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As the gold standard for identifying coronavirus disease 
2019 (COVID-19) carriers, polymerase chain reaction with 
reverse transcription (RT–PCR) is the primary diagnostic 

modality to detect viral nucleotide in specimens from cases with 
suspected infection; however, due to the various disease courses in 
different patients, the detection sensitivity hovers at around only 
0.60–0.71 (refs. 1–4), which results in a considerable number of false 

negatives. As such, clinicians and researchers have made tremen-
dous efforts in searching for alternatives5–7 and complementary 
modalities2,8–11 to improve the testing scalability and accuracy for 
COVID-19 and beyond.

It has been reported that coronavirus carriers present certain 
radiological features in chest computed tomography scans (CTs), 
including ground-glass opacity, interlobular septal thickening and 
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Artificial intelligence provides a promising solution for streamlining COVID-19 diagnoses; however, concerns surrounding 
security and trustworthiness impede the collection of large-scale representative medical data, posing a considerable chal-
lenge for training a well-generalized model in clinical practices. To address this, we launch the Unified CT-COVID AI Diagnostic 
Initiative (UCADI), where the artificial intelligence (AI) model can be distributedly trained and independently executed at each 
host institution under a federated learning framework without data sharing. Here we show that our federated learning frame-
work model considerably outperformed all of the local models (with a test sensitivity/specificity of 0.973/0.951 in China and 
0.730/0.942 in the United Kingdom), achieving comparable performance with a panel of professional radiologists. We further 
evaluated the model on the hold-out (collected from another two hospitals without the federated learning framework) and 
heterogeneous (acquired with contrast materials) data, provided visual explanations for decisions made by the model, and 
analysed the trade-offs between the model performance and the communication costs in the federated training process. Our 
study is based on 9,573 chest computed tomography scans from 3,336 patients collected from 23 hospitals located in China 
and the United Kingdom. Collectively, our work advanced the prospects of utilizing federated learning for privacy-preserving 
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consolidation, which can be exploited to identify COVID-19 cases. 
Chest CTs have thus been utilized to diagnose COVID-19 in some 
countries and regions with reported sensitivity ranging from 0.56 to 
0.98 (refs. 12–15); however, these radiological features are not explic-
itly tied to COVID-19, and the accuracy of CT-based diagnostic 
tools heavily depends on the radiologists’s own knowledge and 
experience. A recent study16 has further investigated the substantial 
discrepancies in differentiating COVID-19 from other viral pneu-
monia by different radiologists. Such inconsistency is undesirable 
for any clinical decision system; there is thus an urgent demand to 
develop an accurate and automatic method to help address the clini-
cal deficiency in current CT-based approaches.

Successful development of an automated method relies on a suf-
ficient amount of data accompanied by precise annotations. We 
identified three challenges—specifically data-related—for develop-
ing a robust and generalized AI model for CT-based COVID-19 
identifications. (1) Incompleteness. The high-quality CTs that were 
used for training were only a small subset of the entire cohort and 
therefore unlikely to cover the complete set of useful radiological 
features for identification. (2) Isolation. The CTs acquired across 
multiple centres were difficult to transfer for training due to security 
and privacy concerns, whereas a locally trained model may not be 
generalized to, or improved by, the data collected from other sites. 
(3) Heterogeneity. Due to the different acquisition protocols (for 
example, contrast agents and reconstruction kernels), CTs collected 
from a single hospital are still not yet well standardized; it is there-
fore challenging to train a precise model on the basis of a simple 
combination of data17.

Furthermore, it remains an open question whether the patients 
with COVID-19 from diverse geographies and varying demographics  

show similar or distinct patterns. All of these challenges will impede 
the development of a well-generalized AI model, and thus, of 
a global intelligent clinical solution. It is worth noting that these 
challenges are generally encountered by all of the possible trails in 
applying AI models in clinical practices, not necessarily COVID-19 
related.

We launched the Unified CT-COVID AI Diagnostic Initiative 
(UCADI; Figs. 1 and 2) to tackle these problems. It was developed 
on the basis of the concept of federated learning18,19, which enables 
machine learning engineers and clinical data scientists to collabo-
rate seamlessly without sharing the patient data; thus, in UCADI, 
every participating institution can benefit from and contribute to 
the continuously evolving AI model, helping deliver even more pre-
cise diagnoses for COVID-19 and beyond.

