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Abstract 
Distinguishing animate from inanimate things is of great behavioural importance. Despite 
distinct brain and behavioural responses to animate and inanimate things, it remains unclear 
which object properties drive these responses. Here, we investigate the importance of five 
object dimensions related to animacy (“being alive”, “looking like an animal”, “having 
agency”, “having mobility”, and “being unpredictable”) in brain (fMRI, EEG) and behaviour 
(property and similarity judgements) of 19 participants. We used a stimulus set of 128 
images, optimized by a genetic algorithm to disentangle these five dimensions. The five 
dimensions explained much variance in the similarity judgments. Each dimension also 
explained a modest but significant amount of variance in the brain representations, except, 
surprisingly, “being alive”. Different brain regions sensitive to animacy may represent distinct 
dimensions, either as accessible perceptual stepping stones toward detecting whether 
something is alive or because they are of behavioural importance in their own right. 
 
Animacy | Dimensions | Visual object recognition | EEG | fMRI | Similarity judgements 
 
Introduction 
The perception of animate things is of great behavioural and evolutionary importance to 
humans and other animals. Recognizing animate things is essential for choosing appropriate 
actions as we engage the physical and social world, and can be a matter of life and death 
(e.g., quick recognition of a predator). Animacy is an important representational division in 
nonhuman and human higher ventral visual cortical areas in the inferior temporal cortex 
(Kriegeskorte et al., 2008) and the medial temporal lobe (Blumenthal et al., 2018) as measured 
by functional magnetic resonance imaging (fMRI). Consistent with the importance of animacy 
perception in the classical neuropsychological literature, lesion studies established that living 
things are represented in dedicated regions of the cortex (Funnell & Sheridan, 1992; Ralph et 
al., 1998; Silveri et al., 1997). However, it is less clear which of the distinctive features of 
animate things are represented in the brain and reflected in judgments of animacy and of the 
similarity between things. An animal differs from an inanimate object in many respects, so 
animacy could be diagnosed by many different indicators. The dimensions of animacy that 
have been explored include “being alive” (Connolly et al., 2012; Gray et al., 2007; Huth et al., 
2012; Leib et al., 2016; Looser et al., 2013; Rogers et al., 2005; Wheatley et al., 2011), “looking 
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like an animal” (Bracci et al., 2019; Connolly et al., 2012; Huth et al., 2012; Rogers et al., 2005; 
Sha et al., 2015; Wheatley et al., 2011), “having mobility” (Beauchamp et al., 2002, 2003; 
Shultz & McCarthy, 2014), “having agency” (Gobbini et al., 2007, 2010; Lowder & Gordon, 
2015; Shultz et al., 2015; Shultz & McCarthy, 2014; Thorat et al., 2019), and “being 
unpredictable” (Lowder & Gordon, 2015). Each of these studies offers important insights on 
one particular dimension of animacy. However, to understand which of a number of 
confounded dimensions are represented, we need experiments designed to disentangle them. 
 
Dimensions that define a concept depend on the chosen definition of the concept. Dictionary 
definitions of animate rely heavily on the dimension of being alive (animate: “living; having 
life”, Oxford Advanced Learner's Dictionary). However, being alive is a difficult-to-assess latent 
property of a thing. It seems plausible that a perceptual system might represent more 
accessible dimensions that are correlated with being alive, even if being alive were ultimately 
the behaviourally important property. In addition, a more accessible related property, such as 
looking like an animal or being unpredictable, may be of behavioural importance in its own 
right. We are not concerned here with the philosophical and semantic questions of animacy, 
but with the empirical question of which of several related and commonly conflated dimensions 
are represented in particular brain regions and in behavioural judgements.  
 
Apart from the abovementioned dimensions of animacy, several other human-centred 
interpretations of animacy have been proposed. Recently reported animacy-related concepts 
that explain variance in the ventral visual stream fMRI measurements are human-likeness 
(Rosenthal-von der Pütten et al., 2019), humanness (Contini et al., 2020), resemblance to 
human faces and bodies (Ritchie et al., 2021), and capacity for self-movement and thought 
rather than face presence (Proklova & Goodale, 2022). Another similar concept is the animacy 
continuum, where objects are perceived as more animate when they are more similar to 
humans (e.g., images of monkeys would be perceived as more animate than insects, even 
though both species belong to the animal category; Connolly et al., 2012). In addition to the 
high-level dimensions, low-level visual features correlate with animacy (Long et al., 2017; 
Rosenthal et al., 2018; Schmidt et al., 2017). Colour statistics (Rosenthal et al., 2018), 
curvature (Long et al., 2017), and mid-level shape features (Schmidt et al., 2017) can be used 
to classify whether an object is animate or inanimate. 
 
The stimuli used in previous studies were mostly handpicked to investigate a chosen 
dimension without controlling for confounding variables. Previous studies often used unnatural 
stimuli (e.g., point-light displays in Gobbini et al., 2007 or grey-scale simplified objects in 
Proklova et al., 2016) or stimuli from only one category of objects (e.g., animals in Thorat et 
al., 2019). The “being unpredictable” dimension has only been studied in the language domain 
and not in vision. Finally, previous studies mostly focused on one type of behaviour or one 
type of brain measurement but none of them has combined multiple measurements of 
behaviour and different brain measurement modalities, which would allow building a more 
comprehensive understanding. This approach has limited our progress toward a 
comprehensive understanding of the representation of the multiple dimensions of animacy. 
Thus, despite decades of research that has established the prominence of different 
dimensions of animacy in human brain and behaviour, it remains unclear whether any one of 
the five selected dimensions or a subset of them can explain the responses and how this 
depends on the brain region or behavioural measure. 
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Here, we comprehensively investigate the importance of the five selected dimensions of 
animacy: “being alive”, “looking like an animal”, “having agency”, “having mobility”, and “being 
unpredictable”. By using a larger number and diversity of stimuli than in the previous studies, 
we can disentangle the dimensions experimentally. We study responses to this stimulus set 
using two behavioural tasks (animacy ratings and similarity judgements) and two brain 
measurement modalities (fMRI and EEG). To disentangle the five selected dimensions of 
animacy, we optimized a stimulus set of 128 images using a genetic algorithm (GA). 
 
