 3 hours 45 minutes needed to train SVM 

(Chapter 4); and non-ML tools require no training process. In general, the training of CNNs, 

including the labelling and development of training datasets, can take many weeks and 

requires the use of high performance computers which are not available to the general 

public (Gu et al., 2019). The labelling and development of the training dataset in particular 

is identified here as a bottleneck in future applications of ML to coastal dynamics.   

Large training datasets, containing the original and labelled images, are required to train 

supervised ML tools and more specifically CNNs. The recent explosion in publicly 

available remote sensing imagery has not been matched by an increase in labelled datasets 

required to train supervised ML tools (Ma et al., 2019; Tsagkatakis et al., 2019), 

necessitating the development of these labelled datasets. A dataset of 30,000 labelled paired 

images was used to train VEdge_Detector and took approximately eight weeks to generate 

(Rogers et al., 2021). Despite the size of this dataset, it was still only a fraction of the data 

used to train many ML tools in computer vision studies (Deng et al., 2009). For example, 

ImageNet, used to detect everyday objects in natural RGB images, contains 14 million 

labelled images (Deng et al., 2009; www.image-net.org/).  Lower VEdge_Detector 

performance in some coastal settings, for example along rocky cliff coastlines (Figure 4.7) 

and muddy coasts (Figure 5.4), may be attributed to fewer training images of these coastal 

features. There is no guarantee, however, that increasing the size of the training dataset will 

improve performance and the number of images required to train an ML tool to conduct a 

task will always be problem dependent (Shahinfar et al., 2020). This may be a barrier to 

the training of future supervised ML tools in the geosciences, due to the risk of a large 

amount of time and resource being spent on the training of a tool that ultimately exhibits 
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poor performance. To address this issue collaborative work between different academic 

institutions and citizen science, discussed further below, could be used to generate larger 

training datasets, potentially analogous in size to those available in computer vision.  

Alongside the requirement to manually digitise or label the training datasets, there is also 

the necessity to develop code using computer programming languages to initially train and 

develop the different tools. Non-ML tools can be run with no programming knowledge, 

using software containing a graphical user interface, including ArcGIS and ERDAS 

Imagine. However, the ability of programming languages to automate tasks and reduce 

processing time provides a distinct advantage when applying tools to multiple images 

(Toms, 2015). Despite the complex methods inherent in ML techniques, libraries in 

programming languages, such as R and Python, enable both ML and non-ML tools to be 

developed using tens to hundreds of lines of code (Ketkar, 2017). These libraries also 

enable ML and non-ML tools to be trained and developed, without the need to have a deep 

understanding of the mathematical principles underpinning the techniques (Gulli and Pal, 

2017). Numerous online forums and webpages also provide sample code and step-by-step 

instructions to develop the different edge detection methods (Sharma, 2017; Brownlee, 

2019). The combination of the availability of programming language libraries, and the wide 

array of online training resources, makes the expertise and time required to write code for 

ML verses non-ML tools less of a consideration during tool selection. 

In summary, the training requirements of supervised ML tools are onerous, particularly the 

development of labelled datasets, which poses a potential barrier to the future applications 

of supervised ML tools in the geosciences. Once trained, it has been shown that CNNs are 

faster than other ML and non-ML tools when applied to new images (section 6.1.2). By 

combining these two factors, it may be that the training of supervised CNNs is only 

beneficial when the tool will subsequently be used in many different settings. Alternatively, 

if a tool is only needed to detect the edges or features from one small-scale image, it is 

unlikely to be time efficient to train and develop a new supervised ML-tool for this task. In 

a situation where a trained ML tool has previously been developed and is available for use, 

tool selection may also consider whether the methods can be explained to a non-technical 

audience to understand how the tool derived its outputs.  
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6.1.4. How does it work? Peering into the “black box” of machine learning 

The performance of ML tools is enigmatic because it is not clear how they achieve the 

results they do. CNNs are also commonly considered to be fragile, whereby small 

perturbations in the spectral properties of an input image can cause large differences in tool 

output without it being possible to explain the reasons for this change in performance 

(Ghorbani et al., 2018). The fragility of CNNs can have potentially dangerous 

consequences, for example applying small stickers to stop signs led to driverless cars 

interpreting them as speed limit signs (Gu et al., 2019). The fragility and lack of 

interpretability of ML tools not only affects their performance but also the confidence and 

trust stakeholders place in them. To overcome this issue, it is necessary to devise tools to 

shed light into the ‘black-box’ nature of ML tools. This could improve understanding of 

why the performance of CNNs varies between imagery and which pixels within each image 

are important for the CNN when making predictions. To address this issue, interpretability 

tools have recently been devised that attempt to address the question of how and why the 

CNN achieved its recorded performance (Bach et al., 2015; McGovern et al., 2019; Toms 

et al., 2020). 

Layer-wise Relevance Propagation (LRP) is a CNN interoperability tool which produces a 

heatmap identifying the most important pixels or bands, within the input image, used by 

the CNN to make predictions (Montavon et al., 2018; Toms et al., 2020). After a trained 

CNN makes a prediction on a new image, LRP can trace how information ‘flowed’ through 

the CNN from the input image to the prediction (Barnes et al., 2020).  LRP starts at the 

output node and works backwards through the CNN, determining the nodes with the highest 

activation values in the hidden layers, and eventually the pixels in the input image which 

contributed the most towards the NN prediction (Bach et al., 2015; Montavon et al., 2018). 

LRP has been used to produce a heatmap of the most important pixels for a CNN trained 

to locate convection clouds and storms in multispectral imagery (Ebert-Uphoff and 

Hilborn, 2020; Hilborn et al., 2020; Lee et al., 2020). Applying these techniques to CNNs 

trained to detect shoreline position may aid understanding of why the tool’s performance 

varies in time and location. Thus, for example, whether or not different intertidal substrates 

or tide heights affects CNN performance.   

Permute-and-predict (PAP) is another method which has been applied to increase the 

interpretability of NN outputs (Jergensen et al., 2020). After the trained NN has made initial 
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predictions, the values of one or more of the input parameters are permuted and the impact 

this has on the output predictions are calculated (Barnes et al., 2020). The most important 

parameters are inferred to be those which make the greatest changes to NN predictions 

when their values are altered (McGovern et al., 2019). Andersson et al. (2021) predicted 

future sea ice extent by training a NN on time series of previous sea ice extent and climate 

parameters. The parameters which influenced the performance of the NN the most were 

compared to pre-existing domain knowledge of the causes of changes to sea-ice extent. 

