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HIGHLIGHTS 17 

x The research presents a client driven application programming interface (API) 18 

‘software’ plug-in ‘FM intelligent design data’ (FinDD) for Autodesk Revit as an 19 

entirely new and novel approach to BIM-FM integration. 20 

x Participatory action research (PAR) reports on the specification of a client’s bespoke 21 

COBie data requirements through the use of totems that visualise rich semantic FM 22 

data in 3D objects. Totems extend the use and application of COBie thereby 23 

minimising costs incurred by the FM team to update and maintain the as-built BIM. 24 

x User group feedback and coding of their responses and requirements provided guidance 25 

on the functionality of the API plug-in and also afforded direction for future research. 26 

x The FinDD API plug-in is an entirely novel approach to automating the input and 27 

retrieval of semantic FM data from the as-built BIM therefore, reducing the necessity to 28 

update/ create model geometry during the O&M stages of the development.  29 

x This paper also challenges the standard COBie data drops and the spreadsheet format 30 

approach to integrating FM semantic data with as-built BIM. 31 

 32 

  33 
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ABSTRACT 34 

This research paper reports upon a client driven approach to iteratively develop the FinDD 35 

application programming interface (API) plug-in. FinDD integrates building information 36 

modelling (BIM) and facilities management (FM) via the novel development and application 37 

of totems. Totems visualise rich semantic FM data in a 3D object to extend the use and 38 

application of COBie thereby minimising costs incurred by the FM team to update and 39 

maintain the as-built BIM. Participatory action research was used to develop the proof of 40 

concept and involved a study of two multi-storey, mixed-use educational buildings (with a 41 

contract value worth ≥ £150 million UK Sterling) located within Birmingham, UK. The lead 42 

researcher worked for the client’s estates department and was instrumental in liaising with 43 

members of the project management team, synthesising their semantic data requirements and 44 

developing the FinDD API plug-in for Autodesk Revit. Research findings reveal that whilst 45 

FinDD was positively received as a bespoke extension of COBie (that was tailored to 46 

specifically meet client needs), further development is required to mitigate software 47 

inflexibility and augment automation of semantic data transfer, storage and analysis. Future 48 

work will validate the API plug-in via user experience and integrate additional databases such 49 

as post occupancy evaluations (POE).  50 

 51 
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Facilities management, building information modelling, application programming interface 53 
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 55 

INTRODUCTION 56 

The rapid pace of computerisation within the twenty first century has created a digital 57 

economy to effectively challenge the modern capitalist economy [26]. The digital age is 58 

maturing at an exponential pace and with it, the need for businesses and organisations to 59 

increase their capacity for adopting automated data driven decision making [21]. The 60 

digitalisation of modern organisations manifests itself from two key sources: i) the 61 

transformation effects of general purpose technologies (hardware) in the  field  of information 62 

and communication; and ii) the overwhelmingly vast inter-connectivity afforded by network 63 

based data and the internet [13]. Within a construction context, computerisation has the 64 

inherent potential to drastically change procedural methods employed for operating and 65 

maintaining buildings [20]. Such technological advancements have extended the decision 66 

support for strategic facilities planning, space planning, asset management and scenario 67 
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simulation [42]. Throughout a building’s life-cycle this procedural transition is further 68 

expedited by BIM technology [1]. BIM models are increasingly associated with multiple 69 

layers and sources of data/ information which extend beyond the model authoring tool 70 

capacity, namely: Building Automation Systems (BAS) [27] Computer Aided Facility 71 

Management Systems (CAFM) [6], System Information Model (SIM) [38], Electronic 72 

Document Management Systems (EDMS) [28] and Computerized Maintenance Management 73 

Systems (CMMS) [46]. BIM consequently assists the design team during inception but also 74 

proves itself invaluable to the facilities management team (FMT) during occupation 75 

[34;47;45;58]. Indeed, Boussabaine and Kirkham [9] reported that 80 percent of an asset’s 76 

cost derives from the building’s operations and maintenance (O&M). Maintenance is a 77 

necessity for sustaining the availability and reliability of a building’s assets, which in turn 78 

ensures productivity for its operations and a safe working environment [5;3]. This is because 79 

BIM can provide an information conduit and repository (containing for example, 80 

manufacturer specifications and maintenance instructions linked to building components) in 81 

support of O&M activities [51] . 82 

 83 

Rapid digitisation of building design and construction has impacted upon the later stages of 84 

building operation, most notably witnessed after the UK further developed COBie 85 

