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Abstract. Given the increasing prevalence of facial analysis technology,
the problem of bias in these tools is becoming an even greater source of
concern. Causality has been proposed as a method to address the prob-
lem of bias, giving rise to the popularity of using counterfactuals as a
bias mitigation tool. In this paper, we undertake a systematic investi-
gation of the usage of counterfactuals to achieve both statistical and
causal-based fairness in facial expression recognition. We explore bias
mitigation strategies with counterfactual data augmentation at the pre-
processing, in-processing, and post-processing stages as well as a stacked
approach that combines all three methods. At the in-processing stage,
we propose using Siamese Networks to suppress the differences between
the predictions on the original and the counterfactual images. Our exper-
imental results on RAF-DB with counterfactuals added show that: (1)
The in-processing method outperforms at the pre-processing and post-
processing stages, in terms of accuracy, F1 score, statistical fairness and
counterfactual fairness, and (2) stacking the pre-processing, in-processing
and post-processing stages provides the best performance.

Keywords: Bias Mitigation, Counterfactual Fairness, Facial Expression
Recognition.

1 Introduction

Given the increasing prevalence and stakes involved in machine learning applica-
tions, the problem of bias in such applications is now becoming an even greater
source of concern. The same is true for facial affect analysis technologies [9]. Sev-
eral studies have highlighted the pervasiveness of such discrimination [4, 19, 24]
and a number of works have sought to address the problem by proposing solu-
tions for mitigation [5,8,49]. In order to assess whether bias has been mitigated,
a reliable measure of bias and fairness is sorely needed. A significant number of
fairness definitions have been proposed [1, 18, 37, 46]. The more prevalent and
long-standing definitions are often based upon statistical measures. However,
statistical measures of fairness are mired with gaps. The definitions can often
end up being mutually exclusive [7] and fail to distinguish spurious correlations
between a sensitive attribute and the predicted outcome [15,29,39].
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Fig. 1. Three methods for bias mitigation with counterfactual images.

Causal reasoning has been proposed as a potential instrument to address such
gaps [29,34,39] and counterfactuals, one of the key ideas within causal reasoning,
are increasingly used as a tool to achieve such goals. One such use case is to rely
on counterfactuals as a data augmentation strategy. Such an approach has proved
promising for several use cases within the field of natural language processing [11,
12,14,35,36], recommendation systems [47] as well as visual question answering
systems [41]. However, this approach has yet to be explored within the field of
facial expression analysis. Our first contribution thus involves exploring the use of
counterfactuals as a data augmentation strategy for the task of facial expression
recognition. Second, as bias mitigation can be performed at the pre-processing,
in-processing or post-processing stage [5], we will make use of counterfactuals
at all three stages to mitigate bias as illustrated in Figure 1. To the best of our
knowledge, no existing works describe a comprehensive system for mitigating
bias at all three stages. Our key contributions are summarised as follows:

1. We make use of counterfactuals at the pre-processing, in-processing and post-
processing stage for the first time in the literature in order to mitigate for
bias in facial expression recognition.

2. We do an in-depth analysis of bias at the pre-processing, in-processing and
post-processing stages using both statistical and causal measures of fairness.
We show that different forms of bias can exist at different levels and are
captured by the different measures used.

2 Literature Review

2.1 Fairness in Machine Learning

Fairness is now recognised as a significantly important component of Machine
Learning (ML) given how the problem of bias can result in significant impact
on human lives. The general Machine Learning (ML) approaches tackle bias
typically at the pre-processing, in-processing and post-processing stages [5, 17,
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44]. The pre-processing methods address the problem of bias at the data-level
[44]. This typically involves some form of data augmentation or modification
to the input data. The in-processing methods involve making modification to
the learning algorithm itself [8]. The post-processing methods occur at the end
of the learning and prediction process [28]. This usually involves altering the
output to achieve fairer predictions. The pre- and post-processing methods are
usually model agnostic and can be applied without having to re-train the model.
In contrast, the in-processing method will involve making changes in the model
or the training method.