Results 
Stimulus selection procedure and stimulus set 
Evaluating the contribution of individual dimensions of animacy (“being alive”, “looking like an 
animal”, “having mobility”, “having agency”, and “being unpredictable”) would be best 
performed on a stimulus set that is as decorrelated on these dimensions as possible. We 
created such a stimulus set by optimizing stimuli using a genetic algorithm. We selected 
images that were maximally decorrelated on dimensions of animacy using a four-step 
procedure (Figure 1a, see Methods for details). First, we created an animacy dimension grid 
where we asked participants to fill freely in the names of the objects fulfilling each animacy 
dimension combination to then find images that satisfy combinations of dimensions of animacy 
(29 out of 32 possible combinations). The object names provided by the subjects did not cover 
all 32 combinations, which is why 29 combinations out of 32 were included in step 1 of the 
stimulus selection procedure. Participants came up with 100 classes in total, and the 
participants were not given any object classes to use by the experimenters (Supplementary 
Table 1). The object categories were distinct (e.g., there were different types of robots and, 
therefore, two different object categories, “humanoid robot” and “animal robot”, were included). 
Second, we assembled object images based on object names from step one. Third, an 
independent set of participants rated object images (which were assembled based on object 
names from step one) on each of the five selected dimensions of animacy to generate animacy 
ratings. Fourth, we used a genetic algorithm to select a subset of images with the lowest 
maximum correlation between dimensions of animacy (10,000 generations). The maximum 
correlation between dimensions in the stimulus set was 0.36. This result was better than when 
randomly selecting the stimuli 10,000 times without optimization (maximum correlation 
between dimensions = 0.64), proving that our novel stimulus selection procedure was 
successful. The pairwise correlations between animacy dimensions for the 128 stimuli 
selected by GA and for the 128 stimuli selected randomly are represented in Figure 1b. This 
stimulus set was used in subsequent behavioural and brain imaging experiments.  
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Figure 1. Stimulus-selection procedure and pairwise correlation between animacy dimensions before and 
after stimulus selection by the genetic algorithm. 
a. First, we created an animacy grid with all dimensions of animacy combinations and asked 11 participants to fill 
in the names of objects that fulfilled these combinations. Second, we assembled object images based on object 
names from step one. Third, an independent set of 26 participants performed animacy ratings of 300 of these object 
images. Finally, we selected an optimal set of stimuli that had a low correlation between dimensions (as 
behaviourally rated) using a genetic algorithm. These stimuli were used in behavioural and brain representation 
experiments where a new set of participants was recruited to make sure that the stimulus generation and the actual 
experiments were independent. 
b. Pairwise correlation between animacy dimensions for the randomly selected 128 stimuli (left) and the 128 stimuli 
selected by the genetic algorithm (right) in behavioural ratings. 
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The stimulus set (Figure 2a) consisted of 128 images spanning almost all animacy dimension 
combinations (26 out of 32 possible combinations). Among 29 dimension combinations for 
which participants provided object names, three were not selected by the GA. This is because 
the objective of the GA was to minimise the maximum correlations between dimensions, and 
some dimension combinations were not optimal to be chosen. A wide range of objects was 
present, such as humans, human fetuses, human organs, human and animal shadows, plants, 
corals, forces of nature, game items, toys, vehicles, and electronic equipment covering 68 
categories. The GA did not choose some of the images representing object names from the 
initial 100 object names listed in step 1, as the dimensions of animacy ratings on these images 
were not optimal for the GA objective. The GA was allowed to choose a maximum of two 
different images representing different objects from a given category (e.g., two different animal 
robots) if this selection contributed to an optimal GA solution. A small percentage of stimuli 
can be considered as unusual (7.8 %, 10 out of 128 stimuli, considering that stimuli such as 
human fetus, disembodied eyeball, person on life support, heart can be considered as 
emotional triggers). As the unusual stimuli constitute only a small percentage of our stimulus 
set we do not think that they would affect the interpretation of our results. None of the 
participants mentioned that they found any of the stimuli upsetting after performing the 
experiment. However, future studies may benefit from including affect ratings alongside the 
dimensions of animacy ratings. This stimulus set was used for two behavioural studies: 
animacy ratings and similarity judgements, and two brain response measurement studies: 
EEG (to access temporal information) and fMRI (to access spatial information). Nineteen 
participants performed all the studies. Importantly, participants first performed EEG and fMRI 
studies, followed by similarity judgements and finally animacy ratings (Figure 2b). This 
experimental order was to ensure that participants did not know about animacy dimensions 
tested until the final animacy ratings.  
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Figure 2. Stimulus set and study overview. 
a. The genetic-algorithm driven stimulus set consisted of 128 images decorrelated on dimensions of animacy. The 
stimuli were coloured images of sport equipment, games, robots, dolls and puppets, plush toys, land vehicles, air 
vehicles, plants, forces of nature (water, air, fire, smoke), sea organisms, cells, organs and fetuses, humans, food, 
kitchen and office equipment, shadows.  
b. Study overview. All 19 participants performed two behavioural studies: animacy ratings and similarity 
judgements, and two brain response measurement studies: EEG (to access temporal information) and fMRI (to 
access spatial information). Importantly, participants first performed EEG and fMRI studies, then similarity 
judgements and finally animacy ratings. This experimental order was to ensure that participants did not know about 
animacy dimensions tested until the final animacy ratings.  
 
Consistency in animacy ratings across participants 
We first wanted to evaluate the contribution of each dimension of animacy when participants 
were asked to judge how animate an object image was. We first explored how consistent 
participants were in judging each dimension of animacy and each image. We used 
representational similarity analysis (Nili et al., 2014) to reveal which dimensions contribute 
most when participants judged animacy. We also examined which dimension(s) explained 
unique variance in the animacy ratings. 
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Participants judged each object image using a continuous scale from -10 to 10 for each 
dimension, e.g., -10 meant “inanimate” and 10 meant “animate” (Figure 3a). The same image 
was judged in the same way on the five investigated dimensions of animacy using the same 
scale. The mean between-participant correlation was 0.6, which indicated that participants 
were generally consistent in their ratings. The mean within-participant consistency for thirty 
repeated stimuli was 0.89 meaning that participants consistently judged the same stimulus 
within a session. The raw data of animacy ratings shows that a given stimulus could be 
differently rated on each of the dimensions (Figure 3b). 
 
We wanted to know how consistent participants were in judging each dimension and each 
stimulus. This analysis had two purposes: to be able to determine whether the variability in 
animacy ratings is low enough to interpret the ratings at all and to test which dimensions and 
stimuli were particularly controversial for participants as reflected by higher variability.  
 
We first asked about the participants’ consistency across stimuli in all dimensions of animacy. 
There is variability in the consistency of ratings as some of the object images, e.g., "bike", was 
judged very consistently as expected, whereas other more controversial ones, e.g., 'human 
fetus', less consistently, with "human shadow" having the lowest consistency among the object 
images tested (Figure 3c). While participants were asked to judge what is represented on 
images (“human shadow”), it might not be apparent whether to judge the shadow itself or the 
person creating the shadow. 
 
To get more insights into animacy dimension ratings, we explored the consistency of each 
stimulus per each animacy dimension. For "looking like an animal”, which was judged most 
consistently among the dimensions, "hammer" was one of the object images that were most 
consistently judged, whereas an image of a "human" was not judged very consistently. The 
lower consistency of judging an image of a human may be related to the fact that some 
humans do and others do not consider themselves animals, even though from a biological 
point of view Homo sapiens belong to the animal category. Looking at the other side of the 
spectrum - "having agency" dimension was judged least consistently - we observed that an 
example image that had a high consistency of ratings was "eyeball", whereas an image of a 
"robot" was not very consistently judged (Figure 3d).  
 
Among all the dimensions participants judged "having agency" least consistently and "looking 
like an animal" most consistently (see Figure 3e for the consistency of ratings for each 
dimension). What about the animacy ratings (“being animate”)? Would object animacy be 
judged consistently across participants or given the ambiguous definition of this term, would 
the consistency be lower than some of the more precisely defined dimensions of animacy? 
We found that the latter was the case - animacy ratings had lower consistency than more 
precisely defined dimensions of animacy, except for the 'having agency' dimension.  
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Figure 3. Animacy ratings and their consistency with examples of images judged consistently and not very 
consistently. 
a. Illustration of animacy ratings. Participants judged each object image using a continuous scale from -10 to +10 
for each animacy dimension, e.g., -10 meant “dead” and +10 meant “alive” for the “being alive” dimension. 
Additionally, participants performed a rating of "being animate" dimension in a similar fashion.  
b. Mean ratings of each animacy dimension and stimulus across participants. 
c. Consistency of each stimulus in animacy ratings across participants (standard error of the mean) with examples 
of stimuli with varying values of standard error. 
d. Consistency of each animacy dimension and stimulus in animacy ratings across participants with examples of 
stimuli with varying values of standard error for the most consistently judged ("looking like an animal") and the least 
consistently judged ("having agency") dimensions. 
e. Consistency of each animacy dimension in animacy ratings across participants (standard error of the mean). 
 
Contribution of each animacy dimension to animacy ratings 
To gain more intuition about what stimuli are considered to have the highest value on each 
animacy dimension, we visualized 10 object images with the overall minimum and 10 with the 
maximum rating on a given dimension (Figure 4a). Overall, images that had low values on 
animacy dimension ratings were similar among dimensions (e.g., plush toys, meat, washing 
machine). In contrast, images with high ratings did differ depending on a dimension tested 
(e.g., stimuli judged as the most unpredictable being humans and forces of nature, in contrast 
to humans judged as having the most agency), proving that indeed these dimensions capture 
different aspects of animacy perception (Figure 4a, right panel). 
 
