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Quasicentroid Molecular Dynamics
Georgijs Trenins

We develop a theory for approximating quantum time-correlation functions using the classical
dynamics of coordinates subject to thermally averaged Feynman path fluctuations (“the mean
field”). This theory approximates the dynamics of systems at thermal equilibrium that follow
quantum Boltzmann statistics and undergo rapid quantum decoherence. As it relies on purely
classical mechanics, the theory leads to simulation methods that scale favourably with the
number of particles, and can be used for modelling condensed-matter systems.

We begin with the path-integral Liouvillian operator, which gives rise to exact quantum
time-correlation functions but does not generate classical dynamics. By thermally averaging
the fluctuations about smooth Feynman paths, we obtain an approximation in terms of purely
classical trajectories. This presents an alternative derivation of Matsubara dynamics, a theory
for approximating quantum time-correlation functions first developed by Althorpe and co-
workers. As in the original formulation, the Matsubara thermal distribution function includes
a complex phase, which gives rise to a sign problem. Unlike in the original, restricting the
shapes of the smooth paths (limiting the number of Matsubara modes) only changes the
accuracy of the dynamics, while the mean-field thermal distribution remains exact. This
improves convergence with respect to the number of Matsubara modes, enough to achieve
meaningful results for a two-dimensional model potential.

The results prompt us to apply a mean-field approximation to Matsubara dynamics
itself. We show that such approximations can be made phase-free for certain choices of
fluctuation coordinates. Our particular choice is based on average bond-angle coordinates,
called “quasicentroids”, due to their proximity to the true centroids of the Feynman paths.
This “quasicentroid molecular dynamics”, or QCMD, closely approximates the vibrational
spectra of model gaseous and condensed-phase water over a broad range of temperatures,
improving significantly on the established path-integral methods. We anticipate that QCMD
will perform equally well for more sophisticated models and will soon be extended to general
molecular systems.
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Chapter 1

Introduction

The behaviour of atoms in chemical systems is guided by the laws of quantum mechanics and
cannot be accurately described within a purely classical framework. Nevertheless, it appears
that a range of properties can be approximated to a high degree of accuracy by a combination
of quantum Boltzmann statistics with classical Newtonian dynamics [2–21]. In this work we
apply this idea to the simulation of water, developing what we believe is the best quantum–
classical approximation of its vibrational spectrum to date [22]. The new approximation is
the titular Quasicentroid Molecular Dynamics, which produces more accurate results for
simulated vibrational fundamentals of water than any of the established quantum–classical
approximations, and which we believe to be generalisable to near arbitrary molecular systems.

To begin, we review some of the alternative approaches to simulations of quantum systems
and then address why an approximate treatment is necessary for systems such as liquid water.
We note at the outset that all of our calculations are performed in the Born–Oppenheimer
approximation [23], and that the electronic structure part of the problem is assumed to have
been treated elsewhere. The question of simulating a quantum system is therefore reduced
to one of simulating the motion of its nuclei. One way of approaching this is to solve the
time-independent nuclear Schrödinger equation and describe the time-evolution in terms
of the resulting stationary states [1]. This can be done efficiently in the discrete variable
representation (DVR) [24, 25], which transforms the Schrödinger equation into a sparse
matrix eigenvalue problem. Alternatively, one can solve the time-dependent Schrödinger
equation directly, as done in wavepacket propagation methods such as Multi-Configuration
Time-Dependent Hartree (MCTDH) [26–29]. This approach casts the Schrödinger equation as
a set of equations of motion, which can be integrated efficiently provided that the propagation
time is kept relatively short.
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The fundamental difficulty with both these approaches is that they rely on a basis-set
representation of the wavefunction, which grows exponentially with the number of degrees
of freedom. This puts a limit on the number of atoms that can be treated using such direct
approaches, restricting accessible system sizes to six atoms in reactive scattering calculations
[30, 31], and just under twenty atoms in calculations of vibrational spectra [32, 33]. Larger
systems can be accessed if one is only interested in the dynamics of a small subset of all the
degrees of freedom, and is prepared to model the rest as a harmonic bath. The bath can be
treated analytically, and its effect expressed in terms of an influence functional [34, 35]. This
idea is at the core of the Quasiadiabatic Propagator Path Integral (QUAPI) method developed
by Makri and co-workers [36, 37], and of the Hierarchical Equations Of Motion (HEOM)
approach by Tanimura and co-workers [38, 39]. Both approaches have been widely successful
in describing the dynamics of quantum dissipative systems [40–44], but are ultimately limited
to low-dimensional system-bath problems.

