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Abstract

Axion-like particles (ALPs) are a well-motivated extension to the standard model of particle physics, and X-ray
observations of cluster-hosted AGN currently place the most stringent constraints on the ALP coupling to
electromagnetism, gaγ, for very light ALPs (ma 10−11 eV). We revisit limits obtained by Reynolds et al. using
Chandra X-ray grating spectroscopy of NGC 1275, the central AGN in the Perseus cluster, examining the impact
of the X-ray spectral model and magnetic field model. We also present a new publicly available code, ALPRO,
which we use to solve the ALP propagation problem. We discuss evidence for turbulent magnetic fields in Perseus
and show that it can be important to resolve the magnetic field structure on scales below the coherence length. We
reanalyze the NGC 1275 X-ray spectra using an improved data reduction and baseline spectral model. We find the
limits are insensitive to whether a partially covering absorber is used in the fits. At low ma (ma 10−13 eV), we
find marginally weaker limits on gaγ (by 0.1–0.3 dex) with different magnetic field models, compared to Model B
from Reynolds et al. (2020). A Gaussian random field (GRF) model designed to mimic ∼50 kpc scale coherent
structures also results in only slightly weaker limits. We conclude that the existing Model B limits are robust
assuming that βpl≈ 100, and are insensitive to whether cell-based or GRF methods are used. However,
astrophysical uncertainties regarding the strength and structure of cluster magnetic fields persist, motivating high-
sensitivity RM observations and tighter constraints on the radial profile of βpl.

Unified Astronomy Thesaurus concepts: Particle astrophysics (96); Dark matter (353); X-ray active galactic nuclei
(2035); Intracluster medium (858); Extragalactic magnetic fields (507)

1. Introduction

Probing physics beyond the standard model (SM) of particle
physics is a fundamental goal of modern particle and
astroparticle physics. One particularly well-motivated SM
extension involves axions. The axion is the particle associated
with the Peccei-Quinn field (Peccei & Quinn 1977; Weinberg
1978; Wilczek 1978), and was posited to solve the strong CP
problem of Quantum Chromodynamics (QCD; Cheng 1988;
Kim & Carosi 2010). Including the QCD axion field naturally
leads to CP conservation without a fine-tuning problem. The
QCD axion has a one-to-one relationship between its mass, ma,
and coupling to electromagnetism, gaγ, but a more general class
of particles known as axion-like particles (ALPs; see reviews by
Graham et al. 2015; Irastorza & Redondo 2018) is predicted by
effective theories derived from string theory (Svrcek & Witten
2006). ALPs are appealing dark matter candidates (Preskill et al.
1983; Abbott & Sikivie 1983; Dine & Fischler 1983; Arias et al.
2012; Ringwald 2012; Marsh 2016; Chadha-Day et al. 2021)
and can modify astrophysical processes (e.g., Raffelt 1996); their
significance for fundamental particle physics, astrophysics, and
cosmology is therefore clear.

An important characteristic of ALPs is their coupling to
radiation with a mass-independent coupling constant, described
by the Lagrangian term

( · ) ( )=g g E Bg a , 1a a

where a is the ALP field, E is the electric field, and B is the
magnetic field. ALPs couple to two photons, meaning that in
the presence of an external magnetic field, ALPs and photons
can undergo quantum mechanical oscillations. The property of
photon–ALP conversion or “mixing” in external magnetic
fields can be used to search for ALPs experimentally, and to
place limits in (ma, gaγ) parameter space. Experimental ALP
searches are reviewed by Graham et al. (2015); approaches
include so-called “light shining through wall” experiments
(e.g., Ehret et al. 2009; Arias et al. 2010; Ballou et al. 2014)
and axion helioscopes such as the CERN Axion Solar
Telescope (CAST; CAST Collaboration et al. 2007; Arik
et al. 2009) and the proposed International AXion Observatory
(IAXO; Irastorza et al. 2011; Armengaud et al. 2014). The
presence of astrophysical magnetic fields can also be leveraged
to search for ALPs. For example, supernova 1987A provides
limits on the photon–ALP coupling from the absence of an
associated gamma-ray burst (e.g., Brockway et al. 1996;
Raffelt 2008; Payez et al. 2015) and ALPs could induce
distortions in the Cosmic Microwave Background (Mukherjee
et al. 2019, 2020). Currently, one of the best ways of searching
for and constraining light ALPs (ma 10−9 eV) involves
searching for irregularities in the spectra of active galactic
nuclei (AGN) embedded in magnetized clusters; this method,
when applied to the gamma-ray and (in particular) X-ray
frequency ranges, is our main focus here.
Wouters & Brun (2013) were the first to place constraints on

ALPs from X-ray spectroscopy, using Chandra data from
Hydra A. Since then, ALP limits have been acquired from
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X-ray observations of M87 (Marsh et al. 2017), NGC 3862
(Conlon et al. 2017), and NGC 1275, the central AGN in
the Perseus cluster (Berg et al. 2017; Reynolds et al. 2020,
hereafter R20). R20 found constraints on very light ALPs
(ma 10−11 eV), ruling out gaγ> 6–8× 10−13 GeV−1 at
99.7% confidence. Marginally tighter constraints still are
obtained based on an analysis of the cluster-hosted quasar
H1821+643 (Sisk-Reynés et al. 2022). Schallmoser et al.
(2021) find similar constraints from five AGN located either
within or behind clusters such as Coma, using machine-
learning techniques as suggested by Day & Krippendorf
(2020). Gamma-ray studies offer slightly weaker, although
complementary, constraints at higher masses, 5× 10−10
(ma/eV) 5× 10−9, with Ajello et al. (2016) excluding
gaγ> 5× 10−12 GeV−1 at 95% confidence.

In the X-ray band, AGN are characterized by a power-law
spectrum thought to be produced by inverse Compton
scattering of accretion disk seed photons. This power-law
spectrum is ubiquitous, but other spectral imprints such as a
soft X-ray excess, relativistic reflection signatures, and atomic
features such as a 6.4 keV iron line are also extremely common.
These astrophysical signatures complicate searches for ALPs,
since identifying any spectral irregularity relies on a well-
characterized continuum source. While the underlying physics
of accretion discs and their associated X-ray coronae, winds
and absorbers is complex and poorly understood, from a
phenomenological perspective, AGN spectra can nevertheless
be well-modeled using a suite of detailed spectral models in
tools such as XSPEC (Arnaud 1996). Furthermore, in some
cases, the power law is virtually featureless and only simple
corrections for intervening soft X-ray absorption are needed,
such as in the case of NGC 1275 in the Perseus cluster.
However, additional complications stem from instrument
calibration, photon pileup and the need to separate the cluster
and AGN source (R20).

A major systematic uncertainty in modeling ALP signatures
from cluster AGN is the magnetic field structure and strength
along our line of sight. This topic is the main focus of our
work. The intracluster medium (ICM) is magnetized, and is
likely to be turbulent (e.g., Carilli & Taylor 2002; Govoni &
Feretti 2004; Schekochihin & Cowley 2006; Donnert et al.
2018; Vazza et al. 2018). Generally speaking, observations are
consistent with a tangled magnetic field of ∼1–10 μG strength,
decreasing with radius, and a Kolmogorov power spectrum.
The turbulence requires energy input, which could come from
mergers and/or the central AGN. These processes may also
create coherent large-scale fields, but evidence for such
structures is relatively weak. Empirical constraints on the field
strength can come from Faraday rotation, observed pressure
profiles, synchrotron radio haloes, and other model-dependent
methods. Each of these has strengths and weaknesses. The
quantity that matters for ALP conversion is the perpendicular
magnetic field component (B⊥) along the line of sight to the
continuum source. The Faraday rotation measure (RM) gives
us a line-of-sight measure, but it is an integrated quantity and
only includes B∥. The pressure profile does give an indication
of the radial profile, but this is often measured within annuli
around the source, so it only corresponds to an accurate line-of-
sight measure if a reasonable degree of spherical symmetry
applies.

This paper is structured as follows. First, in Section 2, we
discuss the physics of ALP–photon conversion and introduce

our new Python package, ALPRO. We then review common
models for modeling magnetic fields in clusters in ALP
searches in Section 3, and explore the astrophysical evidence
for magnetic fields in the Perseus cluster in particular. In
Section 4, we conduct a sensitivity study, comparing the results
from Gaussian random fields and simpler cell-based
approaches and assessing the impact of small-scale field
structure. In Section 5, we reanalyze the X-ray data from
NGC 1275 in the Perseus cluster, and we present updated limits
using various magnetic field models and an improved spectral
model. In Section 6, we discuss the application of the Fourier
formalism to NGC 1275 as well as the implications for other
clusters, before concluding in Section 7. Overall, we find that
the astrophysical assumptions about the normalization of the
magnetic field strength are important and can modify the limits
appreciably while still producing acceptable predicted Faraday
rotation measures; however, other specific choices—such as
between a cell-based or Gaussian random field approach, or
how to set the coherence length of the magnetic field—have a
relatively small effect on the limits obtained, introducing a
systematic uncertainty of ∼0.1 dex.