To reveal which dimensions contribute most when participants judged animacy we used 
representational similarity analysis (RSA, see Methods). RSA characterises representations 
in behavioural and brain data and models by representational dissimilarity matrices (RDMs) 
of the response patterns elicited by stimuli. RDMs capture the information represented by data 
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or models by characterizing their representational geometry (Kriegeskorte, Mur, & Bandettini, 
2008; Kriegeskorte & Kievit, 2013). The representational geometry reflects which stimulus 
information is emphasized and which is de-emphasized. Models (here dimensions of animacy) 
are tested by correlating their RDMs with data RDMs.  
 
Using RSA, we found that among all the dimensions, "having agency" and "being alive" 
explained more variance than other dimensions (Figure 4b) in animacy ratings (when 
participants were asked to judge how animate an object image was). This result means that 
when asked to judge animacy humans mostly think about whether an object is alive and 
whether it has agency. Even though "having agency" and "being alive'' explain more variance 
than the other dimensions, it does not mean that they explain unique variance. To test that, 
we performed a unique variance analysis (see Methods for details) and observed that only 
one dimension, "being alive", explains significantly more unique variance than "having agency" 
and "being unpredictable" dimensions (Figure 4c). "Being alive" is one of the dimensions that 
explain the most variance in animacy ratings and also the only dimension that explains 
significantly more unique variance than some of the other dimensions.  
 
In summary, when asked to rate object animacy, participants found "being alive" and "having 
agency" as dominant dimensions, and were most consistent when judging the “looking like an 
animal” dimension and least consistent in judging the “having agency” dimension. 
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Figure 4. Animacy ratings. 
a. Order of images with lowest and highest ratings on each animacy dimension. Out of 128 images, we show 10 
lowest and 10 highest rated images on each animacy dimension. 
b. Animacy dimension representational dissimilarity matrices (RDMs) comparisons with animacy ratings (“being 
animate”) RDMs. Bars show the correlation between the animacy ratings RDMs and each animacy dimension 
RDM. A significant correlation is indicated by an asterisk (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). 
Error bars show the standard error of the mean based on single-participant correlations, i.e., correlations between 
the single-participant animacy ratings RDMs and animacy dimension RDM. The grey bar represents the noise 
ceiling, which indicates the expected performance of the true model given the noise in the data. Horizontal lines 
show pairwise differences between model performance (p < 0.05, FDR corrected across all comparisons). 
c. Unique variance of each animacy dimension in explaining animacy ratings computed using a general linear 
model (GLM). For each animacy dimension m, the unique variance was computed by subtracting the total variance 
explained by the reduced GLM (excluding the dimension of interest) from the total variance explained by the full 
GLM. Specifically, for dimension m, we fit GLM on X = "all dimensions but m" and Y = data, then we subtract the 
resulting R2 from the total R2 (fit GLM on X = "all dimensions" and Y = data). We used non-negative least squares 
to find optimal weights. A significant unique variance is indicated by an asterisk (one-sided Wilcoxon signed-rank 
test, p < 0.05 corrected). The error bars show the standard error of the mean based on single-participant unique 
variance. Horizontal lines show pairwise differences between model performance (p < 0.05, FDR corrected across 
all comparisons). 
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Contribution of each animacy dimension to similarity judgements 
After having established the contribution of animacy dimensions to animacy ratings, we tested 
whether any of the dimensions would explain similarity judgements. The similarity judgements 
task allows participants to evaluate objects in a more natural way concentrating on general 
object similarity. Please note that participants performed the similarity judgements task before 
competing dimensions of animacy ratings, so they were unaware of the dimensions of animacy 
tested. As participants were asked to arrange object images based on their similarity and not 
asked about animacy, dimensions of animacy may not explain these representations. Rather 
than dimensions of animacy, either other categorical divisions or lower-level image features 
could be used for judging object similarity. Participants placed images of objects inside a 
circular arena according to how similar they judge them (Figure 5a). The procedure was 
repeated with different numbers of objects that had to be arranged indefinitely until reaching 
a predefined arrangement consistency (see Methods). We evaluated how well the dimensions 
of animacy explained the similarity judgements task using RSA and the unique variance 
analysis. 
 
Visualizing the similarity judgements as a multidimensional scaling (MDS) plot helped us to 
determine which object images were grouped together (Figure 5b). For example, object 
images of most robots, fetuses, and a human on life support were grouped, with human 
images separated but placed close to an image of a realistic humanoid robot. This grouping 
is related to the agency dimension as these images received the highest rating on “having 
agency” dimension (Figure 4a). Animal robots formed their own cluster together with other 
moving objects such as boomerangs, balls, and buses. Different vehicles were grouped 
nearby with images of cars being placed near comets, clouds, and dominos. Games and toys 
were arranged in proximity to the “animal-like robot” group and the “human” group. Some 
unpredictable objects were also grouped together: geysers and game machines, or volcanos 
and waves (Figure 4a). As a sanity check, images that depict the same object were grouped 
together, for example, two pictures of flowers or wheels (Figure 4a). To gain an intuition of 
how well the five dimensions of animacy studied here separated representations in the 
similarity judgements, we have displayed MDS plots colour-coded according to binary animacy 
dimensions (e.g., “being alive” with one colour of dots and “not being alive” with another colour 
of dots, Supplementary Figure 1). All dimensions separated the stimuli well, with each 
dimension revealing different divisions between stimuli (Supplementary Figure 1). Despite 
“having agency” dimension having positive values for three stimuli (images of two adult 
humans and a human fetus in the late stages of pregnancy,  Supplementary Figure 1), this 
dimension of animacy explained significant variance in the similarity judgements (Figure 5c). 
 
If we assume that the similarity judgements are based only on the similarity between low-level 
visual features, the dimensions of animacy should not explain a large fraction of the variance. 
This assumption is not what we observed - all dimensions of animacy explained a significant 
amount of variance in the similarity judgements task (Figure 5c). If the low-level features were 
the only ones that participants used in similarity judgements object arrangements, then we 
would see on the MDS that objects are arranged by, for example, colour or shape, but this is 
not what we observe (Figure 5b). None of the dimensions fully explained the similarity 
judgements data but the "having agency" dimension was close to explaining the total 
explainable variance given the noise in the data. As a portion of the variance remained 
unexplained, other dimensions beyond the ones explored here are likely needed to capture 
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the data fully. Overall, when judging object similarity, humans use all dimensions of animacy 
tested here.  
 
Even when all dimensions of animacy explain similarity judgements, maybe one or more 
dimensions explain unique variance. After having performed the unique variance analysis, we 
observed that each dimension explained unique variance in the similarity judgements (Figure 
5d). However, almost no dimension explained more unique variance than the other 
dimensions. This finding suggests that each dimension not only explains variance in the data 
but also explains a unique portion of that variance.  
 
It is important to consider the effect of low-level visual features on the interpretation of these 
results and test whether the five animacy dimensions studied here explain unique variance 
over and above low-level visual features in similarity judgements. We included the first 
convolutional layer of the deep neural network AlexNet (Krizhevsky et al., 2012) as a model 
of low-level visual features in this analysis. We observed that each of the animacy dimensions 
explained a significant amount of unique variance over and above the variance explained by 
low-level visual features and the other dimensions (Supplementary Figure 2). 
 
Overall, each animacy dimension explained a similar amount of variance in a behavioural task 
of similarity judgements, meaning that participants use higher-level dimensions of animacy 
when judging object similarity.  
 

 
 
Figure 5. Dimensions of animacy and similarity judgements. 
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a. Similarity judgements multiarrangement task. During this task, object images were shown on a computer screen 
in a circular arena, and participants were asked to arrange the objects according to their similarity, such that similar 
objects were placed close together and dissimilar objects were placed further apart. Participants performed multiple 
arrangements of subsets of the images, enabling us to estimate the underlying perceptual similarity space (see 
Methods for details). 
b. Multidimensional scaling plot of similarity judgements (mean across participants, with metric stress criterion). 
c. Animacy dimension RDM comparisons with similarity judgements RDMs. Bars show the correlation between the 
similarity judgements RDMs and each animacy dimension RDM using the same conventions as in Figure 4b. 
d. Unique variance of each animacy dimension in explaining similarity judgements computed using the same 
conventions as in Figure 4c. 
 