(Construction Operation Building Information Exchange)  in 2014 to support its level two 86 

mandate [57;11]. COBie documentation together with BIM implementation promotes an 87 

opportunity for improved data hand-over for facilities managers and building owners [23;24]. 88 

BIM and facilities management (FM) integration (BM-FM) can be utilised for the building’s 89 

O&M [2]. BIM can potentially support the integration of data from multiple perspectives 90 

within a digital environment that allows different stakeholders (i.e. structural engineers, 91 

architects, quantity surveyors, subcontractors) to share and exchange relevant information 92 

[33].  Yet in practice, over 70% of completed projects fail to provide a 3D model and 93 

corresponding COBie data set at the project’s hand-over stages for the Client and facilities 94 

management team (FMT) [22]. Moreover, many practitioners consider that COBie provides 95 

universal coverage of all FM related parameters and fails to selectively filter what data is 96 

relevant to a building’s bespoke O&M requirements [55]. Recent literature [6] also 97 

emphasized that: i) a BIM developed through design and construction often does not 98 

comprehensively provide the semantic FM information required at hand-over by the FMT. 99 

This is because although the client’s O&M requirements are defined at the project’s outset in 100 

the employer’s information requirements (EIR); the relevance of this information to the 101 
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facilities manager can be questionable leaving designers to second guess what semantic data 102 

will be usable during O&M; and ii) data within BIM for FM is not fully exploited for the 103 

decision support knowledge inherent within it, therefore, the opportunity to enhance a 104 

building’s performance using rich semantic data is lost. Case studies of contemporary FM 105 

practice illustrate the amorphous range of services covered by FM and that data within BIM 106 

models created during design and construction do not necessarily take full consideration of 107 

those who use/ manage facilities during building occupation [4]. Moreover, databases that 108 

support O&M for the FMT often develop organically during building occupancy and use, and 109 

reside in disparate databases that are frequently underutilised and/ or lack interconnectivity 110 

[6]. This progressive growth of building data presents new opportunities for a deeper analysis 111 

of rich semantic O&M data that can support an informed Community of Practice (CoP) 112 

(consisting of the design team, contractors, FMT and building owners). For example, a 113 

building’s operational performance data allows the CoP to develop optimised strategic 114 

maintenance plans. However, it also facilitates direct comparison between actual and 115 

predicted building performance thus proving invaluable to designers and contractors who 116 

seek to improve the performance of future building developments.  117 

 118 

Given this contextual backdrop, this research reports upon the iterative development of the 119 

bespoke FinDD application programming interface (API) plug-in Autodesk Revit that 120 

manages semantic FM data in a BIM so that accurate cost estimations for building 121 

maintenance works can be produced using New Rules of Measurement (NRM3). This is 122 

achieved through the development of a totem that acts as a room-based data repository for 123 

FM. To develop this API plug-in, participatory action research was used to develop the proof 124 

of concept and involved industrial collaboration with a Client and FMT who funded and 125 

managed two multi-storey educational buildings located in Birmingham, UK. Associated 126 

research objectives are to: i) critically evaluate and report on state of the art data management 127 

tools and applications used to manage O&M knowledge in practice; ii) improve the 128 

efficiency and effectiveness of semantic building data capture, access and management via 129 

the API plug-in as a first step towards augmenting decision making for future O&M policies 130 

and procedures; and iii) enhance the financial efficiency of a building’s O&M. Through 131 

research dissemination, the authors aspire to engender wider academic debate, challenge 132 

current thinking and contribute to the ensuing academic discourse by sharing contemporary 133 

and innovative developments within industry practice.   134 

 135 
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DISRUPTIVE TECHNOLOGY: AUTOMATION OF KNOWLEDGE WORK IN FM  136 

Disruptive technologies were first defined by  Clayton [19]; namely: new technologies having 137 

lower cost and enhanced performance measured by traditional criteria, which then 138 

relentlessly move up market, eventually displacing established competitors. McKinsey [43] 139 

predicts that automation of knowledge work will become the second largest disruptive 140 

technology over the next 10 years with an estimated 5-7 trillion dollar impact across a wide 141 

range of industry sectors. Knowledge work tools can reduce costs by helping organisations 142 

improve efficiency, but they can also substantially raise standards by delivering a fast, 143 

consistent and high-quality customer service [48]. Consecutive knowledge worker tasks can 144 

be automated through sophisticated analytics tools [43]. This potential generates openings for 145 

radical change in the way that 21st century businesses and organisations operate [52].  146 

