
Probabilistic Continual Learning
using Neural Networks

Siddharth Swaroop

Department of Engineering
University of Cambridge

This thesis is submitted for the degree of
Doctor of Philosophy

Churchill College January 2022

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university. This thesis
is my own work and contains nothing which is the outcome of work done in collaboration
with others, except as specified in the text and Acknowledgements. This thesis does not
exceed the prescribed word limit for the relevant Degree Committee.

Siddharth Swaroop
January 2022

Acknowledgements

This thesis is the result of work over many years, and has been impacted by many people. I
would firstly like to thank my supervisor, Richard Turner, for his support and time throughout
my PhD, particularly early on when I was discovering what it means to do research. He was
always willing to get involved in the technical details, and also provide high-level feedback
on my ideas. I learnt a lot from him about the importance of good mentorship, and I hope
his passion and ability to teach rubs off on me a little. I was also fortunate to have a fruitful
collaboration with Mohammad Emtiyaz Khan, spanning several years, papers, and time
zones, complete with the occasional trip to Japan (at least, before COVID-19)! He has spent
a lot of time guiding, teaching and supporting me, and I have learnt a lot from him technically.
I especially appreciate his openness on the joys and tribulations of research life. Both people
have greatly impacted the kind of researcher I aspire to be.

Thanks to Rich and Emti, and their groups’ open research cultures, I have been able to
work with and learn from very many co-authors and collaborators: Thang D Bui, Cuong
V Nguyen, Marcin B Tomczak, Mrinank Sharma, Michael Hutchinson, Antti Honkela,
Kazuki Osawa, Anirudh Jain, Runa Eschenhagen, Rio Yokota, Noel Loo, Pingbo Pan,
Alexander Immer, Andrew YK Foong, Dharmesh Tailor, Paul E Chang, Voot Tangkaratt,
Arno Solin, Erik Daxberger, José Miguel Hernández-Lobato, Matthew Ashman, Stratis
Markou, Mikko Heikkilä, Yingzhen Li, Diego Mesquita, Samuel Kaski, Martin Kukla, John
Winn, Pavel Myshkov and Tom Minka. Every person brought their unique perspectives in
my conversations with them, and I am grateful to all of them, even if our project together
was not eventually published. I would also like to thank my examiners Carl Henrik Ek and
Roger Grosse for their constructive feedback and for helping improve this thesis.

I have also had many important conversations with various members of the CBL, and I
value these immensely. In particular, I would like to mention Adrià Garriga-Alonso, John
Bronskill, Talay Cheema, Jonathan Gordon, Marton Havasi, Robert Pinsler and Will Tebbutt,
with whom I shared an office and many an interesting conversation.

Finally, I owe a lot to my loved ones, family and friends. They know who they are.

Abstract

Probabilistic Continual Learning using Neural Networks

Neural networks are being increasingly used in society due to their strong performance at
a large scale. They excel when they have access to all data at once, requiring multiple passes
through the data. However, standard deep-learning techniques are unable to continually adapt
as the environment changes: either they forget old data or they fail to sufficiently adapt to
new data. This limitation is a major barrier to applications in many real-world settings, where
the environment is often changing, and also in stark contrast to humans, who continuously
learn over their lifetimes. The study of learning systems in these settings is called continual
learning: data examples arrive sequentially and predictions must be made online.

In this thesis we present new algorithms for continual learning using neural networks.
We use the probabilistic approach, which maintains a distribution over beliefs, naturally
handling continual learning by recursively updating from priors to posteriors. Although
previous work has been limited by approximations to this idealised scheme, we scale our
probabilistic algorithms to large-data settings and show strong empirical performance. We
also theoretically analyse why our algorithms perform well in continual learning.

We start with a variational approximation over neural network weights in Chapter 3.
Previous weight-prior algorithms converge slowly, and we speed up convergence by using
natural-gradient updates, allowing us to scale to large-data settings such as ImageNet for the
first time. However, we find there is still room for improving continual learning performance.

We argue that ultimately we are only interested in model outputs, and this motivates us to
view neural networks in function-space and regularise their outputs directly in Chapter 4. We
approximate a term in the variational objective with its function-space alternative, leading
to FROMP. FROMP identifies and regularises on a few memorable past examples to avoid
forgetting, and performs very well on existing continual learning benchmarks.

However, we find that FROMP is not exact in simple settings such as Generalised Linear
Models (GLMs). We fix this in Chapter 5 with a method called Knowledge-adaptation
priors (K-priors), a generalisation of FROMP and weight-priors that can be exact on GLMs.
K-priors achieve quick and accurate adaptation across many adaptation tasks, including
adding data (as in continual learning) but also removing data, changing the regulariser, and
changing the model. We use K-priors to provide insight into why our previous methods
achieve good performance, and we suggest improvements to them. Overall, in this thesis
we provide a comprehensive probabilistic framework for continual learning using neural
networks, and provide thorough evaluation of instances of this framework.

Table of contents

1 Introduction 1
1.1 The probabilistic approach to continual learning 2
1.2 Thesis outline . 3
1.3 List of publications . 4

2 Background 7
2.1 Continual learning . 7
2.2 Probabilistic continual learning . 10

2.2.1 Variational inference . 12
2.2.2 Natural-gradient variational inference 14

2.3 Approaches to continual learning . 19
2.4 Measuring performance in continual learning 23

2.4.1 Non-continual baselines . 23
2.4.2 Metrics . 24
2.4.3 Benchmarks . 25

3 Weight-space variational continual learning 29
3.1 Variational Continual Learning (VCL) . 30

3.1.1 Improving VCL . 31
3.1.2 Pruning . 34

3.2 Variational Online Gauss-Newton (VOGN) 39
3.2.1 Practical deep learning with variational inference 40
3.2.2 VOGN full-batch performance . 47
3.2.3 VOGN continual learning performance 56

3.3 Failures of weight-space continual learning 58
3.4 Summary . 60

x Table of contents

4 Functional regularisation of memorable past 63
4.1 Functional regularisation of neural networks 64
4.2 From deep networks to functional priors 70
4.3 Identifying memorable past . 74
4.4 Training in weight-space with a functional prior 76

4.4.1 OGN-FROMP . 78
4.4.2 FROMP . 80

4.5 Experiments . 84
4.5.1 Experiments with FROMP . 84
4.5.2 Experiments with OGN-FROMP 91

4.6 Summary . 92

5 Knowledge-adaptation priors 95
5.1 Reconstructing the gradient of the past . 98

5.1.1 Adding new data . 98
5.1.2 Generalised Linear Models . 101

5.2 Neural networks and connections with knowledge distillation 107
5.3 Many adaptation tasks in machine learning 110

5.3.1 Removing old data . 110
5.3.2 Changing regulariser . 111
5.3.3 Changing model class or architecture 112
5.3.4 K-priors for general learning problems 113

5.4 Limited memory in K-priors . 114
5.5 Improving weight-priors with function-regularisation 118
5.6 FROMP in the K-priors framework . 122
5.7 Experiments . 124
5.8 Links to Support Vector Machines and Gaussian Processes 133
5.9 Summary . 134

6 Conclusions and future work 137
6.1 Summary . 137
6.2 Discussion and future work . 139

References 143

Table of contents xi

Appendix A Details on weight-space variational continual learning experiments 157
A.1 Pruning on MNIST . 157
A.2 Hyperparameters for VOGN continual learning experiments 157
A.3 Hyperparameters for Toy-Gaussians experiments 158

Appendix B Details on batch VOGN experiments 161
B.1 Details on fast implementation of the Gauss-Newton approximation 163
B.2 Hyperparameter values for batch VOGN experiments 165
B.3 Effect of prior variance and dataset size reweighting factor 166
B.4 MC-dropout’s sensitivity to dropout rate 168
B.5 Details on uncertainty metrics . 169
B.6 Further out-of-distribution experiments with VOGN 171

Appendix C Details on FROMP 173
C.1 Gaussian Process posteriors from the minimiser of a linear model 173
C.2 Multiclass setting for FROMP . 175
C.3 Hyperparameters for FROMP experiments 177
C.4 Variations on Toy-Gaussians benchmark 178
C.5 Importance of kernel being over all weights 180

Appendix D Details on K-priors 181
D.1 K-priors that optimally preserve information with limited memory 181

D.1.1 Preserving first-order information 182
D.1.2 Preserving second-order information 183

D.2 FROMP is not exact on linear regression 185
D.3 K-priors and equivalence to Gaussian Processes 186
D.4 Further K-priors experiments and hyperparameters 188

D.4.1 Replay with different τ and random memory 189
D.4.2 Further experiments with weight-priors 190
D.4.3 K-priors ablation with weight-term 190
D.4.4 K-priors with random initialisation 191

Chapter 1

Introduction

The real world is an ever-changing environment. This makes deploying machine-learning
algorithms very difficult: modelling assumptions and choices we make today can become
irrelevant in the future. On the other hand, humans show an ability to quickly adapt to
changes around them. This thesis is concerned with designing algorithms that can handle
such adaptation.

For example, consider an image classifier for use in autonomous vehicles, trained to
classify between objects such as traffic lights, pedestrians, pavements, and other vehicles
such as cars or motorbikes or cycles. Such classifiers play a crucial role in autonomous
vehicles’ decision-making, informing the vehicle which objects are around it.

We train our classifier by showing it many labelled images of objects, and then deploy
it on our autonomous vehicle. But the real world is constantly changing, and if we do not
account for this, our classifier will slowly perform worse over time, leading to potentially
disastrous accidents. This can happen whenever the real world departs from assumptions
made during training. For example, perhaps people start using electric scooters commonly
on roads, or the design of road vehicles slowly change over time.

To deal with such changes, we can collect new data (as labelled images), and retrain our
system. Ideally, our system would quickly adapt to small changes, similar to how humans
can quickly adapt to new concepts.

Current state-of-the-art models for such large-scale problems (especially image classifi-
cation) are deep neural networks, and they are widely used in society already. Unfortunately,
neural networks require multiple passes through all data to train. Consider collecting a
thousand new images (of electric scooters) to update a system previously trained on a million
images. In order to perform well on both old and new data, neural networks require retraining
from scratch on all one million plus one thousand images. This is expensive and time-
consuming. Ideally, we would quickly adapt our system by only training on the thousand new

2 Introduction

images, but standard deep-learning techniques cannot do this. This is a particular problem
when faced with multiple adaptation steps sequentially: either the neural network forgets old
information, or it fails to sufficiently adapt to new information.

The field of continual learning deals with this setting. In continual learning (also known
as lifelong learning or sequential learning), data examples arrive sequentially and predictions
must be made in an online fashion. We are not allowed to store all past data. Developing
algorithms for continual learning allows us to avoid retraining-from-scratch every time we
want to update our system with new data. We may also satisfy some privacy requirements as
we do not store all past data. Standard deep-learning techniques fail catastrophically in this
setting, and we therefore need to design new algorithms and techniques.

1.1 The probabilistic approach to continual learning

We use a probabilistic approach to continual learning using neural networks. The probabilistic
approach maintains a distribution over beliefs. We start with a distribution summarising our
prior beliefs, and when we see new data, we update it into a posterior distribution. We use
the Bayesian update, which follows the rules of probability.

This is easily applied to continual learning: every time we see new data, we update our
distribution over beliefs, recursively updating from priors to posteriors. As we see more and
more data, we slowly refine our distribution over beliefs, slowly becoming more certain. In
this way, the probabilistic approach naturally handles continuously-arriving data.1

On the other hand, standard deep-learning techniques keep only a single belief (instead
of a distribution). This can lead to over-committing to a particular belief early on, and being
unable to correct for this later. This leads to failures in continual learning.

Unfortunately, the probabilistic approach is difficult to realise in practice, particularly
at a large scale, due to the heavy computation required. Approximations are required
to the idealised scheme, potentially leading to worse performance. Our goal is to make
approximations that have low computation cost while keeping benefits of the probabilistic
framework. Previous work in the field has been limited by the approximations made, and we
aim to improve on such previous work in this thesis.

1The probabilistic approach also has other potential benefits, like better robustness, better calibration, and
better performance in low-data settings, but we do not consider these other benefits in detail in this thesis.

1.2 Thesis outline 3

1.2 Thesis outline

In this chapter so far, we have motivated and introduced intuitions about probabilistic
continual learning using neural networks. In Chapter 2 we mathematically formalise these
intuitions. We show how the Bayesian update is exact for continual learning, and introduce
the variational approximation that we will use throughout this thesis. We also summarise
previous methods for continual learning, characterising them in terms of three orthogonal
approaches. We end Chapter 2 by describing the metrics and benchmarks that we use
throughout the thesis to compare methods.

In Chapter 3 we improve variational weight-prior methods for probabilistic continual
learning. When we look into why they work, we find that entire units are pruned out, and
that this pruning effect can help in continual learning. We use natural-gradient update steps
to speed up convergence, allowing us to scale to large-data settings such as ImageNet for
the first time. However, we find that there is still room for improving continual learning
performance, and we argue that this is due to weight-space approximations we made.

This motivates us to view neural networks in function-space, and regularise their outputs
directly. In Chapter 4 we do this in a probabilistic way with a method called Functional
Regularisation of Memorable Past (FROMP). We approximate a term in our objective
function with its function-space alternative, and use a Gaussian Process formulation of neural
networks to identify and regularise on only a few memorable past datapoints. FROMP
significantly improves upon previous weight-prior approaches on benchmarks.

In Chapter 5 we introduce Knowledge-adaptation priors (K-priors), which are a generali-
sation of FROMP and weight-priors. K-priors provide a general probabilistic framework for
model adaptation, and unlike our previous methods, they can be exact on Generalised Linear
Models. We apply K-priors to many more adaptation tasks than just adding data (like in
continual learning), such as removing data, changing the regulariser, and changing the model.
We also use the K-priors framework to (i) improve weight-priors with function-regularisation,
and (ii) understand why FROMP works well, providing suggestions to improve FROMP.
When we apply K-priors to neural networks, we see a link with knowledge distillation
(Hinton et al., 2015), and we can use this link to improve both K-priors and knowledge
distillation. Experiments show K-priors performing quick and accurate adaptation across
different adaptation tasks on a variety of models.

Finally, Chapter 6 provides conclusions, as well as summarising potential avenues for
future research.

4 Introduction

1.3 List of publications

During my degree, I have co-authored a number of peer-reviewed publications, listed here
chronologically regardless of whether I discuss them in this thesis.

Understanding Expectation Propagation. Siddharth Swaroop, Richard E Turner (2017).
Advances in Approximate Bayesian Inference workshop at NIPS 2017.

Partitioned variational inference: A unified framework encompassing federated and
continual learning. Thang D Bui, Cuong V Nguyen, Siddharth Swaroop, Richard E
Turner (2018). arXiv preprint arXiv:1811.11206, Bayesian Deep Learning workshop
at NeurIPS 2018 (spotlight).

Neural network ensembles and variational inference revisited. Marcin B Tomczak,
Siddharth Swaroop, Richard E Turner (2018). Advances in Approximate Bayesian
Inference Symposium 2018.

Improving and Understanding Variational Continual Learning. Siddharth Swaroop,
Thang D Bui, Cuong V Nguyen, Richard E Turner (2019). Continual Learning
workshop at NeurIPS 2018 (Oral presentation).

Differentially Private Federated Variational Inference. Mrinank Sharma∗, Michael
Hutchinson∗, Siddharth Swaroop, Antti Honkela, Richard E Turner (2019). Privacy in
Machine Learning workshop at NeurIPS 2019.

Practical Deep Learning with Bayesian Principles. Kazuki Osawa, Siddharth Swaroop∗,
Anirudh Jain∗, Runa Eschenhagen, Richard E Turner, Rio Yokota, Mohammad Emtiyaz
Khan (2019). Advances in Neural Information Processing Systems, 2019.

Combining Variational Continual Learning with FiLM Layers. Noel Loo, Siddharth
Swaroop, Richard E Turner (2020). LifeLongML workshop at ICML 2020 (Oral
presentation).

Efficient Low Rank Gaussian Variational Inference for Neural Networks. Marcin B
Tomczak, Siddharth Swaroop, Richard E Turner (2020). Advances in Neural Informa-
tion Processing Systems, 2020.

Continual Deep Learning by Functional Regularisation of Memorable Past. Pingbo
Pan∗, Siddharth Swaroop∗, Alexander Immer, Runa Eschenhagen, Richard E Turner,
Mohammad Emtiyaz Khan (2020). LifeLongML workshop at ICML 2020 (Oral presen-
tation), Advances in Neural Information Processing Systems, 2020 (Oral presentation).

1.3 List of publications 5

Generalized Variational Continual Learning. Noel Loo, Siddharth Swaroop, Richard E
Turner (2021). International Conference on Learning Representations, 2021.

Knowledge-Adaptation Priors. Mohammad Emtiyaz Khan∗, Siddharth Swaroop∗ (2021).
Advances in Neural Information Processing Systems, 2021.

Collapsed Variational Bounds for Bayesian Neural Networks. Marcin B Tomczak,
Siddharth Swaroop, Andrew YK Foong, Richard E Turner (2021). Advances in Neural
Information Processing Systems, 2021.

Partitioned Variational Inference: A framework for probabilistic federated learning.
Matthew Ashman, Thang D Bui, Cuong V Nguyen, Stratis Markou, Adrian Weller,
Siddharth Swaroop, Richard E Turner (2018). arXiv preprint arXiv:2202.12275.

Publications discussed in this thesis

Material from these publications is used in Chapters 3 to 5.
Chapter 3 is based on work from a few publications. The work on Improving VCL and

observing pruning in Section 3.1 is from Swaroop et al. (2019), for which I was the first-
author. The variational pruning effect in neural networks has been observed in many papers,
and I also draw results from papers for which I was second-author (Loo et al., 2021; Tomczak
et al., 2021). Section 3.2 is from Osawa et al. (2019). As joint second-author, I helped lead
the project, and particularly contributed to the experiments testing the quality of predictive
probabilities. Section 3.2.3 includes some experiments led by Runa Eschenhagen. Section 3.3
is an expansion on an Appendix from Pan et al. (2020), where I am joint first-author.

The work in Chapter 4 is mostly from Pan et al. (2020). As joint-first author, I contributed
to all parts of the paper, including conceiving the original idea, deriving mathematical results,
coding and running experiments. The results in Section 4.5.2 with OGN-FROMP are new.
The Leverage method in Section 4.3 and the results in Section 4.5.1 are new experiments, part
of an ongoing project on improving memorable past selection (see Section 6.2 for details).

Most of the work in Chapter 5 is from Khan and Swaroop (2021), for which I am joint
first-author. However, Chapter 5 also significantly expands upon Khan and Swaroop (2021),
such as by considering the variational setting in detail, comparing in detail to FROMP, and
presenting new theory and algorithms for the limited-memory setting (such as Quadratic
K-priors in Section 5.5). Some of these additional details are part of follow-up work and
are in collaboration with Mohammad Emtiyaz Khan. The experiments applying K-priors to
continual learning are part of ongoing work on K-priors for continual learning (see Section 6.2
for details).

Chapter 2

Background

We start this chapter by formally introducing continual learning in Section 2.1. We motivate
and explain the probabilistic framework for continual learning in Section 2.2, where we also
provide background on variational inference and natural-gradient variational inference. In
Section 2.3, we summarise current methods for continual learning, categorising them in terms
of three orthogonal approaches. In Section 2.4, we introduce the metrics and benchmarks we
will use throughout this thesis to compare continual learning methods.

2.1 Continual learning

Neural networks perform very well in the batch-setting, where the full dataset is available
at once: the method can sample in an independent and identically distributed fashion from
the full dataset, and multiple passes are allowed through the dataset. In contrast, continual
learning (also known as lifelong learning or sequential learning) considers continuous
adaptation of machine learning systems when faced with a stream of changing data. Data
examples arrive sequentially to a machine learning system, and we want the system to
perform well over all data that has been fed to it. We formalise continual learning through
a list of desiderata, similar to some past works (Schwarz et al., 2018; Hadsell et al., 2020;
Lange et al., 2021). An ideal continual learning system should have the following properties:

1. Not store all past data (this can be made stricter to not store any past data), for example
due to memory/computational constraints or due to privacy reasons;

2. Handle online learning, where new data examples are continuously presented to the
system, with no assumptions on the structure of the data (for example, no fixed tasks
or datasets, and no clear boundaries between tasks);

8 Background

3. Avoid catastrophic forgetting (Robins, 1995; French, 1999) and interference (Mc-
Closkey and Cohen, 1989; Ratcliff, 1990), meaning learning on new data does not
destroy performance on previously seen data;

4. Show forward transfer, the ability to leverage past information to perform better on
new data;

5. Show backward transfer, the ability to improve performance on old data by using
information from new data;

6. Model capacity and computation should be bounded (or scale well) as more data
examples are seen, such that the system is scalable over long streams of data;

7. Maintain plasticity, meaning the model can continue to learn effectively as new data
examples are seen.

The system should show these properties while learning quickly and being accurate.
Although we ideally want a machine learning system to fulfil all of these desiderata, this
is currently very difficult. In order to eventually reach this goal, current research typically
aims to satisfy a subset of these desiderata at a time. This may also be reasonable as different
real-world applications may only require different subsets of desiderata.

In this thesis, we aim to satisfy all but Desideratum 2: we do not consider the fully online
setting, and we assume that data examples arrive in distinct tasks, where we are provided
with knowledge of task boundaries. We also assume that best possible performance is given
by a model that would have had access to all data at once. Other scenarios may assume that
old data can become irrelevant or stale, but we assume older data examples are as important
to remember as newer data examples. In Section 6.2 we discuss ways to move beyond such
assumptions in future work.

Additionally, in this thesis, we mainly focus on neural networks (NNs). Neural networks
are capable of learning complex relationships and are scalable to large numbers of data exam-
ples. We focus on image-recognition tasks, a supervised learning problem that convolutional
neural networks (CNNs) perform very well on.

Notation. A deep neural network takes an input x and has a mapping fw(x), with network
parameters w. We train a neural network by minimising a loss function with respect to the
neural network’s weights. This loss function measures the error between the neural network’s
output and the true (provided) label/output. For a supervised multi-class classification
problem, we are given a dataset D = {xi,yi}Ni=1 of N input-output pairs with inputs

2.1 Continual learning 9

xi ∈ RD and outputs yi, one-hot encoded vectors of K classes. We optimise the batch loss,

ℓBatch(w) =
N∑

i=1

ℓ(yi,h(fw(xi)))

︸ ︷︷ ︸
=Nℓ̄(w)

+R(w), (2.1)

where ℓ(yi,h(fw(xi))) is the loss for a datapoint {xi,yi} when passed through a neural
network fw(x) ∈ RK with weights w ∈ RP , and R(w) denotes a regularisation function,
usually the L2-regulariser,R(w) = 1

2
δw⊤w, where δ is the regularisation strength. The loss

ℓ(y,h(f)) is a differentiable loss function (such as cross-entropy) between an output y and
the neural network output h(f), where h is an inverse link function.

For binary classification with y ∈ {0, 1}, the loss function is ℓ(y, h(f)) = −y log σ(f)−
(1− y) log (1− σ(f)), where σ(f) = 1/

(
1 + e−f

)
is the sigmoid function. This extends to

multiclass classification with one-hot encoded labels y. For a generic loss function derived
from a Generalised Linear Model (GLM), the loss becomes ℓ(y,h(f)) = − log p(y |f).
For binary classification in a GLM, we use a Bernoulli distribution, and h(f) = σ(f).

In our continual learning scenario, we assume that T tasks arrive sequentially. Each task t
has its own datasetDt = {xi,yi}Nt

i=1, consisting of Nt datapoints. We assume we are allowed
to train for as long as we want on Dt, but we do not have access to all of D1:t−1. Our ideal
loss function is the joint loss over all tasks up to and including task T (we earlier made this
assumption explicitly),

ℓJointT (w) =
T∑

t=1

∑

i∈Dt

ℓ(yi,h(fw(xi))) +R(w). (2.2)

We call this the Joint Tasks loss, and we could also describe it as retraining-from-scratch on
all data, or the full-batch loss over all data. Optimising this loss requires access to all data
(from all tasks) at once, and is therefore not possible in continual learning. Note that when
summing over a dataset, we should write (xi,yi) ∈ Dt, but we slightly abuse notation by
writing the simpler i ∈ Dt instead.

10 Background

Relationship to other learning scenarios

There are many learning scenarios that aim to transfer information between datasets, par-
ticularly in the low-data regime. We now quickly summarise their relationship to continual
learning.

Multitask learning aims to learn multiple tasks at the same time, and relates to the Joint
Tasks loss described earlier. Often, the tasks will be very different, potentially with different
loss functions (such as classification and regression losses). Transfer learning and domain
adaptation leverage information from a source task (the first task) to maximise performance
on the new task (the second task). There can potentially be many different source tasks. The
aim is to maximise forward transfer, and backward transfer or catastrophic forgetting are not
important. Few-shot learning aims to quickly adapt to a few examples of new classes or
data, and again backward transfer or catastrophic forgetting are not important. A common
recent strand of methods approach this by meta-learning on a much larger dataset, instead of
achieving adaptation in a purely online fashion. Curriculum learning re-orders datapoints
when training a model on a dataset, aiming to present easier examples first, so that overall
performance on the dataset is improved. In active learning, an algorithm chooses a set
of datapoints to label from a large unlabelled set. The typical motivation is that obtaining
supervised labels can be expensive, and so we should only label the most important datapoints.
The algorithm then adapts to the new data, usually using the Joint Tasks loss, before choosing
the next set of datapoints to be labelled. Federated learning assumes that the dataset is split
spatially, and stored across many different clients. Datapoints are not allowed to leave the
clients (perhaps due to security considerations), and we want to train a global model over all
data in a communication-efficient manner. Each client’s datapoints are allowed to be visited
many times and in any order. Federated learning can be seen as a generalisation of continual
learning (Bui et al., 2018): in continual learning, each client’s (/task’s) datapoints can only
be visited once, and the clients must be seen in a specific order.

2.2 Probabilistic continual learning

Probabilistic machine learning uses probability distributions to quantify belief about objects
of interest. In a parametric setting, where the model is defined by parameters w, the prior
p(w) encodes subjective or previous information, the likelihood p(D|w) defines how the
parameters are related to the observed data D, and we perform inference to find our posterior

2.2 Probabilistic continual learning 11

belief p(w|D) using Bayes’ rule,

p(w|D) = p(D|w)p(w)

p(D) , (2.3)

where p(D) =
∫
p(D|w) p(w) dw is the marginal likelihood of the model. Note that in

supervised learning, where the dataset D consists of inputs X and labels y, we should write
the likelihood as p(y|w,X), but we slightly abuse notation by writing p(D|w). Throughout
this thesis, we will use a turquoise colour to keep track of terms coming from the likelihood
p(D|w), and a purple colour to keep track of terms coming from a prior p(w). Note that the
negative log likelihood of a datapoint is also the loss over the datapoint with a model fw,
− log p(yi|w,xi) = ℓ(yi,h(fw(xi))).

The concept of updating the prior into a posterior distribution using new data is ideal for
continual learning. The prior distribution holds our knowledge about previous data, and is
combined with new data to give us a posterior distribution. Mathematically, we can see this
by writing Bayes’ rule for just task 1, and then Bayes’ rule for both tasks 1 and 2,

Task 1: p1(w|D1) ∝ p(D1|w) p(w),

Tasks 1 & 2: p2(w|D1,D2) ∝ p(D2|w) p(D1|w) p(w)︸ ︷︷ ︸
∝ p1(w|D1)

∝ p(D2|w) p1(w|D1). (2.4)

The likelihood term over the two datasets p(D1,D2|w) decomposes as we assume data-
points are independently observed. By replacing the last two terms in the second line with
the posterior after task 1, we obtain Equation 2.4. This equation is exactly Bayes’ rule, and
is the same as Equation 2.3 except with the prior p(w) replaced with the previous posterior
p1(w|D1). By using the previous posterior, we do not directly need to store past data D1, as
all relevant information is stored in the distribution over model parameters p1(w|D1).

This generalises for task t− 1 and task t,

pt(w|D1:t) ∝ p(Dt|w) pt−1(w|D1:t−1). (2.5)

If we could perfectly compute Equation 2.5 for every new dataset Dt, we would have
solved continual learning.1 Additionally, we could also gain many other benefits, such as
correctly-calibrated uncertainties, robustness to overfitting, and good performance in the
low-data regime (MacKay, 1992; Mackay, 1995; Neal, 1995; Gal, 2016).

1This assumes that a Bayesian solution over all data D1:T is our ideal solution (this is similar to our
assumption earlier that the Joint Tasks loss is our ideal loss function).

12 Background

Unfortunately, Bayes’ rule is intractable for most models (especially neural networks),
and we need to make approximations. These approximations introduce errors, and these
errors can add up as we recursively apply Bayes’ rule. Our big challenge in probabilistic
continual learning is to make approximations that minimise these errors, and we will discuss
this throughout the thesis.

Approximations to Bayes’ rule can be broadly split into Monte Carlo approaches and
distributional approaches.

Monte Carlo approaches: These sample from the posterior, and have the desirable prop-
erty that with enough compute power, the samples are from the exact posterior distribution.
However, only having access to collections of (potentially weighted) point masses poses a
problem in continual learning, where we set our new prior to be the previous posterior. Our
number of samples would get smaller and smaller as we recursively approximate a set of point
masses with another set of point masses. The closest method to such an idea is Sequential
Monte-Carlo (Liu and Chen, 1998; Doucet et al., 2001), but it is not straightforward to apply
such techniques outside of time-series models.

Distributional approaches: These approximate the Bayesian posterior by introducing
an approximate posterior q(w) ≈ p(w|D) that belongs to a simpler variational family, such
as Gaussian distributions. The approximate posterior typically has support everywhere (as
opposed to Monte Carlo approaches). By dealing with these simpler distributions, we can
easily calculate (an approximation to) our model evidence, which previously involved a
difficult (often intractable) integration. The Laplace approximation is one such approach.
We first train for a Maximum-A-Posteriori (MAP) estimate of model weights (such as by
optimising Equation 2.1), and then use a Gaussian approximate posterior, with mean given
by the MAP estimate, and covariance given as the Hessian of the loss around the mean (with
a prior term). Variational inference is another distributional approach, and we discuss it next.

2.2.1 Variational inference

We now describe Variational Inference (VI) (Blei et al., 2017; Zhang et al., 2019), which
we will use extensively in this thesis. VI calculates the parameters of the approximate
posterior q(w) by minimising the Kullback-Leibler (KL) divergence (Kullback and Leibler,
1951) between the approximate posterior and the true posterior, KL [q(w)∥p(w|D)]. We can
re-write this optimisation as minimising the negative Evidence Lower Bound (ELBO),

LELBO(q) = Eq(w) [− log p(D|w)]︸ ︷︷ ︸
Likelihood term

+Eq(w)

[
log

q(w)

p(w)

]

︸ ︷︷ ︸
KL-to-prior term

, (2.6)

2.2 Probabilistic continual learning 13

where we note the KL-to-prior term can also be written as KL [q(w) ∥ p(w)]. .
In addition, we assume that q(w) belongs to an exponential family distribution in this

thesis. Exponential family distributions include Gaussian distributions, which we will use
extensively. An exponential family distribution over parameters w with natural parameters η
takes the following form,

q(w|η) = qη(w) = h(w) exp[⟨η,φ(w)⟩ − A(η)], (2.7)

where φ(w) is the vector of sufficient statistics, ⟨·, ·⟩ is an inner product, A(η) is the log-
partition function and h(w) is the base measure. We also assume a minimal exponential
family, meaning the sufficient statistics are linearly independent. This results in a one-to-one
mapping between the natural parameters η and the mean parameters m = Eqη(w)[φ(w)],
and also means that m = ∇ηA(η).

When we combine variational inference (Equation 2.6) for exponential family distribu-
tions (Equation 2.7) with Bayes’ rule for continual learning (Equation 2.5), we get variational
inference for continual learning,

Lt(ηt) = Eqηt (w) [− log p(Dt|w)] + Eqηt (w)

[
log

qηt(w)

qηt−1(w)

]
, (2.8)

where we are learning the parameters ηt of our current approximate posterior qηt(w), and
qηt−1(w) is the previous approximate posterior, and is our prior in the ELBO.

This thesis extensively uses Equation 2.8. In Chapter 3 we directly optimise this equation
in weight-space (or parameter-space). This is how Equation 2.8 is currently written, as it is
only in terms of ηt and w. Then in later chapters we consider replacing some terms with
function-space regularisation.

Variational Continual Learning (VCL) (Nguyen et al., 2018)

Variational Continual Learning (VCL) applies Equation 2.8 on neural networks in weight-
space. Running on neural networks requires additional approximations, and VCL optimises
the ELBO with the Bayes-By-Backprop (BBB) (Blundell et al., 2015) method, a popular
method for running (approximate) VI on neural networks. This involves (i) using a mean-field
Gaussian variational approximating family qηt(w) = N (w;µt,Σt), where Σt is a diagonal
matrix, (ii) using a Monte-Carlo approximation of the likelihood term, and (iii) analytically
calculating the KL-to-prior term, which is possible as both terms in the KL divergence are

14 Background

mean-field multivariate Gaussian distributions. This gives the objective,

LVCL
t (ηt) =

∑

i∈Dt

1

S

S∑

s=1

[
− log p(yi|w(s),xi)

]
+ Eqηt (w)

[
log

qηt(w)

qηt−1(w)

]

︸ ︷︷ ︸
Analytically calculated

, (2.9)

where we have used independence of the likelihood term, assumed supervised learning on
the dataset Dt = {xi,yi}Nt

i=1, and w(s) ∼ qηt(w) are samples from the current approximate
posterior. VCL is a weight-prior approach as the prior qηt−1(w) is always in weight-space.

VCL was found to perform very well on some continual learning benchmarks. Nguyen
et al. (2018) applied VCL to both discriminative models and generative models, but in this
thesis we only look at discriminative models. In Chapter 3 we start by improving VCL’s
performance and analysing why it performs well.

VCL + Coreset

Nguyen et al. (2018) also describe the VCL+Coreset method, which stores a subset of
datapoints from each task, using them later in order to improve VCL’s performance. Here, a
coreset refers to a subset of the whole dataset, with datapoints chosen using any method (for
example, randomly choosing datapoints).

Before training on data from a new task t, a coreset Ct is produced by selecting datapoints
from the current dataset Dt and the old coreset Ct−1. The coreset Ct is set aside, and the
VCL+Coreset algorithm trains on Ct−1 ∪ Dt\Ct to give an approximate posterior q̄ηt(w),
which approximates the posterior p(w|D1:t\Ct). We have used the notation D1:t\Ct to
indicate removing the points in Ct from D1:t. When it comes to test-time, we first train on
just Ct to help mitigate forgetting on datapoints in Ct. This step uses the VCL objective
function (Equation 2.9) except with q̄ηt(w) as the prior and Ct as the dataset.

When training on a new task, a new coreset Ct is chosen, and q̄ηt(w) is used as the prior.
This ensures that, when it comes to making predictions, a correct qηt(w) ≈ p(w|D1:t) is
always used, with no overcounting (or undercounting) of data.

This way of using a coreset can also be seen as a message-passing scheme where the
update for coreset datapoints is scheduled after updating on the other data (Winn and Bishop,
2005; Bui et al., 2018).

2.2.2 Natural-gradient variational inference

In this section we look at performing variational inference with natural-gradient updates. We
motivate why we might want to do this, and derive the VOGN algorithm.

2.2 Probabilistic continual learning 15

Motivation

Bayes-By-Backprop (and VCL) optimise Equation 2.6 directly for the parameters of their
variational approximating family, which for mean-field Gaussians is the mean µ and diagonal
covariance matrix Σ. But this has been very difficult to scale to large neural networks (such
as ResNets (He et al., 2016)). This is because optimisation is restrictively slow, requiring
many passes through the data. As we will see in Chapter 3, this is especially true in continual
learning, where training for a long time is important to improve results.

Natural-gradient (NG) update steps are a principled way of incorporating the information
geometry of the distribution being optimised (Amari, 1998). By incorporating the geometry
of the distribution, we expect to take gradient steps in much better directions, speeding up
optimisation. We can see this by re-writing standard-gradient descent, and comparing to
natural-gradient descent.

At every iteration j, standard-gradient descent takes a step in the direction of the gradient,
ηj+1 ← ηj−ρj

[
∇̂ηL(ηj)

]
, where ρj is the learning rate, j indexes iteration, and ∇̂ indicates

a stochastic estimate of the gradient ∇. When we re-write this update equation, and compare
to the NGD update step, we immediately see a difference,

Standard-gradient descent:

ηj+1 ← argmin
η

η⊤
[
∇̂ηL(ηj)

]
+

1

2ρj
||η − ηj||2. (2.10)

Natural-gradient descent:

ηj+1 ← argmin
η

η⊤
[
∇̂ηL(ηj)

]
+

1

2ρj
(η − ηj)

⊤ [F (ηj)] (η − ηj), (2.11)

where the Fisher Information Matrix (FIM) F (η) is a Riemannian metric induced by the
exponential family qη(w), defined as F (η) = Eqη(w)

[
∇η log qη(w)∇η log qη(w)⊤

]
.

Standard-gradient descent moves in the direction of the gradient while remaining close to
the previous parameters ηj in Euclidean space, while natural-gradient descent remains close
by using a Riemannian metric. By incorporating the information geometry in this way, we
expect natural-gradient to take steps in better directions. See Figure 2.1 for intuition on how
Euclidean distances may not be ideal.

Overall, (stochastic) natural-gradient descent has the update step (consider solving Equa-
tion 2.11),

ηj+1 ← ηj − ρj F (ηj)
−1
[
∇̂ηL(ηj)

]
. (2.12)

16 Background

0 10

(a) Two Gaussians with mean 1 and 10 re-
spectively, and variances equal to σ1, have
Euclidean distance = 10.

0 10

(b) Same as Figure (a) on the left, except now
with variance σ2 > σ1. They still have Eu-
clidean distance = 10.

Figure 2.1: This figure is reproduced from Khan and Nielsen (2018), illustrating how
Euclidean distances are a poor metric to measure distances between distributions. The
distributions in Figure (a) on the left barely overlap, while the distributions in Figure (b) on
the right are much closer, and yet the Euclidean distances are the same.

We can simplify this update step by avoiding calculating the Fisher Information Matrix
directly, using a property of minimal exponential families (Hoffman et al., 2013; Khan and
Lin, 2017),

∇ηL(ηj) = [∇ηmj]∇mL∗(mj) =
[
∇2

ηηA(ηj)
]
∇mL∗(mj) = F (ηj)∇mL∗(mj),

(2.13)

where L∗(mj) is the same function as L(ηj) except written as a function of the mean
parameters m. We also used the equivalence F (η) = ∇2

ηηA(η) for minimal exponential
families. This leads to our final simplified natural-gradient descent update step,

ηj+1 ← ηj − ρj
[
∇̂mL∗(mj)

]
. (2.14)

We will use this update to derive algorithms next.

Natural-gradient VI for neural networks

We now derive Variational Online Gauss-Newton (VOGN), a natural-gradient variational
inference (NGVI) algorithm for neural networks. We follow the appendices of Khan et al.
(2018) to derive VOGN, which builds on Khan and Lin (2017). In Chapter 3 we will scale
VOGN to large datasets and architectures, which standard-gradient VI methods struggle to
scale to. There is a slightly different derivation to similar algorithms in Zhang et al. (2018),
where they compare with natural-gradients for maximum-likelihood estimation. Instead, the
derivation presented here starts with the variational objective directly.

2.2 Probabilistic continual learning 17

We start our derivation by plugging the VI objective function (Equation 2.6) into the
natural-gradient update step (Equation 2.14). Let the prior be an exponential family (Equa-
tion 2.7) with natural parameters η0. We first note that the KL-to-prior term in the ELBO can
be simplified,

∇m [KL-to-prior term] = ∇m Eqη(θ)
[
φ(θ)⊤(η − η0)− A(η) + const

]

= ∇m

[
m⊤(η − η0)

]
−∇mA(η)

= η − η0 + [∇mη]⊤ m−∇mA(η)

= η − η0 + F(η)−1m− F(η)−1m

= η − η0. (2.15)

The third line follows using the product rule, and the fourth line uses∇m(·) = F(η)−1∇η(·)
(Equation 2.13) and the symmetry of the Fisher Information Matrix. Plugging the VI objective
function (Equation 2.6) into the natural-gradient update step (Equation 2.14) gives,

ηj+1 ← ηj − ρj
(
∇mEqηj (w) [− log p(D|w)] + (ηj − η0)

)

∴ ηj+1 ← (1− ρj)ηj + ρj

(
η0 +∇m Eqηj (w) [log p(D|w)]

︸ ︷︷ ︸
Fj

)
. (2.16)

We now consider a Gaussian approximating family, qη(w) = N (w;µ,Σ). The minimal
representation for a Gaussian family has two components to its natural parameters and mean
parameters,

η(1) = Σ−1µ, η(2) = −1
2
Σ−1, (2.17)

m(1) = µ, m(2) = µµ⊤ +Σ. (2.18)

Let the prior be a Gaussian, p(w) = N (w;µ0,Σ0). We can therefore write the prior
natural parameters as η(1)

0 = Σ−1
0 µ0, η

(2)
0 = −1

2
Σ−1

0 . We can also simplify the likelihood
term ∇mFj to be in terms of µ and Σ instead of m, using the chain rule (Opper and
Archambeau, 2009; Khan and Lin, 2017),2

∇m(1)F = ∇µF − 2 [∇ΣF]µ, (2.19)

∇m(2)F = ∇ΣF . (2.20)

2These chain rule equations hold for any function of w, and are not specific to F .

18 Background

This allows us to write down our NGVI updates (Equation 2.16) for the parameters of a
Gaussian, in terms of the prior parameters and the data Fj ,

Σ−1
j+1 ← (1− ρj)Σ−1

j + ρj(Σ
−1
0 − 2∇ΣFj), (2.21)

Σ−1
j+1µj+1 = (1− ρj)Σ−1

j µj + ρj(Σ
−1
0 µ0 +∇µFj − 2[∇ΣFj]µj)

=
[
(1− ρj)Σ−1

j + ρj(Σ
−1
0 − 2∇ΣFj)

]
︸ ︷︷ ︸

=Σ−1
j+1, by Equation 2.21

µj + ρj(∇µFj −Σ−1
0 (µj − µ0))

∴ µj+1 ← µj − ρjΣj+1(−∇µFj +Σ−1
0 (µj − µ0)). (2.22)

Finally, we use Bonnet’s and Price’s theorems (Opper and Archambeau, 2009; Rezende
et al., 2014) to calculate terms involving the data Fj , allowing us to move the derivatives
inside the expectation,

∇µFj = Eqηj (w) [∇w log p(D|w)] = −Eqηj (w) [Ng(w)] , (2.23)

∇ΣFj =
1

2
Eqηj (w)

[
∇2

ww log p(D|w)
]

= −1

2
Eqηj (w) [NH(w)] , (2.24)

where we define the per-example gradient g(w) = − 1
N
∇w log p(D|w) and the per-example

Hessian H(w) = − 1
N
∇2

ww log p(D|w), where we earlier defined the size of the dataset
N = |D|. Like in Bayes-By-Backprop, we calculate these at a single Monte-Carlo sample
from the current approximate posterior wj ∼ qηj

(w). It is possible to average over many
Monte-Carlo samples, but we write for a single sample here for ease of notation.

We also use a Gauss-Newton approximation of the Hessian (Schraudolph, 2002; Graves,
2011; Martens, 2020),3 H(wj) = − 1

N
∇2

ww log p(D|w) ≈ 1
N

∑
i∈D gi(wj)gi(wj)

⊤, where
gi(wj) = −∇w log p(yi|wj,xi). The Gauss-Newton matrix has some nice properties, such
as being positive semi-definite (which we require), and becoming a better approximation of
the Hessian as we train for longer and the training error reduces.

Finally, in order to scale this to even small neural networks, we make additional ap-
proximations and simplifications: (i) we use a stochastic minibatch Bj of size B, with
average gradient ĝ(wj) =

1
B

∑
i∈Bj

gi(wj); (ii) we re-parameterise the update equations to
be in terms of Sj = (Σ−1

j −Σ−1
0)/N ; (iii) like in Bayes-By-Backprop, we use mean-field

3A side note on Generalised Gauss-Newton (GGN) approximations: GGN approximations are a general
class of techniques for approximating the Hessian. Technically, we are using a GGN approximation with a
non-standard parameterisation of the loss function (for example, see Equation 6.17 in Bottou et al. (2018)). This
turns out to be mathematically equivalent to the empirical Fisher matrix. We simply call this a Gauss-Newton
approximation, but we could also call it a Fisher approximation or a GGN approximation. Later in Chapter 4,
we will see a different GGN parameterisation in the VOGGN algorithm (Khan et al., 2019).

2.3 Approaches to continual learning 19

Gaussians, Sj = diag(sj), where diag(s) denotes a diagonal matrix with s as the diagonal,
allowing the diagonal Gauss-Newton matrix to be calculated as H(w) ≈ 1

B

∑
i∈Bj

(gi(wj)
2);

(iv) we use separate learning rates αj, βj in the update equations for µj, sj , instead of a
single shared ρj .

These changes lead to the VOGN algorithm (Khan et al., 2018), where to reduce clutter
we have also assumed a zero-mean constant-variance Gaussian prior, µ0 = 0, Σ0 = δ−1I,

µj+1 ← µj − αj
ĝ(wj) + δ̃µj

sj+1 + δ̃1
, (2.25)

sj+1 ← (1− βj)sj + βj
1

B

∑

i∈Bj

(
gi(wj)

2
)
, (2.26)

where δ̃ = δ/N , 1 is a vector of 1s, and all operations are element-wise. Khan and Nielsen
(2018) showed that this algorithm can converge much quicker than Bayes-By-Backprop to a
similar solution on small multi-layer-perceptrons on some UCI data (Dua and Graff, 2017).
In Section 3.2 we will scale this to much larger neural networks and datasets.

2.3 Approaches to continual learning

We have introduced continual learning, and have looked the main methods we will use in
this thesis to approach the problem: probabilistic continual learning, usually via variational
inference. We now briefly summarise other approaches, and how they attempt to tackle the
continual learning problem (the reader is also referred to Parisi et al. (2019) for a review).

Current methods for continual learning can be classified into three orthogonal ap-
proaches: regularisation-based approaches regularise parameter updates by penalising
against changes in ‘important’ parameters for previous tasks, rehearsal/memory-based
approaches rehearse some past data or pseudo-data, and architecture-based approaches
change the model architecture or mask model weights. These approaches are complementary
and they can be combined, and recent works tend to do so in order to combine advantages of
different approaches. We summarise many related works within these three approaches in
Figure 2.2, and next discuss a few representative methods in more detail. This thesis discusses
regularisation-based approaches in Chapter 3, and then discusses hybrid regularisation and
rehearsal-based approaches in Chapters 4 and 5.

20 Background

Regularisation
based

Rehearsal
based

Architecture
based

Laplace Propagation

VCL, GVCL

SI
MIR

iCARL
DGR

P&C

GVCL+FiLM

VCL+Coreset
GEM, A-GEM

FROMP

PNN

HAT
CLNP

PathNet

FRCL

PackNet

RWalk

Online K-FAC

LwF

GDM
FearNet

MAS
OWM

DGM

DEN

CLAW

RCL

Replay

BI-R

AR1

Expert Gate

DER

EWC, Online EWC

MER
LF

NCL

SupSup

Figure 2.2: Methods for continual learning can be classified into three orthogonal
approaches, shown here using a Venn diagram. These approaches are complementary and
they can be combined, leading to methods that belong to more than one approach. No
approach yet combines all three approaches (the centre of the diagram).

Laplace Propagation (Smola et al., 2004); EWC: Elastic Weight Consolidation (Kirkpatrick et al.,
2017); Online EWC (Schwarz et al., 2018); SI: Synaptic Intelligence (Zenke et al., 2017); LwF: Learning
without Forgetting (Li and Hoiem, 2016); VCL(+Coreset): Variational Continual Learning (+ Coreset)
(Nguyen et al., 2018); GVCL(+FiLM): Generalized Variational Continual Learning (+ FiLM layers) (Loo
et al., 2021); RWalk: Riemannian Walk (Chaudhry et al., 2018); LF: Less-Forgetful learning (Jung et al.,
2018); Online K-FAC (Ritter et al., 2018); MAS: Memory Aware Synapses (Aljundi et al., 2018); OWM:
Orthogonal Weights Modification (Zeng et al., 2019); NCL: Natural Continual Learning (Kao et al., 2021);
GEM: Gradient Episodic Memory (Lopez-Paz and Ranzato, 2017); A-GEM: Averaged GEM (Chaudhry et al.,
2019); MER: Meta-Experience Replay (Riemer et al., 2019); FRCL: Functional Regularisation for Continual
Learning (Titsias et al., 2020); FROMP: Functional Regularisation of Memorable Past (Pan et al., 2020);
Replay (or Experience Replay) (Ratcliff, 1990; Robins, 1995; Rolnick et al., 2019); iCARL: Incremental
Classifier and Representation Learning (Rebuffi et al., 2017); DGR: Deep Generative Replay (Shin et al.,
2017); MIR: Maximal Interfered Retrieval (Aljundi et al., 2019a); BI-R: Brain-Inspired Replay (van de Ven
et al., 2020); DER: Dark Experience Replay (Buzzega et al., 2020); P&C: Progress & Compress (Schwarz
et al., 2018); DEN: Dynamically Expandable Networks (Yoon et al., 2018); AR1 (Maltoni and Lomonaco,
2019); CLAW: Continual Learning with Adaptive Weights (Adel et al., 2020); FearNet (Kemker and Kanan,
2018); GDM: Growing Dual-Memory architecture (Parisi et al., 2018); DGM: Dynamic Generative Memory
(Ostapenko et al., 2019); PNN: Progressive Neural Networks (Rusu et al., 2016); Expert Gate (Aljundi et al.,
2017); PathNet (Fernando et al., 2017); PackNet (Mallya and Lazebnik, 2018); HAT: Hard Attention to the
Task (Serra et al., 2018); CLNP: Continual Learning via Neural Pruning (Golkar et al., 2019); RCL: Reinforced
Continual Learning (Xu and Zhu, 2018); SupSup: Supermasks in Superposition (Wortsman et al., 2020).

2.3 Approaches to continual learning 21

Laplace Propagation (Smola et al., 2004), Elastic Weight Consolidation (EWC) (Kirk-
patrick et al., 2017) and Online EWC (Schwarz et al., 2018). These are probabilistic
weight-prior approaches that use the Laplace approximation. After training on a task, they ap-
proximate the Bayesian posterior using a Laplace approximation, approximating the Hessian
of the neural network with the (diagonal) Fisher information matrix. Laplace Propagation
(Smola et al., 2004), when applied to continual learning, calculates the new approximate pos-
terior’s precision as the sum of the current Hessian and previous precision, Σ−1

t = Ht+Σ−1
t−1,

where the initial precision Σ−1
0 is the prior precision (the L2-regulariser δ), and Ht is the

approximate Hessian calculated over data Dt using converged weights wt. When training on
a new task for parameters w, the regulariser is then 1

2
(w −wt−1)

⊤Σ−1
t−1(w −wt−1). Smola

et al. (2004) did not apply to neural networks.
EWC (Kirkpatrick et al., 2017) achieves strong results on neural networks, using well-

known identities of the Fisher information matrix to ease computation of Ht. EWC uses a
separate regulariser per task, requiring storing many wt and Σ−1

t = Ht. Additionally, EWC
upweights the regularisation term by a hyperparameter λ, which is often very large to obtain
good overall performance. By using separate regulariser per task, EWC does not follow the
online Bayesian update (Huszár, 2018), unlike Laplace Propagation. Online EWC (Schwarz
et al., 2018) uses an online update for Σ−1

t like in Laplace Propagation, but they also multiply
Σ−1
t by a scalar hyperparameter to improve performance.

Synaptic Intelligence (SI) (Zenke et al., 2017). SI uses a different method to compute
the importance of each parameter, looking at each parameter’s contribution to the decrease
in loss during training. This can be seen as a different way of calculating the diagonal Σ−1

t

from Laplace approximations. Riemannian Walk (Chaudhry et al., 2018) combines Online
EWC and SI. Although these methods perform well, the variational Bayesian approach of
Nguyen et al. (2018) (discussed in Section 2.2.1) performs better on many benchmarks.

Learning without Forgetting (LwF) (Li and Hoiem, 2016). LwF is a regularisation-
based approach that adds a knowledge distillation loss term during training. This term is
calculated on inputs from the current task Dt, with soft labels given by passing these inputs
through the model trained on the previous task, wt−1. Although LwF performs well when
tasks are similar, it can perform worse when tasks are very different. We discuss LwF further
in Section 5.2.

Generalised VCL + FiLM layers (GVCL+FiLM) (Loo et al., 2021). As discussed in
Section 2.2.1, VCL is a weight-prior approach that uses the variational objective. Generalised

22 Background

VCL introduces a hyperparameter in front of the KL-to-prior term in VCL (see Equation 2.9).
They show that this modification to VCL recovers Online EWC (Schwarz et al., 2018) as a
limiting case, allowing for interpolation between the two methods. This leads to increased
performance on several benchmarks. Loo et al. (2021) also introduce task-specific FiLM
layers (Perez et al., 2018) to take advantage of and reduce pruning in variational Bayesian
neural networks, finding that this also leads to improved performance at the cost of a slightly-
increased memory. By introducing FiLM layers, GVCL+FiLM is a hybrid regularisation and
architecture-based approach.