This provided greater confidence that the NN was identifying meaningful relationships 

between different conditions (Andersson et al., 2021). Both PAP and LRP are examples of 

interoperability tools that could improve understanding of the layers and pixels most 

important for the ML tool when making predictions. This in turn could provide greater 

reassurance that the CNN is using information consistent with local knowledge on the most 

important factors in determining coastal risk.  

In flood and coastal risk management (FCRM), model interpretability is a key consideration 

for local communities when accepting the outcome of the tool as justification for the 

implementation of a flood or coastal risk mitigation or adaptation measure (Maskrey et al., 

2019). Local stakeholders, including homeowners and business owners, may render a tool 

untrustworthy if it cannot be explained how the results were derived. Alternatively, if a tool 

is not understood, the inherent limitations and uncertainties within the methods may not be 

recognised, potentially leading to overconfidence in the use of the model (Voinov and 

Gaddis, 2008; Maskrey et al., 2019). In many countries, such as the UK, the ability of 

stakeholders to understand how models generate their outputs is increasingly essential 

where a participatory approach to risk management is being employed, whereby local 

communities have a greater influence on the risk management decision making process 

(Environment Agency, 2020b). Where it is not possible to explain the outputs of a tool to 

local communities, there can be an increasing feeling that a ‘top-down’ approach has been 

taken, whereby people without local knowledge make decisions, whilst disregarding the 

views of people who live or reside in the area (Voinov and Gaddis, 2008). For ML tools to 

be further employed in flood and coastal risk management schemes, tool interpretability 

will become an essential consideration.    

In summary, the inner workings of CNNs remain elusive.  In comparison, it is possible to, 

for example, manually study the NDVI layer of a coastal scene to understand why threshold 
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contouring did or didn’t work, and whether a different threshold value may improve results. 

Interoperability tools, including LRP and PAP could be used to aid understanding of how 

and why CNNs produce their outputs. The code for interpretability methods is increasingly 

being made publically available on platforms such as Github (Alber et al., 2019; Li et al., 

2019; Toms et al., 2020), and future research applying CNNs in the geosciences should 

concurrently publish the results of interpretability methods such as those described above. 

For ML specialists, this could aid decision making on changes which need to be made to 

the training dataset or CNN architecture to improve performance. For the wider research 

community and coastal stakeholders, greater interpretability may increase the trust placed 

in CNNs as a set of tools to complement pre-existing knowledge and increase the likelihood 

of future collaborations between the two sets of research groups. 

 

6.1.5. What resolution imagery can the tools be used on? 

The spatial resolution of remote sensing imagery is a key determinant of the coastline 

dynamics that can be monitorred. Landsat, Planet, and vertical aerial imagery with 30 m, 3 

– 5 m and sub-metre spatial resolution respectively constituent some of the main forms of 

publicly available multispectral remote sensing imagery. Differences in their spatial 

resolution mean they can each detect different coastal dynamics. Determining whether a 

particular tool can be applied to multispectral imagery with different resolutions is 

necessary for stakeholders interested in determining different scale coastal processes. No 

study has ever used Planet’s 3 m resolution PlanetScope imagery to detect shoreline change 

and only one study has used 5 m RapidEye imagery for waterline change detection (DaSilva 

et al., 2021). Thus, it can be concluded that the performance of different edge detection 

tools when applied to different types of remote sensing imagery remains undetermined.  

Landsat imagery is the conventional source of remote sensing imagery applied in shoreline 

change studies (Toure et al., 2019).  It has been demonstrated that ML and non-ML 

techniques can be applied to Landsat imagery to discern shoreline dynamics at a multitude 

of scales, including site-based (Liu and Jezek, 2004; Kuleli et al., 2011; Nassar et al., 2018; 

Pardo-Pascual et al., 2018), supra-national (Chapter 5) and global-scale (Pekel et al., 2016; 

Luijendijk et al., 2018; Mentashi et al., 2018). In other circumstances, finer resolution 

imagery is necessary to detect annual to decadal shoreline change. In this thesis, the greatest 
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amount of retreat at Covehithe, Suffolk, over the 11 year study period was 54.38 m (Chapter 

4). Annual-scale shoreline dynamics, and shoreline response to major storm events, were 

detectable using Planet imagery due to its fine (3 – 5 m) spatial resolution (Figure 4.10). 

However, 54.38 m measures less than two Landsat pixel widths, precluding the use of this 

imagery to detect decadal-scale dynamics at Covehithe. High magnitude, low frequency, 

storm events are key drivers of shoreline change in many coastal zones (Brooks and 

Spencer, 2012; Masselink and Van Heteren, 2014; Brooks et al., 2017) making it essential 

for future studies to use remote sensing imagery, such as Planet, which can discern 

dynamics at this scale. Even along dynamic stretches of shoreline, few locations will 

experience annual rates of shoreline change greater than ±60 m, rendering Landsat imagery 

unsuitable for detecting this temporal scale of change. Despite the superior spatial 

resolution of Planet imagery enabling the detection of shoreline dynamics not discernible 

using Landsat imagery, the shorter, 11-year, temporal coverage of Planet imagery means it 

is still necessary to apply edge detection tools to Landsat imagery when investigating multi-

decadal shoreline change.   

In this thesis, CNNs were able to identify ~90% of the coastal vegetation edge in Guiana 

(Chapter 5), even though no Landsat imagery was contained within the training dataset 

(Chapter 4). Conversely, VEdge_Detector was unable to extract a vegetation edge from 50 

cm resolution aerial imagery (Chapter 4). This is attributed to the greater intra-class 

variability in vegetation species spectral properties when using finer resolution imagery 

(Hasan et al., 2019; Liu et al., 2020).  The findings here suggest that a CNN trained using 

imagery of a particular spatial resolution may be able to detect features and edges in coarser 

imagery but not necessarily in finer resolution imagery. Whether it is a limitation that CNNs 

cannot be applied to finer resolution imagery depends upon the scale of the coastal dynamic 

of interest. Processes which are not detectable using 3 – 5 m resolution imagery are unlikely 

to increase the risk of erosion to a coastal receptor. Alternatively, if, for example, a cliff 

top property would erode into the sea in a scenario where there was less than 3 – 5 m of 

erosion, the property owner and other coastal stakeholders are unlikely to require a remote 

sensing-based study to inform them of this fact.  

In summary, with the current availability of satellite imagery, Landsat imagery remains a 

valuable resource for identifying regional, decadal-scale shoreline change hotspot 

locations. However, finer resolution imagery, such as Planet, should then be used to detect 
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annual-scale dynamics along shorter stretches of shoreline. From a management 

perspective, the scale of shoreline change dynamics of interest will be the key determinant 

of the type of imagery used. As demonstrated, CNNs trained to detect shoreline position 

are currently able to detect shoreline position in imagery with 3 m resolution and coarser. 

