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Abstract 
A general theory is developed for the evolution of the cell order (CO) distribution in planar granular systems. Dynamic 
equations are constructed and solved in closed form for several examples: systems under compression; dilation of very dense 
systems; and the general approach to steady state. We find that all the steady states are stable and that they satisfy a detailed 
balance-like condition when the CO≤ 6 . Illustrative numerical solutions of the evolution are shown. Our theoretical results 
are validated against an extensive simulation of a sheared system. The formalism can be readily extended to other structural 
characteristics, paving the way to a general theory of structural organisation of granular systems.

Keywords  Granular dynamics · Structural evolution · Cell order distribution · Non-equilibrium detailed balance

1  Introduction

Modelling self-organisation of dense granular matter (DGM) 
is essential to many natural phenomena and technological 
applications. This is a key problem because both the dense 
flow dynamics and the large-scale properties of consolidated 
DGM, e.g. permeability [1], catalysis, heat exchange, fuel 
cell functionality [2], depend strongly on the particle-scale 
structure [1, 3–7]. Here, we address this issue and develop 
structural evolution equations for quasi-static two-dimen-
sional (2D) particulate systems.

Structural evolution of DGM proceeds via continual mak-
ing and breaking of intergranular contacts, modifying the 
intergranular force transmission, which in turn drives the 

evolution. The contact network is a graph containing cells, 
which are the smallest voids enclosed by grains (aka irre-
ducible loops), and they are characterised by the number of 
grains enclosing it—its order. We develop here a theory for 
the evolution of the cell order distribution (COD), which has 
been argued [8] and shown [9, 10] to converge to a universal 
form. This theory can be extended to model other structural 
descriptors. We construct the evolution equations and solve 
them, under some assumptions, first analytically for both 
very dense closed systems and closed systems approaching 
a steady state, and then numerically for general cases. A 
comparison of our predictions with simulations of sheared 
systems supports the theory.

2 � The evolution equations

In the following, we focus on 2D systems of convex par-
ticles, but the theory can be extended straightforwardly to 
star-like particles. A quasi-statically evolving system of 
such particles has a well-defined contact network at every 
moment. Since the stress relaxes faster than any other pro-
cess, such systems practically transit from one stress state 
to another. Each cell in the network is characterised by its 
‘order’, defined as the number of grains surrounding it.

We consider systems free of gravity and body forces. In the 
concluding discussion, we argue that including these simpli-
fies the following formalism. The structure evolves through 
making and breaking of these contacts, which we call contact 
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events (CEs). The former splits a cell into two smaller ones and 
the latter merges two cells into a larger one. If a CE involves 
two rattler-free neighbour cells of orders i and j, the two pro-
cesses satisfy (i) + (j) ⇌ (i + j − 2) , exemplified in Fig. 1. 
Analogously, if the mother cell, i.e. the cell to be split, contains 
a rattler that participates in the event, the process sum rule is 
(i) + (j) ⇌ (i + j − 4) . To model the dynamics of the COD, we 
define nk as the total number of k-cells in the system and their 
fraction of the total cell population, Nc , as Qk = nk∕Nc . We 
also define the following rates, which we assume are system 
size-independent: pi,j = the merging rate of an i- and a j-cell 
into an i + j − 2-cell; qk,i = the splitting rate of a k = i + j − 2

-cell into an i- and a k − i + 2-cell; ri,j = the merging rate of an 
i- and a j-cell, containing a rattler, into a k = i + j − 4-cell; and 
sk,i = the splitting rate of a k-cell, containing a rattler, into an 
i- and a (k − i + 4)-cell. The COD evolves via four basic CEs. 
Two of creation: a k-cell is either a merger of j and k − j + 2 , or 
an offspring of a split large-order cell, and two of annihilation: 
either by splitting into two offsprings or merging to make a 
larger cell. Each of these processes has an equivalent when the 
combined cell contains a rattler, in which case the rates pj,k−j+2 
and qk,j are replaced, respectively, by the rates rj,k−j+4 and sk,j.

