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Abstract. We study design and pricing of information by a monopoly information
provider for a buyer in a trading relationship with a seller. The profit-maximizing
information structure has a binary threshold character. This structure is inefficient
when seller production cost is low. Compared with a situation of no information, the
information provider increases welfare if cost is high but reduces it if cost is low. A
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if the prior distribution of buyer valuations is not too concentrated. Giving the seller
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1 Introduction

In many markets there exist third-party information providers who, for a fee, give

information or advice to buyers about goods which they are considering purchasing.

In this paper we study the optimal design and pricing of information in situations

characterized by the following features: (i) the information firm has information

about the match between the seller’s good and its buyer which neither the buyer

nor the seller knows, and (ii) the information firm may only contract with, and be

paid by, the buyer, not the seller, for information provision, yet the buyer is free

to buy the good directly from the seller, without contracting with the information

firm. We show that equilibrium information provision takes a simple binary threshold

form, and characterize the information provider’s impact on welfare in relation to

the seller’s production efficiency and the manner of interaction among information

provider, seller, and buyer.

∗We thank Olivier Compte, Matt Jackson, Stephen Morris, Alessandro Pavan, Anne-Katrin
Roesler, Larry Samuelson, as well as seminar and conference audiences for helpful comments and
suggestions. The usual disclaimer applies. Emails: rae1@cam.ac.uk; i.park@bristol.ac.uk
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There is a large and growing literature, discussed below, which studies the optimal

design, and pricing, of information, but the focus has been on two kinds of settings:

firstly, those in which the seller of the good designs the structure of information to

be provided to the buyer, either directly by the seller or by a third party; and, sec-

ondly, online selling platforms, such as Amazon or eBay, which charge for information

supplied to the parties and the buyer can only buy the good via the platform.

We assume that the information firm cannot contract with the seller to provide

information to the buyer because there are many situations in which that would give

rise to a credibility problem since the buyer may not trust the information supplied

by an agent of the other party. Furthermore, in some cases it is illegal for the buyer’s

advisor to take payment from the seller. For example, since 2012 independent financial

advisors in the UK have been forbidden to take commissions from providers of certain

investment products.1 Other examples of the kinds of settings which we have in

mind are (a) an investment bank advising a firm on the take-over value of a target

firm based on the fit between the two companies, (b) an expert on art advising a

potential purchaser of an art work about its quality and provenance, (c) a medical

expert advising a patient about a particular drug or treatment and (d) a headhunter

advising a client company (the buyer) about whether to employ a particular person

(the seller) in a senior role.

Markets for third-party information provision regarding purchase decisions are

rapidly evolving with the advent of the big data industry—recent developments of this

type include, for example, AI-driven online guided selling sites such as excentos.com

and purchase-advisor.com. Furthermore, new forms of such businesses can be ex-

pected to emerge in the future and so there is a need to develop economic analyses

of the strategic information design and pricing decisions faced by such providers, for

different kinds of market structures. This paper is intended as a step in that direction.

We assume that the buyer and seller are symmetrically and imperfectly informed

about the value of the seller’s good to the buyer, while more precise information is

available to the information firm (who, for example, may have access to big data

1See UK Financial Services Authority PS10/6.
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unavailable to the individual seller or buyer). Our main model represents the inter-

action of the three players as follows. First, the information firm announces publicly

an information disclosure rule and a fee for information; second, the seller announces

a price for her good.2 Subsequently, the buyer decides both whether to accept the

information firm’s contract or not, and whether to buy the good at the announced

price or not. If he accepts the information firm’s contract, he receives information

according to the disclosure rule and uses it in the decision whether to purchase the

good or not.

By selecting a disclosure rule and fee, the information firm designs a game between

the buyer and seller and so there is a somewhat complex interaction between the

three agents, with features not present in standard models of information design.

The disclosure rule and the information fee influence the seller’s price, and the rule

and price jointly determine the value of information to the buyer—the latter being

the difference between his surpluses (gross of fee) with and without the information,

which is also the maximal fee extractible. On the one hand, a high consumer surplus

for the buyer seems to require an information structure which induces a low price

from the seller. At the same time, maximizing the value of information to the buyer

requires that this price is not too low, for otherwise the aforementioned difference

in surpluses would vanish. It is not a priori clear what form of disclosure rule best

achieves these conflicting aims of the information designer.

It might be thought that a relatively complex structure of information might be

needed to obtain the optimal degree of manipulation of the seller’s price. For example,

Roesler and Szentes (2017) derive the structure of information which is optimal for

the buyer when the seller knows this structure but not the actual realization of the

buyer’s signal, and sets her price accordingly. This structure is rather delicate, which

raises the question of whether a similarly complex information form would arise in a

market in which information is designed by a profit-maximizing firm.

It turns out, however, that the optimal signal structure in our model is in fact

a simple and coarse one—it consists of a binary partition. That is, the information

2Since we assume that the buyer has quasi-linear preferences there is no loss of generality in
assuming that the selling mechanism is a posted price.
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provider commits to revealing whether the buyer’s valuation is above or below a

particular threshold. Subsequently, the seller sets the highest price at which the

buyer would opt to buy the information and then buy the good if and only if his

valuation is above the threshold. This is because a threshold structure both increases

the total surplus achievable and reduces the seller’s incentive to price low and thereby

induce the buyer to bypass the information provider and buy directly.

It is important to stress that this result does not follow from standard revelation

principle arguments. Since the buyer eventually makes a binary choice, one may ex-

pect that the logic of the revelation principle implies that a binary recommendation

(either to buy or not to buy the good) would be sufficient. This is indeed the case

if the seller’s price for the good is already set when the information firm offers an

information disclosure rule and fee.3 However, when the seller sets the price in re-

sponse to the information firm’s offer it is far from clear that a binary signal structure

(that generates a two-step demand function) maximizes the consumer surplus that

the information firm can extract as a fee.

Why does the information firm not offer the buyer’s optimal signal structure, as

derived by Roesler and Szentes (2017)? As mentioned above, the information firm

does not want to maximize the buyer’s consumer surplus, which is what the buyer-

optimal signal structure does. Instead, it wants to maximize the value of information

to the buyer, i.e., the difference between the buyer’s consumer surplus when informed

and his consumer surplus when uninformed. The distinction is particularly clear in

the case in which the seller’s production cost is zero. Roesler and Szentes show that

then the buyer’s optimal signal structure gives rise to an efficient outcome: the seller

sets a low price and the buyer buys the good with probability one. The buyer would

have no incentive to pay any positive price for such a signal since he would know in

advance that its realization would be above the seller’s price. That is, the value of

information, once the seller has set a price, is zero.

The presence of the third-party information firm tends to cause inefficiency—the

3This is so by the same logic as in Kamenica and Gentzkow (2011, Proposition 1) that the signal
realization may be replaced by a recommendation of an action which is optimal for the associated
posterior. See also the discussion of price-contingent contracts at the end of Section 3 below.
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information firm sets the threshold above the cost of production, because setting it be-

low the cost reduces the value of information for the buyer (hence the fee extractible),

given that the seller price will exceed the cost. This inefficiency dissipates and even-

tually disappears as production cost grows larger since there is then less scope to go

above it and thereby benefit. On the other hand, without the information firm, sur-

plus is higher when production cost is low. As a result, the information firm reduces

welfare when cost is low and increases it when cost is high, the underlying reason

being that information is more valuable for high cost goods.

We also consider, as benchmarks, three other versions of the underlying setting:

(a) the seller commitment model, in which the order of moves of our main model

is reversed—first the seller makes a public commitment to a price and then the in-

formation firm announces an information disclosure rule and fee; (b) the competitive

advisors model, in which many identical information firms competitively offer infor-

mation contracts to the buyer; and (c) the private contracting model with renegotia-

tion, in which a monopoly information firm offers a contract privately to the buyer.

In each of the three benchmarks, the strategic interaction between buyer, seller and

information provider is limited and the outcome in each case is the same: the seller

sets the monopoly price as if the buyer knows his value for the good precisely, and the

buyer learns whether or not his value is above this price—in effect, the buyer obtains

full information.

For a large class of valuation distributions (and production costs) this outcome

gives lower total welfare than our main model, in which a monopoly information

provider commits to a contract. In particular, this is the case if the seller’s monopoly

price exceeds the mean buyer valuation, or if the valuation distribution is, in a specific

sense, not too concentrated. In other words, in such cases, social welfare is improved,

relative to the benchmarks, by requiring that there should be a monopoly information

firm who commits publicly to an information policy. Finally, we also show that if the

seller is able to veto the information firm’s announced contract, in which case the

buyer and seller then trade without further information, full efficiency is achieved.

This suggests a case for a public policy of banning exclusive contracts between the
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information firm and the buyer if feasible.

The next Section provides an example to illustrate the key strategic considerations

facing the players. Section 3 sets up the model. In Section 4 we analyze the equilib-

rium contract in our main model. Section 5 contains discussion of three benchmark

cases which give rise to full information and Section 6 examines the case in which

the advisor may contract with the seller or with both seller and buyer. We discuss

related literature in Section 7 and Section 8 contains some concluding remarks.

2 Illustrative Example

A computer game developer has created a new game and intends to sell it to a pop-

ulation of seasoned gamers, who have heterogeneous values for this game, depending

on their individual characteristics. The value (willingness to pay) of each individual

gamer i for the game is denoted by vi. Since the game is new, neither the developer

nor the gamer knows the value of vi before the purchase is made, but they both know

its distribution which we assume is uniform on [0, 1] in this illustration. However,

there is a game analytics firm that has accumulated (or has access to) sufficient data

on individual gamers so that it can figure out the true value of vi for each gamer more

precisely.

In fact, the analytics firm (A) can publicly offer to supply information about vi in

a specific form (see below) to each individual gamer i for a fee f > 0. Since gamers

are ex ante identical we assume that A offers the same contract to all i and we refer

to a typical gamer as B, for ‘buyer’, and to his value as v. After observing the offer

made by A, the developer/seller (S) sets a price p ∈ (0, 1) for individual purchase

of the new game. Then B decides whether to purchase the information from A and

whether to buy the good/game from S. In what specific form should A supply the

information in order to maximize its revenue?

Here, in order to illustrate the strategic problems faced by A and S, we consider

two possible information forms. Firstly, A could supply the precise true value v to

B, i.e., full information. Secondly, it could offer only to inform B whether v is above

or below a given threshold θ ∈ [0, 1], i.e., binary information.
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In the first case, for A to have any revenue by offering full information for a fee f ,

B should purchase the information; then he will buy the good if and only if v exceeds

the seller’s price p. Therefore, his ex ante expected utility from buying information is

Prob(v ≥ p)[E(v|v ≥ p)− p]− f =
(1− p)2

2
− f.

If this exceeds his expected utility of E(v) − p = (1/2) − p from buying the good

without first buying information, i.e., if p ≥
√

2f , B indeed prefers to buy information;

else, B prefers to buy the good without information. Note that S’s expected profit

in the former case is Prob(v ≥ p)p = (1− p)p which is maximized at p = 1/2, hence

is at most 1/4 (we assume S’s marginal cost is zero). Therefore, if
√

2f > 1/4 or,

equivalently, if f > 1/32, then S would prefer to set a price above 1/4 (but below
√

2f) and sell for sure to each buyer. If f = 1/32, on the other hand, S’s optimal

price is 1/2 and all buyers will buy information, giving expected profit 1/4 to S (the

best alternative for S would be to set price
√

2f = 1/4 and sell for sure to all buyers,

which is no better). Hence 1/32 is A’s maximal revenue if it supplies full information.