The unfavourable scaling of exact quantum calculations is in contrast to classical sim-
ulations, which benefit from two important properties. First, trajectories are well-defined
in classical mechanics and can be used to describe the time-evolution of any function by
following the progress of a point through phase space [45, 46]. This is not possible in quantum
mechanics, since the uncertainty principle prevents localisation at such a point, and one must
therefore propagate a phase-space distribution instead [47]. Second, the properties calculated
in classical simulations are typically given by multidimensional integrals that are amenable
to calculation by importance sampling. Various Molecular Dynamics (MD) and Monte Carlo
(MC) approaches have been developed to this end [48–50], and it would be of great benefit
if they could also be employed in the study of quantum systems. This has become possible
with the advance of semiclassical theories, capable of approximating nuclear quantum effects
(NQEs), which include quantum coherence, zero-point energy, and tunnelling. These theo-
ries are based on an asymptotic approximation to the exact quantum propagator, which is
expressed as an integral over classical trajectories with complex weights. The most useful of
these has proven to be the Semiclassical Initial Value Representation (SC-IVR) and its various
approximations [2, 4, 51–54]. The latter are a practical necessity, since inherent to SC-IVR is
the evaluation of multidimensional oscillatory integrals that are not easily tackled by impor-
tance sampling—a feature commonly referred to as the “sign problem”. Techniques have been
developed that ameliorate this and make semiclassical calculations feasible for systems of
tens of atoms [55–58], although simulations of condensed-matter systems at thermodynamic
equilibrium remain beyond reach. The one exception is the classical Wigner or linearised
semiclassical initial value representation (LSC-IVR), which offers a highly practical approx-
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imation for thermal time-correlation functions [59, 60]. Semiclassically, a time-correlation
function is given by an integral over phase space that involves the interference between a pair
of classical paths, which LSC-IVR approximates to first order in their difference. The result is
a time-correlation of Wigner functions calculated along classical trajectories, initialised from
the thermal Wigner distribution [47]. Subject to a further, physically motivated approximation
[61], this distribution can be sampled efficiently using Path-Integral Molecular Dynamics
(PIMD—see below). LSC-IVR simulations are thus feasible for systems such as liquid water,
and give good short-time approximations to their quantum time-correlation functions [11,
62–64]. Despite this, there is a major flaw in the method, since classical trajectories do not
conserve the thermal Wigner distribution, causing zero-point energy leakage from high- to
low-frequency degrees of freedom [11, 62, 65]. The effects of this can be seen in the spurious
melting of crystal lattices in water ice simulations (on sub-picosecond timescales), as well as
in the unphysical broadening and shifting of simulated infrared absorption bands [22].