Shoreline dynamics which are not detectable using 3 m resolution imagery are, however, 

unlikely to generate large changes in erosional risk to coastal receptors. As new satellite 

platforms continue to be launched, including those collecting 50 cm resolution Planet 

imagery (Fu et al., 2020; Masek et al., 2020), the selection of imagery used to train future 

ML tools should consider whether the dynamics of interest can be discerned using this 

imagery.  

 

6.1.6 So is ML the way forward? 

The choice of tool used to detect the coastal vegetation edge will be problem, scale and 

location specific. Along shorter stretches of shoreline, most ML and non-ML tools have 

similar accuracy and processing speeds. In these circumstances, the current inability to 

readily interpret the inner workings of ML tools, especially CNNs, combined with their 

large training and development requirements, may become the decisive factors during tool 

selection. Due to these limitations, local stakeholders may see ML tools as less appealing 

compared with more established, non-ML techniques, including threshold contouring and 

kernel-based edge detection operators. Along supra-national to global scale stretches of 

coastline, the ability of ML tools to detect the coastal vegetation edge under different biotic 

and abiotic conditions, combined with the superior processing speeds, may become more 

influential factors. The ability of ML tools to generalise also opens opportunities for them 

to be used in other coastal zoneswhich have not previously benefitted from detailed studies. 

Irrespective of the relative performance and other attributes of ML tools in different 

scenarios, they will only be selected if third parties have trust in their output. This trust will 

only develop if methods to improve ML tool transparency in operations and performance 

are generated. 

Prior to the establishment and widespread application of these interpretability methods, the 

simultaneous use of multiple vegetation edge detection tools may be of benefit in reassuring 
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stakeholders of the validity of ML and non-ML tool outputs. If multiple tools are 

consistently identifying the position of the vegetation edge, and associated rates of change, 

this may provide greater reassurance to third parties that the outputs are robust. Where 

inconsistencies in outputs are determined, this would also be of great use in identifying 

scenarios and locations where different tools perform better or worse. As new remote 

sensing imagery becomes available, for example from Landsat 9 and 50 cm resolution 

Planet imagery (Houborg and McCabe, 2018; European Space Agency, 2021; Masek et al., 

2020), simultaneous use of multiple tools will also provide information on relative tool 

performance when applied to these different image datasets.  

 

6.2. Different shoreline proxies, different coastal dynamics 

Each shoreline proxy carries different information regarding shoreline change (Boak and 

Turner, 2005; Toure et al. 2019). These proxies also contain limitations, most notably that 

their position may change even when there has been no net shoreline erosion or accretion. 

Information on the coastal dynamics which can be gleaned from using a particular shoreline 

proxy may be of benefit during stakeholder engagement to decide on the shoreline detection 

tool(s) to use. This decision will be locally specific and depend upon the rates of shoreline 

change and coastal receptors present in the area of interest. Previous remote-sensing based 

studies have almost exclusively focused on waterline detection (Toure et al., 2019) but 

future studies will benefit from the availability of publicly available tools which can detect 

multiple different proxies. It is argued here that, despite previous overdependence on the 

detection of the waterline, along many shorelines changes in the coastal vegetation edge 

potentially provide better representation of changes to coastal risk.  

Along storm-driven coastlines, the coastal vegetation edge has been shown to be more 

informative than the instantaneous waterline in representing shoreline dynamics (Chapter 

4). At Covehithe, the vegetation line remained stable or retreated between every time period 

(Figure 4.10; Figure 4.13), corresponding with the findings of other studies using ground-

referenced measurements or other techniques that have reported consistent retreat along 

these soft rock cliffs (Brooks and Spencer, 2012; Burningham and French, 2017; 

Environment Agency, 2010). In comparison, waterline here clearly fluctuates under diurnal 

and semi-diurnal tides (Figure 4.14), masking the dynamics of consistent shoreline retreat. 
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This highlights that in many locations globally, the over-reliance on the use of the waterline 

as a shoreline proxy in isolation may lead to incorrect conclusions being drawn about 

coastal dynamics, including determining that some coastlines accrete between storm 

events. The use of the waterline in isolation may, in turn, lead to an under or overestimation 

in the likelihood of future shoreline retreat events.  

The vegetation line has also been shown to be a more robust proxy of shoreline position 

along a shallow gradient muddy shoreline (Chapter 5). Along this coastline, unrealistic, 

highly sinuous, waterlines were produced when using the widely applied NDWI threshold 

contouring algorithm (Chapter 5; Vos et al., 2019b). This resulted in manually digitised 

shorelines needing to be produced for the VEdge_Detector moving-window algorithm to 

‘walk’ down (Chapter 5). Inaccurate waterline detection is attributed to the similar spectral 

properties of shallow and turbid water, as well as exposed mud banks (Bishop-Taylor et 

al., 2019). Current methods to detect waterlines along shallow gradient and muddy 

shorelines have reported sub-pixel accuracy (Zhao et al., 2008), but these methods required 

concurrently collected DEMs of the intertidal zone, restricting their use in other coastal 

zones. In contrast, the ability of mangrove vegetation to rapidly establish on newly formed 

mud banks enables the coastal vegetation edge to provide a robust representation of 

shoreline accretion and erosion (Fromard et al. 2004; Gratiot et al. 2008; Walcker et al. 

2015). This highlights how the instantaneous waterline is not a panacea proxy of shoreline 

dynamics and that the vegetation line provides a promising alternative to representing these 

dynamics along storm-dominated, muddy, and sandy shorelines. 

Limitations when using the coastal vegetation edge include changes to the vegetation line 

position, caused by processes not related to coastal dynamics, including anthropogenic land 

clearance and seasonal dynamics. Furthermore, multiple tools do not produce continuous 

vegetation edges along coastlines where the vegetation line is heavily fragmented, for 

example along urbanised stretches of coastline and where ploughed agricultural fields 

interrupt the vegetation line (Chapter 3; Chapter 5). Some coastlines also contain forms of 

vegetation which it is misleading to detect because their movement may be due to processes 

unrelated to coastal erosion and accretion. This includes the presence of macroalgae at the 

base of cliffs (Chapter 4). The same issue could arise from the presence of, for example, 

algal blooms on the surface of tidal flats or on the surface of the water column itself.  In 

locations where these forms of vegetation are present, and the tidal-driven fluctuations in 
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waterline are negligible due to the presence of steep topography or small tidal ranges, the 

instantaneous waterline may provide a better proxy of shoreline position and dynamics.    