Now suppose that A offers, for fee f , to inform B whether v is above or below

threshold θ ∈ [0, 1]. Given (f, θ, p), it is optimal for B to buy information only if he

intends subsequently to buy the good if and only if A informs B that v is above θ.

As the expected value of the good is (1 + θ)/2 in this case, B’s expected utility from

purchasing information is

(1− θ)
[1 + θ

2
− p
]
− f. (1)

Alternatively, he could buy the good without information and thus obtain expected

utility (1/2)−p. Buying information is optimal for B if expression (1) exceeds (1/2)−p
and also exceeds zero (the utility from buying neither information nor the good), that

is, if

p :=
θ

2
+
f

θ
< p ≤ p̄ :=

1 + θ

2
− f

1− θ
.

If p < p B will buy the good without information and if p > p̄ he will buy neither

information nor the good. Thus, by setting p in the range [p, p̄], S induces B to buy

the information and sells the good with probability 1 − θ. The maximal profit she
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can get in this way is p̄(1 − θ), by setting p = p̄. By setting p ≤ p, on the other

hand, she induces B to bypass the information and buy the good outright, securing

a maximal profit of p in this way. Therefore, she will set a price that induces B to

purchase information if

p ≤ p̄(1− θ) ⇐⇒ f ≤ θ(1− θ − θ2)

2(1 + θ)
.

Foreseeing this, A maximizes f by setting the threshold θ at a level that maximizes

the fraction above, which is calculated as θ̂ ≈ 0.297. Hence, A offers to inform B

whether v is above or below θ̂ for a fee f̂ ≈ 0.07, which is well above 1/32, the

maximal fee achievable by offering to reveal the true value v precisely.

The question is whether A can extract a fee higher than f̂ by offering any of

the numerous other forms in which information on v may be supplied. We show

below that a single-threshold, binary information structure is optimal, for general

distribution of buyer value v and seller’s production cost.

3 Model

There is a single seller (S) of an indivisible object/good and a single potential

buyer (B). The value of the good to B, denoted by v, is distributed according to a

CDF F with support V ≡ [0, 1], continuous density F ′(v) and mean µ. Neither S nor

B knows the value of v; for each of them their subjective belief about v is given by

F and this is common knowledge. There is also a third party, A (for ‘advisor’),4 who

can find out more precise information about v.

The advisor A maximizes his payoff by selling information about v to B. Our aim

is to establish his optimal selling scheme; in particular, what form the information

structure should take, and how much to charge. Specifically, A may sell any signal

structure (aka experiment) which is a function ψ : V → R, where R is the set of

real-valued random variables. Given v ∈ V , ψ(v) is the signal, possibly stochastic,

which A provides if the true state is v. For example, he could reveal the true value

of v, or he could reveal a partition element that contains it, or he could provide a

stochastic signal which is imperfectly informative about the value of v. We denote

4Henceforth, for brevity, we generally refer to the information firm as the advisor.
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the set of signal structures by Ψ.

Particularly useful in the sequel is the class of signal structures which reveal

whether or not v exceeds a certain threshold θ ∈ V . We refer to these as ‘single-

threshold’ structures. A single-threshold structure is denoted by Tθ : V → R where

Tθ(v) equals 0 (respectively, 1) with probability 1 if v < θ (respectively, if v ≥ θ).

The distribution of the posterior expectation of v which is implied by Tθ assigns

probability F (θ) to E(v|v < θ) and 1− F (θ) to E(v|v ≥ θ).

A offers a signal structure ψ for a fee f , which B may accept or reject. We denote

by C the set of feasible contracts5 which A may offer, where

C ≡ {(ψ, f) |ψ ∈ Ψ, f ∈ R}.

The interaction between the three players is modelled via the following extensive

game Γ.

(1) A publicly announces a contract in C.
(2) S announces price p ∈ R+; B observes p.

(3) B either accepts A’s contract or not.

(4) If B accepted the contract: B pays the contracted fee to A; A observes and

supplies to B the realized signal as specified in the contract; B then decides

either to buy S’s good for price p, or not.

(5) If B rejected the contract, B decides either to buy S’s good for price p, or not.

All parties are risk-neutral expected utility maximizers and have quasi-linear utility

for money. Thus, if the good is traded at price p and B pays f to A, then S’s payoff

is p− c, where c ∈ [0, 1) is the cost of production, B’s payoff is v− p− f and A’s is f .

We study perfect Bayesian equilibrium. It is characterized by backward induction

in this game because the belief on v at any information set is unambiguous6 and every

move is observed by all parties yet to make strategic decisions. The outcome of an

5It is without loss of generality to assume that there is a single pair (ψ, f), rather than a menu,
since B has no private information. Note also that allowing f to depend on the signal realization,
or on B’s action, would introduce moral hazard on the part of A.

6It is F at all information sets belonging to A, S and B at stages (1)–(3), and it is the Bayes-
updated posterior on v for any information set of B after he receives the signal from A.
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equilibrium refers to A’s fee, S’s price and the mapping from v to trading probability.

These determine equilibrium welfare and each player’s utility (as will become clear).

This structure of the game reflects what we consider to be plausible descriptions

of commonly observed situations of information sale by a third party. The order

of moves follows from two assumptions: firstly that the advisor has greater ability

to commit than the seller, and, secondly, that the buyer cannot commit observably

to accept the advisor’s contract before observing the seller’s price. If the advisor is

committed to the contract which he names but the seller can alter her price as long as

the buyer has not accepted the price, then it is without loss of generality to model the

advisor as moving before the seller. This is a natural assumption7 in many settings—

for example, one in which the advisor is a long-run player who provides information

on a sequence of short-run sellers. Another natural assumption is that B can choose

at any time (before buying S’s good) whether to buy information from A. Unless S

observes whether or not B has accepted A’s contract there can be no advantage to B

in committing early—it is a weakly dominant strategy for B to wait to see S’s price

before buying information. In practice, it seems likely that there are obstacles in the

way of S verifying that B has or has not contracted with A.8

The assumption that A commits publicly to a contract offer can be justified by

the fact that A prefers to do this than to commit privately, to B alone. To see this,

suppose that in equilibrium A commits to a private offer which will be accepted by

B. Then, since S will set a price p which is optimal for her given the equilibrium

private signal structure, A can also induce this outcome by offering the same contract

publicly.

7We discuss a game with the opposite order of moves in Section 5 below.
8One reason may be that S prefers not to observe whether B has contracted with A. Suppose

that B has the option to accept A’s contract before S chooses a price, and can obtain hard evidence
of having done so. Suppose also that S can commit at the outset not to look at such evidence,
or equivalently not to price-discriminate between buyers with such a contract and those without.
Then, if S does not make the commitment, A will announce the buyer-optimal contract of Roesler
and Szentes (2017) and, if S does make the commitment, will announce the optimal contract for the
order of moves that we assume here. For uniform F and c = 0 our illustrative example above shows
that S’s payoff if she makes the commitment is approximately 0.385 (the value of (1 − θ̂2)/2 − f̂),
whereas Roesler and Szentes show that her payoff from the buyer-optimal contract is approximately
0.2.
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In Sections 5 and 6 we examine several variations on the game above, in particular,

(i) the case in which S sets her price before A makes his offer, (ii) the case in which

A can sell information to S rather than B, or to both of them, and (iii) a model in

which there are many informed advisors, who act competitively.

In our formulation of the game A offers a single signal structure and fee pair (ψ, f).

An alternative would be to offer a price-contingent contract, in which ψ and/or f de-

pend on the seller’s price. Whether such a contract is feasible depends, among other

things, on whether S’s price is observable to A. In an earlier version of this paper we

examined the case in which such contracts are allowed. The results for this case are

similar to those reported here in the sense that single-threshold structures are again

optimal; the welfare implications are also qualitatively similar. Indeed in the price-

contingent case the revelation principle implies that it is without loss of generality to

assume that A’s message to B takes the form of an action recommendation (‘buy’ or

‘do not buy’) and A can enforce the desired seller price by off-equilibrium-path ‘pun-

ishment’ recommendations. If information is not price-contingent then the revelation

principle does not imply this since, in general, the buyer must have the information

necessary to react to any seller price and so this enforcement has to be done via the

design of a single signal structure. However, our result below that the optimal signal

structure takes a binary threshold form shows that a simple action recommendation

is sufficient in this case too.

4 The Equilibrium Contract

In this Section we characterize the advisor A’s optimal contract. Suppose that

A has announced a contract (ψ, f) ∈ C, where f > 0, and S has announced price

p. Let H(s) be the distribution (CDF) of s implied by ψ, where s is the posterior

expectation of v after observing the signal.9 If B buys information then we denote

his expected payoff by uI(p|(ψ, f)) and, if not, by uo(p), where

9 A distribution H is such a posterior distribution for some signal structure if and only if H is a
mean-preserving contraction of F , i.e., H second-order stochastically dominates F (see, e.g., Roesler
and Szentes (2017)).
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µ pp̄(ψ, f)p(ψ, f)
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uI(p|(ψ, f))

Figure 1

uI(p|(ψ, f)) ≡
∫ 1

p

(s− p)dH − f and uo(p) ≡

{
µ− p if p ≤ µ

0 if p > µ.

This is because, having bought information, B buys the good if and only if s is at least

p. Note that uI is convex and decreases continuously in p, uI(0|·) = µ − f < uo(0),

uI(1|·) = −f < uo(1) and

u′I(p|·) = −(1−H(p)) ≥ −1

where the inequality is strict for all p > min{supp(H)}. Figure 1 shows how uI and

uo vary with p.

If the contract is such that B buys information for at least one seller price (which

will be the case for A’s optimal contract) then uI(µ|(ψ, f)) ≥ 0 (see Figure 1—

this inequality is necessary for uI(p|(ψ, f)) to exceed uo(p) for at least one p). Let

p(ψ, f) ≤ µ and p̄(ψ, f) ∈ [µ, 1) be the two points of intersection between uI(p|(ψ, f))

and uo(p). u′I(p|·) > u′o(p) for all p ≤ µ unless H(p) = 0, in which case u′I(p|·) =

u′o(p) = −1 (and this can obtain only in an interval [0, p̃) on which uI(p|(ψ, f)) <

uo(p)). Therefore both p(ψ, f) and p̄(ψ, f) are uniquely determined and B buys10

10Without loss of generality, assume that B buys outright if indifferent.
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information if and only if p ∈ (p(ψ, f), p̄(ψ, f)]. If p ≤ p(ψ, f) then B buys the good

outright and if p > p̄(ψ, f) he buys neither information nor the good.

Now consider S’s choice of optimal price, given (ψ, f). Denote S’s expected payoff

from price p conditional on B optimally purchasing information by πI(p|(ψ, f)) and

conditional on B optimally not buying information by πo(p). Then

πI(p|(ψ, f)) = (p− c)(1−H(p)) if p ∈ (p(ψ, f), p̄(ψ, f)], and

πo(p) =

{
p− c if p ≤ p(ψ, f)

0 if p > p̄(ψ, f).

Therefore, if there is any trade at all, the optimal price for S is either p(ψ, f), in which

case B buys outright, or the price p ∈ (p(ψ, f), p̄(ψ, f)] that maximizes πI(p|(ψ, f)),

in which case B buys information.

This implies that the problem faced by A at the outset of Γ is to choose a contract

(ψ, f) ∈ C and a price p ∈ R+ for the seller that maximizes f subject to the two

constraints which ensure that S optimally chooses p and B will pay for information:

max
(ψ,f,p)∈C×R+

f s.t. p ∈ arg max
ρ∈(p(ψ,f),p̄(ψ,f)]6= ∅

πI(ρ|(ψ, f)) (2)

πI(p|(ψ, f)) ≥ max{πo(p(ψ, f)), 0}

Define a contract-price pair (ψ, f, p) ∈ C × R+ as optimal if it solves this problem.

