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Manipulation strategies based on the passive dynamics of soft-bodied interactions provide robust performances with limited
sensory information. They utilise the kinematic structure and passive dynamics of the body to adapt to objects of varying
shapes and properties. However, these soft passive interactions make the state of the robotic device influenced by the envi-
ronment, making control generation and state estimation difficult. This work presents a closed-loop framework for dynamic
interaction-based grasping that relies on two novelties: (i) a wrist-driven passive soft anthropomorphic hand that can gener-
ate robust grasp strategies using one-step kinaesthetic teaching and (ii) a learning-based perception system that uses tempo-
ral data from sparse tactile sensors to predict and adapt to failures before it happens. With the anthropomorphic soft design
and wrist-driven control, we show that controllers can be generated robust to novel objects and location uncertainty. With
the learning-based high-level perception system and 32 sensing receptors, we show that failures can be predicted in advance,
further improving the robustness of the entire system by more than doubling the grasping success rate. From over 1000 real-
world grasping trials, both the control and perception framework are also seen to be transferable to novel objects and condi-
tions.

1 Introduction

Grasping and manipulation using soft robotic hands has demonstrated notable advantages over
more traditional rigid hands, especially in passive adaptive grasping [1, 2, 3, 4]. Soft hands
can readily conform to the environment, guaranteeing some robustness to inevitable sources of
uncertainty in the environment [5, 6, 7, 8]. Hands such as the Pisa/IIT Softhand [9] utilise un-
deractuation and muscle synergies [10] to greatly reduce control complexity for power grasp-
ing, even with substantial environmental uncertainty [11]. Furthermore, soft hands open up
additional functionalities that can be exploited for versatile manipulation strategies like the
use of environmental constraints [5] and programmable anisotropic stiffness properties [7, 12].
When it comes to dynamic manipulation tasks, soft robotic designs have shown surprisingly
robust behaviours. The RBO hand 3 [13, 14] displays robust manipulation capabilities when
reorienting variable objects with a manually trained sequence of finger moves. This contrasts
to other more rigid robotic designs which require millions of iterative learning episodes to
generate robust control policies, e.g., with the Shadow hand [15].
Even with the robustness and adaptability that soft robotic hands provide, sensory feedback
is still vital for more complex and dexterous manipulation tasks [16, 17, 18, 19]. In order to
leverage the full capabilities of a soft hand’s underlying passive adaptive behaviours, the sens-
ing and control systems must augment the existing soft structures and leverage the same be-
haviours to enhance perception [20, 21]. Soft robotic technologies for tactile sensing is a wide
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researched field with numerous technological solutions [22, 17, 23]. Tactile sensing in soft
robotics generally suffers from issues of nonlinearity, low receptor density and/or lack of mod-
ularity and softness, preventing wide adoption of any single solution [22, 19]. Distributed tac-
tile sensing arrays go some way to solving the low-density problem, however are usually con-
fined to flexible PCBs [24, 25] or soft sensors with highly nonlinear characteristics [26, 27].
For tactile sensing with a soft interface and high effective density, vision-based sensors such
as the gel-sight or tactip sensors achieve impressive tactile resolution, though in a constrained
form factor [28, 29]. Another novel solution is the use of sound-based sensors within the RBO
hand 2 [30], which reads braille from the interference patterns of sound within its soft pneu-
matic fingers. Several recent works have shown how these soft sensors can be modelled for
low-level state estimation[31, 32, 33, 34, 35]. The main challenge in the field currently is the
development of sensory models that can provide high-level sensory information for closed-
loop control.
Execution of robust grasp policies require two components; a grasp planning algorithm and a
reactive component that adapts to uncertainties in the environment. Model-driven approaches
use models of objects and robot physics to optimally plan stable grasp strategies [36, 37]. Due
to the large variability and uncertainty in environment/robot parameters, data-driven approaches
are more recently preferred [38]. Even then, most of these grasp strategies rely on quasi-static
assumptions. The human grasp strategy heavily relies on the passive properties of the hand.
They are characterized by dynamic interaction-based strategies that require little visual-feedback [5].
These morphological principles have been applied to develop soft robotic hands that require
minimal grasp planning and visual processing to solve various tasks [39, 40]. Recent works
have shown that these soft robotic designs also provide can leverage human knowledge to gen-
erate one-step grasp strategies, owing to their anthropomorphic nature [6]. With internal mod-
els and contact information, these open-loop strategies can be converted to sequential closed-
loop strategies, making the controller more robust to varying objects [41].
Actions affect our cognition, so high-level decision-making should not be decoupled from
low-level control [42]. Error detection and recovery gives some coupling, which has potential
to improve manipulation capabilities. For grasp adaptation, there has been promising investi-
gation into detecting ‘anomalies’ during manipulations [43, 34], training error detection using
sequential neural networks with visual inputs [44], and frameworks for error recovery [45, 20].
Though, there is notable lack of investigation in this area with soft hands. Slip detection and
prevention is one of the most common grasp adaptation strategies [46, 47, 48, 49, 50]. How-
ever, failure due to slip is just one of the many failure modes that occur after grasping and re-
quires dense tactile information and high control bandwidth for adaptation. For passive soft
interaction-based designs, like in the case of passive prosthetic devices, such high sensory and
control bandwidth is rarely available. Moreover, there are other modes of failure that can arise
even before full closure with the object. Recent works have worked on identifying grasp qual-
ity using dense vision-based tactile sensors on static grasps [51, 52].
In this work, we present predictive grasp quality estimation in a soft passive anthropomorphic
hand with sparse sensory data, Figure 1. We trained a soft, passive, anthropomorphic hand
with embedded soft sensors to detect and recover from errors even before they cause failures.
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Figure 1: Error detection and recovery from passive perception. Demonstrated with a wrist-driven soft
hand—which achieves grasping through sequential hand-environment interactions rather than any internal
actuation—prediction of future errors in an open loop grasp can be learned using exteroceptive and proprio-
ceptive information from a barometric sensing skin. With a self-resetting environment, large scale experiments
can generate training data and evaluate error recovery performance.