The stability of the coastal vegetation edge lends itself to representing sandy beach cliffs 

(Figure 4.10) and mudflat (Figure 5.11) coastal morphological response to storm events, as 

has been identified for gravel barrier islands (Pollard et al., 2020). Conversely, however, 

this stability precludes using vegetation positional change to discern foreshore sediment 

dynamics. These foreshore dynamics, detectable using the waterline, include sandbar 

migration and post-storm sediment deposition (Aagaard et al., 2013; Burvingt et al., 2016; 

Goldstein et al., 2019). These processes are generally smaller than engineering scale 

dynamics. This thesis supports other studies that have found that vegetation position can 

show the response of shorelines to individual storm events and other sub-annual processes 

(Barrett-Mold et al., 2010; Bullard et al., 2019), and the impact of storms on backshore 

dynamics (Grzegorzewski et al., 2011; Toure et al., 2019) which cannot be detected by 

using the waterline in isolation. The waterline may provide a better representation of daily 

to sub-annual coastal sediment dynamicsbut the vegetation line can act as a low-pass filter, 

highlighting locations of sustained shoreline erosion or recovery. The different rates of 

change of the two shoreline proxies highlights the benefits which may derive from their 

simultaneous extraction. Going forwards, future work should investigate which proxies are 

better suited to different coastal morphologies and temporal scales of shoreline change, to 

enable future research to make informed decisions about which abovementioned publicly 

available tool to use to extract shoreline positions.  

To aid these investigations, tools for detecting the coastal vegetation edge 

(github.com/MartinSJRogers), the instantaneous waterline (Dai et al., 2019; Vos et al., 

2019b), cliff top position (Payo et al., 2018) alongside others, are now publicly available. 

This increase in access provides opportunities for the tools to be applied to other locations. 

With the provision of publicly available, automated tools to extract different shoreline 

proxies, future research can analyse the proxy(s) that best represent coastal processes of 

interest, instead of being limited to selecting the proxy that is methodologically possible to 

extract. All abovementioned tools come with instructions on how they are applied, 

providing greater equity because they can be used by anyone with suitable expertise. The 

ability of these tools to be used by local stakeholders may reduce the feeling that a top-
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down approach has been applied, where individuals with no local knowledge have 

conducted research into coastal change.  

In summary, the availability of multiple automated tools enables the shoreline proxy which 

best represents the coastal dynamics of interest to be extracted, or even for multiple proxies 

to be simultaneously extracted from remote sensing imagery. The simultaneous extraction 

of the water and vegetation line could enable the detection of other features, including 

beach or intertidal zone width to be identified, which is not possible using one shoreline 

proxy in isolation. It allows for a more robust indication of net shoreline movement, 

because both proxies contain limitations, but if both proxies migrate landwards, there is 

greater certainty that it is due to coastal erosion, instead of tidal influence on water and 

vegetation land clearance. Simultaneous extraction of multiple shoreline proxies can 

provide better insight into cross-shore and alongshore dynamics, for example determining 

gravel barrier response to storm events (Pollard et al., 2020), and changes in beach volume 

due to sediment nourishment schemes (Wilson et al., 2015; Wilson et al., 2019). 

Simultaneously extracting multiple shoreline proxies can increase individual tool 

performance; for example, by extracting the marsh scarp as a shoreline proxy, salt marsh 

vegetation extent was more accurately digitised. This may have been because marsh 

vegetation normally ends in close proximity to a distinct drop in elevation (Wang, 2009; 

Farris et al., 2019). Further investigation could determine whether simultaneously extracted 

proxies may help to determine other coastal dynamics, which are not detectable using one 

proxy in isolation, such as a change in beach width or slope in response to storm events.  

 

6.3. Perceiving coastal risk through the machine learning lens 

Irrespective of the shoreline detection tool(s) applied, to determine the level of coastal 

receptor exposure or risk to shoreline change, the outputs of shoreline change tools require 

integration with information pertaining to other aspects of coastal risk. ML is providing 

new opportunities to determine rates of shoreline change alongside other factors relating to 

coastal risk. Most previous studies have used ML to investigate one element of coastal risk 

in isolation (Goldstein et al., 2019). Discussed are two main advantages of using ML tools 

to derive risk indices over other methods and alongside other tools and diverse datasets: (i) 

the ability to rapidly detect and update changes to risk indices at fine spatio-temporal 
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resolution, via the integration of important risk-based data; and (ii) the ability to determine 

populations exposed to shoreline change at a supra-national scale. 

ML tools have commonly been used to provide information on one aspect of coastal risk in 

isolation VEdge_Detector and WorldPop, for example, independently provide information 

regarding rates of shoreline change or provide information on population dynamics in the 

coastal zone respectively. But taken together, their outputs provide information on the 

relative number of people exposed to shoreline change. A key advantage of using these ML 

tools is the ability to frequently update the ‘population at risk’ values. Once trained, ML 

tools have been shown to be faster than other non-ML tools at identifying shoreline position 

(Figure 6.1), and the remote sensing datasets used by the ML tools are collected at sub-

annual scale (Stevens et al; 2015; Llyod et al., 2019). This enables populations exposed to 

shoreline change to be calculated at a sub-annual scale. The consistent, gridded nature of 

many ML outputs enables them to be readily harmonised and integrated, as demonstrated 

by the ability to calculate relative populations exposed to coastline change at 100 m transect 

intervals (Figure 5.10), commonly not possible using aggregated census data (Stevens et 

al., 2015; Tatem et al., 2017). The consistently gridded nature of population datasets 

obtainable using ML tools also avoids issues such as the modifiable areal unit problem, 

whereby the choice of boundary condition can heavily affect the representation of 

population dynamics present (Tatem et al., 2017). The high processing speeds of ML tools, 

combined with their use of datasets with global spatial coverage, also provides potential in 

consistently determining coastal dynamics, including in locations which have not 

previously benefitted from detailed study.  

ML tools trained using datasets with global coverage are country-agnostic, meaning they 

can be consistently applied to detect coastal dynamics in any location globally. This will 

increase the ability to determine locations where populations are at greater risk to shoreline 

change as those experiencing rapid erosion and/or urbanisation, instead of locations that 

have been most heavily researched. A low number of shorelines around the world are 

extensively researched, including Narrabeen Beach, Australia (Beuzen et al., 2018; Splinter 

et al., 2018), Covehithe, UK (Brooks and Spencer, 2014; Burningham and French, 2017; 

Rogers et al., 2021), and Fire Island, USA (Wilson et al., 2015). Research in these locations 

has advanced understanding of shoreline response to extraneous forcing factors, but the 

locations benefitting from the greatest amount of research do not necessarily correspond to 
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locations where populations are at greatest risk to shoreline change. Big Data is 

increasingly capturing many physical and socio-economic processes in the coastal zone 

(Rumson et al., 2018). This means that it is feasible for future datasets pertaining to 

vulnerability indices, meteorological conditions, and hydrological conditions, to be large 

and detailed enough to train ML tools to generate thematic layers of different aspects of 

risk. ML tools which utilise datasets of global coverage provide promise in generating 

consistent levels of information on levels of exposure and risk globally, including in 

currently understudied locations. There is a need, however, to ensure equity in this 

knowledge production, for example ensuring that local communities or stakeholders are 

not disadvantaged or excluded from the decision-making process if they do not have access 

to computer resources or Big Data facilities. 