Progressive neural networks (PNN) (Rusu et al., 2016). PNN is an architecture-based
approach. It trains a new neural network for each new task, using connections between old
tasks’ networks and the current task’s network to incorporate forward transfer. However, the
overall model grows linearly in size with task, and PNN is therefore not efficient in terms
of model capacity. It also does not have potential for backward transfer. It does, however,
obtain good results on many benchmarks.

PathNet (Fernando et al., 2017) and PackNet (Mallya and Lazebnik, 2018). PathNet
and PackNet can be seen as a significantly more capacity-efficient alternatives to PNN, as
they use a single neural network only. They learn a mask over network weights during
training, and then fix these weights for training on future tasks. They therefore do not have
potential for backward transfer (like PNN), and this hurts how generally-applicable they are
to different problems. They differ from each other in their training procedures for learning
masks.

Progress & Compress (P&C) (Schwarz et al., 2018). P&C uses concepts from Pro-
gressive Neural Networks and EWC, and is a hybrid regularisation and architecture-based
approach. They train an active column on each new task (with some layerwise connections
to the ‘knowledge base’), which is then distilled into a knowledge base. This distillation step
uses Online EWC to prevent catastrophic forgetting.

Replay (or experience replay) (Ratcliff, 1990; Robins, 1995). Replay is the simplest
rehearsal-based approach. It simply stores a subset of past data in memory, and rehearses
that data during training on future tasks. It is often used as a baseline when comparing
rehearsal-based approaches. We discuss Replay and variants of Replay in Section 4.1.

Deep Generative Replay (DGR) (Shin et al., 2017). Inspired by the generative nature of
the hippocampus in the brain, DGR trains a generative model on previous tasks’ data, and

2.4 Measuring performance in continual learning 23

uses it to generate pseudo-datapoints that are replayed when training future tasks. However,
using generative models limits the maximum size of datasets this method can scale to. As
DGR uses rehearsal of (pseudo-)data, it is a rehearsal-based approach to continual learning.

Gradient Episodic Memory (GEM) (Lopez-Paz and Ranzato, 2017). GEM uses a sub-
set of past memory to constrain optimisation when training on new data. Specifically, they
constrain optimisation such that the loss over past tasks (approximated by using a subset
of past data) does not worsen during optimisation. GEM performs especially well in the
setting where there is a stream of data, with each datapoint only seen once. GEM is a hybrid
regularisation and rehearsal-based approach.

2.4 Measuring performance in continual learning

In this section, we introduce the continual learning metrics and benchmarks that we will use
to compare different algorithms throughout the thesis. We start by looking at non-continual
baselines and metrics. We then introduce the benchmarks we will use.

2.4.1 Non-continual baselines

Throughout this thesis, we will compare to two non-continual baselines: ‘Joint Tasks’ and
‘Separate Tasks’. These baselines provide insight on the difficulty of our benchmarks and
how well our continual learning methods are doing.

Joint Tasks baseline. This baseline was previously introduced in Equation 2.2. It assumes
we have access to data from all tasks at once (hence breaking the desiderata of continual
learning), and requires training a specific method on all data at once, with just a single
network. We assume this is the upper-bound on performance on our benchmarks, and our
aim in this thesis is to perform close to this baseline while not storing all the past data or
being as expensive to train. We can also call this the retraining-from-scratch method.

Separate Tasks baseline. This baseline trains separate networks on each task in the con-
tinual learning benchmark. There is therefore no potential for forward or backward transfer
of information between tasks, as we train on each task’s data separately. We will see that,
on some continual learning benchmarks, Joint Tasks and Separate Tasks perform similarly,
indicating that there is no real potential for transfer between tasks. On other continual
learning benchmarks, Joint Tasks outperforms Separate Tasks. In such cases, we also hope

24 Background

that our continual learning algorithms will outperform the Separate Tasks baseline, by using
forward and/or backward transfer.4

Other offline baselines. There are other possible non-continual learning baselines that can
be useful to compare against. We will not consider other baselines in this thesis as the two we
have introduced are the most important. However, we could also consider more fine-grained
baselines, such as one that trains a separate network for each task t on all data up to and
including the latest task (each network is trained on D1:t). This baseline would tell us the
maximum possible transfer possible for each task when compared with the Separate Tasks
baseline.

2.4.2 Metrics

We will use three metrics to analyse methods’ performance on benchmarks: average accuracy,
forward transfer, and backward transfer. Average accuracy measures overall performance,
and forward/backward transfer provide insight into how the method achieves its performance.

Average accuracy (ACC). The most important metric that we consider in this thesis is
the average accuracy across all tasks in the continual learning benchmark, calculated after
training on the last task. It is defined in Equation 2.27, and higher is better.

Backward Transfer (BWT). We use the BWT metric defined in Lopez-Paz and Ranzato
(2017), which captures the difference in accuracy obtained when a task is first trained and
its accuracy after the final task. Higher is better and quantifies performance gain from
backward transfer versus performance loss due to forgetting or interference. BWT is defined
in Equation 2.28. When methods catastrophically forget information, we expect a large
negative BWT.

Forward transfer (FWT). We define a forward transfer metric as the average improvement
in accuracy on a new task over a separate model trained only on that task. This measures how
well the method uses previously seen knowledge to improve classification accuracy on newly
seen tasks. FWT is defined in Equation 2.29, and a higher value is better. Note that different
algorithms can get different accuracies when separately trained on a single task, and this can
complicate comparing FWT between different algorithms.

4It is possible that Joint Tasks has lower performance if model capacity is not large enough, as it is trained
on significantly more data than a single Separate Tasks model. However, this is not the case for the benchmarks
we consider in this thesis.

2.4 Measuring performance in continual learning 25

Other works have used different definitions of forward transfer, for example Lopez-Paz
and Ranzato (2017) defined forward transfer in terms of zero-shot performance. It might
also be interesting to define forward transfer as the ability of a method to leverage previous
information to train quicker on a new task, measuring the speed of convergence on a new
task when compared with a model trained only on that task. However, this depends on
hyperparameters (such as the learning rate) and can be hard to define. We therefore do not
further consider this alternate definition.

Mathematical definitions of metrics. Let Ri,j be the classification accuracy of the model
on task j after training on task i. Let Rsep

j be the classification accuracy of a separate model
trained only on task j. Then, our metrics are defined as,

Average accuracy, ACC =
1

T

T∑

j=1

RT,j (2.27)

Backward Transfer, BWT =
1

T − 1

T−1∑

j=1

RT,j −Rj,j, (2.28)

Forward Transfer, FWT =
1

T − 1

T∑

j=2

Rj,j −Rsep
j . (2.29)

2.4.3 Benchmarks

This section discusses the benchmarks we use to test our continual learning algorithms
throughout this thesis. There have been many benchmarks proposed in the community,
especially recently. We focus on image classification benchmarks with MNIST (LeCun and
Cortes, 2010) and CIFAR (Krizhevsky and Hinton, 2009). Some recent works have scaled to
larger datasets such as OmniGlot (Lake et al., 2015; Schwarz et al., 2018), TinyImageNet
(Stanford, 2021; Lange et al., 2021), CUB (Wah et al., 2011; Chaudhry et al., 2019), Core50
(Lomonaco and Maltoni, 2017) and ImageNet (Deng et al., 2009). Other works focus
on continual learning in Reinforcement Learning (RL), sometimes split in separate tasks
(such as with Atari games (Bellemare et al., 2015)), or more generally as continual RL (see
Khetarpal et al. (2020) for a review). We do not consider RL in this thesis, although it would
be interesting to apply our continual learning methods in model-based RL for continual
learning.

We now describe our four benchmarks. We use a toy benchmark called Toy-Gaussians,
and three common image classification continual learning benchmarks: Split MNIST, Per-
muted MNIST and Split CIFAR.

26 Background

Class 1 datapoint

Class 2 datapoint

Task 1 After Task 2 After Task 5

Figure 2.3: Each task in Toy-Gaussians introduces data in a new region of input space. We
are always performing binary classification between the blue circles and red squares. The
left plot shows the data in Task 1, where we need to learn a simple classification boundary.
The middle plot shows data from Task 1 and also new data from Task 2; the new datapoints
are in a different region of input space. The right plot shows data from all 5 tasks. At every
new task, the decision boundary needs to change and curve around in order to follow the new
data.

Toy-Gaussians. This is a toy 2D binary classification benchmark, useful for visualising
the performance of continual learning methods. There are 5 tasks, and always two classes.
Each task consists of samples from a pair of Gaussians (with 2000 datapoints per class),
and the model has to solve the binary classification problem. Each new task adds data in a
different region of input-space, and the difficulty is in remembering previous tasks while
learning the new task. As we see more tasks, the decision boundary should curve around in
order to follow new data. Figure 2.3 visualises the tasks. We will usually use train accuracy
(after all 5 tasks) as a way to quantitatively measure performance on this benchmark.

Split MNIST. In this benchmark, we have to sequentially solve five binary classification
tasks from the MNIST dataset (LeCun and Cortes, 2010): {0v1}, {2v3}, {4v5}, {6v7},
{8v9}. The challenge in Split MNIST is to obtain good performance on new tasks while
retaining performance on old ones. As previously discussed, we assume a multi-head (or
task-incremental (van de Ven and Tolias, 2019)) setting, where the algorithm is told which
task an image belongs to both when training and testing. We usually use a multi-layer
perceptron with two hidden layers, each with 256 hidden units, and with ReLU activation
functions, as in previous work (Zenke et al., 2017; Nguyen et al., 2018). In Chapter 3 we will
also consider a model with one hidden layer with 200 hidden units. This benchmark does not
have much potential for forward or backward transfer, with both Joint Tasks and Separate
Tasks achieving extremely high performance (99.7% accuracy using the Adam optimiser
(Kingma and Ba, 2015)).

2.4 Measuring performance in continual learning 27

Permuted MNIST. This benchmark consists of ten tasks received sequentially, each of
which is the standard (10-way) MNIST classification task, with the pixels having undergone
a fixed permutation randomly selected for each task (Goodfellow et al., 2014; Kirkpatrick
et al., 2017). Ideally, a network with two or more hidden layers would use lower layer(s) to
‘de-permute’ the images and higher layer(s) to solve MNIST, which is then constant between
tasks. We always use a two-hidden-layer model with 100 units in each layer and ReLU
activation functions, and use a single-head setup (also known as the domain-incremental
setting (van de Ven and Tolias, 2019)). Past works have used different sizes of networks for
this task, and a comprehensive summary is provided in Table 2 of Swaroop et al. (2019).
This benchmark does not have potential for forward or backward transfer, as all tasks only
consist of permutations of previous task’s images. Separate Tasks and Joint Tasks perform
similarly well, achieving 98% using the Adam optimiser.

Split CIFAR. This benchmark consists of six tasks. The first task is the full CIFAR-10
dataset (Krizhevsky and Hinton, 2009), which has 50, 000 training datapoints and 10 classes.
The following 5 tasks consist of 10 classes each from CIFAR-100 (Krizhevsky and Hinton,
2009), corresponding to 5, 000 training datapoints per task. We always use the same CifarNet
model architecture as Zenke et al. (2017): a multi-head CNN with 4 convolutional layers,
then 2 dense layers with dropout. We assume a multi-head (or task-incremental) setting, as
in Split MNIST. This benchmark is of larger size than the other benchmarks, and is the only
one for which we use convolutional neural networks.

In Figure 2.4 we show the performance of our two non-continual learning baselines,
Joint Tasks and Separate Tasks, on Split CIFAR, along with performance of some continual
learning methods (EWC (Kirkpatrick et al., 2017) and SI (Zenke et al., 2017)). We use the
Adam optimiser for Separate Tasks and Joint Tasks performance (other optimisers might get
slightly different results). The final column shows the final average accuracy (ACC), while
other columns show performance on each task after training on the final task. The Joint Tasks
baseline outperforms Separate Tasks, indicating that there is potential for significant forward
and/or backward transfer on this benchmark. EWC does not perform even as well as Separate
Tasks, while SI performs within error (although note that continual learning methods, like
EWC and SI, only use a single network, while Separate Tasks uses a separate network per
task, and therefore has higher memory cost). We want our methods to beat the Separate
Tasks baseline and approach Joint Tasks. We will return to this figure throughout this thesis
in order to compare new methods’ performance.

28 Background

0.65

0.70

0.75

0.80

V
al

id
at

io
n
 A

cc
u
ra

cy

EWC

SI

Separate
tasks

Joint
tasks

T1 T2 T3 T4 T5 T6 ACC

Cifar-10 10 classes each, Cifar-100

Figure 2.4: This figure plots performance of the Separate Tasks and Joint Tasks baselines
on Split CIFAR, along with some continual learning baselines introduced in Section 2.3:
EWC (Kirkpatrick et al., 2017) and SI (Zenke et al., 2017). ‘Tx’ refers to performance on
Task x after training on the final task. The ACC column plots average accuracy. We see that
the Joint Tasks baseline outperforms Separate Tasks, indicating that there is potential for
forward and/or backward transfer on this benchmark. EWC does not perform even as well
as Separate Tasks, while SI performs within error (we plot mean performance and standard
deviation over 5 runs). We want our methods to beat the Separate Tasks performance and
approach Joint Tasks. We will return to this figure throughout this thesis in order to compare
new methods’ performance.

Chapter 3

Weight-space variational continual
learning

Our focus in this chapter is on weight-space techniques for variational continual learning.
As discussed in Chapter 2, such weight-prior regularisation-based approaches to continual
learning have shown success. Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017)
uses (an approximation to) probabilistic continual learning for neural networks, and further
work improved such Laplace weight-priors (Schwarz et al., 2018; Ritter et al., 2018). In this
chapter we will use Variational Inference (VI) instead of Laplace approximations. VI is is a
more global approximation as it averages over distributions instead of using local solutions,
and is hence expected to be more robust (Opper and Archambeau, 2009; Khan and Rue,
2021). We therefore hope that our work will further improve on previous methods.

Nguyen et al. (2018) showed how a fully variational approach to continual learning can
lead to improved results. We summarised their algorithm, Variational Continual Learning
(VCL), in Section 2.2.1, and we start this chapter by improving its performance. We find
that performance does not monotonically increase as we train for longer. We improve the
algorithm’s extremely slow convergence rate, and increase VCL’s performance by training
for sufficiently long. When we explore VCL’s solutions, we find that optimising for longer
led to pruning out entire units in the neural network. We summarise this pruning effect in
Section 3.1.2, and use these insights to understand how this can help in continual learning.

However, despite these improvements to VCL, obtaining reasonable performance on
larger neural networks remains difficult. We therefore consider a natural-gradient VI al-
gorithm, Variational Online Gauss-Newton (VOGN) (Khan et al., 2018). Natural-gradient
update steps promise to converge quicker than standard-gradient update steps (for intuition
about this see Section 2.2.2). In Section 3.2, we scale VOGN up to large datasets and architec-
tures in the full-batch setting, such as ImageNet/ResNet-scale for the first time. We see that

30 Weight-space variational continual learning

VOGN achieves similar accuracy to Adam/SGD while keeping some benefits of Bayesian
principles such as better uncertainty calibration and out-of-distribution performance. We
apply VOGN to continual learning in Section 3.2.3, observing an ability to scale to larger
settings than previously possible with VCL.

However, despite these improvements to weight-space variational continual learning, we
still find fundamental problems remain. We return to a toy benchmark in Section 3.3 to
visualise these problems. This motivates us to move to function-space continual learning for
the rest of this thesis.

3.1 Variational Continual Learning (VCL)

As introduced in Section 2.2, we can sequentially optimise the variational objective function,
using the old posterior as our new prior whenever we see new data (Equation 2.5). When
we combine this with Variational Inference (VI), and use Bayes-By-Backprop (Blundell
et al., 2015) to optimise for a mean-field Gaussian approximating family, we get Variational
Continual Learning (VCL). In VCL, we minimise the following variational objective function
(this is repeated from Equation 2.9),

LVCL
t (ηt) =

∑

i∈Dt

1

S

S∑

s=1

[
− log p(yi|w(s),xi)

]
+ Eqηt (w)

[
log

qηt(w)

qηt−1(w)

]

︸ ︷︷ ︸
Analytically calculated

. (3.1)

We now briefly recap the definitions of these terms, although the reader can also look at
Chapter 2 for a full description. We are optimising for the parameters ηt of the mean-field
Gaussian approximate posterior qηt(w) = N (w;µt,Σt), where w are the weights in our
model (a neural network). Our prior over weights is the previous approximate posterior
qηt−1(w). The first term (the likelihood term) is the negative log-likelihood of the data
given the model − log p(yi|w,xi), where our dataset Dt consists of inputs xi and labels
yi. We approximate the likelihood term using Monte-Carlo sampling, drawing S samples
from our approximate posterior w(s) ∼ qηt(w). The second term (the KL-to-prior) term
can be analytically calculated as all distributions are Gaussian distributions. VCL separately
optimises Equation 3.1 for the parameters {µt,Σt} using Adam and automatic differentiation.

Nguyen et al. (2018) applied VCL to common benchmarks in continual learning, such as
Split MNIST and Permuted MNIST, and showed strong results (for the time), outperforming
baselines such as EWC (Kirkpatrick et al., 2017) and SI (Zenke et al., 2017). They ran VCL
with and without coresets (see Section 2.2.1). Nguyen et al. (2018) also applied VCL to deep
generative models, however we do not consider generative models in this thesis.

3.1 Variational Continual Learning (VCL) 31

10 100 300 600
Number of epochs per task

80

85

90

95

100

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Improved VCL
Previous VCL

Figure 3.1: VCL’s average performance (after training on all tasks) on Split MNIST as we
increase the number of epochs per task does not monotonically increase. Previous VCL
did not use our improvements to convergence rate, and so required 120 epochs to reach an
early-stopped solution. Our improvements reach this performance after just 10 epochs, but
we can improve performance further by training for 600 epochs.

3.1.1 Improving VCL

Our first contribution is to improve VCL’s performance by being more careful about the
optimisation process, finding that we also gain some understanding as to why it works so
well. Specifically, we improve results by training until (close to) convergence of an optimum
of Equation 3.1. We do this by training for much longer (more optimisation steps), and
also improving the algorithm’s convergence rate by using the local reparameterisation trick
(Kingma et al., 2015) and improving initialisation.

Previously, Nguyen et al. (2018) used early-stopping to achieve good results with VCL.
We plot performance (final average accuracy after training on all tasks) as a function of
epochs on the Split MNIST benchmark in Figure 3.1, where we see that VCL performs well
at very few epochs, but performs better when trained for significantly longer. The Previous
VCL algorithm from Nguyen et al. (2018) did not use our improvements to convergence
rate. It therefore takes more epochs to reach the high performance of early-stopped solutions
(120 epochs instead of 10). By using our improvements and training for significantly longer,
we see that after 600 epochs, our Improved VCL algorithm performs the best. Crucially,
although progress can sometimes appear to stall during optimisation of the objective function,
in reality progress is just extremely slow.

We use two techniques to improve the convergence rate:

1. We employ the local reparameterisation trick (Kingma et al., 2015) during Monte-
Carlo sampling of the likelihood term. Instead of sampling each (Gaussian) weight

32 Weight-space variational continual learning

independently, we sample the pre-activation latent variables just before each neuron’s
non-linearity (this latent variable is a linear combination of the neuron’s input weights).
This leads to two improvements, (i) it reduces the variance of stochastic gradients
during sampling, and (ii) it is marginally quicker as we sample fewer random variables.
The first improvement is particularly important, as it speeds up convergence drastically,
reducing the number of epochs until convergence.

2. We also improve the initialisation of the weights of our neural network. VCL (Nguyen
et al., 2018) initialised the mean-field Gaussian distribution over weights by setting
the means at the maximum-likelihood solution of a deterministic neural network, and
setting the variances to be small. We find that initialising the means to be small and
random improves convergence speed and leads to more consistently well-performing
results across random seeds. Intuitively, this is because initialising randomly allows the
network to quickly learn the best trade-off between the new task’s data (the likelihood
term) and information from previous tasks (the KL-to-prior term).

We summarise performance improvements on continual learning benchmarks in Table 3.1.
In Section 3.1.2 we will see that training for such a long time leads to pruning in our
variational BNN, but we first focus on the quantitative improved results. Details on the
continual learning metrics and benchmarks are in Section 2.4, and code is available at
https://github.com/nvcuong/variational-continual-learning.

For Split MNIST, we run a one-hidden-layer model with 200 units for 600 epochs
(with 256 batch size), sharing the lower level weights between tasks, and report the mean
performance and standard deviation over 10 runs. Note that this is different to the two-hidden-
layer model described in Section 2.4, but we do this to visualise pruning later (Section 3.1.2).
Without coresets, we achieve a final validation accuracy of 98.5 ± 0.4%. ‘Previous VCL’
(Nguyen et al., 2018) ran for 120 epochs and reported 97.0% accuracy. With coresets, we
achieve 98.2± 0.4%, similar to the 98.4% reported previously. We find that our Improved
VCL has similar forward transfer (FWT) as Previous VCL, but has significantly better
backward transfer (BWT), indicating it is forgetting less over many tasks.

For Permuted MNIST, we run a two-hidden-layer model with 100 units in each hidden
layer (as described in Section 2.4) for 800 epochs (with 1024 batch size), and report the
mean performance and standard deviation over 5 runs. Without coresets, this achieves a
final average validation accuracy of 93± 1%. ‘Previous VCL’ (Nguyen et al., 2018) ran for
100 epochs and reported 90% accuracy. With coresets, we achieve a final average validation
accuracy of 94.6± 0.3%, an improvement from the previously reported 93%. We see that
Improved VCL has better FWT and BWT than Previous VCL both with and without coresets.

https://github.com/nvcuong/variational-continual-learning

3.1 Variational Continual Learning (VCL) 33

Benchmark Metric Improved Previous EWC SI
VCL VCL

Split MNIST
ACC (%) 98.5±0.4 97.0 63.1 98.9
FWT (%) -1.3±0.5 -0.9 – –
BWT (%) -0.1±0.2 -2.2 – –

Split MNIST ACC (%) 98.2±0.4 98.4 – –
+40 coreset/task FWT (%) -1.5±0.6 -1.0 – –

BWT (%) -0.3±0.3 -0.7 – –

Permuted MNIST
ACC (%) 93±1 90 84 86
FWT (%) -0.2±0.1 -2 – –
BWT (%) -4±1 -6 – –

Permuted MNIST ACC (%) 94.6±0.3 93 – –
+200 coreset/task FWT (%) -0.2±0.1 -2 – –

BWT (%) -2.3±0.3 -4 – –

Split CIFAR
ACC (%) 48.8±2.2 – 71.6±0.9 73.5±0.5
FWT (%) 0.8±2.0 – 0.17±0.9 –
BWT (%) -29±4 – -2.3±1.4 –

Split CIFAR ACC (%) 67.4±1.4 – – –
+200 coreset/task FWT (%) 1.8±3.1 – – –

BWT (%) -9.2±1.8 – – –

Table 3.1: Final average validation accuracy (ACC), forward transfer (FWT) and backward
transfer (BWT) metrics on Split MNIST, Permuted MNIST and Split CIFAR, with and
without random coresets. We report mean performance and standard deviation over 5 runs
(10 runs for Split MNIST). Our improvements lead to significant increases in performance
on the MNIST benchmarks (except for remaining within error on Split MNIST + Coreset).
On the larger Split CIFAR benchmark, even our improvements to VCL do not help enough:
performance is still poor compared to other methods. Note that Previous VCL fails to get any
reasonable accuracies in a reasonable amount of time on Split CIFAR. Baselines are Previous
VCL (Nguyen et al., 2018), Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017),
and Synaptic Intelligence (SI) (Zenke et al., 2017). Results for EWC and SI for Split MNIST
and Permuted MNIST are taken from Nguyen et al. (2018). Results for SI for Split CIFAR is
taken from Zenke et al. (2017). All coresets are chosen randomly. We do not have results for
EWC and SI with coresets, and also do not have FWT/BWT transfer metrics when results
are taken from other papers.

34 Weight-space variational continual learning

As we now run VCL for considerably longer than in Nguyen et al. (2018), Improved
VCL is now very slow to run, even on the MNIST benchmarks. This is particularly true
when we compare to optimisers such as SGD or Adam, which are also considerably quicker
per optimisation step. This means that on the larger Split CIFAR benchmark, we are unable
to run VCL for long enough to reach a converged solution, and VCL performs very poorly.
To obtain the results shown for Split CIFAR in Table 3.1, we run for 500 epochs on task 1,
and 5000 epochs on tasks 2-6 (note that task 1 has 10 times more data than the other tasks),
getting a very poor 48.8 ± 2.2% final average accuracy. We see that VCL has very large
negative BWT, indicating it is catastrophically forgetting.

We now turn our attention to why running VCL for longer led to improved results. We
will see that training for longer leads to increased pruning in the neural network, and that this
is important for performance increases in continual learning. Interestingly, this behaviour is
in contrast to what we might expect with the true Bayesian solution, which would remain
uncertain over all weights when we see little data, using all model capacity instead of pruning
out parts of the model.

3.1.2 Pruning

We previously found we can significantly increase VCL’s performance by running VCL for
longer, and by speeding up convergence using some techniques (such as clever initialisation
and gradient-variance reduction tricks). In this section, we look at the weights of the learned
neural network to determine why training for longer was important, and we find that pruning
of entire units in the neural network plays a major role. We start by describing what pruning
is in the full-batch setting, and why it happens in variational BNNs. We then look at the
weights of learned neural networks on Split MNIST and Permuted MNIST, discussing how
pruning is important for continual learning.

Overpruning in variational Bayesian NNs

Training variational Bayesian neural networks (BNNs) with Gaussian approximating families
has been found to prune out entire units (Trippe and Turner, 2018; Swaroop et al., 2019;
Tomczak et al., 2020, 2021). In the full-batch setting, the network prunes a very large number
of units, causing underfitting of the data (Turner and Sahani, 2011), and this effect has been
termed overpruning in variational BNNs.

This pruning effect seems to be due to the choice of inference scheme. Intuitively, we
can explain it by looking at our objective function (Equation 3.1). By reducing the effect of a
unit on the output prediction (achieved by setting the output weights to have zero mean and

3.1 Variational Continual Learning (VCL) 35

0

+0

0

b

0

(a) Pruned units have input weights at the
prior, and output weights with zero-mean
small-variance.

Number of units removed

T
es

t N
LL

(b) Removing units can initially improve per-
formance due to noise leaking through pruned
units (lower is better).

Figure 3.2: (a) Pruned units set their input weights to the prior (zero-mean Gaussians
with fixed variance), and their output weights to a zero-mean small-variance distribution to
minimise effect on output distribution. If the network has ReLU activation functions, a unit
can alternatively be pruned by setting its bias weight to be negative (Tomczak et al., 2021).
Regardless of pruning mechanism, pruned weights can still contribute noise to predictions
by leaking through the unit. (b) Because of this leaked noise, removing pruned weights can
improve performance, although only slightly, and often this performance improvement is
only visible if plotting negative log-likelihoods (instead of accuracies). This experiment is on
200 random Boston regression datapoints with a one-hidden layer network with 50 hidden
units, ReLU activations, and zero-mean Gaussian prior. Figure from Tomczak et al. (2021).

small variance), the input weights to the unit can be set to their prior. The small variance of
the output weights increases the KL-to-prior term, but this is offset by the reduction in the
KL-to-prior term from the more numerous input weights. Provided the likelihood term does
not change too much, a pruned solution is therefore more optimal.

We draw a cartoon representation of a pruned unit in Figure 3.2(a). In Appendix A.1 we
see how units are entirely pruned out by plotting input and output weights for each unit in a
single-hidden layer model trained to classify the digits {0v1} in MNIST. Even though there
are 200 units in the hidden layer, only one unit is being used for this binary classification
task, and the remaining units are pruned out as part of the optimisation process.

Pruning entire units can sometimes be beneficial, even though underfitting behaviour is
undesirable in general. It can be useful in model compression (Louizos et al., 2017), and as
we will see later in this section, it can be useful in continual learning. However, in Tomczak
et al. (2021) we also find that pruned units can leak noise into predictions (as the output
weights are not exactly delta functions). This means that as we remove pruned units from the
network, prediction quality can improve. We see this in Figure 3.2(b).

It is possible to avoid pruned solutions by early-stopping training. However, this means
we no longer optimise the lower bound to the model evidence completely, which can raise

36 Weight-space variational continual learning

Shared weights (means) Shared weights (variances) Private heads

vs

vs

vs

vs

vs

Task 1

Task 2

Task 3

Task 4

Task 5

Figure 3.3: Only one unit is active per task in this one-hidden-layer model trained on Split
MNIST, even though there are 200 units in total. Each row corresponds to a different task in
Split MNIST. Left: means of input weights to each of the five units, Centre: variances of
input weights, Right: output weights for each task’s two classes. The top row shows that
only a single unit is used to classify task 1 ({0v1}). The second row shows that a second unit,
different from the first unit, is used to classify task 2 ({2v3}). Only the output head weights
for the second task’s unit is at not at 0, indicating only this unit is used. On the fourth row,
we see that the output head weights are also non-zero for the second active unit (highlighted
in green). This indicates that the model is using forward transfer: it is using information
learnt earlier (the unit from task 2) to help classify task 4.

theoretical questions regarding the motivation for VI. Early-stopping also does not lead to
better results in all scenarios. We see this in continual learning: the original VCL paper
(Nguyen et al., 2018) were effectively using early-stopping. They observed good results, but
by training for longer, we were able to improve results (Table 3.1). We next look at how
variational pruning interacts with continual learning.

Split MNIST

We start with a visualisation of pruning in Split MNIST. We consider the model trained
without coresets, although exactly the same effect is also observed for the model trained with
coresets. In Appendix A.1 we show the weights into and out of each unit for the first task
(binary classification, {0v1}). Although Appendix A.1 only plots weights after training on
the first task, we find this trend continues for all five tasks in Split MNIST, with exactly one
unit used per task. We collect these five active (un-pruned) units and plot them in Figure 3.3.

Although this pruning effect leads to underfitting and can be detrimental in some settings
(Ghosh et al., 2019; Tomczak et al., 2021), we find it can also help in continual learning.
Pruning ensures that the algorithm uses very little of its network capacity, while still achieving

3.1 Variational Continual Learning (VCL) 37

high validation accuracies. Remaining, unused units can be used for other tasks that we may
see in the future. Ideally, in a probabilistic framework we would achieve such beneficial
pruning through the prior, but surprisingly, the inference procedure is causing this here.

Additionally, the pruning effect allows us to see some forward and backward transfer
(see Figure 3.3), both important qualities in a good continual learning solution (see continual
learning Desiderata 4 and 5 in Section 2.1). Forward transfer is visible when previous
tasks’ active units have non-zero weights for subsequent tasks. For example, unit 2, which
was learnt after task 2 (classifying digits {2v3}), has non-zero output weights after task 4
(classifying {6v7}). The model therefore uses some information about task 2 in solving task
4. This is highlighted in green in the right plot in Figure 3.3. Although less visible in the
plots, there is also backward transfer in the same units: unit 2’s input weights change slightly
after training on task 4 ({6v7}), potentially changing accuracy on task 2 ({2v3}). In this case
however, any backward transfer does not result in a change in test accuracies; this could be
because there is no potential for improvement given the high accuracies involved.

Permuted MNIST

We now look into pruning when VCL is trained on Permuted MNIST. Figure 3.4 plots the
numbers of active (un-pruned) units after training on each task. There are more active units
in Permuted MNIST than there were in Split MNIST, likely due to the more difficult nature
of Permuted MNIST (classifying between 10 digits, as opposed to between 2). However,
only 11 units are used in the second hidden layer, with the remaining 89 units pruned out.
Additionally, the output weights on these 11 units do not change between tasks. This indicates
that the purpose of the hidden layers remains constant: the hidden layers de-permute the
images, allowing the output weights to always simply classify between 10 digits.

Beyond re-using the upper level weights, there is not much evidence of forward or
backward transfer. We should expect this from Permuted MNIST because the network trains
on all MNIST digits on the first task itself, hence already learning the ‘best’ way to classify
between MNIST digits. Any subsequent permuted images cannot improve this. Instead,
the remaining focus of Permuted MNIST seems to be on ensuring we use available model
capacity as efficiently as possible. Increasing the model capacity improves results: training
a network with 250 units in the lower hidden layer (instead of 100) improves final average
accuracy to 95.5% (this was also for 10 tasks).

Incorporating coresets also improves results. However, the number of active units (plotted
in Figure 3.4) is about the same. Instead, training VCL with coresets appears to reinforce
previous tasks’ images. Incorporating coresets can be viewed as changing the order in which
the model trains on data, or, changing the schedule with which we visit training data.

38 Weight-space variational continual learning

Number of tasks

N
um

be
r

of
 a

ct
iv

e
un

its
Layer 1
Layer 2

Figure 3.4: The number of active units in each of the layers in a two-hidden-layer MLP
trained on Permuted MNIST. The x-axis shows the number of tasks trained so far. After
the first task, only 30 units are active in the first hidden layer, and 11 units are active in the
second hidden layer (both layers consist of 100 units). The number of units active in the
second hidden layer remains constant as we train on more tasks, while the number of active
units in the first hidden layer slowly increases.

Discussion: pruning for continual learning

We have seen how VCL’s results were improved by training for longer, as we could ex-
ploit variational pruning of units in neural networks. This was important on the MNIST
benchmarks, allowing the network to use model capacity efficiently, and providing some
explainable plots for forward and backward transfer in Split MNIST. However, in order to
exploit pruning, we require the algorithm to be run for an extremely long time. Our Improved
VCL results required many hundreds of epochs.

In Loo et al. (2021), we further exploited this pruning in continual learning to combine
VCL with FiLM layers. The additional task-specific FiLM layers (Perez et al., 2018)
modulate each feature between layers, allowing for easier pruning of units. We found that
this significantly helps VCL, as the FiLM layer parameters help the network to automatically
assign certain units to certain tasks.

To scale VCL (without FiLM layers) to significantly larger datasets, we will need a
different approach to significantly speed up optimisation. A promising direction is to use
natural-gradient variational inference (NGVI) to optimise Equation 3.1. Natural-gradients
have the potential to speed up convergence by using the information geometry of the distribu-
tion being optimised. We next describe work to scale NGVI to large neural networks, which
we then apply to continual learning. We will see significantly faster convergence.

3.2 Variational Online Gauss-Newton (VOGN) 39

3.2 Variational Online Gauss-Newton (VOGN)

So far, our variational BNNs were optimised by using Bayes-By-Backprop (Blundell et al.,
2015), which optimises the means and standard deviations of our mean-field Gaussian
separately. In Section 2.2.2, we looked at why such standard-gradient methods may not
be ideal. We used this to motivate natural-gradient VI (NGVI), which incorporates the
information geometry of the distribution being optimised, therefore potentially dramatically
speeding up convergence. This will be important as we scale to larger architectures and
datasets, and especially important in continual learning, where we found that training for
longer was important to improve results.

Previous work (Khan et al., 2018) derived natural-gradient VI algorithms that can run
on small neural networks. In Section 2.2.2 we derived one of these algorithms, Variational
Online Gauss-Newton (VOGN), explaining the assumptions and approximations required to
reach the final VOGN algorithm in Equations 2.25 and 2.26.

Although there are different NGVI algorithms that we can choose from, each with their
own approximations, we choose to focus on VOGN. This is because other algorithms, such as
vAdam (Khan et al., 2018), make more restrictive assumptions and therefore might lose more
of the benefits arising from using Bayesian principles. VOGN makes fewer approximations,
and is therefore slower than vAdam, but as we will see, it can still be scaled up due to its
similarities with Adam.

In Section 3.2.1, we compare the VOGN and Adam update equations, and use their
similarities to motivate borrowing tricks that the community has developed for Adam over
many years. As a result, in Section 3.2.2 we see that VOGN obtains similar performance in
about the same number of epochs as Adam when training on many popular deep networks
(such as LeNet, AlexNet, and ResNets) on datasets such as CIFAR-10 and ImageNet. We also
see that, despite using an approximate posterior, VOGN preserves many benefits coming from
Bayesian principles. Compared to standard deep-learning methods, predictive probabilities
are well-calibrated, and uncertainties on out-of-distribution inputs are improved.

We then turn our attention to continual learning in Section 3.2.3. We see that our efforts
in scaling VOGN up for batch-learning also results in significantly quicker convergence in
continual learning. This allows us to scale VOGN beyond MNIST-based benchmarks, and
we see good performance on Split CIFAR.

40 Weight-space variational continual learning

3.2.1 Practical deep learning with variational inference

In this section, we scale VOGN up to large datasets and architectures. We do this by
comparing VOGN’s update equations to Adam’s update equations, noticing similarities
between them. This motivates us to borrow techniques that the community has developed for
Adam over many years, such as data augmentation, batch normalisation, and momentum.

We start by repeating the VI objective function, which we are optimising with respect
to the natural parameters ηt of our (mean-field Gaussian) approximate posterior qηt(w) =

N (w;µt,Σt), where w are the parameters of a neural network,

L(ηt) = Eqηt (w) [− log p(Dt|w)] + τ Eqηt (w)

[
log

qηt(w)

p(w)

]
, (3.2)

where we now include a tempering parameter τ in front of the KL-to-prior term. We can
set τ ̸= 1 when we expect model misspecification and/or adversarial examples (Vovk, 1990;
Ghosal and Van der Vaart, 2017). Setting τ = 1 recovers standard variational Bayesian
inference.

VOGN optimises Equation 3.2 using natural-gradient updates (derivation in Section 2.2.2),

µj+1 ← µj − αj
ĝ(wj) + δ̃µj

sj+1 + δ̃
, (3.3)

sj+1 ← (1− τβj)sj + βj
1

B

∑

i∈Bj

(
gi(wj)

2
)
, (3.4)

which is the same as Equations 2.25 and 2.26, except with the tempering parameter τ
included.

We now quickly recap the definitions of each of these terms, although the reader can
also look at Chapter 2 for a full description. We are iteratively updating two vectors, µj

and sj , where j indexes the iteration. We have a zero-mean prior p(w) = N (w;0, δ−1I),
and δ̃ = τδ/N . Our dataset consists of N data examples, and we are taking per-example
gradients of the negative log-likelihood gi(wj) at a sample from our current approximate
posterior, wj ∼ qj(w). For a randomly-sampled minibatch Bj of size B, we have defined
the average gradient ĝ(wj) =

1
B

∑
i∈Bj

gi(wj). There is a simple relation between Σj and
sj , Σ−1

j = Nsj + δI. Finally, αj > 0 and 0 < βj < 1 are learning rates, and all operations
are element-wise.

3.2 Variational Online Gauss-Newton (VOGN) 41

Comparison with Adam equations

A key benefit of using VOGN to update Equation 3.2, instead of other methods such as
Bayes-By-Backprop, is the similarity of VOGN update equations to Adam update equations.
To see this, we write down the form that commonly-used optimisers take, such as SGD,
RMSProp (Tieleman and Hinton, 2012), and Adam (Kingma and Ba, 2015),

µj+1 ← µj − αj
ĝ(µj) + δµj√

sj+1 + ϵ
, (3.5)

sj+1 ← (1− βj)sj + βj

 1

B

∑

i∈Bj

gi(µj) + δµj

2

, (3.6)

where δ > 0 is our weight-decay regulariser, ϵ > 0 is a small scalar constant, and all
operations are element-wise. Alternative versions with weight-decay and momentum differ
from these equations (Loshchilov and Hutter, 2019), but we present a form here that is useful
to establish a connection to VOGN.

We now summarise the key similarities and differences between VOGN’s equations
(Equations 3.3 and 3.4) and Adam’s equations (Equations 3.5 and 3.6):

1. Similarity: Both µj updates take the form µj+1 ← µj − αj(ĝ+ δµj)/function(sj+1).
The vector sj+1 adapts the learning rate in both cases.

2. Difference: The denominator in the update for means µj is slightly different. VOGN
uses (sj+1 + δ̃), while Adam uses√sj+1.

3. Difference: VOGN calculates gradients at a sample wj ∼ qj(w), while Adam calcu-
lates gradients just at the mean µj .

4. Similarity: Both updates for sj+1 take the form of a moving average update.

5. Difference: VOGN uses a Gauss-Newton approximation, requiring 1
B

∑
i(gi)

2, while
Adam uses a gradient-magnitude,

(
1
B

∑
i gi + δµj

)2. Note that in VOGN, the sum is
outside the square, while in Adam, the sum is inside the square.

A major difference is Difference 5 above: VOGN uses a Gauss-Newton approximation
(the empirical Fisher matrix). This is fundamentally different to the gradient-magnitude
approach in Adam. VOGN is better approximating second-order information (approximating
the Hessian) (Schraudolph, 2002; Graves, 2011; Martens, 2020). The Gauss-Newton matrix
also has some nice properties such as being positive semi-definite, which we require. We
expect it to become a better approximation to the Hessian as we train for longer.

42 Weight-space variational continual learning

The gradient-magnitude approach, however, has no such nice guarantees when viewed as
an approximation to second-order information: it was heuristically developed in RMSProp
and Adam as it was found to perform well. In fact, the gradient-magnitude approach
introduces a bias as an approximator to the Gauss-Newton matrix, and this bias increases
with minibatch size (see Theorem 1 in Khan et al. (2018)). Therefore, unlike the gradient-
magnitude approaches, VOGN is a better second-order method similar to Newton’s method,
and therefore does not require a square root over sj+1 (Difference 2).1

However, calculating the Gauss-Newton matrix requires additional computation in mod-
ern deep-learning frameworks like PyTorch (Paszke et al., 2019), which makes VOGN
slightly slower than Adam. We trade-off this computation cost in order to obtain better
variance estimates.

There are many similarities between VOGN and Adam too. These similarities indicate
that we might be able to take techniques developed by the community for Adam, and apply
similar ideas to scale VOGN up while maintaining good performance. We now describe these
techniques in detail. Pseudo-code for the final VOGN algorithm is shown in Algorithm 1.

Techniques to scale VOGN up

We now describe techniques to scale VOGN up to large architectures and datasets.

1. Batch normalisation: Batch normalisation (Ioffe and Szegedy, 2015) has been found
to significantly speed up and stabilise training of neural networks, and is widely used
in deep learning. BatchNorm layers are inserted between neural network layers. They
help stabilise each layer’s input distribution by normalising using the running average
of the inputs’ mean and variance. In our VOGN implementation, we simply use existing
implementations of BatchNorm with default hyperparameter settings. We do not apply
L2-regularisation or weight decay to BatchNorm parameters (following Goyal et al.
(2017)), or maintain uncertainty over BatchNorm parameters. This straightforward
application of batch normalisation works for VOGN. We see how batch normalisation
improves performance in Figure 3.5 (results are for ResNet-18 on CIFAR-10).

2. Momentum: It is well-known that momentum can speed up convergence significantly
(Sutskever et al., 2013). Since VOGN is similar to Adam, we can implement momen-
tum in a similar way. We use a momentum rate β1, shown in Step 17 in Algorithm 1.
In Figure 3.5, we see how both momentum and batch normalisation work together to
improve VOGN’s performance.

1We note that other work has attempted to explain the square root using ideas from Bayesian filtering
methods (Aitchison, 2018), which is interesting, but a different approach as it uses the temporal dynamics of all
other parameters during optimisation.

3.2 Variational Online Gauss-Newton (VOGN) 43

0 20 40 60 80
epoch

0.5

1.0

1.5

2.0

lo
g

lik
el

ih
oo

d

0 20 40 60 80
epoch

20

30

40

50

60

70

80

ac
cu

ra
cy

 [%
]

VOGN
VOGN+BN
VOGN+momentum
VOGN+momentum+BN

Figure 3.5: Both momentum and BatchNorm (BN) are important to improve VOGN’s
convergence rate and performance, here shown for ResNet-18 on CIFAR-10. Having only
one, or neither, of momentum and BatchNorm results in significantly worse performance.
Left figure plots validation log-likelihood, and right figure shows validation accuracy.

3. Initialisation: We want VOGN to closely follow Adam’s training curves at the begin-
ning of training. We therefore initialise VOGN to be close to Adam for the first few
optimisation steps. This significantly increases VOGN’s convergence rate.

We initialise the means µ in the same way as in Adam (init.xavier_normal in
PyTorch (Glorot and Bengio, 2010)), and also initialise the momentum term m to be
0, as it is in Adam. VOGN requires an additional initialisation for the variance Σ: we
run a forward pass through the first minibatch, calculate the average of the squared
gradients, and initialise the scale s0 with it. This implies that the variance is initialised
to Σ0 = τ/(N(s0 + δ̃)). For the tempering parameter τ , we use a schedule where it is
increased from a small value (such as 0.1) to 1 in the first few optimisation steps. Note
that as τ → 0, VOGN gets more similar to deterministic algorithms like Adam, as the
algorithm is biased to learn smaller variances Σ.

With these initialisation protocols, VOGN is able to mimic the convergence behaviour
of Adam in the beginning, and quickly converge to a good solution.

4. Learning rate scheduling: A common approach to quickly achieve high validation
accuracies is to use a specific learning rate schedule (Goyal et al., 2017). The learning
rate α is regularly decayed by a factor, typically a factor of 10. The frequency and
timings of this decay are usually pre-specified. In VOGN, we use the same schedule
used for Adam, and this works well.

44 Weight-space variational continual learning

5. Data Augmentation: When training on image datasets, Data Augmentation (DA)
techniques can improve performance drastically (Goyal et al., 2017). For VOGN, we
consider two common real-time data augmentation techniques: random cropping and
horizontal flipping. After randomly selecting a minibatch at each iteration, we use a
randomly selected cropped version of all images. Each image in the minibatch also
has a 50% chance of being horizontally flipped.

We find that directly applying DA gives slightly worse performance than expected,
and also affects the calibration of the resulting uncertainty. But we note that DA can
be viewed as increasing the effective size of our dataset. We therefore modify the
dataset size to be ρN where ρ ≥ 1, and this improves performance (see Step 2 in
Algorithm 1). The reason for this performance boost might be due to the complex
relationship between the regularisation δ and dataset size N . For a regularised loss
such as with Adam and SGD, the two are unidentifiable, as we can multiply δ by a
constant and reduce N by the same constant without changing the location of minima.
However, in a Bayesian setting (like with VOGN), the two quantities are separate,
and therefore changing the dataset size might also change the optimal prior variance
hyperparameter in a complicated way. This needs further theoretical investigations,
but our simple fix of scaling N works well in our experiments.

This method for handling DA is also closely related to KL-annealing in variational
inference, as well as the recently-termed ‘cold posterior effect’ (Wenzel et al., 2020;
Loo et al., 2021; Aitchison, 2021). Wenzel et al. (2020) report that tempering the
posterior by a temperature improves results (for MCMC sampling). Here, we are
effectively scaling the dataset size, and hence just the likelihood term in Bayes’ rule,
by a constant.

We set ρ by considering the specific DA techniques used. When training on CIFAR-10,
the random cropping DA step involves first padding the 32x32 images to become of
size 40x40, and then taking randomly selected 28x28 cropped images. We consider
this as effectively increasing the dataset size by a factor of 5 (4 images for each corner,
and one central image). The horizontal flipping DA step doubles the dataset size (one
dataset of unflipped images, one for flipped images). Combined, this gives ρ = 10.
Similar arguments for ImageNet DA techniques give ρ = 5. Even though ρ is another
hyperparameter to set, we find that its precise value does not matter much. Typically,
after setting an estimate for ρ, tuning δ a little seems to work well (see Appendix B.3).

3.2 Variational Online Gauss-Newton (VOGN) 45

Figure 3.6: Data and Monte-Carlo sample parallelism for VOGN. In this illustration, there
are four GPUs. The minibatch B is split into four, with one Blocal per GPU (data parallelism).
Each GPU samples two parameter vectors w(k)

j (Monte-Carlo sample parallelism). Each
GPU calculates the average gradient ĝ and Gauss-Newton approximation ĥ on its own data,
averaged across its own Monte-Carlo samples. These vectors are then averaged across GPUs
at the end.

6. Distributed training: We can use distributed training for VOGN to perform large
experiments quickly. Typically, we would only parallelise over data, splitting up large
minibatch sizes by sending different datapoints to different GPUs. With VOGN, we
can also parallelise over Monte-Carlo samples wj ∼ qj(w), where every GPU samples
different w(k)

j .

We use a combination of these two parallelism techniques, with different MC samples
for different inputs, summarised in Figure 3.6. This reduces variance during training
(see Equation 5 in Kingma et al. (2015)). This is particularly important at the beginning
of training, which may sometimes require averaging over multiple MC samples to get
a sufficiently low variance. Overall, we find that this type of distributed training is
essential for fast training on large problems such as ImageNet.

7. Implementation of the Gauss-Newton update: As discussed earlier, VOGN uses a
Gauss-Newton approximation, which is fundamentally different from the gradient-
magnitude approach in Adam. In this approximation, the gradients on individual data
examples are first squared and then averaged (see Steps 12 and 18 in Algorithm 1,
which implement the update for sj shown in Equation 3.4). We need extra computation
to get access to individual gradients, which results in VOGN being slower than Adam

46 Weight-space variational continual learning

or SGD. However, this is not a theoretical limitation, and this can be improved if a
framework enables an easy computation of the individual gradients. Details of our
implementation are described in Appendix B.1. Our implementation is much more
efficient than a naive one, where gradients over examples are stored and the sum over
the square is computed sequentially. Our implementation usually brings the running
time of VOGN to within a factor of two of the time that Adam takes (although VOGN
can take longer if we average over multiple MC samples).

8. External damping factor: We introduce an external damping factor γ, added to sj+1

in the denominator of Equation 3.3 (Zhang et al., 2018). This increases the lower
bound of the eigenvalues of the diagonal covariance Σ, preventing the step size and
noise from becoming too large.

9. Tuning VOGN: The full list of hyperparameters in VOGN are summarised in Table 3.2.
Currently, there is no common recipe for tuning the algorithmic hyperparameters
for VI, especially for large-scale tasks like ImageNet classification. It is therefore
important to record how we tuned these hyperparameters, so the community can use
(and potentially improve upon) these methods. The key idea we use is to start with
Adam hyperparameters and then make sure that VOGN training closely follows an
Adam-like trajectory in the beginning of training. To achieve this, we divide the tuning
into an optimisation part and a regularisation part.

In the optimisation part, we tune the hyperparameters of a deterministic version of
VOGN, called the Online Gauss-Newton (OGN) method. This method does not
Monte-Carlo sample wj ∼ qj(w), and instead sets wj = µj . OGN is therefore more
stable than VOGN, and a convenient stepping stone when going from Adam/SGD to
VOGN. OGN converges to a local minimum of the loss function (like Adam/SGD), and
obtains a Laplace approximation instead of a variational approximation. We initialise
OGN’s parameter values at Adam’s values, and tune until OGN is competitive with
Adam/SGD.

We then move to the regularisation part, where we tune the prior precision δ, warm-start
the tempering parameter τ , and tune the number of MC samples K for VOGN.

3.2 Variational Online Gauss-Newton (VOGN) 47

Learning rate α
Momentum rate β1
Exp. moving average rate β2
Prior precision δ
External damping factor γ
Tempering parameter τ
MC samples for training K
Data augmentation factor ρ

Table 3.2: The full list of hyperparameters in VOGN. The first four are shared with Adam,
and the last four are specific to VOGN.

3.2.2 VOGN full-batch performance

In this section, we present experiments fitting several deep networks on CIFAR-10 and
ImageNet. Our experiments demonstrate practical training using VOGN on these benchmarks
and show performance that is competitive with Adam and SGD. We also assess the quality
of the posterior approximation, finding that benefits of Bayesian principles are preserved.

CIFAR-10 (Krizhevsky and Hinton, 2009) contains 10 classes with 50,000 images for
training and 10,000 images for validation. For ImageNet, we train with 1.28 million training
examples and validate on 50,000 examples, classifying between 1,000 classes. We used a
large minibatch size M = 4,096 and parallelise across 128 GPUs (NVIDIA Tesla P100).
On CIFAR-10, we compare VOGN to Adam and MC-dropout (Gal and Ghahramani, 2016).
On ImageNet, we also compare to SGD, K-FAC (Martens and Grosse, 2015; Osawa et al.,
2018), and Noisy K-FAC (Zhang et al., 2018). We do not consider Noisy K-FAC for other
comparisons since tuning is difficult.

We compare 3 architectures: LeNet-5, AlexNet and ResNet-18. We only compare to
Bayes-by-Backprop (Blundell et al., 2015) for LeNet-5 on CIFAR-10 since it is very slow to
converge for larger-scale experiments. We carefully set the hyperparameters of all methods,
following the best practice of large distributed training (Goyal et al., 2017) as the initial point
of our hyperparameter tuning. The full set of hyperparameters is in Appendix B.2, and code
is available at https://github.com/team-approx-bayes/dl-with-bayes.