Interaction-based wrist-control [6, 53] is augmented with a form of active perception by a soft
skin with 32 soft barometric sensors. Our framework demonstrates adaptive grasping capabil-
ities while being able to reproduce multiple grasp classifications on a wide variety of objects
when trained on a single object with a single trajectory. We study the grasping performance
of the hand in a self-resetting environment, which allows large scale experimentation. We ob-
serve emergent grasping failure and success modes under real and artificial perturbations. A
Long Short-Term Memory (LSTM) network is used to predict real-time failure and success
from few trials, using exteroceptive and proprioceptive data from our soft, modular sensors.
Real-time error predictions and a heuristic error recovery routine is implemented and com-
pared to grasping with no feedback, resulting in an 144% improvement in success rate. In ad-
dition, we demonstrate the system’s generalizability when grasping and predicting errors with
unknown objects and interference (Movie 1).
The main contributions of this work are:

• The anthropomorphic hand and sensor design for robust and adaptable object grasping
with tactile feedback

• An early grasp error prediction algorithm using an LSTM network and the sparse tactile
data for the described open-loop grasping strategy

• A method of error recovery which exploits early error predictions and passive hand be-
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Figure 2: Passive hand and modular sensor design. (A) Passive anthropomorphic hand design with sensorised
skin. Receptors are air chambers embedded throughout the soft skin tissue, where density, placement, and ge-
ometry are highly customisable. Receptors are coupled to surface mount barometric sensors through pneumatic
channels. The hand is tendon-driven, with each tendon connected to re-configurable springs with tuneable preten-
sion and stiffness. (B) Hand skeleton and tendon routing. Anatomical joints constrained by ligament pairs and 5
tendons per finger. (C) Modular receptor design. Modelled air channels connect receptor air pockets to ports on
the rear of the skin for interfacing with pneumatic tubing. Sensitivity to exteroceptive force or joint deformation
can be controlled by receptor placement and geometry. (D) Receptor distribution. 32 total receptors are placed in
the thumb, index, middle finger and palm.

haviours to improve grasping success rate

2 Materials and Methods

2.1 Passive hand design

The anthropomorphic hand improves upon the design seen in [6], primarily with the addition
of sensing capabilities. The hand was adapted from a commercial 3D model purchased from
TurboSquid (www.turbosquid.com) [7]. Muscles, tendons, and ligaments were removed, leav-
ing only the skeleton. The bones are then modified for manufacturing of ligaments, tendon
arrangement and skin molding. Collateral ligaments stabilise each joint [54]. For all joints,
except the thumb carpometacarpal (CMC), the collateral ligaments form an ‘S’ shape over
each side [55], this allows rolling and prevents sliding. These ligaments allow some abduc-
tion/adduction for the metacarpophalangeal (MCP) joints. Though, the thumb CMC requires
a greater range of motion [56, 57], therefore an additional ligament is added for stability at
larger deflections. Ligament mounting holes are modelled on each bone at the limits of the
rolling motion. Volar plates, which prevent hyperextension [58], are omitted from this design
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2.2 Hand Manufacturing

for reduced complexity and ease of manufacturing (Figure 2B).
Tendon pulleys are modelled as rigid loops embedded into the bones for a five-tendon arrange-
ment. Each finger has four degrees of freedom (DoF), therefore requires a suitable arrange-
ment of five antagonistic tendons for control [59]. The chosen arrangement is two flexor ten-
dons, one to each of the intermediate and distal phalanx, and three extensor/abductor tendons,
one to the distal phalanx while avoiding the proximal-interphalangeal (PIP) joint, the other
two connecting to the intermediate phalanx while running laterally on the MCP for abduc-
tion/adduction (Figure 2B). This arrangement approximates the flexor tendons and extensor
hood of a real finger [60, 61]. Mounting holes for these pulleys are directly modelled into the
bones.
A 3D scan of similar proportions to the skeleton is added, and the bones are aligned within.
By subtracting the skeleton and a cavity around each joint [53], the scan becomes a model
of the soft tissues of a real hand [62]. This soft tissue model is where the sensing receptors
are modelled. Each receptor is an ‘L’-shaped tube with a curve in the stem to run around the
bones. Four shorter receptors (2 mm) are placed in each fingertip where space is more con-
stricted, these are aligned at a skin depth midway between the outer surface and bone to min-
imise any thin walls and are more sensitive to tactile pressure. Four longer receptors (4 mm)
are arranged around each joint and placed deeper under the surface and close to the joint cav-
ity, therefore are sensitive to both tactile pressure and skin deformation from joint bending.
Two additional receptors are placed in the palm close to the skin surface, one in between the
thumb and index finger, the other beneath the thumb. This gives a total of fifty receptor loca-
tions over the palm, thumb, index, and middle finger (Figure 2A, D).
One final modification to the skeleton is made, modelling fingernails. These serve dual pur-
pose, one being improved grasping capabilities with fingernail pinching, the other being stabil-
isation during the skin molding process. For the molding process, the inner mold is modelled
from the skeleton without ligament and tendon modifications, only joint cavities and finger-
nails. The outer mold is primarily a negative of the 3D hand scan, though individual sections
for each of the thumb, index and middle finger containing higher detail receptor positives are
generated to allow mold assembly.
The final hand component is the wrist-mounting hardware (Figure 2A). Consisting of a hand
mounting plate with tendon routing holes, a UR5 robot arm mounting plate with tendon spring
anchors and a sensor mounting shield on the rear.

2.2 Hand Manufacturing

The first manufacturing step is 3D printing components. Fused deposition modelling with
PLA is used for the wrist-mounting hardware and the lower detailed inner and outer molds.
For more detailed parts, the bones, and receptor molds, inkjet printing is utilised with a Strata-
sys Objet500. The bones are printed with Stratasys Durus for strength and toughness, the re-
ceptor molds are printed with a blend of Stratasys Rigur (high stiffness) and Agilus (low stiff-
ness) for stability during molding and large elongations before breaking during mold assem-
bly.
For the skeleton assembly process, the bones are printed with a scaffold keeping them aligned
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2.2 Hand Manufacturing