The details of optimal contract structure depend on whether c ≥ µ or c < µ.

First, consider the case in which c ≥ µ, so that there can be no surplus if B does

not buy information. It is straightforward to see that the optimal contract-price pair

is (Tc, f
∗, c), where f ∗ = (E(v|v ≥ c) − c)(1 − F (c)). That is, A offers a single-

threshold signal structure that informs B whether v exceeds c or not, S sets price

p = c, and the fee is B’s expected surplus from buying the good at price c if and only

if v ≥ c. Given this contract, if B buys information his net payoff is zero if S sets

price c but negative for any higher price; hence there is neither information purchase

nor trade of the good for any price above c. Thus, it is optimal for S to set price c

and for B to buy information. Since this contract is efficient and A captures all the

surplus, it is clearly optimal for A.
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Figure 2

When c < µ it is no longer possible for A to drive S’s payoff down to zero because

S could sell outright to B at a low price, yet it turns out that again there is always

a single-threshold optimal signal structure. Figure 2 illustrates the situation for a

single-threshold structure ψ = Tθ when c < p(Tθ, f) so that πo(p(Tθ, f)) > 0. If

S chooses price p ≤ p(Tθ, f), B buys outright, and if p(Tθ, f) < p ≤ p̄(Tθ, f), B

buys with probability 1 − F (θ). Therefore, if (Tθ, f) is an optimal contract then S

optimally sets the price p̄(Tθ, f) and induces B to buy information; moreover, S is

indifferent between doing this and setting a low price p(Tθ, f) and selling outright, i.e.,

πI(p̄(Tθ, f)|(Tθ, f)) = πo(p(Tθ, f)), because if she strictly preferred the former, then

A could slightly increase the fee (slightly lowering uI(.|(Tθ, f))) and, by continuity, S

would still price so that B buys information.

In fact, it is a general feature of all optimal contract-price pairs that S is indifferent

between the best price to sell outright and the best price to induce B’s information

purchase. This feature is key to the finding that every optimal contract is essentially a

single-threshold structure (Proposition 1 below), which further implies that the game

Γ has a unique equilibrium outcome (Proposition 2).

We define a triple (ψ, f, p) ∈ C ×R+ as single-threshold equivalent if, given (ψ, f),

p is seller-optimal and, when S charges p, B buys information and then buys the good

if and only if v ≥ θ, for some θ ∈ (0, 1): that is, ψ generates a signal with a posterior
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no lower than p if and only if v ≥ θ. As an example, suppose ψ reveals v precisely if

v ≥ θ but, if v < θ, only reveals that fact. Suppose also that it is optimal (i) for S to

set price p = θ if B has this information,11 and (ii) for B to buy information if f is the

fee and θ is the price. Although B is better-informed than with the single-threshold

structure Tθ, the outcome is the same with either signal structure provided that the

fee f and price p are set in the same way.

Proposition 1 Suppose that c < µ.

(a) For any optimal contract-price pair (ψ, f, p), p = p̄(ψ, f) and πI(p|(ψ, f)) =

πo(p(ψ, f)).

(b) Any optimal (ψ, f, p) is single-threshold equivalent, and (Tθ, f, p) is also optimal,

where θ is the threshold above which the good is traded according to (ψ, f, p).

Proof: in Appendix

The intuition for the fact that πI(p|(ψ, f)) = πo(p(ψ, f)) is as argued above: if

πI(p|(ψ, f)) > πo(p(ψ, f)) then A could sell the information for a slightly higher fee.

To show that p = p̄(ψ, f), suppose the optimal price is p < p̄(ψ, f), so that πI(·|(ψ, f))

peaks at p (e.g., imagine concave πI(·|(ψ, f)) peaking at an interior point p in Figure

2). This means that the probability of purchase, 1 − H(·), strictly decreases as the

price increases from p. Let H̃ be a mean-preserving contraction of H that coincides

with H for prices below p and above p̄(ψ, f) but is a step function in between, so that,

in particular, 1− H̃(·) is locally constant as price increases from p. There is a signal

structure, denoted by ψ̃, that generates H̃: this pools into a single signal all signals

of ψ that lead to a posterior expectation of v which is between p and p̄(ψ, f). Clearly,

πI(·|(ψ̃, f)) and uI(·|(ψ̃, f)) coincide, respectively, with πI(·|(ψ, f)) and uI(·|(ψ, f))

for prices below p and above p̄(ψ, f), but πI(·|(ψ̃, f)) strictly increases at p. If A

offered (ψ̃, f) S would price higher than p and obtain a profit strictly higher than

πI(p|(ψ, f)), hence strictly higher than πo(p(ψ, f)). But then, as argued above, A

could slightly increase the fee and S would still price in such a way that B would

buy information. Since this would contradict the presumed optimality of (ψ, f, p) we

11That is, θ ∈ arg maxp̃≥θ(p̃− c)(1−F (p̃)) and (θ− c)(1−F (θ)) ≥ E(v|v < θ)− c, the RHS being
the highest profit S can make by selling for sure at a price below θ.
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conclude that p = p̄(ψ, f).

The underlying reason that the optimal structure is single-threshold equivalent is

that, for any q ∈ [0, 1], the most efficient way to transfer the good with probability q is

to do so if and only if v is above threshold θ(q), where 1−F (θ(q)) = q. Suppose that,

for some optimal contract-price pair (ψ, f, p), ψ is not a single-threshold structure.

A could instead offer contract (Tθ(q), f), where q is the probability that the good is

sold under (ψ, f, p). If S prices in such a way that B buys information, i.e., sets

price p̄(Tθ(q), f), then this too must be an optimal contract for A. If (ψ, f, p) were not

single-threshold equivalent, however, S would strictly prefer to do so (rather than to

price low and induce B to buy outright) if (Tθ(q), f) were offered, and thus A could

slightly increase the fee, refuting the claim that either this or the original contract was

optimal. To see this intuitively, note that (Tθ(q), f) should lead to a strictly higher

total surplus (the probability that the good is sold is the same as and the gross

consumer surplus is strictly higher than under (ψ, f)) but the buyer’s net payoff is

no higher, at zero, and the advisor’s payoff is unchanged, at f ; hence S’s payoff is

strictly higher. As the proof shows, S’s profit from selling outright at a low price is

lower with (Tθ(q), f) than with (ψ, f) so that S would indeed strictly prefer to price

so as to induce information purchase.

Suppose now that (ψ, f, p) is optimal and single-threshold equivalent. Then trade

takes place if and only if v ≥ θ(q) and, by part (a) of Proposition 1, p = p̄(ψ, f) so B’s

payoff is zero. If, instead, A were to offer (Tθ(q), f) and S were to set price p̄(Tθ(q), f)

trade would still take place if and only if v ≥ θ(q) and the payoffs of A and B would

be the same as under (ψ, f), namely f and zero, respectively. Therefore S’s payoff

would also be the same, which implies that p̄(Tθ(q), f) = p. The proof shows that S

has the same incentive to bypass A under (Tθ(q), f) (by setting price p(Tθ(q), f)) as

under (ψ, f). Hence, (Tθ(q), f, p) is also optimal.

The optimal signal structure is very different from the one in Roesler and Szentes

(2017) (henceforth RS). They derive the signal-structure which maximizes the buyer’s

expected payoff if the seller chooses a profit-maximizing price in the knowledge of the

form of the buyer’s signal but not its realization. They define an “outcome” as a

16



pair (G, p) where G is a feasible distribution of the buyer’s posterior expectation of

v (i.e., F is a mean-preserving spread of G) and p is optimal for the seller given G.

Take the case in which c = 0. The least-informative buyer-optimal outcome (G∗, p∗)

is efficient12 and gives rise to a unit-elastic demand. That is, for some β∗,

G∗(s) =


0 if s ∈ [0, p∗)

1− p∗

s
if s ∈ [p∗, β∗)

1 if s ∈ [β∗, 1]

(3)

The seller is indifferent between all prices in [p∗, β∗) and chooses p∗, so that trade

takes place with probability 1.

One way to understand the difference between our result and that of RS is that

the RS signal is designed to make it optimal for the seller to charge a low price. Our

advisor, however, does not want to induce too low a price from S because that would

enhance the value of buying the good outright for B, reducing B’s willingness to

pay for the information offered. In the case where c = 0, B would in fact have no

incentive to pay any positive price for the RS signal since he would know in advance

that its realization would be above S’s price p∗. Proposition 1 shows that a threshold

structure achieves the dual aims of inducing an appropriately high price from S and

also a high gross consumer surplus for B, to be extracted via the fee.

By Proposition 1(b), any optimal contract-price pair is equivalent to a single-

threshold contract-price pair in their outcomes (A’s fee, S’s price, and the mapping

from v to trading probability). Hence, it suffices to focus on single-threshold con-

tracts to study optimal outcomes. For any threshold structure Tθ, A’s optimal fee

f(θ) equalizes S’s profit from charging p(Tθ, f) with that from charging p̄(Tθ, f).

Straightforward calculation shows that this implies that

12For c > 0, buyer-optimal outcomes of Roesler and Szentes (2017) are not generally efficient;
they show that the good is traded whenever valuation exceeds c (Proposition 2 of Online Appendix)
so any inefficiency is due to too much trade. In contrast, inefficiency in our optimal outcome is due
to too little trade (i.e., c < θ̂) when c < µ. The welfare comparison between the two outcomes can
go either way. In Example 1 of the Online Appendix of Roesler and Szentes (2017), for instance,
welfare is higher in their outcome when c = 0 but in our outcome when c = 1/2.
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f(θ) =

∫ 1

θ

vdF − µ

1 + F (θ)
+

cF (θ)2

1 + F (θ)
. (4)

The optimal threshold θ̂ maximizes f(θ), which implies, via the first order condition,

that it must satisfy the equation

(θ − c)(1 + F (θ))2 = µ− c. (5)

The LHS strictly increases from −c when θ = 0 to 4(1 − c) when θ = 1, so (5)

has a unique solution θ̂ and θ̂ ∈ (c, µ). Since f(0) = 0, f(1) = (c − µ)/2 < 0 and

f ′(0) = µF ′(0) > 0, f(θ) is a maximum at θ̂. Thus, S’s optimal price is p̄(Tθ̂, f(θ̂)).

We have identified above the unique single-threshold contract, (Tθ̂, f(θ̂)), that

delivers the optimal fee f(θ̂) for A. Hence, it constitutes an equilibrium of the game

Γ for A to offer this contract, for S to set price p = p̄(Tθ̂, f(θ̂)) and for B to accept

A’s contract and buy the good if and only if v ≥ θ̂. Moreover, every equilibrium of

Γ is outcome-equivalent to this equilibrium, leading to the following summary of the

unique equilibrium outcome.

Proposition 2 The equilibrium outcome is unique and characterized as follows.

(a) If c ≥ µ, the seller’s good is traded if and only if v ≥ c (hence, the outcome is

efficient); A’s fee is the total efficient surplus, (E(v|v ≥ c)− c)(1−F (c)); S sets price

c; B and S both get zero expected payoff.

(b) If c < µ, the seller’s good is traded if and only if v ≥ θ̂ where θ̂ is the unique

solution to (5); c < θ̂ < µ (hence the outcome is inefficient) and θ̂ strictly increases

in c; A’s fee is f(θ̂) where f(·) is given by (4); S sets price

p̄(Tθ̂, f(θ̂)) =
µ− c[F (θ̂)]2

1− [F (θ̂)]2
> µ;

B’s expected payoff is 0 and S’s expected payoff is

µ− c
1 + F (θ̂)

= (θ̂ − c)(1 + F (θ̂)).