Another criticism of LSC-IVR is that the linearisation approximation implies a complete
neglect of real-time quantum coherence [52, 66]. However, in condensed-phase simulations
for which zero-point energy leakage is not too severe, LSC-IVR tends to approximate the
properties of quantum systems very well [67–69]. Therefore an alternative and fruitful inter-
pretation is that quantum coherence does not play a major role in the dynamics of extended
quantum systems at thermal equilibrium, and that it should be possible to approximate their
behaviour by combining exact quantum statistics (which accounts for the static NQEs like
zero-point energy and tunnelling) with classical dynamics. This is an attractive proposition,
since efficient techniques for simulating exact quantum Boltzmann statistics have by now
become well-established. These are based on the observation that, within the path-integral
formulation of quantum mechanics, there is an exact isomorphism between the quantum
Boltzmann distribution and the Boltzmann distribution of an extended classical system. This
quantum–classical isomorphism was first identified by Feynman and Hibbs [35], and applied
to molecular simulations by Chandler and Wolynes [70]. Since it relies on purely classical
mechanics, the isomorphic representation can employ classical techniques for simulating
quantum systems at thermal equilibrium, giving rise to Path-Integral Monte Carlo (PIMC)
and Path-Integral Molecular Dynamics (PIMD) [50]. Recent advances [71–75] have reduced
the cost of such simulations to no more than a few times that of the analogous classical
calculations, so that they can now be done routinely for complex systems [21, 76, 77].

Unfortunately no such exact quantum–classical isomorphism exists for real-time quantum
propagation. However, it is possible to combine the path-integral representation of the
quantum Boltzmann distribution with classical dynamics in a way that ensures the distribution



4 Introduction

is conserved. This kind of approach was pioneered by Cao and Voth [78], who introduced the
Centroid Molecular Dynamics (CMD) method. This was followed by the development of Ring-
Polymer Molecular Dynamics (RPMD) by Craig and Manolopoulos [5], and Thermostatted
Ring-Polymer Molecular Dynamics (TRPMD) by Rossi et al. [15]. All three methods are
free from zero-point energy leakage and are exact in a number of important limits. Even
so, they were originally introduced as heuristic techniques and lacked a clear connection
with exact quantum theory. (T)RPMD was given some justification when its connection
with exact quantum transition state theory (QTST) was established [18, 79, 80]. However
the biggest change came about with the development of Matsubara dynamics by Althorpe
and co-workers [81], who have shown that the path-integral representation of the exact
quantum propagator is classical when restricted to the subspace of smooth (Matsubara) paths.
The quantum–classical isomorphism for static properties remains exact when restricted
to this subspace, and since real-time propagation of smooth paths is classical without any
approximation, Matsubara dynamics rigorously combines quantum statistics with classical
dynamics in a way that conserves the exact quantum Boltzmann distribution. Furthermore,
LSC-IVR has been shown to be an “unfiltered” version of Matsubara dynamics, in which the
smooth Matsubara subspace is allowed to couple to the other, jagged coordinates. Since the
dynamics of the jagged coordinates is not rigorously classical, this causes the unphysical
zero-point energy leakage seen in anharmonic potentials. The harmonic potential is special,
since its functional form precludes any such coupling, making Matsubara dynamics and
LSC-IVR produce the same (exact) results. Therefore Matsubara dynamics has at least as firm
a theoretical justification as LSC-IVR, while also being free of its spurious features.