ML tools individually applied to different aspects of coastal risk could be integrated to, for 

example, improve understanding of hazards derived from wave action in the coastal zone. 

ML tools have been applied to synthetic aperture radar (SAR) data, a separate form of 

remote sensing imagery, to automatically identify wave locations and wave conditions, 

including wave height, wave incident angle and return period (Wang et al., 2019; Wu et al., 

2021). These ML-derived datasets provide more consistent coverage of wave conditions 

than is possible using wave buoys or other forms of ground-referenced measurements 

(Collard et al., 2009). Separately, other ML tools have been used to automatically identify 

the position of hurricanes and other coastal tropical storms in remote sensing imagery (Kim 

et al., 2019; Lee et al., 2020), proving regularly updated information on storm locations and 

severity at similar spatial resolution to the wave data. The integration of these ML datasets 

could aid understanding of air-sea interactions in coastal zones, in particular wave response 

to different meteorological conditions, or determine how waves build up in different 

locations when subject to similar storm events (Topouzelis and Kitsiou, 2015). This could, 

in turn, identify wave height and energy hotspot locations, where wave condition are 

consistently greater and adjacent coastal receptors are subsequently potentially more 

exposed to wave action and shoreline retreat.  

The outputs of the abovementioned ML tools investigating coastal hazards could further be 

integrated with ML tools investigating the exposure and vulnerability of receptors in the 

coastal zone. Alongside ML tools to estimate population density, ML tools have been used 

to classify land cover classes and associated rates of urbanisation in coastal regions (Rogan 



185 

 

et al., 2008; Karpatne et al., 2016). ML tools have also determined near-instantaneous 

damage to buildings and communities caused by hurricanes and other tropical storms 

(McCarthy et al., 2020; Yuan and Liu, 2020). Integrating ML tools investigating damage 

to communities and buildings with those determining real time information on tropical 

storm position, may be of real benefit to incident response units, to determine current or 

predict the imminent impacts caused by the storm. More broadly, the production of multiple 

ML-derived datasets pertaining to different risk indices could be integrated to inform risk 

management decisions and support policy making in the coastal zone.  This includes policy 

to restrict rates of urbanisation and infrastructure development in areas experiencing rapid 

rates of shoreline change, or promote the protection or management of coastal ecosystems 

to provide further protection to adjacent land covers. These policies would both limit the 

number of people vulnerable to future coastal recession, as well as reducing degradation to 

the health of coastal ecosystems and resources (Neumann et al., 2015). However, ML tools 

are unlikely to be able to be trained on all aspects of risk. Thus, for example, large datasets 

pertaining to stakeholder perception of the most important receptors to protect are not 

currently available, primarily because stakeholder views vary substantially between and 

within different regions (Penning-Rowsell et al., 2014). ML remains a tool to inform, 

instead of replace, stakeholder-led risk-management decision making. 

Other limitations of ML tools, particularly those exclusively using remote sensing-based 

data, must also be considered when choosing whether to apply the tools to coastal risk 

studies. The use of remote sensing data precludes the detection of some smaller scale 

dynamics pertaining to coastal risk, for example, WorldPop data did not detect some 

smaller settlements, such as Shell Beach, Guyana (Chapter 5), emphasising the need for 

remote sensing data to be complemented with local knowledge and data gathering. This is 

attributed to ML tools used remote-sensing derived ancillary data of Earth features like 

‘night light’ and ‘road density’, which may not provide evidence of smaller settlements in 

rural locations (Tatem et al., 2017). Remote sensing imagery, commonly used in ML 

applications to coastal risk, cannot directly measure all aspects of coastal risk, meaning 

some information has to be inferred. ML applications can be used to, for example, identify 

hurricane and convection cloud locations, but information on the severity of the storm, 

including wind conditions, can only be estimated (Lee et al., 2020). This highlights that 

ground-referenced studies are still required to validate the performance of ML tools and 
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identify dynamics not detectable using ML in isolation and that ML tools should not replace 

the need for censuses and other ground-based data collection methods.  

In summary, ML tools can be used to consistently determine population dynamics and 

shoreline change over large spatial areas and fine resolutions. Further research should 

investigate their potential to be applied to other risk indices but caution should be taken to 

ensure they do not replace, but instead complement, stakeholder engagement in coastal risk 

management decision making.    

 

6.4. Concluding remarks 

6.4.1. Machine learning in the geosciences: future potential and collaborations 

The rise of Big Data and ML techniques has motivated many investigations into whether 

or not ML can advance knowledge in different research domains. Quantifying the benefits, 

or otherwise, provided by ML techniques is best achieved by comparing the performance 

of ML tools with established, non-ML, methods. To this end, VEdge_Detector, a 

convolutional neural network (CNN), was developed for the automatic detection of the 

position of the coastal vegetation edge in multispectral remote sensing imagery. Its 

performance was compared to a range of ML and non-ML techniques. VEdge_Detector 

shows promise in generalising to detect the vegetation edge in a range of coastal settings at 

local to supra-national scales, whilst producing similar or smaller positional errors 

compared with other methods (Chapter 3, Chapter 4). From a coastal stakeholder 

perspective, tool accuracy is not the only consideration when selecting a method to identify 

edges and features in remote sensing imagery. A tool will be chosen depending upon its 

processing speeds, training and development requirements and interpretability. CNNs have 

been shown to be faster than other edge detection tools (Figure 6.1). However, a potential 

barrier to the further uptake of supervised ML techniques is the onerous nature of 

developing reference datasets. Despite the training process providing VEdge_Detector with 

semantic information to distinguish between different edges and features in the imagery, 

there were still limitations in its performance, for example along rocky and urbanised 

stretches of coastline. Increasing the size and diversity of the imagery in the training dataset 
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may improve the performance of the CNN but moving forwards, the training of future 

CNNs should investigate the use of collaborative research and citizen science.  

One way that large, labelled datasets could be generated is through greater collaboration 

between disparate academic research groups or citizen scientists interested in detecting the 

same features in remote sensing imagery. Researchers across different research fields 

including earthquakes, volcanoes, wildfires and flood risk have all contributed to labelling 

a dataset of damaged/undamaged buildings in remote sensing imagery (Gupta et al., 2019). 