If very large cells are rare then the occurrence of cells con-
taining more than one rattler is very low and we ignore such 
events in the following. Then the evolution equations are:

The 1/2 factor corrects for double counting and the terms 
containing �-functions account for loss (gain) of two same 
order cells upon creation (annihilation) of a larger cell. The 
‘tilded’ parameters in (1) are related directly to the size-
independent rates: p̃i,j ≡ pi,j∕Nc , q̃k,i ≡ qk,i∕Nc , r̃i,j ≡ ri,j∕Nc , 

(1)

ṅk =
1

2

k−1∑

i=3

{[
nink−i+2p̃i,k−i+2 − nkq̃k,i

](
1 + 𝛿i,k−i+2

)

+
[
nink−i+4r̃i,k−i+4 − nks̃k,i

](
1 + 𝛿i,k−i+4

)}

+

∞∑

i=k+1

{[
niq̃i,k − nkni−k+2p̃k,i−k+2

](
1 + 𝛿i,2k−2

)

+
[
nis̃i,k − nkni−k+4r̃k,i−k+4

](
1 + 𝛿i,2k−4

)}
.

s̃k,i ≡ sk,i∕Nc . To simplify the following analysis, we ignore 
rattlers and set ri,j = si,j = 0 . Including the more realistic 
rattler-related terms is straightforward, but it would result in 
cumbersome expressions without adding any more insight. 
This amounts to assuming that the average number of rat-
tlers per cell type is constant and therefore so is the number 
of non-rattlers. This assumption is indeed borne out by our 
numerical simulation results.

From Eq.  (1), we note that 
∑

k(k − 2)nk = E is a con-
served quantity. This quantity has a physical interpretation: ∑

k nk ≡ Nc and 
∑

k knk ≡ Nz is twice the number of contacts, 
with z as the mean coordination number and N as the number 
of grains. We use Euler’s topological expression in the plane 
to relate the numbers of vertices (=N grains), edges (=Nz/2), 
and cells, Nc , N − Nz∕2 + Nc = O(

√
N) , in which O(

√
N) are 

boundary terms. It follows that E = 2N +O(
√
N) . Embedding 

the system on the surface of a sphere, E = 2(N − 1) exactly.
To eliminate size dependence, we convert Eq.  (1) to 

describe the dynamics of cell fractions, Qk ≡ nk∕Nc . We first 
define the deviation of the rattler-free steady state process 
(i) + (j) ⇌ (i + j − 2) from a ‘detailed balance’-like steady 
state,

When �i,j = 0 , the ‘reaction’ (i) + (j) → (i + j − 2) and 
‘back-reaction’ (i + j − 2) → (i) + (j) occur at the same 
rate, satisfying the definitions of Lewis and Ter Haar for 
detailed balance in thermodynamic systems [11, 12]. 
The sign of �i,j determines which direction of the process 
(i) + (j) ⇋ (i + j − 2) is more frequent. Generically, dila-
tion or compression correspond to positive and negative 
�i,j , respectively. Similarly, �i,j ≡ ri,jQiQj − si+j−4,iQi+j−4 is 
the deviation of the rattler-involving steady state process 
(i) + (j) ⇌ (i + j − 4) from a detailed balance-like state.

Noting that Q̇k =
(
ṅk − QkṄc

)
 , the equations for the cell 

fractions become

in which we used

Equation (3) are now conveniently system size-independ-
ent. In practice, cell orders in realistic quasi-static systems 

(2)�i,j ≡ pi,jQiQj − qi+j−2,iQi+j−2.

(3)

Q̇k =
1

2

k−1∑

i=3

𝜂i,k−i+2
(
1 + 𝛿i,k−i+2

)

−

∞∑

i=k+1

𝜂k,i−k+2
(
1 + 𝛿i,2k−2

)
+ Qk

∑

all possible

processes i, j

𝜂i,j,

(4)
Ṅc =

∞∑

k=3

ṅk = −Nc

∑

all possible

processes i, j

𝜂i,j.