Proof: in Appendix

The uniqueness of the equilibrium outcome enables meaningful welfare compar-
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isons, which we now turn to.

Welfare. Does the presence of A increase or decrease total surplus, compared

with a situation in which B is uninformed? Secondly, how does it affect the payoffs

of B and S?

If c ≥ µ then, without A, the outcome would be inefficient: if c > µ then there

would be no trade and if c = µ, trade would happen at price c, even if v < c. The

advisor strictly increases total surplus, to its maximum, but is of no benefit to B or

S since they both get zero whether A is present or not.

If c < µ then, again, B does not benefit since he gets zero in either case. S is

strictly worse off when A is present. Without A, trade takes place at price µ and

S obtains payoff µ − c. With A present, S’s expected payoff, by Proposition 2(b),

is (µ − c)/(1 + F (θ̂)) < µ − c. Whether A increases total surplus depends on the

value of c. Total surplus with A present is (E(v|v ≥ θ̂) − c)(1 − F (θ̂)). Therefore

surplus increases if this exceeds µ − c, i.e., if c > E(v|v ≤ θ̂), and decreases if the

inequality is reversed. There exists c̃ ∈ (0, µ) such that A reduces surplus if c < c̃

and increases it if c > c̃. To see this, note that c − E(v|v ≤ θ̂(c)) < 0 for c = 0 and

c− E(v|v ≤ θ̂(c)) > 0 for c close to µ (since θ̂(c) < µ). Substituting c = E(v|v ≤ θ)

in (5) gives

θ + (2 + F (θ))

∫ θ

0

(θ − v)dF = µ.

The LHS strictly increases in θ, so, by continuity, there is a unique θ̂(c), hence a

unique c, at which c = E(v|v ≤ θ̂(c)).

In conclusion, while the advisor may increase total surplus, and in some cases

induces full efficiency, he is of no benefit to the original trading partners. When

c < µ the seller in fact is made strictly worse off and so has an interest in lobbying

to prevent the advisor operating; when the seller is relatively inefficient (c close to µ)

such a restriction of information trade would be surplus-destroying.

5 Comparison with the Full-Information Case

In this section we discuss three variants of the game Γ analyzed in the previous
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section, in each of which the monopoly outcome prevails in the sense that S charges

the monopoly price as if B knew the realization of his value v, and A sells information

that effectively equips B with full information. We then compare the equilibrium

welfare with the welfare achieved in our main model. The first variant differs from

Γ in that the order of moves of A and S is reversed: first S publicly sets her price p

and then A offers B a contract (ψ, f) ∈ C. In the second variant there are multiple

informed third-party advisors who act competitively and may offer new contracts to

B at any stage before B buys S’s good. In the third variant A moves first by privately

offering a contract to B but (unlike in the case briefly discussed in Section 3) is not

committed to it, in the sense that A and B are free to renegotiate the contract after

S sets her price.

1. Seller Moves First13

The analysis of this game is straightforward. For an arbitrary p ∈ R+, consider a

contingency in which S has set price p. Then B’s reservation payoff is max{µ− p, 0}.
Since, in a perfect Bayesian equilibrium, B will accept a given contract if and only if,

for price p, it gives him at least his reservation payoff, it is optimal14 for A to offer the

single-threshold signal structure Tp in return for a fee f which is equal to B’s surplus

from Tp in excess of his reservation payoff, i.e.,

f =
(
E(v|v ≥ p)− p

)
(1− F (p))−max{µ− p, 0}. (6)

B will pay the fee and then buy the good if and only if v ≥ p, generating a profit of

(p − c)(1 − F (p)) for S. Anticipating this, the seller will charge the monopoly price

pm(c) ∈ arg maxp(p− c)(1− F (p)), the seller-optimal price when B knows v. Hence

B’s expected payoff is max{µ − pm(c), 0}. The presence of A benefits B in the case

in which pm(c) < µ since, if there were no advisor, the seller would simply charge µ

13 We argued in Section 3 that it is plausible that A has greater ability to commit than S, hence
that an appropriate model is one in which A moves before S. Even if the two parties have similar
commitment abilities, however, it is still plausible that A would move first because in many cases
both parties prefer this order. For example, in the case in which F is uniform, if c ∈ (cA, cS), both
A and S prefer that A moves first than that S does so, where cA ≈ 0.18, cS ≈ 0.35. If c < cA then
each prefers the other to move first and if c ∈ [cS , 0.5] then each prefers to be the first mover; see
the Appendix for details. In particular, for no c do both A and S prefer that S moves first.

14And any optimal action is payoff-equivalent to this.
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and the buyer’s payoff would be zero.

2. Competitive Advisors

Suppose there are multiple competitive advisors, all fully-informed, who can offer

any contract in C. Suppose further that they can offer new contracts to B at any

time, including after S commits to her price p (in addition to any that have previously

been accepted). Then it is easy to see that in equilibrium B acquires, for zero fee,

a signal which tells B whether or not v exceeds p. Anticipating this, S sets the

monopoly price pm(c). The only difference between this case and the previous one

is that the buyer captures the consumer surplus (in excess of the buyer’s reservation

payoff max{µ−pm(c), 0}), whereas in the previous case the monopoly advisor does so.

3. Private Contracting with Renegotiation

Suppose A contracts with B privately, i.e., S does not observe the signal structure

and fee offered. Then, after S sets a price p, A and B are free to renegotiate the

contract for mutual benefit. In this case, it is clear that they would renegotiate to a

single-threshold structure Tp, or equivalent, and, foreseeing this, S charges pm(c) and

trade takes place if and only if v ≥ pm(c), once again implementing the monopoly

outcome when B has full information about v.

How does the welfare (in the sense of total surplus) achieved in the full-information

monopoly outcome compare with that of our main model? The following Proposition

shows that for distributions F that are, in a particular sense, not too ‘concentrated’,

total surplus is higher when the advisor commits in advance to a signal structure than

when he gives full information after the seller sets her price, as in the three variants

above.

Proposition 3 (a) The equilibrium total surplus in Γ is greater than that in

the full-information monopoly outcome if pm(c) > µ.

(b) There exists k > 2 such that the equilibrium total surplus in Γ is greater than

that in the full-information monopoly outcome if the density function F ′ has slope
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no higher than k in the sense that∣∣∣∣F ′(v′)− F ′(v)

v′ − v

∣∣∣∣ ≤ k for all v, v′ ∈ [0, 1]. (7)

Proof: in Appendix.

To see why the statement is true for case (a), note that, by Proposition 2, the

equilibrium outcome is efficient if c ≥ µ (hence also pm(c) > µ), whereas if c < µ,

the optimal threshold θ̂ satisfies c < θ̂ < µ, so c < θ̂ < pm(c), which implies that

surplus is strictly higher when the threshold is θ̂. The proof for case (b) proceeds

from the fact that if c < µ the optimal threshold θ̂ ∈ (c, µ) is uniquely determined

by the solution to equation (5). Therefore θ̂ < pm(c), hence surplus is higher with

threshold θ̂, if the LHS of (5), which increases in θ, exceeds µ− c at θ = pm(c). The

proof shows that this is indeed the case for any c such that pm(c) < µ if the value

distribution F is ‘not too volatile’ in the sense of (7). Note that pm(c) satisfies the

FOC

pm(c)− c = Z(pm(c)) where Z(v) ≡ 1− F (v)

F ′(v)
.

Roughly speaking, Z(v) tends to have higher values for low v when µ is higher. If

F is not too volatile then Z(v) changes relatively mildly, which has the effect of

preventing pm(c) from being unusually low as a result of wild swings of Z(v) at low

values of v. This keeps pm(c) sufficiently close to µ so that, in particular, the LHS of

(5) exceeds µ−c at θ = pm(c). The conclusion of Proposition 3(b) is proved relatively

straightforwardly for the case k = 2, but it is clear from the proof that the conclusion

should hold more broadly. We also provide a proof for the case k = 3, which is more

complex because it deals with several cases separately.

Although, from an aggregate welfare perspective, it is often better, as Proposition

3 shows, to have a monopoly advisor (with commitment power) than competitive

advisors, the buyer is, as noted above, better off when there are competitive advisors

since he is then able to extract the consumer surplus. He is also strictly better off

if the seller, rather than the monopoly advisor, moves first if F and c are such that

the seller’s monopoly price pm(c) is less than µ. The seller may prefer either case, as
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discussed in footnote 13 above.

6 Contracting with the Seller or with both Parties

As we argued in the Introduction, there are many information markets in which

the information provider deals with the buyer of the good, not the seller, perhaps

because the buyer would not find the information credible if it were provided by an

agent of the seller. In this section we show that even if there were no such obstacle

the advisor, in our setup, would not want to contract with the seller. We also show

that if the seller has the power to veto the advisor’s contract with the buyer then the

outcome is efficient. This implies that, even if it is only the buyer who can pay the

advisor for information, there is a social welfare case for forbidding exclusive contracts

between the advisor and the buyer: doing so brings about efficiency and, furthermore,

does not harm either the buyer or the seller, compared with the setting in which the

advisor is not active in the market.

More specifically, we analyze two contracting settings, the seller-contract case,

in which A offers a contract to S, and the joint-contract case, in which he offers a

contract to both S and B. We assume that A has only one opportunity to offer a

contract. That is, if the contract is rejected (by S in the seller-contract case or by at

least one of S and B in the joint-contract case) then S and B revert to a bilateral

relationship, i.e., S makes a take-it-or-leave-it price offer to B.

First, consider the seller-contract case. Suppose that A proposes a contract in

which A supplies the single-threshold structure Tc to B (i.e., tells B whether or not

v ≥ c) if S pays A a fee of (E(v|v ≥ c)− c)(1−F (c))−max{µ− c, 0}. If this contract

is accepted by S then S, having paid the information fee, finds it optimal to set15

price E(v|v ≥ c) since there will be no sale for any higher price and, for any price in

[c, E(v|v ≥ c)], trade will take place with probability 1−F (c). Net of the information

fee, S’s expected payoff is therefore max{µ − c, 0}, her reservation payoff, so she is

willing to accept the contract. Since the contract is efficient and both B and S get

their reservation payoff, the contract is optimal for A. This is the unique equilibrium

15In an alternative formulation, the contract also recommends price E(v|v ≥ c), but it cannot
enforce it, hence it must be incentive-compatible.
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outcome.

Now consider the joint-contract setting. In this case assume that the contracting

game takes the following form. (1) A proposes a contract consisting of a pair of fees,

(fS, fB), and a signal structure (this could be supplied to B alone or to both parties,

or, potentially, it could consist of a pair of distinct structures, one for each); (2) S

accepts or rejects the contract; (3) if S accepts, S pays fS to A and sets16 a price

p; if S rejects, S sets a price p and B either buys for price p or not; (4) if S has

accepted the contract, B observes both the contract and p and accepts or rejects the

contract; (5(i)) if B accepts, B pays fB to A, A observes and supplies the contracted

information, and B decides whether to buy the good for price p; (5(ii)) if B rejects,

B decides whether to buy the good for price p or not.

We refer to a joint-contract in which fS = 0, fB > 0 and the information is

supplied to B as a seller-veto contract. A contracts to sell information to B, but S

has the right to veto the contract and deal bilaterally with B. The following seller-

veto contract is efficient and gives payoff zero to B and max{µ−c, 0} to S. Therefore

it is payoff-equivalent to the optimal contract with S above and, hence, optimal for A.