Given the many advantages of Matsubara dynamics one might ask why it has not su-
perseded the earlier heuristic approximations (CMD and [T]RPMD) as a practical means of
simulating molecular systems. The answer to this lies in the way that the quantum Boltzmann
distribution is represented in the Matsubara framework. Much like with other semiclassical
approximations, nuclear quantum effects are incorporated into the thermal distribution by
means of a complex phase factor, which appears deceptively simple in comparison with what
is found, for example, in SC-IVR. In reality, the Matsubara sign problem is considerably more
severe than in SC-IVR, and cannot be tackled by the same means. It has limited the scope of
feasible numerical calculations to one-dimensional potentials—a situation that is not likely
to be improved much beyond what is described in this work. Therefore the real strength of
Matsubara dynamics is in its use as a theoretical framework for constructing and studying
the more approximate, practical path-integral methods.
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For example, it has been shown [82, 83] that one arrives at (T)RPMD starting from an
analytically continued Matsubara dynamics, where the momenta have been redefined so as
to absorb the phase, and then shifted onto the real axis, causing the Matsubara equations of
motion to become complex. These manipulations do not involve any approximations and give
rise to a Boltzmann distribution that is formally phase-free. However, the resulting trajectories
are complex and no easier to converge than the original oscillatory phase-space integral.
RPMD resolves this by neglecting the imaginary part of the equations of motion, while TRPMD
replaces it with a Langevin equation. These approximations do not directly affect the centres
of mass (the centroids) of the Matsubara paths, since the neglected terms only involve the
non-centroid fluctuation coordinates. This has a bearing on how well (T)RPMD approximates
different kinds of time-correlation functions, and it is found to perform much better when
the correlated properties are linear in position or momentum, and therefore only depend on
the centroid dynamics. For this reason we refer to RPMD and TRPMD as “centroid-following”
methods. As might be deduced from its name, CMD also belongs to this category, and can be
viewed as a mean-field Matsubara approximation [82]. It relies on the fact that the Matsubara
phase is partitioned entirely between the non-centroid fluctuation coordinates. Hence, rather
than analytically continuing and modifying their dynamics, CMD resolves the sign problem
by propagating only the dynamics of the centroid, subject to thermally averaged fluctuation
forces.

Since all three of these approaches make quite drastic approximations to the dynamics of
Matsubara fluctuations, their predictions of certain dynamical properties suffer from serious
artefacts, even if the properties depend explicitly only on the centroid coordinates. Simulated
infrared absorption spectra offer a striking example of this. In RPMD, the spectra are corrupted
by spurious resonances due to the fluctuation modes, which create unphysical absorption
peaks and cause physical spectral features to deform and split [10]. TRPMD was designed to
combat this problem, and indeed its simulated spectra give reliable estimates of peak positions
[15, 16]. However the fluctuation modes, which in TRPMD are propagated according to the
Langevin equation, introduce spurious friction into the dynamics of the centroids, causing
spectral line shapes to broaden considerably, especially at low temperatures. Recent work by
Rossi et al. [84] suggests that using the generalised Langevin equation (GLE) to propagate
the fluctuation dynamics can mitigate this problem, although in its current form the GLE
treatment corrupts the low-frequency part of the spectrum.

CMD experiences none of these problems, since it does not involve any dynamical coupling
to the fluctuation modes. Of the three path-integral methods introduced here, CMD performs
the best in spectroscopic simulations of bulk condensed matter at high and intermediate
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temperatures, giving accurate estimates of both peak positions and spectral line shapes [10,
17, 20]. However the quality of this approximation rapidly deteriorates when the temperature
is decreased beyond a certain, potential-dependent threshold, or when the simulation is
conducted in the gas phase or at a liquid–gas interface. The breakdown, which involves a
temperature-dependent redshift and a progressive broadening of the line shape, is known
as the “curvature problem”, and has previously been described by Marx and co-workers
[85, 86]. Since their investigation, we are not aware of any attempts to improve on the
CMD approximation in a way that is analogous to TRPMD and its GLE modification. We
are therefore encouraged to subject CMD to further analysis in an effort to find a practical
solution to the curvature problem.