2. ALP–Photon Interconversion

The contribution to the Lagrangian from ALPs of mass ma

can be written as

( · ) ( )= - ¶ ¶ - +m
m

g E Ba a m a g a
1

2

1

2
, 2a a a

2 2

where the final term describes the ALP–photon mixing with
coupling constant gaγ. We deal with relativistic ALPs, with
ma= E such that the relevant equation of motion (for
propagation in the z-direction) for a beam energy E is a first-
order Schrödinger-like equation, given by
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where  is the mixing matrix of the form (Raffelt &
Stodolsky 1988)
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Here, the dispersive diagonal terms are ( )D = -m E2a a
2 and

( ) ( )wD =z E2pl pl
2 , where ωpl is the usual plasma frequency.

We have neglected the Faraday rotation terms, which are
negligible at X-ray and gamma-ray energies. The off-diagonal
terms are responsible for photon–ALP mixing and are given by

( ) ( )D = gg B z 2, 5x a x

( ) ( )D = gg B z 2. 6y a y

The Schrödinger-like equation must in general be solved
numerically, but analytical calculations are possible for certain
configurations, and perturbative treatments are also useful (see,
e.g., Section 2.1). More mathematical details are given by other
authors (e.g., Raffelt & Stodolsky 1988; de Angelis et al. 2011;
Marsh et al. 2017; Davies et al. 2021); here, we focus on
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discussing just a few key aspects of the ALP–photon
conversion process.

It is informative to consider an idealized case, where the
beam is in a pure polarization state, (|γx〉, |γy〉, |a〉)= (1, 0, 0),
and travels a distance L through a uniform magnetic field of
strength B aligned with the x-axis. In this case, the off-diagonal
Δy terms are zero and the conversion probability can be shown
to be

( ) ( )=
Q
+ Q

D + Qg P
1

sin 1 , 7a

2

2
2

eff
2

x

where we have adopted the notation of Marsh et al. (2017)
with Q = gB̂ Eg m2 a eff

2 and ( )D = m L E4eff eff
2 , where

w= -m maeff
2 2

pl
2 . Here, we have given the conversion

probability for a polarized beam, but in our work we assume
that the X-ray emission is initially unpolarized. The degree of
polarization of X-ray emission in AGN is not well-constrained
observationally—although this may change with the launch of
the Imaging X-ray Polarimetry Explorer [IXPE], as shown by,
e.g., Ursini et al. (2022)—and the situation is complicated by
the possibility of a composite X-ray source in NGC 1275
(Reynolds et al. 2021; see also Section 5). Models of X-ray
polarization signatures from AGN predict an (inclination-
dependent) degree of polarization of a few percent from an
accretion disk corona (Schnittman & Krolik 2010; Beheshti-
pour et al. 2017) and ∼10% from a relativistic jet (McNamara
et al. 2009). Given the absence of X-ray polarization data and
the lack of knowledge about the detailed physics of the X-ray
emitting region(s), we take a standard approach and do not
assign any initial preferential polarization to the X-ray beam in
our calculation. Additionally, we note that ALPs themselves
can introduce polarization—an effect that has been studied by
Day & Krippendorf (2018), using NGC 1275 as a candidate
source—which has exciting prospects for future X-ray missions
such as IXPE.

Under our assumptions, the actual multiplicative imprint on
the spectrum is determined by the survival probability from an
unpolarized beam, Pγγ. This unpolarized survival probability
can be calculated from the pure polarization case using

( ) ( ) ( )= - = - +gg g g g P P P P1 1
1

2
, 8a a ax y

where Pγa is the total, unpolarized conversion probability. In
our work, we will always consider the general case where both
Δx and Δy are nonzero and z-dependent. In this case, Pγγ must
be calculated numerically by formulating a transfer matrix to
solve Equation (3). The line-of-sight is split into a series of
cells and the calculation is carried out in a piecewise fashion in
each cell j, with the output state (|γx〉, |γy〉, |a〉) used as input to
the next cell j+ 1.

2.1. The Fourier Formalism

Recently, Marsh et al. (2022) outlined a new formalism for
treating relativistic ALP–photon conversion. Marsh et al.
(2022) showed that, to leading order in gaγ, the conversion
probability gP ai

(with i ä [x, y]) can be related to Δi(z),
or equivalently, the magnetic field profile along the line of
sight Bi(z), using Fourier-like transforms. Although this
treatment breaks down when the conversion probabilities

exceed ∼5%–10%, it is an extremely useful framework when
considering how different magnetic field treatments affect the
conversion probability, so we shall briefly review the main
results. In the massive ALP (ma? ωpl) case and focusing on the
x-component only, the conversion probability can be written as

( ) ( ) ( ) ( )h = D + Dg P , 9a s x c x
2 2

x
 

where c and s denote the cosine and sine transforms using a
conjugate variable h=m E2a

2 , e.g., ( )=fc ( ) ( )ò h
¥

f z z dzcos
0

.
By applying the Wiener–Khinchin theorem, the conversion
probability can also be expressed in terms of a cosine transform
of the autocorrelation function of the line-of-sight magnetic
field, cBx, as

( ) ( ( )) ( )h =g
g

P
g

c L
2

. 10a
a

c B

2

x x

In the massless case (ma= ωpl), the same formalism applies if
we transform to new variables. Specifically, Δx is replaced by
the function w= DG 2 x pl

2 , the line-of-sight distance coordi-
nate is replaced by a phase factor proportional to the electron
column density,

( ) ( )òj w= ¢ ¢z z
1

2
d , 11

z

0
pl
2

and the conjugate Fourier variable is λ= 1/E. With these
transformations, the basic principle is similar to the massive
ALP case, as the conversion probability can still be expressed
as a simple transform of a function of the line-of-sight
perpendicular magnetic field. Although the forms above are
for a polarized beam, the unpolarized survival probability can
always be obtained directly from Equation (8). We will discuss
the applicability of this Fourier formalism to grid calculations
for X-ray spectral fitting in Section 6.1.

2.2. The ALPRO Python Package

We use our new Python package ALPRO (Axion-Like
PROpagation; Matthews 2022), v1.0, to solve the Schrödinger-
like equation for the propagation of the photon–ALP beam
through a magnetic field model. We briefly introduce the code
here. ALPRO solves the ALP–photon mixing problem
numerically by formulating transfer matrices, following the
method outlined by, e.g., de Angelis et al. (2011). The code is
written in Python but uses just-in-time (JIT) compilation as part
of the NUMBA library (Lam et al. 2015) to speed up the matrix
operations. ALPRO is written in a modular fashion and includes
routines for setting up various magnetic field models, including
random turbulent fields and uniform field models, which will
be expanded upon in the future. The code is publicly available
at https://github.com/jhmatthews/alpro, with documentation
hosted on ReadTheDocs. We have tested the results from our
code against analytic results as well as numerical results from
the code used by Marsh et al. (2017) and the GAMMAALPS
code (Meyer et al. 2014, 2021), finding excellent agreement.
ALPRO was used for the ALP survival probability curves used
by Sisk-Reynés et al. (2022), and the code includes the
adaptive treatment of resonances described therein (see their
Appendix B). ALPRO also contains an implementation of the
Fourier formalism described by Marsh et al. (2022) and briefly
outlined in Section 2.1. This functionality allows the user to
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take advantage of fast Fourier transform (FFT) techniques to
solve the ALP propagation problem in the massive and
massless regime, and is accurate for relatively small conversion
probabilities with amplitudes of a few percent (see Marsh et al.
2022 and Section 6.1 for more details on the valid regime for
this formalism).

3. The Magnetic Field in Perseus and Other Clusters

For a given ma and gaγ, the quantities that determine the true
Pγγ(E) are the perpendicular magnetic field along the line of
sight to the X-ray point source, B⊥(z), and the plasma
frequency and therefore electron density along the line of sight,
ne(z). Thus, in addition to ne, both the strength and structure of
the field matter. We now review what is known about magnetic
fields in clusters, focusing particularly on the well-studied
Perseus cluster, and discuss the models for the magnetic field
used in X-ray ALP searches to date. Throughout this section,
we will use z as the radial coordinate for any spherically
symmetric density or magnetic field profile, for consistency
with the previous section.

3.1. Observational Constraints on Magnetic Field Strength and
Structure in the ICM

Estimating the strength and structure of magnetic fields in
the ICM is challenging. Constraints come from Faraday
rotation measures (RMs), synchrotron-emitting radio haloes
and relics, and the thermal pressure profile of the clusters (see
reviews by Carilli & Taylor 2002; Govoni & Feretti 2004). We
briefly review what is known about ICM magnetic fields from
some of these approaches, with a particular focus on cool-core
clusters such as Perseus.