Fig. 1   Making a contact, which occurs at rate q
10,6

 , splits a 10-cell 
into two 6-cells and vice versa at rate p

6,6
 . For simplicity, we consider 

convex particles, but the extension to star-like non-convex particles is 
straightforward
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cannot exceed an upper bound C and remain mechanically 
stable.

Focusing on closed systems with constant particle num-
ber N = constant ( ≫ 1 ), we use Euler’s relation again to 
derive a relation between the rates of change of Nc and the 
mean coordination:

3 � The evolution of dense systems

We next solve Eqs. (3) and (4) for very dense systems, com-
prising only cells of orders 3 and 4. In such systems, con-
tact events give rise to two processes only: merging of two 
3-cells into a 4-cell and splitting of a 4-cell into two 3-cells. 
Assuming a uniform spatial distribution of cells, the rate of 
change of 4-cells is

The first term on the r.h.s.—a creation term—is proportional 
to the occurrence rate of contact breaking between 3-cells, 
p3,3 and to the probability of two 3-cells being neighbours, 
Q2

3
 . The second—an annihilation term—is proportional to 

the rate of 4-cells splitting, p4,3 , and the concentration of 
4-cells. The evolution equations are:

with �3,3 ≡ Q2
3
p3,3 − Q4p4,3 and the factor of − 2 between ṅ3 

and ṅ4 indicating that one is the back-process of the other 
and that each process involves one 4-cell and two 3-cells. 
Using Nc = n3 + n4 provides the rate of change of Nc:

and the fraction equations are

Using Eq. (4), we also have

The normalisation, Q3 + Q4 = 1 , makes Eq. (9) dependent, 
reducing the set (9)–(10) into two equations that can be inte-
grated straightforwardly:

(5)
Ṅc

Nc

=
ż

z − 2
.

(6)ṅ4 = Nc

(
Q2

3
p3,3 − Q4p4,3

)
.

(7)
ṅ3 = 2Nc

(
−Q2

3
p3,3 + Q4p4,3

)
= −2Nc𝜂3,3

ṅ4 = Nc

(
Q2

3
p3,3 − Q4p4,3

)
= Nc𝜂3,3,

(8)Ṅc = −Nc(Q
2
3
p3,3 + Q4p4,3) = −Nc𝜂3,3

(9)
Q̇3 = (Q3 − 2)(Q2

3
p3,3 − Q4p4,3) = (Q3 − 2)𝜂3,3

Q̇4 = (Q4 + 1)(Q2
3
p3,3 − Q4p4,3) = (Q4 + 1)𝜂3,3.

(10)ż = −(z − 2)𝜂3,3.

Using the definition of �3,3 , the equations decouple and we 
obtain

which can be solved for t(Q3)

with t0 the initial time, a  and b  the roots of 
p3,3Q

2
3
+ q4,3Q3 − q4,3  ,  a n d  � = [(a − 2)(a − b)]−1  , 

� = [(b − 2)(b − a)]−1 , and γ = [(a − 2)(b − 2)]−1 . From 
(11) and (13) we can obtain Q4 and z. Examples of these 
solutions are shown in Fig. 2. We note that different initial 
states converge to the same steady state for the same rates. 
As we show below, the steady state is unique and is uniquely 
determined by the rates for all systems with C ≤ 6 . We also 
illustrate this feature for several 3–4–5 systems in Fig. 4b 
and discuss it in more detail below.