Performance on CIFAR-10 and ImageNet

Figures 3.7 and 3.8 compare the convergence of VOGN to Adam (for all experiments),
SGD (on ImageNet), and MC-dropout (on the rest). VOGN shows similar convergence and
its performance is competitive with these baselines. We also try Bayes-By-Backprop on

https://github.com/team-approx-bayes/dl-with-bayes

48 Weight-space variational continual learning

Algorithm 1 Variational Online Gauss Newton (VOGN)
1: Initialise µ0, s0, m0.
2: N ← ρN , δ̃ ← τδ/N .
3: repeat
4: Sample a minibatch B of size B.
5: Split B into each GPU (local minibatch Blocal).
6: for each GPU in parallel do
7: for k = 1, 2, . . . , K do
8: Sample ϵ ∼ N (0, I).
9: w(k) ← µ+ ϵσ with σ ← (1/(N(s+ δ̃ + γ)))1/2.

10: Compute g
(k)
i ← ∇wℓ(yi, σ(fw(k)(xi))),∀i ∈ Blocal

using the method described in Appendix B.1.
11: ĝk ← 1

B

∑
i∈Blocal

g
(k)
i .

12: ĥk ← 1
B

∑
i∈Blocal

(
g
(k)
i

)2
.

13: end for
14: ĝ← 1

K

∑K
k=1 ĝk and ĥ← 1

K

∑K
k=1 ĥk.

15: end for
16: AllReduce ĝ, ĥ.
17: m← β1m+ (ĝ + δ̃µ).
18: s← (1− τβ2)s+ β2ĥ.
19: µ← µ− αm/(s+ δ̃ + γ).
20: until stopping criterion is met

LeNet-5, where it converges prohibitively slowly, performing poorly. We found it far simpler
to tune VOGN because we can borrow all the techniques used for Adam. Figure 3.7 also
shows the importance of DA in improving performance.

Table 3.3 gives a final comparison of train/validation accuracies, negative log-likelihoods,
epochs required for convergence, and run-time per epoch. Table B.1 (in Appendix B) also
includes standard deviations across many runs. We can see that the accuracy, log-likelihoods,
and the number of epochs are comparable. VOGN is 2-5 times slower per epoch than Adam
and SGD (we train for the same number of epochs). This is mainly due to the computation of
the sum of squared gradients required in VOGN, as well as multiple Monte-Carlo samples in
some cases. Overall, we clearly see that by using deep-learning techniques on VOGN, we
can perform practical deep learning. This is not possible with Bayes-By-Backprop.

We see that Adam regularly overfits the training set in most settings, with large train-test
differences in both validation accuracy and log-likelihood. LeNet-5 is an exception, and
this is most likely due to the small architecture resulting in underfitting (this is consistent
with the low validation accuracies obtained). In contrast to Adam, MC-dropout has small
train-test gap, usually smaller than VOGN’s. However, we will see later that this is because

3.2 Variational Online Gauss-Newton (VOGN) 49

50 100 150 200
epoch

40

45

50

55

60

65

70

ac
cu

ra
cy

 [%
]

LeNet-5 on CIFAR-10 (no DA)

MC-dropout
Adam
VOGN

50 100 150
epoch

40
45
50
55
60
65
70
75 AlexNet on CIFAR-10 (no DA)

MC-dropout
Adam
VOGN

50 100 150
epoch

40

50

60

70

AlexNet on CIFAR-10

MC-dropout
Adam
VOGN

50 100 150
epoch

40

50

60

70

80

ResNet-18 on CIFAR-10

MC-dropout
Adam
VOGN

Figure 3.7: Validation accuracy for various architectures trained on CIFAR-10. Top row
has no Data Augmentation (DA), bottom row has data augmentation. VOGN’s convergence
and validation accuracies are comparable to Adam and MC-dropout, except for on AlexNet
without DA, highlighting the benefits of DA for VOGN.

of underfitting. Moreover, the performance of MC-dropout is highly sensitive to the dropout
rate (see Appendix B.4 for a comparison of different dropout rates). On ImageNet, Noisy
K-FAC performs well too. It is slower per epoch than VOGN, but it takes fewer epochs.
Overall, wall clock time is about the same as VOGN.

Due to the Bayesian nature of VOGN, there are some trade-offs to consider:

1. Reducing the prior precision δ results in higher validation accuracy, but also larger
train-test gap (more overfitting). As an example, training VOGN on ResNet-18 on
ImageNet with a prior variance of 7.5e− 4 has train-test accuracy and log-likelihood
gaps of 2.29 and 0.12 respectively. When the prior variance is increased to 7.5e− 3

(prior precision is decreased), the respective train-test gaps increase to 6.38 and 0.34

(validation accuracy and validation log-likelihood also increase, see Figure 3.9). As

50 Weight-space variational continual learning

20 40 60 80
epoch

20

30

40

50

60

70

va
lid

at
io

n
ac

cu
ra

cy
 [%

]

SGD
Adam
VOGN

0 25 50 75 100
wall clock time (min)

20

30

40

50

60

70

va
lid

at
io

n
ac

cu
ra

cy
 [%

]
0.0 0.2 0.4 0.6 0.8 1.0

mean predicted probability
0.0

0.2

0.4

0.6

0.8

1.0

tru
e

pr
ob

ab
ilit

y

Figure 3.8: The two left plots show that VOGN performs well on ImageNet, reaching a
similar validation accuracy to SGD in the same number of epochs. However, it is slower
per epoch due to the additional computation required to calculate the Gauss-Newton matrix
approximation, making it slightly slower in wall-clock time. The right plot shows the cali-
bration curve, and we see that VOGN gives calibrated probabilities (the diagonal represents
perfect calibration).

expected, when the prior precision is small, VOGN reaches converged solutions more
like non-Bayesian methods, where overfitting is an issue.

We also show the effect of changing the effective dataset size ρN in Appendix B.3:
note that, since we are going to tune the prior precision δ anyway, it is sufficient to set
ρ to its correct order of magnitude.

0 20 40 60 80
epoch

4.0

3.5

3.0

2.5

2.0

1.5

lo
g

lik
el

ih
oo

d

0 20 40 60 80
epoch

20

30

40

50

60

70

ac
cu

ra
cy

 [%
]

prior_variance=7.5e-4
prior_variance=1.5e-3
prior_variance=7.5e-3

Figure 3.9: Effect of prior variance on VOGN training ResNet-18 on ImageNet. As we
increase the prior variance (decrease the prior precision δ), validation performance improves,
as measured by validation log-likelihood and validation accuracy. However, increasing the
prior variance also leads to a larger train-test gap (see main text), indicating more overfitting.

3.2 Variational Online Gauss-Newton (VOGN) 51

2. Increasing the number of training Monte-Carlo samples (up to a limit) improves
VOGN’s convergence rate and stability, but also increases the computation. Increasing
the number of Monte-Carlo samples during testing improves generalisation, as expected
due to averaging. This trade-off is shown in Figure 3.10.

40 50 60 70 80 90
epoch

1.3

1.4

1.5

1.6

lo
g

lik
el

ih
oo

d

40 50 60 70 80 90
epoch

60

62

64

66

68

70

ac
cu

ra
cy

 [%
]

mc=128x3 val_mc=100
mc=128x2 val_mc=100
mc=128x2 val_mc=10
mc=128x1 val_mc=10

0 50 100 150 200 250
wall time (min)

1.3

1.4

1.5

1.6

lo
g

lik
el

ih
oo

d

0 50 100 150 200 250
wall time (min)

60

62

64

66

68

70

ac
cu

ra
cy

 [%
]

mc=128x3 val_mc=100
mc=128x2 val_mc=100
mc=128x2 val_mc=10
mc=128x1 val_mc=10

Figure 3.10: Effect of changing the number of training and testing Monte-Carlo samples
on VOGN training ResNet-18 on ImageNet. Left plots are validation log likelihood, and
right plots are accuracy. ‘mc’ refers to the number of training Monte-Carlo samples (there
are 128 GPUs, and we are using Monte-Carlo sample parallelism, so ‘mc=128x2’ indicates
two training Monte-Carlo samples per GPU). ‘val_mc’ refers to the number of validation
Monte-Carlo samples. As we increase the number of training Monte-Carlo samples, com-
putation cost (and hence wall-clock time) increases, but we get better convergence rate and
stability (reduced number of epochs). As we increase the number of testing Monte-Carlo sam-
ples, computation again increases (wall-clock time is increasing here because we calculate
validation accuracy every epoch), but generalisation improves.

52 Weight-space variational continual learning

Dataset/
Architecture Optimiser

Train/Validation
Accuracy (%)

Validation
NLL Epochs

Time/
epoch (s) ECE AUROC

CIFAR-10/
LeNet-5
(no DA)

Adam 71.98 / 67.67 0.937 210 6.96 0.021 0.794
BBB 66.84 / 64.61 1.018 800 11.43† 0.045 0.784
MC-dropout 68.41 / 67.65 0.99 210 6.95 0.087 0.797
VOGN 70.79 / 67.32 0.938 210 18.33 0.046 0.8

CIFAR-10/
AlexNet
(no DA)

Adam 100.0 / 67.94 2.83 161 3.12 0.262 0.793
MC-dropout 97.56 / 72.20 1.077 160 3.25 0.140 0.818
VOGN 79.07 / 69.03 0.93 160 9.98 0.024 0.796

CIFAR-10/
AlexNet

Adam 97.92 / 73.59 1.480 161 3.08 0.262 0.793
MC-dropout 80.65 / 77.04 0.667 160 3.20 0.114 0.828
VOGN 81.15 / 75.48 0.703 160 10.02 0.016 0.832

CIFAR-10/
ResNet-18

Adam 97.74 / 86.00 0.55 160 11.97 0.082 0.877
MC-dropout 88.23 / 82.85 0.51 161 12.51 0.166 0.768
VOGN 91.62 / 84.27 0.477 161 53.14 0.040 0.876

ImageNet/
ResNet-18

SGD 82.63 / 67.79 1.38 90 44.13 0.067 0.856
Adam 80.96 / 66.39 1.44 90 44.40 0.064 0.855
MC-dropout 72.96 / 65.64 1.43 90 45.86 0.012 0.856
OGN 85.33 / 65.76 1.60 90 63.13 0.128 0.854
VOGN 73.87 / 67.38 1.37 90 76.04 0.029 0.854
K-FAC 83.73 / 66.58 1.493 60 133.69 0.158 0.842
Noisy K-FAC 72.28 / 66.44 1.44 60 179.27 0.080 0.852

Table 3.3: Performance comparisons on different dataset/architecture combinations. Out of
the 15 metrics (NLL, ECE, and AUROC on 5 dataset/architecture combinations), VOGN
performs best or tied best on 10, and is second-best on the other 5. Here DA means ‘Data
Augmentation’, NLL refers to ‘Negative Log-Likelihood’ (lower is better), ECE refers to
‘Expected Calibration Error’ (lower is better), AUROC refers to ‘Area Under ROC curve’
(higher is better), with further explanations of these metrics in Appendix B.5. BBB is Bayes-
By-Backprop (Blundell et al., 2015). For ImageNet, the reported accuracy and negative
log-likelihood are the median value from the final 5 epochs. All hyperparameter settings
are in Appendix B.2. See Table B.1 for standard deviations across many runs. † BBB is not
parallelised (other methods have 4 processes), and uses 1 MC sample during training of the
convolutional layers (VOGN uses 6 samples per process).

3.2 Variational Online Gauss-Newton (VOGN) 53

Quality of predictive probabilities

We now compare the quality of predictive probabilities for the various methods. For Bayesian
methods, we compute these probabilities by averaging over samples from the posterior
approximations. For non-Bayesian methods, these are obtained using the point estimates of
the weights. We compare predictive probabilities using the following metrics: validation
Negative Log-Likelihood (NLL), Area Under ROC curve (AUROC) and Expected Calibration
Error (ECE) (Naeini et al., 2015; Guo et al., 2017). For the first and third metric, a lower
number is better, while for the second, a higher number is better. See Appendix B.5 for a
detailed explanation of each of these metrics. Results are summarised in Table 3.3.

VOGN’s uncertainty performance is more consistent and marginally better than the other
methods, as expected from a more principled Bayesian method. Out of the 15 metrics
(NLL, ECE and AUROC on 5 dataset/architecture combinations), VOGN performs the
best or tied best on 10, and is second-best on the other 5. In contrast, both MC-dropout’s
and Adam’s performance varies significantly, sometimes performing poorly, sometimes
performing decently. MC-dropout is best on 4, and Adam is best on 1 (on LeNet-5; as argued
earlier, the small architecture may result in underfitting).

We also show calibration curves (DeGroot and Fienberg, 1983) in Figures 3.8 and 3.11.
Adam is consistently over-confident, with its calibration curve below the diagonal. Con-
versely, MC-dropout is usually under-confident, with its curve above the diagonal. On
ImageNet, MC-dropout performs well on ECE (all methods are very similar on AUROC),
but this required an excessively tuned dropout rate (see Appendix B.4).

We also compare performance on out-of-distribution (OOD) datasets. We want methods
to make more confident predictions on in-distribution data (such as the validation set from
the dataset it was trained on), and more uncertain predictions when testing on images that
are different from the training datasets. We use experimental protocol from the literature
(Hendrycks and Gimpel, 2017; Lee et al., 2018; DeVries and Taylor, 2018; Liang et al.,
2018) to compare VOGN, Adam and MC-dropout. Using trained architectures (LeNet-5,
AlexNet and ResNet-18) on CIFAR-10, we test on SVHN, LSUN (crop) and LSUN (re-size)
as out-of-distribution datasets, with the in-distribution data given by the validation set of
CIFAR-10 (10,000 images). The entire training set of SVHN (73,257 examples, 10 classes)
(Netzer et al., 2011) is used. The test set of LSUN (Large-scale Scene UNderstanding dataset
(Yu et al., 2015), 10,000 images from 10 different scenes) is randomly cropped to obtain
LSUN (crop), and is down-sampled to obtain LSUN (re-size). These out-of-distribution
datasets have no overlapping classes with CIFAR-10.

We also borrow metrics from other works (Hendrycks and Gimpel, 2017; Lakshmi-
narayanan et al., 2017). We plot predictive entropy histograms in Figure 3.12 and Ap-

54 Weight-space variational continual learning

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0
tru

e
pr

ob
ab

ilit
y

LeNet-5 / CIFAR-10 (no DA)

MC-dropout
Adam
VOGN

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 AlexNet / CIFAR-10 (no DA)
MC-dropout
Adam
VOGN

0.0 0.2 0.4 0.6 0.8 1.0
mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0

tru
e

pr
ob

ab
ilit

y

ResNet-18 / CIFAR-10

MC-dropout
Adam
VOGN

0.0 0.2 0.4 0.6 0.8 1.0
mean predicted probability

0.0

0.2

0.4

0.6

0.8

1.0 AlexNet / CIFAR-10
MC-dropout
Adam
VOGN

Figure 3.11: Calibration curves for various architectures trained on CIFAR-10. The top row
has no data augmentation (DA), while the bottom row has data augmentation. VOGN is
extremely well-calibrated compared to the other two methods (except for LeNet-5, where all
methods perform well). The calibration curve for ResNet-18 on ImageNet is in Figure 3.8.

pendix B.6, where the predictive entropy per input image is the entropy of the distribution
over predicted labels. Ideally, on out-of-distribution data, a model would have high predictive
entropy, indicating it is unsure of which class the input image belongs to. In contrast, for
in-distribution data, good models should have many examples with low entropy, as they
should be confident of many input examples’ (correct) class. As in the literature, we also
report AUROC and FPR at 95% TPR (this is a different AUROC to that in Table 3.3). By
thresholding the most likely class’ softmax output, we assign high uncertainty images to
belong to an unknown class. This allows us to calculate the FPR and TPR, allowing the ROC
curve to be plotted, and the AUROC to be calculated.

On ResNet-18 and AlexNet, VOGN’s predictive entropy histograms show the desired
behaviour: a spread of entropies for the in-distribution data, and high entropies for out-of-
distribution data (see Figure 3.12 and Appendix B.6). Adam has many predictive entropies at

3.2 Variational Online Gauss-Newton (VOGN) 55

Figure 3.12: Histograms of predictive entropy for out-of-distribution tests for ResNet-18 on
CIFAR-10. Going from left to right, the inputs are: the in-distribution dataset (CIFAR-10),
followed by out-of-distribution data: SVHN, LSUN (crop), LSUN (resize). Also shown
are FPR at 95% TPR (lower is better) and AUROC (higher is better), averaged over 3 runs
(standard deviations are very small). We clearly see that VOGN’s predictive entropy is
generally low for in-distribution and high for out-of-distribution data, but this is not the case
for other methods. Solid vertical lines indicate the mean predictive entropy.

zero, indicating that Adam tends to classify out-of-distribution data too confidently. Con-
versely, MC-dropout’s predictive entropies are generally high (particularly in-distribution),
indicating MC-dropout has too much noise. On LeNet-5, we observe the same result as
before: Adam and MC-dropout both perform well. The metrics (AUROC and FPR at 95%
TPR) do not provide a clear story across architectures.

Conclusions

We successfully used VOGN to train architectures at large-scale, and analysed performance
on a variety of architectures on CIFAR-10 and ImageNet. We used VOGN’s similarity with
Adam to borrow deep-learning techniques from the community to scale to this size. This was
particularly difficult for Bayes-By-Backprop. VOGN’s accuracies and convergence rates are
similar to SGD and Adam, but VOGN also retains some benefits of Bayesian principles, with
well-calibrated uncertainty, good performance on out-of-distribution data, and as we next
explore, good continual learning performance. We hope VOGN’s quicker convergence will
lead to improvements over VCL from Section 3.1 (Tseran et al., 2018; Eschenhagen, 2019).

56 Weight-space variational continual learning

Benchmark Metric Improved VCL VOGN

Split MNIST ACC (%) 98.5±0.4 98.8±0.1
Epochs 600 100

Permuted MNIST

ACC (%) 93±1 94.0±0.8
FWT (%) -0.2±0.1 -0.6±0.1
BWT (%) -4±1 -4±1
Epochs 800 100†

Split CIFAR

ACC (%) 48.8±2.2 74.4±0.4
FWT (%) 0.8±2.0 1.8±0.3
BWT (%) -29±4 -0.7±0.5
Epochs 5000 600

Table 3.4: Final average test accuracy of VCL and VOGN on Split MNIST, and accuracy
and forward/backward metrics on Permuted MNIST and Split CIFAR. Mean performance
and standard deviation over 5 runs. Metrics and benchmarks are defined in Section 2.4.
VOGN converges to the same performance as VCL on the MNIST benchmarks, requiring
fewer epochs. VOGN also scales well to the larger Split CIFAR tasks, now outperforming
previous methods (the best-performing method from Table 3.1 was SI, with 73.5±0.5%
accuracy). The number of epochs per task reported for Split CIFAR is for tasks 2-6. The
number of epochs for task 1 is 1/10th of this number, as there is 10 times more datapoints
in task 1. † Improved VCL required a minibatch size of 1024 to perform well on Permuted
MNIST, whereas VOGN has a minibatch size of 256. VOGN’s hyperparameters are listed in
Appendix A.2 (Eschenhagen, 2019).

3.2.3 VOGN continual learning performance

Having scaled variational inference to large scales in the batch-setting, we now run our
algorithm VOGN on continual learning benchmarks. We run VOGN on the same benchmarks
as VCL: Split MNIST, Permuted MNIST and Split CIFAR. As VOGN is optimising the same
variational objective as VCL, and we are running both to convergence, we hope that both
methods would obtain the same performance on the MNIST benchmarks. But we also hope
that by using the techniques from Section 3.2.1, VOGN will require fewer epochs to converge
to this performance. We also note that every epoch is quicker for VOGN than in VCL, as
VCL uses the slower Bayes-By-Backprop method to individually optimise for means and
variances of the Gaussian distribution.

We summarise results in Table 3.4. Hyperparameters for VOGN’s results are in Ap-
pendix A.2 (Eschenhagen, 2019). We find that, as desired, VOGN reaches the same average
accuracy on the MNIST-based continual learning benchmarks as VCL, while requiring far
fewer epochs to do so. When we look at forward and backward transfer metrics, we see that
VOGN has the same BWT as VCL, but slightly worse FWT. This is because VOGN has a

3.2 Variational Online Gauss-Newton (VOGN) 57

0.65

0.70

0.75

0.80
V
al

id
at

io
n
 A

cc
u
ra

cy

VCL+
Coreset

EWC

SI

Separate
tasks

Joint
tasks

VOGN

T1 T2 T3 T4 T5 T6 ACC

Cifar-10 10 classes each, Cifar-100

Figure 3.13: Individual task accuracy after training on the final task, and average task accu-
racy (ACC). VOGN outperforms other weight-regularisation techniques on this benchmark,
but there is still potential for improvement as VOGN’s performance is still far from the Joint
Tasks baseline. We do not plot VCL results as VCL performs very poorly, and instead only
plot VCL+Coreset, which also requires storing some datapoints in memory.

higher single task accuracy than VCL, and this makes comparing the FWT metric between
methods difficult (see Section 2.4 for definitions of these metrics). Despite this, VOGN
has comparable average accuracy, which is the most important metric when comparing
algorithms.

This faster convergence also allows us to successfully scale VOGN to larger benchmarks
such as the Split CIFAR benchmark, where VOGN performs well, and better than our weight-
regularisation baselines, as seen in Figure 3.13. We also see that VOGN has better forward
transfer and backward transfer metrics than EWC and VCL on this benchmark (see Table 3.1
for metrics for EWC). However, there is still a sizeable gap between VOGN’s final accuracy
and the Joint Tasks upper-bound on performance, indicating that there is still potential for
improvement on this benchmark.

Finally, we comment that it is possible to incorporate a coreset with VOGN in exactly the
same way as with VCL. We would expect this to improve results similar to how it improves
results for VCL, in particular on larger-scale benchmarks. However, this has not yet been
implemented.

58 Weight-space variational continual learning

other inputs other outputs

1 2?
+

Figure 3.14: An illustration to show that independence between weights of different layers
can lead to incorrect regularisation, meaning that our predictions xout are not maintained.
We consider a single unit in our neural network, and a single input weight win and output
weight wout. After training on previous tasks, we obtain independent Gaussian distributions
over these weights, shown in purple. When we see new data, these distributions act as
the prior which we regularise towards. Step 1 (top left): During training, the distribution
over input weight win moves to the right. Step 2 (top right): Ideally, we would regularise
towards maintaining predictions xout, leading to a signal to move wout. However, as the two
weights are independently regularised, the distribution over wout may not move sufficiently.
For example, if wout has small uncertainty, then wout may be overly regularised, and our
predictions xout are not maintained.

3.3 Failures of weight-space continual learning

We have seen how weight-space variational neural networks use pruning to obtain good
performance in continual learning, and how we can speed up convergence by employing
natural-gradient updates. Although we obtained reasonable performance on the larger Split
CIFAR benchmark, and outperformed other methods, there is still potential for improvement:
VOGN is still significantly worse than the Joint Tasks baseline.

In this section, we argue that this is because of fundamental problems with approximations
we had to make in order to train weight-priors on neural networks. Specifically, we had
to assume independence across weights of our neural network, an approximation that was
necessary in order to scale to larger neural network architectures. This independence means
that when lower-layer weights move, upper-layer weights may not move correctly to maintain
an output given an input. For example, if upper-layer weights have small uncertainty, they
may be overly regularised, meaning there is insufficient ability to update to counteract a
lower-layer weight changing. This only happens as the weights are independently regularised.
We explain this argument schematically in Figure 3.14.

3.3 Failures of weight-space continual learning 59

VOGN VCL+Coreset Joint tasks
Class 1

Class 2

Class 1

Class 2

Class 1

Class 2

Figure 3.15: VOGN and VCL+Coreset perform badly when continually trained over the
5 tasks of the Toy-Gaussians benchmark (we do not show VCL, which performs even
worse). When compared to the Joint Tasks upper-bound baseline, there are undesirable
artefacts appearing on old task data (older tasks are on the left of the plots). We plot the
middle-performing run of 5 runs for each method. Performance is summarised in Table 3.5.

VCL VOGN VCL+Coreset Joint Tasks

Train accuracy (%) 68±8 79±11 92±10 99.70±0.03

Table 3.5: The train accuracy (averaged over all 5 tasks) of VCL, VOGN and VCL+Coreset
(randomly chosen 20 points per task) is worse than the highly accurate Joint Tasks upper-
bound baseline on the Toy-Gaussians benchmark. This illustrates how weight-space methods
can be brittle even on simple problems, because weights in the neural network are indepen-
dently regularised. Hyperparameters for all methods are in Appendix A.3, and visualisations
of the middle-performing runs are in Figure 3.15.

We can show the negative effects of this problem on a simple toy example, specifically
the Toy-Gaussians example from Section 2.4. We use a two-hidden-layer network with 20
hidden units per layer. As the Toy-Gaussians benchmark introduces new datapoints in a
different region of input-space, it requires predictions on old task data to be maintained,
and as weights change for new tasks, this may affect previous regions of input-space if not
correctly regularised. In Figure 3.15 we train our methods on the five tasks sequentially,
and plot the final decision boundary after training on the last task. Hyperparameters are in
Appendix A.3. We see how VOGN and VCL+Coreset perform badly across many random
seeds, with undesirable artefacts appearing on old task data (older tasks are on the left of the
plots). Performance is summarised in Table 3.5, where we report mean performance and
standard deviation over 5 runs. Joint Tasks performance is very high, and we would want our
continual learning method to be very close to this performance on such a simple benchmark.
This is not the case for any of our weight-regularisation methods.

One way of overcoming this problem is to introduce correlations between weights in the
neural network, instead of using a mean-field approximation. K-FAC methods (Martens and

60 Weight-space variational continual learning

Grosse, 2015; Ritter et al., 2018) introduced Kronecker-factored correlations between weights
in the same layer, and they observed improved results on continual learning benchmarks.
However, there is still no method that introduces correlations between weights of different
layers while scaling to larger neural networks.

A different way to overcome this problem is to directly regularise the output of the
neural network instead of only regularising in weight-space. We will still have to make
approximations to scale any such method, but by making these approximations in function-
space instead of weight-space, we hope for better continual learning performance. We will
look at methods for doing this in Chapter 4.

3.4 Summary

We started this chapter with Variational Continual Learning (VCL) (Nguyen et al., 2018), a
variational weight-prior method, and improved its performance by running for much longer
and using a few tricks to speed up convergence rate. We improved performance on Split
MNIST and Permuted MNIST, but this came at the cost of long training times. When we
analysed why performance increased, we found that running for longer led to increasingly
pruned solutions in our variational Bayesian neural network. This pruning has been shown to
lead to performance decreases in other work due to underfitting. However, we saw how it
can help in continual learning.

We then focussed on speeding up convergence rate for our weight-space variational
continual learning method. We did this by using natural-gradient update steps. We scaled
up an algorithm called Variational Online Gauss-Newton (VOGN), finding that we could
get competitive performance on a large-scale (ImageNet/ResNets) for the first time, while
preserving some benefits of Bayesian principles. When we applied VOGN to continual
learning benchmarks, we found that VOGN performed as well as our Improved VCL, but
required far fewer epochs to converge (and is also quicker per epoch). This allowed it to
scale to the larger Split CIFAR benchmark, where it performs competitively with other
weight-regularisation baselines.

However, there is still potential for performance improvement on Split CIFAR. We argued
that weight-space regularisation has problems: when we regularise weights independently
(especially across layers), this leads to brittleness and forgetting over tasks. We showed this
happening on a simple two-dimensional continual learning problem (Toy-Gaussians).

There has been follow-up work not discussed in detail in this chapter. In Loo et al.
(2021), we introduced Generalised VCL (GVCL), which tempers the KL-to-prior term in the
variational objective function. This modification to VCL recovers Online EWC (Schwarz

3.4 Summary 61

et al., 2018) as a limiting case, allowing for interpolation between the two approaches.
We also introduced task-specific FiLM layers to take advantage of and reduce pruning in
variational Bayesian neural networks, finding that this also leads to improved performance.

In Chapter 4 we next focus on function-space regularisation (instead of weight-space
regularisation as in this chapter). By regularising in function-space, we hope that we will
avoid problems stemming from independently-regularised weights. We will start from the
same variational objective function, but approximate a term with one in function-space. We
will see improved performance on our benchmarks, but we will also store (a few) datapoints
from past tasks, similar to the VCL+Coreset method. Such methods will therefore be a
combination of regularisation-based and rehearsal-based approaches to continual learning. In
Chapter 5 we will then combine weight and function-regularisation approaches, theoretically
analysing when and how they work. Such analysis will also allow us to propose simple ways
to improve weight-prior algorithms with functional regularisation (see Section 5.5).

Chapter 4

Functional regularisation of memorable
past

In this chapter, we tackle continual learning by performing functional regularisation of neural
networks, directly considering the outputs or functions of neural networks. We will derive an
algorithm called Functional Regularisation of Memorable Past (FROMP). This functional
regularisation is in contrast to the weight regularisation we performed in Chapter 3, where
we improved on previous probabilistic continual learning algorithms, but found that there
were still problems.

In Section 3.3 we argued that weight regularisation’s problems in continual learning
might stem from restrictive independence assumptions that we had to make. Weight-priors
make current weights closer to the previous ones, but this may not always ensure that
the predictions on the past tasks also remain unchanged. A better approach is to directly
regularise the outputs, because what ultimately matters is the network output, not the values
of the weights. We therefore now consider such approaches, but still within a probabilistic
framework for continual learning.

In order to regularise in function-space, we choose to store some datapoints from the past.
By only storing very few datapoints from the past, our memory cost will be significantly
lower than if we had stored all past data. However, even this may not always be allowed in a
continual learning setting, such as if there are strict privacy constraints (see Section 2.1). In
these stricter cases, we could potentially store pseudo-inputs instead of real data, and our
theory allows for this. However, we will not explicitly consider algorithms using pseudo-
inputs in this chapter.

We start in Section 4.1 with simple ideas for functional regularisation, summarising some
previous work in this area. We then introduce our method, and derive detailed equations in

64 Functional regularisation of memorable past

Sections 4.2 to 4.4. We present experimental results in Section 4.5, where we see our method
perform very well, and conclude in Section 4.6.

In Chapter 5 we will introduce a framework which will allow us to further theoretically
analyse why our methods in this chapter work so well in practice, and also allow us to suggest
improvements (see Section 5.6).

4.1 Functional regularisation of neural networks

In Section 3.3 we saw problems with weight regularisation, and motivated functional regular-
isation of neural networks for continual learning. In this section, we consider various ideas
for doing this at a high-level, starting with simple ideas and ending with recent works. We
will assume scalar outputs to ease notation.

We start by returning to our assumption that the best possible performance is given by
a model trained on all data at once (we explicitly made this assumption in Section 2.1). In
probabilistic continual learning with variational inference, this corresponds to the Joint Tasks
loss,

LJoint
t (ηt) = Eqηt (w) [− log p(Dt|w)− log p(D1:t−1|w)] + Eqηt (w)

[
log

qηt(w)

p(w)

]
. (4.1)

We now quickly recap the definitions of each of these terms, although the reader can also
look at Chapter 2 for a full description. We are optimising the variational bound (the negative
ELBO) LJoint

t at task t with respect to ηt, which are the parameters of our approximating
family distribution qηt(w) = N (w;µt,Σt), where w ∈ RP are the weights in our model.
We have a prior p(w), and each task s has dataDs = {xi, yi}Ns

i=1. The negative log-likelihood
of dataset s is − log p(Ds|w) =

∑
i∈Ds

ℓ(yi, h(fw(xi))), where we have model fw(x), and
the loss ℓ(y, h(f)) is a differentiable loss function (such as cross-entropy) between a label y
and a neural network output h(f), where h(·) is an inverse link function.

This Joint Tasks loss is our ideal objective, but we cannot directly optimise it as we are
not allowed to store all past data D1:t−1. We now make the assumption that we are allowed
to store a small subset of previous data (like in the VCL+Coreset method from Section 2.2.1
and Chapter 3). This corresponds to rehearsal-based approaches to continual learning (see
discussion in Section 2.3).

4.1 Functional regularisation of neural networks 65

Experience replay

We have written the Joint Tasks loss in a variational framework in Equation 4.1, but many
works only consider the deterministic version, which we wrote in Equation 2.2. We describe
some of these works in this subsection.

The simplest scheme to approximate LJoint
t would simply store some data from each

previous task’s data Ds for s = 1, 2, ..., t− 1, and approximate each log-likelihood term as,

− log p(Ds|w) =
∑

i∈Ds

ℓ(yi, h(fw(xi))) ≈ (Ns/Ms)
∑

i∈Ms

ℓ(yi, h(fw(xi))), (4.2)

where we store a small subset of the full past-task dataset Ds (the size of |Ds| = Ns) in a
memory setMs (the size of |Ms| = Ms). This simple approach is known as Replay (or
experience replay) (Ratcliff, 1990; Robins, 1995; Rolnick et al., 2019), usually applied to the
loss in Equation 2.2.

We would like to perform better than this simple approach, and many works have tried to
do so. One idea is to replace the label yi in Equation 4.2 with the output using the previous
model fwt−1(xi), like in knowledge distillation (Hinton et al., 2015; Rebuffi et al., 2017).
Another idea (Lopez-Paz and Ranzato, 2017; Chaudhry et al., 2019) is to add a constraint
during training such that the loss over previous data does not worsen. We leave a detailed
discussion of such methods to Chapter 5, as it is closely related to concepts introduced there.

Other works employ a different approach, directly using an L2-regulariser over the
function values from past tasks,

1
2
τ

t−1∑

s=1

(ft,s − ft−1,s)
⊤(ft,s − ft−1,s), (4.3)

where ft,s and ft−1,s are vectors of function values fw(xi) and fwt−1(xi) respectively for all
xi ∈ Ds, where Ds is the dataset for previous task s, and τ is a constant scaling factor. Like
before, we cannot store all past data, and so a simple idea is to randomly sample past data
to approximate the regulariser terms. This is the key idea behind Dark Experience Replay
(Buzzega et al., 2020). They apply their algorithm to the no-task-boundary setting, and so
need to maintain a subset of memory that can be updated online as new datapoints are seen,
and this is achieved through the reservoir sampling algorithm (Vitter, 1985). Dark Experience
Replay++ (Buzzega et al., 2020) further includes the experience replay term (Equation 4.2)
in their objective function, thereby hoping to get benefits of both L2-regularisation and
experience replay.

66 Functional regularisation of memorable past

Other works (such as Benjamin et al. (2019)) match the output of the neural network,
after the inverse link function,

1
2
τ
t−1∑

s=1

(ht,s − ht−1,s)
⊤(ht,s − ht−1,s), (4.4)

where ht,s and ht−1,s are vectors of values h(fw(xi)) and h(fwt−1(xi)) respectively for
all xi ∈ Ms. Note that for logistic regression, h(f) = σ(f) is the sigmoid function, and
for linear regression, h(f) is a constant value, meaning that Equation 4.4 is the same as
Equation 4.3 up to a constant. Benjamin et al. (2019) also store randomly-sampled past data
(which they call a ‘working memory’). Our work in this chapter will improve upon such
methods.

Variational functional regularisation

We are interested using functional regularisation within the probabilistic framework, for ex-
ample applying to the variational objective in Equation 4.1. Rather than using the techniques
discussed so far to approximate the log-likelihood of past data, a better approach might be to
frame functional regularisation directly using the variational objective. This is what we will
do in this chapter.

Titsias et al. (2020) also frame functional regularisation in a variational framework, and
derive an algorithm called Functional Regularisation for Continual Learning (FRCL). They
employ key ideas from Gaussian Processes (GPs) and sparse inducing point GPs (Csató and
Opper, 2002; Titsias, 2009). This is arguably the most related work to our approach in this
chapter, and also performs well in practice, but we will see several key theoretical differences
throughout this chapter (which also lead to our approach performing better on benchmarks).

FRCL treat the last (output) layer of the neural network in a Bayesian way, considering
it in function-space as a GP over function values f(x). The remaining layers in the neural
network are treated as a feature extractor φθ(x), and the kernel of the final-layer GP is a dot
product of these features. Using a sparse GP framework, they can write down the ELBO in
terms of the feature extractor parameters θ and the mean and variance of the output-layer
Gaussian-distributed weights q(wout) = N (wout;µout,Σout). They optimise the sum of

4.1 Functional regularisation of neural networks 67

ELBOs of each task, which simplifies to optimising,

LFRCL
t (θ,µout,Σout) =

∑

i∈Dt

Eq(wout)

[
− log p(yi|w⊤

outφθ(xi))
]

+KL [q(wout)∥p(wout)] +
t−1∑

s=1

KL [q(us)∥pθ(us)] , (4.5)

where p(wout) is the prior over output-layer weights, and us are inducing points that sum-
marise previous task s, with distribution q(us). They can also use this ELBO to select
inducing points after training for the parameters of the neural network, although in practice
they select a subset of data by discrete optimisation of the trace of the covariance matrix of
the prior GP conditional (this appears in the variational sparse GP ELBO (Titsias, 2009)).

They obtain decent performance on a variety of tasks including Split MNIST and Per-
muted MNIST. However, there is still potential for improving upon FRCL, and we realise
some of this potential in this chapter. First, FRCL uses a kernel only over the output-layer
network weights, whereas we consider a kernel over all network weights. This is especially
important in the early stages of learning, when all the weights are changing and uncertainties
are larger (see Appendix C.5 for an example). Second, FRCL’s functional prior (the last
term in Equation 4.5) does not regularise the mean of the current network to be close to the
previous network’s mean, instead only encouraging the kernel to remain close to the inducing
points’ kernel. This is less interpretable and can result in the (mean of the) network’s output
changing unpredictably. Third, the choice of inducing points in FRCL involves solving a
discrete optimisation problem. Instead, we will use memorable past examples that are much
cheaper to obtain, and have an intuitive interpretation (we discuss this in Section 4.3). Due to
these differences, our method outperforms the method of Titsias et al. (2020), which, unlike
ours, performs worse than our Improved VCL results from Chapter 3.

Another more recent work, called Variational Auto-Regressive Gaussian Processes (VAR-
GP) (Kapoor et al., 2021), also uses sparse inducing point approximations for continual
learning with GPs. They consider distributions over the hyperparameters θ (unlike in FRCL),
and learn inducing points instead of using a subset of past data. Their loss function is of a
similar form to FRCL’s Equation 4.5, except (i) with an additional KL-to-prior term for the
hyperparameters, and (ii) with some differences due to an auto-regressive parameterisation
of the distribution over inducing points. They show good performance on Split MNIST
and Permuted MNIST, however, they may have difficulty scaling up due to computation
costs. Future work reducing computation costs in VAR-GP would be an interesting research
direction. Instead, in this chapter we take a slightly different approach. We show how we can

68 Functional regularisation of memorable past

make approximations to our initially-expensive method, reducing computation costs when
necessary.

There are other ideas for performing function-space inference in Bayesian neural net-
works, but these are only applied in the batch-setting, and so are not directly applicable to
the continual learning setting. For example, fBNNs (Sun et al., 2019) specify GP priors
and maximise a variational objective defined on stochastic processes. There is also work
discussing how to define variational objectives directly on stochastic processes, arguing that
it is not straightforward and that there are some important points that must be considered
(Burt et al., 2020).

Our approach: Functional Regularisation of Memorable Past (FROMP)

We take a slightly different approach to the other works discussed so far. We start with the
weight-space objective for variational inference (VI) for continual learning (Equation 2.8), but
approximate the expectation of the log-prior in weight-space with a term in function-space,

Lt(ηt) = Eqηt (w) [− log p(Dt|w) + log qηt(w)]− Eqηt (w)

[
log qηt−1(w)

]
︸ ︷︷ ︸
≈Eq̃wt (f)[log q̃wt−1 (f)]

, (4.6)

where f is is the vector of function values f(xi) defined over a set of points, and q̃wt(f) is
the function-space distribution over that set of points induced by the weight-space distribution
qηt(w).

We only consider approximating the log-prior term in function-space. We could also
approximate the entropy term (the Eq [log qηt(w)] term) in function-space, meaning we
would be approximating the entire KL-to-prior term in function-space. This could be an
interesting avenue to explore in the future. We only consider the log-prior term as this is the
term which incorporates prior information, and we only need to treat prior information in
function-space in order to avoid forgetting.

We note that replacing the term in weight-space with one in function-space is an approxi-
mation, and is usually not exact. We analyse this in detail later in this thesis (in Section 5.6
and Appendix D.2), but for now, we note that this is an approximation because qηt(w)

and qηt−1(w) are different distributions, meaning that they induce different mappings to
function-space distributions on neural networks.1

Overall, there are three steps to our method FROMP, summarised in Figure 4.1, and the
following sections in this chapter go over each step in turn:

1As we will see in Section 4.2, the mappings to function-space distributions depend on the Jacobian, and the
Jacobian depends on the value of the weights in the neural network. Therefore the two mappings are different.

4.1 Functional regularisation of neural networks 69

Step A: Convert DNN to
GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Step A: Convert DNN to
GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Step A: Convert DNN to GP functional prior Step B: Find Memorable Past

Old weights

Old data

New weights
Step A: Convert DNN to

GP functional prior

Old task
data

Step B: Find memorable
examples

New task
weights

Weight-space

Global
minimum

Old task
weights

New task
data

Step C: train in weight-space
with functional regularisation

Optimal weights

FROMP

A

Weight-space

Globalminimum

B

C

Functional prior

Old task
data

Choose memory
Memorable

examples

After training

New task
data

A

Weight-space

Globalminimum

B

C

Functional prior

Old task
data

Choose memory
Memorable

examples

After training

New task
data

Step C: Train weights with functional regularisation of memorable past

New data

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

f(x)
<latexit sha1_base64="8TwoNVwdP7mvKuQ4ObmNLGpGkpA=">AAAB63icdVDLSgMxFM3UV62vqks3wSrUTZnpy1kWdOGygn1AO5RMmmlDk8yQZMQy9BfcuFDErT/kzr8xM1VQ0QMXDufcy733+BGjStv2u5VbWV1b38hvFra2d3b3ivsHXRXGEpMODlko+z5ShFFBOppqRvqRJIj7jPT82UXq926JVDQUN3oeEY+jiaABxUinUlC+OxsVS3al6bj1hgsNqdnNupMR163WoFOxM5RaJ0GG9qj4NhyHOOZEaMyQUgPHjrSXIKkpZmRRGMaKRAjP0IQMDBWIE+Ul2a0LeGqUMQxCaUpomKnfJxLElZpz33RypKfqt5eKf3mDWAeul1ARxZoIvFwUxAzqEKaPwzGVBGs2NwRhSc2tEE+RRFibeAomhK9P4f+kW604tUrj2qRxCZbIgyNwDMrAAeegBa5AG3QABlNwDx7Bk8WtB+vZelm25qzPmUPwA9brB6H6kPA=</latexit>

w1<latexit sha1_base64="D0NPEnAnvNpV3Ack4EsD90UvfkU=">AAAB6nicdVDLSsNAFJ34rPVV60ZwM7QIrkLSl1kW7MJlRfuANpTJdNIOnUzCzEQpoZ/gxoUibsW/8A9cufNvnKYKKnrgwuGce7n3Hi9iVCrLejeWlldW19YzG9nNre2d3dxevi3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb3I69ztXREga8ks1jYgboBGnPsVIaeniemAPckXLrNlOpepATcpWrWKnxHFKZWibVopi/eD1Jd94LjQHubf+MMRxQLjCDEnZs61IuQkSimJGZtl+LEmE8ASNSE9TjgIi3SQ9dQaPtDKEfih0cQVT9ftEggIpp4GnOwOkxvK3Nxf/8nqx8h03oTyKFeF4sciPGVQhnP8Nh1QQrNhUE4QF1bdCPEYCYaXTyeoQvj6F/5N2ybTLZvVcp9EAC2TAISiAY2CDE1AHZ6AJWgCDEbgBd+DeYMat8WA8LlqXjM+ZffADxtMHixqQ9Q==</latexit>

w2<latexit sha1_base64="G+omeDdIM0oZQp/LDKzrPBM1/d0=">AAAB6nicdVDLSsNAFJ34rPVV60ZwM7QIrkLSl1kW7MJlRfuANpTJdNIOnUzCzEQpoZ/gxoUibsW/8A9cufNvnKYKKnrgwuGce7n3Hi9iVCrLejeWlldW19YzG9nNre2d3dxevi3DWGDSwiELRddDkjDKSUtRxUg3EgQFHiMdb3I69ztXREga8ks1jYgboBGnPsVIaenielAa5IqWWbOdStWBmpStWsVOieOUytA2rRTF+sHrS77xXGgOcm/9YYjjgHCFGZKyZ1uRchMkFMWMzLL9WJII4QkakZ6mHAVEukl66gweaWUI/VDo4gqm6veJBAVSTgNPdwZIjeVvby7+5fVi5TtuQnkUK8LxYpEfM6hCOP8bDqkgWLGpJggLqm+FeIwEwkqnk9UhfH0K/yftkmmXzeq5TqMBFsiAQ1AAx8AGJ6AOzkATtAAGI3AD7sC9wYxb48F4XLQuGZ8z++AHjKcPjJ6Q9g==</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

x
<latexit sha1_base64="Xq2aDw7StkhgPWs5JCU3kiQIaDQ=">AAAB6HicdZDLSsNAFIYnXmu9VV26GSyCq5D0ZnYWdOGyBXuBNpTJdNKOnUzCzEQsoU/gxoUidenbuHXn2zhJFVT0h4GP/z+HOed4EaNSWda7sbS8srq2ntvIb25t7+wW9vbbMowFJi0cslB0PSQJo5y0FFWMdCNBUOAx0vEm52neuSFC0pBfqWlE3ACNOPUpRkpbzdtBoWiZNdupVB2ooWzVKnYGjlMqQ9u0MhXPXuepnhuDwlt/GOI4IFxhhqTs2Vak3AQJRTEjs3w/liRCeIJGpKeRo4BIN8kGncFj7QyhHwr9uIKZ+70jQYGU08DTlQFSY/k7S82/sl6sfMdNKI9iRThefOTHDKoQplvDIRUEKzbVgLCgelaIx0ggrPRt8voIX5vC/6FdMu2yWW1axfoFWCgHDsEROAE2OAV1cAkaoAUwIOAOPIBH49q4N56M+aJ0yfjsOQA/ZLx8AJY4kfI=</latexit>

Figure 4.1: There are three steps to our method FROMP. In Step A, we view the deep neural
network in function-space, converting a previously-trained model into a Gaussian Process
(GP) functional prior for the next task. In Step B, we find a few memorable past examples
that will be crucial to avoid forgetting for future tasks (four points in this example). In Step C,
when we see new data, we can train the weights of our neural network (left) with functional
regularisation of the memorable past examples. We eventually reach a solution that performs
well on both the new data and old data (right).

Step A (Section 4.2): we view a distribution over network weights as a distribution over the
network parameters, approximating it with a Gaussian Process (Khan et al., 2019).

Step B (Section 4.3): we choose a few memorable past examples that we will store and
regularise on in the future. These are the datapoints that are most important to avoid
forgetting information.

Step C (Section 4.4): When we see new data from the next task, we train the weights of our
neural network while functionally regularising over the memorable past points that we
stored. In this last step, we start from Equation 4.6 and make some approximations to
keep computation costs down. We discuss the effects of various approximations and
introduce two algorithms based on slightly different approximations.

All steps in FROMP are derived using a single framework, based on natural-gradient
variational inference and a linear model view of the update steps. By basing all steps in
a single framework, we do not have many separate moving parts that each use different
motivation and approximations.

70 Functional regularisation of memorable past

4.2 From deep networks to functional priors

In Step A of FROMP, we convert from a distribution over weights of a neural network to a
distribution over functions of the neural network. We assume we have a Gaussian distribution
over weights, qη(w) = N (w;µ,Σ), and by the end of this section, we will see how this
approximately induces a Gaussian distribution over functions, q̃w(f) = N (f ;m,K), where
f is the vector of function values defined over a set of inputs. These distributions over
functions are the distributions we will use in FROMP’s objective (Equation 4.6), where we
need to calculate this mapping twice: once for the functional prior q̃wt−1(f), and once for
the current function q̃wt(f).

We use an approach called DNN2GP from Khan et al. (2019) to convert deep networks
to Gaussian Processes (GPs). We now describe this approach, which is also in Appendix B
of Khan et al. (2019), but not written out or explained in the detail we require for FROMP.
We assume scalar outputs, and the extension to multiple outputs is in Appendix C.2.

The DNN2GP approach is very similar to the standard weight-space to function-space
conversion for linear basis-function models (Rasmussen and Williams, 2006). For example,
consider a linear regression model on a scalar output yi = fw(xi) + ϵi with a function
output fw(xi) = φ(xi)

⊤w using a feature map φ(x). Assume Gaussian noiseN (ϵi; 0,Λ
−1)

and a Gaussian prior N (w; 0, δ−1I) where I is an identity matrix. It can then be shown
that the posterior distribution (after seeing dataset D) of this linear model, denoted by
N (w;wlin,Σlin), induces a GP posterior on function fw(x) whose mean and covariance
functions are given by (see Appendix C.1 or Chapter 2 in Rasmussen and Williams (2006)),

mlin(x) = fwlin(x), κlin(x,x
′) = φ(x)⊤Σlin φ(x

′), (4.7)

where wlin is simply the Maximum-A-Posteriori (MAP) estimate of the linear model, and
Σ−1

lin =
∑

i∈D φ(xi) Λφ(xi)
⊤ + δI. We can also write the predictive distribution of the

observation y = f(x) + ϵ where ϵ ∼ N (0,Λ−1) as,

p(y|x,D) = N (y ; fwlin(x)︸ ︷︷ ︸
mlin(x)

, φ(x)⊤Σlinφ(x)︸ ︷︷ ︸
κlin(x,x)

+Λ−1),

where Σ−1
lin =

∑

i∈D

φ(xi) Λφ(xi)
⊤ + δI. (4.8)

DNN2GP computes a similar GP posterior but for a neural network whose weight-space
posterior is approximated by a Gaussian. The key steps are (i) use a Gaussian approximation
on the neural network weights w (such as given by the Laplace approximation or during
variational inference with a Gaussian approximating family), (ii) write down a linear model

4.2 From deep networks to functional priors 71

that has the same posterior over weights, (iii) find the equivalent GP predictions using this
linear model. We will skip the details in step (ii), instead referring the reader to Khan et al.
(2019). We focus on writing down the form of the equivalent GP (step (iii)). When we
evaluate this GP at a set of input points, we get our distribution over functions q̃w(f).

We next go over the various approximations and loss forms that are important for FROMP.
We start with a Laplace approximation over weights. We then consider a fully variational
approximation, where we optimise the variational objective using natural-gradient variational
inference algorithms (see Section 2.2.2 or Chapter 3). This leads to a GP posterior at every
iteration during training, and this will define both the functional prior q̃wt−1(f) and the
current function q̃wt(f) in Equation 4.6. After making some approximations in Section 4.4,
we will also consider using the Laplace approximation for the functional prior q̃wt−1(f). The
linear models we use in this section will also guide how we choose memorable past points in
Section 4.3.

GP Posteriors from the minimiser of neural networks

We start with GP posteriors in the case where we use a (variant of the) Laplace approximation
to the weights of a neural network. In our Laplace approximation, we obtain the minimiser
w∗ after optimising the loss Nℓ̄(w) + 1

2
δw⊤w. We set the mean µ∗ = w∗ and covariance,

Σ−1
∗ =

∑

i∈D

Jw∗(xi)
⊤ Λw∗(xi, yi)Jw∗(xi) + δI, (4.9)

where Λw∗(x, y) = ∇2
ffℓ(y, h(f)) is the scalar Hessian of the loss function and Jw∗(x) =

∇wfw(x)
⊤ is the 1× P Jacobian, all evaluated at w = w∗. Essentially, this variant of the

Laplace approximation uses a Generalised Gauss-Newton approximation for the covariance
instead of the Hessian (Schraudolph, 2002; Graves, 2011; Martens, 2020).

Comparing Σlin in Equation 4.8 with Equation 4.9, we can interpret Σ∗ as the covariance
of a linear model with a feature map φ(x) = Jw∗(x)

⊤ and noise precision Λ = Λw∗(x, y).
A regression loss: For a regression loss function ℓ(y, h(f)) = 1

2
Λ(y − f)2, we get the

following expression for the predictive distribution for the observations y (see Equation 44,
Appendix B.2 in Khan et al. (2019)):

p̂(y|x,D) = N (y ; fw∗(x), Jw∗(x)Σ∗Jw∗(x)
⊤ + Λ−1),

where Σ−1
∗ =

∑

i∈D

Jw∗(xi)
⊤ ΛJw∗(xi) + δI. (4.10)

72 Functional regularisation of memorable past

We use p̂(y|x,D) since this predictive distribution is not exact and is obtained using a type
of Laplace approximation. Comparing this to Equation 4.8, we can write the mean and
covariance functions in a similar fashion as Equation 4.7,

mw∗(x) = fw∗(x), κw∗(x,x
′) = Jw∗(x)Σ∗ Jw∗(x

′)⊤. (4.11)

A binary classification loss: A similar expression is available for binary classification
with y ∈ {0, 1}, considering the loss ℓ(y, h(f)) = −y log σ(f)− (1− y) log(1− σ(f)) =
−yf + log(1 + ef) where σ(f) = 1/(1 + e−f) is the sigmoid function. The predictive
distribution is given as,

p̂(y|x,D) = N (y ;σ(fw∗(x)), Λw∗(x)Jw∗(x)Σ∗ Jw∗(x)
⊤Λw∗(x) + Λw∗(x)),

where Σ−1
∗ =

∑

i∈D

Jw∗(xi)
⊤ Λw∗(xi)Jw∗(xi) + δI. (4.12)

where Λw∗(x) = σ (fw∗(x)) [1− σ (fw∗(x))]. The predictive distribution does not respect
the fact that y is binary and treats it like a Gaussian, making it comparable to Equation 4.8.
Comparing the two, we can conclude that Equation 4.12 corresponds to the predictive
posterior distribution of a GP regression model with y = f(x) + ϵ where ϵ ∼ N (0,Λw∗(x))

with mean and covariance functions as shown below,

mw∗(x) = σ(fw∗(x)), κw∗(x,x
′) = Λw∗(x)Jw∗(x)Σ∗ Jw∗(x

′)⊤Λw∗(x
′). (4.13)

Two differences from the regression case is that the mean function is passed through the
sigmoid function, and the covariance function has Λw∗ multiplied on the both sides. These
changes appear because of the non-linearity in the loss function introduced due to the sigmoid
function. The multiclass classification loss can also be written in a similar form, and is in
Appendix C.2.