Results
Developing a local accurate AI diagnostic model. Training an 
accurate AI model requires comprehensive data collection. We 
therefore first gathered, screened and anonymized the chest CTs at 
each institute participating in UCADI (five hospitals in China and 
18 hospitals in the United Kingdom), comprising a total of 9,573 
CTs from 3,336 patients. We summarized the demographics and 
diagnoses of the cohort in Supplementary Tables 1 and 2.

Developing an accurate diagnostic model requires a sufficient 
amount of high-quality data. Consequently, we identified the 
three branches of Wuhan Tongji Hospital Group (Main Campus, 
Optical Valley and Sino-French) and the National COVID-19 Chest 
Imaging Database (NCCID)20 as individual UCADI participants. 
Each site contains adequate high-quality CTs for the development of 
the three-dimensional convolutional neural network (CNN) model.  
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Fig. 1 | Conceptual architecture of uCADI. The participants first download and train the three-dimensional CNN models on the basis of the data of 
local cohorts. The trained model parameters are then encrypted and transmitted back to the server. Finally, the server produces the federated model via 
aggregating the contributions from each participant without explicit access to the parameters.
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We used 80% of the data for training and validation (hereafter referred 
to as trainval) and the remaining 20% for testing. We also utilize the 
CTs collected from Tianyou hospital and Wuhan Union hospital as 
hold-out test sets. We consistently use the same partition in both the 
local and federated training processes for a fair comparison.

The NCCID is an initiative established by NHSX (a joint unit of 
the National Health Service (NHS) England and the Department of 
Health and Social Care (DHSC)), providing massive CT and chest 
X-ray modalities of COVID-19 and non-COVID-19 patients from 
over 18 partnership hospitals in the United Kingdom. As each hos-
pital’s data quantity and categorial distribution are quite uneven, we 
pooled all of the CTs and identified the entire NCCID cohort as 
a single participant. Unlike the CTs procured from China, which 
are all non-contrast, around 80% of CTs from NCCID are acquired 
using contrast materials (for example, iodine). Such materials are 
usually utilized to block X-rays and appeared with higher attenua-
tion on CTs, which could help emphasize tissues such as blood ves-
sels and intestines (in Supplementary Fig. 1 and Table 3); however, 
in practice, we found that a simple combination of the contrast and 
non-contrast CTs did not back the training of a well-generalized 
model as their intrinsic differences induced in the acquisition pro-
cedures21. To overcome the data heterogeneity between the con-
trast and non-contrast CTs in the NCCID, we therefore applied an 
unpaired image-to-image translation method called CycleGAN22 to 
transform the contrast CTs into non-contrast variants as augmenta-
tions during the local model training. In Supplementary Table 4, we 
have compared CycleGAN with two other recent image translation 
methods (CouncilGAN23 and ACL-GAN22). We showed that the 
model trained on CycleGAN transformed contrast CTs has the best 
performance (test on the non-contrast CTs); however, this modality 
transformation is not always helpful, as the performance degener-
ated when training on the raw plus translated contrast CTs.

We developed a densely connected three-dimensional convolu-
tional neural network model—3D-DenseNet—on the basis of the 
massive cohort collection towards delivering precise diagnoses with 
AI approaches; we report its architectural designs and training opti-
mizations in the Methods and Supplementary Fig. 2. We examined 
the predictive power of 3D-DenseNet on a four-class pneumonia 
classification task as well as COVID-19 identification. In the first 
task we aimed to distinguish COVID-19 (Fig. 3a, Supplementary 
Fig. 3 and Table 5) from healthy cases and two other pneumonia  

types, namely non-COVID-19 viral and bacterial pneumonia  
(Fig. 3b). We preferred a four-class taxonomy, as further distinguish-
ing COVID-19 from community-acquired pneumonia24,25 can help 
deliver more commendatory clinical treatments where the bacterial 
and the viral are two primary pathogens of community-acquired 
pneumonia26 (Fig. 2c); however, given that different institutions 
are accompanied by various annotating protocols, it is more fea-
sible for the model to learn to discriminate COVID-19 from all 
non-COVID-19 cases. We therefore base the experimental results 
on this two-category classification in the main text. We report the 
four-class experiments based on the Wuhan Tongji Hospital Group’s 
cohort in Supplementary Fig. 3 and Table 5.