4 � The steady state

At steady state, all the time derivatives vanish and, to inves-
tigate the characteristics of steady states, we first note that 
the number of relevant �i,j processes in systems of cell orders 
up to C , is (C − 3)(C − 1)∕4 , when C is odd, and (C − 2)2∕4 , 
when C is even. Comparing to the C − 2 equations in (2) 
available to determine the �i,j s, as we do in Table 1, we see 
that these are determined uniquely only for C ≤ 6 and are 
under-determined otherwise. This provides two significant 
results: when C ≤ 6 the steady state is unique and it satis-
fies �i,j = 0 for all i, j. The latter points to a detailed bal-
ance–like state—a very surprising result in systems that are 
manifestly far from conventional equilibrium. For systems 
with C ≥ 7 , there are infinitely many steady state solutions, 
in addition to the detailed balance-like one. For example, for 

(11)2 − Q3(t) = 1 + Q4(t) =
4

z(t) − 2
.

(12)Q̇3 =
(
Q3 − 2

)[
p3,3Q

2
3
+ q4,3Q3 − q4,3

]
,

(13)t − t0 =
1

p3,3
ln
[(
Q3 − a

)�(
Q3 − b

)�(
Q3 − 2

)γ]
,

(a) (b)

Fig. 2   Evolution of the COD of the 3-4 system for rates: p
3,3

= 0.6 
and q

4,3
= 0.4 . a Q

3
 (red) and Q

4
 (blue); b z. Starting from three dif-

ferent initial states, the solutions converge to the same steady state 
(color figure online)
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systems in which C = 7 , the steady states need only satisfy 
�4,5 = �3,6 = 0 and �4,4 = −�3,4 = −�3,5 = �3,3 . While �3,3 = 0 
is a detailed balance-like steady state, the infinitely many 
steady states, for which �3,3 is an arbitrary constant, are not.

5 � The phase diagram

For C ≤ 6 the steady state can be uniquely expressed in terms 
of the ratios pi,j∕qi+j−2,i . Multiplying all the rates by a con-
stant factor does not affect then the steady state and only 
modifies the time it takes to reach the steady state. This 
allows us to scale the rates and represent the steady state 
cell fractions, Qk , and the mean coordination number, z, as 
contours in a phase space spanned by the rate fractions. For 
example, the phase diagram of a system containing only 3-, 
4- and 5-cells can be conveniently represented as in Fig. 3. 
In this phase diagrams we show both the steady state frac-
tion of 3-cells and contours of mean coordination numbers 
z. Such phase diagrams are useful, e.g. to provide guidelines 
for designing specific packing protocols.

6 � The approach to steady state

It is useful to understand the approach to the steady state, 
as well as its stability. Near this state, Qk(t) = Qs

k
+ �Qk(t) 

is only slightly different from its steady state value, 
Qs

k
 , with |𝛿Qk| ≪ Qs

k
 . Defining Q⃗(t) = Q⃗s + 𝛿Q⃗(t) , with 

Q⃗ ≡ (Q3,… ,QC) , and expanding the r.h.s of Eq. (3) to lin-
ear order, we obtain for 𝛿Q⃗(t)

in which the components of the constant matrix A are cum-
bersome combinations of pi,j , qi,j , and the steady state frac-
tions Qs

k
.

Denoting the ith eigenvector and eigenvalue of A, respec-
tively, by v⃗i and �i , we have near the steady state

with some initial time t0.
Before continuing, we show that: (i) all the eigenval-

ues, �i , are real, (ii) there is no positive eigenvalue, and 
there is at least one negative eigenvalue. Firstly, since all 

(14)𝛿
̇⃗
Q(t) = A ⋅ Q⃗(t),

(15)Q⃗(t) = Q⃗s +
∑

i

(v⃗†
i
⋅ 𝛿Q⃗(t0))e

𝜆it
⋅ v⃗i

0 ≤ Qk,Q
s
k
≤ 1 are real for all k, then the eigenvectors, which 

are linear combination of them, are also real. Since all the 
components of the matrix A are also real we get from the 
relation

Table 1   The numbers of equations and possible �i,j processes for different maximal cell orders C : for C ≥ 7 there are more processes than equa-
tions and hence a detailed balance-like state is not the only solution

Maximal cell order C 4 5 6 7 8 9 10 11 12
Number of processes 1 2 4 6 9 12 16 20 25
Number of equations 2 3 4 5 6 7 8 9 10

Fig. 3   Phase diagrams of the steady-state values of 3–4–5 systems in 
the phase space spanned by p

3,3
∕q

4,3
 and p

3,4
∕q

5,3
 . Shown also are 

contours of: a Q
3
 and b z 
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that �i must be real for all i. Further, since the Qk s are nor-
malised, then at least one �i must be non-zero before reach-
ing steady state.