Contribution of each animacy dimension to EEG time course 
Having shown the contribution of each animacy dimension in explaining animacy ratings and 
in a behavioural task of similarity judgements, we asked whether dimensions of animacy 
explain the time course of object image processing in the brain using EEG. One possibility is 
that once an image is shown for only half a second, the brain performs only automated image 
processing, and higher-level dimensions of animacy do not contribute to this process at all. 
The other possibility is that beyond low-level features, higher-level dimensions of animacy do 
play a role in forming brain representations of images even with a short stimulus presentation. 
To arbitrate between those possibilities, we evaluated the amount of variance explained by 
each animacy dimension and tested whether any dimension(s) explains unique variance in 
the EEG signal. 
 
We first performed multivariate pattern analysis (MVPA) to determine how well we could 
decode the pattern of activations evoked by each stimulus. We performed pairwise stimuli 
decoding using a support vector machine approach and we could decode images in the 
stimulus set to a high decoding accuracy (62%) in a long time window (between 43 and 1000 
ms after stimulus onset, Figure 6a). The peak decoding accuracy was at 197ms (+/- 7ms, 
standard error). 
 
To explore the structure of the representations, we displayed MDS plots for the selected 
timepoints: 0 ms - when the stimulus was just displayed, 100 ms - when the decoding accuracy 
started to go up, 200 ms - peak decoding accuracy, and 300 ms - when the decoding accuracy 
started to drop. As expected, no structure was visible at the stimulus onset (0 ms, 
Supplementary Figure 5a). At 100 ms, human and humanoid and animal robot faces were 
grouped together, as well as forces of nature (Supplementary Figure 5b). At 200 ms, faces 
were still grouped together, however, faces of a human and robots were represented further 
away from each other (Supplementary Figure 5c). We have also displayed MDS plots colour-
coded according to binary animacy dimensions for visualization purposes (Supplementary 
Figure 6). At 300 ms, we observed similar clusters to those present at 100 ms (Supplementary 
Figure 5d).  
 
Once we knew that we could decode our stimuli, we asked how much variance each animacy 
dimension explained in EEG recordings. Do any of the dimensions explain any variance at 
all? To answer this question, we correlated each animacy dimension with EEG representations 
at every time point in every participant using RSA. First, we determined whether each of the 
animacy dimension RDMs was significantly related to the EEG data RDMs at every timepoint 
using a participant-as-random-effect analysis (one-sided Wilcoxon signed-rank test). We 
subsequently tested for differences in animacy dimension performance between each pair of 
dimensions of animacy at each timepoint using a participant-as-random-effect analysis (two-
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sided Wilcoxon signed-rank test). We accounted for multiple comparisons for each analysis 
by controlling the FDR at 0.05. We found that most animacy dimensions explained a significant 
amount of variance in EEG recordings (Figure 6b, Supplementary Figure 3); however, some 
dimensions explained variance at slightly different times. Despite differences in the exact 
timing of when dimensions of animacy explained the variance, a very clear pattern that one 
dimension explains representations earlier than the other was not observed. However, 'being 
unpredictable' explained significantly more variance than most dimensions in early time points: 
specifically more than “looking like an animal” (89-130 ms), “having mobility” (89-113 ms), and 
”having agency” (79-126 ms). While “looking like an animal” explained more variance than 
most other dimensions in later time points: more than “being alive” (209-302 ms), ”having 
agency” (230-266 ms), and “being unpredictable” (146-184 ms). Finally, “having agency” 
explained more variance than most of the dimensions even later in time: more than “being 
alive” (268-301 ms), “having mobility” (261-289 ms) and “being unpredictable” (293-315 ms). 
To investigate how the five dimensions of animacy studied here relate to the general animacy, 
we correlated the general animacy ratings alongside the dimensions of animacy with the EEG 
RDMs. We observed that the “being animate” ratings explained a significant amount of 
variance in the EEG responses, similar in magnitude and timing to the variance explained by 
the dimensions of animacy tested (Supplementary Figure 4). 
 
Most animacy dimensions explained variance in EEG recordings. Is it the same or unique 
variance? Does one dimension explain more unique variance than the others, as in the case 
of animacy ratings, or is there no difference between the amount of unique variance explained 
by each dimension, as for the similarity judgements? We found that only one dimension -
"looking like an animal"- explained the unique variance in EEG recordings between 237 and 
301 ms. None of the other dimensions explained any significant unique variance (Figure 6c). 
We wanted to check whether the unique variance explained by the “looking like an animal” 
dimension in the EEG data can be related to low-level visual features or whether this 
dimension explains unique variance over and above the variance explained by low-level 
features. We therefore included the first convolutional layer of AlexNet as a model of low-level 
visual features in the unique variance analysis in addition to the five dimensions of animacy 
studied here. We observed that our result of “looking like an animal” explaining a significant 
amount of the unique variance still holds. “Looking like an animal” explains the unique variance 
not explained by either the other four dimensions or the first convolutional layer of AlexNet 
(Supplementary Figure 7). 
 
Overall, most dimensions of animacy explained EEG recordings with subtle differences in 
timing, but only ‘looking like an animal’ explained unique variance. Even for the rapid object 
recognition time course, higher-level dimensions of animacy explained a significant amount of 
variance in brain representations. 
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Figure 6. Dimensions of animacy and EEG time course. 
a. Mean decoding curve across participants (pairwise stimuli decoding using a support vector machine approach). 
Significant decoding is indicated by a horizontal line above the graph (one-sided Wilcoxon signed-rank test, p < 
0.05 corrected) and starts at 43ms (+/- 2ms, standard error) with a peak latency of 197ms (+/- 7ms, standard error, 
indicated by an arrow). The shaded area around the lines shows the standard error of the mean based on single-
participant decoding. The grey horizontal bar on the x axis indicates the stimulus duration. 
b. Animacy dimension RDM comparison with EEG RDMs across time. Lines show the correlation between the 
EEG RDMs and each animacy dimension RDM. A significant correlation is indicated by a horizontal line above the 
graph (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The grey horizontal bar on the x axis indicates 
the stimulus duration. 
c. Unique variance of each animacy dimension in explaining EEG RDMs computed using a GLM. For each animacy 
dimension, the unique variance is computed by subtracting the total variance explained by the reduced GLM 
(excluding the animacy dimension of interest) from the total variance explained by the full GLM, using non-negative 
least squares to find optimal weights. A significant unique variance (between 237 and 301ms) is indicated by a 
horizontal line above the graph (one-sided Wilcoxon signed-rank test, p < 0.05 corrected). The grey horizontal bar 
on the x axis indicates the stimulus duration. 
 
Contribution of each animacy dimension to fMRI representations 
We asked where in the brain dimensions of animacy explain patterns of responses to images 
using fMRI. We performed both regions of interest (ROI) analysis along the ventral and dorsal 
visual streams and searchlight analysis. The ROI analysis was performed to evaluate the 
contribution of dimensions of animacy in the brain regions along the visual stream where we 
know object images are represented. The searchlight analysis complemented the ROI 
analysis testing whether other regions in the visual stream exist where dimensions of animacy 
explain variance that we may have missed when preselecting ROIs.  
 