Different fairness definitions result in very different quantitative measures
which can result in very different algorithmic outcomes [1, 18]. To exacerbate
matters, the different definitions can even sometimes be at odds with each other
and improving the score on one fairness metric may very well involve a trade-
off on another [2]. Hence, selecting the right definition and metric is a highly
challenging and important task. A more thorough examination of these issues
can be found in the following papers [1, 2, 18,37].

There are two main groups of fairness measures. Statistical notion of fairness
is based on statistical measures of the variables of interest, e.g. accuracy, true
positive rate. As statistical measures are only able to capture correlation and not
causation, this form of fairness is sometimes also referred to as associational fair-
ness. Some well-known examples of such forms of fairness include demographic
parity [50] and equality of opportunity [22]. As highlighted in several recent re-
search, there are many gaps stemming from statistical fairness. As a result, causal
notion of fairness has been proposed to address these gaps [29, 31, 44]. Causal
fairness assumes the existence of an underlying causal model. Some examples
of causal fairness include counterfactual fairness [31] and proxy fairness [29]. In
this research, we will build upon the definition of equality of opportunity and
counterfactual fairness to conduct a comparison between both types of fairness.

2.2 Facial Affect Fairness

Facial affect recognition involves automatically analysing and predicting facial
affect [45]. The most common method is the discrete category method which
assumes six basic emotion categories of facial expressions recognized universally
(i.e., happiness, surprise, fear, disgust, anger and sadness) [16]. Another method
is to rely on the Facial Action Coding System (FACS), a taxonomy of facial
expressions in the form of Action Units (AUs), where the emotions can then
be defined according to the combination of AUs activated [16]. The six basic
categories have been criticized for being unrealistic and limited at representing
a full spectrum of emotions using only a handful of categories [20]. Another
alternative is to use a dimensional description of facial affect which views any
affective state as being represented as a bipolar entity existing on a continuum.
[43]. Depending on the method of distinguishing facial affect, this can be achieved
by either training an algorithm to classify the facial expressions of emotion [49],
predict the valence and the arousal value of the displayed facial expression or
detect the activated facial action units [8]. To date, investigating bias and fairness
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in facial affect recognition is still very much a understudied problem [5, 49].
Only a handful of studies have been done to highlight the bias and propose
fairer solutions for facial affect analysis [8, 25,40,49]. In this paper, we focus on
the task of classifying facial expressions and attempt to investigate a solution
which addresses bias at the pre-, in- and post-processing stages with the use of
counterfactuals.

2.3 Counterfactuals and Bias

A counterfactual is the result of an intervention after modifying the state of a set
of variables X to some value X = x and observing the effect on some output Y .
Using Pearl’s notation [42], this intervention is captured by the do(·) operator
and the resulting computation then becomes P (Y |do(X = x)).Several existing
frameworks offer methods for countering bias with the use of counterfactuals.
Existing methods typically rely on using counterfactuals as a data augmentation
strategy at the pre-processing stage to mitigate for bias. This method has proven
to be successful within the field of natural language processing [11,12,14,35,36].
Its use case includes hate speech detection [11, 12], machine translation [35, 48]
and dialogue generation [14]. Experiments done on recommendation systems [47]
and more recently, in Visual Question Answering (VQA) systems [41] indicated
that such an approach is promising.

Such an approach has yet to be explored for facial expression analysis. In the
domain of facial analysis, counterfactuals have been used to identify [13,27] and
mitigate for bias [10]. Our research resembles that of [13] and [27] in that we used
a generative adversarial network (GAN), STGAN [33], to generate adversarial
counterfactual facial images to assess for counterfactual fairness. Though alike in
spirit, our paper differs as follow. First, the above studies focused on investigating
different methods for counterfactual generation [10,13,27]. In our case, we do not
propose an alternative method to generate adversarial or counterfactual images.
Instead, we use a pre-trained GAN [33] to generate images which would then be
used to augment the original dataset.