during ligament fabrication, these are snapped off once assembly is complete [53]. Ligaments
are formed from Festo 2 mm flexible tube with shore hardness D52, cut to individual lengths
for each joint, then bonded into the modelled ligament mounting holes using Araldite two-part
epoxy. Flexible tubing provides a robust flexure joint with low rolling resistance and limited
extensibility to reduce joint dislocation. Tendon pulleys are ‘U’ shapes with 2 mm diameter
and 0.6 mm thickness formed of single core, copper, stripped 23AWG wire. These are inserted
in the modelled mounting holes and bonded with Araldite epoxy. To resist higher forces, pul-
leys for the flexor tendons penetrate the thickness of the bone and hook onto the rear side. The
final skeleton assembly step is attaching the wrist-mounting hardware and routing the tendons.
Tendons tie to anchors at predefined termination points, then are routed through pulleys to-
wards the wrist mounting hardware. Each tendon is looped through a spring and clamped to
the hand mounting plate with a screw. Spring stiffnesses can be limited individually using
hooks. With this mounting method, pre-tension and stiffness of each tendon can be tuned for
different starting postures and interaction force behaviours [6].
The sensorised soft skin is cast into the 3D printed, assembled mold using Smooth-on Ecoflex
00-30 two part silicone. After mixing, the silicone is vacuumed to remove any air bubbles,
then pored into the mold and allowed to cure for four hours. The cast skin is carefully removed
from the mold, then placed over the pre-assembled skeleton like a glove. The skin is bonded
to the distal phalanx of each finger, underneath the fingernail, using Smooth-on Silpoxy. The
skin over the other joints is left unbonded and held in place via friction. For sensor connec-
tions, silicone tubing (BS2848, shore hardness: A40, inner diameter: 0.5 mm, outer diame-
ter: 1.5 mm) is inserted to the chosen receptors, ten receptors on each of the thumb, index and
middle finger and two in the palm. Tubing is routed on the rear of the finger and bonded to the
skin with Silpoxy. As small a tube as possible is preferred, to reduce any added elasticity to
the finger motions, allow for higher density of sensor placement and to increase sensitivity by
maximising change in receptor chamber volume over total sensor volume.
The final step of hand assembly is the sensor readout. Pressure within each sensing receptor
is transduced with NXP MPXH6300AC6U absolute pressure sensors. Analog voltages from
each pressure sensor are measured with 16-bit ADS1115 analog to digital converters (ADC)
capable of 860 samples/sec. These are I2C devices with four ADC channels and four possible
addresses, hence a single I2C bus can support 16 sensor channels. Custom PCBs were manu-
factured for mounting and connecting the pressure sensors to the ADCs. Eight of these PCB
are mounted on the sensor shield on the wrist-mounting hardware, where sensor tubing can be
safely connected (Figure 2A, Figure S1). The total of 32 available sensing channels is divided
onto two independent I2C buses of an FRDMKL25Z microcontroller. This controller config-
ures each ADC and collates sensor readouts ready for a master device. With this configuration,
the maximum sampling frequency of all channels together is 26.9 Hz, though to account for
delays in communications and stabilising timings for processing, we sample all channels at
10 Hz.
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2.3 Wrist-control framework

2.3 Wrist-control framework

Grasping with a passive hand relies on wrist-driven interactions with the environment. Wrist
control is essential in grasping and manipulation, especially in more constrained environments.
Edge grasps are an example of wrist control being used to overcome limitations [5, 63]. Tech-
niques for generating similar environmental constraints’ exploitation are generally bespoke
algorithmic solutions [64]. These approaches require significant teaching effort, which the
wrist-control framework [6] attempts to solve. This is a method for training and adapting grasps
based-on sequential interaction classification from only a single demonstration trajectory. The
following process generates template trajectories for distinct grasping strategies on familiar
objects:

• Kinaesthetic teaching is used to generate a trajectory for a particular grasping strategy on
a training object.

D = [xi, yi, zi, rxi, ryi, rzi]i=0, ...n−1 (1)

• The trajectory D is subsampled into k keypoints at interaction ‘inflection’ points, result-
ing in a simplified trajectory R with a discrete set of interactions.

R = [xi, yi, zi, rxi, ryi, rzi]i=[kp0, ...kpk−1] { kp ∈ N | 0 ≤ kp ≤ n } (2)

• Each interaction is given a classification which defines how it adapts to changing object
geometry. Therefore, by inputting a familiar object with changes in its primitive geome-
try, this template trajectory T can allow grasping adaptation (Figure 4A).

T = R+∆

∆ = [δxi, δyi, δzi, δrxi, δryi, δrzi]i=[kp0, ...kpk−1]

(3)

Figure 3B shows an example trajectory with the wrist position, orientation, and sensor read-
out. The sensor readout enhances key point extraction and classification, which previously was
processed manually, and with the additional sensor information has the potential to be auto-
mated.
Grasping and manipulation via sequential interactions can not only improve robustness and
simplify control with a soft hand [41], it can add redundancy [6] and extend behavioural diver-
sity [7]. For successful robotic grasping, a minimum amount of knowledge is required about
itself and the environment. With a passive adaptive hand, this information requirement is off-
set by the information gain through environmental interactions, therefore success is tolerant to
significant deviations in self and environment state [6]. However, large uncertainty in the ini-
tial states can cause failures in later interactions, this is where additional information gain can
keep the robot within the range of tolerated states.

2.4 Experimental setup

To facilitate large scale grasping experimentation, the hand is mounted on a UR5 arm and the
grasping environment is self-resetting. Figure 1 shows the robot and environment. By grasp-
ing the sphere and releasing onto a plate with a shallow recession, the sphere always returns to
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2.4 Experimental setup

Figure 3: Experimental setup and passive grasping/error recovery control architecture. (A) System diagram
for data collection. Learning experiment takes a recorded trajectory for wrist-driven grasping, adds perturbation,
then records sensor data and grasp outcome. (B) Example recorded trajectory and sensor time series data through
phases of reaching, interacting and releasing the object. (C) Modified system diagram for error recovery experi-
ment, network predictions lead to error recovery actions once the prediction is ‘certain.’ (D) Prediction network
architecture, trained on data from the learning experiment and outputting outcome predictions in real-time.

the centre ready for the next trial. Since the hand is passive, releasing the object is achieved by
pushing into a fixed dowel as part of the grasping trajectory. A grasp is considered a success if
the object remains in the hand up until the point where it is knocked out by the dowel.
Many grasping strategies can be chosen for the same object [6]. Different strategies have strengths
and weaknesses under different environmental constraints and uncertainties. The primary grasp-
ing strategy in this paper is chosen such that failures are relatively common (Figure 5C) but
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2.5 Network Architecture and Training

occur with little dependence on injected noise. The trajectory is recorded using the wrist-control
framework, where kinaesthetic teaching gives a six DoF time series D sampled at 10 Hz on a
central PC which is them sub-sampled into seven keypoints (Figure 4B). The simplified tra-
jectory can be replayed as a set of waypoints. Artificial noise is added in the form of a con-
stant shift to the trajectory in the plane of the table, (r ∼ U(0, 5mm), θ ∼ U(−π, π), Rn =
R+ [r cos(θ), r sin(θ),0,0,0,0]), essentially adding uncertainty to the starting location of the
object. This noise is distributed radially, with uniform probability between 0 and 5 mm dis-
tance from the object origin.
Simultaneous to recording and replaying trajectories, sensor data S is streamed to the central
PC and video is recorded from a webcam. To ensure reliable sampling rate and data synchro-
nisation, a central PC processes and collates all data. The result is a synchronised AVI file and
tabulated data file (CSV) with timestamp, robot pose and sensor readout.