This dataset subsequently trained a CNN to detect building damage caused by coastal 

storms (Chen et al., 2021), highlighting the transferability of the dataset. These examples 

highlight that, irrespective of the natural disaster itself, participating research groups can 

work together to develop effective datasets that can be used to train ML tools for a range 

of tasks. This collaborative approach could also be applied to detect vegetated features in 

remote sensing imagery.  

The detection of vegetated features and edges in remote sensing imagery can be important 

for research in the fields of plant health (Hamdi et al., 2019; Sylvain et al., 2019), coastal 

risk management (Rogers et al., 2021), land cover change (Buscombe and Ritchie, 2017), 

and agricultural crop type (Hoeser et al., 2020). An example of a dataset, derived through 

collaboration, which could be repurposed to explore an alternative means includes that 

developed by Weinstein et al., (2021), an augmented labelled dataset of over 100 million 

tree crowns. This dataset was originally produced to analyse tree health but could be of 

benefit to detect forest clearance, expansion of urban extent and plant-climate response. 

Citizen science could additionally contribute via tools such as ‘Make sense AI’ 

(https://www.makesense.ai/), which allow members of the public to label remote sensing 

imagery (Buscombe and Ritchie, 2017). The use of these collaborative or citizen science 

approaches could both reduce the burden of developing a dataset, and also help to provide 

labelled data which could be applied to the training of multiple ML tools investigating 

different tasks.  

Research groups could also collaborate to produce a centralised, large-scale repository of 

multiple different tools that utilise ML-based techniques to extract features from remote 

sensing imagery. One early example is SciVision, which aims to become a repository or 

‘search-engine’ for different ML-based tools produced by different research groups 

globally (https://github.com/alan-turing-institute/scivision). If enough tools are added to a 
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repository such as SciVision, it would then be possible for third-parties to search for tools 

by particular criteria e.g., remote sensing imagery type, image spatial resolution or feature 

of interest. A repository of this nature would enable other researchers to utilise or further 

develop the code produced within these tools. This in turn may reduce duplication caused 

by different research groups generating very similar tools. Further, a repository of this 

nature may increase the exposure or likelihood of third-party non-technical stakeholders 

discovering and utilising the tools for various purposes. Repositories like SciVision are 

necessary because even when a ML-based tool is made publicly accessible on platforms 

such as Github, they will only be discovered if people know to look on that particular 

repository page. A central repository may aid in the wider dissemination and utilisation of 

ML-based tools that extract features and knowledge from remote sensing imagery.   

6.4.2. Making the most of the rise in Big Data 

Alongside applying ML tools to detect edges and features in multispectral remote sensing 

imagery, their outputs provide promise in accurately representing rates of shoreline change. 

In this thesis, VEdge_Detector outputs were used to identify rates of shoreline change in a 

range of locations globally, focussing on Covehithe, UK and the Guiana coastline, northern 

South America. Supra-national scale shoreline detection enabled the identification of 

coastal processes not detectable using smaller-scale imagery, including migrating erosion 

hotspots, as well as spatially distinct stretches of coastline exist which portray very similar 

oscillations in erosion and accretion (Chapter 5). These findings have been possible due to 

the marked increase in publicly available remote sensing imagery. Future developments in 

the spatio-temporal resolution of multispectral imagery could provide further insights into 

coastal dynamics, not currently discernible using the imagery available.  

Planet’s mission to “Scan the whole earth every day” with its flock of satellites provides 

promise in the collation of fine resolution imagery over a large spatial area (Planet Team, 

2017).  For example, between January and August 2021, 252 and 355 PlanetScope images 

captured the entire study areas of Shell Beach (Guyana) and Covehithe (UK) respectively, 

equating to between eight and 11 images per week (Planet API, 2021). The use of many 

satellite platforms concurrently capturing imagery of the Earth’s surface will reduce 

dependence upon the operational performance of a low number of sensors.  Along many 

coastlines globally, less than 100 Landsat images are available for each scene (Pekel et al., 
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2016). The number of images which can be analysed is further reduced by cloud cover and 

severe stripping on Landsat 7 imagery (2003 onwards), caused by damage to the Scan Line 

Corrector (Young et al., 2017). This resulted in concurrent imagery for the entire Guiana 

coastline being available during only six years between 1990 and 2020 (Section 5.2). The 

large number of Planet satellites could reduce dependency upon the performance of an 

individual satellite and image capturing device and limit the impact caused by the presence 

of clouds in one image. This will hopefully increase the temporal density of imagery 

available from which to extract shoreline position.   

Advancements in the temporal resolution of both Planet and Landsat will also enable 

imagery to be captured at more similar times each year, imperative when studying changes 

to vegetation extent or boundaries. When calculating rates of shoreline change at both 

Covehithe and Guiana, it was not possible to collect imagery at the same time every year 

and concessions had to be made so that all imagery used was captured within the same four-

month period of that respective year. Imagery was selected to correspond to maximum 

summer vegetation coverage in the UK and the dry season, with lower cloud cover, in 

Guiana (Ballère et al., 2021; chapter 4, chapter 5). Collecting imagery at the same time of 

year is particularly pertinent in vegetation edge studies because salt marsh (Möller and 

Spencer, 2002; Möller, 2006), dune and mangrove (Jana et al., 2016) vegetation coverage 

can vary substantially between seasons, irrespective of coastal zone dynamics. Advances 

in the temporal resolution of remote sensing imagery will provide opportunities to collect 

imagery from the same time of year to enable more robust comparisons of annual-scale 

change in coastal vegetation extent.   

The degree to which the geosciences can benefit from this increase in remote sensing 

imagery is dependent upon the costs of attaining the data. An academic licence permits free 

access to 10,000 km2 of Planet imagery per month (Marta, 2018). However, the eight 

Landsat scenes encompassing the Guiana study site cover an area greater than 250,000 km2 

(Figure 5.1), meaning that many years would be required to download sufficient Planet 

imagery. To gain access to more imagery, most satellite companies require academic 

institutions to acquire licences for huge amounts of imagery (Marta, 2018). This is costly 

and only a fraction of the data allowance is likely to be used. These financial restrictions 

currently preclude the wide-scale application of Planet imagery into supra-national scale 

studies. Removing the paywall separating the imagery from the research community could 
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provide greater equity, whereby it is not only academic institutions in wealthier countries 

that are able to conduct this research.  To cover the costs of launching the satellites and 

capturing the imagery, whilst allowing more equitable access to the imagery, it is suggested 

that satellite companies could charge per unit of data acquired, instead of using the current 

licencing approach.  