Second, [13] and [27] focused on using the generated counterfactual images
to measure the bias present in either a publicly available dataset [13] or existing
black-box image analysis APIs [27] but did not propose any method to miti-
gate bias. Though we do conduct a bias analysis of the model’s performance
on counterfactuals, the focus is chiefly on deploying counterfactuals explicitly to
mitigate for bias which was attempted by [10] as well. However, the goal in [10]
focuses on “attractiveness” prediction rather than facial expression recognition.
In addition, we focus on investigating methods to mitigate bias at all three stages
which is distinctly different from all the previous research mentioned above.

3 Methodology

As highlighted in [5], we can intervene to mitigate bias at either the pre-processing,
in-processing or post-processing stage. To investigate our bias mitigation pro-
posal for the task of facial expression recognition, we conduct a comparative
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study using counterfactuals at the three different stages. The first method is the
pre-processing method which involves augmenting the training set using counter-
factual images. Subsequently, we implemented an in-processing approach using
a Siamese Network [3] to investigate further downstream methods for mitigat-
ing bias with the use of counterfactuals. Finally, we explore the use of a post-
processing method, the Reject-Option Classification proposed by Kamiran et al.
to mitigate bias [28].

3.1 Notation and Problem Definition

We adopt a machine learning approach where we have a dataset D = {(xi, yi)}i
such that xi ∈ X is a tensor representing information (e.g., facial image, health
record, legal history) about an individual I and yi ∈ Y is an outcome (e.g.,
identity, age, emotion, facial action unit labels) that we wish to predict. In other
words, we assume that we have a classification problem and we are interested in
finding a parametric predictor/mapping f with f : X → Y . We use ŷi to denote
the predicted outcome for input xi and p(yi|xi) is the predicted probability for
xi to be assigned to the correct class yi. Each input xi is associated (through an
individual I) with a set of sensitive attributes {sj∈a}a ⊂ S where a is e.g. race
and j ∈ {Caucasian, African-American, Asian}. The minority group are those
with sensitive attributes which are fewer in numbers (e.g. African-American)
compared to the main group (e.g. Caucasian). Note that there are other at-
tributes {zj∈a}a ⊂ Z that are not sensitive. In bias mitigation, we are interested
in diminishing the discrepancy between p(ŷi = c|xi) and p(ŷj = c|xj) if xi and
xj are facial images for different individuals and their sensitive attributes sxi

and sxj are different.

3.2 Counterfactual Fairness

Causality-based fairness reasoning [29,31,44] assumes that there exists a cause-
and-effect relationship between the attribute variables and the outcome. We
follow the counterfactual fairness notation used by Kusner et al. [31]. Given a
predictive problem with fairness considerations, where S, X and Y represent
the sensitive attributes, the input, and the output of interest respectively, let us
assume that we are given a causal model (U, V, F ), where U is a set of latent
background variables, which are factors not caused by any variable in the set V of
observable variables and F is a set of functions over Vi ∈ V . In our problem setup,
V ≡ S ∪X. Kusner et al. [31] postulate the following criterion for predictors of
Y : Predictor f( · ; θ) is counterfactually fair if, under any context X = x and
S = s, the following is true:

p(f(x; θ, U) = y | x, s) = p(f(xS←s′ ; θ, U) = y | x, s), (1)

where xS←s′ denotes the counterfactual input (image) obtained by changing
the sensitive attribute to s′. To simplify notation, we will use x′ to denote the
counterfactual image, xS←s′ , in the rest of the paper. With reference to Equation
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1, we would like to highlight that this definition is an individual-level fairness
definition. For the set of experiments that we will be doing in this paper, we
will be aggregating the counterfactual counts dissected according to sensitive
attributes and class in order to facilitate measurement and comparison.