 147 

Within the Architectural, Engineering, Construction and Owner-operated (AECO) sector, 148 

early signs of automation of knowledge work are evident through BIM adoption which 149 

affords a digital environment to store, share and integrate information for future use [53]. 150 

BIM represents a new disruptive technology that has significantly decreased the number of 151 

manual processes involved previously in the design stages of construction [59]. It enables 152 

extensive stakeholder collaboration between the various parties to the construction contract 153 

(during the design and construction phases) via a single integrated model [4]. Consequently, 154 

new knowledge and insight can be gained in design feasibility prior to construction 155 

commencing. Despite the many palpable benefits of BIM application during the design and 156 

construction stages, case-studies of its application during the O&M stage of building 157 

occupancy remain scant [35;6]. The inherent value of BIM-FM integration is derived from 158 

improvements to: current manual processes of information handover; accuracy of, and 159 

accessibility to rich semantic FM data; and efficiency increases in work order execution 160 

[34;6]. From an operational perspective, BIM can embed key product and asset data, and 161 

generate a three-dimensional computer model that can be used to improve information 162 

management throughout a project’s lifecycle [32]. Therefore, BIM deployment is invaluable 163 

to organisations that seek to obtain greater value from the technology [39;40]. However, 164 

capturing the ever-growing data requirements of buildings for FM is a complicated process 165 

because delivering efficient O&M is contingent upon information generated within a 166 

digitized 3D BIM and the effective synthesis and utilisation of complex/ voluminous data 167 

[44;7]. An additional issue is the failure to capture relevant data for O&M; instead designers 168 

tend to focus on the production of geometry during the design and construction phases. This 169 
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issue has often been attributed to a poor client brief and/ or building specification [18], 170 

particularly in relation to late engagement of the FMT [40].   171 

 172 

BIM data requires a structured method of information categorisation that can be tracked, 173 

validated and extracted [25]. However, within a multiple collaborative stakeholder BIM 174 

environment, the model-related information is rapidly assimilated and becomes more difficult 175 

to manage. Boton et al., [8]  speculated that “the management of raw data (e.g. from BIM as 176 

well as from other sources) is not really conceptually formalized so far.” Others have argued 177 

that many of the information related issues only focus on data-interoperability. For example, 178 

Grilo et al., [29] argued that BIM should create a broader base for interoperability in order to 179 

be fully utilisable, which should include standards on communication, coordination, 180 

cooperation and collaboration. Whilst specifications such as PAS 1192-3 [12] provide a 181 

framework to support BIM enabled FM, there still remains little guidance on how to translate 182 

this standard into practice. The proliferation of data accumulated with as-built models1, much 183 

of which is peripheral during the O&M phase, becomes a matter of concern for the FMT in 184 

terms of extracting critical and relevant information and knowledge [38]. To further 185 

exacerbate this issue, not all data are contained within one federated model, with the FMT 186 

often linking additional relevant external databases to the BIM to create an enormous 187 

integrated multi-dimensional model [56;38]. This rapid and organic expansion of 188 

accumulated and stored building data means that semantic data analytics in the FM sector is 189 

essential if palpable O&M cost benefits are to be realised. However, generating meaningful 190 

decisions from this vast pool of complex data is increasing challenging for the FMT and 191 

building owners [50]. Hence, the need for automated work knowledge using computerisation.   192 

 193 

HARNESSING THE VALUE FROM SEMANTIC DATA FOR FMT  194 

Lee et al. [37] identified eight information dimensions which can be managed within a BIM 195 

during a building’s life cycle. These dimensions are: i) maintenance needs; ii) acoustics; iii) 196 

process; iv) cost; v) energy requirements; vi) crime deterrent features; vii) sustainability; and 197 

viii) people’s accessibility. This eclectic mix of data requires highly structured object-198 

orientated modelling techniques to engender creative thinking within the FMT [7]. For 199 

example, Matthews et al. [41] , explored adaptation of cloud-based technology with object 200 

                                                
1 As-built models in this context represent a building as constructed vis-à-vis the original building design as 
conceived and prescribed by the architect, engineer and/ or designer. The as-built model typically evolves 
during the construction and in-use phases of a building’s life cycle.  
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oriented workflow for as-built BIM scheduling. Similarly, new object-orientated modelling 201 

techniques adopted in tandem with semantic data analytics can be utilised in the O&M stages 202 