We first evaluated the contribution of each animacy dimension in ROIs across the ventral: 
visual area 1 (V1v), ventral occipital cortex 2 (VO2), parahippocampal cortex 2 (PHC2) and 
dorsal: visual area 1 (V1d), lateral occipital cortex 2 (LO2), TO2 visual streams (Figure 7a, 
Supplementary Figure 9 - with displayed noise ceiling). To define ROIs, we used a 
Probabilistic brain atlas (Wang et al., 2015). The locations of the examined ROIs are presented 
in Supplementary Figure 8. In the ventral visual stream, “being unpredictable”, “having 
mobility”, and to a lesser extent “having agency” explained variance in V1v, in contrast to 
higher-level visual areas (VO2, PHC2) where additionally “looking like an animal” explained a 
significant amount of variance and “having agency” explained more variance than in V1v. In 
the dorsal visual stream, “being unpredictable” and “having mobility” explained variance in 
V1d, with “having agency” explaining variance in higher-level visual areas (LO2, TO2), and 
“looking like an animal explaining variance only in TO2. As the dorsal stream carries 
information related to movement it is intuitive that “having mobility” and “being unpredictable '' 
explain variance in dorsal regions. It was not clear, however, whether “having agency” and 
“looking like an animal” would explain variance in dorsal regions but it is indeed what we 
observe. After examining the contribution of general “being animate” ratings to the fMRI ROI 
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representations, we did not see that “being animate” explained a significant amount of 
variance in fMRI data (Supplementary Figure 10). For completeness, we performed the same 
analysis for all regions in ventral (V1v, V2v, hV4, VO1, VO2, PHC1, PHC2) and dorsal (V1d, 
V2d, V3d, V3a, V3b, LO1, LO2, TO1, TO2) visual streams. We observed that more dimensions 
of animacy studied here explain variance in higher-level visual cortex than in early visual 
cortex (Supplementary Figures 11 and 12). 
 
To gain an intuition about the structure of the representations, we displayed MDS plots for the 
ROIs. As expected, the stimuli in early visual regions were grouped by shapes and colours, 
whereas we could see clusters of faces and forces of nature in higher-level visual regions 
(Supplementary Figure 13). In addition, the colour-coded MDS plot for PHC2 based on the 
binary dimensions of animacy revealed mild categorical structure for some dimensions (e.g., 
“looking like an animal”, Supplementary Figure 14). 
 
The results of the unique variance analysis are included in Supplementary Figure 15. “Being 
unpredictable”, “having mobility”, and “having agency” dimensions explained unique variance 
in early visual cortex. Except “being alive” dimension, four dimensions of animacy explained 
unique variance in higher-level visual areas. We also wanted to test whether the five 
dimensions of animacy studied here explained variance over and above low-level visual 
features in the fMRI ROI analysis. As for the EEG analysis, we therefore included the first 
convolutional layer of AlexNet along with the five dimensions of animacy in the unique variance 
analysis. Similarly to behavioural and EEG results, selected dimensions of animacy explained 
variance over and above low-level visual features of AlexNet’s first convolutional layer 
(Supplementary Figure 16). As expected, the unique contribution of the first convolutional layer 
of AlexNet was greater in the early and intermediate visual cortex in comparison to the high-
level visual cortex (Supplementary Figure 16). These results suggest that the dimensions of 
animacy are important for both ventral and dorsal visual streams, however, a substantial 
variance remained unexplained.  
 
To investigate the contribution of each animacy dimension in a spatially unbiased fashion we 
performed a searchlight analysis in the visual stream (Figure 7b). Consistently with the ROI 
analysis “being alive” did not explain any significant amount of variance in the brain. “Looking 
like an animal” also did not explain any significant amount of variance in searchlight analysis 
but it is possible that with a larger amount of data we would see this dimension explaining 
some variance as the ROI analysis and EEG results pointed in that direction. “Having mobility” 
dimension explained variance in early visual cortex only (based on the correlation strength of 
the searchlight analysis). In contrast, “having agency” explained variance only in higher-level 
visual cortex, which is consistent with the ROI analysis where “having agency” explains more 
variance in higher-level visual areas and further suggests that this dimension best captures 
higher-level representations. One dimension that explained variance in both early and higher-
level visual areas was “being unpredictable” suggesting that unpredictability is important for 
attention and is already detected in the early visual cortex. Despite the living non-living 
distinction being thought to be important for brain representations “being alive” dimension did 
not explain any significant amount of variance in brain responses based on the ROI and 
searchlight analyses. This suggests that the ventral and dorsal visual streams do not represent 
the results of a deeper cognitive inference process that would assess whether something is 
alive.  
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Figure 7. Dimensions of animacy and fMRI responses. 
a. Animacy dimension RDM comparisons with fMRI ROI RDMs. Bars show the correlation between each animacy 
dimension RDM with fMRI ROI RDMs using the same conventions as in Figure 4b. We selected ROIs across the 
ventral (V1v, VO2, PHC2) and dorsal (V1d, LO2, TO2) visual streams. 
b. Searchlight analysis with each animacy dimension showing where in the brain animacy dimension explain image 
representations masked with the visual stream regions (Spearman’s ρ between animacy dimension and brain 
representations, one-sided Wilcoxon signed-rank test, FDR controlled at 0.05). 
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Figure 8. Summary of findings. We find that the five tested dimensions of animacy captured behaviour very well. 
Brain representations were also explained by most dimensions (surprisingly not “being alive”), however, to a lesser 
extent than behaviour. The living/non-living distinction (“being alive”) features prominently in both dictionary 
definitions of animacy and the neuroscience literature on brain representations. Consistent with this prominent role, 
“being alive” accounted for about half the explainable variance in our participants’ object similarity judgements. 
Surprisingly, however, “being alive” did not explain variance in brain representations. The other four dimensions of 
animacy explained variance in both brain and behaviour. The “looking like an animal” dimension was the only 
dimension that explained significant unique variance in the EEG data. One interpretation is that “looking like an 
animal” provides an accessible visual correlate of animacy that can be computed by the visual system. The “having 
agency” dimension explained more variance in higher-level visual areas, consistent with the cognitive demands of 
determining agency. The “being unpredictable” dimension was reflected in representations in both lower and 
higher-level visual cortex, possibly because unpredictable things require attention.  In the fMRI data, three 
dimensions explained unique variance in early visual cortex (“having agency”, “having mobility”, and “being 
unpredictable”) and four dimensions in higher visual cortex (all except “being alive”). Our results reveal that different 
brain regions sensitive to animacy may actually represent distinct dimensions, either as accessible perceptual 
stepping stones toward detecting whether something is alive or because they are of behavioural importance in their 
own right.  
 
Discussion 
We investigated the representation of the five selected facets of animacy in brain and 
behaviour (summary in Figure 8) and concluded that different brain regions sensitive to 
animacy may actually represent distinct dimensions, either as accessible perceptual stepping 
stones toward detecting whether something is alive or because they are of behavioural 
importance in their own right. Including multiple dimensions in a linear model enabled us to 
disentangle their roles. To increase the power of these analyses, we decorrelated the five 
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selected dimensions of animacy using an optimized set of natural stimuli. We managed to 
reduce the maximum pairwise correlation from 0.64 (for random selection) to 0.36 (optimized). 
It may not be possible to create a stimulus set that has no correlations between dimensions 
at all using natural images. However, as long as the predictors of the model do not form a 
linearly dependent set, they can be disentangled in analysis by considering the unique 
variance explained by each. Historically, our analysis is related to studying one predictor of 
interest at a time, e.g., face-selective regions (Kanwisher et al., 1997). More recently, studies 
focused on decorrelating two predictors e.g., shape and animacy (Proklova et al., 2016). 
However, to our knowledge, none of the studies tried to decorrelate as many as the five 
selected dimensions of animacy. More broadly, our novel stimulus selection procedure using 
a genetic algorithm could be adopted to disentangle other multidimensional concepts beyond 
animacy. 
 