Later in Section 4.4, we will make approximations that result in the functional prior in
FROMP (q̃wt−1(f) in Equation 4.6) being given by Equation 4.13. However, when we do
not make these approximations, we instead use the GP posterior obtained during iterations of
our algorithm during optimisation. We derive this next, and as we will see, the expressions
will be very similar to Equation 4.13.

4.2 From deep networks to functional priors 73

GP Posterior from the iterations of a neural network optimisers

The results so far hold only at a minimiser w∗. Khan et al. (2019) also generalise this to
iterations of optimisers. They did this for a (natural-gradient) variational inference algorithm
and also for its deterministic versions. We will see that the resulting equations are very
similar to the Laplace case, but defined at the current w as it is being optimised, instead of
just at the minimiser w∗.

Given a Gaussian variational approximation qj(w) = N (w;µj,Σj) at iteration j, we
can use natural-gradient variational inference (NGVI) algorithms such as Variational Online
Newton (VON) or Variational Online Gauss-Newton (VOGN) to optimise for {µj,Σj}.
The update steps for these algorithms are given in Section 2.2.2 (for example, VOGN’s
update steps are in Equations 2.25 and 2.26). Given qj(w), these algorithms proceed by
first sampling wj ∼ qj(w), and then updating the variational distribution. Surprisingly,
the procedure used to derive a GP predictive distribution for the Laplace approximation
generalises to this update too. An expression for the predictive distribution is,

p̂j+1(y|x,D) = N (y ; σ(fwj
(x)), Λwj

(x)Jwj
(x)Σj Jwj

(x)⊤Λwj
(x) + Λwj

(x)−1),

(4.14)

where Σj+1 and µj+1 are updated according to an NGVI algorithm’s update equations.
Comparing to Equation 4.8, we can write down the mean and covariance functions,

mwj
(x) = σ(fwj

(x)), κwj
(x,x′) = Λwj

(x)Jwj
(x)Σj Jwj

(x′)⊤Λwj
(x′). (4.15)

The predictive distribution takes the same form as in the Laplace case, but now the
covariance and mean are updated according to the NGVI updates. If desired, we can
average over many samples wj . We will use Equation 4.15 as our current function q̃wt(f) in
Equation 4.6. We can also use this for our functional prior q̃wt−1(f), where wt−1 is sampled
from the distribution obtained after training on the previous task.

However, using NGVI updates might lead to additional variance during training, making
optimisation difficult. We may not need all the benefits of NGVI during training, and we can
use cheaper algorithms too. For example, we can derive similar GP posteriors when using
a deterministic of VOGN, called Online Gauss-Newton (OGN), which was also previously
introduced in Section 3.2. In OGN, we do not sample wj ∼ qj(w), and instead use wj = µj .
The variational approximation is still defined as qj(w) = N (w;wj,Σj). The form of the
predictive distribution remains the same as Equation 4.14.

We next describe how we choose our memorable past points to calculate these function-
space distributions over.

74 Functional regularisation of memorable past

4.3 Identifying memorable past

In the previous section, we discussed how to go from a distribution over weights of a neural
network to a distribution over functions. We want to evaluate this distribution over functions
at a set of input examples. In this section, we identify this set of memorable past examples
(this is Step B in Figure 4.1). These will be the datapoints that are the most important to
avoid forgetting information. By only using a few examples, we reduce the computation cost
of functional regularisation.

We exploit a property of linear models to identify our memorable past examples. Consider
a linear model where different noise precision Λi is assigned to each pair {xi, yi}. For MAP
estimation, the examples with high value of Λi contribute more, as is clear from the objective,

wMAP = argmin
w

1
2

N∑

i=1

Λi(yi − φ(xi)
⊤w)2 + 1

2
δw⊤w. (4.16)

The noise precision Λi can therefore be interpreted as the relevance of the data example i.
Such relevant examples are crucial to ensure that the solution stays at wMAP or close to it.
These ideas are widely used in the theory of leverage-score sampling (Alaoui and Mahoney,
2015; Ma et al., 2015) to identify the most influential examples. However, computation using
such methods is difficult since they require inverting a large matrix, and cheaper solutions
may be more desirable. Titsias et al. (2020) use an approximation by inverting smaller
matrices, but they require solving a discrete optimisation problem to select examples. We
propose a method which is not only cheap and effective, but also yields intuitive results. We
also compare against the leverage-score sampling method.

We use the same key idea as in Section 4.2, using the linear model from which we
obtained our GP posterior. In this way, we use the same framework from Step A of FROMP
(converting to function-space) to guide our choice of memorable past points. The linear
mode assigns different noise precision to each data example. This is clear when we compare
Equation 4.8 with Equation 4.9, where we see the quantity Λw∗(xi, yi) playing the same
role as the noise precision Λ. Additionally, the linear model in Equation 4.9 uses Jacobians
Jw∗(xi) as features (instead of φi).

Therefore, Λw∗(xi, yi) can be used as a relevance measure, and a simple approach to pick
influential examples is to sort Λw∗(xi, yi) over all examples, and pick the top few examples.
We refer to this method as the Lambda method for choosing examples.

Alternatively, we can use techniques from the leverage-score sampling literature (Alaoui
and Mahoney, 2015; Ma et al., 2015), but with Λw∗(xi, yi) instead of Λ. Specifically, we

4.3 Identifying memorable past 75

assign a score to each datapoint given by,

Leverage score for datapoint i =
(
ΦΦ⊤ [ΦΦ⊤ +Λ−1

]−1
)
ii
, (4.17)

where Φ is an N × P matrix with features Jw∗(xi) as rows (for all N datapoints xi), Λ is
an N ×N diagonal matrix with Λw∗(xi, yi) as the i’th diagonal element, and Aii denotes
taking the ii’th element of the matrix A. The leverage score is difficult to calculate as it
requires inverting a large NK ×NK matrix, where N is the number of datapoints and K is
the number of classes. In reality, we can make computation cheaper by approximating this
matrix with a block-diagonal one with K lots of N × N matrices, or even with K lots of
Nk ×Nk matrices, where Nk is the number of datapoints in each class k ∈ {1, 2, ..., K} (if
there are an equal number of points per class, then Nk = N/K ∀k).

Having obtained a leverage score for each point, we then sample the desired number of
points with probability proportional to their leverage score, and store this set of points. We
call this method the Leverage method for choosing examples. In Section 5.4, we will see
a slightly different motivation for the Leverage method (and also for the Lambda method),
based on theory we introduce in Chapter 5.

Due to the computation cost of the Leverage method, we normally use the signifi-
cantly cheaper Lambda method. The Lambda method only requires a forward pass to get
ℓ(yi, h(fw∗(xi))), followed by double differentiation. For example, in binary classification,
this is equal to σ(fw∗(xi)) [1− σ(fw∗(xi))]. For binary classification, the Lambda method
is equivalent to the “Confidence Sampling” approaches used in the Active Learning literature
(Wang and Shang, 2014; Ash et al., 2020), although in general it differs from them.

Regardless of which method we use, we refer to the set of chosen examples as the
memorable past examples. After training on task t, we select a set of few memorable
examples from Dt, and we denote this memorable past set asMt.

An example of points chosen by the Lambda method is shown in Figure 4.2, where we
pick many examples that are difficult to classify. The Lambda method can be intuitively
thought of as choosing examples close to the decision boundary. On the other hand, the
Leverage method samples points that are spread out in input-space, with a strong bias towards
points that are close to the decision boundary.

We next describe how we functionally regularise over the memorable past examples.

76 Functional regularisation of memorable past

(a) Most (left) vs least (right) memorable,
sorted by the Lambda method on MNIST.

(b) Most (left) vs least (right) memorable,
sorted by the Lambda method on CIFAR-10.

Figure 4.2: We plot the five most memorable and five least memorable datapoints per class
by the Lambda method on (a) MNIST and (b) CIFAR-10. To obtain these, we train a model
on the dataset, and sort all datapoints by their noise precision Λw∗(xi, yi), as described in
Section 4.3. The memorable points are the more atypical examples from each class, and
more difficult to classify as they may be closer to the decision boundaries.

4.4 Training in weight-space with a functional prior

We will now describe the final step for training in weight-space with regularisation in
function-space (Step C in Figure 4.1). As discussed in Section 4.1, our objective function
is the variational objective in weight-space, except with the expectation of the log-prior in
function-space instead of weight-space,

LFROMP
t (ηt) = Eqηt (w) [−(1/τ) log p(Dt|w) + log qηt(w)]− Eq̃wt (f)

[
log q̃wt−1(f)

]
,

(4.18)

where we have highlighted the function-space term in red, and we have introduced a tempering
parameter τ > 0 like in Equation 3.2.

We now are armed with all the mathematical tools we need to evaluate this objective
and optimise it. The first two terms in Equation 4.18 (the likelihood term and the entropy
term) are unchanged from the weight-space variational objective function, and calculating
them is unchanged from earlier (we can use the same methods as in Section 2.2). The
new function-space term consists of two distributions over f , q̃wt(f) and q̃wt−1(f), where

4.4 Training in weight-space with a functional prior 77

f is the vector of function values defined over a set of points. In Section 4.2 we derived
expressions for these distributions. These distributions are functions of the parameters ηt
and ηt−1 respectively.

We could directly optimise Equation 4.18 for the parameters ηt using standard-gradient
techniques, however, we expect natural-gradient update steps to converge quicker. This was
motivated in Section 2.2.2, and we saw that this led to improved convergence in Chapter 3.
A natural-gradient update (specifically, the VOGGN update2 (Khan et al., 2019)) to optimise
Equation 4.18 takes the following form,

Σ−1←(1−β)Σ−1+β

[
1

τ

∑

i∈Dt

Jwt(xi)
⊤ Λwt(xi)Jwt(xi)− 2∇Σ Eq̃wt (f)

[
log q̃wt−1(f)

]
]
,

(4.19)

µ← µ− βΣ
[
1

τ

∑

i∈Dt

gi(wt)−∇µ Eq̃wt (f)

[
log q̃wt−1(f)

]
]
, (4.20)

where we have used the per-example gradients of the negative log-likelihood gi(wt) at a
sample from our current approximate posterior wt ∼ qηt(w) = N (w;µ,Σ), and we have
ignored the iteration subscript to simplify notation.

Using the µ and Σ obtained with this iteration, we can use the reasoning in Section 4.2
to define the following GP predictive posterior at a sample wt, with a mean and covariance
function as follows (see Equation 4.15),

mwt(x) = σ(fwt(x)), κwt(x,x
′) = Λwt(x)Jwt(x)ΣJwt(x

′)⊤Λwt(x). (4.21)

We use these equations for q̃wt(f) = N (f ;mt(w),Kt(w)), where mt(w) and Kt(w)

respectively denote the mean vector and kernel matrix obtained by evaluating Equation 4.21
at the memorable past examples (all examples inMs for all tasks s < t). The mean vector mt

is obtained by concatenating mwt(x) for all memorable past examples, and the covariance
matrix Kt is defined as the matrix with ij’th entry as κwt(xi,xj).

We can use the same reasoning to obtain corresponding mean mt−1 and covariance
Kt−1 from qηt−1(w). This gives q̃wt−1(f) = N (f ;mt−1,Kt−1), where the mean vector
and covariance matrix are obtained in exactly the same way as earlier, except evaluated
at a sample wt−1 ∼ qηt−1(w) instead of a sample from qηt(w). Note that we can take
many samples and average over them. The evaluations are over the same memorable past

2The VOGGN update uses the standard Generalised Gauss-Newton approximation to the Hessian (Martens,
2020; Kunstner et al., 2019), instead of the slightly different parameterisation used in VOGN in Section 2.2.2.

78 Functional regularisation of memorable past

examples. Alternatively, if we are using a Laplace approximation for qηt−1(w), we can use
Equation 4.13.

Given these quantities, the functional regularisation term has an analytical expression,

Eq̃wt (f)

[
log q̃wt−1(f)

]
= −1

2

[
Tr(K−1

t−1Kt) + (mt −mt−1)
⊤K−1

t−1(mt −mt−1)
]
+ const.

(4.22)

Our goal is to obtain the derivative of this term with respect to µ and Σ. Both mt and
Kt are functions of µ and Σ through the sample wt = µ + Σ1/2ϵ where ϵ ∼ N (0, I).
Therefore, we can compute these derivatives using the chain rule. We call this algorithm
variational-FROMP (or var-FROMP).

We note that if we had decided to compute the entire KL-to-prior term in function-space,
then we would also have to compute the entropy in function-space Eq̃wt (f)

[log q̃wt(f)], and
this would simply add a −1

2
log |Kt| term to Equation 4.22. This would also affect the

VOGGN updates in Equations 4.19 and 4.20 (we can follow Section 2.2.2 to derive the new
updates).

Unfortunately, var-FROMP is costly for large problems, as it requires Monte-Carlo
sampling (for conversion to function-space distributions), large matrix inversions (such as
of Kt−1), as well as higher-order derivatives (the Jacobians in Equation 4.21 depend on the
current variational parameters, and so we need to take their derivative with respect to the
variational parameters). We therefore now propose approximations to reduce computation
cost. We will look at two algorithms. OGN-FROMP will make a few approximations to
reduce computation cost, but FROMP will make even more approximations, allowing it to
scale easily.

4.4.1 OGN-FROMP

In this subsection, we consider an algorithm that maintains a covariance matrix during
optimisation by using the Online Gauss Newton (OGN) algorithm (which we have also
previously introduced in Sections 3.2 and 4.2). We make four approximations to var-FROMP
to derive an algorithm that we call OGN-FROMP:

Approximation 1: Instead of sampling wt−1, we set wt−1 = µt−1, which is the mean
of the posterior approximation qηt−1(w) until task t − 1. Therefore, we replace
Eq̃wt (f)

[
log q̃wt−1(f)

]
by Eq̃wt (f)

[
log q̃µt−1(f)

]
. This affects mt−1 and Kt−1 in Equa-

tion 4.22, and is similar to the Laplace approximation in Section 4.2.

4.4 Training in weight-space with a functional prior 79

Approximation 2: We reduce the cost of calculating derivatives of the functional regulariser,
avoiding calculating complex derivatives (such as derivatives of Jacobians). For the
derivative with respect to µ, we ignore the derivative with respect to Kt and only
consider mt. For the derivative with respect to Σ, we leave the log-prior term in weight-
space, and do not use the function-space approximation. This minimises the differences
between our function-space algorithm and the weight-space algorithms that we know
converge quickly.3 Future work could consider not making this approximation.

Therefore, the derivative in the update in Equation 4.20 can be approximated as,

∇µ Eq̃wt (f)

[
log q̃wt−1(f)

]
≈ − [∇µmt]K

−1
t−1(mt −mt−1). (4.23)

Approximation 3: Instead of using the full kernel matrix Kt−1, we factorise it across tasks.
We use a block-diagonal matrix containing the kernel matrix Kt−1,s for all past tasks
s as the diagonal. This makes the cost of inversion linear (instead of cubic) in the
number of past tasks.

Approximation 4: We use a deterministic version of the NGVI update. We set wt = µ,
which corresponds to setting the random noise ϵ to zero in wt = µ + Σ1/2ϵ, and
we use a diagonal covariance Σ instead of full-covariance. The gradient of mt with
respect to µ is given as follows using the chain rule (here mt,s is the sub-vector of mt

corresponding to the task s),

∇µmt,s[i] = ∇µ [σ (fµ(xi))] = Λµ(xi)Jµ(xi)
⊤, (4.24)

where xi ∈Ms, and where the second equality holds for canonical link functions. We
can also let automatic differentiation handle this computation.

With these approximations, we can write the OGN-FROMP update as follows,4

Σ−1 ← (1− β)Σ−1 + β

[∑

i∈Dt

diag
(
Jµ(xi)

⊤ Jµ(xi)
)
+Σ−1

t−1

]
, (4.25)

µ← µ− βΣ
[
1

τ

∑

i∈Dt

gi(µ) +
t−1∑

s=1

[∇µmt,s]K
−1
t−1,s(mt,s −mt−1,s)

]
, (4.26)

3As the Σ update is now only in weight-space, we do not need a tempering factor τ in its update, but we
keep τ in the µ update. This is especially important when we use a small number of datapoints, and so need to
upweight the function-space term.

4Note that we are using the OGN update, which uses a slightly different parameterisation of the Generalised
Gauss-Newton matrix than in the earlier (V)OGGN update in Equation 4.19.

80 Functional regularisation of memorable past

where diag(A) is the diagonal of matrix A.
Overall, OGN-FROMP runs the updates Equations 4.25 and 4.26 on a task (along with

minibatching of the current dataset Dt). Then, we use the converged approximate posterior
qηt(w) = N (w;µ,Σ) to find a new set of memorable points. When we see a new task, we
set the new prior to be the previous posterior, and convert to function-space q̃wt−1(f).

We will see results for OGN-FROMP in Section 4.5.2. We will see that it performs
well on a smaller-scale benchmark, but further work is required to assess its suitability for
larger-scale benchmarks. Instead, we can make further approximations, and still get an
algorithm that works very well on both small and large-scale benchmarks. We describe these
further approximations next.

4.4.2 FROMP

We now describe further approximations that we can make on top of OGN-FROMP in order
to get a different algorithm, which we call FROMP. FROMP performs very well in practice,
despite making many approximations to var-FROMP. FROMP uses Approximations 1, 3
and 4 from OGN-FROMP. Approximation 2 changes slightly for FROMP, and we introduce
another approximation, Approximation 5.

Approximation 2: We ignore the derivative with respect to Kt and only consider mt. For
OGN-FROMP, we only did this for the derivative with respect to µ, but now we also
do this for the derivative with respect to Σ. This leads to the following (on top of
Equation 4.23),

∇Σ Eq̃wt (f)

[
log q̃wt−1(f)

]
≈ − [∇Σmt]K

−1
t−1(mt −mt−1). (4.27)

Note that when combined with Approximation 4, we effectively ignore the term
∇ΣEq̃wt (f)

[
log q̃wt−1(f)

]
, as the gradient with respect to Σ is always 0.

Approximation 5: Our final approximation is to replace the natural-gradient update by an
RMSprop-like update where we denote µ by w, giving updates,

s← (1− β)s+ β

[∑

i∈Dt

diag
(
Jw(xi)

⊤ Λw(xi)Jw(xi)
)
]
, (4.28)

w ← w − β 1

s+ δ1

[
1

τ

∑

i∈Dt

gi(wt) +
t−1∑

s=1

[∇wmt,s]K
−1
t−1,s (mt,s −mt−1,s)

]
,

(4.29)

4.4 Training in weight-space with a functional prior 81

where we have added a regulariser δ to s in the second line to avoid dividing by zero.
Previously, this regulariser was the prior precision. Ideally, when using a functional
prior, we would replace this by another term that calculates covariance information in
function-space. However, this term was ignored by making Approximations 2 and 4,
and we use δ instead. The final Gaussian approximation is obtained with the mean
equal to w and covariance equal to a diagonal matrix with 1/(s+ δ1) as its diagonal.

Optimising Equations 4.28 and 4.29 gives the same solutions for w as the objective,

min
w

Nℓ̄t(w) + 1
2
τ
t−1∑

s=1

(mt,s(w)−mt−1,s)
⊤K−1

t−1,s (mt,s(w)−mt−1,s). (4.30)

The above is a computationally-cheap approximation of the objective in Equation 4.18.
We see that the function-space regulariser takes the form of a quadratic regulariser. It has
two nice properties: (i) it forces the output of the current network, mt, to be close to the
output of the previous network, mt−1 (over all memorable points), and (ii) it has a kernel
K−1

t−1 that automatically weighs the stored examples (more important examples get a higher
weight, less important examples get a lower weight, and a pair of examples that are in similar
regions of input-space have a large off-diagonal term that reduces their contribution). This
function-regulariser is able to exploit correlations between memorable examples due to a
full kernel matrix K−1

t−1. Property (i) above is a key difference to Titsias et al. (2020), and
property (ii) is an improvement to Equation 4.4 (Benjamin et al., 2019).

We follow the recommendations of Khan et al. (2018) and use Adam to optimise the
objective in Equation 4.30. This means that the estimate of the covariance is not accurate,
although the fixed-points of the objective are not changed. We correct the approximation
after convergence of the algorithm by recomputing the diagonal of the covariance according
to Equation 4.28, like in a Laplace approximation.

Our approach therefore provides a cheap weight-space training method while exploit-
ing correlations in function-space. We can expect further improvements by relaxing our
approximations. For example, we can use a full kernel matrix or employ a block-diagonal
weight-covariance matrix. We leave such comparisons as future work since they require
sophisticated implementation to scale, although we provide a single experiment with OGN-
FROMP in Section 4.5.2 to show the potential of relaxing approximations. We also note that
we could treat the entire KL-to-prior term in function-space, instead of just the log-prior term
(see Equation 4.6), without affecting the final FROMP objective in Equation 4.30. This is
because of the approximations we made.

82 Functional regularisation of memorable past

Algorithm 2 FROMP for binary classification on task t given memorable past setsM1:t−1

and qt−1(w) = N (µt−1, diag(vt−1)). Additional computations on top of Adam are high-
lighted in red. In this algorithm, we calculate the memorable past using the Lambda method,
but we could use other methods such as the Leverage method (see Section 4.3).

1: function FROMP (Dt,µt−1,vt−1,M1:t−1)
2: Compute mt−1,s,K

−1
t−1,s,∀ tasks s < t (Equations 4.32 and 4.33).

3: Initialise w ← µt−1.
4: repeat
5: Sample a minibatch B of size B.
6: ĝ← (1/B)

∑
i∈B∇wℓ(yi, σ(fw(xi))).

7: gf ← g_funcreg (w,mt−1,K
−1
t−1,M1:t−1).

8: w ← Adam update with gradient N ĝ + τgf .
9: until converged

10: Set µt ← w.
11: Compute vt (Equation 4.31).
12: Mt← memorable_past_Lambda(Dt,w).
13: return µt,vt,Mt

14: function g_funcreg (w,mt−1,K
−1
t−1,M1:t−1)

15: Initialise gf ← 0.
16: for task s = 1, 2, ..., t− 1 do
17: Compute mt,s (Equation 4.32).
18: hi ← Λw(xi)Jw(xi)

⊤,∀xi ∈Ms, and form matrix H with hi as columns.
19: gf ← gf +HK−1

t−1,s(mt,s −mt−1,s).
20: end for
21: return gf

22: function memorable_past_Lambda (Dt,w)
23: Calculate Λw(xi), ∀xi ∈ Dt.
24: return M examples with highest Λw(xi).

The final FROMP algorithm and computational complexity

The resulting algorithm, FROMP, is shown in Algorithm 2 for binary classification (the
extension to multiclass classification is in Appendix C.2). For binary classification, we
assume a sigmoid σ(fw(x)) function and cross-entropy loss. As shown in Section 4.2, the
Jacobian (of size 1× P) and noise precision (a scalar) are as follows: Jw(x) = ∇wfw(x)

⊤

and Λw(x) = σ (fw(x)) [1− σ (fw(x))]. To compute the mean and kernel, we need the
diagonal of the covariance, which we denote by vt. This can be obtained using Equation 4.9

4.4 Training in weight-space with a functional prior 83

but with the sum over D1:t. The update below computes this recursively,

1

vt
=

[
1

vt−1

+
∑

i∈Dt

diag
(
Jw(xi)

⊤Λw(xi)Jw(xi)
)
]
, (4.31)

where ‘/’ denotes element-wise division and diag(A) is the diagonal of A. We can compute
the mean and kernel matrix as follows (see Section 4.2 for details),

mt,s(w)[i] = σ (fw(xi)) , (4.32)

Kt,s(w)[i, j] = Λw(xi)
[
Jw(xi)Diag (vt)Jw(xj)

⊤]Λw(xj) , (4.33)

over all memorable examples xi,xj , where Diag(a) denotes a diagonal matrix with the
vector a as the diagonal. Using these, we can write the gradient of Equation 4.30, where the
gradient of the functional regulariser is added to the gradient of the loss,

N∇wℓ̄t(w) + τ
t−1∑

s=1

[∇wmt,s(w)]K−1
t−1,s (mt,s(w)−mt−1,s), (4.34)

where∇wmt,s(w)[i] = ∇w [σ (fw(xi))] = Λw(xi)Jw(xi)
⊤. The regulariser is computed in

subroutine g_funcreg in Algorithm 2, although we could also let automatic differentiation
calculate this derivative.

The additional computations on top of Adam are highlighted in red in Algorithm 2.
Every iteration requires functional gradients (in g_funcreg) whose cost is dominated by
the computation of Jw(xi) at all xi ∈ Ms,∀s < t. Assuming the size of the memorable
past is M per task, this adds an additional O(MPt) computation, where P is the number
of parameters and t is the task number. This increases only linearly with the size of the
memorable past. We need three additional computations but they are required only once per
task. First, inversion of Ks,∀s < t, which has cost O(M3t). This is linear in number of
tasks and is feasible when M is not too large. Second, computation of vt in Equation 4.31
requires a full pass through the dataset Dt, with cost O(NP) where N is the dataset size.
This cost can be reduced by estimating vt using a minibatch of data (as is common in EWC
(Kirkpatrick et al., 2017)). Finally, we need to find the memorable past Mt, requiring
a forward pass followed by picking the top M examples for the Lambda method (see
memorable_past_Lambda in Algorithm 2).

84 Functional regularisation of memorable past

4.5 Experiments

In this section, we perform experiments on continual learning benchmarks with FROMP and
OGN-FROMP. We start with the cheaper FROMP algorithm. We see how it is consistent
across many runs on the Toy-Gaussians benchmark, indicating its suitability for fixing the
brittleness/inconsistent behaviour of weight-regularisation from Section 3.3. We then apply
FROMP to our other benchmarks: Split MNIST, Permuted MNIST and Split CIFAR. We see
FROMP performs very well on all benchmarks.

We then try the more expensive OGN-FROMP, only running on Split MNIST as a proof-
of-concept. We see extremely good performance, but OGN-FROMP is more expensive, and
this is a price we pay for the convenience of having better covariance information during
training. Future work could look at scaling OGN-FROMP to larger benchmarks while not
being too computationally expensive.

Details of benchmarks and metrics (we use average accuracy, forward transfer and
backward transfer) are in Section 2.4. We use the same network architectures and protocol
for benchmarks as described in Section 2.4, and as used in Chapter 3. Hyperparameter
settings for all experiments is in Appendix C.3.

To identify the benefits of the functional prior (Step A) and memorable past (Step B), we
compare FROMP to three variants:

1. FROMP-L2 where we replace the kernel in Equation 4.33 by the identity matrix,
similar to Equation 4.4,

2. FRORP where memorable examples selected randomly (“R” stands for random),

3. FRORP-L2 which is same as FRORP, but the kernel in Equation 4.33 is replaced by
the identity matrix.

For most experiments, FROMP is run with the Lambda method for choosing memorable
points (Section 4.3). We only use the Leverage method in one subsection.

4.5.1 Experiments with FROMP

We start by looking at FROMP’s performance (see Algorithm 2) on four benchmarks: Toy-
Gaussians, Split MNIST, Permuted MNIST, and Split CIFAR. We compare with VCL
(Nguyen et al., 2018), EWC (Kirkpatrick et al., 2017), VCL+Coreset, VOGN and FRCL
(Titsias et al., 2020). We find that FROMP empirically improves upon these previous
methods, performing extremely well. Code is available at https://github.com/
team-approx-bayes/fromp.

https://github.com/team-approx-bayes/fromp
https://github.com/team-approx-bayes/fromp

4.5 Experiments 85

Class 1

Class 2

Class 1

Class 2

Class 1

Class 2

FROMP Joint tasksVCL+Coreset

Figure 4.3: FROMP performs very well when continually trained over the 5 tasks of the
Toy-Gaussians benchmark, performing similar to the Joint Tasks upper-bound baseline.
VCL+Coreset, on the other hand, performs poorly, although it also stores a coreset of
memory. We plot the middle-performing run of 5 runs for each method. Performance is
summarised in Table 4.1.

FROMP FRORP VCL+RP VCL+MP VOGN Joint Tasks
99.6± 0.2% 98.5± 0.6% 92± 10% 85± 14% 79± 11% 99.70± 0.03%

Table 4.1: Train accuracy of FROMP, FRORP, VCL+Coreset, VOGN and Joint Tasks (an
upper-bound on performance) on Toy-Gaussians, with mean performance and standard
deviation over 5 runs for VCL, VOGN and Joint Tasks, and 10 runs for FROMP and FRORP.
VCL+RP and FRORP have the same (random) coreset selections. VCL+MP is provided with
‘ideal’ coreset points as chosen by an independent run of FROMP. VOGN and VCL+Coreset
are brittle with high standard deviations, while FROMP and FRORP are stable, with FROMP
slightly better and closer to Joint Tasks performance.

Toy-Gaussians

We previously saw in Section 3.3 (see Figure 3.15 and Table 3.5) how weight-regularisation
such as VCL can be brittle and inconsistent on the simple 2D binary classification Toy-
Gaussians benchmark. In Figure 4.3 we now see how FROMP performs well on this dataset,
unlike the previous method VCL+Coreset. We summarise results in Table 4.1, where FROMP
is within error of Joint Tasks performance. Even FRORP, which uses a random memory,
is close behind, and significantly better than weight-regularisation methods. There are two
versions of VCL+Coreset: (i) VCL+RP uses random points in the coreset, and (ii) VCL+MP
uses the same memorable points as FROMP. We see that the choice of coreset points do
not significantly affect VCL+Coreset’s performance, and VCL+Coreset is always extremely
brittle: it can perform well sometimes (1 run out of 5), but usually does not (4 runs out of 5).

We also look at the performance of FROMP with different dataset variations of Toy-
Gaussians in Table 4.2. We see that FROMP performs consistently well, indicating that it

86 Functional regularisation of memorable past

Dataset variation FROMP Joint Tasks
Original Toy-Gaussians dataset 99.6± 0.2% 99.7± 0.0%
10x less data (400 per task) 99.9± 0.0% 99.7± 0.2%
10x more data (40000 per task) 96.9± 3.0% 99.7± 0.0%
Introduced 6th task 97.8± 3.3% 99.6± 0.1%
Increased std dev of each class distribution 96.0± 2.4% 96.9± 0.4%
2 tasks have overlapping data 90.1± 0.8% 91.1± 0.3%

Table 4.2: Train accuracy of FROMP and Joint Tasks (upper-bound on performance) on
variations of Toy-Gaussians, with mean performance and standard deviations over 10 runs
for FROMP and 3 runs for Joint Tasks. FROMP performs well across variations. See
Appendix C.4 for visualisations of these dataset variations.

is robust. This indicates it might also perform well on larger benchmarks. We visualise the
different dataset variations in Appendix C.4.

Finally, in Appendix C.5 we show the importance of the kernel being over all weights on
Toy-Gaussians. FROMP’s kernel is over all weights, as opposed to other methods such as
FRCL (Titsias et al., 2020). We argue that this is especially important earlier in training (on
earlier tasks), when all the weights in the neural network are still changing significantly.

Split MNIST and Permuted MNIST

We have seen how FROMP performs consistently well on Toy-Gaussians, showing robustness
to dataset variations, and we hope that this performance translates over to larger benchmarks
with images. We start by looking at performance on Split MNIST and Permuted MNIST,
using the same experimental protocol as described in Section 2.4 and used in Chapter 3. For
Permuted MNIST, we set the number of memorable examples in the range 10–200 per task.
For Split MNIST, we select 40 points per task.

The final average accuracy is shown in Table 4.3, where FROMP achieves better per-
formance than weight-regularisation methods (EWC, SI, VCL, VOGN, VCL+Coreset) as
well as FRCL (Titsias et al., 2020). FROMP also improves over FRORP-L2 and FROMP-L2,
demonstrating the effectiveness of the kernel. The improvement compared to FRORP is
not significant on Split MNIST. We believe this is because a random memorable past is
already close to the highest achievable performance with our method, and we see no further
improvement by choosing the examples carefully. However, as shown in Figure 4.4(a) on
Permuted MNIST, we see larger improvements when the number of memorable examples
is smaller (compare FROMP vs FRORP). Finally, Figure 4.2(a) shows the most and least
memorable examples chosen by sorting Λw(x,y). The most memorable examples appear to

4.5 Experiments 87

Method Split MNIST Permuted MNIST Permuted MNIST Permuted MNIST
ACC (%) ACC (%) FWT (%) BWT (%)

EWC 63.1 84 – –
Improved VCL 98.5±0.4 93±1 -0.2±0.1 -4±1

+ Random Coreset 98.2±0.4 94.6±0.3 -0.2±0.1 -2.3±0.3
VOGN 98.8±0.1 94.0±0.8 -0.6±0.1 -4±1
FRCL-RND 97.1±0.7 94.2±0.1 – –
FRCL-TR 97.8±0.7 94.3±0.2 – –
FRORP-L2 98.5±0.2 87.9±0.7 – –
FROMP-L2 98.7±0.1 94.6±0.1 – –
FRORP 99.0±0.1 94.6±0.1 – –
FROMP 99.0±0.1 94.9±0.1 -1.9±0.1 -1.0±0.1

Table 4.3: Comparing average accuracy (ACC) of various methods on Permuted MNIST
(10 tasks) and Split MNIST (5 tasks). FROMP performs the best overall, outperforming
previous approaches such as EWC (Kirkpatrick et al., 2017) and also FRCL (Titsias et al.,
2020). Improved VCL and VOGN results are from Chapter 3 (and Eschenhagen (2019)). We
also compare forward transfer (FWT) and backward transfer (BWT) on Permuted MNIST
for FROMP, VOGN and VCL (definitions of metrics are in Section 2.4). FROMP has lower
FWT, indicating it does not learn as good an initial performance on new tasks, but has better
BWT, indicating it does not forget as much as other methods. For Permuted MNIST, we use
200 examples per task as the memorable past / coreset / inducing points. For Split MNIST,
we use 40 examples per task.

be more difficult to classify than the least memorable examples, which suggests that they
may lie closer to the decision boundary.

We also look at forward transfer (FWT) and backward transfer (BWT) metrics for
Permuted MNIST in Table 4.3 (see Chapter 3 for details on Improved VCL, VCL+Coreset
and VOGN). We see that FROMP achieves its better performance by having worse FWT
but better BWT. This indicates that FROMP does not perform as well as other methods
immediately as a new task is learnt, but it offsets this by not forgetting past tasks as much as
other methods.

We also run FROMP on Split MNIST on the smaller network architecture of VCL, with
one hidden layer of 200 units (instead of two hidden layers), obtaining 99.2± 0.1%.

Split CIFAR

We also run FROMP on the larger Split CIFAR task, using the same experimental protocol
as previously described in Section 2.4 and used in Chapter 3. We run on the CifarNet
architecture from Zenke et al. (2017). The number of memorable past points is set in the
range 10–200, and we run each method 5 times.

88 Functional regularisation of memorable past

10 40 70 100
Number of Examples

0.6

0.7

0.8

0.9

V
al

id
at

io
n

A
cc

ur
ac

y

FROMP

FRORP

FROMP-L2

FRORP-L2

(a) Permuted MNIST

10 40 70 100
Number of Examples

0.4

0.5

0.6

0.7

V
al

id
at

io
n

A
cc

ur
ac

y
FROMP

FRORP

FROMP-L2

(b) Split CIFAR

10 40 70 100
Number of Examples

0.4

0.5

0.6

0.7

V
al

id
at

io
n

A
cc

ur
ac

y

FROMP

FRORP

FROMP-L2

(c) Split CIFAR (11 tasks)

Figure 4.4: All figures show the average accuracy (after training on all tasks) with respect
to the number of memorable examples per task. (a) On Permuted MNIST, we see that
FROMP outperforms FRORP and L2 variants at small numbers of past examples. (b) On
Split CIFAR, FROMP outperforms FRORP (note that FRORP-L2 performs significantly
worse), but FROMP-L2 is usually within error of FROMP, even at small memory sizes. (c) A
similar story is seen for Split CIFAR with 11 tasks instead of 6 tasks.

The results are summarised in Figure 4.5, where we see that FROMP is close to the
upper limit while outperforming all the other methods (see the final ACC column for average
accuracy). The weight-regularisation methods EWC and SI do not perform well on later tasks
while VCL(+Coreset) forgets earlier tasks. VOGN performs well but not as good as FROMP,
and has not learnt more recent tasks very well. FROMP performs consistently better than
VOGN across all but the first task. FROMP also improves over the Separate Tasks baseline
by a large margin. In fact, on tasks 4-6, FROMP matches the performance to the network
trained jointly on all tasks, which implies that it completely avoids forgetting on these tasks.

Figure 4.4(b) shows the performance with respect to the number of memorable past
examples. Similarly to Figure 4.4(a), carefully selecting memorable example improves
performance, especially when the number of memorable examples is small. For example,
with 10 memorable examples, a careful selection in FROMP increases the average accuracy
to 70% from 45% obtained by FRORP. Including the kernel in FROMP here does not improve
significantly over FROMP-L2, unlike in Permuted MNIST. We also look at 11 tasks of Split
CIFAR instead of 6 tasks (the first task is CIFAR-10, and the following 10 tasks are 10
classes each from CIFAR-100), and Figure 4.4(c) shows a very similar result to the 6-task
version. Figure 4.2(b) shows the most and least memorable past examples in CIFAR-10,
where we again see that the most memorable might be more difficult to classify.

4.5 Experiments 89

0.65

0.70

0.75

0.80
V
al

id
at

io
n
 A

cc
u
ra

cy
FROMP

VCL+
Coreset

EWC

SI

Separate
tasks

Joint
tasks

VOGN

T1 T2 T3 T4 T5 T6 ACC

Cifar-10 10 classes each, Cifar-100

Figure 4.5: Individual task accuracy after training on the final task, and average task accuracy
(ACC). FROMP outperforms VOGN (and all other weight-regularisation baselines), as seen
in the ACC column. Additionally, on tasks 4-6, FROMP matches the performance of the
network trained jointly on all tasks, which implies that it avoids forgetting on these tasks.
For these results, FROMP and VCL+Coreset store 200 points per task.

Finally, we analyse the forward and backward transfer obtained by FROMP, summarised
in Table 4.4. We find that FROMP’s forward transfer is much better than VCL and EWC,
while its backward transfer is comparable to EWC. FROMP achieves a forward transfer of
6.1± 0.7%, a much higher value compared to 0.17± 0.9% obtained with EWC, 1.8± 3.1%

with VCL+coresets and 0.8 ± 2.0% with VOGN. For backward transfer, FROMP has a
score of −2.6± 0.9%, which is comparable to EWC’s score of −2.3± 1.4% but better than
VCL+Coreset which obtains −9.2 ± 1.8%. VOGN has the best backward transfer, with
−0.7± 0.5%.

Benchmark Metric EWC VCL+Coreset VOGN FROMP

Split CIFAR
ACC (%) 71.6±0.9 48.8±2.2 74.4±0.4 76.2±0.4
FWT (%) 0.2±0.9 0.8±2.0 1.8±0.3 6.1±0.7
BWT (%) -2.3±1.4 -29±4 -0.7±0.5 -2.6±0.9

Table 4.4: Final average test accuracy, forward transfer and backward transfer on Split
CIFAR for various methods. Mean performance and standard deviation over 5 runs. We see
that FROMP has the best average accuracy, as well as the best forward transfer. FROMP’s
backward transfer matches EWC’s, but is worse than VOGN’s. For these results, FROMP
and VCL+Coreset store 200 points per task.

90 Functional regularisation of memorable past

2 10 20 40
Number of Examples

0.900

0.925

0.950

0.975

1.000
Va

lid
at

io
n

Ac
cu

ra
cy

FROMP-Leverage
FROMP-Lambda

(a) Split MNIST

10 40 70 100 200
Number of Examples

0.60

0.65

0.70

0.75

Va
lid

at
io

n
Ac

cu
ra

cy

FROMP-Lev-greedy
FROMP-Lambda
FRORP

(b) Split CIFAR

Figure 4.6: Both figures show the average accuracy (after training on all tasks) with respect to
the number of memorable examples per task. On Split MNIST, we see that FROMP-Leverage
(which uses the Leverage method for choosing memorable points) is consistently marginally
better than FROMP-Lambda (which uses the significantly cheaper Lambda method for
choosing points). On Split CIFAR, we use FROMP-Lev-greedy, which greedily chooses the
points with top leverage score, instead of sampling points according to their leverage score.
FROMP-Lev-greedy is always within error of FROMP-Lambda (both methods significantly
outperform random sampling with FRORP at smaller memories). Using FROMP-Leverage
(without greedily choosing points) performs slightly worse on Split CIFAR when only storing
a few points, likely because of the additional randomness due to sampling. We use the
Lambda method for all our other experiments with FROMP.

FROMP-Leverage

All results so far with FROMP have been with the Lambda method for choosing memorable
past points. As discussed in Section 4.3, we can also use different methods for choosing
memorable points. We now consider the Leverage method, which was described in Sec-
tion 4.3. We denote this method FROMP-Leverage, and run it on Split MNIST and Split
CIFAR, with all hyperparameters the same as used in the earlier experiments (we now call the
previous method FROMP-Lambda as it uses the Lambda method for choosing memorable
past points).

We look at results on Split MNIST with reducing number of memorable past points in
Figure 4.6(a), and results for Split CIFAR in Figure 4.6(b). On Split MNIST, across different
numbers of memorable past points, we find that FROMP-Leverage consistently marginally
outperforms FROMP-Lambda: FROMP-Leverage has higher mean performance but is within
a standard deviation (each method is run 5 times). For example, on Split MNIST with 40

4.5 Experiments 91

memorable past examples per task, FROMP-Leverage achieves an average accuracy after all
tasks of 99.3± 0.2%, while FROMP-Lambda gets 99.0± 0.1%.

On Split CIFAR, we use FROMP-Leverage-greedy (or ‘FROMP-Lev-greedy’), which
calculates the leverage score per datapoint, but then greedily chooses the points with top lever-
age score instead of sampling points with probability proportional to their score. FROMP-
Leverage-greedy performs well, and again is always within error of FROMP-Lambda. At
larger memories the leverage method performs marginally better, for example, with 200 mem-
orable past examples per task, FROMP-Leverage-greedy gets 76.5± 0.2%, while FROMP-
Lambda gets 76.2± 0.4%. However, at smaller memories, FROMP-Leverage-greedy does
not always (marginally) outperform FROMP-Lambda.

On Split CIFAR with small memories, FROMP-Leverage (without greedy sampling)
performs worse than FROMP-Leverage-greedy and FROMP-Lambda. For example, with
10 memorable past examples per task (this corresponds to 1 example per class), FROMP-
Leverage gets 65.4± 3.5%, while FROMP-Leverage-greedy gets 68.9± 0.9%. This worse
performance is surprising as, theoretically, sampling according the leverage score should be
better than greedily sorting points (Alaoui and Mahoney, 2015; Ma et al., 2015). However,
in continual learning, it appears that the additional randomness from sampling reduces
performance over many tasks. In such small-memory settings, it appears beneficial to be
more exploitative by using a greedy method.

The Leverage method could also be performing worse than expected due to approxi-
mations we made to reduce computation costs on Split CIFAR. We made a block-diagonal
approximation to reduce the cost of inversion (see Equation 4.17 and discussion around it)
due to the large number of datapoints.

Overall, our experiments in this section indicate that choosing memorable past datapoints
using the Leverage method does not significantly improve performance over the Lambda
method. This is despite the Leverage method being more expensive than the Lambda method,
as it requires inversion of large matrices. The Lambda method is already very good for
finding memorable past points on our benchmarks.

This is an interesting area of future research, and the subject of an ongoing project.
Potential ideas are discussed in more detail in Section 6.2.

4.5.2 Experiments with OGN-FROMP

We now look at how well OGN-FROMP performs in practice. OGN-FROMP makes fewer
approximations to variational-FROMP than FROMP, and is described in Section 4.4.1. A key
difference to FROMP is that OGN-FROMP maintains a covariance matrix Σ during training.
It is therefore more computationally expensive than FROMP, and requires tuning of some

92 Functional regularisation of memorable past

more hyperparameters (similarly to how VOGN has more hyperparameters than Adam, as
discussed in Section 3.2.1).

We only run OGN-FROMP on Split MNIST as a proof-of-concept, and find that OGN-
FROMP performs very well (hyperparameter values are in Appendix C.3). We run with the
same two-hidden-layer network with 256 hidden units per layer as in previous work and as
described in Section 2.4. OGN-FROMP obtains a final average accuracy of 99.6 ± 0.1%,
which is very close to Joint Tasks performance, and significantly better than all other methods,
including FROMP, which achieved 99.0 ± 0.1%. This shows that OGN-FROMP has the
potential to perform very well.

OGN-FROMP also has additional benefits stemming from maintaining a covariance
matrix during training. As we now maintain a full Gaussian distribution over weights during
training, we can convert our distribution over weights to a distribution over functions at any
point during training. This is important if we move to the setting where task boundaries
are not provided to us (see discussion in Section 2.1), as we are now able to calculate the
kernel matrix Kt−1 in a more online fashion, instead of only calculating it at defined task
boundaries.

4.6 Summary

We began this chapter by looking at how we might perform function-regularisation for
continual learning instead of just weight-regularisation, which we argued in Section 3.3 made
restrictive independence assumptions leading to poor performance. Section 4.1 discussed
simple ways to perform function-regularisation, discussed previous works, and introduced
our method FROMP. By functionally regularising over stored datapoints, FROMP is a
combination of regularisation-based and rehearsal-based approaches to continual learning.

FROMP has three steps (see also Figure 4.1). All three steps are performed in a single
framework. Step A (detailed in Section 4.2) converts a distribution over weights of a neural
network into a distribution over functions (a Gaussian Process functional prior). We use the
DNN2GP method (Khan et al., 2019), which uses a linear model view during optimisation
with natural-gradient variational inference algorithms. In Step B (detailed in Section 4.3), we
use the linear model view to motivate methods for choosing points to store in memory. We
only store a few points from the dataset, choosing points that are crucial to avoid forgetting.

In Step C (detailed in Section 4.4), when we see new data, we optimise the weights of
our neural network while functionally regularising over the memorable past datapoints. We
do this by approximating the log-prior term in weight-space with one in function-space,
calculated over our memorable past points. We derived var-FROMP, which runs a natural-

4.6 Summary 93

gradient variational inference algorithm on our objective function. However, var-FROMP
is computationally expensive, and we considered how to approximate it, leading to two
different algorithms.

Our first algorithm, OGN-FROMP, maintains a covariance matrix during training (like
the VOGN algorithm in Section 3.2). We provide initial results with OGN-FROMP in
Section 4.5.2, where we see potential to perform very well. Our second algorithm, FROMP
(see Algorithm 2), makes more approximations than OGN-FROMP, and is much cheaper.
Crucially, we see in Section 4.5.1 that FROMP performs very well on many continual
learning benchmarks, outperforming our previous weight-prior methods VCL and VOGN
from Chapter 3.

Future work could consider improving various aspects of FROMP and var-FROMP:

1. Improving memorable past datapoints selection: We saw that the Leverage method
did not empirically improve upon the cheaper Lambda method, and we could investi-
gate why this is the case (theoretically, the Leverage method should perform better). In
Section 5.4 we show a different motivation resulting in the same Leverage and Lambda
methods, and in Section 6.2 we describe ongoing work on improving on these methods.

2. Analysing the objective function: In this chapter, we simply approximated the log-
prior term in the variational objective with one in function-space. We did not analyse
this approximation theoretically. We make some steps regarding theoretical analysis in
the next chapter, where we introduce a framework for general adaptation. This allows
us to gain some insight into why FROMP performs well, and we provide suggestions
on how to improve FROMP further.

3. Experimental evaluation of OGN-FROMP: We could run OGN-FROMP on larger
benchmarks, and also try OGN-FROMP in the no-task-boundary setting. This would
require more implementation effort due to additional hyperparameters in OGN-FROMP
compared to FROMP, but there are many potential benefits as discussed in Section 4.5.2.
Other future work would also consider relaxing some of the approximations we make
in FROMP and OGN-FROMP (see Approximations 1-5 in Section 4.4).

In the next chapter, we describe a framework to perform general adaptation, and consider
algorithms that perfectly remember all past information with sufficient memory. We will
see that FROMP is not always exact even on simple problems (such as linear regression).
Our framework will allow us to theoretically analyse FROMP, seeing that it tries to maintain
second-order information from previous data. This will lead to potential ways to improve
FROMP (see Section 5.6).

Chapter 5

Knowledge-adaptation priors

In this chapter, we present Knowledge-adaptation priors (K-priors) for quick and accurate
adaptation for a wide variety of tasks and models. K-priors achieve such adaptation by
combining weight-space and function-space divergences to reconstruct the gradient of past
information, and are a generalisation of many adaptation methods, including weight-priors
from Chapter 3 and FROMP from Chapter 4. Previous methods are limited as they can only
be applied to a single adaptation task, such as adding data in continual learning. Previous
methods also do not recover the exact model trained on all data when choosing a sufficiently
large memory of past data.

By generalising previous methods, K-priors are immediately applicable to a wide range
of adaptation tasks: we will focus on the case of adding new data (like in continual learning),
but will also consider removing data, changing the regulariser, and changing the model class
or architecture (see the left of Figure 5.1). K-priors also recover the exact model trained
on all data, obtaining the same solution as retraining-from-scratch on all past data when
choosing a sufficiently large memory. When considering smaller memory sizes, our theory
in this chapter leads to natural adaptation-mechanisms where model predictions need to be
readjusted only at a handful of past experiences (a toy example is shown on the right of
Figure 5.1).

The key idea in K-priors is to reconstruct the gradient of past information by combining
weight-space and function-space divergences. We apply K-priors to both the variational
setting and the MAP/Laplace setting. We will see how K-priors in the variational setting
relate to variational methods like VCL (Section 3.1) and var-FROMP (Chapter 4), while the
K-priors in the MAP/Laplace setting link to methods like Online EWC (Kirkpatrick et al.,
2017) and FROMP (Chapter 4).

In general, our theory with K-priors recovers and generalises many existing adaptation
strategies, including some existing Bayesian algorithms with weight-priors (Cesa-Bianchi

96 Knowledge-adaptation priors

Past
data

New
data

Pas
t

m
odel

Past memory
Used in K-priors

Retrained
K-prior

Figure3:(a)Whencompare
give incorrect valuesof h0(f
Pointsonthediagonal means
Duetothis,weight-priors(g
’Adddata’ taskonCIFAR 10

Figure 5.1: Left: K-priors can handle a wide variety of adaptation tasks by using the past
model and a small memory of the past data, while being quicker than retraining-from-scratch.
The task of adding new data is the same as continual learning, but K-priors can also handle
more adaptation tasks. Right: We show how K-priors can achieve adaptation with little
memory in a toy setting. In this figure, the past model (grey line) is trained on past data,
before new datapoints (on the right of the plot) are added. K-priors only need to store a
handful of past examples (dark purple markers) to get the new, updated model (dashed red
line). This updated model is very close to the retraining-from-scratch (solid black line)
solution.

and Lugosi, 2006; Kirkpatrick et al., 2017; Nguyen et al., 2018; Ritter et al., 2018; Schwarz
et al., 2018), sparse online Gaussian Processes (Csató and Opper, 2002), algorithms for
support vector machines (Cauwenberghs and Poggio, 2001; Liang and Li, 2009; Tsai et al.,
2014), continual learning algorithms (Li and Hoiem, 2016; Rebuffi et al., 2017; Pan et al.,
2020; Buzzega et al., 2020), and knowledge distillation (Hinton et al., 2015; Lopez-Paz et al.,
2016). Previous works apply to narrow, specific adaptation tasks, while K-priors apply to
a wide range of adaptation tasks. We call our approach Knowledge-adaptation priors as
they provide a principled way of adapting knowledge across many adaptation tasks within a
probabilistic framework.

We start in Section 5.1 by considering the adaptation task of adding new data to an
already-trained base model, and present vanilla K-priors for adaptation on Generalised Linear
Models (GLMs). Vanilla K-priors can be exact when we choose a sufficiently large memory
of past data. We then apply vanilla K-priors to neural networks in Section 5.2. There is
now an error term, unlike with GLMs, but we draw comparisons with knowledge distillation
(Hinton et al., 2015), which also has this term and performs better than retraining-from-
scratch. Our K-priors theory provides some insights into why knowledge distillation works

97

well, and we exploit the link between the methods to improve both K-priors and knowledge
distillation. Section 5.3 then applies K-priors to adaptation tasks other than just adding data,
such as removing data, changing the regulariser, and changing the model class or architecture.