Arguably the most direct probes of ICM magnetic fields are
Faraday RMs, which provide a measure of the parallel
component of the magnetic field, B∥, as defined by


⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )ò m
= -

-

B n dz
RM 812 rad m

G cm kpc
, 12e2

3

where the integral is evaluated along the line of sight. An
advantage of an RM measurement is that it probes the same
sightline that is traversed by the hypothetical photon–ALP
beam; however, it gives no direct measure of B⊥ and one also
needs to know the electron density, ne. Nonetheless, we still
expect this method to give a reasonable handle on the
integrated magnetic field along the line of sight, and at the
very least it can be used as a check—any field and density
model adopted should not produce RMs that are, on average,
dramatically in excess of that observed. Faraday RM maps
against extended polarized sources can also be produced, which
allow the coherence length and power spectrum of the magnetic
field to be inferred (e.g., Ensslin & Vogt 2003; Murgia et al.
2004). In general, Faraday RM observations of clusters are
consistent with Kolmogorov turbulence, with magnetic field
coherence lengths on the order of a few to tens of kpc (Feretti
et al. 1995, 1999; Allen et al. 2001; Clarke et al. 2001; Vogt &
Enßlin 2005; Enßlin & Vogt 2006; Guidetti et al. 2008;
Bonafede et al. 2010; Govoni et al. 2010; Kuchar &
Enßlin 2011). The magnetic field strengths inferred are
typically B∼ 1μG, rising to tens of μG in the inner regions
of cool-core clusters such as Hydra and Perseus. In the core of

the Perseus cluster specifically, Taylor et al. (2006) find
substantial RMs in the range 6500–7500 rad m−2. The
magnitude of these RMs are consistent with being produced
by the ICM, but the pc-scale gradient in RMs reported by
Taylor et al. (2006) is harder to reconcile with the kpc-scale
fields expected in the ICM, and a contribution from compact,
dense filaments may be needed.
Energetic constraints on ICM magnetic field strengths can be

derived in synchrotron radio haloes and mini-haloes as well as
from gamma-ray observations. Synchrotron radio haloes
typically provide field estimates of a few μG under the
assumption of minimum energy (e.g., Giovannini et al. 1993;
Feretti et al. 1999; Govoni & Feretti 2004; Bonafede et al.
2014; Kale & Parekh 2016), and these field strengths can easily
be higher depending on the fractional pressure of nonradiating
particles and the filling factor and geometry of the emitting
material. Application of the hadronic minimum energy
described by Pfrommer & Enßlin (2004) to Perseus gives a
(model-dependent) lower limit on the magnetic field of 4–9 μG
in Perseus (Aleksić et al. 2012).
The radial profile of the magnetic field strength can also be

estimated by considering the pressure profile of the cluster. In
this case, the thermal pressure as a function of radius can be
estimated from deprojected X-ray observations under the
assumption of spherical symmetry (e.g., Russell et al. 2008),
or from the thermal Sunyaev–Zel‘dovich effect (e.g., Planck
Collaboration et al. 2013). A magnetic field strength can then
be calculated by assuming a plasma β, which we denote βpl,
defined (in Gaussian units) as

( )
( )b

p
=

P

B 4
, 13pl

th
2

where Pth is the thermal pressure. Although the value of βpl is
uncertain, the canonical value is βpl∼ 100 (e.g., Böhringer
et al. 2016; Donnert et al. 2018), which can be estimated from
comparison of the inferred magnetic pressures from RM studies
with the observed thermal pressures. βpl∼ 100 is also expected
if the magnetic energy density is in rough equipartition with the
kinetic energy, since the velocity fluctuations in clusters and
Perseus specifically are observed to be around 10%–20% of the
sound speed (e.g., Zhuravleva et al. 2014; Hitomi Collabora-
tion et al. 2018). Further discussion of the value of βpl in
clusters in the context of ALP studies is given by Marsh et al.
(2022) and Sisk-Reynés et al. (2022). For a constant βpl, the
sensitivity of the inferred limits on gaγ to the value of βpl is
straightforward. The transformation B⊥→ fB⊥ and gaγ→gaγ/f,
where f is a constant, leaves the conversion probability
unchanged. Thus, as long as βpl is uniform in z, increasing
βpl by a factor f 2 translates into a weaker limit on gaγ by a
factor f. For a βpl that varies with z, the effect is more nuanced
and depends on the relative importance of different regions of
the cluster in determining the ALP signal. An example of how
a variable βpl with radius—scaling as ( )b µz zpl —would
affect the magnetic field profile in Perseus is shown in Figure 1;
we examine the impact on the limits obtained in Section 5.3.
Finally, it is important to consider the physics of turbulence

in clusters from both an observational and theoretical
perspective. The Perseus cluster is clearly a dynamic, disturbed
environment, with X-ray images showing bubbles, ripples, and
variations in surface brightness, particularly in the cluster core
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(e.g Fabian et al. 2000; Sanders et al. 2005; Fabian et al. 2006;
Sanders & Fabian 2007; Zhuravleva et al. 2014; Walker et al.
2018). The amplitude and power spectrum of velocity
fluctuations can be estimated from density fluctuations inferred
from observed surface brightness fluctuations (Zhuravleva et al.
2014), giving results that are consistent with Kolmogorov-like
turbulence and supporting the emerging picture from ICM
Faraday RMs described above. A turbulent ICM is not
surprising—while the physics depends on the details of the
viscosity, the ICM is thought to have a moderately high
effective Reynolds number (Schekochihin et al. 2005; Donnert
et al. 2018), meaning that “stirring” of the cluster on large
scales will transfer energy to small-scale turbulence via a
Kolmogorov-like cascade. The driving scale of the turbulence
can be crudely estimated from the Ozmidov scale, the scale on
which the turbulent eddy turnover timescale becomes shorter
than the buoyancy timescale. Zhuravleva et al. (2014) estimate
the Ozmidov scale at ∼10 s of kpc in the Perseus cluster. Work
to understand how the turbulent kinetic energy of the ICM is
transferred to magnetic fields is ongoing, but important
processes include the small-scale fluctuation dynamos (Sche-
kochihin et al. 2004, 2005), as well as buoyancy and
magnetothermal instabilities (Balbus 2000, 2001; Balbus &
Reynolds 2010; Perrone & Latter 2021).

Overall, observations imply the presence of ∼10 μG strength
ICM magnetic fields in cool-core clusters and Perseus
specifically. There are also good theoretical and observational
reasons to expect the ICM magnetic field to be turbulent on
∼kpc scales. We will proceed by using these constraints to
design appropriate magnetic field models assuming that a
turbulent magnetic field is well-motivated; however, we will
also investigate large-scale, “regular” magnetic fields by using
a stochastic model that is coherent on 50 kpc scales.

3.2. Models Used in Photon–ALP Searches to Date

A common way of parameterizing the magnetic field
strength as a function of distance from the cluster center, z, is

using a power-law function of density such that

⎡
⎣⎢

⎤
⎦⎥

( ) ( )
( )

( )=
a

B z B
n z

n R
, 14e

0
0

where α is an exponent typically in the range 0–1 and R0 is
some scaling radius, with B0≡ B(R0) providing the normal-
ization of the field. To model B(z) in Perseus, R20 used two
different models for the magnetic field, motivated by previous
studies. For Model A, they adopted R0= 0, B0= 25 μG, and
α= 0.7. Model A is a slightly altered version of the model used
by Berg et al. (2017), and is based on very long baseline array
(VLBA) observations of NGC 1275. For Model B, they used
R0= 25 kpc, B0= 7.5 μG, and α= 0.5. This model is instead
based on the radial pressure profile derived by Fabian et al.
(2006) from deep X-ray observations (with a total exposure
time of 900 ks) of the Perseus cluster, assuming βpl= 100. We
show the magnetic field strength B(z) for Models A and B
of R20 in Figure 1. The thermal pressure profile, Pth, calculated
with βpl= 100, is plotted on a twin y-axis. We also show the
magnetic field strength inferred from the power-law approx-
imation to the thermal pressure between 20 and 70 kpc from
Fabian et al. (2006). Model B is based on this pressure profile,
so it agrees well with the observed data, but Model A
substantially overpredicts the thermal pressure, due to a more
optimistic estimate for the magnetic field strength throughout
the cluster volume; βpl∼ 10 would be needed to bring
agreement with the observed Pth, which is lower than expected.
We therefore adopt the more realistic form of B(z) from R20
model B for our work (but we also consider a model with
variable βpl(z) in subsequent sections).
It is the perpendicular component of B(z) that appears in the

ALP mixing matrix (Equations (4)–(6)), so the direction of the
field matters, as does its coherence and isotropy. One possible
way to model turbulent magnetic fields is using a Gaussian
random field (GRF), in which a random, isotropic field is
generated according to some power spectrum and then
“shaped” so that the field strength decays with radius. GRF
models have been used in ALP cluster studies in a number of
cases (Wouters & Brun 2012; Angus et al. 2014; Meyer et al.
2014; Schallmoser et al. 2021). Alternatively, a “cell-based”
model can be used, in which the magnetic field along the line of
sight is modeled as a series of cells of extent Δz (e.g., Wouters
& Brun 2012). Each cell is an approximation to a given patch
of turbulent field and therefore has a size comparable to the
coherence length of the field, Λc, a random and isotropic field
direction in each cell. The value of Δz is chosen according to a
probability distribution function p(Δz), typically a power law.
For example, R20 use p(Δz)∝Δz−1.2 spanning 3.5–10 kpc. In
their model B, R20 scale these minimum and maximum cell
sizes linearly with radius as z/50kpc, because coherence
lengths are expected to grow with distance from the cluster
center.
The cell-based method has been used in X-ray studies of

M87 (Marsh et al. 2017), NGC 1275 (Reynolds et al. 2020),
and H1821+643 (Sisk-Reynés et al. 2022), and is also
discussed from a theoretical and modeling perspective by
Wouters & Brun (2012), Galanti & Roncadelli (2018), and
Marsh et al. (2022). Indeed, Galanti & Roncadelli (2018)
suggest that the discontinuities inherent to the cell-based
method can introduce unphysical results in the conversion

Figure 1. Magnetic field strength as a function of radius for Models A and B
from R20, compared to the magnetic field inferred from the power-law pressure
profile between 20 and 70 kpc from Fabian et al. (2006), assuming βpl = 100.
The dotted line shows the magnetic field strength adjusted from Model B using
a variable βpl(z) = 100(z/25 kpc)1/2. The right-hand y-axis shows the
corresponding thermal pressure for βpl = 100 for Models A and B. By design,
Model B matches the thermal pressure at ≈25 kpc for βpl = 100, but Model A
necessitates a significantly lower value of βpl in order to avoid overpredicting
the thermal pressure at this radius. The variable βpl model, which only uses the
left-hand y-axis, has a slightly stronger field compared to Model B in the inner
10 kpc, but a significantly weaker field on large scales.