S = [s0, s1, . . . s31]i=[0, ...n−1] (4)

Grasping experiments can now be performed in rapid succession with minimal oversight. Six
hundred fifty grasping trials are performed over 5 days, with different environmental condi-
tions such as temperature, which offsets the barometric sensor readings. Footage of each trial
is manually reviewed, and the final outcome is labelled. The label corresponds to the classi-
fication of outcome which is qualitatively evaluated, e.g., failure due to missing the object
or failure due to the object getting trapped (Figure 5B). This dataset is used to train the net-
work. With the network trained, sensor readout at 10 Hz is forwarded to the recurrent network,
which returns a live prediction of grasping success. Trials can be run with or without error re-
covery enabled. The network and error recovery is tested with 250 trials (Movie S4), half have
recovery disabled as a control, the other half error recovery is enabled.

2.5 Network Architecture and Training

The network for predicting failure is designed to perform a sequence-to-one regression. The
architecture of the deep LSTM network is shown in Figure 3D. The network is made of two
layers of LSTM units with a size of 60 and 15, with a dropout unit in between. The first LSTM
layer performs a ’sequence-to-sequence’ transformation and the second LSTM layer performs
a ’sequence-to-one’ transformation. The dropout unit has a dropout probability of 0.2. The
network creation and training is done on the MATLAB Deep Learning Toolbox.
Six hundred and fifty sequence data is collected for training. All the sequence has its corre-
sponding scalar outcome variable. Here, we give a value of 1 for failure and 0 for success, in
order to convert the learning to a regression problem. The data set is augmented to a larger set,
eighty times its size, by clipping the sequences randomly within a range of 5 to 15 s. Time-
exponentially decreasing noise is also added to the sensor data. This data augmentation forces
the network to predict the grasp outcome as early as possible without overfitting to the small
dataset. Six hundred and ten samples are used for learning and the rest for testing.
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2.6 Error recovery

2.6 Error recovery

The error recovery process allows us to test the real world implications of error detection. Fig-
ure 3C shows the modified wrist-control framework for error recovery. During an activity, the
sensor readout is fed to a network which generates live outcome predictions. When the net-
work is certain of failure, the output regresses to a steady ‘1’, if the network is certain of suc-
cess, the output regresses to a steady ‘0’. If there is uncertainty, the value may oscillate. The
‘certain’ states generally occur late in the trajectory, often times after failure or potential for
failure has passed.
To perform an error recovery process, a decision has to be made whether to act or not during
the trajectory. In order to obtain a prediction as soon as possible, analysis is performed to ex-
tract a prediction to act upon when network certainty is lower. The network output Z is passed
through a first order digital filter, with transfer function coefficients a =[0.5 0.25 0.125 0.0625
0.03125 0.03125], then the decision Zd is made if the filtered value is within 0.2 of each class
and the derivative is within 0.2 of 0.

Z(i) = F (S0,...i)

Zf (i) =
∑

j=0,...5

ajZ(i− j) (5)

Zd(i) =

{
1 0.8< Zf (i) <1.2 and -0.2< Żf (i) <0.2
0 -0.2< Zf (i) <0.2 and -0.2< Żf (i) <0.2

(6)

For the error recovery process, a heuristic strategy is chosen since. From the training data, one
mode of failure dominated, with ≈50% of total outcomes, therefore the recovery strategy tar-
geted this. In this failure, mode ‘F1’ (Figure 5B), the sphere is trapped under the index finger
and ejected before the grasp can be modulated by thumb contact. A simple hypothesis for re-
covery is to relieve pressure and bring the thumb into contact with the sphere before the elastic
force within the index finger builds up too high. This can be achieved with a translation (away
from the camera in Figure 6A). If this intuitive recovery technique is successful, then error de-
tection is demonstrated to have great potential in robust grasping and manipulation when used
in conjunction with human intuition or more advanced recovery processes which can account
for types of failure, or even used as part of a training process itself.

2.7 Statistical analysis

Statistical analysis is performed on the results to test the significance of the findings. A Chi-
squared test is performed on the outcomes of the error recovery trials compared to the control
trials (Figure 6B). The significance of the change in rates of the success and failure modes is
tested to a 0.00001 significance with a single-ended p-value.
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3 Results

3.1 The soft anthropomorphic hand

Embedding mechanical intelligence within a robotic hand increases greater behavioural di-
versity through mechanical complexity and redundancy [65, 66, 7]. In addition, intelligent
behaviours are readily exploited by cheap control [67], especially in common repetitive tasks
such as grasping [68]. This is key for developing intelligent and general-purpose hands for use
in industrial, social and prosthetic devices [69, 70]. The human hand provides the ideal start-
ing point for the design of such intelligent systems. Not only are they highly generalised and
adaptable, but much of the modern world is designed with the specific ergonomics of human
hand interactions [4].
For this investigation into passive adaptive grasping and error prediction, we have developed
a sensorised soft hand with an anatomically accurate structure. The replica synovial joints
(Figure 2) ground the hand design with biological basis [71, 72, 6]. These types of joints are
the most common and most mobile joint seen in mammals, however, are exceedingly rare in
robotics. In part due to the inherent instability of floating bones versus pin or socket joints.
While synovial joints may have arisen due to biological constraints, they demonstrate signif-
icant advantages in terms of efficiency, customisability and resilience [73]. Figure 2B shows
the underlying skeletal structure of our passive hand. This design allows significant ranges of
motion, including thumb abduction, resilience to impacts and dislocation, while retaining con-
trollability and passive-adaptive behaviours (Figure S3 adaptive grasping).
The sensorised skin receptors act according to the ideal gas law. Air chambers located within
the soft skin are deformed under tactile loads or joint bending (Figure 2C). The change in vol-
ume corresponds to a change in pressure measured by barometric sensors mounted on the wrist
(Figure 2A). The skin has a resolution of 0.69 mN with a 16-bit ADC, a force range of 23 mN-
5800 mN, and a response time up to 1 ms (Table S1).