3.3 Counterfactual Image Generation

We used a state-of-the-art GAN, a pre-trained STGAN model [33] trained on
the CelebA dataset to generate a set of counterfactual images for RAF-DB. In
our experiments, the attribute that we have chosen to manipulate is that of
skin tone – see Figure 2 for samples. This is because manipulating skin tone
produces more consistent results than manipulating other sensitive attributes
such as age or gender. The adversarial counterfactual images modified across
the other sensitive attributes are less stable and more likely to be corrupted.
Our counterfactuals involve lightening but not darkening skin tone as GANs are
currently still incapable of effectively doing so [26]. We are not conflating skin
tone with race. We recognise that they are separate entities with some overlaps.
Our analysis is focused on mitigating bias stemming from difference in skin tone
which aligns with the approach taken in other bias investigation research [4,13].
Moreover, though the images generated may not be completely satisfactory, this
is due to the limitations of GANs. This is a contextual challenge and the solutions
proposed here can still be deployed when GANs have been further improved.
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Fig. 2. Sample counterfactual images obtained by changing the skin tone of the original
images (without changing facial expression) using a pre-trained STGAN model [33].

3.4 Baseline Approach

We take prior of Tian et al. [49] as baseline. For this, we use a 18-layer Resid-
ual Network (ResNet) [23] architecture and train it from scratch with a Cross
Entropy loss to predict a single expression label yi for each xi:

LCE(xi, yi) = −
∑
y∈Y

1[yi = ŷi] log p(y|xi), (2)

where p(y|xi) denotes the predicted probability for xi being assigned to class
yi ∈ Y and 1[·] denotes the indicator function. The baseline model is trained on
the original images.
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3.5 Pre-processing: Data Augmentation with Counterfactuals

Similar to the works done in the field of natural language processing (discussed
in Section 2.3), we make use of counterfactuals as a data augmentation strategy.
In this approach, we generate a counterfactual for each image and feed them
as input to train a new network (Figure 1). Hence, instead of having N image
samples in D, we now have 2N number of training samples. The network is
trained with these 2N images using a Cross Entropy loss defined in Equation 2.

3.6 In-processing: Contrastive Counterfactual Fairness

Counterfactual fairness is defined with respect to the discrepancy between the
predictions on an image xi and its counterfactual version x′i. To be specific, as
discussed in Section 3.2, counterfactual fairness requires the gap between p(yi|xi)
and p(yi|x′i) to be minimal. An in-processing solution that fits very well to this
requirement is contrastive learning.

In general, the goal of contrastive learning [6] is to learn an embedding space
which minimises the embedding distance between a pair of images which are
of the same class (positive pair) and maximizes the distance between a pair of
“unrelated” images (negative pair). However, in our setting, we seek to minimise
the difference between the prediction probabilities on an image and its counter-
factual version. We realize contrastive counterfactual fairness by feeding xi and
its counterfactual version x′i through a Siamese network (Figure 3). The follow-
ing contrastive loss then seeks to minimise the discrepancy (bias) between the
predictions of the two branches:

Lcon(xi,x
′
i) = −

∑
y∈Y

1[f(xi; θ) = ŷi] log p(yi|x′i), (3)

where we penalize the Siamese network if the counterfactual prediction is not
consistent with respect to the predicted label f(xi; θ) of the original image xi.

Each branch of the Siamese network has its own Cross Entropy Loss so that
each branch can predict the correct label independently. The overall loss is then
defined as:

Li = α(LCE(xi, yi) + LCE(x
′
i, yi)) + Lcon(xi,x

′
i), (4)

where LCE is as defined in Equation 2, and α is a hyper-parameter which we
tuned as 1.5. By jointly minimizing the two Cross Entropy objectives and Lcon,
the network learns a representation that minimises the difference between the
predictions on the original and counterfactual images as well as the individual
prediction errors for both the original and counterfactual images. The authors
of [10] leveraged on a similar idea though both research were done independently.
It is similar in that, to enforce fairness, they added a regularizer between the
logits of the image and its counterfactual which is similar to the functionality
of Lcon. The slight difference is that the overall loss function only accounts for
the CE loss of the original image whereas ours attempt to account for both the
original and counterfactual loss via LCE(xi, yi) and LCE(x

′
i, yi) respectively.
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3.7 Post-processing: Reject Option Classification
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Fig. 4. Post-processing method by Kamiran et al. [28] reclassifies samples around the
decision boundary in favor of protected groups.