5

The Astrophysical Journal, 930:90 (17pp), 2022 May 1 Matthews et al.



probability. Cell-based models have continuous magnetic
autocorrelation functions consisting of piecewise linear seg-
ments, joined at kinks. In the perturbative regime, structure in
this autocorrelation function maps directly to structure in the
conversion probability that can be interpreted using Fourier
analysis (Marsh et al. 2022). Specifically, in this regime, the
conversion probability from a cell-based model (and in fact,
any discretized model) can be understood as a combination of
two effects: (i) an incoherent sum of the oscillatory pattern
introduced by each cell and (ii) interference terms whose
frequency of oscillation in 1/E is set by the cell boundaries.
The jaggedness of the autocorrelation functions of cell-based
models leads to enhanced support at high conjugate frequen-
cies, and in the perturbative formalism, this can be understood
as excess conversion probability at low energies (Marsh et al.
2022). In many cases of interest, this artificial feature of the cell
models only affects the conversion probability below the
energy range where it is maximized, and is hence of limited
observational importance. For cell models with a constant cell
size Δz, unphysical features can be produced with a reciprocal
energy spacing that depends on Δz; in the massive ALP
regime, this spacing is ( ) ( )pD = DE m z1 2 a

2 , where Δz is in
natural (eV) units. However, in practice, a distribution forΔz is
often used and Δz is usually fairly small compared to the total
path length; both these factors act to wash out and decrease the
power in this class of artificial features. Nevertheless, cell-
based models are still clearly an approximation to a complex,
continuous magnetic field structure.

In addition to B(z), the other important cluster quantity for
photon–ALP mixing is the electron density ne, which
determines the ICM plasma frequency through w =pl

pn e m4 e e . The density in clusters decreases with radius
and is often modeled using a so-called β–law, given by
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where rc is a core radius and β an exponent of order unity. R20
instead set the density using a double β law, proposed by
Churazov et al. (2003) as an analytic approximation to the
electron density in the Perseus cluster
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We do expect the electron density to have an impact on the
inferred limits on ALP parameters, especially in setting the
constraints on gaγ at the high-mass end. However, given that
the density is usually well-determined from X-ray observations,
we have chosen to focus on the impact of the magnetic field,
rather than the density profile, in our work, so we proceed in
using Equation (16) for all our photon–ALP conversion
calculations hereafter.

4. ALP–Photon Conversion in Turbulent Fields: Model
Sensitivity

As discussed above, there are a number of different ways of
modeling a turbulent cluster magnetic field, with the cell-based
and GRF methods being the most common. We will first

examine the influence of small-scale field structure using a
divergence-free GRF, before discussing the ALP survival
probability from a mixture of cell-based and GRF models with
varying approximations. A turbulent magnetic field can be
characterized by its power spectrum, which generally takes a
power-law form such that Ekdk∝ k− ndk, where n is a power-
law index, k= 2π/Λ is the wavenumber for a given wavelength
Λ, and Ekdk is the energy contained in the interval (k, k+ dk).
For Kolmogorov turbulence, n= 5/3. The steeper the index,
the more energy is contained (in relative terms) on large scales.
It is useful to define the coherence or correlation length of the
field, which is the approximate scale upon which the field
becomes decorrelated from a neighboring “patch”. For power-
law, isotropic turbulence, the coherence length is given by
(e.g., Harari et al. 2002)

( )
( )
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L - - L L

- L L -
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1 1

1
, 17c
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n
max max min
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1

where Lmin and Lmax are the minimum and maximum scale
lengths of the turbulence (over which the power spectrum is
defined). By considering a few instructive limits, we can see
how Λc changes for different dynamic ranges and power
spectrum indices. In the case of turbulence with a large
dynamic range and Kolmogorov index n= 5/3, L  L0.2c max

as L L  ¥max min . For very sharply peaked turbulence
(n? 1 or L  Lmin max), L  L0.5c max. Thus, in general,
the coherence length can be significantly larger than the
smallest scale length. As a result, there can be significant
structure and energy contained in modes with Λ<Λc.

4.1. Generating Random Gaussian Fields

To generate random Gaussian magnetic fields, we follow the
approach described by Tribble (1991) and discussed further by
various authors (Murgia et al. 2004; Hardcastle 2013; Angus
et al. 2014). We first generate random Fourier amplitudes
drawn from a Rayleigh distribution, such that the probability
density of amplitude  is

⎜ ⎟
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⎝

⎞
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( ) ( )j j
p

j= -P d d d d,
2

exp . 18
k k
2

2

2
 









where the amplitude is a power law of the form µ z-kk
defined between minimum and maximum wavenumbers

p= Lk 2min max and p= Lk 2max min. The index ζ is related
to n by ζ= n+ 2. We draw phases j uniformly between 0 and
2π. We then take the inverse Fourier transform of the Fourier
amplitudes and phases to obtain A, the vector potential in real
space. We apply the magnetic field radial profile (e.g., from
Equation (14)) before calculating the magnetic field as
B=∇× A, resulting in a (numerically) divergence-free
magnetic field (∇ ·B= 0). We generate a 3D GRF model
and then take a single 1D sightline to the center as the input to
our photon–ALP conversion calculation. The parameters
describing a GRF model are ζ, the minimum and maximum
scales Lmin and Lmax, and the domain size zmax. For a given
field model, the calculation of the ALP survival probability
then uses Nz cells or Fourier samples, which determines the
spatial resolution of the model, δz.

6

The Astrophysical Journal, 930:90 (17pp), 2022 May 1 Matthews et al.



4.2. Sensitivity to Small-scale Field Structure

To examine the sensitivity to small-scale field structure for
strong ALP signals, we conducted a resolution test. We first
generated 64 different realizations of a GRF model using
the procedure described above, with model parameters
L = 3.5 kpcmin , L = 30 kpcmax , n= 5/3, and =z 1.8max

Mpc. The profile B(z) used to shape the magnetic field is that
of R20ʼs Model B, from Equation (14) with R0= 25 kpc,
α= 0.5, and B0= 7.5 μG. Taken together, this choice of
parameters corresponds to model 4 as described in Section 4.3,
and leads to a coherence length of Λc= 7.67 kpc. We then
calculated survival probability curves in the 1− 10 keV range
at a range of spatial resolutions δz, sampling in the range

dL L z0.25 2.5min min at L0.25 min intervals and the range
dL < L z2.5 20min min at L0.5 min intervals. We focus on the

low-mass ALP case with ma= 10−13 eV, and calculate curves
at different coupling constants. We first consider a single field
realization and plot the survival probability Pγγ as a function of
δz and energy E in Figure 2, for gaγ= 10−12, 10−11 GeV−1. We
do not present results for lower values of gaγ, because they are
almost identical to the gaγ= 10−12 GeV−1 case, but with Pγa

scaled by a factor of gga
2 . The survival probability stops

changing significantly around Lmin, showing that structure
below the coherence length can be important. It is therefore
necessary to resolve the minimum scale length of the magnetic
field in these cases, to get an accurate survival probability.

We have checked that this result holds for different field
realizations, but to show this explicitly, we can consider the

mean survival probability at each energy marginalized over a
random number seed, given by ¯ ( ) [ ( )]= ågg ggP E P E i N,i .
This quantity is plotted in Figure 3 as a function of energy and
color-coded by resolution δz for N= 64, gaγ= 10−12 GeV−1

and ma= 10−13 eV. In the bottom panel, we show the
(percentage) residual compared to the mean survival prob-
ability at the finest resolution (d » Lz 4min ), P̄fine, which is
assumed to correspond to “ground truth” for this type of field
model. Once again, we see that the survival probability
converges around Lmin. Models that are significantly under-
resolved can underpredict the survival probability (and thus
overpredict the impact of ALPs) by a few percent.