We begin by giving a brief overview of some useful concepts in statistical thermodynamics
in Chapter 2, followed by a theoretical summary of the established path-integral methods for
simulating quantum systems at thermal equilibrium. In Chapter 3 we develop an alternative
formulation of Matsubara dynamics, casting it as a mean-field approximation to the exact
quantum theory. Our proposed formulation is equivalent to the original theory by Hele
et al. [81] in the limit of an infinite-dimensional Matsubara subspace, but is advantageous
when the number of the “smooth” degrees of freedom (“Matsubara modes”) is small. This
is because in the new formulation the quantum Boltzmann distribution is described exactly,
regardless of how the configuration space is partitioned into Matsubara and non-Matsubara
modes. Hence for the first time we are able to converge some Matsubara dynamics simulations
for a chemically relevant model system, gaining new insight into the failure of the CMD
approximation when applied to a two-dimensional OH diatomic. We are persuaded that
CMD faithfully reproduces Matsubara dynamics spectra at sufficiently high temperatures, and
enters the curvature-problem regime when its mean-field distribution ceases to be compact
about the dynamical centroid coordinate. This leads us to introduce a broader class of mean-
field approximations to Matsubara dynamics that extends beyond the Cartesian centroid,
encompassing general sets of curvilinear coordinates. We derive this general approximation
in Chapter 4 and give a sufficient condition for the approximate dynamics to be real and
phase-free. In the same chapter, we give a particular example of curvilinear coordinates,
whose mean-field dynamics produces remarkably accurate approximations to Matsubara
dynamics spectra of the two-dimensional OH model, at all temperatures tested, with no sign
of the curvature problem. Since the new approach is based on the centroids of plane polar
coordinates, which are invariably close to the Cartesian centroids for thermally accessible
path configurations, we call the new method Quasicentroid Molecular Dynamics or QCMD.
In Chapter 5 we extend this approach to QCMD simulations of gaseous and condensed-
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phase water. The gas-phase simulations show none of the spurious features associated with
TRPMD or CMD, and are believed by us to approach the highest level of accuracy that can
be expected of a (quasi-)centroid following method in the context of vibrational dynamics.
With the exception of some minor deviations in the libration peak region due to a known
approximation to the quasicentroid torque, the same is true for simulations of liquid water and
ice. In Chapter 6 we discuss how these results can be further improved, speculating, backed by
preliminary work, on the extension of QCMD to arbitrary non-dissociative molecular systems.
We conclude the discussion by outlining the fundamental limitations of centroid-following
methods, namely their inability to accurately describe phenomena that depend explicitly on
the dynamics of non-centroid fluctuations. These include overtones, combination bands, and
Fermi resonances—all of which can be approximately captured by LSC-IVR. It may therefore be
possible to describe these features using a suitable quantum–classical approximation derived
within the Matsubara dynamics framework, and we hope that the generalised mean-field
theory presented in this work can serve as a starting point for such development.





Chapter 2

Background theory

2.1 Thermal averages and time-correlation functions

When it comes to describing a chemical system, we are rarely interested in the microscopic
arrangement of its components. Instead, we are mostly after the average values of some of
its measurable properties. For example, the pressure P exerted by N particles occupying a
volumeV at temperature T is

P =
NkBT
V +

〈
1

3V
∑
j>i

∑
i

f(ri j) · ri j

〉
.

Here ⟨ · ⟩ denotes a thermal average, kB is the Boltzmann constant, ri j is the displacement
between particles i and j , and f(ri j) is the interparticle force [49]. The value of the average
does not depend on how the particles get from one arrangement to another, but only on how
likely a particular arrangement is, making pressure a static property. Another example is the
diffusion coefficient D, which can be calculated as [49]

D =
1
3

∫ ∞

0
dt Cv·v(t) = 1

3

∫ ∞

0
dt ⟨v(0) · v(t)⟩,

where t is time, v is a particle’s velocity and Cv·v is the velocity autocorrelation function. This
contains information on how the particles move (their dynamics), which makes the diffusion
coefficient a dynamic property. Clearly the different kinds of thermal averages are central to
the mathematical description of systems at thermodynamic equilibrium, and their precise
definitions depend on whether the system follows the laws of classical or quantum mechanics.
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2.1.1 Classical systems

A classical system is characterised by its total energy, which can often be decomposed into
kinetic and potential energy contributions,

E =
N∑

j=1

p2
j

2m j
+ V(q), (2.1)

where p j is the momentum of particle j , q j is its position, m j is its mass, and V(q) is the
potential energy function that describes the system. The expression is valid for N particles in
one spatial dimension and is straightforward to generalise. In most cases1 we can identify
the total energy with the Hamiltonian, H(p, q) = E . This arises naturally in Hamiltonian
mechanics [46], in which the classical laws of motion are expressed as

dp
dt
= −∂H

∂q
dq
dt
=
∂H
∂p

. (2.2)