 

6.4.3. Predicting our future coast 

The temporal coverage of remote sensing imagery continues to increase, providing an 

opportunity to use edge detection tools to generate a time-series of historical shoreline 

positions which in turn could be used to train a separate ML tool to predict future shoreline 

position. Other studies using Bayesian Networks have predicted shoreline change using a 

time-series of historic shoreline position, combined with datasets on wave conditions 

(Beuzen et al., 2018; Giardino et al., 2019). These studies show promise in using ML tools 

to predict shoreline change. However, they exclusively used ground-referenced 

measurements of shoreline positionwhich are not available in most locations. In 20-30 

years, multi-decadal time series of fine resolution imagery, including Planet’s 50 cm 

resolution products (European Space Agency, 2021), will provide opportunity to train ML 

tools on sub-annual scale processes not currently detectable using Landsat or other coarser 

imagery. To make robust predictions of future shoreline position, datasets pertaining to 

external forcing factors are also required. 

Meteorological and hydrological data with sufficient spatio-temporal coverage and 

resolution is necessary to train an ML tool to predict future shoreline positions. Tide and 

wave gauges, providing observation-based data, are unevenly distributed, restricting their 

ability to detect spatially heterogeneous wave conditions, even in relatively data rich 

regions like the UK (Rumson and Hallett, 2018; National Oceanography Centre, 2021b). 

Lessons could be learnt from the field of climate science where ML tools used to predict 

future climatic conditions are commonly trained on synthetic datasets generated by process-

based models and calibrated using observational data (Rasp et al., 2021). Compared with 

observational datasets, process-based models can generate synthetic datasets with longer 

time-series and finer spatial resolution (Dueben and Bauer, 2018; Gentine et al., 2018). 

Synthetic datasets of rare storm events can also be generated, key drivers of shoreline 
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retreat in some coastal zonesbut for which very few observed data entries exist (Dueben 

and Bauer, 2018). Wave models with large spatial coverage and finer and gridded 

resolution, for example ‘WaveWatch III’ (National Oceanic and Atmospheric 

Administration, 2021) could be used to train a ML tool on historic oceanic conditions. 

Using synthetic data from process-based models enables physics-based domain knowledge 

to be incorporated into ML training (Kashinash et al., 2021). However, ML tool 

performance is currently limited by the capabilities of the underlying process-models 

(Dueben and Bauer, 2018).  

Human shoreline modification factors are another key determinant of human shoreline 

position. There is scope to train a supervised ML tool to automatically detect human 

shoreline modification structures via multispectral imagery. Referenced datasets already 

exist, as detailed inventories of the human shoreline intervention type and position are 

maintained in countries such as the UK and The Netherlands (Rumson and Hallett, 2018; 

Environment Agency, 2021). Many studies have used remote sensing imagery to identify 

or predict shoreline response to sea defence installation (Giardino et al., 2019; Elkafrawy 

et al., 2021) but these commonly utilise local knowledge, or locally accessible datasets, to 

ascertain the location and dates of shoreline interventions. Automatic detection of these 

features could be particularly valuable in locations where local knowledge or analogous 

data are not available and could be applied to historical images to determine when defences 

were installed. These could aid our understanding of the relative influence of human 

shoreline modification structures on shoreline change drivers of shoreline change, thus 

informing on how they may influence their future position.  

Tools that predict future shoreline position would be central to answering the ultimate 

question of which locations and coastal receptors are likely to be exposed to the greatest 

risk to shoreline change in the future. This could be achieved by combining predictions on 

rates of shoreline change with ML or process-model based predictions of location specific 

future rates of sea-level rise (Oppenheimer et al., 2019) as well as changes to human 

populations densities and vulnerability metrics in the coastal zone (Neumann et al., 2015). 

This information would be very informative for local to supra-national scale planning in 

the coastal zone, including identifying locations where no further developments should take 

place. There would also be the potential to produce a ‘timeline’ of when different coastal 

locations are likely to require the implementation of adaptation or mitigation measures to 
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reduce the impacts of future shoreline change events such as managed realignment and 

planned inland human migration.  
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Supplemental Materials A 

1. Edge detection operators using greyscale images 
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Figure A: Filtered and unfiltered outputs from applying edge detection operators to the greyscale 

image of Dunwich, Suffolk, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, (c) 

Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show the 

5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian and 

(h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary images 

where pixels predicted to be an edge are shown in red. For all other images, blue and red correspond 

to pixels determined to be an edge with high and low confidence respectively. 
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Figure B: Filtered and unfiltered outputs from applying edge detection operators to the greyscale 

image of Blakeney Point, Norfolk, UK. Unfiltered outputs from applying (a) Canny edge, (b) 

Roberts, (c) Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only 

show the 5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) 

Laplacian and (h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) 

are binary images where pixels predicted to be an edge are shown in red. For all other images, blue 

and red correspond to pixels determined to be an edge with high and low confidence respectively. 
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Figure C: Filtered and unfiltered outputs from applying edge detection operators to the greyscale 

image of Holderness, East Yorkshire, UK. Unfiltered outputs from applying (a) Canny edge, (b) 

Roberts, (c) Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only 

show the 5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) 

Laplacian and (h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) 

are binary images where pixels predicted to be an edge are shown in red. For all other images, blue 

and red correspond to pixels determined to be an edge with high and low confidence respectively. 
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Figure D: Filtered and unfiltered outputs from applying edge detection operators to the greyscale 

image of Hornsey, Essex, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, (c) 

Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show the 

5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian and 

(h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary images 

where pixels predicted to be an edge are shown in red. For all other images, blue and red correspond 

to pixels determined to be an edge with high and low confidence respectively. 



225 

 

 

 

 

Figure E: Filtered and unfiltered outputs from applying edge detection operators to the greyscale 

image of Porthallow, Cornwall, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, 

(c) Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show 

the 5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian 

and (h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary 

images where pixels predicted to be an edge are shown in red. For all other images, blue and red 

correspond to pixels determined to be an edge with high and low confidence respectively. 
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2. Edge Detection operator outputs using NDVI image 
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Figure F: Filtered and unfiltered outputs from applying edge detection operators to the NDVI image 

of Dunwich, Suffolk, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, (c) 

Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show the 

5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian and 

(h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary images 



228 

 

where pixels predicted to be an edge are shown in red. For all other images, blue and red correspond 

to pixels determined to be an edge with high and low confidence respectively. 
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Figure G: Filtered and unfiltered outputs from applying edge detection operators to the NDVI image 

of Blakeney, Norfolk, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, (c) 

Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show the 

5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian and 

(h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary images 

where pixels predicted to be an edge are shown in red. For all other images, blue and red correspond 

to pixels determined to be an edge with high and low confidence respectively. 
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Figure H: Filtered and unfiltered outputs from applying edge detection operators to the NDVI image 

of Holderness, East Yorkshire, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, 