3.2 Passivity and anthropomorphic design provides one-step stable adaptive grasps

A previous study demonstrated adaptive grasping with the skeletal hand under a framework
for passive grasping with sequential interactions through control of the wrist [6]. The skele-
tal hand is able to grasp spheres with diameter 25-75 mm from single demonstration with an
overall success rate of 57.7%, with the wrist adaptations contributing to an 86% increase in
success rate over simple open-loop control.
Figure 4 outlines some of the capabilities of our passive system. For use in a diversity of tasks,
high posture control is desired. Using the Kapandji thumb test as an evaluation of thumb range
of motion [74], Figure 4A shows successful posture setting to extreme positions in the test
(some positions untestable). Additionally, intelligent behaviours in the hand can be exploited
for more robust grasping or enabling new interactions. Figure 4B shows the curling behaviour
of the index finger. Due to the tendon layout and joint design, when pressing a finger towards
the base, the tip deflects towards the force. This negative bending, similar to the finray ef-
fect [75], enhances passive shape adaptation. In Figure 4C, posture dependent stiffness is demon-
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3.2 Passivity and anthropomorphic design provides one-step stable adaptive grasps

𝑥𝑓
𝑥𝑒

Figure 4: Passive hand motions and adaptive behaviours. (A) Skeleton range of motion in the Kapandji thumb
test [74]. Hand posture can be preset by tuning tendon springs (Fig. 2A). High test score excluding ring and little
finger contributions. (B) Passive shape adaptation. Similar to the ‘finray effect’ [75], forces towards the base of a
finger cause negative bending. As the MCP joint is extended, flexor tendon tension is increased, causing bending
in the PIP and DIP joint. (C) Complex and anisotropic stiffness for diverse interaction, e.g., abduction/adduction
stiffness varies with finger extension due to joint geometry [68]. Lower stiffness when extended allows the finger
to deflect, higher stiffness when flex provides higher passive grasping force.

strated. Due to bone geometry at joint interfaces, abduction/adduction in the flexed position
is restricted relative to the extended position, similar to a human hand [56]. This can be ex-
ploited during grasping, where when forming grasps, lower stiffness is useful, then when hold-
ing, higher stiffness is preferred.
To evaluate adaptive grasping augmented by the soft sensorised skin, learned trajectories can
be tested on everyday objects of similar size to the training object used during kinaesthetic
teaching. The hand, in a partially closed position, is driven through a series of interactions
with a 60 mm sphere (Movie S1). This trajectory has been simplified by interaction-based key
point extraction [6]. One limitation from the wrist-driven framework is the subjective manual
trajectory processing, the presence of sensory information can enable automation and objecti-
fication of the manual steps such as keypoint extraction and interaction classification [6].
Table S2 shows the grasping success rates of each test object. Three of fourteen objects have
no successes, either too heavy and small (battery), too small and deformable (grapes) or too
large and concave (spool). These grasps may not be possible with this particular hand starting
posture and trajectory, as grasping force in this case depends on elastic forces from index fin-
ger and thumb deformations. The remaining objects have variable success rate. Note that no
information about the object and its pose is provided to the controller, showcasing the adapt-
ability of the hand design. Success rates can be improved by visual feedback, wrist adapta-
tions and error predictions, especially as some of the worst performing objects are orientation
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3.3 Recurrent neural networks can predict grasping outcome before lift-off

dependent unlike the training object. The wooden block, ground coffee and computer mouse
geometries are all anisotropic and successes are only seen in favourable starting orientations,
this is a problem that can be solved at the grasp planning stage through vision or exploration
of the object with tactile feedback.
Notable objects which showcase the passive hands capabilities include the highly deformable
bubble wrap, which has a high success rate when aligned with the hand; the smaller sphere,
with a 100% success rate; the ground coffee bag, which is much heavier (550%) than the teach-
ing spheres; and the wooden block, whose lack of smooth, curved surfaces doesn’t prevent
successful grasping in all cases (Grasping success: Movie S2, grasping failure: Movie S3).

3.3 Recurrent neural networks can predict grasping outcome before lift-off

The trajectory in Figure 4B is used for the majority of experiments. We expect the hand to be
able to adapt and grasp from different starting states, such as under object position uncertainty.
This recorded grasp policy is perturbed to generate training data and can be used for large-
scale grasping experimentation, Figure 4A and C.
As the grasp policies are open-loop trajectories, the sensor data history from the onset of con-
tact is indicative of future outcomes. We use an LSTM network (Figure 3D) to predict the
grasp outcome in real time, assuming future actions are fixed. Even though the labelling of
the dataset for training can only be done after the end of each grasp episodes (Figure 3A), our
training framework drives the network to predict grasp outcomes as early as possible (See Ma-
terials and Methods). The speed of detection and its certainty depends on the nature of failure.
An example of the network prediction for different kind of grasp outcomes are shown in Fig-
ure 3B.
The prediction accuracy with respect to the length of sensory data on the test set provides an
insight on the highest accuracy achievable with the current setup and training data (Figure 5A
(lower)). Given the whole sequence of sensory data after lift-off (time>10 s), the learned net-
work can predict the final outcome with very high accuracy. Note that this is not a trivial prob-
lem because the sensors are significantly affected by non-linearities like hysteresis and drift
in the material and the temperature surrounding the skin. The prediction accuracy reduces as
the length of the sensory data is reduced, as expected. However, most of the failure cases are
still predicted early and with higher confidence, which is vital for error recovery and robust-
ness. Figure 5A (middle) shows the average predictions for the test set, labelled with the ac-
tual outcome, where it can be observed that failure predictions are more accurate and robust.
Even though convergence of the predictions happens at a later stage, by observing the trends
of the prediction, we can make reasonable predictions of the outcome early enough that it can
be used for error recovery using low-bandwidth controllers.