Post-processing approaches take the output of the model and modify the
output in a manner to achieve greater fairness. Here, we employ the Reject
Option Classification suggested by Kamiran et al. [28]. This approach re-classifies
the outputs where the model is less certain about, i.e., the predictions that fall
in a region around the decision boundary parameterised by τ (see Figure 4).
For instance, given a typical classification probability threshold of 0.5, if the
model prediction is 0.85 or 0.15, this means that the model is highly certain
of its prediction. If the values range around 0.53 or 0.44, this means that the
input falls very close to the decision boundary and the model is less certain
about its prediction. In order to improve fairness of the prediction, we reclassify
the predicted output if it belongs to that of the minority group. More formally,
if a sample xi that falls in the “critical” region 1 − τ ≤ p(y|xi) ≤ τ where
0.5 ≤ τ ≤ 1, we reclassify xi as y if xi belongs to a minority group. Otherwise,
i.e. when p(y|xi) > τ , we accept the predicted output class y. In our experiments,
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we set τ = 0.6 as suggested by Kamiran et al. [28]. This method captures the
innate human intuition to give the benefit of the doubt to samples from the
minority group which they are unsure of.

4 Experimental Setup

4.1 Dataset

We chiefly conducted our experiments on the RAF-DB [32] dataset. RAF-DB
contains labels in terms of facial expressions of emotions (Surprise, Fear, Disgust,
Happy, Sad, Anger and Neutral) and sensitive attribute labels along gender, race
and age. We excluded images labelled as “Unsure” for gender. In addition, the
age binning system is likely to cause greater variation noise. For instance, an
individual who is age 4 is likely to look very different from someone who is age
19 but yet they are categorised in the same category. As such, we have chosen
to restrict our analysis to the sensitive attributes gender and race. We utilised
a subset of the dataset consisting of 14,388 images, with 11,512 samples used
for training and 2,876 samples used for testing within our experiments. This
training and testing split has been pre-defined according to the instructions in
the original dataset [32].

4.2 Implementation and Training Details

We first generated a set of counterfactual images using the method delineated in
Section 3.3. This is done for both the training and testing images within RAF-
DB. Our task subsequently focuses on categorising the seven categories of facial
expressions of emotion. We then reclassified the counterfactual RAF-DB images
(Figure 2) to evaluate for counterfactual biases as shown in Table 2.

Training Details ResNet-18 [23] is used as the baseline model as well as for
the mitigation models as illustrated in Figure 1. For all models, we take the
PyTorch implementation of ResNet and train it from scratch with the Adam
optimizer [30], with a mini-batch size of 64, and an initial learning rate of 0.001
(except for the in-processing method for which 0.0005 worked slightly better).
The learning rate decays linearly by a factor of 0.1 every 40 epochs. The maxi-
mum training epochs is 100, but early stopping is applied if the accuracy does not
increase after 30 epochs. For the pre-processing method, we train a network with
both the original and counterfactual images (Figure 1). For the in-processing
method, we have two Siamese branches with shared weights (Figure 3). For the
post processing approach, we train a network with both the original and coun-
terfactual images (Figure 4) but take the output predictions and reclassify them
according to the methodology delineated in Section 3.7.
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Image Pre-processing and Augmentation All images are cropped to ensure
faces appear in approximately similar positions. The images are subsequently
normalized to a size of 128×128 pixels which are then fed into the networks
as input. During the training step, we apply the following commonly used aug-
mentation methods: Randomly cropping the images to a slightly smaller size
(i.e. 96×96); rotating them with a small angle (i.e. range from -15o to 15o); and
horizontally mirroring them in a randomized manner.