The brain activity patterns did not fall into a small number of clusters, such as the animate and 
inanimate clusters observed in Kriegeskorte et al. (2008). This does not contradict previous 
findings, but rather reflects the design of the stimulus set, which was optimized to reveal the 
ambiguities at the boundaries between the categories, far from the prototypically animate and 
prototypically inanimate stimuli. The Kriegeskorte et al. (2008) study is a good example of 
what happens when a wide range of common things are selected to define the stimulus set: 
many of them are low on all of the animacy dimensions studied here and many others are high 
on all of them. Here, by contrast, the stimulus set was designed to evenly populate a 5-
dimensional space. The prototypes of animate and inanimate things fall in diametrically 
opposed corners of this 5-dimensional space. Those two corners are populated by very few 
stimuli (those that are either low on all five dimensions or high on all five dimensions). Most of 
the stimuli sample the unknown territory close to the boundary, which has not been explored 
in previous studies. 
 
When evaluating variance explained by different dimensions it is important to keep in mind 
that the dimensions may not be equally represented by the stimuli. This issue can be illustrated 
with a conceptual experiment that aims to compare the contribution of colour and orientation 
in explaining early visual responses. If the presented stimuli vary in orientation by a few 
degrees only, whereas they vary in colour by a wide range of hues, then we can’t directly 
compare the contribution of orientation and colour dimensions. Since the variance of 
orientation would be much smaller than the variance of colour, colour will most likely contribute 
more to explaining the representations. A more fair comparison would be if we used all 360 
degrees for orientation and all possible colour hues for colour. Unlike in the example above 
we use the same scale for all the dimensions of animacy (values between -10 and 10), which 
make the dimensions comparable to each other. However, a similar issue exists in our study 
in that it is impossible to equalize the distribution of values for each dimension using a natural 
stimulus set. We already know that some of the dimension combinations are more sampled 
than others. This issue does not change the interpretation of our findings but rather points at 
the overall issue that arises when multidimensional concepts are compared. In future studies, 
it will be important to validate the generalizability of the results presented here with a larger 
stimulus set spanning a wide range of object categories. 
 
Despite its prominence in the neuroscience literature (Funnell & Sheridan, 1992; Ralph et al., 
1998; Silveri et al., 1997), the living/non-living distinction (“being alive”) did not explain 
variance in brain representations. This finding suggests that the ventral and dorsal visual 
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streams do not represent the results of a deeper cognitive inference process that would assess 
whether something is alive. Our EEG result is consistent with a magnetoencephalography 
(MEG) study where the “living” dimension did not explain much variance in MEG 
representations (Contini et al., 2019). The fact that “looking like an animal” was the only 
dimension that explained significant unique variance in the EEG data may be because this 
dimension provides an accessible visual correlate of animacy that can be computed by the 
visual system. For a stimulus set where dimensions of animacy were not decorrelated, we 
predict that “being alive” would explain substantial variance. Our decorrelated stimulus set 
revealed that other dimensions underlie the responses to living things. Likely “having agency” 
dimension has captured some variance of the “being alive” dimension in the brain responses 
as the “being alive” dimension was correlated with the “having agency” dimension (Figure 1b). 
Studying the interactions between the dimensions will be an important future work direction. 
The “being alive” dimension did explain variance in animacy ratings and similarity judgements 
suggesting that this dimension is present in cognition despite its lack of prevalence in the brain 
responses. Our result of differential representations of dimensions of animacy in brain 
measurement modalities and in brain and behavioural responses is consistent with previous 
studies that investigated a given animacy dimension of interest. For example, MEG patterns 
do not seem to carry information about the animate vs inanimate object category, in contrast 
to fMRI (Proklova et al., 2019). Another study has shown that animate-looking (e.g., cow mug) 
and animate objects (e.g., cow) are dissociated in behaviour but not in the ventral visual 
stream (Bracci et al., 2019). Little agreement between behavioural similarity judgements and 
7T fMRI responses has also been found in King et al., 2019. 
 
Consistent with higher-cognitive contributions, the “having agency” dimension explained 
significant variance in higher-level visual areas, explained more variance than most other 
animacy dimensions later in time, and was prominent in the judgements. The observation of 
the “having agency” dimension explaining high-level visual representations is consistent with 
previous studies that showed agency representations in the fusiform gyrus (Gobbini et al., 
2007, Shultz & McCarthy, 2014) and the ventral visual cortex (Thorat et al., 2019). Gobbini et 
al. used point-light displays as stimuli rather than images of natural objects used in this study. 
Shultz & McCarthy used two computer-animated avatar characters. Stimuli in Throat et al. 
were from 40 animal categories. The number and the diversity of stimuli in our study allowed 
us to disentangle the dimensions of animacy experimentally with higher precision. The “having 
agency” dimension was least consistently judged in behavioural animacy ratings suggesting 
that different people have different intuitions on whether something has agency; for example, 
our participants were divided as to whether the robots in our stimuli had agency or not. Seeing 
agency (or not) in robots mirrors an ongoing debate in society and may influence how humans 
interact with the increasing presence of robots in their environment.  
 
The “being unpredictable” dimension captured representations in both lower and higher-level 
visual cortex and earlier in time. One interpretation of this finding is that unpredictable things 
require attention and need to be processed early on. Humans need to know what to attend to 
in the visual world and if something unpredictable happens it captures attention, which enables 
us to stay on top of what is happening around us. This dimension of animacy has been studied 
only in the language domain and only in the context of natural forces (Lowder & Gordon, 2015), 
but we now show that “being unpredictable” also explains visual representations using a 
variety of stimuli. Lowder & Gordon found that natural forces are processed like animate 
entities during online sentence processing based on an eye-tracking experiment. They 
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propose an alternative explanation why the “being unpredictable” may be important in contrast 
to the attention-based explanation mentioned above. They claim that the “being unpredictable” 
dimension reflects a cognitive and linguistic focus on casual explanations that increase the 
predictability of events, which could offer an alternative theory to explain our results. 
 
Our study did not include human-centred dimensions (human-likeness (Rosenthal-von der 
Pütten et al., 2019), humanness (Contini et al., 2020), resemblance to human faces and 
bodies (Ritchie et al., 2021), capacity for self-movement and thought rather than face presence 
(Proklova & Goodale, 2022). It would be interesting to include these interpretations of animacy 
in a follow-up study when designing a larger stimulus set with a greater number of dimensions 
of animacy that we try to disentangle. Some of the dimensions tested in this study (e.g., 
"looking like an animal") may be correlated with the human-centred dimensions (e.g., has a 
face) and exploring the relationship between the five selected dimensions of animacy and the 
human-centred dimensions could be a focus of future studies. Previous observations that 
animate versus inanimate objects can be distinguished using classifiers based on colour 
information (Rosenthal et al., 2018), as well as curvature (Long et al., 2017) and mid-level 
shape features (Schmidt et al., 2017) inspired our control analyses that tested whether the 
five selected dimensions of animacy can explain unique variance over and above the low-level 
visual features and indeed they can. Future stimulus selection procedures using a genetic 
algorithm could benefit from accounting for the low-level visual features at the stimulus set 
selection stage. 
 
Our study is the first one to our knowledge that disentangled the five selected dimensions of 
animacy and will pave the way for future studies. For example, more work is needed to 
understand how exactly something quite abstract like "agency" or “unpredictability” is 
computed from visual stimuli. Testing alternative theories of animacy dimension computations 
could be addressed by comparing different classes of models in their ability to explain the 
data. The subsequent acquisition of higher resolution fMRI data (7T) would provide insights 
into the finer-grained spatial organisation of animacy dimensions and their representations 
across cortical layers. Future studies may extend our approach to videos because some of 
the dimensions like "having mobility" may be better represented dynamically. 
 
In summary, we disentangled the five selected dimensions of animacy using a novel approach 
for stimulus decorrelation and showed the contribution of each animacy dimension in 
explaining human brain representations and behavioural judgements.  These dimensions 
captured behaviour well. A significant amount of variance in brain representations was also 
explained by most dimensions, with the surprising exception of “being alive”. Our results 
suggest that different brain regions sensitive to animacy may represent distinct dimensions, 
either as accessible perceptual stepping stones toward detecting whether something is alive 
or because they are of behavioural importance by themselves. Future studies may expand on 
the representation of each of the dimensions while avoiding their entanglement and may apply 
our dimension disentanglement approach to other multidimensional concepts.  
 