(Oskoiue et al., 2012). Many benefits associated with BIM-FM integration relate to data 203 

accessibility for O&M purposes, but as the building evolves, so does the complexity of 204 

historical data (ibid.). Harnessing data for analysis in FM represents a new shift in the way 205 

pro-active maintenance has formerly been prescribed in the sector. Rigorous data analytics 206 

have already been successfully applied in other industries driven by the potentially huge cost 207 

savings on offer [14]. A building’s O&M could reap similar benefits. The extant literature is 208 

replete with cases justifying data analysis for O&M; these include: FM Visual Analytics 209 

System (FMVAS) for failure [45]; visual approach for maintenance management [16]; object-210 

oriented method of asset maintenance management [30;31]; ‘Visualizer’- decision-support 211 

tool for service life prediction [36]; and knowledge-based BIM (K-BIM) developed on the 212 

basis of as constructed information of the facility used to enhance an FM organisation’s 213 

competitive advantage [15]. However, whilst previous research has predominantly focused 214 

upon specific and individual O&M tasks, there remains a notable shortage of holistic 215 

guidance that encapsulates all O&M related information for decision making purposes. Case 216 

studies of exemplary practices are therefore urgently needed at the O&M stage to 217 

demonstrate the potential value harnessed from semantic data analysis with BIM.  218 

 219 

RESEARCH DESIGN AND APPROACH 220 

The research design employed participatory action research (PAR) (cf.[17;54]) to produce a 221 

client driven application programming interface (API) ‘software’ plug-in (FinDD). Although 222 

PAR has many progenitors, it can be broadly classed as collective self-experimentation 223 

amongst participants that is augmented by evidential reasoning (participation), fact-finding 224 

(action) and learning (research) (cf. [49;12]). Two multi-storey educational buildings 225 

provided the basis for this research inquiry and were designed and constructed consecutively 226 

in Birmingham, UK over an 18 month period (refer to Figure 1). The contract value was 227 

worth ≥ £150 million UK Sterling and created 100,000 sq ft of new office space; albeit future 228 

plans seek to expand the development further. The lead researcher collaborated directly with 229 

the building’s estates team (who coordinated project management and acted as the client’s 230 

representative) but also engaged with all parties within the Project Management Team (PMT) 231 

to gather project information through liaising with each stakeholder. The PMT included the 232 

client’s representatives (i.e. the Building’s Estates Department) and design related disciplines 233 

(including the BIM Process Manager, the lead Architect, Contractor’s Construction Manager, 234 
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the Contractor’s BIM Manager, Principle Designer for Mechanical Engineering and 235 

Plumbing and the Lead Structural Engineer). Note that the Estate’s Department held four 236 

fundamental roles, namely that of: client’s representative; BIM process manager; project 237 

manager; and Estates Department and consequently, covered all three major phases of the 238 

building’s life cycle.  239 

 240 

In operational terms, a five stage process was adopted for the development of the FinDD API 241 

plug-in for Autodesk Revit, namely: stage one: development of the totem. Totems act as a 242 

virtual repository that synthesised all relevant information sources into one integral area, 243 

usually a room, for ease of access; stage two: development of the asset information matrix 244 

(AIM). This phase was instigated during the design, construction and use of the first building. 245 

It specifically sought to identify relevant semantic data and information sources from PMT 246 

members and strategies for integration into the totems; stage three; development of the 247 

FinDD database representation. The data sources identified in stage two were bi-248 

directionally linked to the totems via the plug-in to allow changes to be updated in the model; 249 

stage four: conceptualising the enterprise application. Members of the PMT defined their 250 

user requirements of FinDD; and stage five: back-end and front-end software development. 251 

Object classes and their functionality were defined (back-end development) and a graphical 252 

user interface (front-end development) was designed. The API plug-in development process 253 

was iterative with each iteration taking into account client driven aspirations, stakeholder 254 

experience and user feedback.  255 

 256 

The primary qualitative data, was collected through seven ‘focus group’ project team 257 

meetings held over an 18 month period (January 2015-June 2016) and was supplemented by 258 

phone calls and emails to afford additional clarification when required. Secondary 259 

quantitative data sources further complemented information obtained and consisted of project 260 

documents including BIM execution plans (BEP), employer’s information requirements 261 

(EIR’s) and project execution plans (PEP). These archival records of project BIM 262 

documentation and contracts provided: i) an account of current practices through the 263 

exploration of stakeholder expectations; and ii) collaborating organisations with opportunities 264 

to learn from everyday experiences of PMT stakeholders.  265 

 266 
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FIVE STAGES OF FINDD API DEVELOPMENT: DISCUSSION AND FINDINGS  267 