Next, to show that the steady state is not unstable, 
i.e. �i ≤ 0 for all i, it can be shown that 

∑
k �Qk = 0 [13], 

whence it follows that 
∑

k Qk remains normalised to this 
order at all times also to first order. Suppose then that 
a specific eigenvalue, 𝜆k > 0 . Then the kth eigenvector 
would grow until, at some finite time, 𝜏 < ∞ , this growth 
must stop abruptly due to the normalisation condition. In 
that case, at least one Q̇k must diverge at t = � . But this 
cannot happen because the r.h.s. of the master equations 
are finite at all times. It follows that there is no positive 
eigenvalue. Combined with the observation that there must 
be at least one non-zero eigenvalue, we conclude that the 
steady state is stable. This conclusion is supported by all 
the particular examples we studied numerically, all of 
which converged to a stable steady state.

To determine the unique steady state solution of the 3-4 
system, we use the normalisation and detailed balance–like 
condition, �s

3,3
= 0 , to find Qs

3
= [−�3,3 +

√
�2
3,3

+ 4�3,3]∕2 , 
with �i,j ≡ qi+j−2,i∕pi,j . The normalisation condition con-
fines the dynamics to a line in the Q3-Q4 plane, with the 
steady state a unique stable fixed point on it, which is 
independent of the initial state. This was tested numeri-
cally for several systems and is illustrated in Fig. 4a, in 
which the arrow lengths represent the rate of approach to 
the steady state for p3,3 = q4,3 = 1.

The dynamics of 3-4-5 systems can be analysed simi-
larly. Using �s

3,3
= �s

3,4
= 0 and the normalisation condition, 

the steady state solution satisfies

and

Due to the positivity of the Qk , the uniqueness of the steady 
state can be established by studying the position of the 
extrema of (17) [14] and it is determined by the rate frac-
tions, �i,j . The normalisation confines the dynamics to the 
plane Q3 + Q4 + Q5 = 1 and the approach to steady state in 
this plane is illustrated in Fig. 4b for two different sets of 
rates, which give two distinct steady states.

For C ≥ 6 , the dynamics take place on the hypersurface ∑
k Qk = 1 , on which there is at least one detailed balance-

like steady state. As discussed above, for C ≥ 7 , there may 
be additional steady states. Moreover, since all the steady 

(16)Av⃗i = 𝜆iv⃗i = Re{𝜆iv⃗i}

(17)(Qs
3
)3 + �3,4(Q

s
3
)2 + �3,3�3,4Q

s
3
= �3,3�3,4,

(18)Qs
4
=

1

�3,3
Qs

3
; Qs

5
= 1 − Qs

3
− Qs

4
.

states are stable, then, if they exist, they must be distinctly 
separate on the hypersurface.

7 � Simulations

To test the theory, we carried out numerical simulations of 
quasi-static two-dimensional simple shear between paral-
lel plates. We use a dissipative spheres model [15, 16] and 
the implementation of the model was provided by the open 
source project LIGGGHTS [17]. Within this implementa-
tion, we used a Hertz force model for the grain–grain and 
grain–walls interactions, with: Young’s Modulus 5 × 106 Pa, 
restitution coefficient 0.2, Poisson’s ratio 0.5, and friction 
coefficient 0.5. The system consisted of N = 21,690 spheres 
restricted to move in the plane z = 0 of four different diam-
eters, 7 mm (5402 grains), 9 mm (5400), 11 mm (6120) and 
14 mm (4770), respectively.