Using these identities, we can write the full time derivative of property A as

dA
dt
=
∂A
∂t
+

N∑
j=1

{
∂H
∂p j

∂A
∂q j
− ∂H
∂q j

∂A
∂p j

}
=
∂A
∂t
+ LA, (2.3)

where the last term is the classical Liouvillian operator. It is sometimes written as a Poisson
bracket, L = { · ,H}, generally defined as [1]

{ f , g} ≡
N∑

j=1

∂ f
∂q j

∂g

∂p j
− ∂ f
∂p j

∂g

∂q j
. (2.4)

The Liouvillian formally describes how a function with no explicit time dependence changes
along a trajectory,

A(pt, qt) = eLt A(p, q), (2.5)

where (p, q) are the initial momenta and positions, and (pt, qt) are the momenta and positions
after a time t. In the special case that A(p, q) = H(p, q), we can use the fact that {H,H} = 0
to derive the law of conservation of energy,

H(pt, qt) = eLt H(p, q) = H(p, q). (2.6)

1Specifically when the total energy does not explicitly depend on time.
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This leads us into the discussion about classical thermal averages. A static property A is given
by the thermal average

⟨A⟩ = (2π~)
−N

Zcl

∫
dNp

∫
dNq e−βH(p,q)A(p, q), (2.7)

where β = 1/kBT , and

Zcl = (2π~)−N
∫

dNp
∫

dNq e−βH(p,q) (2.8)

is the classical partition function. Various dynamic properties can be derived from a time-
correlation function (TCF) of the form [87, Ch. 11]

CAB(t) = (2π~)
−N

Zcl

∫
dNp

∫
dNq e−βH(p,q)A(p, q) eLt B(p, q), (2.9)

where A and B are some functions of momenta and positions. When the two functions are
the same, we refer to the result as an “autocorrelation function” (ACF). The conservation law
in Eq. (2.6) means that classical dynamics conserves the Boltzmann distribution,

eLt
[
e−βH(p,q)

Zcl

]
=

e−βH(p,q)

Zcl
. (2.10)

Hence it can be shown [88] that static thermal averages do not depend on time,

⟨A(t)⟩ = ⟨A⟩, (2.11)

and that TCFs satisfy the detailed balance condition,

CAB(t) = CBA(−t). (2.12)

We will see that the same is true for quantum systems.

2.1.2 Quantum systems

For a quantum system, every measurable property A is associated with a Hermitian operator Â

[1]. For example, the energy of a quantum system is given by the action of the Hamiltonian
operator

Ĥ = T̂ + V̂ =
N∑

j=1

p̂2
j

2m j
+ V(q̂), (2.13)
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where T̂ and V̂ are the kinetic and potential energy contributions. In the Heisenberg picture,
operators change in time according to [1]

Â(t) = eiĤt/~ Âe−iĤt/~, (2.14)

where ~ is the reduced Planck constant. Differentiating this with respect to time leads to the
Heisenberg equation of motion,

dÂ
dt
=
∂ Â
∂t
+

1
i~

[
Â, Ĥ

]
, (2.15)

where [ · , · ] is the commutator

[
Â, Ĥ

] ≡ ÂĤ − Ĥ Â. (2.16)

Note the similarity of these expressions to Eqs. (2.3) and (2.4). Since any operator commutes
with itself, we can show that

dĤ
dt
=

[
Ĥ, Ĥ

]
= 0 (2.17a)

and

Ĥ(t) = eiĤt/~Ĥe−iĤt/~ = eiĤt/~e−iĤt/~Ĥ = Ĥ. (2.17b)

In other words, quantum dynamics conserves the Hamiltonian operator. The definition of
thermal averages follows the analogy with classical mechanics, so that