For the three UCADI data centres in China (Main Campus, 
Optical Valley and Sino-French branches of Wuhan Tongji Hospital 
Group), the locally trained 3D-DenseNet achieved an average test 
sensitivity/specificity of 0.804/0.708 for identifying COVID-19. As 
for the collection from Britain (NCCID), the test sensitivity/speci-
ficity (on non-contrast CTs) of the local model can be improved 
from 0.703/0.961 to 0.784/0.961 with the help of CycleGAN to miti-
gate the heterogeneity between contrast and non-contrast CTs. We 
further compared 3D-DenseNet with two other 3D CNN baseline 
models: 3D-ResNet27 and 3D-Xception28 (Supplementary Tables 6 
and 7). As a result, we demonstrated that 3D-DenseNet had better 
performance and smaller size, presenting it as highly suitable for 
federated learning.

To interpret the learned features of the model, we performed 
gradient-weighted class activation mapping (GradCAM)29 analysis 
on the CTs from the test set. We visualized the featured regions that 
lead to identification decisions and found that the generated heat-
maps (Fig. 3c) primarily characterized local lesions that highly over-
lap with the radiologists’s annotations, suggesting that the model is 
capable of learning robust radiologic features rather than simply 
overfitting30. This heatmap can help the radiologists localize the 
lesions quicker for delivering diagnoses in an actual clinical envi-
ronment. Moreover, localizing the lesions will also provide a guide 
for further CT acquisition and clinical testing. A similar idea has 
been described as region-of-interest detection in a similar study31.

To examine the cross-domain generalization ability of the locally 
trained models, we tested China’s locally trained model on Britain’s 
test set and vice versa, reporting the numerical results in Fig. 4; 
however, due to incompleteness, isolation and heterogeneity in the 
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Fig. 2 | Deployment and workflow of uCADI participants. a, Data: construct a local dataset based on the high-quality, well-annotated and anonymized 
CTs. b, Flow: the backbone of the 3D-DenseNet model mainly consists of six three-dimensional dense blocks (in green), two three-dimensional transmit 
blocks (in white) and an output layer (in grey). Computed tomography scans of each case are converted into a (16,128,128) tensor after adaptive sampling, 
decentralization and trilinear interpolation, and then fed into the three-dimensional CNN model for pneumonia classification. c, Process: during training, 
the model outputs are used to calculate the weighted cross-entropy to update the network parameters. While testing, five independent predictions of each 
case are incorporated to report the predictive diagnostic results.
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various data resources, we found that all of the locally trained mod-
els exhibited less-than-ideal test performances on other sources. 
Specifically, the model trained on NCCID non-contrast CTs had 
a sensitivity/specificity/AUC of 0.313/0.907/0.745 in identifying 
COVID-19 on the test set of China, which is lower than locally 
trained ones, and vice versa. We next describe how to incorporate 
federated learning for the cross-continent privacy-preservation col-
laboration on training a generalized AI diagnostic model, mitigat-
ing the domain gaps and data heterogeneity.

Enable multination privacy-preserving collaboration with 
federated learning
We developed a federated learning framework to facilitate the col-
laboration nested under UCADI and NCCID, integrating diverse 
cohorts as part of a global joint effort on developing a precise and 
robust AI diagnostic tool. In traditional data science approaches17,31, 
sensitive and private data from different sources are directly gath-
ered and transported to a central hub where the models are deployed; 

however, such procedures are infeasible in real clinical practices as 
hospitals are usually reluctant (and often not permitted) to disclose 
data due to privacy concerns and legislation32. On the other side, the 
federated learning technique proposed by Google33, by contrast, is 
an architecture in which the AI model is distributed to and executed 
at each host institution without data centralization. Furthermore, 
transmitting the model parameters effectively reduced the latency 
and the cost associated with sending large amounts of data during 
internet connections. More importantly, the strategy to preserve 
privacy by design enables medical centres to collaborate on develop-
ing models without sharing sensitive clinical data with other insti-
tutions. Swarm Learning34 was recently proposed towards model 
decentralization via edge computation; however, we conjecture that 
it is immature for the privacy-preserving machine learning35 appli-
cations based on massive data collection and participants due to the 
exponential increase in computation.