Methods 
Stimulus set generation 
Filling animacy dimension grid combinations 
We created a grid with all possible combinations of dimensions of animacy (2^5 = 32). We 
asked participants (S = 11, mean age = 33, 6 females) to write down object category names 
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(e.g., “humanoid robot”) for each combination in the grid to obtain a list of object categories 
(Figure 1a Step 1). Participants listed 100 categories, and we selected 3 images per category 
(total = 300 images, Figure 1a Step 2), which formed the basis for the experiment to rate the 
dimensions of animacy.  
 
Ratings of dimensions of animacy to generate stimulus set 
Twenty-six participants (mean age = 25, 21 females) performed animacy ratings of 300 object 
images through an on-line web-based interface. Participants judged each object image using 
a continuous scale from -10 to +10 for each dimension, e.g., -10 meant “dead” and +10 meant 
“alive” for the “being alive” dimension (Figure 1a Step 3). Thirty images were repeated for a 
within-participant consistency measure.  
 
Stimuli subset selection using a genetic algorithm 
To select a subset of 128 images for which ratings on the dimensions of animacy were 
maximally decorrelated we used a genetic algorithm. A genetic algorithm is an optimization 
method that mimics biological evolution through natural selection. Fitness was defined as 
minimising the maximum correlation between dimensions of animacy (Figure 1a Step 4). We 
also introduced a penalty if the algorithm selected more than two stimuli from the same 
category (to ensure that stimuli were selected from a wide range of categories) and if the 
algorithm did not select at least one image of a human face and a human body (to have a 
reference point of object images that we know should have high ratings on the dimensions of 
animacy). 
 
Stimuli 
All stimuli are displayed in Figure 2a. Stimuli were 128 coloured images of real-world objects 
with natural backgrounds, selected from the Internet. The same set of stimuli was used in 
animacy ratings, similarity judgements, EEG, and fMRI experiments.  
 
Participants 
The same nineteen participants performed an on-line animacy ratings, similarity judgements, 
EEG, and fMRI experiments (mean age = 27, 13 females). Participants had normal or 
corrected-to-normal vision. All of them were right-handed. Before completing the experiment, 
participants received information about the procedure of the experiment and gave their written 
informed consent. All participants received monetary reimbursement or course credits for their 
participation. The experiment was conducted in accordance with the Ethics Committee of the 
Department of Education and Psychology at Free University, Berlin. Participants first 
completed the EEG and fMRI experiments, then similarity judgements experiment, and finally 
animacy ratings experiment so that they did not know about specific dimensions of animacy 
tested while performing EEG, fMRI, and similarity judgements experiments. 
 
Animacy ratings 
Experimental design and task 
Participants judged each object image using a continuous scale from -10 to +10 for each 
animacy dimension, e.g., -10 meant “dead” and +10 meant “alive” for the “being alive” 
dimension (Figure 3a). Additionally, participants performed a rating of "being animate" 
dimension in a similar fashion.  
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Similarity judgements 
Experimental design and task 
We acquired pairwise object-similarity judgements for all 128 images by asking participants to 
perform an on-line multi-arrangement task using Meadows platform (www.meadows-
research.com). During this task, object images were shown on a computer screen in a circular 
arena, and participants were asked to arrange the objects by their similarity, such that similar 
objects were placed close together and dissimilar objects were placed further apart (Figure 
5a). The multi-arrangement method uses an adaptive trial design, showing all object images 
on the first trial, and selecting subsets of objects with weak dissimilarity evidence for 
subsequent trials. To determine which stimuli to select for the next trial, the evidence weight 
of each stimulus had an evidence utility exponent (E=10) applied to it, to calculate its utility if 
the stimulus was picked. The similarity judgements task was completed if, among all pairs of 
stimuli, the pair with the lowest evidence had an evidence weight higher than 0.5. The multi-
arrangement method allows the efficient acquisition of a large number of pairwise similarities. 
We deliberately did not specify which object properties to focus on, to avoid biasing 
participants’ spontaneous mental representation of the similarities between objects. We aimed 
to obtain similarity judgements that reflect the natural representation of objects without forcing 
participants to rely on one given dimension. However, participants were asked after having 
performed the task, what dimension(s) they used in judging object similarity. All participants 
reported arranging the images according to categorical clusters. The reports suggest that 
participants used a consistent strategy throughout the experiment. The method of the object 
similarity judgements has been described in Mur et al., 2013, where further details can be 
found. 
 
EEG 
Experimental design and task 
Stimuli were presented at the centre of the screen for 500 ms, while participants performed a 
paper clip detection task. Stimuli were overlaid with a light grey fixation cross and displayed 
at a width of 4° visual angle. Participants completed 15 trials. Each image was presented twice 
in every trial in random order with an inter-trial interval of 1–1.1 s. Participants were asked to 
press a button and blink their eyes in response to a paper clip image shown randomly every 
3 to 5 trials (mean performance 99% (+/- 0.09, standard error)). These trials were excluded 
from the analysis.  
 
Acquisition 
The electroencephalogram (EEG) signals were acquired using BrainVision actiCHamp 
EASYCAP 64 channel system at a sampling rate of 1,000 Hz. The arrangement of the 
electrodes followed the standard 10-20 system. 
 
Preprocessing 
The time series were analysed with Brainstorm (http://neuroimage.usc.edu/brainstorm/). We 
extracted EEG patterns for each millisecond time point (from 100 ms before stimulus onset to 
1000 ms after stimulus onset) for each trial. We filtered the responses between 0 and 50Hz. 
 
Decoding 
We performed pairwise decoding across stimuli using a support vector machine (SVM) 
approach (Cichy et al., 2014). For each time point, EEG signals were arranged in 64-
dimensional vectors (corresponding to the 64 EEG channels), yielding M = 30 pattern vectors 
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per time point and condition. We sub-averaged the M vectors in groups of k = 5 with random 
assignment, obtaining L = M/k averaged pattern vectors. This procedure was performed to 
reduce computational load and improve the signal-to-noise ratio. Subsequently, for each pair 
of conditions, we assigned L-1 averaged pattern vectors to train a linear SVM using the 
LibSVM implementation (www.csie.ntu.edu.tw/~cjlin/libsvm). We used the trained SVM to 
predict the condition labels of the left-out testing data set consisting of the Lth averaged pattern 
vector. This process was repeated 100 times with random assignment of the M raw pattern 
vectors to L averaged pattern vectors. For every time point, we assigned the average decoding 
accuracy to a decoding accuracy matrix. 
 
Peak latency analysis 
We defined peaks of the decoding accuracy as time points with the maximum decoding 
accuracy.  
 
fMRI 
Experimental design and task 
Stimuli were presented using a rapid event-related design (stimulus duration, 500 ms) while 
participants performed a fixation-cross-brightness-change detection task, and their brain 
activity was measured with a 3T fMRI scanner. Stimuli were overlaid with a light grey fixation 
cross and displayed at a width of 4° visual angle. Each image was presented once per run in 
random order. Each run contained 32 randomly timed null trials (null trial duration, 500 ms) 
without the stimulus presentation (grey square background with a fixation cross). Participants 
had to report a short (100 ms) change in the luminance of the fixation cross via a button press 
(mean performance 97% (+/- 0.14, standard error)). On average, reaction times for fixation 
cross trials were 0.55 s (+/- 0.06 s, 2.45 s before the subsequent stimulus trial). The fixation 
cross was always present between stimuli or null trial presentations. 
 
Acquisition 
Magnetic resonance imaging was acquired using Siemens 3T Trio with a 12-channel head 
coil. For structural images, we used a standard T1-weighted sequence (176 slices). The TR 
was 2 s, and the inter-trial-interval was 3 s. For fMRI, we conducted 9–13 runs in which 249 
volumes were acquired for each participant. The number of runs varied per participant as 
different participants took a different number of breaks during the experiment and different 
amount of time was needed for them to become comfortable in the scanner. The average 
number of runs per participant was 10.9 ( +/- 0.07, standard error). The acquisition volume 
covered the full brain. 
  