Vanilla K-priors provide guarantees with sufficiently large memory, but we are interested
in limited-memory settings too, and we analyse this in Section 5.4. For example, we present
the optimal K-prior, which uses a decomposition of the feature matrix to reconstruct the
gradient of past information using the optimal number of points in memory, but is difficult
to realise in practice. We also consider storing a subset of past inputs in memory. By
analysing the error term in K-priors, we motivate algorithms for choosing these memory
points, including the Lambda method and Leverage method from Section 4.3.

We also present ways to design divergences in K-priors that efficiently use available
memory. In Section 5.5 we see the relationship between K-priors and weight-priors (such
as VCL and Online EWC), and present Quadratic K-priors for combining the strengths of
weight-priors with functional regularisation from vanilla K-priors. In Section 5.6 we consider
FROMP as being in the K-priors framework, finding that we can view FROMP as matching
second-order information. This provides insight into why FROMP has strong empirical
performance (see results in Section 4.5), and we further suggest improvements to FROMP.

We provide experiments in Section 5.7. We show that K-priors can achieve good perfor-
mance on a wide variety of tasks and models with small memory. We run vanilla K-priors on
GLMs and neural networks with different datasets on all our four adaptation tasks, finding
that K-priors are consistently quicker than retraining-from-scratch while achieving good
performance. We also run Quadratic K-priors on the Split MNIST benchmark for continual
learning, seeing strong performance. Finally, in Section 5.8 we briefly explore the link
between K-priors and other adaptation mechanisms for Support Vector Machines and online
Gaussian Processes, seeing that K-priors unify and generalise many of the existing ideas.

98 Knowledge-adaptation priors

5.1 Reconstructing the gradient of the past

Our key idea in this chapter is to faithfully reconstruct the gradient of past information using
K-priors. In this section, we see how we can do this on Generalised Linear Models. We focus
on the adaptation task of adding data, as in continual learning.

We consider two settings: the MAP/Laplace setting and the variational setting. The
MAP/Laplace setting calculates the (deterministic) solution of a Maximum-A-Posteriori
(MAP) problem, and calculates the K-prior around this solution, similarly to the Laplace
method (although we do not necessarily use a Gaussian approximation). The variational
setting uses the variational objective function (for further details see Section 2.2.1), and in
this chapter, we only consider a Gaussian approximating family distribution.

5.1.1 Adding new data

We want to quickly and accurately adapt an already trained model to incremental changes
in its training framework. We focus on the adaptation task of adding data, and call this
the ‘Add Data’ task. We now introduce the ‘Add Data’ task in both the MAP/Laplace and
variational settings mathematically, and then in Section 5.1.2 we see how vanilla K-priors
can reconstruct the gradient of past information on Generalised Linear Models. We will refer
to the model trained on old data Dold as the base model.

The MAP/Laplace setting

First we consider a Laplace-style setting, where we are training for a deterministic setting of
the weights w∗ ∈ W ⊂ RP , obtained by solving the following problem,

w∗ = argmin
w

LMAP(w),

where LMAP(w) =
∑

i∈Dold

ℓi(w) +R(w). (5.1)

Here, R(w) is a regulariser, and ℓi(w) is the loss function on the i’th data example.
When viewing this as a MAP solution, R(w) = − log p(w) comes from the prior, and∑

i∈Dold
ℓi(w) = − log p(Dold|w) is the negative log-likelihood of training data.

In the ‘Add Data’ task, we add some new data Dnew to the model. Ideally, if we could
retrain on all data, then we can get the retrained-from-scratch solution w+ by optimising,

w+ = argmin
w

∑

j∈Dnew

ℓj(w) +
∑

i∈Dold

ℓi(w) +R(w). (5.2)

5.1 Reconstructing the gradient of the past 99

With K-priors, we would like to reconstruct the gradient of past information, which refers to
the latter two terms in the equation above (these are the terms repeated from Equation 5.1).
Note that this ‘Add Data’ task can be viewed as continual learning with two tasks only. We
focus on the simple two-task setup as it allows us to precisely characterise any errors. We
could then expand to multiple tasks, where errors will build up over many tasks.

The variational setting

In the variational setting, we minimise the variational objective (Equation 2.6) for the
parameters η of our approximating distribution qη(w) = N (w;µ,Σ), where we use a
Gaussian approximating family. Our variational objective for the base model is,

η∗ = argmin
η

Lvar(η),

where Lvar(η) = Eqη(w) [− log p(Dold|w)] + Eqη(w)

[
log

qη(w)

p(w)

]

= Eqη(w)

[∑

i∈Dold

ℓi(w)− log p(w) + log qη(w)

]
. (5.3)

Here, p(w) is our prior over parameters, and as before, − log p(Dold|w) =
∑

i∈Dold
ℓi(w).

The base model is qη∗(w) = N (w;µ∗,Σ∗). We can write the following fixed-point solutions
that qη∗(w) obeys (see Section 3 in Khan and Rue (2021) for an expression),

0 = ∇µEq[L(w)]|µ=µ∗,Σ=Σ∗
= Eq[∇wL(w)]|µ=µ∗,Σ=Σ∗

, (5.4)

Σ−1
∗ = ∇ΣEq[L(w)]|µ=µ∗,Σ=Σ∗

= Eq[∇2
wwL(w)]

∣∣
µ=µ∗,Σ=Σ∗

, (5.5)

where L(w) =
∑

i∈Dold
ℓi(w)− log p(w). For the second equality in both expressions, we

have used Bonnet’s and Price’s theorems (Opper and Archambeau, 2009; Rezende et al.,
2014) (see also Equations 2.23 and 2.24). We will use these fixed-point solutions later.

The variational setting (Equation 5.3) and the MAP/Laplace setting (Equation 5.1) are
closely related, which we can note in many ways. One way is to notice that the expression
for Lvar contains LMAP, with two differences overall: (i) it takes the expectation of LMAP(w)

with respect to qη(w), and (ii) it also has a (negative) entropy term Eqη(w) [log qη(w)].
Another way to note the relationship is to view the MAP/Laplace setting as making two
approximations to the variational setting (Khan and Rue, 2021): (i) set our Gaussian approxi-
mating family to be qη(w) = N (w;µ, I) with unknown mean µ but known and constant
identity variance I, (ii) use a first-order delta method to approximate the expectation term,
Eqη(w)[g(w)] ≈ g(µ).

100 Knowledge-adaptation priors

We will use this relationship between the two settings throughout this chapter. This
allows us to derive results for the MAP/Laplace setting, and then straightforwardly apply
similar results to the variational setting.

In the ‘Add Data’ task, we add some new data Dnew, and the ideal retrained-from-scratch
solution gives η+ by optimising,

η+ = argmin
η

Eqη(w)

[∑

j∈Dnew

ℓj(w) +
∑

i∈Dold

ℓi(w)− log p(w) + log qη(w)

]
. (5.6)

As before, we would like to reconstruct the gradient of past information, which refers to
Eqη(w) [

∑
i ℓi(w)− log p(w)] in the equation above.

Notation and problem setting

We now briefly recap some additional notation which we will use in this chapter (these
definitions are also in Chapter 2). Throughout, we will use a supervised problem where the
loss is specified by an exponential family,

ℓ(y, h(f)) = − log p(y|f) = −⟨y, f⟩+ A(f), (5.7)

where y ∈ Y denotes the scalar observation output, f ∈ F is the canonical natural parameter,
A(f) is the log-partition function, and h(f) = E(y) = ∇fA(f) is the expectation parameter
(also the inverse link function). Note that we have assumed that the base measure (see
Equation 2.7) is constant and so can be ignored. A typical example is the cross-entropy loss
for binary outcomes y ∈ {0, 1} where A(f) = log(1 + ef) and h(f) = σ(f) is the sigmoid
function. For ease of notation, we restrict our equations to consider the scalar output case,
but it is straightforward to extend our method to a vector observation and model outputs. We
briefly consider extensions to other types of learning frameworks in Section 5.3.4.

In this chapter, we use a shorthand for the model outputs, using f iw = fw(xi). We
will often refer to h′(f) = ∇fh(f), which is usually easy to calculate: for example, for
the cross-entropy loss, h′(f) = σ(f) [1− σ(f)]. This was also referred to as Λw(x, y) in
Chapter 4. We will also repeatedly make use of the following expression for the derivative of
the loss,

∇wℓ(yi, h(f
i
w)) = −∇w log p(yi|f iw)

= ∇wf
i
w [∇fA(f

i
w)− yi]

= ∇wf
i
w [h(f iw)− yi]. (5.8)

5.1 Reconstructing the gradient of the past 101

Knowledge-adaptation priors (K-priors)

We present Knowledge-adaptation priors (K-priors) to quickly and accurately adapt a model’s
knowledge to a wide variety of changes in its training framework. K-priors refer to a class
of priors that use both weight and function-space regularisers. We refer to the variational
K-prior (var-K-prior) as qK(w) and the Laplace K-prior (Lap-K-prior) as K(w). As we will
often do throughout this chapter, we start with the expression for the Lap-K-prior. We can
use the relationship between the Laplace setting and variational setting to write down the
var-K-prior, and we show this with an example in Section 5.1.2.

We explicitly write the Lap-K-prior’s dependence on the base model parameters w∗ and
a memory setM,

K(w;w∗,M) = Df (f(w)∥f(w∗)) + τ Dw (w∥w∗) , (5.9)

where f(w) is a vector of fw(um), defined at inputs um inM = (u1,u2, . . . ,uM). The
divergence Df (·∥·) measures the discrepancies in the function space F , while Dw(·∥·) mea-
sures the same in the weight space W . Throughout, we will use Bregman divergences
Bψ(p1, p2) = ψ(p1)−ψ(p2)−∇ψ(p2)⊤(p1− p2), specified using a strictly-convex Bregman
function ψ(·).

K-priors are defined using the base model w∗ (for var-K-priors this will be η∗), the
memory setM, and a trade-off parameter τ > 0. We keep τ = 1 unless otherwise specified.
K-priors might also use other parameters required to define the divergence functions. We
will sometimes omit the dependency on parameters and refer to just K(w) (or qK(w)).

Our general principle of adaptation is to use K(w) to faithfully reconstruct the gradient
of the past training objective. K-priors therefore match the objective function of the past
training objective (up to a constant). This is possible due to the combination of weight
and function-space divergences. Next, we illustrate this point for supervised learning with
Generalised Linear Models.

5.1.2 Generalised Linear Models

Previously, we introduced K-priors and their form. We now look at how K-priors can exactly
reconstruct the gradient of past information on Generalised Linear Models (GLMs). We
call these vanilla K-priors as they require storing a large memory (we consider K-priors
for smaller memory settings later in this chapter in Sections 5.4 to 5.6). We start with
the MAP/Laplace setting, and then expand to the variational setting. We extend to neural
networks in Section 5.2, and to adaptation tasks other than the ‘Add Data’ task in Section 5.3.

102 Knowledge-adaptation priors

The MAP/Laplace setting

GLMs include models such as logistic and Poisson regression, and have a linear model
f iw = φ⊤

i w, with feature vectors φi = φ(xi) ∈ RP . In the MAP/Laplace setting, the base
model is obtained as follows,

w∗ = argmin
w

∑

i∈Dold

ℓ(yi, h(f
i
w)) +R(w). (5.10)

In what follows, for simplicity, we use an L2-regulariserR(w) = 1
2
δ∥w∥2, with δ > 0.

We will now discuss a Lap-K-prior that exactly reconstructs the gradients of this objective.
For this vanilla Lap-K-prior, we choose Dw(·∥·) to be the Bregman divergence withR(w)

as the Bregman function,

Dw (w∥w∗) = BR(w∥w∗) =
1
2
δ∥w −w∗∥2. (5.11)

We set memory M = Xold, where Xold is the set of all inputs xi for i ∈ Dold. We
regularise each example using separate divergences whose Bregman function is equal to the
log-partition A(f) (defined in Equation 5.7),

Df (f(w)∥f(w∗)) =
∑

i∈Xold

BA(f iw∥f iw∗) =
∑

i∈Xold

ℓ
(
h(f iw∗), h(f

i
w)
)
+ constant. (5.12)

Setting τ = 1, we get the following vanilla Lap-K-prior,

K(w;w∗,Xold) =
∑

i∈Xold

ℓ
(
h(f iw∗), h(f

i
w)
)
+ 1

2
δ∥w −w∗∥2, (5.13)

which has a similar form to Equation 5.10, but the outputs yi are now replaced by the
predictions h(f iw∗), and the base model w∗ serves as the mean of a Gaussian weight-prior.

We can show that the gradient of the above Lap-K-prior is equal to that of the base model
objective in Equation 5.10,

∇wK(w;w∗,Xold) =
∑

i∈Xold

φi

[
h(f iw)− h(f iw∗)

]
+ δ(w −w∗), (5.14)

=
∑

i∈Dold

φi

[
h(f iw)− yi

]
+ δw

︸ ︷︷ ︸
=∇wLMAP(w).

−
∑

i∈Dold

φi

[
h(f iw∗)− yi

]
− δw∗

︸ ︷︷ ︸
=∇wLMAP(w∗)=0.

,

(5.15)

5.1 Reconstructing the gradient of the past 103

where the first line is obtained by using Equation 5.8 and noting that ∇wf
i
w = φi for

GLMs, and the second line is obtained by adding and subtracting outputs yi in the first
term. The second term is equal to 0 because w∗ is a minimiser of Equation 5.10, and
therefore ∇wLMAP(w∗) = ∇wLMAP(w)

∣∣
w=w∗

= 0. In this case, the vanilla Lap-K-prior
withM = Xold exactly reconstructs the gradient of the past training objective. Note that we
have not used labels yi in our K-prior.

We are able to reconstruct exact gradients because the structure of the vanilla Lap-K-prior
closely follows the structure of Equation 5.10: the gradient of each term in Equation 5.10
is recovered by a corresponding divergence in the K-prior. The gradient recovery is due to
the property that the gradient of a Bregman divergence is the difference between the dual
parameters∇ψ(p),

∇p1Bψ(p1, p2) = ∇ψ(p1)−∇ψ(p2). (5.16)

This leads to Equation 5.14. For the function-space divergence term, h(f iw)− h(f iw∗) are
the differences in the (dual) expectation parameters. For the weight-space divergence term,
we note that the dual space is equal to the original parameter spaceW for the L2 regulariser,
leading to w − w∗. Lastly, we find that terms cancel out by using the optimality of w∗,
giving us the exact gradients.

When we store all inputs in our vanilla Lap-K-prior memoryM = Xold, training is still
expensive (as expensive as retraining-from-scratch), and moreover this is not allowed in
continual learning. However, we can use insights provided by our K-prior framework to
reduce the memory required. We discuss reducing memory in Section 5.4.

Because the vanilla Lap-K-prior can reconstruct the gradient of LMAP(w), we can use it
to adapt instead of retraining-from-scratch. For the ‘Add Data’ task discussed earlier, we can
use the following Lap-K-prior-regularised objective,

ŵ+ = argmin
w

∑

j∈Dnew

ℓj(w) +K(w;w∗,M). (5.17)

Using Equation 5.15, we can easily show that this recovers the exact solution when the
memory includes all past inputs. Mathematically, ŵ+ = w+ whenM = Xold, where w+ is
from Equation 5.2. In Section 5.3, we will show similar results for many more adaptation
tasks, such as removing data, changing the regulariser, and changing the model class or
architecture.

104 Knowledge-adaptation priors

The variational setting

We can use similar ideas to reconstruct the gradient of past information in the variational
setting. For GLMs, the base model parameters η∗ are given by optimising Equation 5.3,
where the loss ℓi(w) = ℓ(yi, h(f

i
w)). For simplicity, we will assume a zero-mean Gaussian

prior p(w) = N (w;0, δ−1I). Note that this prior becomes the same L2-regulariser from the
MAP/Laplace setting earlier, R(w) = − log p(w) = 1

2
δ||w||2 + const. This gives us the

following objective for the base model,

η∗ = argmin
η

Eqη(w)

[∑

i∈Dold

ℓ(yi, h(f
i
w))− log p(w) + log qη(w)

]
. (5.18)

To reconstruct the gradient of past information, we use a var-K-prior that has the same
properties as the previous vanilla Lap-K-prior. Our vanilla var-K-prior is chosen as,

qK(w;η∗,M) ∝ exp
(
−K̃(w;η∗,M)

)
, (5.19)

where∇wK̃(w;η∗,M) = Eqη∗ (ŵ) [∇wK(w; ŵ,M)] . (5.20)

We have taken an expectation of the (gradient of the) Lap-K-prior with respect to the
distribution over the base model parameters in order to effectively replace w∗ with η∗ (ŵ
is a different parameter to w). We will use often this expression to derive a var-K-prior
from a Lap-K-prior while keeping the Lap-K-prior’s properties (in this case, we want our
vanilla var-K-prior to also reconstruct the gradient of past information). We will not need the
normalising constant of qK(w).

For the vanilla var-K-prior, our Lap-K-prior K(w) is from Equation 5.13 (withM =

Xold), and we get,

qK(w;η∗,Xold) ∝ exp

(
−
[∑

i∈Xold

ℓ
(
Eqη∗ (ŵ)

[
h(f iŵ)

]
, h(f iw)

)
+ 1

2
δ∥w − µ∗∥2

])
,

(5.21)

where we take an expectation with respect to ŵ, a different parameter to w, and qη∗(ŵ) =

N (ŵ;µ∗,Σ∗). Our soft label is now Eqη∗ (ŵ) [h(f
i
ŵ)], and we can use Monte-Carlo sampling

to estimate it.
We now show that the gradient of the objective using the above vanilla var-K-prior is

equal to that of the base model objective used in Equation 5.18, where the gradient is taken
with respect to the parameters of qη(w). As we have a Gaussian approximating family, the

5.1 Reconstructing the gradient of the past 105

parameters of qη(w) only depend on the mean µ and covariance Σ. It will suffice to show,

∇ Eqη(w) [− log qK(w;η∗,Xold)] = ∇ Eqη(w)

[∑

i∈Dold

ℓ(yi, h(f
i
w))− log p(w)

]
, (5.22)

where we take gradients with respect to µ and Σ. We will make repeated use of Bonnet’s
and Price’s theorems from Equations 2.23 and 2.24 (Opper and Archambeau, 2009; Rezende
et al., 2014) to show this.

We start by showing Equation 5.22 holds for the gradient with respect to the mean µ,

∇µ Eqη(w) [− log qK(w;η∗,Xold)]

= Eqη(w)

[
∇w

(∑

i∈Xold

ℓ
(
Eqη∗ (ŵ)

[
h(f iŵ)

]
, h(f iw)

)
+ 1

2
δ∥w − µ∗∥2

)]
(5.23)

= Eqη(w)

[∑

i∈Xold

φi

[
h(f iw)− Eqη∗ (ŵ)

[
h(f iŵ)

]]
+ δ(w − µ∗)

]
(5.24)

= Eqη(w)

[∑

i∈Xold

φi

[
h(f iw)−yi

]
+δw

]
− Eqη(w)

[∑

i∈Xold

φi

[
Eqη∗ (ŵ)

[
h(f iŵ)

]
−yi

]
+δµ∗

]

︸ ︷︷ ︸
=Eqη∗ [∇w(

∑
i ℓi(w)−log p(w))]=0, by Equation 5.4

(5.25)

= ∇µ Eqη(w)

[∑

i∈Dold

ℓi(w)− log p(w)

]
. (5.26)

In the first equality we used Bonnet’s and Price’s theorems (specifically, Equation 2.23) to
move the gradient inside the expectation, and so the gradient is now with respect to w. For
the third equality, we added and subtracted the labels yi and then noted that the final two
terms are the fixed-point for the base model parameters η∗ given in Equation 5.4. The final
equality uses Bonnet’s and Price’s theorems again.

106 Knowledge-adaptation priors

We now show that Equation 5.22 also holds for the gradient with respect to Σ,

∇Σ Eqη(w) [− log qK(w;η∗,Xold)]

= 1
2
Eqη(w)

[
∇2

ww

(∑

i∈Xold

ℓ
(
Eqη∗ (ŵ)

[
h(f iŵ)

]
, h(f iw)

)
+ 1

2
δ∥w − µ∗∥2

)]
(5.27)

= 1
2
Eqη(w)

[∑

i∈Xold

φi h
′(f iw)φ

⊤ + δI

]
(5.28)

= ∇Σ Eqη(w)

[∑

i∈Dold

ℓi(w)− log p(w)

]
. (5.29)

As before, for the first and last equalities we used Bonnet’s and Price’s theorems (specifically,
Equation 2.24).

We have therefore shown that Equation 5.22 holds. Therefore, the gradient of the vanilla
var-K-prior is the same as the gradient of the base model objective. We can use this property
for adaptation, similar to what we did with the vanilla Lap-K-prior. For the ‘Add Data’ task,
we use this vanilla var-K-prior as our prior when seeing new data (we use qK(w) instead of
qηt−1(w) in the variational objective in Equation 2.8), giving,

η̂+ = argmin
η

Eqη(w)

[∑

j∈Dnew

ℓj(w)− log qK(w) + log qη(w)

]
. (5.30)

We can use Equation 5.22 to show that the gradient of this objective is equal to the retrained-
from-scratch objective in Equation 5.18 when we optimise for the parameters of a Gaussian
approximating family. Therefore, whenM = Xold, we get η̂+ = η+. Note that we can use
natural-gradient updates to optimise these objectives, but by the chain-rule (Equations 2.19
and 2.20), these gradients only depend on the gradients with respect to µ and Σ.

This concludes our section on showing how K-priors can exactly reconstruct the gradient
of past information on GLMs. We showed this on the ‘Add Data’ task only, and in Section 5.3
we will consider other adaptation tasks. In Section 5.6 we will see that this is not the case
for the FROMP algorithm from Chapter 4. In the next section, we apply vanilla K-priors to
neural networks, and look at the relationship between K-priors and knowledge distillation
(Hinton et al., 2015).

5.2 Neural networks and connections with knowledge distillation 107

5.2 Neural networks and connections with knowledge dis-
tillation

We have seen how K-priors can reconstruct the exact gradient of past information on GLMs.
In this section, we now apply K-priors to neural networks. Unlike with GLMs, vanilla
K-priors do not reconstruct the exact gradient of past information on neural networks, even
when we store all past inputs. We also see links between vanilla K-priors and knowledge
distillation (Hinton et al., 2015). We analyse the similarities between K-priors and knowledge
distillation, arguing that the error term in K-priors may even be beneficial, similarly to how
knowledge distillation can improve a model’s performance. We also use the links between
K-priors and knowledge distillation to suggest ways of improving both algorithms.

We apply vanilla K-priors to neural networks using the same Bregman divergences and
expressions as for GLMs (see Equations 5.11 to 5.13). Our analysis in this section will
be based on Lap-K-priors, but can also be applied to var-K-priors using the relationships
discussed in Section 5.1. The only difference from Section 5.1 is that the model fw is no
longer linear, and is instead parameterised by a neural network with parameters w. The
gradient of the model ∇wf

i
w now depends on the weights w, while in GLMs the gradient

was constant (and equal to the feature vector φi).
The gradient of the vanilla Lap-K-prior is obtained similarly to Equation 5.15, where we

add and subtract yi in the first term in the first line below,

∇wK(w) =
∑

i∈Xold

∇wf
i
w

[
h(f iw)− h(f iw∗)

]
+ δ(w −w∗), (5.31)

=
∑

i∈Dold

∇wf
i
w

[
h(f iw)− yi

]
+ δw

︸ ︷︷ ︸
=∇wLMAP(w)

−
∑

i∈Dold

∇wf
i
w[h(f

i
w∗)− yi]− δw∗

︸ ︷︷ ︸
̸=∇wLMAP(w∗), because ∇wf iw ̸=∇wf iw∗

. (5.32)

Unlike with GLMs, the second term is now not zero because ∇wf
i
w ̸= ∇wf

i
w∗ , and this

term can be viewed as an error term. This error term is larger for points in the old data Dold

that have high residual riw∗ = h(f iw∗)− yi, which are the points that the base model did not
classify well. This error term also becomes larger when the gradient at the new parameters
w is further away from the gradient at the base model’s parameters w∗.

We next analyse knowledge distillation (Hinton et al., 2015), where we see a similar error
term. Empirically, knowledge distillation has been shown to improve upon standard training,
and this indicates that our error term may not necessarily always result in lower performance.

108 Knowledge-adaptation priors

Knowledge distillation

Knowledge distillation (KD) (Hinton et al., 2015) is a popular approach for model compres-
sion in deep learning for classification problems using a softmax function. In the usual setup,
a large teacher network is trained on data D to give w∗ (such as by optimising Equation 5.1,
often with no regulariser R(w)). We then ‘distil’ the teacher’s knowledge into a smaller
student network w using the following objective,

LKD(w) = λ
∑

i∈D

ℓ
(
yi, h(f

i
w)
)
+ (1− λ)

∑

i∈D

ℓ
(
h(f iw∗/T), h(f

i
w/T)

)
. (5.33)

Model predictions in the second term are often scaled with a temperature parameter T > 1,1

and λ ∈ [0, 1]. KD can be seen as a special case of K-priors without the weight-space term
(τ = 0).

KD often yields solutions that are better than training just the student model w from
scratch. This has even been found to be the case when the teacher model architecture is the
same as the student model. Theoretically the reasons behind the improved performance are
not understood well. However, our K-prior framework can provide some insights when we
view KD as a mechanism to reconstruct past gradients. To see this, we write out the gradient
of the KD objective for T = 1,

∇wLKD(w) =
∑

i∈D

∇wf
i
w

[
h(f iw)− yi

]

︸ ︷︷ ︸
Training student model from scratch

− (1− λ)
∑

i∈D

∇wf
i
w riw∗

︸ ︷︷ ︸
Additional term

. (5.34)

The first term is the same term as training just the student model from scratch, with
no teacher model. The additional second term adds large gradients to push away from the
high residual examples (the examples the teacher did not fit well), and is the same as the
error term in vanilla K-priors in Equation 5.32 (with δ = 0). These high-residual examples
are the toughest to classify and may even include mislabelled points. This is similar to
Similarity-Control for Support Vector Machines (SVMs) from Vapnik and Izmailov (2015),
where “slack”-variables are used in a dual formulation to improve the student. Vapnik and
Izmailov (2015) argue the improvement is because the student could now be solving a simpler,
separable, classification problem.

In our case, the residuals riw∗ above play a similar role as the slack variables, but they do
not require a dual formulation. Instead, they arise due to the K-prior in a primal formulation.
In this sense, K-priors can be seen as an easy-to-implement scheme for Similarity Control

1Some works only scale the base model predictions by T , and not the student model predictions too
(Lopez-Paz et al., 2016).

5.2 Neural networks and connections with knowledge distillation 109

that could potentially be useful for student-teacher learning. We provide further comparisons
to SVMs in Section 5.8.

Lopez-Paz et al. (2016) use this idea further to generalise distillation and interpret
residuals from the teachers as corrections for the student (see Equation 6 in their paper).
In general, it is desirable to trust the knowledge of the base model and use it to improve
the adapted model. These previous ideas are now unified in K-priors: we can provide the
information about the decision boundary to the student in a more accessible form than the
original data (with true labels) could.

K-priors extend KD in three ways, by (i) adding the weight-space term, (ii) allowing
general link functions or divergence functions, and (iii) using a potentially small number of
examples inM instead of the whole dataset (we discuss smaller memories in Section 5.4).
With these extensions, K-priors can handle adaptation tasks other than model compression.
Due to their similarity, it is also possible to borrow tricks used in KD to improve the
performance of K-priors. For example, we can use a temperature T > 1 in K-priors, and
in Section 5.7 we see that this improves performance on larger architectures. We can also
improve KD by using a smaller memory than the full dataset while still achieving good
performance (we do this in Figure 5.4).

Some previous works use a knowledge distillation-style loss for continual learning,
and are therefore closely related to vanilla K-priors. iCARL (Rebuffi et al., 2017) uses
a knowledge distillation loss over exemplars from previous tasks, although they used a
nearest-mean-of-exemplars rule for classification, and did not look at why this loss might
be beneficial. Learning without Forgetting (LwF) (Li and Hoiem, 2016) uses a knowledge
distillation loss but only over inputs in the current task, and they do not store any past data.
Our theory with vanilla K-priors indicates that LwF will perform well when the current task
is in similar regions of input-space as past tasks, and we expect LwF to perform poorly when
the current task is in very different regions of input-space.

Another related continual learning approach is Gradient Episodic Memory (GEM) (Lopez-
Paz and Ranzato, 2017), where the goal is to ensure that the loss over past datapoints does not
worsen when training on a new task,

∑
i∈M

[
ℓ(yi, f

i
w)− ℓ(yi, f iw∗)

]
< 0. However, GEM

enforces this through constrained optimisation, leading to a different algorithm. Instead,
K-priors can be viewed as relaxing this optimisation problem, leading to more general results.

Having analysed K-priors on GLMs and neural networks for the ‘Add Data’ task, we now
turn our attention to other adaptation tasks that are relevant in machine learning. Specifically,
we will look at removing data, changing the regulariser, and changing the model class or
architecture.

110 Knowledge-adaptation priors

5.3 Many adaptation tasks in machine learning

So far, we have applied K-priors to GLMs and NNs, but have mostly limited ourselves to
the ‘Add Data’ adaptation task, which is closely related to continual learning (we also briefly
considered model compression when comparing with knowledge distillation). However, as
K-priors reconstruct the gradient of past information, they can also be applied to many more
adaptation tasks. In this section, we apply to three more adaptation tasks: (i) removing data,
(ii) changing the regulariser, and (iii) changing the model class or architecture. We consider
each of these in turn, applying Lap-K-priors and seeing how, similarly to the ‘Add Data’ task,
vanilla K-priors can reconstruct the exact gradient of past information if we store all past
inputs. These results all hold for the vanilla var-K-prior too, using exactly the same reasoning
as presented in Section 5.1.2 for the ‘Add Data’ task. We end this section by considering
K-priors for general learning problems in Section 5.3.4, where we give a more general form
of K-priors. We will use this more general form to derive K-priors that can be better when
we have a limited memory size in Sections 5.4 to 5.6.

Although we consider each adaptation task separately, K-priors can be straightforwardly
applied to any combination of these adaptation tasks (such as adding and removing data
at the same time). Such adaptation can be useful to reduce the cost of model updating in
a continuously-evolving ML pipeline. For example, in k-fold cross-validation, the model
is usually retrained-from-scratch for every data-fold and hyperparameter setting. Such
retraining can be made cheaper and faster by reusing models trained on previous folds and
adapting them for new folds and hyperparameters. Model reuse can also be useful in active
learning, where we can add new examples using a quick ‘Add Data’ adaptation.

5.3.1 Removing old data

The ‘Remove Data’ task is very similar to the ‘Add Data’ task from Section 5.1. Having
trained a base model w∗ according to Equation 5.1, we now want to remove dataDrem, where
Drem ⊂ Dold. Our new ideal objective for w− is,

w− = argmin
w

∑

i∈{Dold\Drem}

ℓi(w) +R(w)

= argmin
w

−
∑

k∈Drem

ℓk(w) +
∑

i∈Dold

ℓi(w) +R(w). (5.35)

5.3 Many adaptation tasks in machine learning 111

We can use the following objective with our vanilla Lap-K-prior from Equation 5.13,

ŵ− = argmin
w

−
∑

k∈Drem

ℓk(w) +K(w;w∗,M). (5.36)

When we use all past inputsM = Xold, the gradients of Equations 5.35 and 5.36 are the
same, just like in the ‘Add Data’ case. We therefore recover the exact solution, ŵ− = w−.

5.3.2 Changing regulariser

In the ‘Change Regulariser’ task, we change the regulariserR(w) in Equation 5.1 to a new
regulariser G(w). Specifically, our new objective is,

wG = argmin
w

∑

i∈Dold

ℓi(w) + G(w). (5.37)

For this ‘Change Regulariser’ task, we slightly modify our vanilla K-prior. We replace
the weight-space divergence in Equation 5.13 with a Bregman divergence defined using two
different regularisers (see Proposition 5 in Nielsen (2021)),

BGR(w∥w∗) = G(w) +R∗(η∗)−w⊤η∗, (5.38)

where η∗ = ∇wR(w∗) is the dual parameter andR∗ is the convex-conjugate ofR. This is
similar to the standard Bregman divergence but uses two different convex functions.

To get an intuition, consider tuning the hyperparameter in the L2-regulariser R(w) =
1
2
δ∥w∥2, where our new regulariser G(w) = 1

2
γ∥w∥2 uses a hyperparameter γ ̸= δ. Since

the conjugateR∗(η) = 1
2
∥η∥2/δ and η∗ = ∇wR(w∗) = δw∗, we get,

BGR(w∥w∗) =
1
2
(γ∥w∥2 + δ∥w∗∥2 − 2δw⊤w∗). (5.39)

When γ = δ, this reduces to the divergence used in Equation 5.13. We define the following
K-prior, and use it to obtain ŵG ,

K(w;w∗,M) =
∑

i∈M

ℓ
(
h(f iw∗), h(f

i
w)
)
+ BGR(w∥w∗), (5.40)

ŵG = argmin
w∈W

K(w;w∗,M). (5.41)

ForM = Xold and strictly-convex regularisers, we have ŵG = wG . The derivation of this
result is very similar to Equation 5.15, where δ(w−w∗) is replaced by∇wG(w)−∇wR(w∗).

112 Knowledge-adaptation priors

5.3.3 Changing model class or architecture

In the ‘Change Model Class/Architecture’ task, the model class or architecture is changed,
with the following objective (compare with Equation 5.1),

θ∗ = argmin
θ

∑

i∈Dold

ℓ̃i(θ) + R̃(θ), (5.42)

where we assume the loss ℓ̃i(θ) has the same form as ℓ(w) but using the new model f̃θ(x)
for prediction, with θ as the new parameter. θ can be of a different dimension to w, and the
new regulariser R̃(θ) can be chosen accordingly.

K-priors can also be applied to this adaptation task, and we discuss this through an
example. Suppose we want to remove the last feature from φi so that w ∈ RP is replaced by
a smaller weight-vector θ ∈ RP−1. Assuming no change in the regularisation hyperparameter,
we can simply use a weighting matrix to ‘kill’ the last element of w∗. We define the matrix
A = IP−1×P whose last column is 0 and the rest is the identity matrix of size P − 1. With
this, we can use the following training procedure,

K(θ) =
∑

i∈M

ℓ
(
h(f iw∗), h(fθ(xi))

)
+ BR(θ∥Aw∗),

θ̂∗ = argmin
θ

K(θ). (5.43)

If the hyperparameters or regulariser are different for the new problem, then the Bregman
divergence shown in Equation 5.38 can be used, with an appropriate weighting matrix.

Model compression is a specific instance of the ‘Change Model Class’ task, where the
architecture is entirely changed. For neural networks, this also changes the meaning of the
weights and the regularisation term may not make sense. In such cases, we can simply use
the functional-divergence term in K-priors,

K(θ) =
∑

i∈M

ℓ
(
h(f iw∗), h(fθ(xi))

)
, θ̂∗ = argmin

θ
K(θ). (5.44)

This is equivalent to knowledge distillation (KD) in Equation 5.33 with λ = 0, T = 1 and
M = Xold. Since KD performs well in practice, it is possible to use a similar strategy to
boost K-priors. For example, we can define the following,

θ̂∗ = argmin
θ

λ
∑

i∈Dold

ℓ(yi, h(f
i
θ)) + (1− λ)K(θ), (5.45)

where we use a trade-off term λ. We can also use a temperature T > 1 in the K-priors term.

5.3 Many adaptation tasks in machine learning 113

5.3.4 K-priors for general learning problems

We now consider K-priors for more general learning problems. The main principle behind
the design of K-priors is to construct it such that gradients can faithfully be reconstructed. As
discussed earlier, this is often possible by exploiting the structure of the learning problem. For
example, to replace an old objective such as Equation 5.1, with loss ℓoldi (f) and regulariser
Rold(w), with a new objective with loss ℓnewi (f) and regulariserRnew(w), the divergences
should be chosen such that they have the following gradients,

∇w Dw(w∥w∗) = ∇wRnew(w)−∇wRold(w), (5.46)

∇w Df (f(w)∥f(w∗)) = [∇wf(w)]⊤Bdu, (5.47)

where du is an M -length vector with the discrepancy∇fℓ
new
m (fw)−∇fℓ

old
m (fw∗) as the m’th

entry, for m ∈ M. The matrix B is added to counter the mismatch between Dold andM.
For vanilla K-priors on GLMs withM = Xold, B = I is the identity matrix,∇wf(w) gives
features (each feature φi is a row in this matrix), and when we have the same loss function
ℓnewi (f) = ℓoldi (f) = ℓ(yi, h(f)), the elements of du are given by h(fmw)− h(fmw∗).

Similar constructions to Equation 5.47 can be used for other learning objectives. For
non-differentiable functions, the variational version can be used with the Kullback-Leibler
(KL) divergence. We can use exponential-family distributions which implies a Bregman
divergence through the KL divergence (Banerjee et al., 2005). Information in the dual-space
is automatically computed using natural-gradients (Khan and Rue, 2021).

Since the gradient of such divergences is equal to the difference in the dual-parameters,
the general principle in K-priors is to use divergences with an appropriate dual space to swap
old information with new information. In fact, we may be interested in retaining information
that is not simply first-order information. Although we have focussed so far on reconstructing
the first-order derivative of past information, we may instead be interested in reconstructing
the Hessian (or higher order derivatives) of the past.

Such considerations become important when we store a limited memory, and we design
K-priors to preserve information. We discuss this in the next section. We will see optimal
K-priors, which preserve first-order information using a matrix B as in Equation 5.47. We
will also compare with FROMP (from Chapter 4) in Section 5.6. We will see that FROMP
can be seen as having a specific B, and that FROMP attempts to preserve second-order
information using it.

114 Knowledge-adaptation priors

5.4 Limited memory in K-priors

So far, we have only considered the case where the memory in K-priors is all past inputs,
M = Xold. In this section, we consider how to use a limited memory in K-priors while still
achieving good performance. This is because, in practice, we may not need all past data (an
illustrative example is shown on the right of Figure 5.1). Limited memory is enforced in
continual learning, where we are not allowed to store all past data. This is also necessary to
reduce the computation cost compared to retraining-from-scratch. As before, we will present
results for Lap-K-priors, but these can be extended to var-K-priors.

We start with discussing the optimal K-prior, which can theoretically obtain perfect
performance by using singular vectors. This is possible because the memory in K-priors can
lie anywhere in input space as K-priors do not need the true labels y. However, the optimal
K-prior is difficult to realise in practice, and we also consider the simpler case of storing
a subset of past data. We will see a link to the theory from Section 4.3, where we chose
memorable past examples in FROMP.

The optimal K-prior

We now present theoretical results to show that K-priors with limited memory can achieve
low gradient-reconstruction error on GLMs. We will discuss the optimal K-prior which can
theoretically achieve perfect reconstruction error. This prior is difficult to realise in practice
since it requires all past training-data inputs Xold. Our goal here is to establish a theoretical
limit, not to give practical choices.

Our key idea is to choose a few input locations that provide a good representation of
the Nold training-data inputs in Xold. We will make use of the singular-value decomposition
(SVD) of the feature matrix Φ, which is an Nold × P matrix concatenating the Nold input
features φi,

Φ⊤ = U ∗
1:KS

∗
1:K(V

∗
1:K)

⊤, (5.48)

where K ≤ min(Nold, P) is the rank, U ∗
1:K is P ×K matrix of left-singular vectors u∗

i , V
∗
1:K

is Nold ×K matrix of right-singular vectors v∗
i , and S∗

1:K is a diagonal matrix with singular
values si as the i’th diagonal entry.

We defineM∗ = {u∗
1,u

∗
2, . . . ,u

∗
K}, and the following K-prior,

Kopt(w;w∗,M∗) =
K∑

j=1

β∗
j ℓ
(
h(fw∗(u

∗
j)), h(fw(u

∗
j))
)
+ 1

2
δ∥w −w∗∥2. (5.49)

5.4 Limited memory in K-priors 115

Here, each functional divergence is weighted by β∗
j , which refers to the elements of

β∗ = D−1
u S∗

1:KV
⊤
1:Kdx, (5.50)

where dx is an Nold-length vector with entries h(f iw) − h(f iw∗) for all i ∈ Xold, while
Du is a K × K diagonal matrix with diagonal entries h(fw(u∗

j)) − h(fw∗(u
∗
j)) for all

j = 1, 2, . . . , K. The above definition uses the matrix B from Section 5.3.4 (in this case, B
is a K ×K diagonal matrix with diagonal entries given by β∗). The weights β∗

j depend on
Xold, so it is difficult to compute them in practice when the memory is limited. However, it
might be possible to estimate them for some problems.

Nevertheless, with β∗
j , the above K-prior can achieve perfect reconstruction. The proof is

very similar to the one given in Equations 5.14 and 5.15, and is shown below,

∇wKopt(w;w∗,M∗) =
K∑

j=1

β∗
ju

∗
j

[
h(fw(u

∗
j))− h(fw∗(u

∗
j))
]
+ δ(w −w∗)

= U ∗
1:KDuβ∗ + δ(w −w∗)

= U ∗
1:KS

∗
1:KV

⊤
1:Kdx + δ(w −w∗)

= Φ⊤dx + δ(w −w∗)

= ∇wLMAP(w). (5.51)

The first line is simply the gradient, which is then rearranged in the matrix-vector product in
the second line. The third line uses the definition of β∗, and the fourth line uses the SVD of
Φ. This is the same as vanilla K-priors in Equation 5.14, and the rest follows as before.

Due to their perfect gradient-reconstruction property, we call the prior in Equation 5.49
the optimal K-prior. In Appendix D.1.1 we derive a very similar form when we optimise B

for reconstructing first-order information when given a fixed memory that we can not choose.
When only the top-M singular vectors are chosen, the gradient reconstruction error

grows according to the leftover singular values. We show this below where we have chosen
M∗

M = {u∗
1,u

∗
2, . . . ,u

∗
M} as the set of top-M singular vectors,

eopt(w;w,M∗
M) = ∇wLMAP(w)−∇wKopt(w;w∗,M∗

M)

= ∇wKopt(w;w∗,M∗)−∇wKopt(w;w∗,M∗
M)

=
K∑

j=M+1

β∗
ju

∗
j

[
h(fw(u

∗
j))− h(fw∗(u

∗
j))
]

= U ∗
M+1:K S∗

M+1:K V ⊤
M+1:K dx. (5.52)

116 Knowledge-adaptation priors

The first line is simply the definition of the error, and in the second line we use the result
in Equation 5.51 for the optimal K-prior with memory M∗. The next few lines use the
definition of the optimal K-prior and rearrange terms. This gives us the following error,

∥eopt(w;w,M∗
M)∥ =

√
ΣK
j=M+1s

2
j(a

x
j)

2, (5.53)

where axj is the j’th entry of a vector a = V ⊤
1:Kdx. This error depends on the leftover singular

values. The error is likely to be the optimal error achievable by any memory of size M , and
establishes a theoretical bound on the best possible performance achievable by any K-prior.

Subset of past data

We previously looked at an optimal K-prior that can reconstruct the exact gradient of past
information, but is difficult to realise in practice. We now look at how to choose the most
important datapoints from past data. We choose inputs to store by looking at the gradient-
reconstruction error e for vanilla K-priors, shown below forM⊂ Xold,

e(w;M) = ∇w LMAP(w)−∇wK(w;w∗,M) =
∑

i∈Xold\M

φi

[
h(f iw)− h(f iw∗)

]
. (5.54)

The error depends on the “leftover” φi for i ∈ Xold\M, and their discrepancies h(f iw) −
h(f iw∗). A simple idea could be to include the inputs where predictions disagree the most,
but this is not feasible because the candidates w are not known beforehand. Instead, we can
use a first-order approximation,

h(f iw) ≈ h(f iw∗) + h′(f iw∗)φ
⊤
i (w −w∗). (5.55)

When we apply this to Equation 5.54, we get,

e(w;M) ≈
∑

i∈Xold\M

[
φi h

′(f iw∗)φ
⊤
i

]
(w −w∗) = G∗(Xold\M) (w −w∗), (5.56)

where G∗(Xold\M) =
∑

i∈Xold\M

φi h
′(f iw∗)φ

⊤
i . (5.57)

The approximation is conveniently expressed in terms of the Generalised Gauss-Newton
(GGN) matrix (Schraudolph, 2002; Graves, 2011; Martens, 2020), denoted by G∗(·) (see also
Section 2.2.2 for details on the GGN matrix). The approximation suggests thatM should
be chosen to keep the leftover GGN matrix G∗(Xold\M) orthogonal to w −w∗. Since w

changes during training, a reasonable approximation is to choose examples that keep the top

5.4 Limited memory in K-priors 117

eigenvalues of the GGN matrix. This can be done by forming a low-rank approximation
by using sketching methods, such as the leverage score (Cook, 1977; Alaoui and Mahoney,
2015; Cohen et al., 2015; Calandriello et al., 2019). This leads to the Leverage method that
we introduced in Section 4.3.

A cheaper alternative is to choose the examples with highest h′(f iw∗). The quantity is
cheap to compute in general. For example, in deep networks it is obtained with just a forward
pass. This was the Lambda method in Section 4.3, and we found in Section 4.5 that it worked
well for our classification experiments in continual learning. Due to its simplicity, we will
use this method in most of our experiments in Section 5.7.

Rehearsal-based approaches to continual learning replay a subset of memory, and we
discussed some of these in Sections 2.3 and 4.1. However, inputs are often randomly sampled
from past data (Lopez-Paz and Ranzato, 2017; Benjamin et al., 2019; Buzzega et al., 2020),
and this can be improved. More recent works look at more expensive methods, such as
maximising the diversity of inputs (Aljundi et al., 2019b), which can be seen as related to the
leverage score. Other work (Aljundi et al., 2019a) chooses which examples to replay (from
a larger set of stored memory), choosing examples that maximally interfere with current
examples. Similarly, Chaudhry et al. (2021) use a concept of hindsight, but they use this to
learn pseudo-input anchor points that lie close to the decision boundary. Titsias et al. (2020)
use inducing inputs, which is closely connected to the online GP update. Another line of work
summarises a large dataset into a small synthetic dataset, referred to as Dataset Distillation
(Wang et al., 2018) or Dataset Condensation (Zhao et al., 2021), however they train for their
synthetic data by optimising a more complicated objective function. The method we propose
in this section does not contradict with these, but gives a more direct way to choose points
where gradient errors are taken into consideration.

Rather than using vanilla K-priors with a subset of memory, we can also design K-priors
that better use the memory available to us. For example, we can change the function-space
divergence by designing specific matrices B as discussed in Section 5.3.4. We look at doing
this in Appendix D.1. In Appendix D.1.1 we derive a K-prior that optimally maintains first-
order gradient information from the base model (Equation 5.1), and find that the form for this
K-prior’s B∗,1ord is very similar to the optimal K-prior discussed earlier. In Appendix D.1.2
we look at how we might maintain second-order information. The form of B∗,2ord is very
similar to what we do in FROMP (Chapter 4), and we discuss this further in Section 5.6.

We can also design the weight-space divergence in K-priors to maintain information. In
the next section, we look at how we can do this by using links to weight-priors, and this
leads to a new K-prior. In general, designing the divergences in K-priors to better maintain
information is an interesting research direction.

118 Knowledge-adaptation priors

5.5 Improving weight-priors with function-regularisation

In this section, we explore the link between quadratic (or Gaussian) weight-priors and K-
priors, and derive new K-priors that can be viewed as improving weight-priors by adding
functional regularisation. We call these ‘Quadratic K-priors’ as they use additional quadratic
regularisation when compared with vanilla K-priors from Section 5.1.

We start by considering how weight-priors can be seen as specialised cases of K-priors.
This will be related to the limited-memory discussion in Section 5.4. There are two ways we
can view weight-priors: (i) as a restrictive (first-order) approximation to the function-space
term, or (ii) as only a weight-divergence term where the Bregman divergence is a (squared)
Mahalanobis distance (Mahalanobis, 1936). We will use this intuition to design Quadratic
K-priors, where we combine vanilla K-priors with weight-priors in order to improve both
algorithms. We can apply Quadratic K-priors to both GLMs and neural networks, although
with neural networks there is an additional term (see discussion in Section 5.2). We start by
focussing on Lap-K-priors, but also derive the Quadratic var-K-prior using the relationship
discussed in Section 5.1.

Weight-priors. Quadratic weight-priors are often used in online and continual learning
(Kirkpatrick et al., 2017; Nguyen et al., 2018; Schwarz et al., 2018; Ritter et al., 2018) (see
also Chapter 3). In the Laplace case, they take the form,

Rweight(w;w∗) =
1
2
(w −w∗)

⊤ [G∗(Xold) + δI] (w −w∗), (5.58)

where we have used the GGN matrix from Equation 5.57. These can be seen as a first-order
approximation to the vanilla Lap-K-prior in Equation 5.13. This follows by approximating the
K-prior gradient in Equation 5.13 with the first-order approximation used in Equation 5.56,

∇wK(w;w∗,Xold) ≈
∑

i∈Xold

φi

[
h′(f iw∗)φ

⊤
i (w −w∗)

]
+ δ(w −w∗)

= ∇wRweight(w;w∗). (5.59)

A similar expression holds for weight-priors in the variational setting (such as VCL (Sec-
tion 2.2.1)), where they are also a first-order approximation of the var-K-prior. The key
difference in the variational setting is that we take an expectation of the GGN matrix with
respect to the base model qη∗(w).

In this way, weight-priors can be seen as using the old h′(f iw∗) inside the GGN when
optimising, while K-priors correct this by using the most recent h′(f iw), leading to being

5.5 Improving weight-priors with function-regularisation 119

more accurate (see Figure 5.5(a) for more intuition). Vanilla K-priors require storing points
in memory to achieve this. However, we expect that we do not need to store all past points in
memory to perform well, as the memory requirements should grow according to the rank of
the feature matrix (see discussion on the optimal K-prior in Section 5.4), which may still be
manageable. If not, we can apply sketching methods, as discussed in Section 5.4.

We next consider how we can combine vanilla K-priors with weight-priors to give
Quadratic K-priors. These use a slightly different formulation to vanilla K-priors as they
attempt to correct for inputs not stored in memory.

Quadratic K-priors

We now combine vanilla K-priors from Equation 5.13 with weight-priors, leading to an
algorithm that reduces error for both. We end up with a slightly different K-prior, which has
a modified weight-divergence. We call this the ‘Quadratic K-prior’, and give the form for
both the Quadratic Lap-K-prior and Quadratic var-K-prior.

Quadratic K-priors use the intuition and results we have built so far in this section and in
Section 5.4. When applied to the setting where there are many adaptation tasks in sequence,
Quadratic K-priors are related to Online EWC (Schwarz et al., 2018) and VCL/VOGN
(Chapter 3), and can be viewed as improving these weight-prior approaches by using some
functional regularisation. This is particularly obvious in continual learning, where there are
many ‘Add Data’ tasks in sequence.

Quadratic K-priors reduce the error from just storing a subset of past pointsM⊂ Xold

when compared with vanilla K-priors. When we choose a subset of points to store in memory
for vanilla K-priors, we have an error term given by Equation 5.54, and we can approximate
this using a first-order approximation as in Equation 5.56. The key idea in Quadratic K-priors
is to add this approximated error term to the vanilla K-prior. This does not require storing
any more points in memory, but requires calculating and storing the GGN matrix over points
not stored, G∗(Xold\M). This is also closely related to weight-priors as the same first-order
approximation leads to weight-priors from K-priors, as shown in Equation 5.59.

In the MAP/Laplace setting, this leads to combining the vanilla Lap-K-prior from Equa-
tion 5.13 with weight-regularisation over the points that are not in memory,

Kquad(w;w∗,M) = K(w;w∗,M) + 1
2
(w −w∗)

⊤ [G∗(Xold\M)] (w −w∗) (5.60)

=
∑

i∈M

ℓ
(
h(f iw∗), h(f

i
w)
)

︸ ︷︷ ︸
Function-divergence over M

+ 1
2
(w −w∗)

⊤ [G∗(Xold\M) + δI] (w −w∗)︸ ︷︷ ︸
Weight-divergence term, using Xold\M

,

(5.61)

120 Knowledge-adaptation priors

where the second line expands out the vanilla K-priors term and combines the weight-
regularisation terms. We call this the Quadratic Lap-K-prior. The weight-divergence term
in the Quadratic Lap-K-prior uses a different weight-divergence than previously used in
the vanilla K-prior in Equation 5.11. Specifically, we now use the (squared) Mahalanobis
distance (Mahalanobis, 1936), which is also a Bregman divergence but defined with the
convex function 1

2
w⊤ (G∗(Xold\M) + δI)w instead of 1

2
δw⊤w.

To get some intuition about Quadratic K-priors, we can view Equation 5.61 as improving
upon both the vanilla K-prior and weight-priors:

1. When M = Xold, we recover the vanilla K-prior, which we showed reconstructs
the exact gradient of past information. When the memory is a subset of past inputs
M⊂ Xold, then the additional weight-divergence term corrects for the vanilla K-prior
error using a first-order approximation as in Equation 5.56. This therefore improves
upon vanilla K-priors.