The system has a length of 1.65 m and periodic bound-
ary conditions in the x-direction. The initial state was gen-
erated by compressing the grains from an initially loose 
random distribution by a flat surface at constant pressure, 
Pinitial = 54.45  kg/m, in the y-direction until their total 
kinetic energy fell below 10−12 J per particle. This state 
was regarded as mechanically stable. Then, maintaining 
the confining pressure, shear started in the x direction, 
with shear velocity vγ = 0.06 m/s. No gravitational field 
was applied.

The time-step was 10−6  s and the grain positions and 
velocities were saved every 200 time-steps for collecting 
detailed data on the contact network evolution.

At each stop, cells and the grains surrounding them were 
identified, from which we tracked the evolution of the COD 

(a) (b)

Fig. 4   The convergence to the unique steady state. a The dynamics 
of 3-4 systems are confined to the line Q

3
+ Q

4
= 1 . We show the 

generic case p
3,3

= q
4,3

= 1 . b The dynamics of 3-4-5 system are con-
fined to the plane Q

3
+ Q

4
+ Q

5
= 1 . Illustrated are two sets of rates: 

p
3,3

= 1 , q
4,3

= 1 , p
3,4

= 1 , q
5,3

= 1 (solid  red  arrows) and p
3,3

= 7 , 
q
4,3

= 1 , p
3,4

= 10 , q
5,3

= 1 (dashed blue arrows) (color figure online)
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and obtained the rates of contact events, pij and qij . Cells of 
orders higher than 13 occurred very rarely and, therefore, 
were excluded from the analysis.

8 � Analysis of the simulation data

The rates were determined from the numbers, 
N

(p)

i,j
≡ pi,j QiQjNcΔt and N(q)

i,j
≡ qi+j−2,i Qi+j−2NcΔt , of the 

events (i) + (j) ⇋ (i + j − 2) during a time interval Δt . In 
general, the rates should depend on the force distribution and 
the shear rate, both of which changed slightly during the 
simulation as the system dilated before reaching a steady 
state. Since the above analysis is for constant rates, this 
could complicate a direct comparison between the analytical 
solutions and the simulation data. Fortunately, the rates 
changed little after the first 0.1s and their time dependence 
could be neglected. Fewer than 15 cells of a specific CO or 
fewer than 40 events per 0.1 s of any specific process �i,j , 
defined in Eq. (2), lead to large statistical errors and were 
ignored. Interestingly, in spite of the long simulation time, 
the rates fluctuated significantly, 30−65% , perhaps because 
of the  sensitivity to small changes in Qk . Smaller fluctua-
tions may be achieved in larger systems with more contact 
events. Figure 5 shows the rate diagram, calculated from 
data collected during intervals of 0.1 s and averaged over the 
entire evolution process. Such rate diagrams characterise 
uniquely a dynamic process.

Using the calculated rates, shown in Fig. 5, we solved the 
evolution equations (3) numerically, with the initial COD 
determined by averaging over the first 0.1s in the simula-
tion. While there was a reasonably good agreement between 
the solution and the simulation data when using the com-
puted mean rates, we found that an even better agreement 
was achieved by correcting only q6,4 by 10% . Note that this 

correction is much smaller than the aforementioned statisti-
cal fluctuations of the rates. The good agreement between 
our solution and the simulation data after this minor correc-
tion is shown in Fig. 6.

9 � Clapping

A particular phenomenon, observed extensively in all the 
simulations we ran, is the occurrence of ‘clapping’, namely, 
events involving pairs of particles repeatedly coming into 
and out of contact. An illustrating example from the simula-
tion described above is shown in this movie clip [18]. For 
simplicity, we defined non-clapping events in our analysis 

Fig. 5   The rates p and q, computed from the simulation, are used to 
solve the equations. Note that pi,j and qi+j−2,i are symmetric under 
exchanging i and j 

(a)

(b)

Fig. 6   The evolution of a the COD for cell orders 3–8 (from top to 
bottom) and b the mean coordination number, z̄ = 2e∕(e − 2) with 
e =

∑
k kQk . The continuous simulation results (light lines) agree 

with the shown averages taken over intervals of 0.1 s. The error bars 
represent the standard deviation during those intervals. The solution 
of Eq. (3) (dashed lines) agrees well with the simulation results
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as events that occur only once during the entire considered 
dynamics. For practical purposes, non-clapping events are 
defined as those occurring only once during the simula-
tion or experiment, which is the definition we used in our 
simualtions.