At the outset of the development, some of the PMT group members were inexperienced at 268 

utilising BIM technologies. However, as building one progressed and team confidence grew, 269 

the idea for the FinDD API plug-in was conceived and proficiency/ competency gains were 270 

secured in building two. This iterative process enabled: the PMT group to mature as a 271 

collaborative partnership; individual parties to avoid unnecessary dispute(s); and both 272 

buildings to be constructed to all parties’ satisfaction. Efficiency gains were also made by 273 

individual PMT members who acquired new knowledge that allowed them to streamline 274 

project management and reduce costs without adversely impacting upon quality. For 275 

example, the Architect who employed ten people during building one, reduced their team to 276 

five people for building two by learning how to optimise the production of drawings with 277 

BIM. A Principal Architect said: “One of the bigger benefits that we’ve learned going into 278 

phase II is how to keep drawing sets coordinated and segregation of the model into work-279 

sets2, and split the model into groups and layers so that we don’t produce a single drawing 280 

and come back to it as we did before with AutoCAD - in that sense we have become a lot 281 

smarter with how we model with BIM.” 282 

 283 

These five aforementioned stages of the FinDD API-plug-in development are now discussed 284 

in further detail; the ensuing narrative is complemented with pertinent feedback from 285 

members of the PMT to provide additional insight.  286 

 287 

Development of the totem 288 

When formulating the totem concept to ensure BIM-FM data integration, the PMT 289 

considered the data requirements for FM and model structure for data retrieval. The ambition 290 

was to generate a totem that would deliver interoperability and encapsulate the following 291 

attributes: i) increased coordination between the contractor and design team stakeholders 292 

during model development; ii) enhanced communication between project stakeholders; iii) 293 

informed decision making; and iv) ease of navigation within the cloud-based BIM model. In 294 

practice, each individual totem holds all relevant semantic FM data that is pertinent to that 295 

particular space (including room finishes, services, lighting and frequency of maintenance). 296 

As this was not a government funded project development and building one was under 297 

construction prior to 2014, the use of COBie was not mandatory, although the data 298 

                                                
2 A ‘work-set’ is restricted collection of building objects (i.e. walls, doors, floors, stairs, etc.) which may be 
edited by one user at any given time.  
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requirements and model structure of the API plug-in were heavily informed by the COBie 299 

standard. The client demanded that all members of the PMT use Autodesk products when 300 

developing the models in an attempt to overcome interoperability issues. The totem was 301 

conceived and developed to extend the functionality of the room object in Autodesk Revit, as 302 

the ability to embed and link rich semantic FM data at this level was fundamental to the FMT 303 

and client requirements. 304 

 305 

The different PMT members each added room specific information into the totems; the 306 

contractors were then able to retrieve asset related information for guidance during 307 

construction and attach progress photos to each totem. The totems themselves connected to 308 

multiple external databases which provided access to room specific O&M manuals, 309 

maintenance frequency codes for different spaces and product fact sheets. 310 

 311 

Asset information matrix and totem integration 312 

The totems’ information requirements were defined in the asset information matrix (AIM) 313 

and semantic FM data within the AIM was classified according to the NRM3 standard. 314 

Utilising the NRM3 standard assisted the FMT with cost estimation and cost planning for 315 

building  O&M works. Semantic data was input into the totem by design team members 316 

according to the AIM for the various stages of development (i.e. RIBA ‘plan of work’ stages 317 

3-5) and corresponding to data drops 3, 4 and 5 in COBie. Figure 2 illustrates the schematic 318 

design to achieve information feed (via totems) at all three stages of the buildings’ life cycle 319 

(namely: i) design/ pre-construction; ii) construction and commissioning; and iii) as-built/ 320 

post construction). Two interlinked BIM cloud models are apparent. The first model contains 321 

three separate models that cover architectural, structural and MEP 3-D models that are 322 

merged into one federated model (e.g. pipes, services and structural elements). This federated 323 

model was used for: avoiding clashes; facilitating 4D and 5D modelling; and providing a 324 

single point of truth, accessible via the cloud, where totems could be linked and updated. The 325 

second cloud database includes additional information and resources such as photographs of 326 

progress on site during construction works, notes taken on programme of works and mark-327 

ups of any amendments or ‘BIM snags’ that were required within the BIM model itself. The 328 

contractor then monitored and managed these data drops into the totem on a weekly basis 329 

from the federated model. The cloud based BIM and totem data was managed by the 330 

contractor on site but was created by the estates management team on the client’s behalf. 331 