3.4 Large scale grasping experimentation reveals multiple failure modes with simulated
noise

The passive anthropomorphic hand has a vast number of possible grasps. Not only are there
multiple grasp type possible [76, 77], but also multiple possible trajectories to achieve the
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3.4 Large scale grasping experimentation reveals multiple failure modes with simulated noise

Figure 5: Learning experiment results. (A) Prediction accuracy over trajectory phase (upper). Further into the
trajectory, predictions stabilise (middle) and become more accurate (lower). (B) Different grasping outcomes
are classified manually by the observed interactions. A single success type was observed, four failure types were
observed. (C) Effect of perturbations on the learning dataset. With no perturbation, success outcomes were the
majority (upper). With perturbation added, outcome variance increases, some failures types are dependent on the
direction of perturbation (lower).

same grasp type. Limiting the hand to a single starting posture (Figure 2A) narrows down the
grasping possibilities, however there is still a multitude to choose from.
An exploration of grasping trajectories is performed, with the criteria that we find a trajectory
with a significant proportion of failure modes, therefore less training and test data is needed to
observe failures and recovery. Figure 3B shows this trajectory. Figure 5C and Table S3 show
the results from a trial of 200 grasps; the first 100 trials follow the same trajectory without ar-
tificially added perturbation, and the last 100 have a random perturbation applied in the plane
of the table to simulate uncertainty in grasping location. The first 100 trials have a success
rate of 69%, which drops to 51% with perturbation. Failures are distributed over four distinct
modes (Figure 5B, Figure S5 left), with the first failure mode being the mode common. Fig-
ure 5C (top) shows the outcomes of these 100 trials over the object starting locations. The
presence of failures under the no noise condition suggests there are other sources of uncer-
tainty, the most likely being the hand starting posture, where joint and tendon friction can re-
sult in position hysteresis.
During exploration, a second trajectory of note was found. This trajectory (Figure S5 right)
demonstrated a much higher success rate than the trajectory used for the remaining experi-
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ments (Figure S5 left). Table S4 shows the outcomes of 200 trials, 100 with added noise. With
no noise, this trajectory achieved a 100% success rate, signalling that it is robust to uncertain-
ties in the starting hand posture and that trajectories can be optimised for particular environ-
ments (Movie S5). With an appropriate trajectory, the passive hand framework can achieve
highly robust grasp performances under slight environmental uncertainties. As we are inter-
ested in error prediction and recovery, this grasp trajectory is not investigated in detail. The
trajectory did see a significant drop in success rate under the presence of added noise, down to
67%. Within the 67 successes, three were observed as distinct new grasps, where the teaching
sphere ended in a power grasp against the palm, rather than a pinch between the thumb and
index finger. This gives a passive boost in performance which can be exploited in more novel
and challenging tasks. In addition, this demonstrates the behavioural diversity enabled by pas-
sive design which can be exploited by minor changes in control (as this mode is observed to
be starting position dependent, Figure S4A right).

3.5 Error recovery is possible via heuristics-based wrist trajectory adaptation

Passive grasping relies upon successful completion of a series of interactions. There is toler-
ance in these interactions. Passivity in design aims to increase these tolerances, meaning less
information is required about the self and environment (Figure 4). In this way, the task of in-
formation gathering is exported from perception systems to the physical dynamical system.
This means for many simple or familiar tasks, much lesser burden is placed on the perception
system, though for more complex or unfamiliar tasks, perception is required.
The addition of a perception system can allow reaction to surprise during grasping [43, 78].
This way, expensive attention is required less frequently [51]. If this reaction comes too late,
the grasp may have already failed, generally requiring an expensive rerun of the grasp [79].
Therefore, if potential failures can be detected early, they can be accounted for without either
expensive attention or regrasping (Movie S6).
From Figure 5C, we see failure mode one is the most common. In this mode, the teaching
sphere is trapped under the index finger and the table, rather than in a more stable contact with
the thumb (Figure 5B). This leads to a build-up of pressure, which when released knocks the
sphere out of the grip. A heuristic recovery method is introduced, which intervenes with a
shift to the trajectory when the failure prediction is ‘certain.’ This shift relieves pressure by
rolling the sphere from under the finger and bringing it into contact with the thumb. Figure 6A
illustrates the error recovery process. Of note, the recovery can intervene at any moment in
time, so can react immediately when failure prediction exceeds a threshold (Figure 3C) (Movie S7).
The heuristic recovery intervention only operates as intended for a single failure mode, though
acts as a proof of concept for improving manipulation robustness with error prediction. With
a cheap control technique and exploitation of the anthropomorphic hand’s passive dynamics,
intuitive and natural skills can be observed.
With both the error predictions and recovery functioning, an experiment is run to evaluate the
combined performance. Two hundred fifty grasping trials are run, alternating between open-
loop control as a controlled baseline and with intervention enabled (Figure 3C). Table S5 shows
all real outcomes and predictions for these trials. Observing the baseline results, the true pos-
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3.5 Error recovery is possible via heuristics-based wrist trajectory adaptation

Figure 6: Error recovery experiment results. (A) Heuristic error recovery procedure. Prediction is monitored,
as soon as error is ‘certain,’ the recovery intervention is implemented. The routine corrects for the most common
error (F1: Fig. 5), relieving the trapped object with a shift, primarily in the x direction. (B) Change in outcomes
when implementing error recovery, successes increase and failure mode 1 decreases significantly (to 0.001%).
Other failures are not significantly affected. (C) Real grasping outcomes broken down by time of prediction,
whether success was predicted (upper) or not (lower) and intervention disabled (left) as a control or enabled
(right). Change in outcome distribution when failure is predicted and intervention enabled (lower right) demon-
strates the recovery—early decisions are critical for successful recovery.