2. WhenM = ∅ is the empty set, we recover weight-priors from Equation 5.58. By
including some inputs inM, we are improving predictions at these inputs. If we pick
the inputs that are the most important, we may only have to pick a few examples in
order to correct for the error that weight-priors induce.

We can use Quadratic K-priors on all of our adaptation tasks instead of just vanilla
K-priors. When we use the Quadratic Lap-K-prior in continual learning with many sequential
tasks, we update the weight-divergence term after every task, and this is similar to weight-
prior algorithms for continual learning like Online EWC (Kirkpatrick et al., 2017; Schwarz
et al., 2018). We can update the GGN matrix in an online way, just like in Online EWC.
We can also use a factorised GGN matrix to reduce computation cost (such as a diagonal or
block-diagonal matrix). In this way, the Quadratic Lap-K-prior can be seen as combining
the vanilla Lap-K-prior with Online EWC. We provide an experiment with this Quadratic
K-prior in Section 5.7, where we see it performs very well in continual learning, improving
upon both vanilla K-priors and weight-priors.

The Quadratic var-K-prior. We can also write Quadratic K-priors in the variational
setting, where we will see links to weight-priors in variational inference (such as Variational
Continual Learning (Chapter 3)). We derive the Quadratic var-K-prior from the Quadratic
Lap-K-prior using Equations 5.19 and 5.20. We have qquadK (w) ∝ exp

(
−K̃quad(w)

)
, where

K̃quad(w) is similar to Kquad(w) from Equation 5.61 except with (i) an expectation of the
soft labels in the function-divergence term Eqη∗ [h(f

i
w)], (ii) an expectation of the GGN

matrix, G̃∗(·) = Eqη∗ [G(·)], and (iii) µ∗ instead of w∗ in the quadratic weight-divergence

5.5 Improving weight-priors with function-regularisation 121

term. Using the ‘Add Data’ task as an example, this gives us the following loss with the
Quadratic var-K-prior,

Eqη(w)

[∑

j∈Dnew

ℓj(w)− log qquadK (w) + log qη(w)

]

= Eqη(w)

[∑

j∈Dnew

ℓj(w) +
∑

i∈M

ℓ
(
h(f iw∗), h(f

i
w)
)
− log qweight(w) + log qη(w)

]
,

(5.62)

where we have qweight(w) ∝ exp
(
−1

2
(w − µ∗)

⊤
[
G̃∗(Xold\M) + δI

]
(w − µ∗)

)
.

In the Quadratic Lap-K-prior, we calculated G∗(Xold\M) using the base model. In the
Quadratic var-K-prior, we can use already-computed second-order information in Σ∗ to
save computation, as Σ−1

∗ = G̃(Xold) + δI at the fixed-point of the variational objective
(see Equation 5.5, where we now also use the GGN approximation to the Hessian). We can
therefore write,

G̃∗(Xold\M) + δI = Σ−1
∗ − Eqη∗ (w) [G∗(M)] , (5.63)

and we can use Monte-Carlo sampling of the final term. This calculation is quick when the
memoryM is small.

Overall, the Quadratic var-K-prior first calculates G̃∗(Xold\M)+ δI using Equation 5.63
and the base model, and then optimises the objective in Equation 5.62 (written for the ‘Add
Data’ task, although similar expressions hold for other adaptation tasks). In the continual
learning setting, over many sequential tasks, this can be viewed as combining var-K-priors
with VCL, with a correction step where we remove datapoints from the covariance estimate
(using Equation 5.63). We can use natural-gradient updates to get a version that is more
similar to VOGN (see Section 3.2). When going from one task to the next, we can add
and remove datapoints in the memory M by respectively adding and subtracting their
contributions to G̃∗ in Equation 5.63.

This concludes our section on improving weight-priors with Quadratic K-priors, which
use functional regularisation as well as weight-prior quadratic regularisation. We expect
Quadratic K-priors to improve on both weight-prior algorithms and vanilla K-priors when
there is limited memory. Having considered how to improve weight-priors using K-priors,
we next view FROMP (from Chapter 4) in the K-priors framework, and potential ways we
could improve FROMP.

122 Knowledge-adaptation priors

5.6 FROMP in the K-priors framework

We now take a closer look at continual learning by Functional Regularisation of Memorable
Past (FROMP), which was described in Chapter 4. FROMP was introduced as a way to func-
tionally regularise over memorable past points for continual learning. Variational-FROMP
(var-FROMP) was derived by replacing the log-prior term in the (weight-space) variational
objective with a function-space term (see Chapter 4 for more details). Approximations were
then made to the var-FROMP algorithm, leading to two cheaper variants: OGN-FROMP and
FROMP (these are described in Section 4.4).

In Appendix D.2, we show that even on linear regression, (var-)FROMP does not neces-
sarily reconstruct the gradients of past information, and is therefore not always exact. This is
despite storing all past data. This is concerning as linear regression is a very simple setting,
where even weight-priors are exact. However, we know that FROMP performs very well on
neural networks (see experiments in Section 4.5), and we want to understand why.

In this section, we view FROMP as approximating the gradient of past information
in the K-priors framework. By considering FROMP on classification problems on neural
networks, we consider the relationship between FROMP and Lap-K-priors. We see that
FROMP approximates both the weight-space and function-space divergences in a specific
way, attempting to maintain second-order information about the base model solution. This
view also provides some suggestions on how to improve the FROMP algorithm.

We show relationships between FROMP and Lap-K-priors for the case when there is a
single past task for simplicity, although we can straightforwardly extend to multiple past
tasks. We focus this section on comparing FROMP with Lap-K-priors, but we can also draw
very similar results for var-FROMP and var-K-priors due to the relationship between the two
settings (as discussed in Section 5.1).

In order to write FROMP in the K-priors framework, we take the gradient of the regulariser
in FROMP (the right-hand term in Equation 4.34, noting there is just a single past task),

∇wRFROMP(w) = τJ⊤
u Λu

[
Λu,∗Ju,∗ [G∗(Xold) + δI]−1 J⊤

u,∗Λu,∗
]−1

du, (5.64)

where the vector du has its m’th entry as h(fw(um))− h(fw∗(um)), Λu is a diagonal matrix
with h′(fw(um)) as the m’th diagonal entry, Λu,∗ is a diagonal matrix with h′(fw∗(um))

as the m’th diagonal entry, Ju is an M × P matrix with rows given by ∇wfw(um), and
Ju,∗ is an M × P matrix with rows given by ∇wfw∗(um). These are calculated over all
um ∈ M, with |M| = M , and our model has P parameters, w ∈ RP . Additionally,
G∗(Xold) is the GGN matrix at the base model w∗ (defined in Equation 5.57). Note that the

5.6 FROMP in the K-priors framework 123

previous covariance Σ∗ = [G∗(Xold) + δI]−1. When the memoryM contains all past inputs,
G∗(Xold) = J⊤

u,∗Λu,∗Ju,∗.
We can simplify Equation 5.64 by assuming that a pseudo-inverse of Ju,∗ exists. This

will almost always be the right pseudo-inverse J+
u,∗ = J⊤

u,∗
(
Ju,∗J

⊤
u,∗
)−1, as we expect

P >> M for overparameterised neural networks (and hence rank(Ju,∗) =M). The FROMP
regulariser then simplifies to,

∇wRFROMP(w)

= τδ
[
J⊤
u

[
ΛuΛ

−1
u,∗
]
J+⊤
u,∗
]
J+
u,∗Λ

−1
u,∗du︸ ︷︷ ︸

Weight-divergence term

+ τJ⊤
u

[
ΛuΛ

−1
u,∗
]
J+⊤
u,∗ G∗(Xold)J

+
u,∗Λ

−1
u,∗du︸ ︷︷ ︸

Function-divergence term

.

(5.65)

We now look at these two terms in more detail.

Weight-divergence term: The vanilla Lap-K-prior in Equation 5.13, which we know re-
constructs the exact gradient when it stores all past inputs (on GLMs), has a weight-
divergence term with gradient δ(w−w∗). FROMP’s weight-divergence term recovers
this gradient when (i) we make the first-order approximation to du from Equation 5.55,
(ii) Λu,∗ = Λu, and (iii) Ju,∗ = Ju. FROMP’s weight-divergence term can therefore
be seen as approximating the vanilla Lap-K-prior’s in this specific way.

Function-divergence term: When comparing the function-divergence term in Equation 5.65
with general K-priors in Equation 5.47, we see that FROMP corresponds to having,

BFROMP =
[
ΛuΛ

−1
u,∗
]
J+⊤
u,∗ G∗(Xold)J

+
u,∗Λ

−1
u,∗. (5.66)

This is closely related to the Nyström approximation.

In Appendix D.1.2 we derive a K-prior that best matches second-order information
from the trained base model using a limited memory, giving us (see Equation D.10),

B∗,2ord = J+
u

⊤
G∗(Xold)J

+
u Λ

−1
u . (5.67)

As we can see, B∗,2ord has a very similar form to BFROMP. Specifically, BFROMP

recovers this optimal B∗,2ord when (i) Λu,∗ = Λu, and (ii) Ju,∗ = Ju.

Using this view, FROMP uses previous task information via G∗ to (approximately)
preserve second-order information. This is useful as it ensures that our eventual
solution is still at a minimum of the objective function. The strong empirical results
with FROMP on neural networks provide further evidence that this is sensible to do.

124 Knowledge-adaptation priors

This analysis provides some specific ways to improve the FROMP algorithm. Some
simple changes are to (i) use the ‘correct’ weight-divergence term such as by using Equa-
tion 5.11, and/or (ii) recalculate the previous task kernel during optimisation with the new
weights w instead of w∗ (perhaps every few iterations to reduce computation cost), so that
Λu,∗ = Λu and Ju,∗ = Ju in FROMP’s objective. If we did both of these changes, we would
get a K-prior that best matches second-order information, as derived in Appendix D.1.2.

Exploring such insights and connections between FROMP and K-priors more will be
very interesting future work, and we discuss this further in Section 6.2.

5.7 Experiments

In this section, we look at how well K-priors perform experimentally. Our goal is to show
that K-priors can lead to quick, accurate and wide adaptation. K-priors are quick because
they are computationally cheaper than retraining-from-scratch, while still being accurate
(performing almost as well as retraining-from-scratch). K-priors are computationally cheaper
when we use small memories, and in our experiments, we will see how K-priors perform
almost as well as retraining-from-scratch even at small memories (often 2− 10% of the full
data). K-priors achieve wide adaptation as they can be applied to many adaptation tasks and
models. We focus only on Lap-K-priors, and leave experiments with var-K-priors as future
work. We also mostly focus on vanilla K-priors, and see strong performance with them.
Throughout the chapter we derived K-priors that we expect to perform better in the limited
memory setting, such as Quadratic K-priors in Section 5.5 and improvements to FROMP in
Section 5.6. We run one experiment with the Quadratic Lap-K-prior on continual learning
(on the Split MNIST benchmark), where we see very strong performance, but leave a detailed
empirical investigation of these better K-priors as future work.

For most of this section, we experimentally test on four adaptation tasks: the ‘Add
Data’ task, the ‘Remove Data’ task, the ‘Change Regulariser’ task, and the ‘Change Model
Class/Architecture’ task (these are defined in Sections 5.1 and 5.3). We use Generalised Lin-
ear Models (GLMs) and neural networks. We show promising results on larger deep-learning
problems, with potential for improvement when we borrow tricks such as a temperature from
knowledge distillation (see discussion in Section 5.2).

We compare the performance of vanilla K-priors to retraining-from-scratch on all data
(which we call ‘Retrained’, previously also referred to as ‘Joint Tasks’ in Chapter 2) and a
retraining with replay from a small memory (‘Replay’), and we always use τ = 1. For a fair
comparison, we use the same memory for Replay and K-priors obtained by choosing points
with highest h′(f iw∗) (or the Lambda method, see Section 5.4 for details). Memory chosen

5.7 Experiments 125

randomly often gives much worse results and we omit these results. Replay uses true labels
while K-priors use model predictions, and also has a different weight-divergence term. We
will see that Replay performs much worse at small memory sizes.

When we compare with weight-priors, we see that they generally perform well, but they
are worse when the adaptation involves a drastic change in inputs. In Table 5.1 we show that
training K-priors with limited memory is quicker than both Retrained and Replay.

Details for all experiments are in Appendix D.4, such as hyperparameters and more
details on experimental setups. Appendix D.4.3 looks at how well K-priors perform without
the weight-divergence term, finding that the weight-divergence term is usually crucial for
good performance. Appendix D.4.4 studies the effect of random initialisation, and we find
that it performs similarly to initialising at the base model parameters w∗. Code is available at
https://github.com/team-approx-bayes/kpriors.

Generalised Linear Models

We start with two datasets on Generalised Linear Models (GLMs): logistic regression with
the UCI Adult dataset, and the ‘USPS odd vs even’ dataset. Both are binary classification
tasks, and we compare the three methods (Retrained, Replay and vanilla K-priors) on all four
adaptation tasks. Results are shown in Figure 5.2.

Logistic Regression on the UCI Adult dataset. This is a binary classification problem
consisting of 16, 100 examples to predict income of individuals. We randomly sample 10% of
the training data (1610 examples), and report mean performance and standard deviation over
10 such splits. For training, we use the L-BFGS optimiser (default PyTorch implementation
(Paszke et al., 2019)) for logistic regression with polynomial basis, using a learning rate
of 0.01 and running until convergence. Results are summarised in Figure 5.2(a). For the
‘Add Data’ task, the base model uses 9% of the data and we add 1% new data. For ‘Remove
Data’, we remove 100 of the most important data examples (6% of the training set) picked
by sorting h′(f iw∗). For the ‘Change Regulariser’ task, we change the L2-regulariser strength
from δ = 50 to 5, and for ‘Change Model Class’, we reduce the polynomial degree from 2 to
1. Note that for all but the ‘Change Model Class’ task, we use polynomial degree 1, and for
all but the ‘Change Regulariser’ task, we use δ = 5.

As we see in Figure 5.2(a), K-priors perform very well on the first three tasks, remaining
very close to Retrained, even when the memory sizes are down to 2%. The ‘Changing Model
Class’ task is slightly more challenging, but K-priors still significantly out-perform Replay.
In Appendix D.4.1 we provide an ablation study for Replay with different strategies on this
dataset, testing different τ and randomly choosing the points to store.

https://github.com/team-approx-bayes/kpriors

126 Knowledge-adaptation priors

V
al

id
at

io
n

ac
c

(%
)

V
al

id
at

io
n

ac
c

(%
)

Memory size (% of past data)

(a) Adult,
logistic
regression

(b) USPS,
logistic
regression

Add new data Remove old data Change regulariser Change model class

Memory size (% of past data) Memory size (% of past data) Memory size (% of past data)

Retrained

Replay

K-prior

Figure 5.2: We compare vanilla K-priors (red squares) with the expensive Retrained baseline
(grey) and Replay (blue circles) on our four adaptation tasks (columns) with (a) logistic
regression on UCI Adult dataset, and (b) logistic regression on the ‘USPS odd vs even’
dataset. We find that K-priors match Retrained while mostly using 2− 5% of the data (for
only 3 tasks a larger fraction is required). K-priors always outperform Replay. Replay uses
the true labels, while K-priors replace the labels by the model predictions, and have a slightly
different weight-divergence term. Details on experimental setup is in the main text.

Logistic Regression on the ‘USPS odd vs even’ dataset. The USPS dataset (Hull, 1994)
consists of 10 classes (one for each digit), and has 7, 291 training images of size 16× 16. We
split the digits into two classes: odd and even digits. Results are in Figure 5.2(b). For the
‘Add Data’ task, we add all examples of the digit 9 to the rest of the dataset, and for ‘Remove
Data’ we remove the digit 8 from the whole dataset. By adding/removing an entire digit,
we enforce a heterogeneous data split, making the tasks more challenging. The ‘Change
Regulariser’ and ‘Change Model Class’ tasks are the same as the UCI Adult dataset. Note
that for all but the ‘Change Model Class’ task, we use polynomial degree 1, and for all but
the ‘Change Regulariser’ task, we use δ = 50. We optimise using L-BFGS until convergence
(with learning rate 0.1).

K-priors perform very well on the ‘Add Data’ and ‘Change Regulariser’ tasks, always
achieving close to Retrained performance even with small memories. For the ‘Remove Data’
task, which is a challenging task due to heterogeneity, K-priors still only need to store 5% of
past data to maintain close to 90% accuracy, whereas Replay requires 10% of past data.

5.7 Experiments 127

V
al

id
at

io
n

ac
c

(%
)

V
al

id
at

io
n

ac
c

(%
)

Memory size (% of past data)

(a) USPS,
neural
network

Memory size (% of past data) Memory size (% of past data)

Memory size (% of past data)

(b) MNIST,
neural
network

Add new data Remove old data Change regulariser Change architecture

Memory size (% of past data) Memory size (% of past data)Memory size (% of past data)

Retrained

Replay

K-prior

Figure 5.3: We compare vanilla K-priors (red squares) with the expensive Retrained baseline
(grey) and Replay (blue circles) with neural networks on (a) four adaptation tasks on the
‘USPS odd vs even’ dataset, and (b) three adaptation tasks on the MNIST dataset. We find
similar results to Figure 5.2, where we used GLMs instead of neural networks: K-priors
match Retrained while mostly using 2 − 5% of the data. Additionally, K-priors always
outperform Replay. Replay uses the true labels, while K-priors replace the labels by the
model predictions, and have a slightly different weight-divergence term.

Neural networks

We now run on neural networks instead of GLMs. On neural networks, there is an additional
error term when using vanilla K-priors, but we hope this might be beneficial like in knowledge
distillation (a more detailed discussion is in Section 5.2). We compare to the same methods
as before (Retrained and Replay), and run on a small multi-layer perceptron (MLP) with
‘USPS odd vs even’, a larger MLP with MNIST, and CNNs with CIFAR-10. We also find
that we can improve knowledge distillation by using a smaller memory.

Neural Networks on the ‘USPS odd vs even’ dataset. This is a repeat of the previous
experiment with USPS data, but now with a neural network (a one hidden-layer MLP with
100 units) instead of a GLM. Results are in Figure 5.3(a). The ‘Change Regulariser’ task
now changes δ = 5 to 10, and the ‘Change Architecture’ task compresses the architecture
from a two hidden-layer MLP (100 units per layer) to a one hidden-layer MLP with 100 units.
For all but the ‘Change Regulariser’ task, we use δ = 5. We optimise using Adam with a
learning rate of 0.005 for 1000 epochs (which is long enough to reach convergence). We see
that even with neural networks, K-priors perform very well, similarly out-performing Replay
and remaining close to the Retrained solution at small memory sizes.

128 Knowledge-adaptation priors

(b) CIFAR-10 Add data

Retrained

Memory size (% of past data) Memory size (% of past data) Memory size (% of past data)

(c) CIFAR-10 Knowledge
Distillation

V
al

id
at

io
n

ac
c

(%
)

(a) CIFAR-10 Change
regulariser

Figure 5.4: (a+b) We compare K-priors (red squares) with the expensive Retrained baseline
(grey) and Replay (blue circles) on the ‘Change Regulariser’ and ‘Add Data’ tasks in CIFAR-
10. We see that although K-priors outperform Replay, there is a gap to Retrained. This gap
is reduced when we use a temperature parameter in K-priors (dark-red triangles). (c) The
same is true for knowledge distillation (Hinton et al., 2015), and we see that we can reduce
memory size while still performing better than the student model, with as little as 1% of total
memory for the distillation term. Details on experimental setup is in the main text.

Neural Networks on the MNIST dataset. We show results on 10-way classification with
MNIST (LeCun and Cortes, 2010) in Figure 5.3(b), which has 60, 000 training images across
10 classes (handwritten digits), with each image of size 28× 28. We use a two hidden-layer
MLP with 100 units per layer, and report mean performance and standard deviation over 3
runs. For the ‘Add Data’ task, we start with a random 90% of the dataset and add 10%. For
the ‘Change Regulariser’ task, we change δ = 1 to 5 (we use δ = 1 for all other tasks). For
the ‘Change Architecture’ task, we compress to a single hidden layer with 100 hidden units.
We did not run on the ‘Remove Data’ task. We optimise using Adam with a learning rate of
0.001 for 250 epochs, using a minibatch size of 512.

We see that K-priors perform well on MNIST on our three adaptation tasks, just like in
all other experiments, outperforming Replay at low memory sizes and remaining close to the
Retrained solution.

Neural Networks on the CIFAR-10 dataset. We also provide results for CIFAR-10
(Krizhevsky and Hinton, 2009), using 10-way classification, in Figure 5.4. CIFAR-10
has 60, 000 images (50, 000 for training), and each image has 3 channels, each of size
32 × 32. We report mean performance and standard deviation over 3 runs. We use the
CifarNet architecture from Zenke et al. (2017), which we also used previously in our CIFAR
experiments in Chapters 2 to 4, and which we described in Section 2.4. We optimise using
Adam with a learning rate of 0.001 for 100 epochs, using a batch size of 128.

5.7 Experiments 129

In Figure 5.4(a) we provide results on the ‘Change Regulariser’ task, where we change
δ = 1 to 0.5 (we use δ = 1 for all the other tasks). In Figure 5.4(b) we show the ‘Add
Data’ task with CIFAR-10, where we add a random 10% of CIFAR-10 training data to the
other 90%. Although vanilla K-priors outperform Replay, there is now a bigger gap between
K-priors and Retrained even with 50% past data stored. However, performance improves
when we use a temperature (similar to knowledge distillation).

A similar result is shown in Figure 5.4(c) for knowledge distillation, where we compress
from a CifarNet teacher to a LeNet5-style student (details in Appendix D.4). Here, K-priors
with 100% data is equivalent to knowledge distillation, but when we reduce the memory
size using our method, we still outperform Retrained (which trains the student model from
scratch on all data). As in all other experiments, we use the Lambda method to choose the
memory points, but it might also be interesting in future work to use the residual to choose
points (see Equation 5.34, where the error depends on the residuals). Overall, our initial
effort here suggests that K-priors can do better than Replay, and have potential to give better
results with more hyperparameter tuning.

K-priors converge cheaply

We now show that K-priors with limited memory converge to the final solution cheaply,
converging in far fewer passes through data than the Retrained solution. This is because we
use a limited memory, only touching important past datapoints.

Accuracy Method Add Remove Change Change
achieved new data old data regulariser architecture
90% Retrained 87 94 94 86
90% Replay (10% memory) 350 110 240 75
90% K-prior (10% memory) 73 53 13 22
97% Retrained 1,900 1,800 2,700 3,124
97% Replay (10% memory) – 340 – –
97% K-prior (10% memory) 330 120 54 68

Table 5.1: Number of backpropagations required to achieve specified accuracies (90% and
97%) with a neural network on the ‘USPS odd vs even’ dataset (1000s of backprops). K-
priors with 10% past memory require significantly fewer backprops to achieve the same
accuracy as Retrained. Although Replay uses the same memory as K-priors, it still requires
more backprops to reach 90% accuracy, as it uses true labels instead of model predictions.
Additionally, Replay with with 10% memory cannot achieve higher accuracies (like 97%
accuracy) in many adaptation tasks. We use the same experimental settings as in Figure 5.3(a)
and as described in the main text.

130 Knowledge-adaptation priors

(b) USPS Add Data(a) over all (c) MNIST Add data

Retrained

V
al

id
at

io
n

ac
c

(%
)

Memory size (% of past data) Memory size (% of past data) Memory size (% of past data)

(d) CIFAR-10 Add data

Figure 5.5: (a) When compared at the Retrained solution for the ‘Add Data’ task on USPS,
weight-priors give incorrect values of h′(f iw) (shown with black dots, each dot corresponds
to a data example). Points on the diagonal indicate a perfect match, which is the case for
K-priors (shown with red dots). (b) Due to this, weight-priors (green diamonds) perform
worse than K-priors (red squares). This is a heterogeneous split and is therefore particularly
difficult for weight-priors. (c+d) Homogeneous data splits for the ‘Add Data’ task on MNIST
and CIFAR-10 result in weight-priors performing better. On MNIST, all methods perform
extremely well. In Appendix D.4.2 we provide similar results for the remaining ‘Add Data’
tasks: logistic regression on UCI Adult and neural networks on the ‘USPS odd vs even’
dataset, where we see the same story.

Table 5.1 shows the “number of backpropagations” until reaching specific accuracies
(90% and 97%) with a neural network on the ‘USPS odd vs even’ dataset (using the same
settings as in Figure 5.3(a) and previously described in the text). This is one way of measuring
the “time taken”, as backprops through the model are the time-limiting step. For K-priors and
Replay, we use 10% of past memory. All methods use random initialisation when starting
training on a new task.

We see that K-priors with 10% of past data stored are quicker to converge than Retrained,
even though both eventually converge to the same accuracy (as seen in Figure 5.3(a)). For
example, to reach 97% accuracy for the ‘Change Regulariser’ task, K-priors only need
54, 000 backward passes, while Retrained requires 2, 700, 000 backward passes. We also
see that Replay is usually very slow to converge. This is because it does not use the same
information as K-priors (as Replay uses true labels), and therefore requires significantly more
passes through data to achieve the same accuracy. In addition, Replay with 10% of past data
cannot achieve high accuracies (such as 97% accuracy), as seen in Figure 5.3(a).

5.7 Experiments 131

Weight-priors vs vanilla K-priors

As discussed in the main text in Section 5.5, weight-priors can be seen as an approxima-
tion of K-priors where h′(f iw) are replaced by ‘stale’ h′(f iw∗) evaluated at the old w∗. In
Figure 5.5(a), we visualise these ‘stale’ h′(f iw∗) and compare them to K-priors. Points on
the diagonal indicate a perfect match to the Retrained h′(f iw), and we see that this is the
case for K-priors but not for weight-priors. For this experiment, we use logistic regression
on the ‘USPS odd vs even’ dataset (the ‘Add Data’ task). This heterogeneous data split is
difficult for weight-priors, and we show in Figure 5.5(b) that weight-priors do not perform
well. Weight-priors perform better with homogeneous data splits (such as in Figure 5.5(c+d)).
This indicates that weight-priors do not have a mechanism to fix mistakes made in the past,
while in K-priors, we can always changeM to improve performance. In Appendix D.4.2 we
provide similar results for the remaining ‘Add Data’ tasks (logistic regression on UCI Adult
and neural networks on the ‘USPS odd vs even’ dataset), where we see the same story.

Quadratic K-priors for continual learning

We have seen how vanilla K-priors perform well on many adaptation tasks on a variety of
datasets on both GLMs and neural networks, and we now consider continual learning (which
consists of multiple sequential ‘Add Data’ tasks). Throughout this chapter, we have seen
how K-priors relate to continual learning algorithms such as Online EWC (Kirkpatrick et al.,
2017; Schwarz et al., 2018), VCL (Nguyen et al., 2018) (Chapter 3) and FROMP (Chapter 4).
We now use the Quadratic Lap-K-prior from Section 5.5, and see how it improves on both
weight-priors and vanilla K-priors on the Split MNIST benchmark. All hyperparameters are
reported in Appendix D.4.

We start by running Online EWC on the Split MNIST benchmark, using the same
experimental protocol as described in Section 2.4, in particular using a two-hidden layer
MLP with 256 hidden units in each layer. After optimising for hyperparameters, we get an
accuracy of 98.8± 0.1%, which is significantly better than just EWC or Laplace Propagation
(see results in Chapters 3 and 4, which we had taken from Nguyen et al. (2018)). We then
add functional regularisation over some points with Quadratic K-priors, choosing points by
the Lambda method. We store 2–40 points per task (2 points per task corresponds to 1 point
per class), and we see significant improvement in performance over weight-priors. Results
are in Figure 5.6, where we plot mean performance and standard deviation over 5 runs.

We also compare to vanilla K-priors, finding a bigger improvement when there are fewer
points (this is due to weight-regularisation helping more when there are very few datapoints
in memory). With 2 memory points per task, Quadratic K-priors get 99.15± 0.17%, while

132 Knowledge-adaptation priors

2 6 10 20 40
Memory size per task

97

98

99

100

Va
lid

at
io

n
Ac

cu
ra

cy
 (%

)

Quadratic K-prior
Weight-prior

Figure 5.6: Quadratic K-priors achieve extremely good results at all memory sizes on Split
MNIST, a continual learning benchmark consisting of 5 binary classification tasks presented
sequentially. We compare with a weight-prior method, Online EWC (Schwarz et al., 2018).
We plot mean performance and standard deviation over 5 runs. Our Quadratic Lap-K-prior
improves upon the weight-prior even with 2 memory points per task (this corresponds to
1 image per class in Split MNIST). With 40 datapoints per task, we achieve 99.4 ± 0.1%,
which significantly outperforms other continual learning methods considered in this thesis,
including FROMP from Chapter 4 (see Table 4.3). Quadratic K-priors also outperform
vanilla K-priors, see main text for results.

vanilla K-priors get 96.8± 0.4%. With 40 memory points per task, Quadratic K-priors gets
99.4 ± 0.1%, while vanilla K-priors get 99.26 ± 0.08%. This is significantly better than
FROMP from Chapter 4, which achieved 99.0± 0.1% (see Table 4.3).

These results are extremely promising for Quadratic K-priors in continual learning.
However, Split MNIST is a small-scale benchmark, and it would be very interesting to see
how well Quadratic K-priors do on larger benchmarks such as Split CIFAR, where FROMP
performs very well. We leave this for future work.

5.8 Links to Support Vector Machines and Gaussian Processes 133

5.8 Links to Support Vector Machines and Gaussian Pro-
cesses

In this section, we briefly explain links between (i) K-priors and algorithms for Support
Vector Machines (SVMs) (Cauwenberghs and Poggio, 2001; Tveit et al., 2003; Laskov et al.,
2006; Duan et al., 2007; Romero et al., 2007; Liang and Li, 2009; Karasuyama and Takeuchi,
2010; Tsai et al., 2014), and (ii) K-priors and online Gaussian Processes (GPs) (Csató and
Opper, 2002; Särkkä et al., 2013; Solin et al., 2018). Previous works usually focus on either
the ‘Add Data’ task or the ‘Remove Data’ task, and we will see that K-priors are very closely
related to these adaptation mechanisms in both settings. K-priors also link to many other
works too, such as knowledge distillation (Section 5.2), weight-priors (Section 5.5), and
rehearsal-based continual learning (Section 5.6), providing a way to unify and generalise
many of these previous concepts.

Adding/removing data for Support Vector Machines (SVMs)

K-prior-regularised training yields equivalent solutions to the adaptation strategies used in
SVMs to add/remove data examples. K-priors can be shown to be equivalent to the primal
formulation of such strategies (Liang and Li, 2009). The key trick to show the equivalence
is to use the representer theorem, which we will now illustrate for the ‘Add Data’ task
(from Equation 5.17). Let Φ+ be the (Nold + 1)× P feature matrix obtained on the dataset
Dold ∪ Dnew, where Dnew consist of 1 new example. By the representer theorem we know
that there exists a β ∈ RN+1 such that w+ = Φ⊤

+β. Taking the gradient of Equation 5.17,
and multiplying by Φ+, we can write the optimality condition as,

0 = Φ+∇
[∑

j∈Dnew

ℓj(w+) +K(w+)

]
=

∑

i∈Dold∪Dnew

(
∇fℓ(yi, h(f))|f=β⊤

i ki,+

)
ki,+ + δK+β,

(5.68)
where K+ = Φ+Φ

⊤
+ and its i’th column is denoted by ki,+. This is exactly the gradient

of the primal objective in the function-space defined over the full batch Dold ∪ Dnew (see
Equation 3.6 in Chapelle (2007)). The primal strategy is equivalent to the more common
dual formulations (Cauwenberghs and Poggio, 2001; Tveit et al., 2003; Laskov et al., 2006;
Duan et al., 2007; Romero et al., 2007; Karasuyama and Takeuchi, 2010; Tsai et al., 2014).
The function-space formulations could be computationally expensive, but speed-ups can be
obtained by using support vectors. This is similar to the idea of using limited memory in
K-priors in Section 5.4.

134 Knowledge-adaptation priors

Another type of adaptation is to add privileged information, originally proposed by
Vapnik and Izmailov (2015). The goal is to include different types of data to improve the
performance of the model. This is combined with knowledge distillation by Lopez-Paz
et al. (2016) and has been applied to domain adaptation in deep learning (Ao et al., 2017;
Ruder et al., 2017; Sarafianos et al., 2017). As we discussed in Section 5.2, K-priors can
be seen as an easy-to-implement scheme for this Similarity Control, and could similarly be
useful for student-teacher learning. This is because K-prior-regularisation occurs in a primal
formulation, instead of using slack variables, which require a dual formulation.

Connections to Gaussian Processes

When variational K-priors are written in function-space similarly to Equation 5.68, they are
related to the online updates used in Gaussian Processes (GPs) (Csató and Opper, 2002).
When qK is built with limited memory, as described in Section 5.4, the application is
similar to sparse variational GPs, but now data examples are used as inducing inputs. These
connections are discussed in more detail in Appendix D.3. Our K-prior formulation operates
in weight-space and can be easily trained with first-order methods, however an equivalent
formulation in function-space can also be employed, as is clear from these connections. The
above extensions can be extended to handle arbitrary exponential-family approximations by
appropriately defining K-priors using KL divergences, instead of just restricting to Gaussian
approximating families. Future work would look at such extensions.

5.9 Summary

In this chapter, we presented Knowledge-adaptation priors (K-priors). K-priors use weight-
space and function-space divergences to reconstruct gradients of past information. We started
in Section 5.1 by showing how vanilla K-priors can perfectly reconstruct gradients of past
information with sufficiently large memory on the ‘Add Data’ task in two settings: the
MAP/Laplace setting and the variational setting. We then looked at vanilla K-priors on neural
networks, finding close links with knowledge distillation. We found that we could exploit
these links to improve both K-priors and knowledge distillation.

In Section 5.3 we then applied K-priors to other adaptation tasks which are important
in machine learning, such as removing data, changing the regulariser and changing the
model class or architecture. We then looked at K-priors for general learning problems. This
allowed us to transition to settings where we have a limited memory budget and want to
achieve optimal knowledge transfer. In Section 5.4 we considered optimal K-priors, which
reconstruct gradients by using singular vectors, but are difficult to realise in practice. We

5.9 Summary 135

also looked at how to choose memory points by looking at the error when we store a subset
of data in vanilla K-priors.

By comparing with weight-priors, in Section 5.5 we introduced Quadratic K-priors,
which improve weight-priors with functional regularisation. They can also be viewed as
improving vanilla K-priors with quadratic weight-regularisation. In Section 5.6 we placed
FROMP (from Chapter 4) in the K-priors framework, and this provided insights into why
FROMP performs so well: FROMP uses its memory to maintain second-order information
from old data. We derived an optimal way to maintain second-order information, and used
this to suggest improvements to FROMP.

Experiments with vanilla K-priors in Section 5.7 showed strong results on many different
datasets with GLMs and neural networks on our four adaptation tasks. K-priors are quicker
than retraining-from-scratch, while still being accurate and performing significantly better
than baselines such as Replay and weight-priors. We also ran Quadratic K-priors on the
continual learning Split MNIST benchmark, seeing it performs better than methods from
previous chapters.

We ended the chapter by briefly exploring links between K-priors and Support Vector
Machines, and K-priors and online Gaussian Processes in Section 5.8.

There are many directions for future work based on K-priors. We took some steps
towards deriving K-priors that efficiently use memory in this chapter, and we can do more
both theoretically and empirically. We can also consider using these insights to improve
methods for memory selection. Another strand of work can look at links between K-priors
and adaptation mechanisms in machine-learning models, expanding on Section 5.8 and
finding more theoretical relationships. There is also work we can do empirically with var-K-
priors, including combining with natural-gradient algorithms (see Section 2.2.2) to derive
new probabilistic algorithms for knowledge transfer. We discuss some of these ideas in more
detail in Section 6.2.

Chapter 6

Conclusions and future work

This chapter concludes and summarises this thesis. We start with a summary in Section 6.1.
We then provide a discussion in Section 6.2, considering potential avenues for future research.

6.1 Summary

We started this thesis by motivating probabilistic continual learning using neural networks in
Chapter 1. Chapter 2 formalised these concepts, defining continual learning, the probabilistic
approach, and introducing metrics and benchmarks. We also categorised methods for
continual learning into three orthogonal complementary approaches: regularisation-based,
rehearsal-based and architecture-based approaches.

Weight-space variational continual learning. We considered regularisation-based ap-
proaches in Chapter 3. We started with a variational weight-prior algorithm, Variational
Continual Learning (Nguyen et al., 2018), and improved the algorithm’s convergence rate
and performance. We analysed why our changes led to improvements, finding that entire
units were pruned out, and that this was beneficial in continual learning (although it can
be detrimental in other settings due to underfitting). We then used natural-gradient up-
dates to significantly improve the rate at which learning convergences, accelerating training
and allowing larger models and datasets to be handled. We scaled the Variational Online
Gauss-Newton (VOGN) algorithm (Khan et al., 2018) to large datasets/architectures such
as ImageNet/ResNets for the first time, finding it converged in as many epochs as SGD and
Adam with similar accuracy, while adding some benefits of Bayesian principles. VOGN
also improved convergence rate in continual learning, allowing us to scale to Split CIFAR.
However, it still did not perform as well as we desired, and we argued in Section 3.3 that this
is due to restrictive independence approximations we made in weight-space regularisation.

138 Conclusions and future work

Functional regularisation of memorable past. This motivated us to regularise network
outputs or functions directly in Chapter 4, thereby combining regularisation-based approaches
with rehearsal-based approaches. We replaced the log-prior term in weight-priors with its
function-space alternative, using a Gaussian Process formulation of neural networks to
identify and regularise on a few memorable past datapoints. The fully variational algorithm
was computationally expensive, and we proposed a series of approximations. Our final
algorithm, FROMP, performed extremely strongly on our benchmarks, outperforming our
previous regularisation-based approaches. We looked at relaxing some of our approximations
in OGN-FROMP, which performed very well on Split MNIST, and also looked at different
ways of choosing memorable past datapoints.

Knowledge-adaptation priors. We introduced Knowledge-adaptation priors (K-priors)
in Chapter 5. K-priors combine a weight-divergence term and a function-divergence term
to reconstruct the gradient of past information, and are a generalisation of FROMP and
weight-priors. We saw how vanilla K-priors can perfectly reconstruct gradients in both
the MAP/Laplace and variational settings on Generalised Linear Models (GLMs). When
applying to neural networks, we saw a link to knowledge distillation (Hinton et al., 2015),
and we used this to improve both K-priors and knowledge distillation. We also saw how
K-priors can be applied to multiple adaptation tasks such as removing data, changing the
regulariser, and changing the model class or architecture.

We then looked at how to apply K-priors to the limited-memory setting. We presented
ways of choosing points to store, and ways to design the divergence terms in K-priors
to optimally use our stored points. When we compared K-priors with weight-priors, we
saw we could improve weight-priors with functional regularisation, calling the algorithm
Quadratic K-priors. When we placed FROMP in the K-priors framework, we saw that
FROMP does not perfectly reconstruct the gradient of past information, even on GLMs.
However, FROMP approximately maintains second-order information from previous tasks’
objectives, and we used this insight to propose ways to improve FROMP. Results on GLMs
and neural networks showed K-priors perform well on a variety of datasets and adaptation
tasks. We also saw Quadratic K-priors perform well on the Split MNIST continual learning
benchmark, outperforming weight-priors, vanilla K-priors and FROMP. We ended the chapter
by comparing K-priors to algorithms for adaptation in Support Vector Machines and online
Gaussian Processes, finding that there are many fundamental theoretical links unified by the
K-priors framework.

6.2 Discussion and future work 139

6.2 Discussion and future work

There are many open questions and potential avenues for future work, and we summarise
some of them in this section, including mentioning some ongoing work.

The many benefits of being probabilistic. We start by briefly taking a step back from
continual learning. The probabilistic framework has potential to provide benefits beyond
just naturally handling continual learning, and we have mostly ignored this potential in
this thesis. Our motivating example in Chapter 1 with image classifiers for autonomous
vehicles focussed on the importance of performing fast sequential updates, but we may also
have other requirements for this image classifier, such as robustness to overfitting, good
uncertainty calibration, and good performance in the low-data regime. The probabilistic
framework promises to perform well in all of these settings (MacKay, 1992; Mackay, 1995;
Neal, 1995; Gal, 2016). One strand of future work would evaluate the probabilistic algorithms
developed in this thesis on such problems. Applying our algorithms to the batch-setting
is straightforward for weight-space algorithms (and we did this in Section 3.2.2) but more
difficult for function-space algorithms.

Improving weight-space variational algorithms further. In Chapter 3 we used VOGN,
which converged significantly better than Bayes-By-Backprop (Blundell et al., 2015), al-
lowing us to scale to larger problems. But we could further improve our natural-gradient
variational inference (NGVI) algorithms to get even faster convergence and better perfor-
mance. For example, we could use the VOGGN algorithm (which we introduced in Chapter 4
and is from Khan et al. (2019)), which uses the standard Generalised Gauss-Newton ap-
proximation to the Hessian, which we expect is a better approximation than that used in
VOGN. We could alternatively use the Improved Bayesian learning rule (iBLR) algorithm
(Lin et al., 2020), which uses another way to approximate the Hessian in NGVI, and re-
cently outperformed all other methods in a competition (Wilson et al., 2021). We could
also straightforwardly combine NGVI algorithms for continual learning with coresets, like
in VCL+Coreset (Nguyen et al., 2018). This should improve performance similar to how
VCL+Coreset improves on VCL in Section 3.1.

Relaxing approximations in variational-FROMP. In Section 4.4 we detailed five ap-
proximations that we made to variational-FROMP to derive our FROMP algorithm. We could
relax many of these approximations to see if they lead to improved performance. Relaxing
approximations can lead to more expensive algorithms, but has the potential to improve
results. We showed this potential with OGN-FROMP in Section 4.5.2, seeing significantly

140 Conclusions and future work

improved performance on Split MNIST. Future work can apply OGN-FROMP to larger
benchmarks, and also consider relaxing some of the other five approximations. Alternatively,
we could use better NGVI algorithms (such as VOGGN or iBLR instead of OGN). As
discussed earlier, these are expected to be better approximations than OGN, and therefore
should lead to better performance.

Moving beyond the task-boundary assumption in continual learning. In Section 2.1
we defined continual learning through a list of desiderata, and said we would aim to satisfy all
but one desideratum in this thesis. Specifically, we relaxed the fully-online setting in continual
learning: we assumed that data examples arrive in defined tasks, and we are informed when
data from a new task starts arriving. This assumption may not be realistic in some real world
scenarios, and we can relax it in various ways, building on work presented throughout this
thesis. In Appendix H of Pan et al. (2020) we showed a method of automatically detecting
task boundaries with FROMP (using inspiration from Titsias et al. (2020)), but this still
assumes that our data examples are separated into tasks. More generally, we discussed in
Section 4.4.1 how the OGN-FROMP algorithm (and also var-FROMP) allows for moving to
general online learning. OGN-FROMP maintains a covariance matrix throughout learning,
therefore allowing us to view the network in function-space at any point during training
instead of waiting until the task changes. We would still need to choose memorable past
points in some way, but there are simple algorithms for doing this that we can build from,
such as reservoir sampling (Vitter, 1985). We could also consider using K-priors for general
online learning in a similar way, potentially using the links between K-priors and FROMP to
suggest new methods.

Memorable experiences of machine-learning models. In ongoing work, we look at gen-
eralising the concept of memorable experiences. We derive criteria (such as the Lambda
method and Leverage method from Sections 4.3 and 5.4) directly from the probabilistic
framework, perturbing the posterior’s moments to reveal datapoints that are the most impor-
tant. This turns out to be closely related to many existing methods for choosing a subset
of important points, and can also be applied to unsupervised learning and reinforcement
learning. This project is in collaboration with Dharmesh Tailor, Paul E Chang, Arno Solin
and Mohammad Emtiyaz Khan.

In general, improving memorable past points selection should directly improve our
methods’ performance in continual learning. We can use the K-priors framework to guide our
choice of points, and we provided an initial straightforward attempt in Section 5.4. We could
also look further into why the Leverage method did not outperform the Lambda method

6.2 Discussion and future work 141

significantly in FROMP in Section 4.5.1, as this was an unexpected result (theoretically,
the Leverage method should perform better). It is possible that the Leverage method will
outperform the Lambda method on more difficult benchmarks. For example, when we
move beyond the task-boundary assumption in continual learning, we may benefit from the
additional randomness during sampling in the Leverage method.

Using the K-priors framework to design better algorithms. Chapter 5 used the K-priors
framework to design better algorithms such as Quadratic K-priors (which improve weight-
priors using functional regularisation) and improving FROMP. These new algorithms are
theoretically better than previous methods, and there is potential to design even better
algorithms using the K-priors framework. For example, Appendix D.1 looked at designing
the divergences in K-priors based on maintaining first-order and second-order information,
and future work can explore further possibilities.

We could also combine variational K-priors with natural-gradient variational inference
algorithms (such as VOGN or iBLR). We hope that variational algorithms perform better
than the Laplace variants as they use a more global approximation (Opper and Archambeau,
2009), and natural-gradient updates should improve convergence rate and scalability, similar
to the improvements we obtained with VOGN in Section 3.2.

Future work can also apply these improved algorithms to continual learning benchmarks.
We saw promising results with Quadratic K-priors on Split MNIST in Section 5.7, and we
are running on larger benchmarks in ongoing work with Erik Daxberger, Kazuki Osawa,
Runa Eschenhagen, Rio Yokota, José Miguel Hernández-Lobato, Richard E Turner and
Mohammad Emtiyaz Khan.

Exploring theoretical links between K-priors and other adaptation algorithms. In
Section 5.8 we explored some links between K-priors and Support Vector Machines, and
K-priors and Gaussian Processes, seeing that K-priors can be shown to be equivalent to
various adaptation algorithms. This leaves some interesting questions regarding further
theoretical links between K-priors and other adaptation algorithms, and if more adaptation
algorithms can be shown to be related to K-priors. We believe that this is possible, and that
the K-priors framework is a unification and generalisation of existing algorithms previously
thought to be unconnected.

142 Conclusions and future work

Miscellaneous future work.
Combining with architecture-based approaches: In Section 2.3 we categorised con-

tinual learning methods into three orthogonal approaches, and in this thesis we focussed on
regularisation and rehearsal-based approaches. It would be very interesting to combine our
work with probabilistic architecture-based approaches, such as designing priors that enforce
pruning, or priors that automatically grow the network size (we could use the Indian Buffet
Process (Doshi et al., 2009; Nalisnick and Smyth, 2017; Kessler et al., 2021)). Growing
model size efficiently is particularly important when faced with very long streams of data.

Differential Privacy (Dwork et al., 2006): We could use differentially-private pseudo-
inputs in FROMP or K-priors to design differentially-private algorithms for sequential
learning. This is becoming increasingly relevant as privacy becomes more important.

Federated learning: In Bui et al. (2018) we showed links between continual learning
and federated learning. We can use these links to suggest new algorithms for federated
learning that also use functional regularisation, based on FROMP or K-priors. However, to
maintain security of datapoints, we may want to use pseudo-inputs (this depends on the exact
setup in federated learning).

References

Adel, T., Zhao, H., and Turner, R. E. (2020). Continual learning with adaptive weights (claw).
In International Conference on Learning Representations.

Aitchison, L. (2018). Bayesian filtering unifies adaptive and non-adaptive neural network
optimization methods. arXiv preprint arXiv:1807.07540.

Aitchison, L. (2021). A statistical theory of cold posteriors in deep neural networks. In
International Conference on Learning Representations.

Alaoui, A. and Mahoney, M. W. (2015). Fast randomized kernel ridge regression with
statistical guarantees. In Advances in Neural Information Processing Systems, pages
775–783.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018). Memory
aware synapses: Learning what (not) to forget. In Computer Vision – ECCV 2018, pages
144–161. Springer International Publishing.

Aljundi, R., Belilovsky, E., Tuytelaars, T., Charlin, L., Caccia, M., Lin, M., and Page-Caccia,
L. (2019a). Online continual learning with maximal interfered retrieval. In Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Aljundi, R., Chakravarty, P., and Tuytelaars, T. (2017). Expert gate: Lifelong learning with a
network of experts. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7120–7129.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019b). Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural computation,
10(2):251–276.

Ao, S., Li, X., and Ling, C. (2017). Fast generalized distillation for semi-supervised domain
adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and Agarwal, A. (2020). Deep batch
active learning by diverse, uncertain gradient lower bounds. International Conference on
Learning Representation.

Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clustering with Bregman
divergences. Journal of machine learning research, 6(Oct):1705–1749.

144 References

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2015). The arcade learning
environment: An evaluation platform for general agents (extended abstract). In Journal of
Artificial Intelligence Research.

Benjamin, A., Rolnick, D., and Kording, K. (2019). Measuring and regularizing networks in
function space. In International Conference on Learning Representations.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112:859 – 877.

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wierstra, D. (2015). Weight uncertainty in
neural networks. In International Conference on Machine Learning, pages 1613–1622.

Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization methods for large-scale
machine learning. SIAM Review, 60(2):223––311.

Bui, T. D., Nguyen, C. V., Swaroop, S., and Turner, R. E. (2018). Partitioned variational
inference: A unified framework encompassing federated and continual learning. arXiv
preprint arXiv:1811.11206.

Burt, D. R., Ober, S. W., Garriga-Alonso, A., and van der Wilk, M. (2020). Understanding
variational inference in function-space. arXiv:2011.09421. Comment: Presented at the
Advances in Approximate Bayesian Inference workshop 2020.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calderara, S. (2020). Dark expe-
rience for general continual learning: a strong, simple baseline. In Advances in Neural
Information Processing Systems, volume 33, pages 15920–15930.

Calandriello, D., Carratino, L., Lazaric, A., Valko, M., and Rosasco, L. (2019). Gaussian
process optimization with adaptive sketching: Scalable and no regret. In Conference on
Learning Theory, pages 533–557. PMLR.

Cauwenberghs, G. and Poggio, T. (2001). Incremental and decremental support vector
machine learning. In Advances in Neural Information Processing Systems, volume 13.
MIT Press.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, learning, and games. Cambridge
university press.

Chapelle, O. (2007). Training a support vector machine in the primal. Neural Computation,
19(5):1155–1178.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. S. (2018). Riemannian walk for
incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV).

Chaudhry, A., Gordo, A., Dokania, P., Torr, P., and Lopez-Paz, D. (2021). Using hindsight
to anchor past knowledge in continual learning. Proceedings of the AAAI Conference on
Artificial Intelligence, 35(8):6993–7001.

Chaudhry, A., Ranzato, M., Rohrbach, M., and Elhoseiny, M. (2019). Efficient lifelong
learning with A-GEM. In International Conference on Learning Representations.

References 145

Cohen, M. B., Musco, C., and Musco, C. (2015). Ridge leverage scores for low-rank
approximation. arXiv preprint arXiv:1511.07263, 6.

Cook, R. D. (1977). Detection of influential observation in linear regression. Technometrics,
19(1):15–18.

Csató, L. and Opper, M. (2002). Sparse on-line Gaussian processes. Neural computation,
14(3):641–668.

DeGroot, M. H. and Fienberg, S. E. (1983). The comparison and evaluation of forecasters.
The Statistician: Journal of the Institute of Statisticians, 32:12–22.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255.

DeVries, T. and Taylor, G. W. (2018). Learning confidence for out-of-distribution detection
in neural networks. arXiv preprint arXiv:1802.04865.

Doshi, F., Miller, K., Gael, J. V., and Teh, Y. W. (2009). Variational inference for the
indian buffet process. In Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pages
137–144. PMLR.

Doucet, A., de Freitas, N., and Gordon, N. J., editors (2001). Sequential Monte Carlo
Methods in Practice. Statistics for Engineering and Information Science. Springer.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Duan, H., Li, H., He, G., and Zeng, Q. (2007). Decremental learning algorithms for nonlinear
langrangian and least squares support vector machines. In Proceedings of the First
International Symposium on Optimization and Systems Biology (OSB’07), pages 358–366.
Citeseer.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography, pages 265–284. Springer Berlin
Heidelberg.

Eschenhagen, R. (2019). Natural gradient variational inference for continual learning in deep
neural networks. Technical report, University of Osnabruck.

Fernando, C., Banarse, D., Blundell, C., Zwols, Y., Ha, D., Rusu, A., Pritzel, A., and
Wierstra, D. (2017). Pathnet: Evolution channels gradient descent in super neural networks.
arXiv:1701.08734.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences, 3(4):128–135.

Gal, Y. (2016). Uncertainty in Deep Learning. PhD thesis, University of Cambridge.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning,
pages 1050–1059.

146 References

Ghosal, S. and Van der Vaart, A. (2017). Fundamentals of nonparametric Bayesian inference,
volume 44. Cambridge University Press.

Ghosh, S., Yao, J., and Doshi-Velez, F. (2019). Model selection in bayesian neural networks
via horseshoe priors. Journal of Machine Learning Research, 20(182):1–46.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249–256. PMLR.

Golkar, S., Kagan, M., and Cho, K. (2019). Continual learning via neural pruning. In
Neuro-AI Workshop @ NeurIPS.

Goodfellow, I. (2015). Efficient Per-Example Gradient Computations. ArXiv e-prints.

Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and Bengio, Y. (2014). An empirical
investigation of catastrophic forgetting in gradient-based neural networks. International
Conference on Learning Representation.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A.,
Jia, Y., and He, K. (2017). Accurate, large minibatch SGD: training imagenet in 1 hour.
CoRR, abs/1706.02677.

Graves, A. (2011). Practical variational inference for neural networks. In Advances in Neural
Information Processing Systems, pages 2348–2356.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 1321–1330. PMLR.

Hadsell, R., Rao, D., Rusu, A. A., and Pascanu, R. (2020). Embracing Change: Continual
Learning in Deep Neural Networks. Trends in Cognitive Sciences, 24(12):1028–1040.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778.

Hendrycks, D. and Gimpel, K. (2017). A baseline for detecting misclassified and out-
of-distribution examples in neural networks. In International Conference on Learning
Representations.

Herbrich, R., Lawrence, N., and Seeger, M. (2003). Fast sparse gaussian process methods:
The informative vector machine. In Advances in Neural Information Processing Systems,
volume 15. MIT Press.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347.

References 147

Hull, J. (1994). A database for handwritten text recognition research. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(5):550–554.

Huszár, F. (2018). Note on the quadratic penalties in elastic weight consolidation. Proceedings
of the National Academy of Sciences, 115(11):E2496–E2497.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR, abs/1502.03167.

Jung, H., Ju, J., Jung, M., and Kim, J. (2018). Less-forgetful learning for domain expansion
in deep neural networks. Proceedings of the AAAI Conference on Artificial Intelligence,
32(1).

Kao, T.-C., Jensen, K., Bernacchia, A., and Hennequin, G. (2021). Natural continual learning:
success is a journey, not (just) a destination. In Advances in Neural Information Processing
Systems, volume 34.

Kapoor, S., Karaletsos, T., and Bui, T. D. (2021). Variational auto-regressive gaussian
processes for continual learning. In Proceedings of the 38th International Conference on
Machine Learning, Proceedings of Machine Learning Research. PMLR.

Karasuyama, M. and Takeuchi, I. (2010). Multiple incremental decremental learning of
support vector machines. IEEE Transactions on Neural Networks, 21(7):1048–1059.

Kemker, R. and Kanan, C. (2018). Fearnet: Brain-inspired model for incremental learning.
In International Conference on Learning Representations.

Kessler, S., Nguyen, V., Zohren, S., and Roberts, S. J. (2021). Hierarchical indian buffet
neural networks for bayesian continual learning. In Proceedings of the Thirty-Seventh Con-
ference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine
Learning Research, pages 749–759. PMLR.

Khan, M. E. (2014). Decoupled variational Gaussian inference. In Advances in Neural
Information Processing Systems, volume 27. Curran Associates, Inc.

Khan, M. E., Aravkin, A., Friedlander, M., and Seeger, M. (2013). Fast dual variational infer-
ence for non-conjugate latent Gaussian models. In Proceedings of the 30th International
Conference on Machine Learning, volume 28, pages 951–959, Atlanta, Georgia, USA.
PMLR.

Khan, M. E., Immer, A., Abedi, E., and Korzepa, M. (2019). Approximate inference turns
deep networks into Gaussian processes. Advances in neural information processing
systems.

Khan, M. E. and Lin, W. (2017). Conjugate-computation variational inference: converting
variational inference in non-conjugate models to inferences in conjugate models. In
International Conference on Artificial Intelligence and Statistics, pages 878–887.

Khan, M. E. and Nielsen, D. (2018). Fast yet simple natural-gradient descent for variational
inference in complex models. In 2018 International Symposium on Information Theory
and Its Applications (ISITA), pages 31–35. IEEE.

148 References

Khan, M. E., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., and Srivastava, A. (2018). Fast
and scalable Bayesian deep learning by weight-perturbation in Adam. In Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 2611–2620. PMLR.

Khan, M. E. and Rue, H. (2021). The bayesian learning rule. arXiv:2107.04562.

Khan, M. E. and Swaroop, S. (2021). Knowledge-adaptation priors. In Advances in Neural
Information Processing Systems, volume 34. Curran Associates, Inc.

Khetarpal, K., Riemer, M., Rish, I., and Precup, D. (2020). Towards continual reinforcement
learning: A review and perspectives. arXiv: arXiv:2012.13490.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In Interna-
tional Conference on Learning Representations.

Kingma, D. P., Salimans, T., and Welling, M. (2015). Variational dropout and the local
reparameterization trick. In Advances in Neural Information Processing Systems, pages
2575–2583.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan,
K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catas-
trophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny images.
Technical report, Citeseer.

Kullback, S. and Leibler, R. A. (1951). On Information and Sufficiency. The Annals of
Mathematical Statistics, 22(1):79 – 86.

Kunstner, F., Hennig, P., and Balles, L. (2019). Limitations of the empirical fisher approxima-
tion for natural gradient descent. In Advances in Neural Information Processing Systems,
volume 32.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). Simple and scalable predic-
tive uncertainty estimation using deep ensembles. In Advances in Neural Information
Processing Systems 30, pages 6402–6413. Curran Associates, Inc.

Lange, M. D., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., Slabaugh, G. G.,
and Tuytelaars, T. (2021). A continual learning survey: Defying forgetting in classification
tasks. IEEE transactions on pattern analysis and machine intelligence, PP.

Laskov, P., Gehl, C., Krüger, S., Müller, K.-R., Bennett, K. P., and Parrado-Hernández, E.
(2006). Incremental support vector learning: Analysis, implementation and applications.
Journal of machine learning research, 7(9).

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

References 149

Lee, K., Lee, H., Lee, K., and Shin, J. (2018). Training confidence-calibrated classifiers for
detecting out-of-distribution samples. In International Conference on Learning Represen-
tations.

Li, Z. and Hoiem, D. (2016). Learning without forgetting. In Computer Vision - 14th
European Conference, ECCV 2016, Proceedings, pages 614–629. Springer.

Liang, S., Li, Y., and Srikant, R. (2018). Enhancing the reliability of out-of-distribution image
detection in neural networks. In International Conference on Learning Representations.

Liang, Z. and Li, Y. (2009). Incremental support vector machine learning in the primal and
applications. Neurocomputing, 72(10):2249–2258.

Lin, W., Schmidt, M., and Khan, M. E. (2020). Handling the positive-definite constraint
in the Bayesian learning rule. In Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages
6116–6126. PMLR.

Liu, J. S. and Chen, R. (1998). Sequential monte carlo methods for dynamic systems. Journal
of the American Statistical Association, 93(443):1032–1044.

Lomonaco, V. and Maltoni, D. (2017). Core50: a new dataset and benchmark for continuous
object recognition. In Proceedings of the 1st Annual Conference on Robot Learning,
volume 78 of Proceedings of Machine Learning Research, pages 17–26. PMLR.

Loo, N., Swaroop, S., and Turner, R. E. (2020). Combining variational continual learning
with FiLM layers. In LifeLong Learning workshop at ICML 2020.

Loo, N., Swaroop, S., and Turner, R. E. (2021). Generalized variational continual learning.
In International Conference on Learning Representations.

Lopez-Paz, D., Bottou, L., Schölkopf, B., and Vapnik, V. (2016). Unifying distillation and
privileged information. arXiv preprint arXiv:1511.03643.

Lopez-Paz, D. and Ranzato, M. (2017). Gradient episodic memory for continual learning.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 6470–6479, Red Hook, NY, USA. Curran Associates Inc.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In International
Conference on Learning Representations.

Louizos, C., Ullrich, K., and Welling, M. (2017). Bayesian compression for deep learning. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.

Ma, P., Mahoney, M. W., and Yu, B. (2015). A statistical perspective on algorithmic
leveraging. Journal of Machine Learning Research, 16(27):861–911.

MacKay, D. J. C. (1992). A Practical Bayesian Framework for Backpropagation Networks.
Neural Computation, 4(3):448–472.

Mackay, D. J. C. (1995). Probable networks and plausible predictions — a review of practical
bayesian methods for supervised neural networks. Network: Computation in Neural
Systems, 6(3):469–505.

150 References

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the
National Institute of Sciences (Calcutta), 2:49–55.

Mallya, A. and Lazebnik, S. (2018). Packnet: Adding multiple tasks to a single network
by iterative pruning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7765–7773.

Maltoni, D. and Lomonaco, V. (2019). Continuous learning in single-incremental-task
scenarios. Neural Networks, 116.

Martens, J. (2020). New insights and perspectives on the natural gradient method. Journal of
Machine Learning Research, 21(146):1–76.

Martens, J. and Grosse, R. (2015). Optimizing neural networks with Kronecker-factored
approximate curvature. In International Conference on Machine Learning, pages 2408–
2417.

McCloskey, M. and Cohen, N. J. (1989). Catastrophic interference in connectionist networks:
The sequential learning problem. volume 24 of Psychology of Learning and Motivation,
pages 109–165. Academic Press.

Naeini, M. P., Cooper, G. F., and Hauskrecht, M. (2015). Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAI’15, pages 2901–2907. AAAI Press.

Nalisnick, E. and Smyth, P. (2017). Stick-breaking variational autoencoders. In International
Conference on Learning Representations.

Neal, R. M. (1995). Bayesian learning for neural networks. PhD thesis, University of
Toronto.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011). Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2018). Variational continual learning. In
International Conference on Learning Representations.

Nielsen, F. (2021). On a variational definition for the jensen-shannon symmetrization of
distances based on the information radius. Entropy, 23(4):464.

Opper, M. and Archambeau, C. (2009). The variational Gaussian approximation revisited.
Neural Computation, 21(3):786–792.

Osawa, K., Swaroop, S., Khan, M. E., Jain, A., Eschenhagen, R., Turner, R. E., and Yokota, R.
(2019). Practical deep learning with Bayesian principles. Advances in neural information
processing systems.

Osawa, K., Tsuji, Y., Ueno, Y., Naruse, A., Yokota, R., and Matsuoka, S. (2018). Second-
order optimization method for large mini-batch: Training ResNet-50 on ImageNet in 35
epochs. CoRR, abs/1811.12019.

References 151

Ostapenko, O., Puscas, M. M., Klein, T., Jähnichen, P., and Nabi, M. (2019). Learning to
remember: A synaptic plasticity driven framework for continual learning. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11313–11321.

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R., and Khan, M. E. (2020).
Continual deep learning by functional regularisation of memorable past. In Advances in
Neural Information Processing Systems, volume 33, pages 4453–4464. Curran Associates,
Inc.

Parisi, G., Kemker, R., Part, J., Kanan, C., and Wermter, S. (2019). Continual lifelong
learning with neural networks: A review. Neural Networks, 113:54–71.

Parisi, G., Tani, J., Weber, C., and Wermter, S. (2018). Lifelong learning of spatiotemporal
representations with dual-memory recurrent self-organization. Frontiers in Neurorobotics,
12.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and Courville, A. C. (2018). Film: Visual
reasoning with a general conditioning layer. In AAAI.

Rasmussen, C. and Williams, C. (2006). Gaussian Processes for Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA, USA.

Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints imposed by
learning and forgetting functions. Psychological Review, pages 285–308.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H. (2017). iCaRL: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 2001–2010.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine
Learning, pages 1278–1286.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., , and Tesauro, G. (2019).
Learning to learn without forgetting by maximizing transfer and minimizing interference.
In International Conference on Learning Representations.

Ritter, H., Botev, A., and Barber, D. (2018). Online structured laplace approximations
for overcoming catastrophic forgetting. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7(2):123–146.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experience replay
for continual learning. In Advances in Neural Information Processing Systems, volume 32.

152 References

Romero, E., Barrio, I., and Belanche, L. (2007). Incremental and decremental learning for
linear support vector machines. In International Conference on Artificial Neural Networks,
pages 209–218. Springer.

Ruder, S., Ghaffari, P., and Breslin, J. G. (2017). Knowledge adaptation: Teaching to adapt.
arXiv preprint arXiv:1702.02052.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K.,
Pascanu, R., and Hadsell, R. (2016). Progressive neural networks. arXiv:1606.04671.

Sarafianos, N., Vrigkas, M., and Kakadiaris, I. A. (2017). Adaptive SVM+: Learning with
privileged information for domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 2637–2644.

Särkkä, S., Solin, A., and Hartikainen, J. (2013). Spatiotemporal learning via infinite-
dimensional Bayesian filtering and smoothing: A look at Gaussian process regression
through Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61.

Schraudolph, N. N. (2002). Fast curvature matrix-vector products for second-order gradient
descent. Neural computation, 14(7):1723–1738.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R.,
and Hadsell, R. (2018). Progress & compress: A scalable framework for continual learning.
In International Conference on Machine Learning, pages 4528–4537. PMLR.

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018). Overcoming catastrophic forget-
ting with hard attention to the task. In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
4548–4557. PMLR.

Sharma, M., Hutchinson, M., Siddharth Swaroop, A. H., and Turner, R. E. (2019). Differen-
tially private federated variational inference. arXiv:1911.10563. Presented at PriML at
NeurIPS 2019.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, volume 30.

Smola, A. J., Vishwanathan, S., and Eskin, E. (2004). Laplace propagation. In Advances in
Neural Information Processing Systems.

Solin, A., Hensman, J., and Turner, R. E. (2018). Infinite-horizon Gaussian processes. In
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Stanford (2021). Cs231n: Convolutional neural networks for visual recognition. http:
//cs231n.stanford.edu/. Accessed: Jan. 1, 2022.

Sun, S., Zhang, G., Shi, J., and Grosse, R. (2019). Functional variational bayesian neural
networks. International Conference on Learning Representation.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pages
1139–1147.

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/

References 153

Swaroop, S., Nguyen, C. V., Bui, T. D., and Turner, R. E. (2019). Improving and understand-
ing variational continual learning. arXiv preprint arXiv:1905.02099.

Swaroop, S. and Turner, R. E. (2017). Understanding Expectation Propagation. In Advances
in Approximate Bayesian Inference workshop at NIPS 2017.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-RMSprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural Networks for Machine Learning 4.

Titsias, M. K. (2009). Variational learning of inducing variables in sparse gaussian processes.
In Artificial intelligence and statistics, pages 567–574. PMLR.

Titsias, M. K., Schwarz, J., de G. Matthews, A. G., Pascanu, R., and Teh, Y. W. (2020).
Functional regularisation for continual learning with gaussian processes. In International
Conference on Machine Learning.

Tomczak, M., Swaroop, S., Foong, A., and Turner, R. (2021). Collapsed variational bounds
for bayesian neural networks. In Advances in Neural Information Processing Systems,
volume 34. Curran Associates, Inc.

Tomczak, M., Swaroop, S., and Turner, R. (2020). Efficient low rank gaussian variational
inference for neural networks. In Advances in Neural Information Processing Systems,
volume 33, pages 4610–4622. Curran Associates, Inc.

Tomczak, M. B., Swaroop, S., and Turner, R. E. (2018). Neural network ensembles and
variational inference revisited. In Advances in Approximate Bayesian Inference Symposium.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.

Trippe, B. and Turner, R. E. (2018). Overpruning in Variational Bayesian Neural Networks.
arXiv:1801.06230 [stat]. Presented at the Advances in Approximate Bayesian Inference
workshop at NIPS 2017.

Tsai, C.-H., Lin, C.-Y., and Lin, C.-J. (2014). Incremental and decremental training for
linear classification. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, page 343–352. ACM.

Tseran, H., Khan, M. E., Bui, T., and Harada, T. (2018). Natural variational continual
learning. In NeurIPS Workshop on Continual Learning.

Turner, R. E. and Sahani, M. (2011). Two problems with variational expectation maximisation
for time-series models. Bayesian Time series models, pages 115–138.

Tveit, A., Hetland, M. L., and Engum, H. (2003). Incremental and decremental proximal
support vector classification using decay coefficients. In International Conference on Data
Warehousing and Knowledge Discovery, pages 422–429. Springer.

van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. (2020). Brain-inspired replay for
continual learning with artificial neural networks. Nature Communications, 11(1):4069.

van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734.

154 References

Vapnik, V. and Izmailov, R. (2015). Learning using privileged information: similarity control
and knowledge transfer. Journal of Machine Learning Research, 16(1):2023–2049.

Vitter, J. S. (1985). Random sampling with a reservoir. ACM Trans. Math. Softw.,
11(1):37–57.

Vovk, V. G. (1990). Aggregating strategies. Proc. of Computational Learning Theory, 1990.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The Caltech-UCSD
Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of
Technology.

Wang, D. and Shang, Y. (2014). A new active labeling method for deep learning. In 2014
International Joint Conference on Neural Networks (IJCNN), pages 112–119.

Wang, T., Zhu, J.-Y., Torralba, A., and Efros, A. A. (2018). Dataset distillation. arXiv
preprint arXiv:1811.10959.

Wenzel, F., Roth, K., Veeling, B., Swiatkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans,
T., Jenatton, R., and Nowozin, S. (2020). How good is the Bayes posterior in deep
neural networks really? In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 10248–10259.
PMLR.

Wilson, A. G., Izmailov, P., Hoffman, M., Gal, Y., Li, Y., Pradier, M. F., Vikram, S., Foong,
A., Lotfi, S., and Farquhar, S. (2021). Approximate inference in bayesian deep learning.
https://izmailovpavel.github.io/neurips_bdl_competition/. Accessed: Jan. 1, 2022.

Winn, J. and Bishop, C. M. (2005). Variational message passing. Journal of Machine
Learning Research, 6(Apr):661–694.

Wortsman, M., Ramanujan, V., Liu, R., Kembhavi, A., Rastegari, M., Yosinski, J., and
Farhadi, A. (2020). Supermasks in superposition. In Advances in Neural Information
Processing Systems, volume 33, pages 15173–15184. Curran Associates, Inc.

Xu, J. and Zhu, Z. (2018). Reinforced continual learning. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2018). Lifelong learning with dynamically
expandable networks. In International Conference on Learning Representations.

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). LSUN: construction of a large-scale
image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365.

Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 1:364–372.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pages 3987–3995. PMLR.

Zhang, C., Bütepage, J., Kjellström, H., and Mandt, S. (2019). Advances in variational
inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8):2008–
2026.

https://izmailovpavel.github.io/neurips_bdl_competition/

References 155

Zhang, G., Sun, S., Duvenaud, D. K., and Grosse, R. B. (2018). Noisy natural gradient as
variational inference. arXiv preprint arXiv:1712.02390.

Zhao, B., Mopuri, K. R., and Bilen, H. (2021). Dataset condensation with gradient matching.
International Conference on Learning Representation.

Appendix A

Details on weight-space variational
continual learning experiments

In this Appendix, we provide further details on the weight-space variational continual
learning experiments in Chapter 3. In Appendix A.1 (and Figure A.1) we provide plots of
weights showing pruning in variational Bayesian neural networks. In Appendix A.2 we
give hyperparameters for the VOGN results in Section 3.2.3 (from Eschenhagen (2019)). In
Appendix A.3 we give hyperparameters for our Toy-Gaussian experiments in Section 3.3.

A.1 Pruning on MNIST

Figure A.1 shows that only one unit is active, with all other 199 units pruned out, when
training a one-hidden-layer variational Bayesian neural network to classify between 0 and 1
digits in MNIST. As discussed in Section 3.1.2, such pruning can be detrimental in some
settings, but it can also be useful in continual learning. The first column of Figure 3.3 plots
this single active unit.

A.2 Hyperparameters for VOGN continual learning exper-
iments

This section gives the hyperparameters for the VOGN continual learning experiments in
Section 3.2.3. These are taken from Eschenhagen (2019).

Split MNIST. We use a one-hidden layer multi-layer perceptron (MLP) with 200 hidden
units and ReLU activation functions, like the experiment with Improved VCL in Section 3.1.1.
VOGN is run for 100 epochs per task (compared to Improved VCL’s 600 epochs per task).

158 Details on weight-space variational continual learning experiments

Parameters are initialised before training with the default PyTorch initialisation for linear
layers. The initial precision is 1e6. A standard normal initial prior is used, like in VCL.
Between tasks, the mean and precision are initialised in the same way as for the first task. We
use learning rate α = 0.001, batch size M = 256, β1 = 0 (no momentum), β2 = 0.001, and
10 Monte-Carlo (MC) samples are used during training and 100 for testing. We do not use
tempering (τ = 1 always), data augmentation (ρ = 1) or external damping factor (γ = 0).

Permuted MNIST (10 tasks). We use a two-hidden layer MLP with 100 hidden units in
each layer and ReLU activation functions (as described in Section 2.4). All hyperparameters
are the same as the Split MNIST experiment, including number of epochs, learning rate,
initialisation, and so on. We only need 100 epochs instead of Improved VCL’s 800 epochs
per task.

Split CIFAR. We use the same CifarNet architecture from Zenke et al. (2017) and
described in Section 2.4. We run the first task for 60 epochs, and remaining tasks for 600
epochs, as the first task has ten times more data than the other tasks (compared to Improved
VCL’s 500 epochs for the first task and 5000 for the remaining tasks). We use an initial
precision of 4e3 for the first task, and 4e4 for the other tasks. In contrast to the other
experiments, we do not reset the means of the weights between tasks, and initialise at the
previous posterior’s means. We use a zero-mean prior with prior precision δ = 120. We use
learning rate α = 0.001, batch size M = 256, momentum rate β1 = 0.9, β2 = 1e− 4, and
10 MC samples are used during training and 100 for testing. We do not use tempering (τ = 1

always), data augmentation (ρ = 1) or external damping factor (γ = 0).

A.3 Hyperparameters for Toy-Gaussians experiments

This section gives the hyperparameters for the Toy-Gaussians experiments in Section 3.3.
We found these values by running for 5 runs and picking the values with largest average train
accuracy.

VCL(+Coreset). We use number of epochs = 200, number of coreset epochs = 200, a
standard normal prior (precision = 1), batch size = 40 and (Adam) learning rate= 0.01.

Joint Tasks. We use number of epochs = 50, batch size = 20, learning rate = 0.01.
VOGN. We use number of epochs = 200, a standard normal prior (precision = 1), batch

size = 40, learning rate α = 0.01, β2 = 0.001, and initial precision 1e6.

A.3 Hyperparameters for Toy-Gaussians experiments 159

(a) Hidden layer input means to each of the 200 hidden units.

(b) Hidden layer input variances to each of the 200 hidden units.

(c) Hidden layer output weights from each of the 200 hidden units.

Figure A.1: These plots show the input means and variances of weights into each node, as
well as output weights, for a single-hidden layer multi-layer perceptron with 200 hidden
units trained to classify between the digits 0 and 1 in MNIST (this is the first task in Split
MNIST). We use the Bayes-By-Backprop method (Blundell et al., 2015) to train mean-field
Gaussians over each weight, with our techniques to improve convergence rate (described in
Section 3.1.1). We see that only one hidden unit is active, and all other 199 units are pruned
out, with output weights at zero-mean small-variance Gaussians, and input weights at the
prior.

Appendix B

Details on batch VOGN experiments

In this Appendix, we provide further details on VOGN and batch VOGN experiments in
Section 3.2.2. This includes details on implementation of VOGN and hyperparameters
for non-continual learning experiments (hyperparameters for VOGN continual learning
experiments are in Appendix A). Table B.1 provides standard deviations for VOGN batch
experiments in Table 3.3. In Appendix B.1 we provide details on how we implement
the Gauss-Newton approximation in PyTorch in a computationally-efficient manner. In
Appendix B.2 we provide hyperparameters for all batch VOGN experiments in Section 3.2.2.
In Appendix B.3 we provide results of how the prior variance δ and dataset size reweighting
factor ρ interact with each other. Appendix B.4 shows that MC-dropout is highly sensitive
to dropout rate. Appendix B.5 provides further details on the uncertainty metrics we use to
compare methods in Table 3.3. Appendix B.6 provides more out-of-distribution results with
VOGN, further to the single result reported in Section 3.2.2.

162 Details on batch VOGN experiments

D
at

as
et

/
A

rc
hi

te
ct

ur
e

O
pt

im
is

er
Tr

ai
n

A
cc

(%
)

Tr
ai

n
N

L
L

V
al

id
at

io
n

A
cc

(%
)

V
al

id
at

io
n

N
L

L
E

C
E

A
U

R
O

C
E

po
ch

s
Ti

m
e

(s
)

/e
po

ch

C
IF

A
R

-1
0/

L
eN

et
-5

(n
o

D
A

)

A
da

m
71

.9
8
±

0.
11

7
0.

73
3
±

0.
02

1
67

.6
7
±

0.
51

3
0.

93
7
±

0.
01

2
0.

02
1
±

0.
00

2
0.

79
4
±

0.
00

1
21

0
6.

96
B

B
B

66
.8

4
±

0.
00

3
0.

95
7
±

0.
00

6
64

.6
1
±

0.
33

1
1.

01
8
±

0.
00

6
0.

04
5
±

0.
00

5
0.

78
4
±

0.
00

3
80

0
11

.4
3

M
C

-d
ro

po
ut

68
.4

1
±

0.
58

1
0.

87
0
±

0.
10

1
67

.6
5
±

1.
31

7
0.

99
±

0.
02

6
0.

08
7
±

0.
00

9
0.

79
7
±

0.
00

6
21

0
6.

95
V

O
G

N
70

.7
9
±

0.
76

3
0.

88
0
±

0.
02

67
.3

2
±

1.
31

0
0.

93
8
±

0.
02

4
0.

04
6
±

0.
00

2
0.

8
±

0.
00

2
21

0
18

.3
3

C
IF

A
R

-1
0/

A
le

xN
et

(n
o

D
A

)

A
da

m
10

0.
0
±

0
0.

00
1
±

0
67

.9
4
±

0.
53

7
2.

83
±

0.
02

0.
26

2
±

0.
00

5
0.

79
3
±

0.
00

1
16

1
3.

12
M

C
-d

ro
po

ut
97

.5
6
±

0.
27

8
0.

05
8
±

0.
01

4
72

.2
0
±

0.
17

7
1.

07
7
±

0.
01

2
0.

14
0
±

0.
00

4
0.

81
8
±

0.
00

2
16

0
3.

25
V

O
G

N
79

.0
7
±

0.
24

8
0.

69
6
±

0.
02

0
69

.0
3
±

0.
41

9
0.

93
1
±

0.
01

7
0.

02
4
±

0.
01

0
0.

79
6
±

0
16

0
9.

98

C
IF

A
R

-1
0/

A
le

xN
et

A
da

m
97

.9
2
±

0.
14

0
0.

05
7
±

0.
00

6
73

.5
9
±

0.
29

6
1.

48
0
±

0.
01

5
0.

26
2
±

0.
00

5
0.

79
3
±

0.
00

1
16

1
3.

08
M

C
-d

ro
po

ut
80

.6
5
±

0.
61

5
0.

47
±

0.
05

2
77

.0
4
±

0.
34

3
0.

66
7
±

0.
01

2
0.

11
4
±

0.
00

2
0.

82
8
±

0.
00

2
16

0
3.

20
V

O
G

N
81

.1
5
±

0.
25

9
0.

51
1
±

0.
03

9
75

.4
8
±

0.
47

8
0.

70
3
±

0.
00

6
0.

01
6
±

0.
00

1
0.

83
2
±

0.
00

2
16

0
10

.0
2

C
IF

A
R

-1
0/

R
es

N
et

-1
8

A
da

m
97

.7
4
±

0.
14

0
0.

05
9
±

0.
01

2
86

.0
0
±

0.
25

7
0.

55
±

0.
01

0.
08

2
±

0.
00

2
0.

87
7
±

0.
00

1
16

0
11

.9
7

M
C

-d
ro

po
ut

88
.2

3
±

0.
24

3
0.

31
7
±

0.
04

5
82

.8
5
±

0.
20

8
0.

51
±

0
0.

16
6
±

0.
02

5
0.

76
8
±

0.
00

4
16

1
12

.5
1

V
O

G
N

91
.6

2
±

0.
07

0.
26

3
±

0.
05

1
84

.2
7
±

0.
19

5
0.

47
7
±

0.
00

6
0.

04
0
±

0.
00

2
0.

87
6
±

0.
00

2
16

1
53

.1
4

Im
ag

eN
et

/
R

es
N

et
-1

8

SG
D

82
.6

3
±

0.
05

8
0.

67
5
±

0.
01

7
67

.7
9
±

0.
01

7
1.

38
±

0
0.

06
7

0.
85

6
90

44
.1

3
A

da
m

80
.9

6
±

0.
09

8
0.

72
3
±

0.
01

5
66

.3
9
±

0.
16

8
1.

44
±

0.
01

0.
06

4
0.

85
5

90
44

.4
0

M
C

-d
ro

po
ut

72
.9

6
1.

12
65

.6
4

1.
43

0.
01

2
0.

85
6

90
45

.8
6

O
G

N
85

.3
3
±

0.
05

7
0.

52
6
±

0.
00

5
65

.7
6
±

0.
11

5
1.

60
±

0.
00

0.
12

8
±

0.
00

4
0.

85
43
±

0.
00

1
90

63
.1

3
V

O
G

N
73

.8
7
±

0.
06

1
1.

02
±

0.
01

67
.3

8
±

0.
26

3
1.

37
±

0.
01

0.
02

93
±

0.
00

1
0.

85
43
±

0
90

76
.0

4
K

-F
A

C
83

.7
3
±

0.
05

8
0.

57
1
±

0.
01

6
66

.5
8
±

0.
17

6
1.

49
3
±

0.
00

6
0.

15
8
±

0.
00

5
0.

84
2
±

0.
00

5
60

13
3.

69
N

oi
sy

K
-F

A
C

72
.2

8
1.

07
5

66
.4

4
1.

44
0.

08
0

0.
85

2
60

17
9.

27

Ta
bl

e
B

.1
:C

om
pa

rin
g

op
tim

is
er

s
on

di
ff

er
en

td
at

as
et

/a
rc

hi
te

ct
ur

e
co

m
bi

na
tio

ns
.M

ea
n

pe
rf

or
m

an
ce

an
d

st
an

da
rd

de
vi

at
io

n
ov

er
th

re
e

ru
ns

.T
hi

s
is

a
re

pe
at

of
Ta

bl
e

3.
3

ex
ce

pt
w

ith
st

an
da

rd
de

vi
at

io
ns

in
cl

ud
ed

.D
A

:D
at

a
A

ug
m

en
ta

tio
n,

A
cc

:A
cc

ur
ac

y
(h

ig
he

ri
s

be
tte

r)
,

N
L

L
:N

eg
at

iv
e

L
og

-L
ik

el
ih

oo
d

(l
ow

er
is

be
tte

r)
,E

C
E

:E
xp

ec
te

d
C

al
ib

ra
tio

n
E

rr
or

(l
ow

er
is

be
tte

r)
,A

U
R

O
C

:A
re

a
U

nd
er

R
O

C
cu

rv
e

(h
ig

he
ri

s
be

tte
r)

,B
B

B
:B

ay
es

B
y

B
ac

kp
ro

p.
Fo

rI
m

ag
eN

et
re

su
lts

,t
he

re
po

rt
ed

ac
cu

ra
cy

an
d

ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d
ar

e
th

e
m

ed
ia

n
va

lu
e

fr
om

th
e

fin
al

5
ep

oc
hs

.

B.1 Details on fast implementation of the Gauss-Newton approximation 163

B.1 Details on fast implementation of the Gauss-Newton
approximation

In this section we show how we efficiently compute the Gauss-Newton (GN) approximation
in current codebases such as PyTorch, which are only optimised to directly return the
average of gradients over the minibatch. In order to efficiently compute the Gauss-Newton
approximation, we modify the backward-pass to efficiently calculate the gradient per example
in the minibatch, and extend the solution in Goodfellow (2015) to both convolutional and
batch normalisation layers.

Convolutional layer

Consider a convolutional layer with a weight matrix W ∈ RCout×Cink
2 (ignore bias for

simplicity) and an input tensor A ∈ RCin×Hin×Win , where Cout, Cin are the number of output
and input channels respectively, Hin,Win are the spatial dimensions, and k is the kernel size.
For any stride and padding, by applying torch.nn.functional.unfold function in
PyTorch1, we get the extended matrix MA ∈ RCink

2×HoutWout so that the output tensor S is
calculated by a matrix multiplication,

MA ← unfold (A) ∈ RCink
2×HoutWout , (B.1)

MS ←WMA ∈ RCout×HoutWout , (B.2)

S ← reshape (MS) ∈ RCout×Hout×Wout , (B.3)

where Hout,Wout are the spatial dimensions of the output feature map. Using the matrix MA,
we can also get the gradient per example by a matrix multiplication,

∇MS
ℓ(yi, fW (xi))← reshape (∇Sℓ(yi, fW (xi))) ∈ RCout×HoutWout , (B.4)

∇W ℓ(yi, fW (xi))← ∇MS
ℓ(yi, fW (xi))M

⊤
A ∈ RCout×Cink

2

. (B.5)

Note that in PyTorch, we have access to the inputs A and the gradient∇Sℓ(yi, fW (xi)) per
example in the computation graph during a forward-pass and a backward-pass respectively, by
using the Function Hooks2. Hence, to get the gradient ∇W ℓ(yi, fW (xi)) per example,
we only need to perform Equations B.1, B.4 and B.5 after the backward-pass for this layer.

1https://pytorch.org/docs/stable/nn.functional.html#torch.
nn.functional.unfold

2https://pytorch.org/tutorials/beginner/former_torchies/
nnft_tutorial.html#forward-and-backward-function-hooks

https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.unfold
https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.unfold
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks
https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks

164 Details on batch VOGN experiments

Batch normalisation layer

Consider a batch normalisation layer that follows a fully-connected layer, whose activation is
a ∈ Rd, with scale parameter γ ∈ Rd and shift parameter β ∈ Rd. We get the output of this
batch normalisation layer s ∈ Rd by,

µ← E [a] ∈ Rd , (B.6)

σ2 ← E
[
(a− µ)2

]
∈ Rd , (B.7)

â← a− µ√
σ2
∈ Rd , (B.8)

s← γâ+ β ∈ Rd , (B.9)

where E [·] is the average over the minibatch and â is the normalised input. We can find the
gradient with respect to parameters γ and β per example by,

∇γℓ(yi, fW (xi)← ∇sℓ(yi, fW (xi) ◦ â , (B.10)

∇βℓ(yi, fW (xi)← ∇sℓ(yi, fW (xi) . (B.11)

We can obtain the input a and the gradient∇sℓ(yi, fW (xi) per example from the computation
graph in PyTorch in the same way as a convolutional layer.

Layer-wise block-diagonal Gauss-Newton approximation

Despite using the method above, it is still intractable to compute the Gauss-Newton matrix
(and its inverse) with respect to the weights of large-scale deep neural networks. We therefore
apply two further approximations (summarised in Figure B.1). First, we view the Gauss-
Newton matrix as a layer-wise block-diagonal matrix. This corresponds to ignoring the
correlation between the weights of different layers. Hence for a network with L layers,
there are L diagonal blocks, and Hℓ is the diagonal block corresponding to the ℓ-th layer
(ℓ = 1, . . . , L). Second, we approximate each diagonal block Hℓ with H̃ℓ, which is either a
Kronecker-factored or diagonal matrix. Using a Kronecker-factored matrix as H̃ℓ corresponds
to K-FAC, and a diagonal matrix corresponds to a mean-field approximation in that layer.
By applying these two approximations, the update rule of the Gauss-Newton method can be
written in a layer-wise fashion,

Wℓ,t+1 = Wℓ,t − αtH̃ℓ(θt)
−1
gℓ(θt) (ℓ = 1, . . . , L) , (B.12)

B.2 Hyperparameter values for batch VOGN experiments 165

Kronecker-factored

diagonal

1<latexit sha1_base64="8jLNIv/S8WBvHtfFxahEaJPNMnU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVtXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe0eMtw==</latexit>

1<latexit sha1_base64="8jLNIv/S8WBvHtfFxahEaJPNMnU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVtXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe0eMtw==</latexit>

<̀latexit sha1_base64="tO8xm45MXnYyaIGHhHOD/E2+VfU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6y7D1e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA4Qjj0=</latexit>

L<latexit sha1_base64="9PF+tKjSQN8i8QYPTB/Bgp+YVSU=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKW78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6QzjNI=</latexit>

L<latexit sha1_base64="9PF+tKjSQN8i8QYPTB/Bgp+YVSU=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKW78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6QzjNI=</latexit>

<̀latexit sha1_base64="tO8xm45MXnYyaIGHhHOD/E2+VfU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6y7D1e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA4Qjj0=</latexit>

H`
<latexit sha1_base64="qilwxl1shsw+IwZZg67Xa0ECA+c=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRIV1F3BTZcV7AOaECbTm3boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIGFUKtv+Nipr6xubW9Xt2s7u3v6BWT/syTgVBLokZrEYBFgCoxy6iioGg0QAjgIG/WB6W/j9BxCSxvxezRLwIjzmNKQEKy35Zt2NsJoEYdbO/cwFxnLfbNhNew5rlTglaaASHd/8ckcxSSPgijAs5dCxE+VlWChKGOQ1N5WQYDLFYxhqynEE0svm0XPrVCsjK4yFflxZc/X3RoYjKWdRoCeLoHLZK8T/vGGqwmsvozxJFXCyOBSmzFKxVfRgjagAothME0wE1VktMsECE6XbqukSnOUvr5LeedO5aNp3l43WTVlHFR2jE3SGHHSFWqiNOqiLCHpEz+gVvRlPxovxbnwsRitGuXOE/sD4/AHGFZRM</latexit>

HL<latexit sha1_base64="pgv3184/qK6SuQDhaoFL9oumxz4=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQqqLuCmy5cVLAPaEKZTCft0MkkzEMoob/hxoUibv0Zd/6NkzYLbT0wcDjnXu6ZE6acKe26305pbX1jc6u8XdnZ3ds/qB4edVRiJKFtkvBE9kKsKGeCtjXTnPZSSXEcctoNJ3e5332iUrFEPOppSoMYjwSLGMHaSr4fYz0Oo6w5G9wPqjW37s6BVolXkBoUaA2qX/4wISamQhOOlep7bqqDDEvNCKezim8UTTGZ4BHtWypwTFWQzTPP0JlVhihKpH1Co7n6eyPDsVLTOLSTeUa17OXif17f6OgmyJhIjaaCLA5FhiOdoLwANGSSEs2nlmAimc2KyBhLTLStqWJL8Ja/vEo6F3Xvsu4+XNUat0UdZTiBUzgHD66hAU1oQRsIpPAMr/DmGOfFeXc+FqMlp9g5hj9wPn8AB/GRpA==</latexit>

H1<latexit sha1_base64="qH/LWXSMZ5fAQijwkMjOzt6gNCY=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQqqLuCmy4r2Ac0pUymN+3QySTMTIQS+htuXCji1p9x5984abPQ6oGBwzn3cs+cIBFcG9f9ckpr6xubW+Xtys7u3v5B9fCoo+NUMWyzWMSqF1CNgktsG24E9hKFNAoEdoPpXe53H1FpHssHM0twENGx5CFn1FjJ9yNqJkGYNedDb1ituXV3AfKXeAWpQYHWsPrpj2KWRigNE1TrvucmZpBRZTgTOK/4qcaEsikdY99SSSPUg2yReU7OrDIiYazsk4Ys1J8bGY20nkWBncwz6lUvF//z+qkJbwYZl0lqULLloTAVxMQkL4CMuEJmxMwSyhS3WQmbUEWZsTVVbAne6pf/ks5F3busu/dXtcZtUUcZTuAUzsGDa2hAE1rQBgYJPMELvDqp8+y8Oe/L0ZJT7BzDLzgf3972kYk=</latexit>

H`
<latexit sha1_base64="qilwxl1shsw+IwZZg67Xa0ECA+c=">AAAB+nicbVDLSsNAFJ3UV62vVJdugkVwVRIV1F3BTZcV7AOaECbTm3boZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs+cIGFUKtv+Nipr6xubW9Xt2s7u3v6BWT/syTgVBLokZrEYBFgCoxy6iioGg0QAjgIG/WB6W/j9BxCSxvxezRLwIjzmNKQEKy35Zt2NsJoEYdbO/cwFxnLfbNhNew5rlTglaaASHd/8ckcxSSPgijAs5dCxE+VlWChKGOQ1N5WQYDLFYxhqynEE0svm0XPrVCsjK4yFflxZc/X3RoYjKWdRoCeLoHLZK8T/vGGqwmsvozxJFXCyOBSmzFKxVfRgjagAothME0wE1VktMsECE6XbqukSnOUvr5LeedO5aNp3l43WTVlHFR2jE3SGHHSFWqiNOqiLCHpEz+gVvRlPxovxbnwsRitGuXOE/sD4/AHGFZRM</latexit>

⌦
<latexit sha1_base64="/AopNi+UvXmbne7B02/2UzbATF0=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKeyqoN4CXjxGMA9IljA7mU2GzM4sM71CCPkILx4U8er3ePNvnCR70MSChqKqm+6uKJXCou9/e4W19Y3NreJ2aWd3b/+gfHjUtDozjDeYltq0I2q5FIo3UKDk7dRwmkSSt6LR3cxvPXFjhVaPOE55mNCBErFgFJ3U6moUCbe9csWv+nOQVRLkpAI56r3yV7evWZZwhUxSazuBn2I4oQYFk3xa6maWp5SN6IB3HFXULQkn83On5MwpfRJr40ohmau/JyY0sXacRK4zoTi0y95M/M/rZBjfhBOh0gy5YotFcSYJajL7nfSF4Qzl2BHKjHC3EjakhjJ0CZVcCMHyy6ukeVENLqv+w1WldpvHUYQTOIVzCOAaanAPdWgAgxE8wyu8ean34r17H4vWgpfPHMMfeJ8/g+CPpg==</latexit>

H̃`
<latexit sha1_base64="FlNYDCeh8QQGQ4M30e5PURH4GDk=">AAACAnicbVBNS8NAEN3Ur1q/op7ES7AInkqignoreOmxgv2AJoTNZtIu3WzC7kYoIXjxr3jxoIhXf4U3/42btgdtfTDweG+GmXlByqhUtv1tVFZW19Y3qpu1re2d3T1z/6Ark0wQ6JCEJaIfYAmMcugoqhj0UwE4Dhj0gvFt6fceQEia8Hs1ScGL8ZDTiBKstOSbR66iLITcjbEaBVHeKgo/d4GxwjfrdsOewlomzpzU0Rxt3/xyw4RkMXBFGJZy4Nip8nIsFCUMipqbSUgxGeMhDDTlOAbp5dMXCutUK6EVJUIXV9ZU/T2R41jKSRzozvJSueiV4n/eIFPRtZdTnmYKOJktijJmqcQq87BCKoAoNtEEE0H1rRYZYYGJ0qnVdAjO4svLpHvecC4a9t1lvXkzj6OKjtEJOkMOukJN1EJt1EEEPaJn9IrejCfjxXg3PmatFWM+c4j+wPj8AVrCmAI=</latexit>

⇡<latexit sha1_base64="YFCHK6WsItiBx7hYztqr3rYTJRk=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnorePFYwX5Au5Rsmm1Ds0lIsmJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfj25nffqTaMCke7ETRMMFDwWJGsHVSu4eV0vKpX674VX8OtEqCnFQgR6Nf/uoNJEkTKizh2Jhu4CsbZlhbRjidlnqpoQqTMR7SrqMCJ9SE2fzcKTpzygDFUrsSFs3V3xMZToyZJJHrTLAdmWVvJv7ndVMbX4cZEyq1VJDFojjlyEo0+x0NmKbE8okjmGjmbkVkhDUm1iVUciEEyy+vktZFNbis+ve1Sv0mj6MIJ3AK5xDAFdThDhrQBAJjeIZXePOU9+K9ex+L1oKXzxzDH3ifP5FXj68=</latexit>

H
<latexit sha1_base64="w7qvh2GPhjKa8uVbLAf6ktIDOeg=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyooO4KbrqsYB/YlpJJ77ShmcyQZIQy9C/cuFDErX/jzr8x085CWw8EDufcS849fiy4Nq777RTW1jc2t4rbpZ3dvf2D8uFRS0eJYthkkYhUx6caBZfYNNwI7MQKaegLbPuTu8xvP6HSPJIPZhpjP6QjyQPOqLHSYy+kZuwHaX02KFfcqjsHWSVeTiqQozEof/WGEUtClIYJqnXXc2PTT6kynAmclXqJxpiyCR1h11JJQ9T9dJ54Rs6sMiRBpOyThszV3xspDbWehr6dzBLqZS8T//O6iQlu+imXcWJQssVHQSKIiUh2PhlyhcyIqSWUKW6zEjamijJjSyrZErzlk1dJ66LqXVbd+6tK7TavowgncArn4ME11KAODWgCAwnP8ApvjnZenHfnYzFacPKdY/gD5/MHsj6Q5Q==</latexit>

⇡<latexit sha1_base64="YFCHK6WsItiBx7hYztqr3rYTJRk=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9nVgnorePFYwX5Au5Rsmm1Ds0lIsmJZ+iO8eFDEq7/Hm//GtN2Dtj4YeLw3w8y8SHFmrO9/e4W19Y3NreJ2aWd3b/+gfHjUMjLVhDaJ5FJ3ImwoZ4I2LbOcdpSmOIk4bUfj25nffqTaMCke7ETRMMFDwWJGsHVSu4eV0vKpX674VX8OtEqCnFQgR6Nf/uoNJEkTKizh2Jhu4CsbZlhbRjidlnqpoQqTMR7SrqMCJ9SE2fzcKTpzygDFUrsSFs3V3xMZToyZJJHrTLAdmWVvJv7ndVMbX4cZEyq1VJDFojjlyEo0+x0NmKbE8okjmGjmbkVkhDUm1iVUciEEyy+vktZFNbis+ve1Sv0mj6MIJ3AK5xDAFdThDhrQBAJjeIZXePOU9+K9ex+L1oKXzxzDH3ifP5FXj68=</latexit>

Layer

Layer

Layer

…
…

1<latexit sha1_base64="8jLNIv/S8WBvHtfFxahEaJPNMnU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzU8Prlilt15yCrxMtJBXLU++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzQ6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDGz7hMUoOSLRaFqSAmJrOvyYArZEZMLKFMcXsrYSOqKDM2m5INwVt+eZW0LqreZdVtXFVqt3kcRTiBUzgHD66hBvdQhyYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwBe0eMtw==</latexit>

<̀latexit sha1_base64="tO8xm45MXnYyaIGHhHOD/E2+VfU=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lU0GPRi8cK9gPaUDbbSbt0swm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByl/udJ1Sax/LRTBP0IzqSPOSMmlzqoxCDas2tu3OQVeIVpAYFmoPqV38YszRCaZigWvc8NzF+RpXhTOCs0k81JpRN6Ah7lkoaofaz+a0zcmaVIQljZUsaMld/T2Q00noaBbYzomasl71c/M/rpSa88TMuk9SgZItFYSqIiUn+OBlyhcyIqSWUKW5vJWxMFWXGxlOxIXjLL6+S9kXdu6y7D1e1xm0RRxlO4BTOwYNraMA9NKEFDMbwDK/w5kTOi/PufCxaS04xcwx/4Hz+AA4Qjj0=</latexit>

L<latexit sha1_base64="9PF+tKjSQN8i8QYPTB/Bgp+YVSU=">AAAB6HicbVA9SwNBEJ3zM8avqKXNYhCswp0KWgZtLCwSMB+QHGFvM5es2ds7dveEcOQX2FgoYutPsvPfuEmu0MQHA4/3ZpiZFySCa+O6387K6tr6xmZhq7i9s7u3Xzo4bOo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDv1W0+oNI/lgxkn6Ed0IHnIGTVWqt/3SmW34s5AlomXkzLkqPVKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZodOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDZFG4K3+PIyaZ5XvIuKW78sV2/yOApwDCdwBh5cQRXuoAYNYIDwDK/w5jw6L8678zFvXXHymSP4A+fzB6QzjNI=</latexit>

softmax

x
<latexit sha1_base64="DQivoxdGTcXKHyd2yP4tsN1A+g4=">AAAB+HicbVDLSgMxFL3js9ZHR126CRbBVZlRQd0V3LisYB/QDiWTSdvQTDIkGbEO/RI3LhRx66e482/MtLPQ1gMhh3PuJScnTDjTxvO+nZXVtfWNzdJWeXtnd6/i7h+0tEwVoU0iuVSdEGvKmaBNwwynnURRHIectsPxTe63H6jSTIp7M0loEOOhYANGsLFS3630QskjPYntlT1Oy3236tW8GdAy8QtShQKNvvvViyRJYyoM4Vjrru8lJsiwMoxwOi33Uk0TTMZ4SLuWChxTHWSz4FN0YpUIDaSyRxg0U39vZDjWeTY7GWMz0oteLv7ndVMzuAoyJpLUUEHmDw1SjoxEeQsoYooSwyeWYKKYzYrICCtMjO0qL8Ff/PIyaZ3V/POad3dRrV8XdZTgCI7hFHy4hDrcQgOaQCCFZ3iFN+fJeXHenY/56IpT7BzCHzifPwMuk0c=</latexit>

p(y|x)
<latexit sha1_base64="bJo+0U6EvP+XBvCn65GwURolgJI=">AAAB/XicbVA7T8MwGHR4lvIKj43FokIqS5UAErBVYmEsEn1IbVQ5jtNadezIdhAhVPwVFgYQYuV/sPFvcNoM0HKS5dPd98nn82NGlXacb2thcWl5ZbW0Vl7f2Nzatnd2W0okEpMmFkzIjo8UYZSTpqaakU4sCYp8Rtr+6Cr323dEKir4rU5j4kVowGlIMdJG6tv7cTV97PmCBSqNzJXdj4/Lfbvi1JwJ4DxxC1IBBRp9+6sXCJxEhGvMkFJd14m1lyGpKWZkXO4lisQIj9CAdA3lKCLKyybpx/DIKAEMhTSHazhRf29kKFJ5ODMZIT1Us14u/ud1Ex1eeBnlcaIJx9OHwoRBLWBeBQyoJFiz1BCEJTVZIR4iibA2heUluLNfnietk5p7WnNuzir1y6KOEjgAh6AKXHAO6uAaNEATYPAAnsEreLOerBfr3fqYji5Yxc4e+APr8wd195Uv</latexit>

H = E
⇥
r log p(y|x)r log p(y|x)T

⇤
<latexit sha1_base64="SW3ELSR7+xHVzy86YO9xy1POmGA=">AAACUXichVFNa9swGH7jrVvrdmu6HnsRC4PuEuxt0O0wKIxCjik0HxB7QVbkRESWjPR6LLj+izu0p/6PXnpoqZzm0CWDvSD08Dzvlx4luRQWg+Cm4b14ufXq9faOv7v35u1+8+Bd3+rCMN5jWmozTKjlUijeQ4GSD3PDaZZIPkjmP2p98IsbK7S6wEXO44xOlUgFo+iocXMWZRRnSVp2Kv+7f+ZHkqc48iNFE0kjqackP15cRomWE7vI3FX+rj7+R/5ZLpuarLyoKj8yYjrDeNxsBe1gGWQThCvQglV0x82raKJZkXGFTFJrR2GQY1xSg4JJ7voWlueUzemUjxxUNOM2LpeOVOSDYyYk1cYdhWTJPq8oaWbrhV1mvapd12ryX9qowPRrXAqVF8gVexqUFpKgJrW9ZCIMZygXDlBmhNuVsBk1lKH7BN+ZEK4/eRP0P7XDz+3g/Evr9NvKjm04gvdwDCGcwCl0oAs9YPAHbuEeHhrXjTsPPO8p1Wusag7hr/B2HwFwsrTl</latexit>

Figure B.1: Layer-wise block-diagonal Gauss-Newton approximation

where Wℓ is the weights in ℓ-th layer, and

θ =
(

vec(W1)
T · · · vec(Wℓ)

T · · · vec(WL)
T
)T

. (B.13)

Since the cost of computing H̃−1
ℓ is much cheaper than computing H−1, our approximations

make Gauss-Newton much more practical in deep learning.
In the distributed setting (see Figure 3.6), each parallel process (corresponding to 1

GPU) calculates the GN matrix for its local minibatch. Then, one GPU adds them together
and calculates the inverse. This inversion step can also be parallelised after making the
block-diagonal approximation to the GN matrix. After inverting the GN matrix, the standard
deviation σ is updated (line 9 in Algorithm 1), and sent to each parallel process, allowing
each process to draw independently from the posterior.

In the Noisy K-FAC case, a similar distributed scheme is used. When using K-FAC
approximations to the Gauss-Newton blocks for other layers, Osawa et al. (2018) empirically
showed that the BatchNorm layer can be approximated with a diagonal matrix without loss of
accuracy, and we find the same. We therefore use diagonal H̃ℓ with K-FAC and Noisy K-FAC
in BatchNorm layers (see Table B.2). For further details on how to efficiently parallelise
K-FAC in the distributed setting, please see Osawa et al. (2018).

B.2 Hyperparameter values for batch VOGN experiments

In this section, we give hyperparameter values for batch VOGN experiments. Hyperparame-
ters for all results shown in Table B.1 are given in Table B.3. The settings for distributed VI
training are given in Table B.4. Please see Goyal et al. (2017) and Osawa et al. (2018) for
best practice on these hyperparameter values.

166 Details on batch VOGN experiments

Optimiser convolution fully-connected Batch Normalisation

OGN diagonal diagonal diagonal
VOGN diagonal diagonal diagonal
K-FAC Kronecker-factored Kronecker-factored diagonal

Noisy K-FAC Kronecker-factored Kronecker-factored diagonal

Table B.2: The approximation used for each layer type’s diagonal block H̃ℓ for the different
optimisers tested this paper.