Totems were gradually populated throughout construction to provide a complete and accurate 332 
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record of the as-built development. Other documents not directly related to the BIM (such as 333 

equipment fact sheets, O&M manuals, documentation and drawings) were linked into the 334 

cloud based federated model via the totems. The cloud database was also populated by the 335 

estates management team and design teams who recorded a snagging list of defects and any 336 

remedial actions required. A laser scan was then conducted which was then compared to the 337 

as-built BIM model. Currently the estates and research team are exploring ways in which 338 

Building Management Systems data (as an external source of data) will be linked via totems 339 

into the cloud based model. 340 

 341 

Development of the FinDD database representation. 342 

Figure 3a presents a schematic representation of the databases that were integrated within the 343 

totem; whilst Figure 3b illustrates FM parameters contained within an individual totem (for 344 

example, project documentation (including: BEP; PEP; EIR; and AIM). Within the federated 345 

cloud model, databases that contain tasks, checklists, embedded data and snags are 346 

complemented with other external databases that are linked to the totem via a URL link to the 347 

client’s Sharepoint. Sharepoint represents a secure on-line open access repository and storage 348 

area that is populated by an ecliptic range of pertinent business information and resources 349 

including project documentation. Password protection within Sharepoint restricted PMT 350 

members’ access to relevant data only thus preventing them from accessing other more 351 

sensitive business intelligence that was unrelated to this development. Typical data accessed 352 

by the PMT on Sharepoint included photographs of the development, O&M manuals, reports 353 

and drawings. A senior member of the PMT said: “We have the NRM3 classification in our 354 

models, breaking all the O&M costing down in the models component by component. These 355 

all link to the maintenance codes, SFG203 which is the standard maintenance frequency 356 

code. This was implemented as a result of the mandate where RIBA [Royal Institute of British 357 

Architects] and RICS [Royal Institute of Chartered Surveyors] are requesting the use of 358 

NRM3 coding instead of the typical UniClass format. Essentially what we will have is an 359 

output of models that are all aligned to the NRM3 as well as O&M documentation which is 360 

similarly aligned to the NRM3 coding. So we have a direct relationship between object and 361 

the O&M documentation for that object. The maintenance codes work in such a way that we 362 

can go from object through to maintenance code - we can do this for all our objects and we 363 

                                                
3 SFG20 Standard Maintenance Specification for Building is developed to help customize maintenance regimes 

for building owners and clients. 
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can start planning simultaneously the maintenance procedures for each space, which will 364 

allow us to bring in the asset list into a system and it will tell us the maintenance required 365 

during its lifetime.”  366 

 367 

During development work, three other external databases were ear-marked for future 368 

integration into the information totem (refer to Figure 3a). These databases were: the building 369 

management system (BMS) to control and monitor the building's mechanical and electrical 370 

equipment; student attendance monitoring (SAMs) to gain insight into how the building was 371 

being used by occupants; and SITS to assist in both course and student management. During 372 

the O&M phase, the client utilised room barcodes to aid the management of assets by 373 

allowing cost-effective access to totem data via mobile devices (i.e. tablets) by scanning 374 

room barcodes (refer to Figure 4). Each barcode was bi-directionally linked to corresponding 375 

room based totems in the as-built BIM thus enabling the FM semantic data to be mapped into 376 

any CAFM software utilised at the later stages of the development. 377 

 378 

Conceptualising the enterprise application. 379 

During the PMT focus group discussions that sought to determine user requirements/ 380 

functionality, four main lessons emerged regarding the use of BIM and totems during the 381 

project, namely: i) the creation of totems; ii) limitations of a semi-automatic totem; iii) 382 

inflexibility of software providers; and iv) lack of software integration. First, totems were 383 

originally conceived and adopted towards the end of building one when the estates 384 

management team realised that FM requirements (such as building heating and cooling loads, 385 

and building usage) could have been uploaded into the BIM at the design stage to inform the 386 

design and better meet client expectations. A MEP designer said: “Design data, such as 387 

ventilation rates, cooling loads could have been included in the design stages already, as the 388 

M &E contractors are often playing catch up from the other design team…” Second, it was 389 

apparent that the totems developed were not fully automated and hence, as changes to 390 

specification occurred, manual updates were needed in the model. For example, when the 391 

contractor altered a specification provided by the Architect or MEP designer (at the 392 

construction and commissioning stages). The contractor stated: The totems still lacked 393 

automation, what would have been good was to have a live feed of the changes in the model 394 

with the totems, as they currently did not capture all of the changes in the model, some 395 

information had to be manually added to the totems…” Third, the BIM software designers 396 