4.3. Comparison of ALP Signals from Five Different Magnetic
Field Models

Our aim is to investigate how the photon–ALP survival
probabilities, and resulting limits on photon–ALP coupling,
gaγ, depend on the magnetic field model used. To this end, we
use five different field models:

1. Model 1: A cell-based magnetic field model as Model B
in R20.

2. Model 2: As model 1, but without the linear scaling of
cell size Δz with radius.

3. Model 3: As model 1, but with a variable βpl(z) such that
B(z) is scaled by [ ( )]b z100 pl

1 2. This model is designed
to be consistent with the available magnetic field
constraints and βpl= 100 in the cluster core, but allows
for the βpl(z) to increase with distance from the cluster

Figure 2. The impact of resolution on a single ALP survival curve. The conversion probability is shown as a function of energy E and resolution δz for a single GRF
model realization, for two different values of the coupling constant (gaγ = 10−12 GeV−1, left, and gaγ = 10−11 GeV−1, right), and for ma = 10−13 eV. Vertical red
dashed lines mark the minimum and maximum scale lengths of the power spectrum (Lmin and Lmax) and the orange dotted–dashed line marks the coherence length Λc.
The probability stops changing significantly around Lmin, showing that structure below the coherence length affects the curves and it is important to adequately resolve
the field model.
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center. Such an effect could be produced if, for example,
magnetic field amplification is less effective in the outer
regions of the cluster. This choice of βpl(z) is more
conservative in terms of the value of B⊥ in the cluster
outskirts.

4. Model 4: A Gaussian random field model with Kolmo-
gorov power spectrum and minimum and maximum scale
lengths of 3.5 kpc and 30 kpc, respectively.

5. Model 5: A Gaussian random field model with Kolmo-
gorov power spectrum and minimum and maximum scale
lengths of 25.125 kpc and 225 kpc, respectively. This
model is designed to approximate magnetic fields that are
coherent on fairly large scales in the cluster core, but still
allows us to marginalize over multiple field realizations.

Parameters and more details on the models are given in
Table 1. We adopt a minimum radius of 10 kpc for all our
calculations, which is slightly more conservative than R20, and
a maximum radius of 1.8 Mpc, the virial radius of the Perseus
cluster (see Sisk-Reynés et al. 2022 for a discussion of the

sensitivity to these parameters for the H1821+643 limits). The
GRF models use a resolution of d = Lz min informed by the
sensitivity study in the previous subsection. Although slightly
ad hoc, the choices of scale lengths for models 4 and 5 are
made to mimic ICM magnetic fields with qualitatively different
structures: model 4 as an approximation to the kpc-scale
turbulence typically observed in cool-core clusters, and model
5 to imitate larger-scale coherent modes, which may, for
example, be produced by AGN activity. The limitations of
these models are discussed further in Section 6.2.
To examine the Faraday RMs predicted by this set of

models, we show the cumulative distribution function (CDF) of
the absolute value of the RM in Figure 4, compared to the
range of values from Taylor et al. (2006). Models 1–4 are quite
conservative in their predictions of Faraday RMs, with� 95%
of the realizations producing |RM| below the lower bound of
the Taylor et al. (2006) measurement (6500 rad m−2). The
median values of |RM| for these models lie in the
range≈ 1500–2500 rad m−2 (see Table 1 for the exact values).
Model 5 predicts slightly higher-magnitude RMs, comparable
to model A from R20, which is expected since more coherent
fields with significant radial components produce higher RMs
(Feretti et al. 1995). However, the median |RM| from model 5
is still lower than the observed value, so this field prescription
is still broadly consistent with observations. In fact, the
expected |RM| measurement from models 1 to 5 is below the
range inferred by Taylor et al. (2006), implying that our models
make fairly reasonable and conservative predictions that are

Figure 3. Mean survival probability for ma = 10−13 eV and gaγ = 10−12

GeV−1, color-coded by resolution δz, calculated from N = 64 realizations of
the GRF model described in Section 4.2 (model 4 in latter sections). The
bottom panel shows the percentage residual with respect to P̄fine, defined as the
mean survival probability of the model at the finest resolution (i.e., the closest
to the true survival probability).

Table 1
Magnetic Field Models Used to Calculate Photon–ALP Survival Probabilities (e.g., Figure 5) and to Obtain Limits on ALP Parameters in Figure 8

Model N B-Field Λc Scaling? βpl(z) Range of Scales (kpc) Λc (kpc) Median |RM|(rad m−2) Color

1 200 Cell-based Yes Constant, 100 3.5–10 K 1915

2 200 Cell-based No Constant, 100 3.5–10 K 1603
3 200 Cell-based Yes z100 25 kpc 3.5–10 K 2045

4 200 GRF No Constant, 100 3.5–30 7.67 2480
5 200 GRF No Constant, 100 25.125–225 57.1 5050

Note. The colors shown in the last column match the colors used in the relevant figures. Each model uses the same radial profile for B(z) as model B from R20, except
for model 3, which adjusts this by a factor [ ( )]b z100 pl

1 2.

Figure 4. Cumulative distribution function of the absolute RMs from 200
realizations of the five magnetic field models used in this work, described in
Section 4.3. We also show the RMs from 200 realizations of model A
from R20. The median absolute RM for each model is marked with a vertical
line on the x-axis. The shaded region shows the range of RMs reported by
Taylor et al. (2006) from observations of the Perseus core
(6500–7500 rad m−2).
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generally consistent with observations, albeit somewhat
dependent on the exact nature of the Faraday screen.

The line-of-sight profile of B⊥(z) from a single realization of
each of these models is shown in the left-hand panel of
Figure 5. The shaded region shows the root-mean-square range
of all 200 models. These B⊥(z) profiles are all stochastically
generated using different approaches, so there is no direct
equivalence between the realizations, but their general
characteristics can still be compared. Some of these character-
istics are fairly trivial—for example, we can see that model 3,
with the variable βpl(z), has a decreased field strength at large
radii compared to the fiducial model 1. Similarly, model 2 does
not have the scaling factor applied to Δz, resulting in cell sizes
that are approximately uniform in linear space, rather than
approximately uniform in log-space like models 1 and 3. The
cell-based models are clearly qualitatively different from the
GRF model with small-scale structure (model 4). First, the cell-
based approach does not produce the same small-scale structure

as the GRF model, because it has a minimum cell size of
3.5 kpc and cells are on average significantly larger than this.
Second, the dynamic range is smaller because the field strength
in each domain is set from Equation (14) with R0= 25 kpc,
B0= 7.5 μG, and α= 0.5, and so any variation in B⊥(z)
relative to this results only from the random, isotropic choice of
the direction of the vector. In contrast, although B⊥(z) averages
to similar values in the GRF approach, all Fourier modes are
accounted for, and in some cases the field is significantly lower
or higher than the domains approach, which translates into a
larger range in B⊥(z); this effect is discussed by Schallmoser
et al. (2021).

4.3.1. Survival Probabilities

For each of our magnetic field models, we use ALPRO to
calculate photon survival probabilities Pγγ(E) at an energy
resolution much finer than the data, using 200 field realizations

Figure 5. The magnetic field models used in this work and their associated photon–ALP survival probabilities. The colors corresponding to each model match those in
Table 1 and Figure 8. Left: the profile of the perpendicular magnetic field component, B⊥(z), for a single realization of each field model, with the shaded region
showing the root-mean-square range of all 200 models. Middle: The survival probability Pγγ from the individual field realization as a function of energy in the X-ray
band. Right: The mean survival probability averaged over 200 realizations, ḡgP ,200, with the standard deviation of Pγγ in each energy bin shown as a shaded region.
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(as set by the random number seed) for each of the five
magnetic field models. These ALP survival probability curves
are used for calculating limits on ALP parameters in the next
section, but we can also examine the form of Pγγ(E) in each
case. The middle panel of Figure 5 shows the survival
probability from the same single realization shown in the
left-panel, while the right-hand panel shows the mean survival
probability calculated from 200 realizations, denoted
¯ ( )ggP E,200 , with the standard deviation shown as a shaded
region. There are some notable differences between the
characteristics of the curves and the amplitude of the ALP
signal. Models 2 and 4 both produce notably larger Pγγ and
¯ ( )ggP E,200 (smaller Pγa), particularly at higher E, compared to
the fiducial cell-based model. Model 3, with the variable βpl(z),
also produces weaker ALP signals, notably in this case at both
low and high E, due to its decreased magnetic field strength at
large radii. The larger-scale GRF model produces features that
are quite broad in energy width, as well as an amplitude that is
comparable to that of Model 1 and larger than those of
Models 2–4.

4.4. Summary of this Section and Literature Comparison

A number of authors have either applied GRF models to
ALP cluster studies, considered the drawbacks of cell-based
models, or made explicit comparison between GRF and cell-
based models (Wouters & Brun 2012, 2013; Angus et al. 2014;
Meyer et al. 2014; Galanti & Roncadelli 2018; Schallmoser
et al. 2021; Marsh et al. 2022). Wouters & Brun (2012)
originally used a cell-based model for their investigation, but
they also compared results with those from a Kolmogorov
spectrum GRF, finding a broad agreement in the variance of the
residuals in their synthetic data. Based on arguments given by
Mirizzi et al. (2009); Wouters & Brun (2013) suggest that, in
Kolmogorov turbulence, the root-mean-square intensity of the
magnetic field varies as Λ1/3, leading to an approximate scaling
of the conversion probability as Pγa∼Λ2/3. In this case, we
might expect that the small-scale magnetic field would not have
a significant impact on photon–ALP conversion. However, the
exponent is relatively weak, and will affect small scale lengths
that are orders of magnitude below Λc. Since L ~ L 5c max for
broadband Kolmogorov turbulence, scales below the coherence
length can still have a significant impact, at the ∼5% level.
This approximate scaling is in agreement with our findings and
shows that it is important to conduct ALP calculations with a
reasonable dynamic range of scales and resolution. This is
perhaps an argument against the cell-based models, since these
models have no real structure below∼Λc. Having said this, the
form of the survival probability from cell-based models and
GRF models is actually rather similar, as found in previous
studies (Wouters & Brun 2012; Meyer et al. 2014; Schallmoser
et al. 2021; Marsh et al. 2022), so while small-scale structure
can be important, it is probably a subdominant effect compared
to the systematic uncertainty on the radial profiles of βpl and
Λc.