With UCADI, we have provided: (1) an online diagnostic inter-
face allowing people to query the diagnostic results on identifying 

COVID-19 pneumonia

b

c

a

COVID-19 pneumonia COVID-19 pneumonia

Healthy Other viral pneumonia Bacterial pneumonia

Fig. 3 | Overview of CTs. a, Radiological features correlated with COVID-19 pneumonia cases: ground glass opacity, interlobular septal thickening 
and consolidation are shown from left to right. b, Other non-COVID-19 cases, including healthy, other viral and bacterial pneumonia. c, Localized 
class-discriminative regions generated by GradCAM (in the heatmap) and annotated by professional radiologists (circled in red), for COVID-19 cases.
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COVID-19 by uploading their chest CTs; and (2) a federated learn-
ing framework that enables UCADI participants to collaboratively 
contribute to improving the AI model for COVID-19 identification. 
Each UCADI participant will send the model weights back to the 
server via a customized protocol during the collaborative training 
process every few iterations. To further mitigate the potential for 
data leaks during such a transmission process, we applied an addi-
tive homomorphic encryption method called Learning with Errors 
(LWE)36 to encrypt the transmitted model parameters. By doing 
so, participants will keep within their data and infrastructure, with 
the central server having no access whatsoever. After receiving the 
transmitted packages from the UCADI participants, the central 

server then aggregates the global model without comprehend-
ing the model parameters of each participant. The updated global 
model would then be distributed to all participants, again utilizing 
LWE encryption, enabling the continuation of the model optimi-
zation at the local level. Our framework is designed to be highly 
flexible, allowing dynamic participation and breakpoint resumption 
(detailed in the Methods).

With this framework, we deployed the same experimental con-
figurations to validate the federated learning concept for develop-
ing a generalized CT-based COVID-19 diagnostic model (detailed 
in the Methods). We compared the test sensitivity and specificity 
of the federated model to the local variations (Fig. 4). We plotted  
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Fig. 4 | COVID-19 pneumonia identification performance of three-dimensional CNN models trained on four different data resources (Main Campus, 
Optical Valley, Sino-French and NCCID) individually and federatively. a, Receiver operating characteristic curves when the models are tested on the data 
from China, in comparison with six professional radiologists, b, Receiver operating characteristic curves of the CNN models tested on the data from the 
United Kingdom. c, Numeric results of the test sensitivity, specificity and area under the curve (AUC, with 95% confidence intervals and P-values).
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the receiver operating characteristic curves curves and calculated 
the corresponding AUC scores—along with 95% confidence inter-
vals and P-values—to validate the model’s performance (Fig. 4). As 
confirmed by the curves and numbers, the federated model outper-
formed all of the locally trained ones on the same test splits col-
lected from China and the United Kingdom. Specifically, for the 
test performance on the 1,076 CTs of 254 cases in China (all from 
the three branches of Wuhan Tongji Hospital Group), the federated 
model achieved a sensitivity/specificity/AUC of 0.973/0.951/0.980, 
respectively, outperforming the models trained locally at Main 
Campus, Optical Valley, Sino-French and NCCID. Furthermore, 
the federated model achieves a sensitivity/specificity/AUC of 
0.730/0.942/0.894 for COVID-19 classification when applied to the 
test set of the NCCID (from 18 UK hospitals), vastly outperform-
ing all the locally trained models. We based the performance mea-
sure on the CT level instead of the patient level, coherent with the  
prior study31.

We illustrated that the federated framework is an effective solu-
tion to mitigate against the issue that we cannot centralize medical 
data from hospitals worldwide due to privacy and legal legislation. 
We further conducted a comparative study on the same task with a 
panel of expert radiologists. With an average of nine years’s experi-
ence, six qualified radiologists from the Department of Radiology, 
Wuhan Tongji Hospital (Main Campus) were asked to make diag-
noses on each CT from China, as one of the four classes. The six 
experts were first asked to provide diagnoses individually, then to 
address integrated diagnostic opinions via majority votes (consen-
sus) in a plenary meeting. We presented the radiologists and AI 
models with the same data partition for a fair comparison. In differ-
entiating COVID-19 from the non-COVID-19 cases, the six radio-
logical experts obtained an average 0.79 in sensitivity (0.88, 0.90, 
0.55, 0.80, 0.68, 0.93, respectively), and 0.90 in specificity (0.92, 0.97, 
0.89, 0.95, 0.88, 0.79, respectively). In reality, the consideration of a 
clinical decision is usually made by consensus decision among the 
experts. Here we use the majority votes among the six expert radiol-
ogists to represent such a decision-making process. We provide the 