(as external providers) were unwilling to implement bespoke modifications and amendments 397 
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to their software. For example, information could not be exported into other file formats for 398 

usage in room data sheets or for snagging lists post construction. A BIM Manager said: “We 399 

were unable to export the totem information directly out of the software into a PDF, which 400 

could then be used as a room data sheet…” Fourth, the BIM model structure had a distinct 401 

lack of software integration capability and therefore, when accessing the totem corresponding 402 

room elevational views were inaccessible and had to be extracted from other databases of 403 

drawings within the BIM model. A Project Manager said: “What would be useful is if we 404 

could have direct views of reflected ceiling plans, room elevations and floorplans just by 405 

clicking the totems faces, makes it easier to then share the model with subcontractors…”  406 

 407 

Verbal and written responses were subsequently noted and then categorised into An, Bn, Cn, 408 

Dn, En and Fn bandings for brevity by the research team (refer to Figure 5 and Table 1). 409 

Once these bandings were established, they were presented back to group members for sign-410 

off approval before the API was developed further in the BIM authoring tool Revit. This 411 

stage in the process was particularly important because it illustrates early development stages 412 

of the plug-in and object classes, and how the functionality of Revit was extended to suit user 413 

requirements for the totem.    414 

 415 

Back-end and front-end software development. 416 

Figure 6 presents a graphical illustration of the Revit user interface for the plug-in and 417 

describes Revit add-in functionality. The object class diagram presents a schematic of the 418 

functionality and behaviour of these add-in files for Revit. For example, button two informs 419 

users how many rooms include a totem within the room; where all classes connect to the 420 

object class which represents the totem. Figure 7 presents the front-end graphical user 421 

interface of the FinDD plug-in developed. At this juncture, FinDD represents a proof of 422 

concept that demonstrates its feasibility; further development and expansion is now planned 423 

and will include naming buttons to better describe functionality to future users who are less 424 

familiar with its development. When reflecting upon the development and FinDD, a 425 

representative from the Estates Department said: “Building two has been one of most 426 

successful BIM project in our business, it has really pushed BIM all the way through the 427 

process right through to FM, and we haven’t actually done this on any other project to date. 428 

Possibly in the future we could benefit from having a direct feed of BMS data, and live Post 429 

Occupancy Evaluation (POE) fed into the totems to inform architects and the FMT on how 430 

the occupants are responding to the new building.” 431 
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CONCLUSIONS  432 

The extant literature is replete with recommendations for far greater BIM-FM integration as a 433 

means of producing accurate design data (both geometric and semantic) for handover to the 434 

building’s client. Importantly, this integration presents an ideal opportunity for data retrieval 435 

and use during the O&M stages of building occupancy. Yet to date, case studies of practice-436 

based initiatives are scant or provide rudimentary insight into the myriad of opportunities 437 

available to clients and the building’s facility management team. This is most likely due to 438 

two fundamental reasons. First, computerisation technology is developing at an exponential 439 

pace and hence, keeping abreast of the latest knowledge and developments presents a major 440 

challenge for both industry and academia. Second, securing access to large construction 441 

project developments means consequential data generated with an as-built BIM is a hugely 442 

complex and difficult task and only achievable with a client’s approval. Even then, legal 443 

contracts covering data disclosure, copyright/ ownership rights and data protection can lead 444 

to exorbitant costs being incurred by a research team and delays to secure agreements with all 445 

parties concerned. The extant literature on BIM-FM integration also points to the specific 446 

limitations of data integration between BIM and FM related data authoring platforms, as well 447 

as the lack of standardised methodology for such data transfer.  448 

 449 

Fortuitously, a proactive client and project management team who acknowledged the benefits 450 

of collaboration with academia assisted this research. Given their invaluable insight and 451 

support, the FinDD API plug-in and the integral FinDD totem were first developed and then 452 

enhanced through the development of an API (proof of concept) in the BIM authoring tool 453 

Revit; where the innovative use of the FinDD totem represented a bespoke adaptation of 454 

'COBie data drops' to suit the client’s needs. At each incremental stage of the developmental 455 

process, limitations and applications of FinDD were categorised under the guise of future 456 

work. Such work includes: addressing software inflexibility within the FinDD totem and 457 

implementing automatic data analytics; validating the API plug-in via user experience; and 458 

integrating additional databases into the totem such as post occupancy evaluations (POE). 459 