⟨A⟩ = 1
Z

Tr
[
e−βĤ Â

]
, (2.18)

where

Z = Tr
[
e−βĤ ]

(2.19)

is the quantum partition function. Even though Ĥ and Â generally do not commute, there is
no ambiguity in the definition because the trace is invariant under cyclic permutation [89].
The same is not true of the TCF, for which multiple definitions are possible. In our case the
most natural choice is the Kubo-transformed time-correlation function (KTCF),

CAB(t) = 1
Z

Tr
[
Kβ(Â) eiĤt/~B̂e−iĤt/~

]
, (2.20)
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where

Kβ(Â) = 1
β

∫ β

0
dλ e−λĤ Âe−(β−λ)Ĥ . (2.21)

This form arises naturally in quantum linear response theory [87] and has the same symmetries
as the classical TCF [5, 88].

Using the commutation relation in Eq. (2.17) and the cyclic permutation property of the
trace it can be shown that the quantum thermal average and the KTCF satisfy Eqs. (2.11)
and (2.12), just as in the classical case. This is a consequence of the quantum Boltzmann
distribution being conserved by the dynamics, which will play an important role in the
subsequent discussion.

2.2 Path-integral quantum statistics

The classical thermal averages in Eqs. (2.7) and (2.9) are in the form of multidimensional
integrals that can be estimated using importance sampling [49, 50]. This is the basis of Monte
Carlo (MC) and Molecular Dynamics (MD) methods, which can be scaled to large system
sizes and are routinely used in the computational modelling of materials and biomolecules.

The wide range of simulation techniques available for this purpose make it an attractive
proposition to cast the quantum thermal averages in Eqs. (2.18) and (2.20) into a similar
form. For static properties this can be done by exploiting the isomorphism of the discretised
path-integral representation of Eq. (2.18) with a thermal average in an extended classical
system [35, 70, 90]. It will be instructive to derive this isomorphism for the quantum partition
function in Eq. (2.19). First we express the trace in the eigenbasis of the position operator,
which for a single particle in one dimension reads

Z = Tr
[
e−βĤ ]

=

∫ ∞

−∞
dq ⟨q |e−βĤ |q⟩, (2.22)

where we have used Dirac’s bra–ket notation [1]. Next we write the quantum Boltzmann
operator as the product of N identical terms,

e−βĤ =

N∏
l=1

e−βN Ĥ, (2.23)



14 Background theory

where βN ≡ β/N . Recalling that Ĥ = T̂+V̂ , we decompose the product using the symmetrised
Trotter formula [91],

N∏
l=1

e−βN Ĥ =
[
Ω̂N

]N
+ O(N−2), (2.24)

where

Ω̂N = e−βN V̂/2e−βN T̂ e−βN V̂/2. (2.25)

We then insert a resolution of the identity,
∫ ∞
−∞dql |ql⟩⟨ql |, between each pair of factors, which

yields

Z = lim
N→∞

N∏
l=1

∫ ∞

−∞
dql ⟨ql |Ω̂N |ql+1⟩, (2.26)

with qN+l ≡ ql . In this factorised form, the matrix elements can be calculated analytically [1,
35, 90],

⟨ql |Ω̂N |ql+1⟩ = exp
{
− βN

2
[
V(ql) + V(ql+1) + mω2

N (ql+1 − ql)2
]}

× 1
2π~

∫ ∞

−∞
dp′l exp

{
− βN

2m
[
p′l + imωN (ql+1 − ql)

]2
}
,

(2.27)

where ωN = 1/βN~. Changing the momentum variables to pl = p′l + imωN (ql+1 − ql) and
shifting the integration contour onto the real axis gives the final expression for the quantum
partition function

Z = lim
N→∞

ZN ≡ lim
N→∞
(2π~)−N

∫
dNp

∫
dNq e−βN HN (p,q), (2.28)

where we define the path-integral Hamiltonian,

HN (p, q) =
N∑

l=1

{
p2

l

2m
+ V(ql)

}
+ SN (q), (2.29)

with spring energy

SN (q) =
N∑

l=1

mω2
N

2 (ql+1 − ql)2 . (2.30)

The “nascent” path-integral partition function ZN is exactly the same as the classical partition
function [see Eq. (2.8)] of N replicas of the original particle, connected by harmonic springs of
frequency ωN and held at a temperature that is N times higher than the original. The springs
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connect the replicas (sometimes called “beads”) into a cyclic “ring polymer” and contribute a
potential energy SN (q).