detailed diagnostic decisions of each radiologist in Supplementary 
Table 5. We found that the majority vote helps reduce the poten-
tial bias and risk: the aggregated diagnoses are with the best per-
formance among individual radiologists. In Fig. 4a, we plotted the 
majority votes in blue markers (sensitivity/specificity: 0.900/0.956) 
and remarked that the federatively trained 3D-DenseNet had shown 
comparable performance (sensitivity/specificity: 0.973/0.951) with 
the expert panel. We have further presented and discussed the mod-
els’s performance on the hold-out test sets (645 cases from Wuhan 
Tianyou Hospital and 506 cases from Wuhan Union Hospital) in 
Supplementary Table 8. We proved that the federatively trained 
model also performed better on these two hold-out datasets, yet the 
confidence sometimes is not well calibrated.

During the federated training process, each participant is 
required to synchronize the model weights with the server every 
few training epochs using web sockets. Intuitively, more frequent 
communication should lead to better performance. However, each 
synchronization accumulates extra time. To investigate the trade-off 
between the model performance and the communication cost dur-
ing the federated training, we conduct parallel experiments with 
the same settings but different training epochs between the con-
secutive synchronizations. We report the models’s subsequent test 
performance in Fig. 5a and time usage in Fig. 5b. We observe that, 
as expected, more frequent communication leads to better perfor-
mance. Compared with the least frequently communication sce-
nario, to download the model from the beginning and train locally 
without intermediate communications, synchronizing at every 
epoch will achieve the best test performance with less than 20% 
increment in time usage.

Discussion
COVID-19 is a global pandemic. Over 200 million people have 
been infected worldwide, with hundreds of thousands hospitalized 
and mentally affected37,38, and above four million are reported to 
have died as of October 2021. There are borders between countries, 
yet the only barrier is the boundary between humankind and the 
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virus. We urgently demand a global joint effort to confront this ill-
ness effectively. In this study, we introduced a multination collab-
orative AI framework, UCADI, to assist radiologists in streamlining 
and accelerating CT-based COVID-19 diagnoses. First, we devel-
oped a new CNN model that achieved performance comparable 
with expert radiologists in identifying COVID-19. The predictive 
diagnoses can be utilized as references while the generated heatmap 
helps with faster lesion localization and further CT acquisition. We 
then formed a federated learning framework to enable the global 
training of a CT-based model for precise and robust diagnosis. With 
CT data from 22 hospitals, we have herein confirmed the effective-
ness of the federated learning approach. We have shared the trained 
model and open-sourced the federated learning framework. It is 
worth mentioning that our proposed framework is with continual 
evolution, is not confined to the diagnosis of COVID-19 but also 
provides infrastructures for future use. The uncertainty and hetero-
geneity are the characteristics of clinical work. Due to the limited 
medical understanding of the vast majority of diseases, including 
pathogenesis, pathological process, treatment and so on the medical 
characteristics of diseases can be studied by the means of AI. Along 
with this venue, research can be more instructive and convenient in 
dealing with large (sometimes isolated) samples, especially suitable 
for transferring knowledge in studying emerging diseases.

However, certain limitations are not well addressed in this study. 
First is the potential bias in the comparison between experts and 
models. Due to legal legislation, it is infeasible and impossible to 
disclose the UK medical data with radiologists and researchers in 
China or vice versa. Radiologists are thus from nearby institutions. 
Though their diagnostic decisions are quite different, it is not unre-
alistic to conclude that our setting and evaluation process eliminate 
biases. The second is engineering efforts. Although we have devel-
oped mechanisms such as dynamic participation and breakpoint 
resumption, the participants still happened to drop from the feder-
ated training process for the unstable internet connection. Also, the 
computation efficiency of the three-dimensional CNN model still 
has space for improvements (in Supplementary Table 7). There are 
always engineering advancements that can be incorporated to refine 
the framework.

Methods
We first describe how we constructed the dataset and then discuss the details of our 
implementations for collaboratively training the AI model, we provided further 
analysis of our methods at the end of this section.