Occurrence of clapping means that the clappers did not 
move away from one another and, therefore, that the local 
configuration may have not changed much. This suggests 
that clapping events hardly affect the COD and only add 
noise to the event statistics. The probability that a pair of 
grains moves away from one another and comes back at a 
later time is expected to be very low. Indeed, tracking 500 
clapping pairs throughout the entire simulation, we have not 
observed any such event.

A potential problem with the above definition is that 
events occurring close to the end of the simulation could be 
identified wrongly as non-clapping because the grains do 
not have the time to clap. This should not affect the statistics 
much because it means that half a clap has been counted as a 
non-clapping event and we just missed the other half of the 
clap. This would be significant only if the clap affects two 
cell types whose splitting or merging is rare. Nevertheless, 
to avoid this potential error, it would be prudent to disregard 
contact events too near the end of a simulation run.

It is important to note that clapping does not contribute 
to the structural evolution on the coarse-grained time scale, 
which the master equations describe. Clapping obeys 
straightforwardly ‘detailed balance’—the number of contact 
making equals the number of contact breaking and hence 
�
clap

i,j
= 0 . Furthermore, the master equations (3), 

Q̇k = f ({𝜂i,j}) , are linear in the � s , which means that the 
contribution of the clapping events to Q̇ in the master equa-
tions vanishes on a coarse-grained time scale that is suffi-
ciently longer than the time between clapping events. 
Intriguingly, we found both in our shear and bi-axial (see 
below) simulations that most clapping pairs were active for 
some duration, went dormant, and became active again 
sometime later. We illustrate this in Fig. 7 for the bi-axial 
system below.

10 � Bi‑axial compression simulation

To confirm that clapping is a genuine phenomenon and study 
the effect of the driving on it, we analysed a long-time DEM 
simulation of a bi-axial compression. The simulated system 
consisted of 22,381 discs, whose diameters were distributed 
log-normally [9, 10]. The disc interaction was harmonic, 
with tangential and normal spring constants kt and kn , 
respectively, obeying kt∕kn = 1∕4 . The mean overlap at the 
contacts is estimated as d∕D = �c∕kn = 10−5 , where �c is the 
initial confining pressure. This overlap is much smaller than 

the one used for the simple shear simulation. The restitution 
coefficient was set to 0.98—much larger than in the simple 
shear simulations. The initial configuration was prepared 
with a very low inter-particle friction. At the start of the 
simulation, the particles were assigned a friction coefficient 
of � = 0.5 , the same as in the simple shear simulation. The 
system was periodic in both dimensions and was subjected 
to a gradual vertical compression keeping the lateral con-
finement pressure constant. This resulted in a quasi-static 
dilation with diagonal shear.

The particle stiffness and the high restitution coefficient 
enhance clapping, making it a good system to study this 
phenomenon. We chose to trace 448 individual clapping 
pairs throughout the simulation, as tracing all pairs would 
have been too time-consuming. Again, we found that a pair 
can indulge in repeated clapping, disengage for a while, and 
become active again later. To demonstrate this, we traced 10 
arbitrarily picked, clapping pairs throughout the simulation. 
In Fig. 7 we show the inverse time between claps of each 
of these pairs as a function of the simulation. We found that 
clapping dominated overwhelmingly the contact events in 
this simulation—only 0.7% of all events were non-clapping! 
This suggests that the structure hardly changed within large 
regions of the system. In this respect, the dilation process 
in the simple shear simulation differs significantly from the 
shear in the bi-axial compression process, which does not 
mix the system quite as well.