4.3 Evaluation Measures

In this paper, we use two measures: accuracy and F1-score, to evaluate prediction
quality and two measures: equal opportunity and causal fairness, to evaluate
fairness. Equal opportunity (MEO), a group-based metric, is used to compare
the group fairness between models [22]. This can be understood as the largest
accuracy gap among all demographic groups:

MEO =
mins∈S MACC(s)

maxs∈S MACC(s)
, (5)

where MACC(s) is the accuracy for a certain demographic group s. We also in-
clude a causality-based fairness metric Counterfactual fairness (MCF ) because
it has often been noted that commonly-used fairness metrics based on classi-
fication evaluation metrics such as accuracy, precision, recall and TP rate are
insufficient to capture the bias present [29,44]. MCF is defined as:

MCF =
1

N

∑
i∈N

1[f(xi; θ) = f(x′i; θ)], (6)

where we compare the labels predicted by f(·; θ). This is not a newly defined
metric but a prevalent one based on an aggregated form of Counterfactual Fair-
ness defined accordingly in Section 3.2 and [31].

Table 1. RAF-DB Test Set Distribution (Cauc: Caucasian, AA: African-American).

Gender Race

Emotion Male Female Cauc AA Asian Percent.

Surprise 138 159 260 16 21 10.3%
Fear 43 36 61 5 13 2.7%
Disgust 69 89 125 6 27 5.5%
Happy 429 712 855 98 188 39.7%
Sad 147 239 291 30 65 13.4%
Angry 119 45 144 10 10 5.7%
Neutral 312 339 489 39 123 22.6%

Percent. 43.7% 56.3% 77.4% 7.1% 16.4%
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5 Results

5.1 An Analysis of Dataset Bias and Counterfactual Bias

Dataset Bias Analysis First, we conduct a preliminary bias analysis by at-
tempting to highlight the different biases present. As highlighted in Table 1,
there is a slight dataset bias across gender. 56.3% of the subjects are female,
while 43.7% are male. There is a greater bias across race. 77.4% of the subjects
are Caucasian, 15.5% are Asian, and only 7.1% are African-American.

Table 2. Proportion of samples that stayed consistent with the original classification
after counterfactual manipulation (skin tone change). The values are the MCF values.
Classification is performed using the baseline model.

Gender Race

Emotion Male Female Cauc AA Asian

Surprise 0.34 0.31 0.33 0.38 0.24
Fear 0.16 0.25 0.16 0.20 0.38
Disgust 0.20 0.13 0.15 0.17 0.22
Happy 0.44 0.56 0.52 0.53 0.48
Sad 0.22 0.27 0.26 0.20 0.25
Angry 0.29 0.27 0.28 0.20 0.30
Neutral 0.33 0.36 0.36 0.28 0.33

MCF 0.34 0.41 0.39 0.39 0.37

Counterfactual Bias Analysis This involves calculating the proportion of
the baseline model’s predictions that remained the same between the original
and counterfactual images. The specific formulation is captured by Equation
6. Though simple in nature, it forms a crucial cornerstone in evaluating Coun-
terfactual Fairness. With reference to Table 2, we see that, for a majority of
samples, the predicted labels did not remain the same for the counterfactual
images. Across the sensitive attribute Gender, performance accuracy is slightly
more consistent for Females. Across the sensitive attribute Race, performance
accuracy is comparatively more consistent for Caucasians and Asians. This phe-
nomena may be correlated with class size numbers as evidenced in Table 1. A
similar trend is true across emotions. We see that the emotion “Happy” has the
highest consistency. This may be due to the larger sample size and the fact that
“Happy” is considered an emotion that is relatively easier to recognise and label.
On the other hand, we see that the “Fear” class has the lowest consistency. This
might be due to the fact that the emotion fear has lesser samples and is more
ambiguous, variable and perhaps harder to identify and label. This hints that
bias may not only vary across sensitive attribute but across emotion categories
as well. We would like to highlight that this counterfactual analysis only analyses
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Table 3. Accuracy and fairness scores from the fine-tuned standalone models trained
on the combined training and tested on the combined test set which includes both the
original and counterfactual images.