CN dataset development (UCADI). A total of 5,740 chest CT images that are 
acquired from the three branches (Main Campus, Optical Valley and Sino-French) 
of Tongji Hospital Group located in Wuhan, China, using similar acquisition 
protocols. Three scanners are used to obtain the CTs: GE Medical System/
LightSpeed16, GE Medical Systems/Discovery 750 HD and Siemens SOMATOM 
Definition AS+. The scanning slice thickness is set as 1.25 mm and 1 mm for the 
GE and the Siemens scanners, respectively. The reconstruction protocols include 
a statistical iteration (60%) and sinogram affirmed iteration for the GE and the 
Siemens devices, respectively. All of the Chinese-derived CTs are taken without 
the intravenous injection of iodine contrast agent (that is, non-contrast CTs). 
Regarding the acquisition date, 2,723 CTs of the 432 patients with COVID-19 were 
enrolled, selected and annotated from 7 January 2020; 3,017 CTs from other three 
categories were then retrieved from the databases of these three hospitals, with an 
event horizon dating back to 2016.

As detailed in the Supplementary Information, the chest CTs were then divided 
into a training/validation (hereafter: trainval) split of 1,095 cases, and a testing 
split of 254 cases. The trainval split consists of 342 cases (1,136 CTs) for healthy 
individuals, 405 cases (2,200 CTs) for those COVID-19 positive, 56 cases (250 CTs) 
for other viral pneumonia and 292 cases (1,078 CTs) for bacterial pneumonia. 
For the test split, we considered a balanced distribution over the four classes, 
consisting of 80 cases (262 CTs) for healthy individuals, 94 cases (523 CTs) for the 
COVID-19-positive instances, 20 cases (84 CTs) for other viral pneumonia and 
60 cases (207 CTs) for bacterial pneumonia. Specifically, the virus types that are 
regarded as other viral pneumonia include respiratory syncytial, Epstein–Barr, 
cytomegalovirus, influenza A and parainfluenza.

We also collected independent cohorts including 507 COVID-19 cases from 
Wuhan Union Hospital and 645 COVID-19 cases from Wuhan Tianyou Hospital. 

These hold-out test sets were used for testing the generalization of the locally 
trained models as well as the federated model. As the data source only contained 
COVID-19 cases, we did not utilize it during the training process. We also 
summarized and reported the demographic information (that is, gender and age) 
of the cohort in Supplementary Table 1.

UK dataset development (NCCID). For the total 2,682 CTs that were acquired 
from the 18 partner hospitals located in the United Kingdom (Supplementary 
Table 3), the acquisition devices and protocols varied from hospital to hospital. 
There are over 14 types of utilized CT scanners: Siemens Sensation 64; Siemens 
SOMATOM Drive; Siemens SOMATOM Definition AS/AS + /Edge/Flash; GE 
Medical Systems Optima CT660; GE Medical Systems Revolution CT/EVO; GE 
Medical Systems LightSpeed VCT; Canon Medical Systems Aquilion ONE; Philips 
Ingenuity Core 128 and Toshiba Aquilion ONE/PRIME. Settings such as filter 
sizes, slice thickness and reconstruction protocols are also quite diverse among 
these CTs. This might explain the reason why the NCCID locally trained model 
failed to perform as well as the Chinese locally trained variant (Fig. 4c). Regarding 
the material differences, 2,145 out of 2,682 CTs were taken after the injection of 
an iodine contrast agent (that is, contrast CTs). As pointed out by previous study21, 
contrast and non-contrast CTs have different feature distributions in terms of 
attenuation and brightness; it is therefore infeasible to simply mix all the CTs 
together for local or federated training. The reported numbers in Fig. 3 are based 
on the non-contrast CTs, while in Supplementary Table 3, we used CycleGAN22 
to incorporate both contrast and non-contrast CTs, and shall elaborate upon such 
settings in the following section.

As detailed in Supplementary Information, CTs from NCCID were first 
partitioned into two types: contrast and non-contrast. Such division is based 
on the metadata provided in the CTs as well as validated from the professional 
radiologists. For the contrast CTs, the trainval produces a split of 421 cases, and 
a testing split of 243 cases. The trainval split consists of 276 cases (1,097 CTs) for 
non-COVID-19 and 145 cases (491 CTs) for the COVID-19 positive cases. The 
test split contains 160 cases (259 CTs) for non-COVID-19 and 83 cases (138 CTs) 
for the COVID-19 positives. The non-contrast CTs is fewer in quantity compared 
with the contrast ones. It has 116 cases (394 CTs) for non-COVID-19 and 54 cases 
(163 CTs) for the COVID-19 positive cases. Moreover, there are 75 cases (103 CTs) 
for non-COVID-19 and 27 cases (37 CTs) for the COVID-19 positive cases for the 
test split.