Overall, our calculations show that the magnetic field model
has an impact on the form of Pγγ(E), which is sensitive to the
radial profile and coherence scale of the field. Naïvely, since

µg gP ga a
2 , we can anticipate that smaller conversion probabil-

ities by a factor of 2 would translate to weaker limits on gaγ by
2 . However, the exact change in the limits is ma-dependent

and partly dictated by the signal-to-noise in each energy bin,
which is a function of the intrinsic source spectrum and the

observatory/instrument configuration. We therefore conduct a
reanalysis of the NGC 1275 Chandra data in the next section
using the models described here (but over a wide range of ma

and gaγ).

5. A Reanalysis of the NGC 1275 X-ray Data

We now turn to observational data, to test the sensitivity of
the limits to the effects discussed, using the same five magnetic
field models we described in the previous section.

5.1. Observational Data and Spectral Modelling

We use the same Chandra High-Energy Transmission
Grating (HETG) data as R20 and Reynolds et al. (2021,
hereafter R21). Data from the HETG are split into two sets,
corresponding to the high-energy grating (HEG) and medium-
energy grating (MEG); the spectra are shown in Figure 6. The
observations form part of a Cycle-19 Large Project and were
taken in 15 separate visits between 2017 October 24 and 2017
December 5, forming a total exposure of 490 ks (see R21 for
further details of exposure times and precise dates). The actual
reduced data used in this work are from R21, who were able to
slightly improve the background subtraction. R21 also describe
an improved astrophysical model; they find that using a
partially covering absorber not only improves the fit to the data,
but also brings the inferred column density closer to the
expected value from ALMA observations of the Perseus core
(Nagai et al. 2019). Nagai et al. (2019) estimate an H2 column
density of » ´ -N 2 10 cmH

22 2
2

from HCN and HCO+
absorption of the emission from the parsec-scale jet; this line-

Figure 6. Top panel: The best-fitting fiducial model of the form
tbabs∗tbpcf(pow+zgauss) to the HEG data (blue) without ALPs,
together with the combined HEG (black) and MEG (orange) data from the
HETG observations of NGC 1275. The data are shown over the considered
HEG energy range (1.5–8.9 keV), although we include MEG data down to
1 keV in our analysis. Bottom: Fit residuals from the best-fit model for each
data set. The data have been rebinned for plotting purposes, but all fits are
performed on the unbinned data. The MEG best-fit model is identical to the
HEG bar minor differences in normalization (see, e.g., Table 2).
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of-sight H2 absorbing column is very difficult to reconcile with
the observed X-ray power-law, which has a formal 90%
confidence limit of NH< 3× 1019 cm−2 when fitted with a fully
covering cold absorption model (R21). One physical interpreta-
tion is that the X-rays come from a composite source: an
unabsorbed, compact corona associated with an accretion disk,
and a heavily absorbed component associated with a parsec-scale
jet, the latter of which contributes≈ 15%–20% of the X-ray
continuum. The clumpy molecular gas in the cluster core is
clumpy on scales similar to that of the jet (Nagai et al. 2019), so
this “partial covering” scenario is reasonable. Following R21, we
fit the XSPEC model tbabs∗tbpcf(pow+zgauss), which
includes partial covering absorption (tbpcf), Galactic absorp-
tion (tbabs), and a narrow Gaussian to model the 6.4 keV Fe
line (zgauss). For the partial covering absorber, we find a best-
fit covering factor of fcov= 9.48(±2.85)× 10−2 and a column
density NH= 7.63(±2.24)× 1022cm−2 when the Galactic col-
umn density in the tbabs model is kept fixed at 1.32× 1021

(Kalberla et al. 2005). If the Galactic column density is allowed
to vary, a slightly higher covering factor for the tbpcfmodel of
fcov= 1.75(±0.49)× 10−1 is favored, with a Galactic column
density of 1.71(±0.22)× 1021. We keep the Galactic density
column fixed in this case, and adopt the best-fit set of parameters
given in Table 2 as our baseline astrophysical model for the
reanalysis. The best-fit model for the HEG data set is shown in
Figure 6, as are the fit residuals (without ALPs) for both the
HEG and MEG data.

5.2. Statistical Procedure

Our fitting procedure and statistical analysis follows the Bayesian
procedure described by (Marsh et al. 2017; see also R20, as well as
Section 4 of Sisk-Reynés et al. 2022). We compute a grid of
survival probability curves in (ma, gaγ) space with a range
of random number seeds i such that each ALP survival
probability curve is defined by three variables (ma, gaγ, i). We
compute curves in the range ( ) [ ]Î - -mlog eV 13.7, 10.5a10
and ( ) [ ]Î - -g

-glog GeV 13.0, 10.2a10
1 at 0.1 dex intervals.

We follow R20 in assuming that, at lower values of gaγ and ma, the
ALP curves are statistically indistinguishable from those at the
lower limits of our adopted calculation range—an assumption we

have checked—so that results from ( ) = -mlog eV 13.7a10 can
be extrapolated down to arbitrarily low ma. We consider N= 200
field realizations in each case, which results in a library of 185, 600
survival curves for each of the five magnetic field models we
consider. This value of N is lower than the 500 used by R20, but is
necessary in order to prevent prohibitive computational cost given
the increased number of field models and the fact that we must
generate GRF realizations and consider smaller δz in some cases.
Our choice of N introduces some noise into the limits, but as we
shall see, similar results are recovered for comparable assumptions
and it is still possible to distinguish systematic differences.
We fit each model to the HEG and MEG spectra by

combining the ALPs model with our baseline astrophysical
model, such that we fit tbabs∗ALPs(tbpcf∗(pow
+zgauss)). For each ALP model, we minimize the Cash
(1979) statistic, or C-statistic, and record the best-fit (lowest)
value. We then have a value of C(ma, gaγ, i) for each model
realization, and can construct posterior probabilities of the form

( ) ( ) ( )µ -gm g i C, , exp 2 , 19a a

where we assume flat priors in mln a and ggln a over the

range ( ) [ ]Î - -mlog eV 30.0, 11.1a10 and ( ) Îg
-glog GeVa10

1

[ ]- -19.0, 10.7 . The posterior probabilities are normalized so
that

( ) ( )å =g
g

m g i, , 1. 20
m g i

a a
, ,a a



We then marginalize over the magnetic field realizations i,

( ) ( ) ( )å=g gm g m g i, , , , 21a a
i

N

a a 

to obtain a posterior probability at every point in (ma, gaγ)
space, again assuming a flat prior on the field realizations. This
marginalization step accounts for the “look-elsewhere effect”
due to the unknown magnetic field structure along the line of
sight. Limits at a given confidence level can then be calculated
by sorting the points in ( )gm g,a a and finding the pairs of (ma,
gaγ) with the highest ( )gm g,a a that cumulatively account for

Table 2
Parameters Used in the X-ray Spectral Modeling, Given With the Best-fit Values and Error Estimates Obtained from a Spectral Fit without ALPs Present

Free Parameters

Component Parameter Description HEG MEG

pow AX Power-law Normalization ´-
+ -8.92 100.63

0.67 3 ´-
+ -9.45 100.58

0.62 3

pow ΓX Photon index -
+1.92 0.04

0.04
-
+1.94 0.03

0.03

tbpcf NH (cm−2) Column density ´-
+7.54 102.38

4.24 22

tbpcf fcov Covering factor ´-
+ -9.50 104.70

4.53 2

zgauss Aline (phot cm
−2 s−1) Line normalization ´-

+ -4.06 102.29
2.46 6

Frozen Parameters

Component Parameter Description HEG MEG

tbabs NH (cm−2) Column Density (Galactic) 1.32 × 1021

Fit statistic (without ALPs)

C/dof 4857/4863

Note. Uncertainties quoted are 90% confidence intervals as calculated using the error command in XSPEC. All parameter values are quoted at three significant
figures with uncertainties given to the same absolute precision. Free parameters spanning both HEG and MEG columns have their values tied.
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the required percentage of the total posterior probability (e.g.,
≈99.7% for a 3σ limit). We follow Sisk-Reynés et al. (2022) in
grouping pairs with identical  and assigning each pair the
mean cumulative  of the group. This choice has only a very
small cosmetic effect on the shape of the inferred limits.

5.3. Limits on ALP Parameters

We calculate 99.7% limits on ALP parameters using the
above procedure and baseline spectral model, but now
including ALPs. We calculated limits with two different
spectral models: the partially covering absorber models use
models of the XSPEC form tbabs(ALPs∗tbpcf(pow
+zgauss)), whereas the absorbed power-law models use
phabs∗(ALPS∗zphabs(pow)). We also model the magn-
etic field in five different ways, as described in Section 4.3 and
summarized in Table 1.