1. Pre-processing 2. In-processing 3. Post-processing
Gender Race Gender Race Gender Race

Emotion M F Cau AA A M F Cau AA A M F Cau AA A

Surprise 0.58 0.59 0.58 0.59 0.60 0.59 0.63 0.63 0.50 0.52 0.55 0.67 0.61 0.72 0.60
Fear 0.35 0.26 0.34 0.30 0.19 0.31 0.28 0.33 0.30 0.15 0.37 0.22 0.34 0.40 0.12
Disgust 0.29 0.26 0.26 0.33 0.31 0.25 0.31 0.30 0.33 0.24 0.24 0.35 0.28 0.25 0.39
Happy 0.75 0.76 0.72 0.87 0.84 0.89 0.92 0.90 0.90 0.91 0.90 0.93 0.92 0.88 0.94
Sad 0.44 0.48 0.47 0.35 0.51 0.45 0.49 0.47 0.42 0.50 0.46 0.47 0.46 0.37 0.52
Angry 0.52 0.47 0.52 0.45 0.30 0.51 0.43 0.50 0.50 0.25 0.48 0.37 0.45 0.45 0.40
Neutral 0.66 0.63 0.65 0.51 0.66 0.63 0.68 0.67 0.58 0.64 0.61 0.62 0.62 0.58 0.62

MACC 0.61 0.63 0.61 0.65 0.67 0.65 0.72 0.69 0.69 0.68 0.65 0.71 0.68 0.68 0.70

MEO 0.97 0.91 0.91 0.99 0.91 0.96
MCF 0.53 0.57 0.54 0.56 0.61 0.58 0.63 0.59 0.63 0.65 0.39 0.44 0.41 0.44 0.39
MCF (Avg.) 0.55 0.57 0.60 0.62 0.42 0.41

whether predictions remained consistent between the original and counterfactual
images and has no bearing on whether the initial prediction was correct.

5.2 Bias Mitigation Results with Counterfactual Images

Next, we evaluate to what extent we are able to mitigate bias via the methods
proposed in the Methodology section: At the pre-processing, in-processing and
post-processing stage. With reference to Table 3, in terms of accuracy, there does
not seem to be a difference between the pre-processing, in-processing and post-
processing methods. All were able to improve accuracy prediction to largely the
same effect. However, we witness a difference in outcome acrossMEO. According
to MEO, the pre-processing method is best for achieving fairness across gender
whilst the in-processing method is best for achieving fairness across race. Though
this measure highlight different effectiveness, all three methods seem comparable
in terms of their ability to improve MEO across board.

It is only in terms of MCF where we manage to observe a wider difference in
performance disparity. The pre-processing and in-processing methods were able
to improve MCF to a greater extent compared to the post-processing method.
Out of the first two, it is evident that the in-processing method manages to
outperform the other two across both sensitive attributes. It gives the highest
MCF score of 0.60 and 0.62 across gender and race respectively compared to 0.55
and 0.57 for the pre-processing method. On the other hand, we see that the post-
processing method only gives 0.42 and 0.41 across gender and race respectively.
This result is noteworthy in several ways. First, this highlights the importance
of using different metrics for bias evaluation as this methodological gap would
not have been picked up by the other two metrics (MACC and MEO). Second,
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Table 4. Stacked model combines the pre-, in- and post-processing stages.