We also noticed that a small subset of the CTs only contained partial lung 
regions, we removed these insufficient CTs whose number of slices are less than 
40. As for our selection criteria in this regard, although the partial lung scans 
might be infeasible for training segmentation or detection models, we believe that 
a sufficient number of slices is enough to ensure the model effectively captures 
the requisite features and thereby help with the precise classification in medical 
diagnosis.

We reported patient demographical information (that is, gender and age) of 
the cohort in Supplementary Table 2. However, the reported demographics is 
not inclusive since the demographical attributes of non-COVID-19 cases are not 
recorded. In comparison to the demographical information of the COVID-19 cases 
acquired from China, COVID-19 cases in the United Kingdom were with larger 
averaged ages and had more male patients. These demographical differences might 
also explain why the United Kingdom locally trained model failed to perform well 
when applied to the CTs acquired from China.

Data preprocessing, model architecture and training setting. We pre-processed 
the raw acquired CTs for standardization as well as to reduce the burden on 
computing resource. We utilized an adaptive sampling method to select 16 slices 
from all sequential images of a single CT case using random starting positions 
and scalable transversal intervals. During the training and validation process, 
we sampled once for each CT study, while in testing we repeated the sampling 
five independent times to obtain five different subsets. We then standardized the 
sampled slices by removing the channel-wise offsets and rescaling the variation to 
uniform units. During testing, the five independent subsets of each case were fed to 
the trained CNN classifier to obtain the prediction probabilities of the four classes. 
We then averaged the predictive probabilities over these five runs to make the final 
diagnostic prediction for that case. By so doing, we can effectively include impacts 
from different levels of lung regions as well as to retain scalable computations. 
To further improve the computing efficiency, we utilized trilinear interpolation 
to resize each slice from 512 to 128 pixels along each axis and rescaled the lung 
windows to a range between −1,200 and 600 Hounsfield units before feeding into 
the network model.

We named our developed model 3D-DenseNet (Supplementary Fig. 2). It 
was developed based on DenseNet39, a densely connected convolutional network 
model that performed remarkably well in classifying two-dimensional images. 
To incorporate such design with the three-dimensional CT representations, we 
adaptively customized the model architecture into fourteen three-dimensional 
convolution layers distributed in six dense blocks and two transmit blocks (insets 
of Supplementary Fig. 2). Each dense block consists of two three-dimensional 
convolution layers and an inter-residual connection, whereas the transmit blocks 
are composed of a three-dimensional convolution layer and an average pooling 
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layer. We placed a 3D DropBlock40 instead of simple dropout41 before and after the 
six dense blocks, which proved to be more effective in regularizing the training of 
convolution neural networks. We set the momentum of batch normalization42 to be 
0.9, and the negative slope of LeakyReLU activation as 0.2.

During training, the 3D-DenseNet took the pre-processed CT slice sequences 
as the input, then output a prediction score over the four possible outcomes 
(pneumonia types). Due to the data imbalance, we defined the loss function as the 
weighted cross-entropy between predicted probabilities and the true categorical 
labels. The weights were set as 0.2, 0.2, 0.4, 0.2 for healthy, COVID-19, other 
viral pneumonia and bacterial pneumonia cases, respectively. We utilized SGD 
optimizer with a momentum of 0.9 to update parameters of the network via 
backpropagation. We trained the networks using a batch size of 16. At the first five 
training epochs, we linearly increased the learning rate to the initial set value of 
0.01 from zero. This learning rate warm-up heuristic proved to be helpful, as using 
a large learning rate at the very beginning of the training may result in numerical 
instability43. We then used cosine annealing44 to decrease the learning rate to zero 
over the remaining 95 epochs (100 epochs in total).

During both local and federated training processes, we utilized a fivefold 
cross-validation on trainval split, and then selected the best model and reported 
their test performance (in Fig. 4 and Supplementary Fig. 2).