Efficient Seller-veto Contract The signal structure is Tc, to be supplied to B; the

fees are fS = 0 and

fB =
(
E(v|v ≥ c)− p∗

)
(1− F (c))

where p∗ satisfies (p∗ − c)(1− F (c)) = max{µ− c, 0}. Having accepted the contract,

S optimally sets price p∗. If p > p∗ then B would buy neither information nor the

good (because p > p∗ ≥ µ); if p ∈ [µ, p∗] then B would buy information and purchase

the good if and only if v ≥ c; if p < µ then B would either still buy the information

or buy outright—in either case S’s profit is less than max{µ− c, 0}. This gives S her

reservation payoff, so she will accept the contract. The efficient outcome obtains; S’s

payoff is max{µ− c, 0} and B’s is 0.

If c ≥ µ the efficient contracts above are payoff-equivalent to the optimal contract

with the buyer alone. However, if c < µ, although the above contract is efficient the

16Alternatively S could set the price after seeing whether B accepts A’s contract, but B’s fee can
be contingent on the price. The optimal contracts are the same.
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advisor strictly prefers to contract (inefficiently, as we have seen) with the buyer. The

intuition is that the advisor prefers not to involve the seller because she has a high

reservation payoff.

Proposition 4 If A deals with S, or with both S and B, then

(a) any equilibrium is efficient, S’s profit is max{µ− c, 0} and B’s surplus is zero;

(b) there is an equilibrium seller-veto contract;

(c) if c < µ A’s payoff is strictly less than his payoff from the optimal contract with

B.

Proof (a) and (b) are proved above. (c): see Appendix.

Proposition 4 suggests that there is a case for a public policy of banning exclusive

contracts between the advisor and the buyer. If the seller is given a veto over any

information contract then the presence of the advisor brings about efficient trade

without reducing the payoff of either of the original two parties (if c ≥ µ then this

would be the outcome even without the policy, but not if c < µ). If, on the other

hand, the advisor deals, as he prefers to, only with the buyer, then, as we have seen,

the outcome is inefficient and the seller’s payoff is lower than if there were no advisor.

7 Related Literature

There is an extensive literature on information design and sale. Early contribu-

tions are Admati and Pfleiderer (1986), who show that a monopoly seller of financial

information to rational investors may find it optimal to add noise to the informa-

tion, independently across information buyers; and Lewis and Sappington (1994),

who study a monopoly seller of a good who, for the purposes of price discrimination,

can provide a possibly noisy signal to the buyer without observing it, and show that

under some assumptions the monopolist prefers to provide either full information or

none. An early study of a third-party information provider is Lizzeri (1999). In this

paper a monopoly intermediary who is informed about a seller’s quality sets a fee

and commits to an information disclosure policy. The seller then decides whether to

pay the intermediary or sell direct. In the unique equilibrium all sellers pay the in-
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termediary, who reveals no information beyond the fact that the seller has paid to be

certified. A seller who does not pay the intermediary is believed to be the worst type.

A key difference between this (and other papers in this literature, such as Albano

and Lizzeri (2001) and Biglaiser (1993)) and our paper is that our third party sells

information (in our case, to the buyer) which is not known to the seller.

The literature on Bayesian persuasion (e.g., Kamenica and Gentzkow (2011), Rayo

and Segal (2010), Kolotilin (2018)) is also concerned with design of information dis-

closure policies. In this literature a principal (sender) commits to the structure of

information to be observed by a receiver, who then takes an action. Our model is

different in a number of respects. Firstly, the information designer faces two players,

buyer and seller, and designs a game for them to play. Secondly, both information

and a product are sold, so that prices are crucial strategic variables. In the language

of Kamenica and Gentzkow, we combine two ways in which an agent can be induced

to do something, by pricing and by changing beliefs. In other words, our paper is

in the mechanism design rather than pure information design tradition, in that the

designer can manipulate outcomes (in particular the information fee) as well as the

information structure. Bergemann and Morris (2019) survey the information design

literature with multiple as well as single receivers.

Among papers which study mechanism design combined with information design

are Bergemann and Pesendorfer (2007), Eso and Szentes (2007) and Bergemann,

Bonatti and Smolin (2018). In Bergemann and Pesendorfer (2007) an auctioneer first

chooses a signal structure for the bidders, which determines their private information,

and chooses an optimal auction for that structure. For example, with two bidders the

optimal information structure, if restricted to be symmetric across the two bidders,

has a binary threshold character. Eso and Szentes (2007) allow the auctioneer to de-

sign the information and selling mechanism as a single unit, i.e., the designer releases

information as part of the mechanism. They show that it is optimal to release to

the bidders all the available information which is orthogonal to their initial private

information. Li and Shi (2017), on the other hand, show that if the auctioneer is

not restricted to releasing garblings of the orthogonal information only (the ‘shock’)
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then releasing full information is not optimal. Bergemann, Bonatti and Smolin (2018)

study a mechanism designer (data seller) who provides a menu of statistical experi-

ments for a data buyer with initial private information in return for payments which

cannot be dependent on the buyer’s action or the realized state or signal. The optimal

menu always includes a fully informative experiment as well as partially informative,

‘distorted’ experiments. Another study of information sale is Hörner and Skrzypacz

(2016), but the focus in that paper is on gradual release of information by an informed

agent, to mitigate a holdup problem.

Closer to our paper, because they concern a third party selling information to

players engaged in a trading relationship, are Yang (2019, 2021) and Lee (2021), but

they differ from our paper in multiple respects. In Yang (2019) the intermediary is

a platform between consumers and the monopoly firm who can only contract via the

platform. In Yang (2021) the intermediary sells information (about market segmenta-

tion) to the monopolist seller, rather than to the buyer as in our paper. In Lee (2021)

too, the informed party deals with the seller, in the sense that it collects payments

from sellers for recommendations to buyers. Inderst and Ottaviani (2012) is another

paper that studies this issue. Bergemann and Bonatti (2019) review a number of

papers which study sale of information, particularly in markets for data, and provide

some results for a model in which a data broker buys information from consumers to

package and sell on to firms.

Since our paper studies a situation in which two principals (the information

provider and the seller of the good) sequentially design mechanisms for an agent it

is related to the literature on sequential common agency; Calzolari and Pavan (2006)

study sequential contracting of two principals with a single agent and the conditions

under which it is optimal for the first principal to sell information revealed in the

first contracting stage to the second principal. Our focus is different since our buyer

initially has no private information, the two principals choose mechanisms before the

agent acts and the first principal sells information to the agent.

A closely related paper, which we have discussed in more detail above, is Roesler

and Szentes (2017), which characterizes the signal structure which is optimal for the
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buyer, assuming the seller knows the structure but does not observe the realization

of the signal. In Ravid, Roesler and Szentes (2022) the buyer may buy any structure

of information, at an exogenously given cost which varies with information content.

Our paper, by contrast, characterizes the structure of information which obtains if it

has to be bought from a monopoly provider who commits to a signal structure.

8 Concluding Remarks

We have shown that a simple binary classification may emerge as an optimal in-

formation structure when a monopoly information seller has commitment power. We

also showed that there are welfare advantages to having such a monopoly provider,

and to giving sellers veto power over information trade. The signal structure which

is optimal for the buyer, elegantly derived by Roesler and Szentes (2017) is, by con-

trast, rather delicate, requiring a continuum of signals which generate a truncated

Pareto distribution of posterior means. Our results predict much simpler structures

for situations in which information is provided by a profit-maximizing firm which

information buyers are free to bypass.

There are a number of directions in which it would be desirable to generalize the

above analysis. In particular, we have assumed that initial information is symmetric

between buyers and sellers. In practice, the buyer will generally have private infor-

mation about his valuation, which can be augmented by further information held by

the advisor. A natural conjecture is that the optimal information contract would take

the form of a menu of single-threshold signal structures, with different prices (more

informative, i.e., more central, thresholds costing more) from which the buyer selects

one.
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Appendix

Proof of Proposition 1 (a) Let (ψ, f, p) be an arbitrary optimal contract-price

pair. Since information is purchased in any optimal contract-price pair, we have

uI(µ|(ψ, f)) ≥ 0. Hence, πI(p|(ψ, f)) ≥ πI(µ|(ψ, f)) > 0 given c < µ. Suppose first

that, given the optimal (ψ, f, p), S strictly prefers to charge p than to charge p(ψ, f),

i.e., πI(p|(ψ, f)) > πo(p(ψ, f)). If, were A instead to offer (ψ, f+ε) for small ε > 0, by

continuity, p(ψ, f+ε) is only slightly greater than p(ψ, f) (the increase in fee shifts uI

down), so S’s profit from selling outright only increases slightly. Moreover, p̄(ψ, f+ε)

is only slightly smaller than p̄(ψ, f). Hence, by continuity, there must be p′ in the

interval (p(ψ, f + ε), p̄(ψ, f + ε)] such that πI(p
′|(ψ, f + ε)) ≥ πo(p(ψ, f + ε)). Since

this would refute the claim that (ψ, f, p) is optimal, we conclude that πI(p|(ψ, f)) =

πo(p(ψ, f)). We have already proved that p = p̄(ψ, f) in the main text.

(b) Let SI(ψ, f, p) denote the total expected surplus achieved when the price is p

and B buys the signal structure ψ for a fee f . That is,

SI(ψ, f, p) = uI(p|(ψ, f)) + πI(p|(ψ, f)) + f.

30



Claim 1 Suppose that (ψ, f, p) is optimal and also that, for some θ ∈ (0, 1),

(i) uI(p(ψ, f)|(ψ, f)) ≤ uI(p(ψ, f)|(Tθ, f)), and

(ii) SI(Tθ, f, p̄(Tθ, f)) ≥ SI(ψ, f, p).

Then, both (i) and (ii) hold as equalities, which implies that (Tθ, f, p̄(Tθ, f)) is optimal.

Proof of Claim 1 By (i), uI shifts up at p(ψ, f) when (ψ, f) is replaced by (Tθ, f).

uo is unchanged, so p(Tθ, f) ≤ p(ψ, f). This in turn means that S’s optimal profit from

selling outright is lower for (Tθ, f) than it is for (ψ, f), i.e., πo(p(Tθ, f)) ≤ πo(p(ψ, f)).

Given (Tθ, f), if S prices optimally subject to B buying information, i.e., sets price

p̄(Tθ, f), then B gets zero, A gets f , and so S’s profit is

πI(p̄(Tθ, f)|(Tθ, f)) = SI(Tθ, f, p̄(Tθ, f))−f ≥ SI(ψ, f, p)−f = πI(p|(ψ, f)) = πo(p(ψ, f))

(8)

where the inequality follows from (ii) and the last two equalities follow from part (a)

of the Proposition given that p = p̄(ψ, f) implies uI(p|(ψ, f)) = 0.

If (ii) is slack, the inequality in (8) is strict. If (i) is slack, uo(p(ψ, f)) < uI(p(ψ, f)|(Tθ, f))

so that p(Tθ, f) < p(ψ, f) and thus πo(p(Tθ, f)) < πo(p(ψ, f)). In either case, we have

πI(p̄(Tθ, f)|(Tθ, f)) > πo(p(Tθ, f)). Hence, by continuity, if A offered (Tθ, f + ε) for

small enough ε > 0 then S would optimally price so that B would accept A’s contract.

Since this would refute optimality of (ψ, f, p), both (i) and (ii) must hold as equalities.