Estimation of single-image activity patterns 
The fMRI data were preprocessed using SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). For each 
participant and session separately, functional data were spatially realigned, slice-time 
corrected, and coregistered to the participant-individual T1 structural image. We estimated the 
fMRI responses to the 128 image conditions with a general linear model (GLM), which included 
movement parameters as nuisance terms. To obtain a t-value for each voxel and condition, 
GLM parameter estimates for each condition/stimulus were contrasted against a baseline. To 
assess the degree of the general visual stimulation we contrasted the parameter estimates for 
all images against the baseline. 
 
Definition of regions of interest 
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For the ROI definition, we used a Probabilistic brain atlas (Wang et al., 2015). Anatomical 
masks were reverse-normalized from MNI-space to single-participant space. For each ROI, 
we extracted a multivoxel pattern of activity (t-values) for each of the 128 stimuli. We included 
100 most strongly activated voxels in the ROI analysis. 
 
Searchlight analysis 
To analyse fMRI data in a spatially unbiased approach, we performed a volume-based 
searchlight analysis (Kriegeskorte et al., 2006) in each participant (radius of 4 voxels) with 
each animacy dimension RDM. We restricted the voxels included in the significance testing to 
visual stream areas (one-sided Wilcoxon signed-rank test). 
 
Construction of representational dissimilarity matrix 
We used the representational similarity analysis toolbox for animacy dimension comparison 
(Nili et al., 2014). We computed response patterns (across animacy ratings, similarity 
judgements, EEG, and fMRI signals) for each image. We then computed response-pattern 
dissimilarities between images (using Euclidean distance as a metric) and placed these in a 
representational dissimilarity matrix (RDM). An RDM captures which distinctions among 
stimuli are emphasized and which are de-emphasized.  
 
Inferential analysis of model performance 
We estimated animacy dimension performance by correlating the animacy dimension and data 
RDMs using Spearman's correlation coefficient. We determined whether each of the animacy 
dimension RDMs was significantly related to the data RDMs using a participant-as-random-
effect analysis (one-sided Wilcoxon signed-rank test). We subsequently tested for differences 
in animacy dimension performance between each pair of dimensions of animacy using a 
participant-as-random-effect analysis (two-sided Wilcoxon signed-rank test). For each 
analysis, we accounted for multiple comparisons by controlling the FDR at 0.05. 
 
Unique variance analysis 
We used a hierarchical general linear model (GLM) to evaluate the unique variance explained 
by dimensions of animacy (Kietzmann et al., 2019). For each animacy dimension m, the 
unique variance was computed by subtracting the total variance explained by the reduced 
GLM (excluding the dimension of interest) from the total variance explained by the full GLM. 
Specifically, for dimension m, we fit GLM on X = "all dimensions but m" and Y = data, then we 
subtract the resulting R2 from the total R2 (fit GLM on X = "all dimensions" and Y = data). We 
performed this procedure for each participant and used non-negative least squares to find 
optimal weights. A constant term was included in the GLM model. We performed a one-sided 
Wilcoxon signed-rank test to evaluate the significance of the unique variance contributed by 
each dimension across participants controlling the expected false discovery rate at 0.05. 
 
Statistical analyses 
We used non-parametric tests across the manuscript as detailed above.  
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Supplementary Information 

 
Supplementary Table 1. Object categories from step 1 of stimulus selection procedure - labels generated 
by participants when filling animacy dimension grid combinations.  
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Supplementary Figure 1. Multidimensional scaling plot of similarity judgements (mean across participants, with 
metric stress criterion) colour coded based on the selected dimensions of animacy ratings. 
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Supplementary Figure 2. Unique variance analysis for similarity judgements including the first 
convolutional layer of AlexNet (AlexNet conv1). Bars show the unique variance in similarity judgements RDMs 
computed using the same conventions as in Figure 4c. 
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Supplementary Figure 3. Animacy dimension RDM comparison with EEG RDMs across time with displayed 
noise ceiling using the same conventions as in Figure 6b. The grey area represents the noise ceiling, which 
indicates the expected performance of the true model given the noise in the data. The selected dimensions of 
animacy do not reach the noise ceiling, indicating that it leaves unexplained some of the variance that is reliable 
across individual observers. 
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Supplementary Figure 4. Animacy dimension RDM comparison with EEG RDMs across time including general 
“animacy” rating using the same conventions as in Figure 6b. 
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Supplementary Figure 5. Multidimensional scaling plots at different EEG timepoint RDMs (mean across 
participants, with metric stress criterion). 
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Supplementary Figure 6. Multidimensional scaling plots of EEG RDM at 200 ms (mean across participants, with 
metric stress criterion) colour coded based on the selected dimensions of animacy ratings. 
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Supplementary Figure 7. Unique variance of each animacy dimension and the first convolutional layer of 
AlexNet (AlexNet conv1) in explaining EEG RDMs computed using a GLM using the same conventions as in 
Figure 6c. 
 
 



 

40 

 
 
Supplementary Figure 8. ROI location in ventral and dorsal streams. Reproduced with permission from Wang et 
al., 2015 (left hemisphere (LH) and right hemisphere (RH)). This study investigated visual representations in 
ventral (v) and dorsal (d) streams. 
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Supplementary Figure 9. Animacy dimension RDM comparisons with fMRI ROI RDMs with displayed noise 
ceiling. Bars show the correlation between each animacy dimension RDM with fMRI ROI RDMs using the same 
conventions as in Figure 4b. The grey bar represents the noise ceiling, which indicates the expected performance 
of the true model given the noise in the data. We selected ROIs across the ventral (V1v, VO2, PHC2) and dorsal 
(V1d, LO2, TO2) visual streams. 
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Supplementary Figure 10. Animacy dimension RDM comparisons with fMRI ROI RDMs including general 
“animacy” rating. Bars show the correlation between each animacy dimension RDM with fMRI ROI RDMs using 
the same conventions as in Figure 4b. 
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Supplementary Figure 11. Animacy dimension RDM comparisons with fMRI ROI RDMs across all ventral 
stream ROIs based on Wang et al., 2015 (see Supplementary Figure 8 for ROI locations). The ventral stream 
ROIs included V1v, V2v, hV4, VO1, VO2, PHC1 and PHC2 (V3v was omitted as there were not enough voxels in 
this ROI). Bars show the correlation between each animacy dimension RDM with fMRI ROI RDMs using the 
same conventions as in Figure 4b. 
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Supplementary Figure 12. Animacy dimension RDM comparisons with fMRI ROI RDMs across all dorsal stream 
ROIs based on Wang et al., 2015 (see Supplementary Figure 8 for ROI locations). The dorsal stream ROIs 
included V1d, V2d, V3d, V3a, V3b, LO1, LO2, TO1 and TO2. Bars show the correlation between each animacy 
dimension RDM with fMRI ROI RDMs using the same conventions as in Figure 4b. 
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Supplementary Figure 13. Multidimensional scaling plots of fMRI ROI RDMs (mean across participants, with 
metric stress criterion). 
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Supplementary Figure 14. Multidimensional scaling plots of PHC2 fMRI ROI RDM (mean across participants, 
with metric stress criterion) colour coded based on the selected dimensions of animacy ratings. 
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Supplementary Figure 15. Unique variance analysis for fMRI responses. Bars show the unique variance in 
fMRI ROI RDMs computed using the same conventions as in Figure 4c. We selected ROIs across the ventral 
(V1v, VO2, PHC2) and dorsal (V1d, LO2, TO2) visual streams. 
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Supplementary Figure 16. Unique variance analysis for fMRI responses including the first convolutional 
layer of AlexNet (AlexNet conv1). Bars show the unique variance in fMRI ROI RDMs computed using the same 
conventions as in Figure 4c. We selected ROIs across the ventral (V1v, VO2, PHC2) and dorsal (V1d, LO2, TO2) 
visual streams. 
 