Federated learning and privacy preservation. At the central server, we adapted 
the FedAvg33 algorithm to aggregate the updated model parameters from all clients 
(UCADI participants) to combine the weights with respect to clients’s dataset sizes 
and the number of local training epochs between consecutive communications. 
To ensure secure transmissions between the server and the clients, we used LWE36 
to further protect all the transmitted information (that is, model parameters and 
metadata). The LWE method is an additively homomorphic variant of the public 
key encryption scheme, therefore the participant information cannot even leak to 
the server, which is to say, that the server has no access to the explicit weights of the 
model. Compared with other encryption methods, such as differential privacy45, 
Moving Horizon Estimations46 and Model Predictive Control47, LWE differentiates 
itself by essentially enabling the clients to achieve identical performance with 
the variants trained without decryption; however, the LWE method would add 
further costs to the federated learning framework in terms of the extra encryption/
decryption process and the increased size of the encrypted parameters during 
transmission. The typical time usage of a single encryption-decryption round is 
2.7 s (average over 100 trials under a test environment consisting of a single CPU 
(Intel Xeon E5-2630 v3 @ 2.40 GHz) and the encrypted model size arises from 
2.8 MB to 62 MB, which increases the transmission time from 3.1 s to 68.9 s, in a 
typical international bandwidth environment48 of 900 KB s–1 (Fig. 5).

Comparing with professional radiologists. We further conducted a comparative 
study on this four-type classification between the CNN model and expert 
radiologists. We asked six qualified radiologists (with an average of nine years’s 
clinical experience, ranging from four to eighteen years) from the Tongji Hospital 
Group to make the diagnoses on the basis of the CTs. We provided the radiologists 
with the CTs and their labels from the China-derived trainval split. We then 
asked them to diagnose each CT from the test split into one of the four classes. 
We reported the performance of each single radiologist and the majority votes on 
the COVID-19 versus non-COVID-19 CTs in Fig. 4 (detailed comparisons are 
presented in Supplementary Table 5 and 9). If there are multiple majority votes for 
different classes, the radiologist panel will make further discussions until reaching 
a consensus.

Augmented contrast/non-contrast CTs with CycleGAN. Following similar 
procedures as previous work21, we first extracted and converted the slices from 
contrast and non-contrast CTs of NCCID into JPEG format images with a 
resolution of 512 px × 512 px. The trainval and test splits of the contrast CTs contain 
932 images (23 cases) and 139 images (22 cases), respectively. For the non-contrast 
CTs, there are 1,233 images (26 cases) and 166 images (26 cases) for the trainval 
and test splits, respectively. For the architecture of the CycleGAN, we use ResNet49 
backbone as the feature encoder and set the remaining parts in concordance with 
the original literature21. For the training settings of CycleGAN, we used a batch 
size of 12 for the total number of 200 epochs. We used the same settings on the 
trade-off coefficients in the adversarial loss. We started with a learning rate of 
2 × 10–4, kept it constant for the first 100 epochs, then decayed it to zero linearly 
over the next 100 epochs.

To evaluate the effectiveness of utilizing CycleGAN for augmentation, we first 
trained the 3D-DenseNet on trainval set of: (1) only non-contrast; (2) non-contrast 
and CycleGAN synthesized non-contrast; (3) only contrast; and (4) contrast and 
CycleGAN synthesized contrast CTs. In Supplementary Table 3, we reported the 
test performance of these trained models on the non-contrast and contrast CTs 
respectively. We observed that augmenting the non-contrast CTs with CycleGAN 
would result in a better identification ability of the model while this was not held 
when converting the non-contrast ones into contrast.

Ethics approval. The UK data used in this study is under approval by Control 
of Patient Information (COPI) notice issued by The Secretary of State for Health 

and Social Care. The CN data usage is approved by the Ethics Committee Tongji 
Hospital, Tongji Medical College of Huazhong University of Science and Technology.

Data availability
The clinical data collected from the 23 hospitals that utilized in this study remains 
under their custody. Part of the data are available via applications from qualified 
teams. Please refer to the NCCID website (https://www.nhsx.nhs.uk/covid-
19-response/data-and-covid-19/national-covid-19-chest-imaging-database-nccid/) 
for more details.

Code availability
The online application to join UCADI is provided at http://www.covid-ct-ai.team. 
Codes are publicly available at https://github.com/HUST-EIC-AI-LAB/UCADI 
(ref. 50), which is released under a Creative Commons Attribution-NonCommercial 
3.0 Unported License (CC BY-NC 3.0).
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