Plotting in Fig. 8 the histogram of the time intervals 
between claps of a specific pair in this simulation, as a func-
tion of log(time), we find it to have a very long tail, demon-
strating that this is not an artefact of the simulation.

Unfortunately, the bi-axial simulation does not reach a 
steady state in which the rates remain constant. The most 
likely reason is that the boundary forces change continually 
with time. This changes the statistics of the intergranular 
contact force distribution, which should affect the rates pi,j , 
qi,j . Indeed, we found that the rates decay with time exponen-
tially, ∼ e−t∕T , with T ranging from 0.2 to 2.2, depending on 

Fig. 7   10 clapping pairs traced throughout the time evolution: each 
colour indicates a specific pair of grains. The y-axis shows the inverse 
time between subsequent claps. It can be observed that some clapping 
pairs, e.g. the blue (filled squares) and orange pairs  (empty circles), 
are active for a while, lay dormant and become active again at a later 
stage (color figure online)
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the specific cell orders involved. Since the theory presented 
is limited to constant rates, we have not pursued a detailed 
modelling of the COD evolution of this simulation. The con-
tinual decay of rates, in spite of the long time simulation, 
further suggests that a steady state may not be reached before 
the dilation disrupts mechanical equilibrium. This highlights 
the fact that not every simulation of granular dynamics is 
bound to reach a steady state.

11 � Conclusion

To conclude, we have constructed master equations to 
describe the evolution of a key structural characteristic of 
granular media—the cell order distribution (COD)—from 
any initial state, given the cell merging and splitting rates. 
The equations yield a surprising result: the steady states of 
the non-equilibrium dynamics of granular systems, with cell 
order no higher than C = 6 satisfy a detailed balance-like 
condition. This detailed balance-like steady state is unique 
and stable. Systems including cell orders of 7 and higher can 
converge to this steady state, as well as to other solutions 
that do not support detailed balance, all of which are stable.

We validated the theory by running a long simulation of 
a sheared system, determining the rates, and using those to 
solve the master equations. Indeed, the calculated solution 
agrees nicely with the simulated COD evolution, in spite 
of large fluctuations in the rates computed from the simu-
lations. These fluctuations may be caused by ‘clappers’: 
Particle pairs that make and break their common contact 
repeatedly. We plan an experiment to study the relative con-
tributions of clappers and non-clappers to the rate statistics.

In our analysis, we assumed constant rates throughout 
the dynamic process. This is unlikely to be the general case 
and extending the theory to time-dependent rates is the next 
step. Such time dependence is expected because the contact 

event rate is likely to be sensitive to the intergranular force 
distribution, which is position- and time-dependent. Indeed, 
it has been argued [10, 19] that the structural evolution of 
a granular system is a self-organisation process coupled to 
the evolution of the intergranular forces. Therefore, these 
equations and their extension form an important step towards 
a complete understanding of the structure-forces co-evolu-
tion. Another extension would be to open systems, when 
the number of particles is not conserved. This extension 
could be related to a grand-canonical statistical mechanical 
description of granular ensembles [20]. While we focussed 
on convex particles, our theory can be extended readily to 
star-like and flat-surface non-convex particles [21, 22] by 
defining inter-particle contact breaking when all the double 
contact disappears for the former, and any contact, point 
or line, disappears for the latter. Although the evolution 
Eqs. (1) include effects of rattlers, we disregarded these in 
the analysis for clarity. Indeed, very dense systems with low 
values of C should be almost entirely rattler-free. It should be 
emphasized that including gravity and body forces obviates 
the rattler terms in Eq. (1) because then all the grains trans-
mit forces and make cells, with the rattlers making mainly 
low orders ones. Finally, the theory can be extended to three-
dimensions, in which case the main hurdle—cell classifica-
tion—can be overcome using existing methods [23, 24].
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