Then, (i) implies uo(p(ψ, f)) = uI(p(ψ, f)|(Tθ, f)) so that p(Tθ, f) = p(ψ, f) and

thus πo(p(Tθ, f)) = πo(p(ψ, f)), and (ii) implies πI(p̄(Tθ, f)|(Tθ, f)) = πI(p|(ψ, f)).

Therefore, (Tθ, f, p̄(Tθ, f)) solves (2), thus is optimal. This proves the Claim.

Now, take an optimal triple (ψ, f, p). Denote by q(p′) the probability of trade

given (ψ, f) if the price is p′ and B buys information. For any q ∈ (0, 1), define θ(q)

by 1−F (θ(q)) = q. Conditional on buying with probability q, B’s expected utility is

maximized by buying if and only if v ≥ θ(q). Since the probability of trade falls as

the price increases, θ(q(p0)) ≤ θ(q(p1)) if p0 ≤ p1. We consider two cases below.

(1) Suppose θ(q(p)) ≤ p(ψ, f). Then, (i) and (ii) of Claim 1 hold when θ = θ(q(p)).

To show (i): Since p(ψ, f) ≤ p, θ(q(p(ψ, f))) ≤ θ(q(p)) ≤ p(ψ, f). Therefore, for

price p(ψ, f) B’s expected utility from buying information is higher when the thresh-
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old is θ(q(p)) than when it is θ(q(p(ψ, f))), which in turn is higher than when the struc-

ture is ψ, since then the probability of sale is q(p(ψ, f)) and B’s expected utility con-

ditional on this probability is maximized when B buys if and ony if v ≥ θ(q(p(ψ, f)).

That is, uI(p(ψ, f)|(Tθ(q(p)), f)) ≥ uI(p(ψ, f)|(Tθ(q(p(ψ,f))), f)) ≥ uI(p(ψ, f)|(ψ, f)).

To show (ii): Conditional on trade probability q(p), total surplus is strictly larger

when trade takes place if and only if v ≥ θ(q(p)) than when it takes place with a

positive probability even if v < θ(q(p)). Hence, the inequality in (ii) holds when

θ = θ(q(p)), as a strict inequality if (ψ, f, p) is not single-threshold equivalent.

It follows from Claim 1, therefore, that (ψ, f, p) is single-threshold equivalent

because otherwise the inequality (ii) would be slack for θ = θ(q(p)) as explained just

above, and also that (Tθ(q(p)), f, p̄(Tθ(q(p)), f)) is optimal. Note that the total surplus is

the same between (ψ, f, p) and (Tθ(q(p)), f, p̄(Tθ(q(p)), f)) because trade takes place for

the same set of v, and therefore, given that in each case A gets f and B’s surplus is

zero (by (a)), S’s expected payoff is also the same. This implies that p = p̄(Tθ(q(p)), f)

so that (Tθ(q(p)), f, p) is optimal, as desired.

(2) Suppose θ(q(p)) > p(ψ, f). If p(ψ, f) < c < µ then πo(p(ψ, f)) < 0 <

πI(µ|(ψ, f)) and also uI(µ|(ψ, f)) > 0, hence if the fee is increased to f + ε such that

p(ψ, f + ε) < c then S must price so as to induce information sale. As this would

contradict optimality of (ψ, f, p), we have p(ψ, f) ≥ c. Then, (i) and (ii) of Claim

1 hold when θ = p(ψ, f) but (ii) is slack as verified below, which violates Claim 1.

Hence, the current case is infeasible.

To show (i): Given the price p(ψ, f), B’s expected utility is maxmized when he

buys if and only if v ≥ p(ψ, f).

To show (ii): Since θ(q(p)) > p(ψ, f) ≥ c, total surplus is strictly higher when

trade takes place if and only if v ≥ p(ψ, f) than when it takes place if and only if

v ≥ θ(q(p)), which in turn is no lower than that from ψ. QED.

Proof of Proposition 2 Part (a) has been proved in the main text. We prove part

(b) below. To identify the optimal single-threshold θ̂, note that for any θ ∈ (0, 1),

uI(p|(Tθ, f)) =

∫ 1

θ

vdF − p(1− F (θ))− f.
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p(Tθ, f) and p̄(Tθ, f) are given respectively by uI(p|(Tθ, f)) = µ−p and uI(p|(Tθ, f)) =

0 so

p(Tθ, f) =

∫ θ
0
vdF + f

F (θ)
and p̄(Tθ, f) =

∫ 1

θ
vdF − f

1− F (θ)
.

By Proposition 1(a), f(θ), the optimal fee for threshold θ, is chosen so that

p(Tθ, f(θ))− c =
(
p̄(Tθ, f(θ))− c

)
(1− F (θ)),

so, after rearrangement, we get (4) which is reproduced below:

f(θ) =

∫ 1

θ

vdF − µ

1 + F (θ)
+

cF (θ)2

1 + F (θ)
. (4)

The optimal threshold θ̂ maximizes f(θ). Since

f ′(θ) =
[
− θ +

µ+ 2cF (θ) + cF (θ)2

(1 + F (θ))2

]
F ′(θ),

f ′(θ) = 0 if and only if the equation (5), reproduced below, holds:

(θ − c)(1 + F (θ))2 = µ− c. (5)

The LHS strictly increases from −c when θ = 0 to 4(1 − c) when θ = 1, so (5)

has a unique solution θ̂ and θ̂ ∈ (c, µ). Since f(0) = 0, f(1) = (c − µ)/2 < 0 and

f ′(0) = µF ′(0) > 0, f(θ) is a maximum at θ̂. Thus, S’s optimal price is

p̄(Tθ̂, f(θ̂)) =

∫ 1

θ̂
vdF − f(θ̂)

1− F (θ̂)
=

µ− c[F (θ̂)]2

1− [F (θ̂)]2
> µ

where the second equality is from (4) and the inequality from c < µ; S’s expected

payoff is (p̄(Tθ̂, f(θ̂))− c)(1− F (θ̂)) = µ−c
1+F (θ̂)

= (θ̂ − c)(1 + F (θ̂)) from (5).

We have identified above the unique single-threshold contract, (Tθ̂, f(θ̂)), that

delivers the optimal fee f(θ̂) for A. Hence, it constitutes an equilibrium of the game

Γ for A to offer this contract, for S to set price p = p̄(Tθ̂, f(θ̂)) and for B to accept A’s

contract and buy the good if and only if v ≥ θ̂. It turns out that every equilibrium

of Γ is outcome-equivalent to this equilibrium.

To see this, observe that by offering Tθ̂ for a slightly lower fee f ′ = f(θ̂) − ε, A
can ensure that S prices so that B accepts the contract for sure, guaranteeing his
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own payoff of at least f(θ̂)− ε for any small ε > 0. Hence, A should get the optimal

fee f(θ̂) in every equilibrium, i.e., every equilibrium contract-price pair (ψ, f(θ̂), p) is

optimal and thus, by Proposition 1(b), (Tθ′ , f(θ̂), p) is optimal where θ′ is such that

the good is traded if and only if v ≥ θ′ when (ψ, f(θ̂)) is offered. Since θ̂ is the unique

optimal single-threshold, it follows that θ′ = θ̂ and p = p̄(Tθ̂, f(θ̂)). This establishes

uniqueness of equilibrium outcome. QED.

Comparing Orders of Moves: Uniform Distribution

Suppose that A may only contract with B. Assume that F is uniform on [0, 1] and

c < µ = 0.5. If S moves first then she sets p = (1 + c)/2 and A offers a contract with

threshold p and fee equal to the consumer surplus, so that the equilibrium payoffs

are πm = (1 − c)2/4 and CSm = (1 − c)2/8 for S and A respectively. If, instead, A

moves first then, by Proposition 2(b), the payoff of S is (θ̂− c)(1 + θ̂) (where θ̂ solves

(θ − c)(1 + θ)2 = 0.5 − c), which exceeds πm for c < cS ≈ 0.349 and is less than πm

for c > cS. A’s payoff is the consumer surplus(1 + θ̂

2
− 0.5− cθ̂2

1− θ̂2

)
(1− θ̂),

which is less than CSm for c < cA ≈ 0.178 and exceeds CSm for c > cA. (Calculations

using Mathematica). Therefore, both A and S prefer A to move first if c ∈ (cA, cS).

Proof of Proposition 3 The statement corresponding to (a) was proved in the

main text. To prove (b), we assume that pm(c) ≤ µ without loss of generality given

(a), and show that θ̂ < pm(c) if F satisfies (7) for k = 2 first and then for k = 3,

where θ̂ is the optimal threshold in Proposition 2(b).

(1) For the case that F satisfies (7) for k = 2.

We do this in two step. In Step 1, we show that θ̂ < pm(c) if F satisfies the

following three conditions:

[C1] Z(v) ≡ (1− F (v))/F ′(v) ≥ (1− v)/2 for all v ∈ [0, 1],

[C2] F (v) ≥ v2 for all v ∈ [0, 1] and

[C3] F ′(v) ≤ 8/5 for all v ∈ [1/3, 2/3].
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In Step 2, we show that F satisfies (7) for k = 2 if it satisfies [C1]–[C3].

Step 1. We show below that if F satisfies [C1]–[C3] then the LHS of (5) exceeds the

RHS when θ = pm(c), i.e., X(pm(c), c) > µ where X(v, c) ≡ (v−c)[1+F (v)]2+c. Since

X(v, c) strictly increases in v and X(θ̂, c) = µ by Proposition 2(b), this establishes

that θ̂ < pm(c).

The mean of cdf G(v) ≡ v2 is 2/3 and G first-order stochastically dominates F

by [C2], so µ ≤ 2/3. Since the FOC of profit maximization is pm(c)− c = Z(pm(c)),

X(pm(c), c) = (pm(c)− c)[2− (pm(c)− c)F ′(pm(c))]2 + c (9)

and, by [C1], pm(c) ≥ 1+2c
3

. Therefore 1/3 ≤ pm(c) ≤ 2/3. We show below that

X(pm(c), c) > 2/3, hence that X(pm(c), c) > µ.

Let χ(p, c) ≡ (p − c)(2 − (p − c)8/5)2 + c ≤ X(p, c) for p ∈ [1/3, 2/3] by [C3].

Note that the second partial of χ with respect to c is

χcc(p, c) =
−64(5 + 6c− 6p)

25
< 0 for c ∈ (0, 1) given p ∈ [1/3, 2/3]. (10)

Hence, χ(p, c) is concave in c for p ∈ [1/3, 2/3].

Recall from above that pm(c) ∈ [1+2c
3
, 2

3
]. We examine whether χ(p, c) > 2/3 for

c ∈ (0, 1) and p ∈ [1+2c
3
, 2

3
], or equivalently, for (p, c) ∈ [1

3
, 2

3
]× [0, 3p−1

2
] ⊂ [1

3
, 2

3
]× [0, 1

2
].

We start with p ∈ [1
3
, 1

2
]. Then, χ(p, 0) = p(2 − 8p/5)2 and χ(p, 3p−1

2
) = (11 +

87p − 32p2 − 16p3)/50, both of which are easily verified to exceed 2/3 for p ∈ [1
3
, 1

2
].

Since χ(p, c) is concave in c, it follows that X(p, c) ≥ χ(p, c) > 2/3 for (p, c) ∈
[1
3
, 1

2
]× [0, 3p−1

2
].

Next, consider p ∈ [1
2
, 2

3
]. The value χ(p, 3p−1

2
) above exceeds 2/3 for p ∈ [1

2
, 2

3
]

as well, but χ(p, 0) = p(2 − 8p/5)2 does not always. Hence, we calculate χ(p, 1
10

) =

0.1− 2(27− 20p)2(1− 10p)/3125 which is easily verified to exceed 2/3 for p ∈ [1
2
, 2

3
].