itive rate of successes is 36% and for failures is 95%. Figure 6B shows the change in success
and failure modes between the baseline and trials with intervention enabled. With interven-
tion enabled, the number of successful outcomes increases from 25 to 60 and the number of
failures decreases from 72 to 39. As the distribution of predictions is approximately equal be-
tween the two cases, this would suggest the intervention is impactful (with statistical signifi-
cance p<0.00001). The remaining failure modes are grouped and do not change significantly,
this is expected due to the targeted nature of the error recovery.
Average predictions over time show patterns in the different outcomes. Figure S6 shows mean
and standard deviation for the baseline trials (left), success (top) and failure (bottom) outcome
chosen. Incorrect decisions happen early on in the trajectories, when the predictions are less
distinguishable. The more common occurrence being failure outcomes looking similar to suc-
cessful outcomes before 8 s. By waiting to make a decision, more information can be gath-
ered, and higher accuracy can be achieved (with an upper limit from the regression accuracy,
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Figure 5A). However, this results in delayed reaction to recover from errors. There is high pre-
diction variance within the different outcome modes, especially in failure mode two. This is
partly because of our coarse classification of outcomes. Within each success and failure mode,
there is some variance in terms of catastrophic failure point. Especially in failure mode 2, in
which the sphere is dropped any time after lifting and before being reset. Therefore, signif-
icant variance in sensor information is expected, potentially causing overlaps in sensory in-
formation which can be resolved by gathering more information (either from further hand-
environment interactions or with placement of additional sensing receptors).
Observing the decision times for the different predictions and real outcomes confirms the ef-
fect of the recovery intervention (Figure 6C). Firstly, the shapes of the total cumulative pre-
dictions counts are near identical between the baseline and intervention modes. Secondly, for
the success predictions, when no recovery happens in either the baseline or in the intervention
case, the distribution of real outcomes is on average within 13%. Therefore, the difference in
real outcomes when failure is predicted is evident.
There are patterns in both the successful predictions and failure predictions based on the time
the decisions are made. For the cases where failure outcomes were misidentified as successes
(Figure 6C top, modes F1 and F2), 87% are decided before 9 s into the trajectory. Failure pre-
diction accuracy increases if they can be identified early (before 8.0 s) or later (after 9.5 s)
(Figure 6C bottom left). The first peak is critical for the recovery routine. From the predicted
failures in the intervention case, the successful outcomes significantly increase over the base-
line case. However, after 8.1 s into the trajectory, there are no additional success outcomes.
The failure decision has to come before this time for a chance of recovery. At 7.8 s, 35 failures
are identified, 34 of them are successful outcomes (assuming 3 misclassified successful out-
comes from the baseline failure predictions), the recovery success rate is ≈97%. At 8.4 s, the
recovery success rate drops to ≈87% and at 9.5 s drops to ≈66%.

3.6 Grasp predictions are also generalizable

While the error predictions are only trained on the grasping of spheres with position uncer-
tainty, grasping success potentially is indicated by underlying patterns in the sensor readout
which are not unique to spheres. Patterns such as net forces, enclosure of the object or stabil-
ity of each contact (e.g., lack of slip), have the potential to be learned and transferred by the
network to wider situations.
Table S2 shows the prediction accuracy on the set of everyday objects. The accuracy compares
the decision point of the prediction to the real outcome. The most accurate predictions are
seen with the 50 mm sphere (100%), the battery (90%) and the spool (80%). For the sphere,
the grasp is near identical to the grasp of the training object (60 mm sphere), the battery and
spool both have no successes and fail early in the trajectory, giving more information for the
predictions. The lowest accuracy is seen in the 70 mm sphere (50%), bubble wrap (20%) and
bottle (20%). The 70 mm sphere grasp is successful only in a different grasping mode which
utilises the middle finger, hence the predictions are less accurate for the successes. Addition-
ally, both the bubble wrap and bottle succeed with slightly different emergent grasps (Movie S2).
This would suggest the network is overfitting on the success outcomes. This is not unexpected
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due to the lower diversity in grasping success in the training data versus the diversity in fail-
ures.
The predictions demonstrate some intuition for more general cases. This intuition is observed
in predictions for familiar objects, in addition to predictions with unfamiliar environmental in-
terference. For example, when grasping and the object is knocked out of the grasp during lift,
the prediction rapidly updates to a failure (Figure S7, Movie S8). This exact interference case
is not present in the training data, though failure mode two can look similar. Other live predic-
tion updates do back up the intuition and generalised performance, particularly the ability of
the prediction to update after the heuristic error recovery. The final prediction of the network
(at 15 s) has 100% accuracy (50 of 50) for the baseline cases where failure was correctly pre-
dicted, for the intervention cases where failure was predicted but not recovered the final pre-
diction was correct 100% (21 of 21), for cases where the intervention succeed, the prediction
correctly updated to success 97% (35 of 36) of the time. The failure predictions were made
on average 7.403 s into these trajectories, then by 8.2 s, the average prediction became un-
certain (regression output 0.5) and by 8.5 s, the prediction average (0.143) passed the thresh-
old to a success (< 0.2). Therefore, there is potential for closed-loop error recovery and self-
supervised learning of recovery behaviours.

4 Discussion

Performance of robotic manipulators in general-purpose tasks is lacking when compared to
human manipulation. Two significant problems we see in robotic manipulation include the de-
velopment of appropriate designs that can exhibit adaptive dynamic behaviours and the de-
velopment of control strategies for adaptation and learning in novel and niche situations. The
passive dynamics of the hand have shown to be essential for generating diverse adaptive be-
haviours through interactions [5, 7], ensuring low control effort through strategies including
passive shape adaptation [9] and stiffness control [7]. In passive soft grasping, emergent be-
haviours allow robustness to uncertainties in object and environment properties, though these
behaviours can result in complex sensory responses which makes perception difficult. The
described soft anthropomorphic hand is the ideal platform for testing passive dynamic be-
haviours and investigating sensing strategies for intuitive manipulation. In total, 1240 grasping
trials were performed (650 training, 250 heuristic recovery testing, 140 everyday object trials,
200 alternate trajectory grasps), providing diverse manipulation data.
The passive anthropomorphic hand demonstrates significant adaptive grasping behaviours.
Trained in one-shot on a regular sphere, the hand is able to successfully grasp 11 of 14 every-
day objects chosen at random with similar size to the sphere. These objects include highly ir-
regular objects such as a computer mouse, and highly deformable objects such as a roll of bub-
ble wrap. The soft sensing skin demonstrates a low-cost, highly sensitive and modular design
(sensor response is customisable and receptors can be placed in any geometry of hand). These
sensors provide tactile and proprioceptive information, though the current solution has limited
receptor density and scalability is challenging with individual barometric pressure gauges for
each sensing channel. The sparse data is informative for studying the hand-environment in-
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teractions, Figure 3B shows sensor channel peaks corresponding to the extracted keypoints,
which mark changing interactions [6]. The anatomically correct design approach coupled with
the soft sensing capabilities allows intuitive training from non-expert users.
Our error prediction approach is able to overcome traditional soft sensing problems including
non-linearities, drift, and temperature dependence by using recurrent learning architectures.
Low-level, high-bandwidth control is performed in a pure mechanical manner by the passive-
adaptive behaviours (Figure 4) and emergent grasps (Figure S3). Hence, sensory feedback is
only required for higher-level monitoring and predictive reactions. When incentivising early
predictions, prediction accuracy can be as high as 79% with data length of 80 (8 s), improving
to 98% with data length 150. Extracting the trends of the prediction, we are able to make a de-
cision about the outcome in advance of catastrophic grasp failure (greater than 1 stable contact
to one or fewer, e.g., object is ejected from grasp), therefore allowing us to correct for any er-
ror and recover the grasp. Implementation of a heuristic recovery routine targeted at the most
common failure mode improves the success rate from 19.8% to 48.4%. Of the 35 earliest fail-
ure predictions, 34 were successfully recovered. The recovery strategy is a simple translation
added based on intuition, showing the power of this predictive approach only requiring sim-
ple interventions, which is promising for scalability and developing recovery routines for other
manipulations and failure modes, potentially through self-supervised learning [80, 81].
To go beyond just improving grasping robustness and adaptation, we hope to see the emer-
gence of intuitive behaviours. The first of these is being able to recognise grasping failures on
unfamiliar objects. When only trained on grasping of a regular sphere, the network is able to
detect failures with 68% accuracy (successes with 41%). This is promising and highly likely
to be improved with a more diverse training set. Secondly, is being able to react to external
sources of interference. Even when the object is knocked out of the hand post-lift, the net-
work output reacts within 0.2 s to update the prediction and smaller sources of interference.
Additionally, by being similar to a human hand, the achievable grasp types are well under-
stood [76, 82, 77], the hand matches ergonomically with the environment, and human input
during teaching is intuitive due to familiarity [83]. This has great implications for making ro-
bust and intuitive manipulation systems, for example in flexible industrial or logistic robotic
applications where the environment can constantly change, but highly robust and adaptable
systems are required. Or for prostheses, where the anthropomorphic design is highly desirable,
both for aesthetics [84, 85] and for ease of exploitation [86, 87]. An additional requirement
for prostheses is low-cost, simplicity and sensory feedback during use [88, 89, 19]. Our hand
achieves all of these, in particular the passive nature greatly simplifies the system and usabil-
ity in the real world, and the high-level sensory feedback is easily interpretable by the user and
can give real-time feedback of grasp quality.