Gender Race

Emotion Male Female Caucasian AA Asian

Surprise 0.68 0.74 0.73 0.72 0.55
Fear 0.47 0.44 0.47 0.50 0.38
Disgust 0.37 0.42 0.42 0.33 0.30
Happy 0.95 0.98 0.98 0.91 0.93
Sad 0.59 0.62 0.60 0.63 0.61
Angry 0.67 0.50 0.64 0.60 0.50
Neutral 0.75 0.84 0.80 0.72 0.78

MACC 0.75 0.81 0.79 0.78 0.76

MEO 0.93 0.96
MCF 0.59 0.65 0.62 0.61 0.63
↪→ MCF (Avg.) 0.62 0.62

this underlines the need to use a variety of methods to tackle the problem of
bias as a standalone post-processing method might be inadequate. Finally, with
reference to Table 4, we see that the stacked approach improved scores across all
evaluation metrics. This model comprises of a combination of the fine-tuned pre,
in and post-processing methods. In Table 5, we see that the combined approach
is comparatively better than all the standalone methods across most metrics.
Out of the standalone methods, the in-processing method seems to be best in
terms of achieving both MEO and MCF fairness.

Table 5. Results summary showing that a combined stacked approach supersedes all
other standalone models on most metrics.

Model MACC MF1 MEO MCF

Original 0.65 0.54 0.97 0.30
Pre-processing 0.63 0.67 0.94 0.56
In-processing 0.69 0.68 0.95 0.61
Post-processing 0.68 0.65 0.94 0.42
Combined 0.78 0.71 0.95 0.62

6 Conclusion and Discussion

Overall, the stacked approach supersedes the rest across most measures: accuracy
(MACC), F1-score (MF1), and Counterfactual Fairness (MCF ). A significant
point is that our work agrees with the findings in [17] in many ways. One of
the key findings was how pre-processing methods can have a huge effect on
disparity in prediction outcomes. Second, their evaluation showed that many
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of the measures of bias and fairness strongly correlate with each other. This
is evident in our findings too as we see that the equal opportunity fairness
correlates with class-wise performance accuracy across board. Hence, we argue
the importance of using an orthogonal measure to capture the bias which would
otherwise go unnoticed. In our experiments, the Counterfactual Fairness measure
MCF fulfills this criteria. Indeed, we see that it captures the efficacy difference in
achieving Counterfactual Fairness across the different bias mitigation strategies.
This provides empirical evidence for the gaps highlighted in Section 2.1.

Further, though the overall evaluation metrics have improved, we still ob-
serve bias when conducting a disaggregated analysis partitioned across the dif-
ferent sensitive attributes or emotion categories. For instance, the mitigation
algorithms consistently performed poorly for certain emotion categories, e.g.
“Disgust”. This aligns with the findings in [25, 49] as such expressions are hy-
pothesised to be less well-recognised than other prevalent emotions e.g. “Happy”.

A key limitation of our work is that the methods that we propose are lim-
ited by dataset availability. We have used the annotations as provided by the
original dataset owners [32] which were crowd-sourced and labelled by humans.
However, this approach of treating race as an attribute fails to take into account
the multi-dimensionality of race [21] which represents a research area that fu-
ture researchers can look into. In addition, we have solely relied upon the original
training-test split provided by the data repository. As highlighted in [17], algo-
rithms are highly sensitive to variation in dataset composition and changes in
training-test splits resulted in great variability in the accuracy and fairness mea-
sure performance of all algorithms. Another limitation is that of robustness and
further research on adversarial attacks on fairness [38] should be investigated.

We recognise that face recognition and by its extension, facial affect recog-
nition has received criticism for its misuse and parallelism to facial phrenology.
First, we would like to underscore that the ideas in this paper are meant to
address the existing problem of bias and our intention is for it to be used for
good. Second, we concur that many of the concerns raised are valid and we view
this as an opportunity for future work extensions. Third, we hope this piece of
work will encourage researchers and companies to shape solutions that ensure
that the technology and applications developed are fair and ethical for all.
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