Hence, as before we deduce that X(p, c) ≥ χ(p, c) > 2/3 for (p, c) ∈ [1
2
, 2

3
]× [ 1

10
, 3p−1

2
].

It remains to consider (p, c) ∈ [1
2
, 2

3
] × [0, 1

10
). At p = 1/2 and c < 0.1, we have

(p − c)(1 + p2)2 + c = (25 − 18c)/32 > 2/3. Since F (p) ≥ p2 by [C2], X(p, c) ≥
(p− c)[1 + (p)2]2 + c and (p− c)[1 + (p)2]2 + c is increasing in p, so X(p, c) > 2/3 for

(p, c) ∈ [1
2
, 2

3
]× [0, 1

10
) as well.
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Thus, we have verified X(pm(c), c) > 2/3, hence that X(pm(c), c) > µ, completing

Step 1.

Step 2. Let D denote the set of cdf’s G with continuous density g that satisfy (7)

for k = 2, i.e., |g(v
′)−g(v)
v′−v | ≤ 2 for all v, v′ ∈ [0, 1]. Take a cdf G ∈ D, with density g.

We show below that [C1]–[C3] are satisfied by G (i.e., when F is replaced by G).

[C1] Fix v ∈ [0, 1] and let g(v) = x. Denote by G̃ the cdf (with density g̃) which

minimizes 1 − F (v) subject to F ∈ D and F ′(v) = x. (i) Suppose x ≥ 2(1 − v).

Then g̃(u) = x − 2(u − v) for u ≥ v and g̃(1) = x − 2(1 − v) ≥ 0. (If x >

2(1− v) it is not the case that g̃′(u) = −2 for all u < v since that would imply that

g̃(u) ≥ x + 2v − 2u > 2 − 2u, for all u ∈ [0, 1], so
∫ 1

0
g(u)du > 1. Therefore, if

g̃(u) 6= x− 2(u− v) for all u ≥ v it would be possible to transfer mass from above v

to below v, while remaining in D). Hence 1− G̃(v) = x(1− v)− (1− v)2. Therefore

(1 − G̃(v))/g̃(v) = (1/x)[x(1 − v) − (1 − v)2] = (1 − v) − (1 − v)2/x, which, for

x ≥ 2(1 − v), is minimized when x = 2(1 − v), at value (1 − v)/2. (ii) Suppose

x ≤ 2(1 − v). Then g̃(u) = x + 2v − 2u for u ≤ v. Hence 1 − G̃(v) = 1 − v(x + v).

Therefore (1−G̃(v))/g̃(v) = (1−v2)/x−v, which, for x ≤ 2(1−v), is minimized when

x = 2(1− v), at value (1− v)/2. This shows that Z(v) ≡ (1−G(v))/g(v) ≥ (1− v)/2

for all v ∈ [0, 1].

[C2] Fix v ∈ [0, 1]. (i) Suppose g(v) ≤ 2v. For all u ≥ v, g(u) ≤ g(v) + 2(u− v),

so g(u) ≤ 2u. Therefore
∫ 1

v
g(u)du ≤

∫ 1

v
2udu = 1− v2, which implies G(v) ≥ v2. (ii)

Suppose g(v) ≥ 2v. Then, for all u ≤ v, g(v) ≤ g(u) + 2(v − u), i.e., g(u) ≥ 2u, so

G(v) ≥ v2. Hence G(v) ≥ v2 for all v ∈ [0, 1].

[C3] Fix v ∈ [1/3, 2/3]. Denote by Ĝ the cdf, with density ĝ, which maximizes

F ′(v) subject to F ∈ D. Then ĝ has slope 2 for u < v and slope −2 for u ≥ v, i.e., if

ĝ(v) = x, ĝ(u) = x−2(v−u) if u < v and ĝ(u) = x−2(u−v) if u ≥ v. (For example,

if the slope below v were not always 2, it would be possible to reduce the mass below

v and then shift the density function up, increasing the density at v).
∫ 1

0
ĝ(u)du = 1,

so (x − v)v + (x − (1 − v))(1 − v) = 1, i.e., x = 2(1 − v + v2). This is maximized

on [1/3, 2/3] at v = 1/3, where x = 14/9 < 8/5. This shows that g(v) ≤ 8/5 for all

v ∈ [1/3, 2/3].
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(2) For the case that F satisfies (7) for k = 3.

Recall pm(c) ≤ µ and that we need to show θ̂ < pm(c). Since (5) holds when θ = θ̂

by Proposition 2(b) and the LHS of (5) strictly increases in θ, it suffices to show, as

we do in the rest of the proof, that

(∗) if F satisfies (7) for k = 3 then the LHS of (5) exceeds the RHS when θ = pm(c).

Denote by D the set of cdf’s G with continuous density g such that |g(v
′)−g(v)
v′−v | ≤ 3

for all v, v′ ∈ [0, 1]. Abusing notation, by g ∈ D we mean that g is the density

function for some cdf G ∈ D.

Let gm(v) =
√

6− 3v for v ∈ [0,
√

2/3 ≈ .816] and gm(v) = 0 for v >
√

2/3. That

is, gm(v) has a negative slope of −3 for v ∈ [0,
√

2/3] so that the area below it (and

above 0) is 1, with a corresponding cdfGm(v) =
∫ v

0
gm(x)dx =

√
6v− 3v2

2
for v ≤

√
2/3

and Gm(v) = 1 for v ≥
√

2/3. Given any g ∈ D and v ∈ (0,
√

2/3), if g(v) ≤ gm(v)

then G(v) ≤ Gm(v) because G(v) =
∫ v

0
g(u)du ≤

∫ v
0
g(v) + 3(v − u)du ≤

∫ v
0
gm(v) +

3(v − u)du =
∫ v

0
gm(u)du = Gm(u); if g(v) > gm(v) then G(v) < Gm(v) because

G(v) = 1 −
∫ 1

v
g(u)du < 1 −

∫ 1

v
max{0, g(v) − 3(u − v)}du < 1 −

∫ 1

v
max{0, gm(v) −

3(u − v)}du = 1 −
∫ 1

v
gm(u)du = Gm(v). Thus, any G ∈ D first-order stochastically

dominates (FOSD) Gm.

Let gM(v) =
√

6− 3 + 3v for v ∈ [1−
√

2/3, 1] (and gM(v) = 0 for v < 1−
√

2/3)

and GM(v) =
∫ v

0
gM(x)dx = 1−

√
6(1−v)+ 3(1−v)2

2
for v ≥ 1−

√
2/3. By an analogous

argument, GM FOSD any G ∈ D, i.e., GM(v) ≤ G(v) for all v ∈ (0, 1). In addition,

µm ≡ E[v|Gm] =

√
2

3
√

3
≈ 0.27 ≤ µ = E[v|G] < µM ≡ E[v|GM ] = 1−

√
2

3
√

3
≈ 0.73.

Upper bound of g(v). Fix v ∈ [0, 1]. Let g̃v(·) be the function g ∈ D which

maximizes g(v). It is clear that g̃′v(u) = 3 for u < v and g̃′v(u) = −3 for u > v unless

g̃v(u) = 0. For v near 0.5, g̃v(u) > 0 for all u ∈ (0, 1). Hence, denoting g̃v(v) = x,

we solve
∫ 1

0
g̃v(u)du = 1 ⇔ x+x−3v

2
v + x+x−3(1−v)

2
(1 − v) = 1 to get x = 5−6v+6v2

2
.

To identify the range of v for which g̃v(u) > 0 for all u ∈ (0, 1), we solve x = 3v and

x = 3(1− v) to get v = 1−
√

6
6
≈ .59 and v = 1√

6
≈ .41, resp.

For v > 1−
√

6
6

, since g̃v(u) = 0 for u ∈ [0, v − (x/3)], we solve
∫ 1

0
g̃v(u)du = 1 ⇔
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x2

6
+ x+x−3(1−v)

2
(1− v) = 1 to get x = −3 + 3v +

√
6(4− 6v + 3v2); for v < 1√

6
, since

g̃v(u) = 0 for u ∈ [v+(x/3), 1], we solve x+x−3v
2

v+ x2

6
= 1 to get x = −3v+

√
6 + 18v2.

Therefore, we have identified a tight upper bound of g(v), denoted by ḡ(v), as

g(v) ≤ ḡ(v) ≡

{ −3v +
√

6 + 18v2 for v < 1√
6
≈ .41

5−6v+6v2

2
for v ∈ ( 1√

6
, 1−

√
6

6
) ≈ (.41, .59)

−3 + 3v +
√

6(4− 6v + 3v2) for v > 1−
√

6
6
≈ .59.

(11)

Lower bound of 1−G(v)
g(v)

. Fix v ∈ [0, 1]. For g with gm(v) < g(v) = x <

ḡ(v), 1 − G(v) is minimized when g(u) = max{0, x − 3(u − v)} for u > v. For

x ∈ (3(1 − v), ḡ(v)), the value of 1 − G(v) minimized as such is x+x−3(1−v)
2

(1 − v),

hence 1−G(v)
g(v)

achieves a minimal value of (1− v)− 3(1−v)2

2x
= 1−v

2
at x = 3(1− v). For

x ∈ (gm(v), 3(1 − v)), the minimal value of 1 − G(v) is x2

6
, hence 1−G(v)

g(v)
achieves a

minimal value of x
6

=
√

6−3v
6

at x = gm(v). For x ∈ (0, gm(v)), 1 − G(v) is minimal

when g(u) = x + 3(v − u) for u < v (since then G(v) is maximal) in which case

1−G(v) = 1− x+x+3v
2

v. Hence 1−G(v)
g(v)

= 1−G(v)
x

= 1
x
− v− 3v2

2x
. This is decreasing in x

since x < gm(v) implies v <
√

2/3 so 1 − 3v2

2
≥ 0. Hence 1−G(v)

g(v)
achieves a minimal

value of
√

6−3v
6

at x = gm(v). Combining the three cases, we deduce

Z(v) ≡ 1−G(v)

g(v)
≥

{ √
6−3v
6

for v <
√

2/3 ≈ .816

0 for v >
√

2/3 ≈ .816.
(12)

Proving (∗). Since pm(c) − c = Z(pm(c)) by the FOC of pm(c) ∈ arg max(p −
c)(1 − G(p)), (12) implies pm(c) − c ≥

√
6−3pm(c)

6
⇔ pm(c) ≥

√
6+6c
9

. Together

with pm(c) < µ ≤ µM ≈ .73, we have pm(c) ∈ [
√

6+6c
9

, µM ] which is nonempty for

0 ≤ c ≤ 9−2
√

6
6
≈ 0.684. Hence, we may focus on

(p, c) ∈ [
√

6+6c
9

, µM ]× [0, 9−2
√

6
6

]; or equivalently, (p, c) ∈ [µm, µM ]× [0, 9p−
√

6
6

], (13)

where equivalence ensues because p ≥
√

6+6c
9
⇔ c ≤ 9p−

√
6

6
. In the sequel, we prove

(∗) for either set of (p, c), whichever is more convenient depending on the case.