We begin by examining the limits obtained with the two
different X-ray spectral models; these limits are shown in
Figure 7, zoomed in to the ma� 10−14 eV region, and are also
compared to the Model B limits from R20. The first result
apparent from Figure 7 is that we obtain limits very similar to
those of R20 when using our code ALPRO, acting as an
independent test of the R20 results and showing that our new
code behaves as expected. Without ALPs, the partially
covering absorber plus 6.4 keV emission line model gives
C/dof= 4857/4863, compared to C/dof= 4923/4865 for the
simple absorbed power-law model. This improvement in
goodness of fit might be expected to give slightly tighter
limits on gaγ. However, the limits obtained with the improved
spectral model are extremely similar to those obtained with the
simpler absorbed power-law, with near-identical results at low
mass (ma 10−13 eV) and only small differences for
ma 10−13 eV, where the limits are, in any case, slightly
noisy. We thus conclude that the limits are insensitive to the
details of the approach used to model the X-ray spectrum of

NGC 1275, as long as a physically sensible astrophysical
model is used that adequately reproduces the data.
In Figure 8, we show the 99.7% limits obtained with the five

different models for the magnetic field, now over a wider range
in ma. Here, we do see some diversity in the limits obtained.
Models 2, 4, and 5 produce slightly weaker limits than R20 at
low mass (ma 10−13 eV), by 0.1 dex, ruling out
gaγ> 10−12 GeV−1 at 99.7% confidence. Weaker limits from
model 2, which does not scale the coherence length (or more
accurately, the cell size Δz) with radius, would already be
expected based on the mean survival probability curves shown
in Figure 5. There, the mean survival probability from model 2
is significantly higher than in model 1, due only to the different
scalings of Δz, and this translates directly into slightly weaker
limits on gaγ. Since model 4 uses a GRF without any scaling of
Λc with z, the agreement with the equivalent cell-based model
(model 2) shows that the exact choice of how to model the
spatial structure of the field (cell-based versus GRF) is a sub-
leading effect.
The results from model 5, the “large-scale” GRF model, are

particularly interesting. This model is designed to approximate
larger scale magnetic field structures in the cluster that are
coherent on large scales of50 kpc. Libanov & Troitsky
(2020) have recently suggested that large-scale, coherent, or
“regular” field structures in the ICM might significantly
weaken ALP limits using a similar method to ours, but applied
to gamma-ray observations of NGC 1275. They use a uniform
bubble model originally described by Gourgouliatos et al.
(2010), with a maximum radius of 93 kpc. In our case, the
limits do weaken slightly using the large-scale GRF model, but
the effect is small. Our overall conclusion is that, even if
coherent large-scale (50 kpc) magnetic fields are present in
Perseus, these do not necessarily significantly weaken the limits
on gaγ for low-mass ALPs. Some of these conclusions may be
sensitive to the way we decided to model the magnetic field,
and the result may be different with alternative data sets;
however, we stress that our stochastic model allows us to
calculate the limits while still including the “look-elsewhere”
effect and marginalizing over random number seed, which was
not accounted for in the Libanov & Troitsky (2020) analysis.
Although we use a different data set and wave band, our results
suggest that the significantly weaker limits found by Libanov &
Troitsky (2020) are specific to the field model adopted, rather
than being a general feature of large-scale ICM magnetic fields
that are coherent over 50−200 kpc.
Model 3, with the variable βpl(z), produces the least stringent

limits on gaγ, weaker by 0.3 dex at low mass, and is a clear
outlier. Inspecting the right-hand panel of Figure 5, this might
initially seem surprising, since the conversion probability is
comparable in amplitude to models 2 and 4. However, βpl
increases to≈630 at 1 Mpc, translating to significantly
decreased magnetic fields at large distances and a correspond-
ingly smaller product ( )B̂ L 2. This leads to a small ALP signal
at low E in particular. Since the highest signal-to-noise ratio is
obtained at low energies (closer to 1 keV) in both the HEG and
MEG data, the limits are particularly sensitive to the conversion
probability in this region, explaining the relatively weak limits
for this variable βpl(z) model.
At ma 10−12 eV, the limits on gaγ span a range of≈ 0.5

dex. Models 2 and 4, neither of which scale Λc with radius,
actually produce slightly more stringent limits at ma 10−12 eV
than obtained by R20. Conversely, the large-scale GRF model

Figure 7. The 99.7% limits obtained in this work using two different
approaches for modeling the X-ray spectrum, zoomed in to the 10−14 � ma/
eV < 10−11 region. The partially covering absorber fits use spectral models of
the XSPEC form tbabs∗tbpcf(ALPs∗(pow+zgauss)), whereas the
absorbed power-law models use phabs∗zphabs(ALPs∗pow). For compar-
ison, we also show the limits from R20, who used the absorbed power-law
method. The limits are not very sensitive to the choice of spectral model, and
we reproduce results very similar to those of R20 when using the equivalent
spectral model.
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results in weaker limits in the same mass range. However, this
section of the constraints plots is rather noisy in most models,
perhaps due to us needing to use N= 200 realizations of the
magnetic field (rather than, say, N= 500 as used by R20).
Generally speaking, the shape of the high-ma envelope of the
constraints appears to be quite sensitive to the magnetic field
model used, particularly the scale lengths in the magnetic field
model. Our results suggest that this region of parameter space—
where ma is comparable to the range of ωpl in the cluster—
should be treated with caution when interpreting ALP limits
from cluster-hosted AGN.

6. Discussion and Applications

6.1. Application of the Fourier Formalism

The Fourier formalism developed by Marsh et al. (2022) and
described briefly in Section 2.1 can be applied to the problem
of photon–ALP conversion in the Perseus cluster. Marsh et al.
(2022) already presented results from a model appropriate for
Perseus, using a simple single β–law (Equation (15)) for the
massless ALP case and neglecting ne in the massive ALP case.
Here, we repeat similar calculations using discrete cosine
transforms (DCTs) across a wide range of parameter space and
record the level of agreement with the more general numerical
Schrödinger-like equation (NSLE) solution. We consider both
the massive and massless regimes, which are determined by the
range of ωpl in the Perseus cluster. For the purposes of this
application, we neglect the “general” case described by Marsh
et al. (2022), in which a resonant point (at which ma= ωpl) is
crossed along the path z.

In the massless case, where ma< ωpl, it is necessary to
calculate a phase j, defined as

( ) ( ) ( )òj w= ¢ ¢z z dz
1

2
. 22

z

0
pl

As with a single β-law, j can be calculated analytically for
Equation (16), but we use a numerical Simpson integration for
generality. For a single GRF field realization (i= 0), and for
both x and y polarization, we compute the function

( )j w= gG g Ba x pl
2 and then calculate cG, the autocorrelation

function of G in j-space. We then calculate the conversion
probability g P ax

by taking the DCT of cG with Ndct= 105

Fourier samples and a conjugate variable 1/E. In the massive
case, we essentially repeat the above exercise but without the
calculation of j, instead calculating the autocorrelation
function of the magnetic field in real space, cBx, and taking
the DCT of this to obtain g P ax

, with conjugate variable

( )h = m E2a
2 . Once g P ax

and g P ay
are known, the unpolar-

ized survival probability Pγγ follows from Equation (8). The full
procedure in both cases is described in detail by Marsh et al.
(2022).
We focus on X-ray energies (1− 10 keV) in the massless

ALP case. In the massive ALP regime, the energy range
depends on ma (from the definition of η). We consider an
energy range – ( )-m0.1 100 10 GeVa

9 2 , which is broadly
appropriate for the NGC 1275 Fermi-derived limits from Ajello
et al. (2016). We evaluate the agreement with the NSLE
method by recording the normalized root-mean-square

Figure 8. How does the choice of magnetic field model affect the NGC 1275 X-ray limits on light axion-like particles? A comparison of 99.7% ALP limits obtained
using different approaches for modeling the magnetic field. The models used are given in Table 1, and the colors of the lines match those in the table and in Figure 5.
The limits typically vary by 0.1 dex at ma < 10−14 eV, with the most pessimistic model (model 3) resulting in weaker constraints on gaγ by 0.3 dex. Overall, the limits
obtained are not very sensitive to whether a cell-based or GRF approach is used, and the choices made about the coherence length of the magnetic field only change
the limits by 0.1 dex.
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deviation, defined as

( ) ¯
( )

( )=
å -

gg
gg

gg gg
P

P

P P

N
RMSD

1
, 23

j
N

j j

E
NSLE

,
NSLE

,
DCT 2E

where the j index denotes the energy bin, ḡgP denotes a mean
survival probability averaged over NE energy bins, and the
NSLE and DCT superscripts refer to the method used to
calculate Pγγ.