Each extension of FinDD will continue to pose unique challenges and opportunities but as 460 

other bespoke API plug-ins emerge from the literature, the likelihood that a hybrid plug-in is 461 

developed increases; such will yield broader appeal and improved software upgrades.  462 

 463 

Regardless of future developments, FinDD also allows an invaluable feedback loop/ of 464 

building performance when compared against the designer’s original estimation. Live feed 465 
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sensor data used by the building management system (BMS) on building usage fed into the 466 

totem will facilitate a better visual understanding of building performance and usage for the 467 

client and FMT. Observations accrued from the case study have also shown how an object 468 

orientated workflow can provide structure and develop complex as-built BIM models whilst 469 

embedding key O&M related information. These inherent attributes of FinDD will provide 470 

openings for clients and members of the PMT to learn from developments, improve their 471 

performance and reflect upon how future technological advancements can further enhance a 472 

building’s performance. 473 
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Figure 1 – Buildings one (Parkside - left) and two (Curzon - right) image courtesy of 664 
Wilmott Dixon.  665 

 666 

 667 
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Figure 2 – Adopted from the original BIM execution Plan for Building II 669 

 670 
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Figure 3a – Schematic database representation for FinDD 672 

 673 
 674 

Figure 3b – FM parameters embedded within the totem 675 

 676 
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Figure 4 - As built-BIM used for asset data access and retrieval via the totem 677 
 678 

 679 

a)                                                                              b) 680 
 681 

a) View of the as-built BIM model; b) Asset management with room barcodes. 682 
 683 
 684 
 685 
 686 
  687 
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Figure 5 - Conceptualisation of enterprise application FinDD API 688 
 689 

 690 
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Table 1 – User group feedback and coding of the narrative 691 

User group functionality request Coding for the 
API 

Stakeholders  Stakeholder Freq.  

Automatic extraction of data from the model geometry (e.g room volume, area). A1 ED, CM, AR, MEP, SE, SC, C 7 
Automatic update of the totem following BIM progression/ changes. A2  ED, CM, AR, MEP, SE, SC, C 7 
Automatic generation of heating and cooling loads n/s/m2 from model data. A3 MEP, C  
Automatic identification of ductwork and pipework data from model.  A4 MEP 1 
Remove manual data input into totems to reduce errors and duplication of work. A5 ED, CM, AR, MEP, SE, C 6 
Automatic elevation views are created when a totem is placed into a room and those 
views should be accessible from the totem. 

B1 ED, AR, MEP, CM, SE, C, SC 7 

Colourize totems to flag up relevant information (i.e. health and safety related 
information). 

C1 ED, CM, AR, MEP, SE, SC, C 7 

Generate schedules and room data sheets into Extensible Markup Language (XML) 
format. 

D1 ED, MEP, AR, CM, SE 5 

Populate rooms without totem automatically. E1 AR, ED, CM, MEP, SE 5 
Access to laser scanned point cloud data via the totem possibly via external URL link to 
another database.  

F1 CM, ED,  2 

Design briefing information existing in FinDD as guidance at design stages i.e. target 
area for guidance. 

F2 AR, ED 2 

Track changes in the totem (i.e. historical input data). F3 ED, CM 2 
Health and safety issues linked. F4 CM 1 
Dynamic link for calculations (i.e. heating and cooling loads). F5 MEP, AR 1 
SFG20 maintenance schedule codes linked into totem. F6 ED 1 
Post-construction O&M: Post occupancy data integration. To learn from design and feed 
back to relevant design stakeholders. 

F7 AR, ED,  2 

Register of outstanding items integrated into totem at handover stages. F8 CM, ED 2 
Totems to be live in BIM 360 Glue (reduce the need to upload new versions). (N/A for proof of 

concept) 
ED, CM, AR, MEP, SE, SC, C 7 

Coding API Key: 
An. Automatic extraction/ update/ input of data from the model into the totem; Bn. Automatic elevation view generated; Cn Colourize totems to flag up relevant information; 
. Dn Generate schedules from totem fields to XML format; En Populate rooms with totems; and Fn Future work – currently under construction. 

 
Stakeholder Key: 

ED. estates department; CM. construction manager; AR. architect; MEP. mechanical electrical plumbing designer; SE. structural engineer; SC. sub-contractor; and C. 
consultant.  
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Figure 6 – Back-end development (Revit user interface and object class diagram) 692 

 693 
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Figure 7 – Screen dump of front-end GUI 695 
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