If p = pm(c) for some c and G ∈ D, then p− c = Z(p) as noted above (FOC), so

that 1 +G(p) = 2− (p− c)g(p). In light of this observation, we define
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X(p, c) ≡ (p− c)[1 +G(p)]2 + c = (p− c)[2− (p− c)g(p)]2 + c (14)

where dependence on G is suppressed in X(p, c) for ease of notation. If we show that

X(p, c) exceeds µ(G), the mean of G, for every (p, c) and G ∈ D, we establish (∗).
Below we do this by identifying, for each (p, c) and x ≤ ḡ(p), an upper bound

of µ(G) for G ∈ D with g(p) = x and showing that X(p, c) exceeds it. The upper

bound of µ(G) we identify below for this purpose differs across several ranges of the

values of (p, c) and x. In each case, the analysis boils down to comparing the values

of two polynomial functions, so the calculations are straightforward, albeit somewhat

tedious and lengthy. We organize the calculations in two steps, each with several

subcases. It proves useful to define

XM(p, c) ≡ (p−c)[1+GM(p)]2 +c and X(p, c|h(p)) ≡ (p−c)[2−(p−c)h(p)]2 +c.

Step 1 Show that X(p, c) > µM if g(p) ≤ 3p.

We consider g(p) ∈ [gM(p), 3p] until the last stage (c) of Step 1. X(p, c) decreases

in g(p), so X(p, c) ≥ X(p, c|3p) if g(p) ≤ 3p. Also X(p, c) ≥ XM(p, c) because X(p, c)

increases in G(p) and G(p) ≥ GM(p). Hence, X(p, c) ≥ max{XM(p, c), X(p, c|3p)}
for g(p) ∈ [gM(p), 3p]. We show below that max{XM(p, c), X(p, c|3p)} > µM .

Clearly, XM(p, c) decreases in c > 0. X(p, c|3p) is strictly concave in c ∈ (0, µM)

for p ≤ 0.6 and in c ∈ (0.2, µM) for p ∈ (0.6, µM) because its second derivative wrt c,

6p(9p2 − 9cp− 4), is routinely verified to be negative for the said ranges of p and c.

(a) First, max{XM(p, c), X(p, c|3p)} > µM for (p, c) ∈ [µm, µM ]× [0, 9p−
√

6
6

] unless

(p, c) ∈ (0.52, 0.55)× (0, 0.1) by the following routine calculations.

i) X(p, c = 9p−
√

6
6
|3p) =

√
6(4+18p2+9p4)−20p−42p3−9p5

8
> 0.73 > µM for p ∈ [µm, µM ].

ii) X(p, c = 0|3p) = p(2− 3p2)2 > 0.73 for p ∈ [µm, 0.52].

iii) X(p, c = 2p−1|3p) = −1+2p+(1−p)(2−3p+3p2)2 > 0.73 for p ∈ [0.52, µM ].

iv) XM(p, c = 2p − 1) = 2p − 1 + (2 − p)
(
2 −
√

6(1 − p) + 3(1 − p)2/3
)2
> 0.73

for p ∈ [0.55, µM ].

That is, X(p, c|3p) is concave on c ∈ [0, 9p−
√

6
6

] with values exceeding µM at both

ends for p ∈ (µm, 0.52) by i) and ii), so X(p, c|3p) > µM if p ∈ (µM , 0.52); X(p, c|3p) is
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concave on c ∈ [2p−1, 9p−
√

6
6

] with values exceeding µM at both ends for p ∈ [0.52, µM ]

by i) and iii), so X(p, c|3p) > µM for (p, c) such that p ≥ 0.52 and c ≥ 2p−1; XM(p, c)

decreases in c with a value exceeding µM at c = 2p − 1 for p ∈ [0.55, µM ] by iv), so

XM(p, c) > µM for (p, c) such that p ≥ 0.55 and c < 2p− 1.

(b) The values of (p, c) excluded from the above satisfy p ∈ (0.52, 0.55) and c <

2p − 1. Since 2p − 1 < 0.1 for p < 0.55, it suffices to consider (p, c) ∈ (0.52, 0.55) ×
(0, 0.1), for which we consider two overlapping ranges of g(p), namely, g(p) < 3p −
(1/6) and g(p) > gM(p) + (1/3) (note that 3p− (1/6) > gM(p) + (1/3)).

First, for g(p) < 3p−(1/6) we have X(p, c) > X(p, c|3p−(1/6)) = (p−c)(2−(p−
c)(3p− (1/6))2 + c. Moreover, X(p, c|3p− (1/6)) increases in c because its derivative

wrt c is 1+(2−(p−c)(18p−1)/6)(2+(p−c)(3p−(1/6))−(2−(p−c)(18p−1)/6)2 > 0 for

(p, c) ∈ (0.52, 0.55)×(0, 0.1), and X(p, c = 0|3p−(1/6)) = p(2−p(3p−(1/6)))2 > 0.73

for p ∈ (0.52, 0.55). Hence, X(p, c) > µM if g(p) < 3p− (1/6).

Next, for g(p) > gM(p) + (1/3) we have X(p, c) > X̃M(p, c) ≡ (p− c)(1 +GM(p) +

(p−1+
√

2/3)/3)2+c because, given that gM(p) = 0 at p = 1−
√

2/3, G(p) for g(p) >

gM(p)+(1/3) exceeds
∫ p

1−
√

2/3
gM(v)+(1/3)dv = GM(p)+(p−1+

√
2/3)/3. Clearly,

X̃M(p, c) decreases in c and X̃M(p, c = 0.1) = 1
10

+ (10p−1)[57−16
√

6−6(8−3
√

6 )p+27p2]2

3240
is

routinely verified to exceed µM . This establishes X(p, c) > µM for g(p) ∈ [gM(p), 3p].

(c) Lastly, for g(p) < gM(p), we have X(p, c) = (p − c)[2 − (p − c)g(p)]2 + c >

(p− c)[2− (p− c)gM(p)]2 + c > µM where the last inequality is as shown just above.

Step 2 Show that X(p, c) > µ(G) if g(p) ∈ (3p, ḡ(p)].

We first identify a tight upper bound of the mean for G ∈ D subject to g(p) = x >

3p: it is obtained by ĝ(·) defined as ĝ(v) = x− 3(p− v) for v < p, ĝ(v) = x− 3(v− p)
for p < v < y for some y ∈ (p, 1] and ĝ(v) = x − 3(y − p) + 3(v − y) for y < v < 1,

satisfying
∫ 1

0
ĝ(v)dv = 1. (This is because ĝ FOSD any g ∈ D subject to g(p) = x.)

In addition, the mean of ĝ is largest when x is lowest, i.e., at ĝ(p) = 3p. The value of

y for ĝ with ĝ(p) = 3p is calculated as ŷ(p) = 1 −
√

5/6− 2p+ p2. Thus, the mean
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for G ∈ D subject to g(p) > 3p is bounded above by

µ̂(p) ≡
∫ p

0

3v2dv +

∫ ŷ(p)

p

(6p− 3v)vdv +

∫ 1

ŷ(p)

(6p− 6ŷ(p) + 3v)vdv

= 1 + 3p− p3 − 3
(
1−

√
5/6− 2p+ p2

)
+
(
1−

√
5/6− 2p+ p2

)3

which is routinely verified to be decreasing in p < 1− 1√
6
≈ 0.59 (which is the range

of p for which (3p, ḡ(p)) 6= ∅).
The minimum G(p) for G ∈ D subject to g(p) = x > 3p is that when g(p) = 3p,

i.e., 3p2/2. Hence, from (14) we have X(p, c) > X̂(p, c) ≡ (p − c)(1 + 3p2/2)2 +

c. Clearly, X̂(p, c) decreases in c and with a minimum value X̂(p, c = 9p−
√

6
6

) =

p
(√

6(4p + 3p3) + 8 − 12p2 − 9p4
)
/8 which is routinely verified to be increasing in

p ≤ µM and exceed µ̂(0.5) for p ∈ [0.5, 1− 1√
6
], hence exceed µ̂(p) as µ̂(·) is decreasing

in p; and exceed µM for p ∈ [1− 1√
6
, µM ]. Therefore, X(p, c) > µ(G) if p ≥ 0.5 when

g(p) ∈ (3p, ḡ(p)].

It remains to consider p ∈ [µm, 0.5] by (13). For this range, we consider g(p) above

1.5 ∈ (3p, ḡ(p)] and below 1.5 separately. First, for g(p) ∈ (3p, 1.5), from (14) we have

X(p, c) > X(p, c|1.5) = (p − c)[2 − (p − c)1.5]2 + c = (p − c)(4 + 3c − 3p)2/4 + c.

It is easily verified that X(p, c|1.5) is strictly concave in c and its values evaluated

at c = 0 and at c = 9p−
√

6
6

, calculated as p(4 − 3p)2/4 and −1 +
(
18
√

6 − (34 −
32
√

6)p− (48−9
√

6)p2−9p3
)
/32, respectively, are routinely verified to exceed µ̂(µm)

for p ∈ [µm, 0.5], hence exceed µ̂(p) as µ̂(·) is decreasing in p.

Lastly, for g(p) ∈ [1.5, ḡ(p)] and p ∈ [µm, 0.5], the maximal possible µ is µ̂(0.5) =

(45−
√

3)/72 ≈ 0.6. By (11), X(p, c) > X(p, c|ḡ(p)) where ḡ(p) = −3p+
√

6 + 18p2

for p < 1√
6
≈ 0.41 and ḡ(p) = 5−6p+6p2

2
for p > 1√

6
. For each range of p, it is

routinely verified that X(p, c|ḡ(p)) is strictly concave in c, i.e., the second derivative

is negative.17 For p ∈ [0.3, 0.5], it is routinely calculated that X(p, c|ḡ(p)) exceeds

µ̂(0.5) both at c = 0 and c = 9p−
√

6
6

. For p ∈ [µm, 0.3], however, recall that p = Z(p)+c

must hold as FOC of p = pm(c), and Z(p) ≥ g(p)/6 for g(p) ∈ [gm(p), ḡ(p)]. Thus,

17The second derivative is 2(
√

6 + 18p2 − 3p)(3p
√

6 + 18p2 − 3c
√

6 + 18p2 − 4 + 9cp − 9p2) for
p < 1√

6
, and (5− 6p+ 6p2)(−8 + 15p− 18p2 + 18p3− 3c(5− 6p+ 6p2))/2 for p > 1√

6
. In both cases,

the value decreases in c and is negative at c = 0.
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g(p) > 1.8 would imply that p > 1.8/6 = 0.3, a contradiction. Hence, it suffices to

show that X(p, c|1.8) exceeds µ̂(0.5), which is again verified straightforwardly. This

completes the proof. QED.

Proof of Proposition 4 It remains to prove (c). A’s payoff from the efficient

contracts in Section 6 is qs(c) ≡ [1− F (c)]E(v|v ≥ c) + cF (c)− µ =
∫ c

0
(c− v)dF (v).

By Proposition 2(b) we need to show that

qs(c) <

∫ 1

θ̂

(v − c)dF − µ− c
1 + F (θ̂)

=

∫ 1

θ̂

vdF − µ

1 + F (θ̂)
+

cF (θ̂)2

1 + F (θ̂)
(15)

where θ̂ satisfies (5). (15) is equivalent to

cF (c) +

∫ θ̂

c

vdF (v) <
F (θ̂)(µ+ cF (θ̂))

1 + F (θ̂)
. (16)

θ̂F (θ̂) > cF (c) +
∫ θ̂
c
vdF (v) so (16) obtains if

θ̂F (θ̂) <
F (θ̂)(µ+ cF (θ̂))

1 + F (θ̂)
,

i.e. if (θ̂ − c)F (θ̂) < µ− θ̂. By (5) this is equivalent to

(µ− c)F (θ̂)

[1 + F (θ̂)]2
< µ− µ− c

[1 + F (θ̂)]2
− c = (µ− c)2F (θ̂) + (F (θ̂))2

[1 + F (θ̂)]2
,

i.e., 1 < 2 + F (θ̂). This shows that A strictly prefers to contract with B. QED
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