In the central panel of Figure 9, the logarithm of RMSD(Pγγ)
is plotted as a colormap as a function of ma and gaγ, and the 1%
and 5% (RMSD= 0.01, 0.05) contours are marked. We
compute the survival probability across a wide range of ma and
gaγ, using the massless formalism for < -mlog 11.5a and the
massive formalism for > -mlog 11.5a . We show four
representative examples of survival probability curves in
relevant energy ranges, chosen so that two show good
agreement and two do not. The limits from model 4 in this
work, and the NGC 1275 Fermi limits from Ajello et al. (2016)
are also plotted, and the vertical dotted–dashed lines mark the
range of ωpl (at distances 10–1800 kpc from the cluster center)
in natural (eV) units, as calculated from Equation (16). If we
take the 1% contour of RMSD as constituting reasonable
agreement, then the Fourier formalism can already be applied
to calculations in the regime of gaγ probed by X-ray
observations in the massless ALP regime. In fact, the
formalism is likely to give identical statistical results for higher
RMSD values comparable to the residuals in the data. The
Fermi limits lie at significantly higher gaγ, where the
perturbative calculation breaks down, so the Fourier formalism
cannot yet be applied to gamma-ray ALP searches. However,
the scheme still offers potential for the future if the constraining

power in the GeV regime can be improved by a factor of 10
or so.
By making use of FFT techniques for the DCT, the Fourier

formalism can convey a significant performance advantage, but
as discussed by Marsh et al. (2022), this speed-up in the
calculation depends somewhat on the calculation considered.
Using ALPRO, calculating the Pγγ curve shown in the bottom
right of Figure 9 takes ≈3.9 s with the NLSE approach with
NE= 1000 energy bins, compared to the Fourier/DCT
approach which takes ≈0.7 s for Ndct= 105. As NE dct ,
the speed advantage of the Fourier/DCT approach improves
linearly with NE, and it can be dramatic. The Fourier formalism
is therefore likely to be most useful for high energy resolution
or wide energy bands, but even at more modest energy
resolutions it already can give extremely fast results for
reasonably complex models. The Fourier formalism may also
be used to infer information about ALPs and magnetic field
structure directly from the residuals in X-ray gamma-ray data.
As noted by Marsh et al. (2022), ALP-induced irregularities
encode the autocorrelation function of the line-of-sight
magnetic field, and it may be possible to map directly from
the data residuals to this function (see also Conlon &
Rummel 2019; Kachelriess & Tjemsland 2022). The scheme
thus offers potential for the future, particularly as a tool for
ALP searches with the next-generation Athena X-ray telescope
(Nandra et al. 2013; Conlon et al. 2018).

6.2. Future Work, Limitations, and Implications for Other
Clusters

We have chosen to focus on the Perseus cluster in particular,
but our results clearly have implications for ALP limits derived
from observations of X-ray bright AGN in and behind other

Figure 9. A demonstration of the application of the Fourier formalism to the Perseus cluster across a range of (ma, gaγ) parameter space, described in Section 6.1. The
color map in the central panel shows the level of agreement between the DCT/Fourier and NSLE approaches, as measured by the logarithm of the root-mean-square
deviation (RMSD), from Equation (23). The dashed (dotted) orange line marks the RMSD = 0.01 (RMSD = 0.05) contour, the vertical dotted–dashed lines mark the
range of ωpl in our model for the Perseus cluster, and the vertical red line marks the value of ma below (above) which the massless (massive) formalism is used to
calculate Pγγ. The NGC 1275 ALP limits from Fermi (Ajello et al. 2016) and Chandra (our model 4) are also plotted. We show a comparison of the computed Pγγ for
four different locations in parameter space spanning both the massless and massive ALP regime. Overall, the figure demonstrates the potential of the Fourier
formalism and shows it can already be applied to data with constraining power comparable to those used to obtain X-ray limits from NGC 1275.
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clusters. The limits derived so far in the literature form an
inhomogeneous data set with slightly different assumptions in
each study. In each case, the availability of RM data and
accurate density and pressure profiles varies, while there may
be expected to be some intrinsic intercluster variability in, for
example, the magnitude of βpl, or the coherence of the
magnetic field. Put simply, we have shown that five magnetic
field models that produce similar magnetic pressures in the
inner regions of the cluster and a comparable distributions of
RMs—both of which are broadly consistent with observations
under reasonable assumptions—can produce ALP signals of
different strength. One interpretation is that the scatter in the
limits in Figure 8 act to crudely encode the systematic
uncertainty of the various assumptions in these field models.
Based on this reasoning, we might expect that uncertainty on
the strength and detailed radial profile of ICM magnetic fields
introduces a systematic uncertainty of around 0.3 dex into the
various astrophysical limits on ALPs. Moving forward, it
would be useful to have a more uniform set of observational
constraints on the clusters used for ALP studies to date, through
a targeted combination of high-sensitivity RM studies and
X-ray observations.

A fruitful avenue for future work would be to use
magnetohydrodynamic (MHD) simulations of cluster environ-
ments (e.g., Donnert et al. 2009; Xu et al. 2009; Vazza et al.
2014; Beresnyak & Miniati 2016; Vazza et al. 2018) to inform
studies such as ours. MHD simulations allow one to study the
evolution of magnetic fields in a dynamic environment and the
resulting impact on their coherence, strength and overall
structure. In addition, magnetic fields may be anisotropic,
whereas the GRF model we used assumed isotropy, and ALP
signals could be predicted directly from the simulation outputs.
Including further insights from MHD simulations, and more
generally, gaining a better understanding of the physical
processes that govern the magnetized ICM, will be critical for
the future of cluster-based ALP studies. One important quantity
to constrain—observationally and through MHD modeling—is
the value of βpl in the outer regions of the cluster, since we
have shown that the radial profile of βpl does have an impact on
the photon–ALP conversion and resulting limits obtained.

7. Conclusions

We have revisited the problem of photon–axion conversion
in the Perseus cluster magnetic field with NGC 1275 as a
background source. We have reanalyzed the Chandra X-ray
data, adopting different approaches to modeling the magnetic
field and an improved spectral model. The main result of our
work is that, for well-motivated turbulent field models, the
limits on (ma, gaγ) obtained by Reynolds et al. (2020) are, in
general, quite insensitive to these choices. Overall, the result
that gaγ< 8× 10−13 GeV−1 for ma< 10−12 eV is robust under
the assumption that the ratio of thermal to magnetic pressure in
the Perseus cluster is βpl≈ 100. Our other main conclusions are
given below.

1. We review the evidence for turbulent magnetic fields in
Perseus. We conclude that turbulent fields are likely, and
that Model B of R20 is a reasonable approximation to the
magnetic field in Perseus cluster under the justified
assumption that βpl≈ 100. Model A from R20 predicts a
pressure profile in excess of that observed for βpl= 100

(equivalently, it predicts a βpl that is lower than expected
in Perseus and other cool-core clusters).

2. We conduct a sensitivity study using a Gaussian random
field with the same radial profile as Model B from R20.
We examine the sensitivity of the ALP signature to the
resolution of the photon–ALP simulations, δz, and
discuss this with reference to the scale lengths associated
with the turbulence. For a Kolmogorov field, we find that
convergence is generally reached at scales below the
coherence length, around the minimum scale length of the
turbulence, and that under-resolving the magnetic field
can lead to overestimates of the ALP signal for a given
gaγ and B(z).

3. Informed by the sensitivity study, we reanalyze the NGC
1275 Chandra X-ray data. We use an improved data
reduction and X-ray spectral model that accounts for a
composite X-ray source surrounded by a clumpy,
partially covering absorber. We confirm the basic results
from Reynolds et al. (2020), and we find that the limits
derived are insensitive to the X-ray spectral model, as
long as the spectral models are appropriate and sufficient
to describe the data.

4. We rederive limits using the same X-ray data on NGC
1275 for five different magnetic field models. At low ma

(ma 10−13 eV), marginally weaker limits on gaγ (by
0.1 dex) are obtained with different magnetic field
models, including a Gaussian random field model
designed to approximate kpc-scale turbulence. Our most
pessimistic model, which has a ratio of thermal to
magnetic pressure that increases to βpl≈ 850 by the virial
radius, predicts weaker limits by 0.3 dex at low ma. We
conclude that the limits are largely insensitive to whether
a cell-based or GRF approach is used to model the
magnetic field, or the choices made about the coherence
length, but systematic uncertainties relating to the
magnitude and radial profile of the magnetic field strength
(or, equivalently, βpl) persist.

5. Using a “large-scale” GRF model, with magnetic fields
that are coherent on50 kpc scales, only causes the
limits at low ma to weaken by 0.1 dex. Our work suggests
that the significantly weaker limits found by Libanov &
Troitsky (2020) are not a general feature of large-scale
ICM magnetic fields, and are instead specific to the
particular realization of the magnetic field adopted.

6. We show that the new Fourier formalism described by
Marsh et al. (2022) can be applied to large regions of the
relevant parameter space for a study such as ours, and that
they can result in a significant performance improvement
when computing photon–ALP survival probability
curves.

7. We introduce our new Python package ALPRO for
solving the Schrödinger-like equation for ALP–photon
propagation. ALPRO also includes an implementation of
the Fourier formalism described by Marsh et al. (2022).
The code is publicly available at https://github.com/
jhmatthews/alpro, with accompanying documentation,
and is used for all numerical photon–ALP survival
probability calculations in this work.

Overall, our work suggests systematic uncertainties in the
magnetic field strength and structure along the line of sight
remain important to understand. To make progress, further
high-sensitivity RM observations across larger regions of the
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cluster would be extremely valuable. It is also important to
develop a better theoretical and observational understanding of
the value of the plasma-beta (βpl) in the outer regions of
clusters in general. Despite these uncertainties, X-ray observa-
tions of cluster-hosted AGN remain one of the most promising
and important tools for constraining the properties of very
light ALPs.
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