Bayes by Backprop for CIFAR-10/LeNet-5 training

We use the training procedure and hyperparameter settings for Bayes by Backprop (BBB)
(Blundell et al., 2015) as suggested in our Improved VCL experiments in Section 3.1.1. This
includes using the local reparameterisation trick, initialising means and variances at small
values, using 10 MC samples per minibatch during training for linear layers (1 MC sample
per minibatch for convolutional layers) and 100 MC samples per minibatch during testing
for linear layers (10 MC samples per minibatch for convolutional layers). Note that BBB has
twice as many parameters to optimise than Adam or SGD (it separately optimises means and
variances of each weight in the deep neural network). The fewer MC samples per minibatch
for convolutional layers speed up training time per epoch while empirically not reducing
convergence rate.

B.3 Effect of prior variance and dataset size reweighting
factor

Figure B.2 shows the combined effect of the dataset reweighting factor ρ and prior precision
δ when training VOGN on ResNet-18 on ImageNet. When ρ is set to a value in the correct
order of magnitude, it does not affect performance much; instead, we should tune δ. This is
our methodology when dealing with ρ. Note that we set ρ for ImageNet to be smaller than
that for CIFAR-10 because the data augmentation cropping step uses a higher portion of
the initial image than in CIFAR-10: we crop images of size 224× 224 from images of size
256× 256.

B.3 Effect of prior variance and dataset size reweighting factor 167

Dataset/
Architecture Optimiser αinit α Epochs to decay α β1 β2

Weight
decay L2 reg

CIFAR-10/
LeNet-5
(no DA)

Adam - 1e-3 - 0.1 0.001 1e-2 -
BBB - 1e-3 - 0.1 0.001 - -
MC-dropout - 1e-3 - 0.9 - - 1e-4
VOGN - 1e-2 - 0.9 0.999 - -

CIFAR-10/
AlexNet
(no DA)

Adam - 1e-3 [80, 120] 0.1 0.001 1e-4 -
MC-dropout - 1e-1 [80, 120] 0.9 - - 1e-4
VOGN - 1e-4 [80, 120] 0.9 0.999 - -

CIFAR-10/
AlexNet

Adam - 1e-3 [80, 120] 0.1 0.001 1e-4 -
MC-dropout - 1e-1 [80, 120] 0.9 - - 1e-4
VOGN - 1e-4 [80, 120] 0.9 0.999 - -

CIFAR-10/
ResNet-18

Adam - 1e-3 [80, 120] 0.1 0.001 5e-4 -
MC-dropout - 1e-1 [80, 120] 0.9 - - 1e-4
VOGN - 1e-4 [80, 120] 0.9 0.999 - -

ImageNet/
ResNet-18

SGD 1.25e-2 1.6 [30, 60, 80] 0.9 - - 1e-4
Adam 1.25e-5 1.6e-3 [30, 60, 80] 0.1 0.001 1e-4 -
MC-dropout 1.25e-2 1.6 [30, 60, 80] 0.9 - - 1e-4
OGN 1.25e-5 1.6e-3 [30, 60, 80] 0.9 0.9 - 1e-5
VOGN 1.25e-5 1.6e-3 [30, 60, 80] 0.9 0.999 - -
K-FAC 1.25e-5 1.6e-3 [15, 30, 45] 0.9 0.9 - 1e-4
Noisy K-FAC 1.25e-5 1.6e-3 [15, 30, 45] 0.9 0.9 - -

Table B.3: This table gives hyperparameters for all results in Table B.1 for all methods. See
Table 3.2 and Algorithm 1 for definitions of the terms.

0 20 40 60 80
epoch

3.0

2.5

2.0

1.5

lo
g

lik
el

ih
oo

d

0 20 40 60 80
epoch

30

40

50

60

70

ac
cu

ra
cy

 [%
]

N = 10Norig, prior_var=1.5e-3
N = 5Norig, prior_var=1.5e-3
N = 10Norig, prior_var=7.5e-3
N = 5Norig, prior_var=7.5e-3

Figure B.2: Effect of changing the dataset size reweighting factor ρ and prior variance δ
when training VOGN on ResNet-18 on ImageNet. It suffices to set ρ to the correct order of
magnitude, and then tune δ.

168 Details on batch VOGN experiments

Optimiser
Dataset/

Architecture M # GPUs K τ ρ Norig δ δ̃ γ

VOGN

CIFAR-10/
LeNet-5
(no DA)

128 4 6 0.1→ 1 1 50,000 100 2e-4→ 2e-3 1e-3

CIFAR-10/
AlexNet
(no DA)

128 8 3 0.05→ 1 1 50,000 0.5 5e-7→ 1e-5 1e-3

CIFAR-10/
AlexNet 128 8 3 0.5→ 1 10 50,000 0.5 5e-7→ 1e-5 1e-3

CIFAR-10/
ResNet-18 256 8 5 1 10 50,000 50 1e-3 1e-3

ImageNet/
ResNet-18 4096 128 1 1 5 1,281,167 133.3 2e-5 1e-4

Noisy K-FAC
ImageNet/
ResNet-18 4096 128 1 1 5 1,281,167 133.3 2e-5 1e-4

Table B.4: Hyperparameter settings for distributed settings. See Table 3.2 and Algorithm 1
for definitions of the terms.

B.4 MC-dropout’s sensitivity to dropout rate

In this section, we show MC-dropout’s sensitivity to dropout rate p. We tune MC-dropout as
best as we can, finding that p = 0.1 works best for all architectures trained on CIFAR-10
(see Figure B.3 for the dropout rate’s sensitivity on LeNet-5 as an example). On ResNet-18
trained on ImageNet, we find that MC-dropout is extremely sensitive to dropout rate, with
even p = 0.1 performing poorly (see Figure B.4). We therefore use p = 0.05 for MC-dropout
experiments on ImageNet. This high sensitivity to dropout rate is an issue with MC-dropout
as a method.

B.5 Details on uncertainty metrics 169

0 20 40 60 80
epoch

3.0

2.5

2.0

1.5

lo
g

lik
el

ih
oo

d

0 20 40 60 80
epoch

30

40

50

60

70

ac
cu

ra
cy

 [%
]

dropout_rate=0.3
dropout_rate=0.2
dropout_rate=0.1
dropout_rate=0.01

Figure B.3: Effect of changing the dropout rate in MC-dropout, training LeNet-5 on CIFAR-
10. When p = 0.01, the train-test gap on accuracy and log-likelihood is very high (10.3% and
0.34 respectively). When p = 0.1, gaps are 1.4% and 0.04 respectively. When p = 0.2, the
gaps are -7.71% and -0.02 respectively. We therefore choose p = 0.1 as it has high accuracy
and log-likelihood, and small train-test gap.

0 20 40 60 80
epoch

4.0

3.5

3.0

2.5

2.0

1.5

lo
g

lik
el

ih
oo

d

0 20 40 60 80
epoch

20

30

40

50

60

ac
cu

ra
cy

 [%
]

dropout_rate=0.1
dropout_rate=0.05
dropout_rate=0.01

Figure B.4: Effect of changing the dropout rate in MC-dropout, training Resnet-18 on
ImageNet. We use p = 0.05 for our results.

B.5 Details on uncertainty metrics

We use several approaches to compare uncertainty estimates obtained by each optimiser. We
follow the same methodology for all optimisers: first, tune hyperparameters to obtain good
accuracy on the validation set. Then, test on uncertainty metrics. For multi-class classification
problems, all of these are based on the predictive probabilities. For non-Bayesian approaches,
we compute the probability of class k for a validation input xi as p̂ik = p(yi = k|xi,w∗),
where w∗ is the weight vector of the DNN whose uncertainty we are estimating. For Bayesian

170 Details on batch VOGN experiments

methods, we can compute the predictive probabilities for each validation example xi as,

p̂ik =

∫
p(yi = k|xi,w)p(w|D)dw ≈

∫
p(yi = k|xi,w)q(w)dw

≈ 1

S

S∑

s=1

p(yi = k|xi,w(s)), (B.14)

where w(s) ∼ q(w) are samples from the (usually Gaussian) approximation returned by a
variational method. We use 10 MC samples at validation-time for VOGN and MC-dropout
(the effect of changing number of validation MC samples is shown in Figure 3.10). This
increases the computational cost during testing for these methods when compared to Adam
or SGD.

Using the estimates p̂ik, we use three methods to compare uncertainties: validation log-
likelihood, AUROC and calibration curves. We also compare uncertainty performance by
looking at model outputs when exposed to out-of-distribution data.

Validation log-likelihood. Log-likelihood (or log-loss) is a common uncertainty metric.
We consider a validation set of NV a examples. For an input xi, denote the true label by yi, a
1-of-K encoded vector with 1 at the true label and 0 elsewhere. Denote the full vector of all
validation outputs by y. Similarly, denote the vector of all probabilities p̂ik by p, where k ∈
{1, ..., K}. The validation log-likelihood is defined as ℓ(y, p̂) = 1

NV a

∑NV a

i=1

∑K
k=1 yik log p̂ik.

Area Under ROC curves (AUROC). We consider Receiver Operating Characteristic
(ROC) curves for our multi-way classification tasks. A potential way that we may care
about uncertainty measurements would be to discard uncertain examples by thresholding
each validation input’s predicted class’ softmax output, marking them as too ambiguous to
belong to a class. We can then consider the remaining validation inputs to either be correctly
or incorrectly classified, and calculate the True Positive Rate (TPR) and False Positive
Rate (FPR) accordingly. The ROC curve is summarised by its Area Under Curve (AUROC),
reported in Table 3.3 and Table B.1. This metric is useful to compare uncertainty performance
in conjunction with the other metrics we use. The AUROC results are very similar between
optimisers, particularly on ImageNet, although MC-dropout performs marginally better than
the others, including VOGN. On all but one CIFAR-10 experiment (AlexNet, without DA),
VOGN performs the best, or tied best. Adam performs the worst, but is surprisingly good on
CIFAR-10/ResNet-18.

Calibration Curves and Expected Calibration Error. Calibration curves (DeGroot
and Fienberg, 1983) test how well-calibrated a model is by plotting true accuracy as a
function of the model’s predicted accuracy p̂ik (we only consider the predicted class’ p̂ik).
Perfectly calibrated models would follow the y = x diagonal line on a calibration curve.

B.6 Further out-of-distribution experiments with VOGN 171

We approximate this curve by binning the model’s predictions into M = 20 bins, as is
often done. We show calibration curves in Figures 3.8 and 3.11. We can also consider the
Expected Calibration Error (ECE) metric (Naeini et al., 2015; Guo et al., 2017), reported
in Table 3.3 and Table B.1. ECE calculates the expected error between the true accuracy and
the model’s predicted accuracy, averaged over all validation examples, again approximated
by using M bins.

B.6 Further out-of-distribution experiments with VOGN

In this section, we provide further out-of-distribution (OOD) experiments with VOGN. We
explained the setup and metrics in Section 3.2.2, particularly around Figure 3.12, where we
showed OOD results for ResNet-18 trained on CIFAR-10. We now provide similar figures for
AlexNet in Figures B.5 and B.6 (trained on CIFAR-10 with DA and without DA respectively)
and on LeNet-5 in Figure B.7. These results are discussed in Section 3.2.2.

Figure B.5: Histograms of predictive entropy for out-of-distribution tests for AlexNet
trained on CIFAR-10 with data augmentation. Going from left to right, the inputs are: the
in-distribution dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN
(crop), LSUN (resize). Also shown are the AUROC metric (higher is better) and FPR at 95%
TPR metric (lower is better), averaged over 3 runs. The standard deviations are very small
and so not reported here.

172 Details on batch VOGN experiments

Figure B.6: Histograms of predictive entropy for out-of-distribution tests for AlexNet trained
on CIFAR-10 without data augmentation. Going from left to right, the inputs are: the in-
distribution dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop),
LSUN (resize). Also shown are the AUROC metric (higher is better) and FPR at 95% TPR
metric (lower is better), averaged over 3 runs. The standard deviations are very small and so
not reported here.

Figure B.7: Histograms of predictive entropy for out-of-distribution tests for LeNet-5 trained
on CIFAR-10 without data augmentation. Going from left to right, the inputs are: the in-
distribution dataset (CIFAR-10), followed by out-of-distribution data: SVHN, LSUN (crop),
LSUN (resize). Also shown are the AUROC metric (higher is better) and FPR at 95% TPR
metric (lower is better), averaged over 3 runs. The standard deviations are very small and so
not reported here.

Appendix C

Details on FROMP

In this Appendix, we provide further details on our derivations and experiments in Chapter 4,
for the Functional Regularisation of Memorable Past (FROMP) algorithm. Appendix C.1
shows how the posterior distribution of a linear model induces a GP posterior, from Ras-
mussen and Williams (2006). Appendix C.2 discusses how we apply FROMP to the multi-
class setting, discussing the changes in equations and additional approximations we make
(Chapter 4 only discusses the binary classification case). Appendix C.3 gives hyperparam-
eters for all experiments with FROMP and OGN-FROMP in Section 4.5. Appendix C.4
shows visualisations for the variations on the Toy-Gaussians benchmark, providing more
information on the results in Table 4.2. Finally, Appendix C.5 illustrates the importance of
the kernel being over all weights instead of just the final layer weights.

C.1 Gaussian Process posteriors from the minimiser of a
linear model

The posterior distribution of a linear model induces a GP posterior as shown by Rasmussen
and Williams (2006). We discuss this in detail now for the following linear model discussed
in Section 4.2,

yi = fw(xi) + ϵi, where fw(xi) = φ(xi)
⊤w, ϵi ∼ N (ϵi; 0,Λ

−1),

and w ∼ N (w; 0, δ−1IP), (C.1)

174 Details on FROMP

with a feature map φ(x). Rasmussen and Williams (2006) show that the predictive distribu-
tion for a test input x takes the following form (see Equation 2.11 in their book),

p(f(x)|x,D) = N (f(x) ; Λφ(x)⊤A−1Φy, φ(x)⊤A−1φ(x)),

where A =
∑

i

φ(xi) Λφ(xi)
⊤ + δIP , (C.2)

where D is the set of N training points {xi, yi}, and Φ is a matrix with φ(xi) as columns.
Rasmussen and Williams (2006) derive the above predictive distribution by using the

weight-space posterior N (w;wlin,Σlin) with mean and covariance defined as,

wlin = ΛA−1Φy, Σlin = A−1. (C.3)

The mean wlin is also the minimiser of the least-squares loss and A is the hessian at that
solution.

Rasmussen and Williams (2006) show that the predictive distribution in Equation C.2
corresponds to a GP posterior with the following mean and covariance functions,

mlin(x) = Λφ(x)⊤A−1Φy = φ(x)⊤wlin = fwlin(x), (C.4)

κlin(x,x
′) = φ(x)⊤Σlin φ(x

′). (C.5)

This is the result shown in Equation 4.7 in Section 4.2. We can also write the predictive
distribution of the observation y = f(x) + ϵ where ϵ ∼ N (0,Λ−1) as follows,

p(y|x,D) = N (y ; fwlin(x)︸ ︷︷ ︸
mlin(x)

, φ(x)⊤Σlinφ(x)︸ ︷︷ ︸
κlin(x,x)

+Λ−1),

where Σ−1
lin =

∑

i

φ(xi) Λφ(xi)
⊤ + δIP . (C.6)

This is the same as Equation 4.8, and in Section 4.2 we make use of Equations C.4 to C.6 to
write the mean and covariance function of the posterior approximation for neural networks.

C.2 Multiclass setting for FROMP 175

C.2 Multiclass setting for FROMP

All our derivations and equations in Chapter 4 are for scalar outputs. In this section, we
discuss multiclass FROMP, where there are more than two classes. We start with the
DNN2GP (Khan et al., 2019) result for multiclass classification losses, which is an extension
of the binary classification case in Section 4.2. Using this, we can convert from a distribution
over weights to a distribution over functions. We then discuss how we reduce complexity in
the multiclass setting.

From deep networks to functional priors: a multiclass classification loss

The result in Section 4.2 for a binary classification loss straightforwardly extends to the
multiclass classification case by using a multinomial-logit likelihood (or softmax function).
The loss is now,

ℓ(y,f) = −y⊤S(f) + log

(
1 +

K−1∑

k=1

efk

)
, where k’th element of S(f) is

efk

1 +
∑K−1

c=1 efc
,

(C.7)

where the number of categories is equal to K, y is a one-hot-encoding vector of size K − 1,
f is the K − 1 length output of the neural network, and S(f) is the softmax operation which
maps a K − 1 length real vector to a K − 1 dimensional vector with entries in the open
interval (0, 1). The encoding in K − 1 length vectors ignores the last category, ensuring
identifiability (Train, 2009). In a similar fashion to the binary case, the predictive distribution
of the K − 1 length output y for an input x can be written as,

p̂(y|x,D) = N (y ;S(fw∗(x)), Λw∗(x)Jw∗(x)Σ∗ Jw∗(x)
⊤Λw∗(x)

⊤ +Λw∗(x)),

where Σ−1
∗ =

∑

i

Jw∗(xi)
⊤Λw∗(xi)Jw∗(xi) + δIP , (C.8)

where Λw∗(x) = S (fw∗(x)) [1− S (fw∗(x))]
⊤ is a (K − 1)× (K − 1) matrix and Jw∗(x)

is the (K − 1)× P Jacobian matrix. The mean function in this case is a K − 1 length matrix
and the covariance function is a square matrix of size K − 1. Their expressions are,

mw∗(x) = S(fw∗(x)), Kw∗(x,x
′) = Λw∗(x)Jw∗(x)Σ∗ Jw∗(x

′)⊤Λw∗(x
′). (C.9)

These expressions are very similar to Equation 4.13, except now with multiple outputs.

176 Details on FROMP

Reducing complexity in the multiclass setting

We could use the full multiclass version in Equation C.8, but this is expensive. To keep
computational complexity low, we employ an individual Gaussian Process (GP) over each of
the K classes seen in a previous task, and treat the GPs as independent.

We have K separate GPs. Let y(k) be the k-th item of y. Then the predictive distribution
over each y(k) for an input x is,

p̂(y(k)|x,D) = N
(
y(k) ; S(fw∗(x))

(k), Λw∗(x)
(k) Jw∗(x)Σ∗ Jw∗(x)

⊤Λw∗(x)
(k)⊤

+ Λw∗(x)
(k,k)
)
, (C.10)

where S(fw∗(x))
(k) is the k-th output of the softmax function, Λw∗(x)

(k) is the k-th row
of the Hessian matrix and Λw∗(x)

(k,k) is the k, k-th element of the Hessian matrix. The
Jacobians Jw∗(x) are now of size K × P . Note that we have allowed S and Λw∗(x) to be of
size K instead of K − 1. This is because we are treating the K GPs independently.

The kernel matrix Kt−1 is now a block-diagonal matrix for each previous task’s classes.
This allows us to only compute inverses of each block diagonal (size M ×M), repeated
for each class in each past task (K(t − 1) times), where M is the number of memorable
past examples in each task. This changes computational complexity to be linear in the
number of classes per task, K, compared to Section 4.4.2 (which only has analysis for binary
classification in each task).

When choosing a memorable past (the subset of points to regularise function values over)
for the logistic regression case, we can simply sort the Λw∗(xi)’s for all {xi} ∈ Dt and pick
the largest, as explained in Section 4.3. In the multiclass case, these are now K ×K matrices
Λw∗(xi). We instead sort by Tr(Λw∗(xi)) to select the memorable past examples.

FROMP for multiclass classification: The solutions found by the multiclass algorithm
is the fixed point of this objective (compare with Equation 4.30),

min
w
Nℓ̄t(w) + 1

2
τ
t−1∑

s=1

∑

k∈Ks

(mt,s,k −mt−1,s,k)
⊤K−1

t−1,s,k(mt,s,k −mt−1,s,k), (C.11)

where we define Ks as the set of classes k seen in previous task s, mt,s,k is the vector of
mwt(x) for class k, mt−1,s,k is the vector of mwt−1(x) for class k, and Kt−1,s,k is the kernel
matrix from the previous task just for class k, always evaluated over just the memorable
points from previous task s. By decomposing the last term over individual outputs and over
the memorable past from each task, we have reduced the computational complexity per
update.

C.3 Hyperparameters for FROMP experiments 177

C.3 Hyperparameters for FROMP experiments

In this section, we provide hyperparameter values for all experiments in Section 4.5.

FROMP on Toy-Gaussians. For our result on the standard Toy-Gaussians benchmark
(Table 4.1), we use number of epochs = 50, batch size = 20, and learning rate = 0.01,
similarly to the Joint Tasks hyperparameter values. We also use τ = 1.

FROMP on Permuted MNIST. We use the Adam optimiser (Kingma and Ba, 2015) with
Adam learning rate set to 0.001 and parameter β1 = 0.99, and also employ gradient clipping.
The minibatch size is 128, and we learn each task for 10 epochs. We use τ = 0.5N when
there are 200 memorable points. We use a fully connected single-head network with two
hidden layers, each consisting of 100 hidden units with ReLU activation functions. We report
performance after 10 tasks.

FROMP on Split MNIST. We use the Adam optimiser with Adam learning rate set to
0.0001 and parameter β1 = 0.99, and also employ gradient clipping. The minibatch size is
128, and we learn each task for 15 epochs. We use τ = 10N when there are 40 memorable
points. We use a fully connected multi-head network with two hidden layers, each with
256 hidden units and ReLU activation functions. Our FROMP-Leverage experiments in
Section 4.5.1 use the same hyperparameter values.

Sensitivity to the value of τ . We tested FROMP and FROMP-L2 with different values of
the hyperparameter τ on Split MNIST. We found that τ can change by an order of magnitude
without significantly affecting final average accuracy. Larger changes in τ led to greater than
0.1% loss in accuracy.

FROMP on Split CIFAR. We use the Adam optimiser with Adam learning rate set to
0.001 and parameter β1 = 0.99, and also employ gradient clipping. The minibatch size is
256, and we learn each task for 80 epochs. We use τ = 10N when there are 200 memorable
points. Our FROMP-Leverage experiments in Section 4.5.1 use the same hyperparameter
values, as does our experiment with 11 tasks instead of the standard 6 tasks.

OGN-FROMP on Split MNIST. We use the same hyperparameters as in the FROMP
experiment (values given above), with some slight differences due to a different optimiser
(OGN not Adam): β1 = 0.001, α = 0.001, β2 = 0.9, δ = 0.001. See Table 3.2 for definitions
of these hyperparameters.

178 Details on FROMP

Fewer memorable past examples

When we have fewer memorable past examples, we increase τ to compensate for the fewer
datapoints. For example, for Split CIFAR, when we have 40 memorable past examples per
task (instead of 200), we use τ = (200/40) × 10N = 50N (instead of τ = 10N for 200
memorable past points). We do this for all experiments with fewer memorable past examples,
and do not tune τ in any other way when the number of examples is decreased.

C.4 Variations on Toy-Gaussians benchmark

In Table 4.2 we showed results for FROMP on variations of the Toy-Gaussians benchmark,
showing that FROMP is robust to changes in this benchmark. Figures C.1 to C.5 visualise the
different dataset variations. We pick the middle performing FROMP run (out of 5) and Joint
Tasks run to show. The hyperparameters are in Appendix C.3, except we scale the number of
epochs appropriately by 10 when the dataset size is scaled by 10.

Figure C.1: FROMP (middle performing of 5 runs), left, and Joint Tasks, right, on a dataset
10x smaller (400 points per task).

Figure C.2: FROMP (middle performing of 5 runs), left, and Joint Tasks, right, on a dataset
10x larger (40,000 points per task).

C.4 Variations on Toy-Gaussians benchmark 179

Figure C.3: FROMP (middle performing of 5 runs), left, and Joint Tasks, right, on a dataset
with a new, easy, 6th task.

Figure C.4: FROMP (middle performing of 5 runs), left, and Joint Tasks, right, on a dataset
with increased standard deviations of each class’ points, making classification tougher.

Figure C.5: FROMP (middle performing of 5 runs), left, and Joint Tasks, right, on a dataset
with 2 tasks having overlapping data.

180 Details on FROMP

C.5 Importance of kernel being over all weights

In this section, we show the importance of using a kernel over all weights in the neural
network, instead of just the last layer. We run on the Toy-Gaussians benchmark, and consider
the entropies of the Gaussian distributions for weights in each layer. We plot the histogram of
these entropies in Figure C.6. As can be seen, all layers have weights with high uncertainty
(high entropy), especially for the first few tasks. Note that as we train for more tasks, we
expect the uncertainties to reduce as our network parameters become more certain having
seen more data.

Therefore, by considering uncertainties across weights in all layers, instead of just the
last layer, we might expect better performance.

0 5
0.0

2.5

5.0

7.5

10.0

La
ye

r 1

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0.0

2.5

5.0

7.5

10.0

0 5
0

25

50

75

100

La
ye

r 2

0 5
0

25

50

75

100

0 5
0

25

50

75

100

0 5
0

25

50

75

100

0 5
0

25

50

75

100

0 5
Task 1

0

5

10

15

20

La
ye

r 3

0 5
Task 2

0

5

10

15

20

0 5
Task 3

0

5

10

15

20

0 5
Task 4

0

5

10

15

20

0 5
Task 5

0

5

10

15

20

Figure C.6: Histogram of entropy of distribution the distribution of weights for different
layers (row) and task (columns). For each layer, we take all weights and plot the histogram
of their entropies. Left-most is after the first task, and right-most is after the last task. We see
that the entopy is high across layers, implying that there is significant uncertainties about the
weights in all layers, not only the last layer (layer 3 in this case).

Appendix D

Details on K-priors

In this Appendix we provide further theoretical results and experimental results using
Knowledge-adaptation priors (K-priors) from Chapter 5. In Appendix D.1, we design
K-priors that best use a fixed memory, looking at how to best transfer first-order and second-
order gradient information from the base model. Appendix D.2 considers FROMP on linear
regression, showing that FROMP is not always exact even in this simple setting (while
K-priors are, see Section 5.1). Appendix D.3 shows equivalence between K-priors and Gaus-
sian Processes. Finally, in Appendix D.4 we provide hyperparameters for all our K-priors
experiments in Section 5.7, and provide more experiments.

D.1 K-priors that optimally preserve information with lim-
ited memory

In this section, we look at different ways of designing K-priors to best use a set of stored
inputs. We assume we are given a base model with parameters w∗, and have chosen our
memory using some method,M = {u1,u2, ...,uM}. We assume this memory is of small
size and limited in some way. Section 5.4 provides an initial discussion on how we might
choose points to store in memory. We focus on the MAP/Laplace case in this section.

We specifically use the general K-prior form in Section 5.3.4, which we now repeat. To
replace an old objective such as Equation 5.1, with loss ℓoldi (f) and regulariser Rold(w),
with a new objective with loss ℓnewi (f) and regulariserRnew(w), the divergences should be
chosen such that they have the following gradients,

∇w Dw(w∥w∗) = ∇Rnew(w)−∇Rold(w), (D.1)

∇w Df (f(w)∥f(w∗)) = [∇wf(w)]⊤Bdu, (D.2)

182 Details on K-priors

where du is an M -length vector with the discrepancy∇fℓ
new
m (fw)−∇fℓ

old
m (fw∗) as the m’th

entry, for m ∈ M. The matrix B is added to counter the mismatch between Dold andM,
and in this section we look at deriving expressions for B.

As we discussed in Chapter 5, the function-divergence term in K-priors has a specific role:
we want it to match the likelihood term in our overall objective. In this section we consider
the MAP objective over the base model (Equation 5.1) for Generalised Linear Models or
neural networks,

∑

i∈Dold

ℓ(yi, h(f
i
w)). (D.3)

In Appendix D.1.1 we minimise the L2-distance between the gradient of past information
(the gradient of Equation D.3 vs Equation D.2).

In Appendix D.1.2 we focus on designing B to match second-order information of
Equation D.3. We again minimise the L2-distance. We will see that the B∗,2ord we derive is
of a similar form to BFROMP in Section 5.6. This will also provide some ways to improve
the FROMP algorithm (FROMP was introduced and discussed in Chapter 4). We will also
see expressions that are related to the Nyström approximation.

D.1.1 Preserving first-order information

In this section, we want to match first-order information from Equation D.3 using the
function-divergence term in K-priors. Specifically, we want the gradient of Equation D.3 to
be close to Equation D.2 in some way, where we are given a memory setM in our K-prior.

For simplicity, we assume the same loss in the base model (this could be a GLM or neural
network, for example), ℓnewi (f) = ℓoldi (f) = ℓ(yi, h(f)). The gradient of Equation D.3 is
then given by,

∇w

∑

i∈Dold

ℓ(yi, h(f
i
w)) = J⊤

x dx, (D.4)

where Jx is an Nold × P matrix with rows given by ∇wfw(xi), and dx is an Nold-length
vector with the discrepancy∇fℓ(yi, h(f

i
w))−∇fℓ(yi, h(f

i
w∗)) = h(f iw)−h(f iw∗) as the i’th

entry, for all i ∈ Dold, and |Dold| = Nold. With GLMs, the Jacobian Jx is constant (and given
by the input features), while for neural networks, the Jacobian depends on the value of the
parameter w.

D.1 K-priors that optimally preserve information with limited memory 183

We choose to minimise the L2-distance between the two gradients (although we may be
able to derive other interesting expressions by minimising different distances),

B∗,1ord = argmin
B

1
2
∥J⊤

x dx − J⊤
u Bdu∥2, (D.5)

where Ju is an M ×P matrix with rows given by∇wfw(um), du is an M -length vector with
the discrepancy h(fw(um))− h(fw∗(um)) as the m’th entry, for all m ∈M, and |M| =M .

Taking the gradient of the objective in Equation D.5 and setting equal to zero, we get,

B∗,1orddud
⊤
u =

(
JuJ

⊤
u

)−1 (
JuJ

⊤
x

)
dxd

⊤
u . (D.6)

This first-order optimal B∗,1ord is the best we can do to reconstruct the gradient of past
information given a fixed memory that we did not choose (for an L2 objective).

We also note two interesting relationships to other K-priors in Chapter 5:

1. When M = Xold and on GLMs, we get B∗,1ord = I and recover the vanilla K-
prior from Section 5.1, which reconstructs the exact gradient with GLMs (the loss in
Equation D.5 is zero). We can show this by taking the SVD of Ju = Jx to lead to
cancellations in Equation D.6.

2. The form of B∗,1ord is very similar to the optimal K-prior discussed in Section 5.4.
Specifically, we can recover Equation 5.50 by taking the SVD of Ju and Jx and
plugging in to Equation D.6. The difference here is that we assume we are given a
fixed memory that we did not choose, while the optimal K-prior required the SVD of
Jx to choose inputs to store in memory.

It would be very interesting to further explore the properties of B∗,1ord, and test it
experimentally. We note that this is difficult to do in practice as dx in Equation D.6 requires
storing all past memory, but we may be able to approximate it in certain settings.

D.1.2 Preserving second-order information

In this section, we match second-order information from Equation D.3 with the function-
divergence term in K-priors. We follow the same process as in Appendix D.1.1, except
with second-order information. We assume we are given a memoryM, and want to use the
matrix B in Equation D.2. We will see that the optimal B∗,2ord is related to FROMP (see
Section 5.6).

184 Details on K-priors

We use the same definitions as in Appendix D.1.1. The second-order derivative of
Equation D.3 is then given by,

∇2
ww

∑

i∈Dold

ℓ(yi, h(f
i
w)) = J⊤

x ΛxJx, (D.7)

where Λx is an Nold ×Nold diagonal matrix with h′(f iw) as its i’th diagonal entry, over all
i ∈ Dold. The second-order derivative of the function-divergence term in K-priors is,

∇2
ww Df (f(w)∥f(w∗)) = J⊤

u BΛuJu, (D.8)

where Λu is an M ×M diagonal matrix with h′(fmw) as its m’th diagonal entry, over all
m ∈M.

Again, we minimise the L2-distance between these,

B∗,2ord = argmin
B

1
2
∥J⊤

x ΛxJx − J⊤
u BΛuJu∥2. (D.9)

We now explicitly assume that a pseudo-inverse of Ju exists, which we denote as J+
u .

We specifically use the right-pseudo inverse J+
u = J⊤

u

(
JuJ

⊤
u

)−1. We could compute this,
for example, via an SVD of Ju (although this can get very expensive for large M or large P).
It may be possible to approximate the pseudo-inverse through approximate decompositions
of Ju.

Taking the gradient of the objective in Equation D.9 and setting to zero, we get,

B∗,2ord = J+
u

⊤ (
J⊤
x ΛxJx

)
J+
u Λ

−1
u . (D.10)

Like in Appendix D.1.1, when the memoryM = Xold is all the past inputs, then B∗,2ord

becomes the identity matrix, and we recover the vanilla K-prior from Section 5.1.
We find that FROMP (from Chapter 4) effectively approximates this second-order optimal

B∗,2ord. In Section 5.6 we viewed FROMP as being in the K-priors framework, and derived
FROMP’s BFROMP (see Equation 5.66). In fact, the only difference between BFROMP and
B∗,2ord lies in FROMP calculating its kernel using the base model w∗: this difference leads
to Ju,∗ instead of Ju, as well as an additional ΛuΛ

−1
u,∗ term.

This leads to a very easy way to improve FROMP: we could recalculate the kernel at
the current model parameters. This could be every few iterations to save computation cost
(calculating and inverting the kernel in FROMP can be expensive).

D.2 FROMP is not exact on linear regression 185

D.2 FROMP is not exact on linear regression

In this section, we consider var-FROMP on linear regression on the ‘Add Data’ task (this is
continual learning with just two tasks), and we store all past datapoints in memory. In this
simple setting, weight-priors are known to recover the Retrained solution. We also know that
vanilla K-priors are exact from Section 5.1.2. However, we will see that var-FROMP (and by
extension, FROMP) is not always exact even in this simple setting.

The notation we use is the same as in Section 5.1. We assume a scalar function output
f iw = φ⊤

i w using a feature map φi. For linear regression, we have a scalar output yi = f iw+ϵi

with Gaussian noise N (ϵi; 0,Λ
−1). We have a Gaussian prior p(w) = N (w;0, δ−1I). After

seeing Dold, the posterior distribution we have is qη∗(w) = N (w;µ∗,Σ∗), where µ∗ is the
MAP solution and Σ∗ =

∑
i∈Dold

φi Λφ⊤
i + δI. When we see new data Dnew, we optimise

for the parameters {µ,Σ} in the distribution q(w) = N (w;µ,Σ), and use qη∗(w) as a
prior.

Weight-space. The weight-space solution is exact in this simple setting (with τ = 1).
The objective is,

Eqη(w)

[
(N/τ) ℓ̄t(w) + log qη(w)− log qη∗(w)

]
,

where Eqη(w)[log qη∗(w)] = −1
2

(
Tr(Σ−1

∗ Σ) + (µ− µ∗)
⊤Σ−1

∗ (µ− µ∗)
)
+ constant.

(D.11)

var-FROMP. As explained in Chapter 4, var-FROMP optimises a slightly different
objective, where the expectation of the log-prior term in weight-space is replaced with one
in function-space. To simplify analysis in this section, we use Approximations 1 and 4
from Section 4.4, where we do not sample weights when converting to function-space,
and set the weights at the previous means (although we do use a full-covariance matrix
Σ). For this simple model, the feature map φi is fixed and constant. We calculate the
functional prior q̃w∗(f) = N (f ;m∗,K∗), where m∗ is the concatenation of φ⊤

i µ∗ over
all datapoints i ∈ Dold (because we see/store all memorable points), and K∗ has elements
k(xi,xj) = φ⊤

i Σ∗φj . Letting the size of Dold be Nold, we therefore have m∗ = Φ∗µ∗,
where Φ∗ stacks the Nold lots of feature vectors φi into an Nold × P feature matrix. We also
have anNold×Nold matrix K∗ = Φ∗Σ∗Φ

⊤
∗ . Similarly, the current function-space distribution

q̃wt(f) = N (f ;m,K), where we now calculate over qη(w). Note that m and K are also
calculated over past datapoints xi ∈ Dold. Therefore m = Φ∗µ and K = Φ∗ΣΦ⊤

∗ .
Given this, var-FROMP optimises the following objective,

Eqη(w)

[
(N/τ) ℓ̄t(w) + log qη(w)

]
− Eq̃wt (f)

[log q̃w∗(f)] ,

186 Details on K-priors

where,

Eq̃wt (f)
[log q̃w∗(f)] = −1

2

(
Tr(K−1

∗ K) + (m−m∗)
⊤K−1

∗ (m−m∗)
)
+ c

= −1
2

[
Tr
(
Φ⊤

∗ [Φ∗Σ∗Φ
⊤
∗]

−1Φ∗Σ
)
+ (µ− µ∗)

⊤Φ⊤
∗ [Φ∗Σ∗Φ

⊤
∗]

−1Φ∗ (µ− µ∗)
]
+c.

(D.12)

Comparing Equations D.11 and D.12, we can see the two are equal when,

Σ−1
∗ = Φ⊤

∗
[
Φ∗Σ∗Φ

⊤
∗
]−1

Φ∗. (D.13)

We can simplify this further by using the definition of Σ∗ and applying the matrix inversion
lemma twice, leading to equality when Φ⊤

∗ (Φ∗Φ
⊤
∗)

−1Φ∗ = I.
This indicates equality when the left pseudo-inverse of Φ∗ exists, Φ+

∗ =
(
Φ⊤

∗ Φ∗
)−1

Φ⊤
∗ .

This only exists when rank(Φ∗) = P , which requires that the number of datapointsNold ≥ P .
This will not be the case for large models with many parameters P , such as with (large) neural
networks. Therefore var-FROMP does not always recover the exact solution, unlike weight-
priors, even on linear regression. The same holds after making additional approximations to
get FROMP (instead of var-FROMP). Note that with neural networks, the features φ will no
longer be the same for the current model and base model, as they also depend on the weight
parameters (see Section 4.2), and this will introduce further inaccuracies in var-FROMP.
Additionally, moving from linear regression to Generalised Linear Models will also only
introduce further inaccuracies.

D.3 K-priors and equivalence to Gaussian Processes

In this section, we look at connections between variational K-priors and Gaussian Processes
(expanding on Section 5.8), showing equivalence to online Gaussian Processes (GPs). We
consider the ‘Add Data’ task, using the same notation as in Chapter 5 and specifically notation
from the discussion regarding Support Vector Machines in Section 5.8.

We start by noting that, similarly to the representer theorem, the mean and covariance
of q+(w) can be expressed in terms of the two N -length vectors α and λ (Opper and
Archambeau, 2009; Khan et al., 2013; Khan, 2014),

µ+ = Φ⊤
+α, Σ+ = (Φ⊤

+ΛΦ+ + δI)−1, (D.14)

D.3 K-priors and equivalence to Gaussian Processes 187

where Λ is a diagonal matrix with λ as the diagonal. Using this, we can define a marginal
q(fi) = N (fi;mi, vi), where fi = φ⊤

i w, with the mean and variance defined as follows,

mi = φ⊤
i µ+ = k⊤

i,+α, (D.15)

vi = φ⊤
i Σ+φi = kii,+ − k⊤

i,+

(
Λ−1 + δK+

)−1
ki,+, (D.16)

where kii,+ = φ⊤
i φi. Using these, we can now re-write the optimality conditions in the

function-space to show equivalence to GPs (compare the following with Equation 5.68).
We show this for the first optimality condition (Equation 5.4),

∇µEq[L(w)]|µ=µ+,Σ=Σ+

=
∑

i∈D∪j

EN (ϵi;0,1)

[
∇fℓ(yi, h(f))|

f=φ⊤
i µ++(φ⊤

i Σ+φi)
1/2

ϵi

]
φi + δµ+ (D.17)

Multiplying by Φ+, we can rewrite the gradient in the function space,

0 =
∑

i∈D∪j

EN (ϵi;0,1)

[
∇fℓ(yi, h(f))|f=mi+v

1/2
i ϵi

]
ki,+ + δK+α (D.18)

=
∑

i∈D∪j

∇mi
Eq(fi) [ℓ(yi, h(fi))]ki,+ + δK+α (D.19)

where m is the vector of mi. Setting this to 0 gives us the first-order condition for a GP with
respect to the mean (for example, see Equations 3.6 and 4.1 in Chapelle (2007)). It is easy to
check this for GP regression, where ℓ(yi, h(fi)) = (yi − fi)2, and the equation becomes,

0 =
∑

i∈D∪j

(mi − yi)ki,+ + δK+α ⇒ α = (K+ + δI)−1y, (D.20)

which is the quantity which gives us the posterior mean. A similar condition condition for
the covariance can be written as well.

When we use a limited memory, some of the data examples are removed, and we get
a sparse approximation similar to approaches like the informative vector machine, which
uses a subset of data to build a sparse approximation (Herbrich et al., 2003). Better sparse
approximations can be built by carefully designing the function-divergence term, and this is
further discussed in Chapter 5 (see Equation 5.47) and Appendix D.1.

188 Details on K-priors

D.4 Further K-priors experiments and hyperparameters

This section starts by providing hyperparameters for experiments in Section 5.7. Most details
are in Section 5.7 already, and in this section we provide hyperparameters for the moons
visualisation on the right of Figure 5.1, the knowledge distillation experiment in Figure 5.4
and the continual learning experiment in Figure 5.6. Appendix D.4.1 performs an ablation
study for Replay with different values for τ and randomly choosing points to store (instead
of using the Lambda method). Appendix D.4.2 provides further results for weight-priors on
the ‘Add Data’ tasks. Appendix D.4.3 studies the importance of the weight-divergence term
in K-priors, where we see that this term is important to get good results. Appendix D.4.4
initialises weights randomly before training on a new task, instead of initialising at the base
model values, and we obtain the same results as in Section 5.7.

Further details on the moons dataset on the right of Figure 5.1

To create this visualisation, we took 500 samples from the moons dataset, and split them
into 5 splits of 100 datapoints each, with each split having 50 datapoints from each class.
Additionally, the splits were ordered according to the x-axis, meaning the 1st split was the
left-most points, and the 5th split had the right-most points. In the provided visualisations,
we show transfer from ‘past data’ consisting of the first 3 splits (so, 300 datapoints) and the
‘new data’ consisting of the 4th split (100 new datapoints). We store 3% of past data as past
memory in K-priors, chosen as the points with the highest h′(f iw∗) (the Lambda method).

Hyperparameters for knowledge distillation experiment in Figure 5.4

For the knowledge distillation task in Figure 5.4(c), we used K-priors with a temperature,
similar to the temperature commonly used in knowledge distillation (Hinton et al., 2015). In
our experiments, we use a temperature T on both the student and teacher logits, as written in
the final term of Equation 5.33. We also multiply the final term by T 2 so that the gradient
has the same magnitude as the other data term (as is common in knowledge distillation). We
used λ = 0.5 in the experiment. We performed a hyperparameter sweep for the temperature
(across T = [1, 5, 10, 20]), and used T = 5. For K-priors in this experiment, we optimise for
10 epochs instead of 100 epochs, and use τ = 1.

We change from the CifarNet architecture to a LeNet5-style architecture. The CifarNet
architecture is described in Section 2.4 and is from Zenke et al. (2017). The smaller LeNet5-
style architecture has two convolution layers followed by two fully-connected layers: the first
convolution layer has 6 output channels and kernel size 5, followed by the ReLU activation,
followed by a Max Pool layer with kernel size 2 (and stride 2), followed by the second

D.4 Further K-priors experiments and hyperparameters 189

convolution layer with 16 output channels and kernel size 5, followed by the ReLU activation,
followed by another Max Pool layer with kernel size 2 (and stride 2), followed by a fully-
connected layer with 120 hidden units, followed by the last fully-connected layer with 84
hidden units. We use ReLU activation functions in the fully-connected layers.

In Figure 5.4(b) we also showed initial results using a temperature on the ‘Add Data’ task
on CIFAR-10. We used the same temperature from the knowledge distillation experiment
(T = 5), but did not perform an additional hyperparameter sweep. We find that using a
temperature improved results on CNNs, and we expect increased improvements if we perform
further hyperparameter tuning. Note that many papers that use knowledge distillation perform
more extensive hyperparameter sweeps than we have here, particularly over λ.

Hyperparameters for Quadratic K-priors on Split MNIST

For the Split MNIST experiment with Quadratic K-priors (see Figure 5.6), we used the same
hyperparameters as the Split MNIST experiments with FROMP (values are in Appendix C.3).
Specifically, we use the Adam optimiser with Adam learning rate set to 0.0001 and parameter
β1 = 0.99, and also employ gradient clipping. The minibatch size is 128, and we learn each
task for 15 epochs. We use a fully connected multi-head network with two hidden layers,
each with 256 hidden units and ReLU activation functions.

We perform a hyperparameter sweep for τ , which weights the weight-divergence term in
Quadratic K-priors (and in weight-priors, or Online EWC (Schwarz et al., 2018)), sweep-
ing over orders of magnitude (τ = [0.1, 1, 10, 100, 1000, 10000, ...]). We also introduce a
separate hyperparameter in front of the function-divergence term in K-priors, calling this
ρ. For the weight-prior experiment, τ = 1000, and for all Quadratic K-prior experiments,
τ = 100. When we store 40 past datapoints, ρ = 50, and we multiply this term by an appro-
priate factor when we reduce the memory size (for example, when we store 2 datapoints,
ρ = (40/2)× 50 = 1000). For vanilla K-priors with 40 past datapoints, ρ = 1000, and with
2 past datapoints, ρ = 100, 000.

D.4.1 Replay with different τ and random memory

In Figure D.1 we provide an ablation study for Replay with different strategies: (i) we choose
points by h′(f iw∗) and use τ = Nold/M , (ii) we choose points randomly and use τ = 1, (iii)
we choose points randomly and use τ = Nold/M . Recall that Nold is the past dataset size
(the size of Dold) and M is the number of datapoints stored in memory (the size ofM). We
see that choosing points by h′(f iw∗) and using τ = 1 performs very well, and we therefore
choose this for all our experiments. This is then consistent with the memory in K-priors.

190 Details on K-priors

V
al

id
at

io
n

ac
c

(%
)

Add new data

Memory size (% of past data)

Figure D.1: This figure shows using τ = 1 works well for Replay, both for random selection
of memory and choosing memory by sorting h′(f iw∗). We compare different methods for
Replay on the UCI Adult ‘Add Data’ task. ‘Random’ means the points in memory are
chosen randomly as opposed to choosing the points with highest h′(f iw∗). We also consider
using τ = Nold/M instead of τ = 1. We choose to report memory chosen by h′(f iw∗) in all
experiments (this is then consistent with the memory in K-priors).

D.4.2 Further experiments with weight-priors

In Figure D.2 we provide results comparing with weight-priors for the ‘Add Data’ tasks for
logistic regression on UCI Adult and neural networks on the ‘USPS odd vs even’ dataset.
Other weight-prior results are in Figure 5.5. We see that for homogeneous data splits (such
as UCI Adult, MNIST and CIFAR), weight-priors perform well. For heterogeneous data
splits (the ‘USPS odd vs even’ dataset), weight-priors perform worse.

V
al

id
at

io
n

ac
c

(%
)

Memory size (% of past data)

(a) Adult, logistic regression (b) USPS, NN

Memory size (% of past data)

Figure D.2: Results on the ‘Add Data’ task, with a comparison to weight-priors. (a) Logistic
regression on UCI Adult: on this homogeneous data split, weight-priors perform well.
(b) Neural networks on the ‘USPS odd vs even’ dataset: on this heterogeneous data split,
weight-priors perform worse.

D.4.3 K-priors ablation with weight-term

In this section we perform an ablation study on the importance of the weight-term in
Equation 5.13. In Figure D.3 we show results on logistic regression on the ‘USPS odd
vs even’ dataset, both with the correct K-prior term 1

2
δ∥w −w∗∥2, and with the incorrect

1
2
δ∥w∥2. We see that using the correct weight-term always improves performance.

D.4 Further K-priors experiments and hyperparameters 191

V
al

id
at

io
n

ac
c

(%
)

Add new data Remove old data Change regulariser

Memory size (% of past data) Memory size (% of past data) Memory size (% of past data)

Figure D.3: Comparing K-priors with a version of K-priors without the correct weight-term
on logistic regression on the ‘USPS odd vs even’ dataset. We see that using the correct
weight-term is important, especially on the ‘Add Data’ task.

D.4.4 K-priors with random initialisation

In most of our experiments in Section 5.7, when we train on a new task, we initialise the
parameters at the base model parameters w∗. Note that this is not possible in the ‘Change
model class/architecture’ task, where weights were initialised randomly. We also initialised
randomly for our results in Table 5.1. In this section, we show that our results are independent
of initialisation strategy: we get the same results whether we use random initialisation or
initialise at previous values. The only difference is that random initialisation can sometimes
take longer to converge (for all methods: Batch, Replay and K-priors).

For Generalised Linear Models, where we always train until convergence and there is
a single optimum, it is clear that the exact same solution will always be reached. We now
also provide the result for neural networks on the ‘USPS odd vs even’ dataset with random
initialisation in Figure D.4, for the 3 tasks where we had earlier initialised at previous values
w∗ (compare with Figure 5.3(a)). We use exactly the same hyperparameters and settings as
in Figure 5.3(a), aside from initialisation method, and find we obtain the same results.

V
al

id
at

io
n

ac
c

(%
)

Memory size (% of past data)

Add new data Remove old data Change regulariser

Memory size (% of past data) Memory size (% of past data)

Figure D.4: K-priors obtain the same results when randomly initialising the weights for the
‘Add new data’, ‘Remove old data’ and ‘Change regulariser’ tasks on neural networks on the
‘USPS odd vs even’ dataset. Previous results, including Figure 5.3(a), initialised parameters
at previously learnt values w∗. The ‘Change model class/architecture’ task originally used
random initialisation and so is not repeated here.

	Table of contents
	1 Introduction
	1.1 The probabilistic approach to continual learning
	1.2 Thesis outline
	1.3 List of publications

	2 Background
	2.1 Continual learning
	2.2 Probabilistic continual learning
	2.2.1 Variational inference
	2.2.2 Natural-gradient variational inference

	2.3 Approaches to continual learning
	2.4 Measuring performance in continual learning
	2.4.1 Non-continual baselines
	2.4.2 Metrics
	2.4.3 Benchmarks

	3 Weight-space variational continual learning
	3.1 Variational Continual Learning (VCL)
	3.1.1 Improving VCL
	3.1.2 Pruning

	3.2 Variational Online Gauss-Newton (VOGN)
	3.2.1 Practical deep learning with variational inference
	3.2.2 VOGN full-batch performance
	3.2.3 VOGN continual learning performance

	3.3 Failures of weight-space continual learning
	3.4 Summary

	4 Functional regularisation of memorable past
	4.1 Functional regularisation of neural networks
	4.2 From deep networks to functional priors
	4.3 Identifying memorable past
	4.4 Training in weight-space with a functional prior
	4.4.1 OGN-FROMP
	4.4.2 FROMP

	4.5 Experiments
	4.5.1 Experiments with FROMP
	4.5.2 Experiments with OGN-FROMP

	4.6 Summary

	5 Knowledge-adaptation priors
	5.1 Reconstructing the gradient of the past
	5.1.1 Adding new data
	5.1.2 Generalised Linear Models

	5.2 Neural networks and connections with knowledge distillation
	5.3 Many adaptation tasks in machine learning
	5.3.1 Removing old data
	5.3.2 Changing regulariser
	5.3.3 Changing model class or architecture
	5.3.4 K-priors for general learning problems

	5.4 Limited memory in K-priors
	5.5 Improving weight-priors with function-regularisation
	5.6 FROMP in the K-priors framework
	5.7 Experiments
	5.8 Links to Support Vector Machines and Gaussian Processes
	5.9 Summary

	6 Conclusions and future work
	6.1 Summary
	6.2 Discussion and future work

	References
	Appendix A Details on weight-space variational continual learning experiments
	A.1 Pruning on MNIST
	A.2 Hyperparameters for VOGN continual learning experiments
	A.3 Hyperparameters for Toy-Gaussians experiments

	Appendix B Details on batch VOGN experiments
	B.1 Details on fast implementation of the Gauss-Newton approximation
	B.2 Hyperparameter values for batch VOGN experiments
	B.3 Effect of prior variance and dataset size reweighting factor
	B.4 MC-dropout's sensitivity to dropout rate
	B.5 Details on uncertainty metrics
	B.6 Further out-of-distribution experiments with VOGN

	Appendix C Details on FROMP
	C.1 Gaussian Process posteriors from the minimiser of a linear model
	C.2 Multiclass setting for FROMP
	C.3 Hyperparameters for FROMP experiments
	C.4 Variations on Toy-Gaussians benchmark
	C.5 Importance of kernel being over all weights

	Appendix D Details on K-priors
	D.1 K-priors that optimally preserve information with limited memory
	D.1.1 Preserving first-order information
	D.1.2 Preserving second-order information

	D.2 FROMP is not exact on linear regression
	D.3 K-priors and equivalence to Gaussian Processes
	D.4 Further K-priors experiments and hyperparameters
	D.4.1 Replay with different and random memory
	D.4.2 Further experiments with weight-priors
	D.4.3 K-priors ablation with weight-term
	D.4.4 K-priors with random initialisation