(c) Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show 

the 5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian 

and (h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary 

images where pixels predicted to be an edge are shown in red. For all other images, blue and red 

correspond to pixels determined to be an edge with high and low confidence respectively. 
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Figure I: Filtered and unfiltered outputs from applying edge detection operators to the NDVI image 

of Hornsey, Essex, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, (c) Laplacian 

and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show the 5% of pixels 

with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian and (h) Sobel edge 

detection to the greyscale image. Canny edge outputs in (a) and (e) are binary images where pixels 

predicted to be an edge are shown in red. For all other images, blue and red correspond to pixels 

determined to be an edge with high and low confidence respectively. 
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Figure J: Filtered and unfiltered outputs from applying edge detection operators to the NDVI image 

of Porthallow, Cornwall, UK. Unfiltered outputs from applying (a) Canny edge, (b) Roberts, (c) 

Laplacian and (d) Sobel edge detection to the greyscale image.  Filtered outputs to only show the 

5% of pixels with the highest values after applying (e) Canny edge, (f) Roberts, (g) Laplacian and 

(h) Sobel edge detection to the greyscale image. Canny edge outputs in (a) and (e) are binary images 
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where pixels predicted to be an edge are shown in red. For all other images, blue and red correspond 

to pixels determined to be an edge with high and low confidence respectively. 

3. Support Vector machines outputs 

 

 

Figure K: Support Vector Machines (SVM) outputs from Dunwich, Suffolk, UK. SVM output using 

a linear model and regularisation parameter value, C, of (a) 1, (b) 2, (c) 3 and (d) 4.  SVM output 

using a polynomial kernel and a regularisation parameter value, C, of (e) 1, (f) 2, (g) 3 and (h) 4.  

For all images, the pixels in green correspond to pixels predicted by the SVM to be positioned 

landwards of the coastal vegetation line. The manually digitised line is in red.   
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Figure L: Support Vector Machines (SVM) outputs from Blakeney, Norfolk, UK. SVM output 

using a linear model and regularisation parameter value, C, of (a) 1, (b) 2, (c) 3 and (d) 4.  SVM 

output using a polynomial kernel and a regularisation parameter value, C, of (e) 1, (f) 2, (g) 3 and 

(h) 4.  For all images, the pixels in green correspond to pixels predicted by the SVM to be positioned 

landwards of the coastal vegetation line. The manually digitised line is in red.   
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Figure M: Support Vector Machines (SVM) outputs from Holderness, East Yorkshire, UK. SVM 

output using a linear model and regularisation parameter value, C, of (a) 1, (b) 2, (c) 3 and (d) 4.  

SVM output using a polynomial kernel and a regularisation parameter value, C, of (e) 1, (f) 2, (g) 

3 and (h) 4.  For all images, the pixels in green correspond to pixels predicted by the SVM to be 

positioned landwards of the coastal vegetation line. The manually digitised line is in red.   
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Figure N: Support Vector Machines (SVM) outputs from Hornsey, Essex, UK. SVM output using 

a linear model and regularisation parameter value, C, of (a) 1, (b) 2, (c) 3 and (d) 4.  SVM output 

using a polynomial kernel and a regularisation parameter value, C, of (e) 1, (f) 2, (g) 3 and (h) 4.  

For all images, the pixels in green correspond to pixels predicted by the SVM to be positioned 

landwards of the coastal vegetation line. The manually digitised line is in red.   
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Figure O: Support Vector Machines (SVM) outputs from Porthallow, Cornwall, UK. SVM output 

using a linear model and regularisation parameter value, C, of (a) 1, (b) 2, (c) 3 and (d) 4.  SVM 

output using a polynomial kernel and a regularisation parameter value, C, of (e) 1, (f) 2, (g) 3 and 

(h) 4.  For all images, the pixels in green correspond to pixels predicted by the SVM to be positioned 

landwards of the coastal vegetation line. The manually digitised line is in red.   
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Supplemental Materials B 

Images used during Holistically-Nested edge detection training 

 

Table 1: Locations of convolutional neural network training images. Other columns provide 

information on dominant shoreline direction, spring and neap tidal ranges, dominant sediment type, 

geomorphology and climate at each site.  

Location Country Dominant 

shoreline 

direction 

Tidal 

Range 

(m) 

Dominant 

vegetation 

type 

Geomorphology Climate 

Dunwich- 

Covehithe 

UK 

(Suffolk) 

East 2.5 

(spring) 

0.5 

(neap) 

Psammosere 

dune 

vegetation/ 

cliff top 

grasses and 

arable crops 

Soft cliff &beach 

dune 

Temperate 

Winterton UK 

(Norfolk) 

East 2.5 

(spring) 

0.5 

(neap) 

Psammosere 

dune 

vegetation 

Dune Temperate 

Braunton UK 

(Devon) 

North 

West 

10 

(spring) 

3.5 

(neap) 

Cliff top 

grasses and 

Psammosere 

dune 

vegetation 

Beach dunes and 

rocky cliff 

Temperate 

Perranuthnoe UK 

(Cornwall) 

West 6 

(spring), 

2 (neap) 

Cliff top 

grasses and 

Psammosere 

dune 

vegetation 

Beach dunes and 

rocky cliff 

Temperate 

Jacksonville USA 

(Florida) 

South East 2.5 

(spring) 

1 (neap) 

Scrub (scrub 

holly/ scrub 

plum) 

Barrier island Sub-

tropical 

Ustronie 

Morskie 

Poland North 

West 

0 

(spring) 

0 (neap) 

Dune 

vegetation 

and dense oak 

and ash 

woodland 

Beach dunes Temperate 
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Akwidaa Ghana South  2 

(spring) 

0.5 

(neap) 

Tropical/ 

palm forest 

Beach dunes Tropical 

Comillas Spain North 5 

(spring) 

1.5 

(neap) 

Cliff top 

grasses 

Beach dunes and 

cliffs 

Temperate 

Bribie Island Australia East 2 

(spring) 

0.5 

(neap) 

Eucalyptus 

forest 

Barrier island Sub-

tropical 

Holderness UK (East 

Yorkshire) 

East 6 

(spring) 

1 (neap) 

Psammosere 

dune 

vegetation/ 

cliff top 

grasses 

Soft cliff & 

beach dune 

Temperate 

Itacare Brazil South East 2.5 

(spring) 

1 (neap) 

Tropical 

broadleaf 

forest/ palm 

trees/ retinga 

vegetation  

Beach dune and 

isolated cliffed 

headlands 

Tropical 

Capbreton France West 5 

(spring) 

1.5 

(neap) 

Psammosere 

dune 

vegetation 

Dune Temperate 