5 Supplementary materials

Figure S1. Robot system diagram.
Figure S2. Novel objects.
Figure S3. Grasping of novel objects.
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Figure S4. Alternate grasping trajectory.
Figure S5. Grasping outcome classifications.
Figure S6. Breakdown of average network predictions. Figure S7. Prediction reaction.
Table S1. Sensor range characterisation.
Table S2. Novel object grasping results.
Table S3. Effect of noise on experimental trajectory.
Table S4. Effect of noise on alternate trajectory.
Table S5. Error recovery experiment results.
Movie S1. Teaching demonstration.
Movie S2. Successful novel object grasping.
Movie S3. Unsuccessful novel object grasping.
Movie S4. Trajectory 1 (experimental) time-lapse.
Movie S5. Trajectory 2 (alternate) time-lapse.
Movie S6. Trajectory 1 failure examples.
Movie S7. Heuristic recovery demonstration.
Movie S8. Live predictions and reactions showcase.
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6 Supplementary materials

Figure S1: Robot system diagram. Barometric sensors are read by a bank of analog-to-digital converters and
transmitted to a local microcontroller over two I2C buses. This I2C master device converts the information to
serial data for the master PC which also controls the robot arm.

Figure S2: Novel objects. Randomly selected objects for the adaptive grasping experiment.
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Figure S3: Grasping of novel objects. 11 of 14 randomly selected objects, Fig. S2, can be grasped successfully
with the original open-loop trajectory.

Figure S4: Alternate grasping trajectory. Share of grasping outcomes (left). Multiple unique success and fail-
ure modes emerge (Figure S5 right), dependent on orientation of perturbation (right).
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Figure S5: Grasping outcome classifications. Grasping outcomes with main (left) and supplementary (right)
trajectory (1 and 2). Multiple unique failure modes emerge in both trajectories. An emergent success mode is
seen in trajectory 2 (S2.2).

Figure S6: Breakdown of average network predictions. High variance reduces prediction certainty, i.e., there is
a tradeoff between prediction accuracy and predicting early enough for successful recovery.
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Figure S7: Prediction reaction. Real-time prediction reaction to external interference. Training sphere is
knocked from the grasp, prediction begins to update after 0.2 s.
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Table S1: Sensor range characterisation. Sensor minimum and maximum forces observed with a 4 mm indent-
ing tool and two different sensor designs.

Sensor ∆Vmin(mV ) Fmin(mN) ∆Vmax(mV ) Fmax(mN)
High volume, shallow 1 ±0.5 23 ±6 172 ±1 1600 ±200
Low volume, deep 1 ±0.5 99 ±20 132 ±0.5 5800 ±90

Table S2: Novel object grasping results. Adaptive grasping trial objects, Fig. S2, weights, dimensions, success
rates and prediction accuracies. *Deformable.

50mm sphere 70mm sphere Peach Battery Block DC charger Grapes Bubble wrap Coffee Bottle Adapter Pig Mouse Spool
Weight/g 18 34 66 188 64 86 34 8 142 40 52 26 72 72
Dims./mm 50 70 67x77 30x46x86 35x43x94 50x59x74 18x140* 23x67x150* 52x70x117 30x54x155 35x40x52 50x51x60 35x56x116 56x63x68
Success rate 1 0.4 0.1 0 0.3 0.5 0 0.4 0.2 0.6 0.5 0.6 0.4 0
Pred. accuracy 1 0.5 0.6 0.9 0.7 0.6 0.4 0.2 0.5 0.2 0.6 0.5 0.4 0.8

Table S3: Effect of noise on experimental trajectory (Figure 5). Success and failure mode counts for experiment
trajectory, with and without added noise.

S1 F1 F2 F3 F4
Count (no noise) 69 23 7 1 0
Count (noise) 51 38 7 1 3
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Table S4: Effect of noise on alternate trajectory (Figure S4). Success and failure mode counts for test trajectory,
with and without added noise.

S1 S2 F1 F2
Count (no noise) 100 0 0 0
Count (noise) 64 3 32 1

Table S5: Error recovery experiment results. Real outcomes against predictions (correct predictions in grey, in-
correct in red). Predicted failures with intervention enabled are more likely to have real outcome ‘Success 1’.

Outcome mode S1 F1 F2 F3 F4
Success predicted 22 22 17 0 0Baseline Failure predicted 3 50 12 0 0
Success predicted 24 18 19 0 0Intervention Failure predicted 36 21 5 0 1
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