At this stage it may not be entirely clear what relation Eq. (2.28) bears to path integrals.
This is made apparent once we rewrite Eq. (2.28) as

Z = lim
N→∞

[
N∏

l=1

∫ ∞

−∞

dql

α

]
exp

{
−ϵ
~

N∑
l=1

[
m
2

(ql+1 − ql

ϵ

)2
+ V(ql)

]}
, (2.31)

where

α =
( m
2π~ϵ

)1/2
and ϵ = β~/N . (2.32)

In the continuum picture,

lim
N→∞

m
2

(ql+1 − ql

ϵ

)2
= lim

δτ→0

m
2

(
q(τ + δτ) − q(τ)

δτ

)2
=

m
2

(
dq
dτ

)2
, (2.33)

and

lim
N→∞

N∑
l=1

ϵ f (ql) ≡
∫ β~

0
dτ f

(
q(τ)) . (2.34)

Thus the quantum partition function can be expressed as

Z =
∮
Dq(·) e−AE [q(·)]/~, (2.35)

where AE is the Euclidean action

AE [q(·)] =
∫ β~

0
dτ

[
m
2

(
dq
dτ

)2
+ V(q)

]
, (2.36)

and
∮
Dq(·) denotes integration over all closed paths,

∮
Dq(·) ≡ lim

N→∞

[
N∏

l=1

∫ ∞

−∞

dql

α

]
. (2.37)

The symbol τ denotes imaginary time, so called because Eqs. (2.35) and (2.36) are related
to real-time path integrals by a Wick rotation t → −iτ [35, Ch. 10]. Equation (2.28) is the
discretised representation of the imaginary-time path integral, which we will use throughout;
the continuous formalism in Eqs. (2.35) to (2.37) is introduced because it will be useful for our
discussion of imaginary-time symmetries in Chapter 4.
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As with the partition function, it is possible to cast the quantum thermal average in
Eq. (2.18) into a ring-polymer form,

⟨A⟩ = lim
N→∞
⟨A⟩N ≡ lim

N→∞
(2π~)−N

ZN

∫
dNp

∫
dNq e−βN HN (p,q) AN (q). (2.38)

The function AN (q) is an estimator, defined as an average over the beads

AN (q) = 1
N

N∑
l=1

A(ql). (2.39)

An analogous definition holds if A is a linear function of momentum, A(p) ∝ p. Again, the
nascent thermal average ⟨A⟩N is the same as a classical thermal average [see Eq. (2.7)] derived
from an extended ring-polymer system.

The convergence of Eqs. (2.28) and (2.38) with respect to N (the number of beads) is
sufficiently fast that these expressions can be used to simulate many-particle systems that
are far beyond the reach of traditional wavefunction-based approaches. Because the path-
integral representation is exactly isomorphic with classical statistical mechanics [70], classical
methodologies can be applied directly, giving rise to Path-Integral Monte Carlo (PIMC) and
Path-Integral Molecular Dynamics (PIMD) [50]. These two methods offer a practical way of
computing exact quantum thermal averages, but are only applicable to static properties. No
exact quantum–classical isomorphism exists in general for the time-correlation function, and
we must therefore rely on approximations.

2.3 Path-integral approximations to quantum dynamics

Although we cannot map exact quantum dynamics onto an extended classical system, it is
possible to construct approximations that combine exact quantum statistics with quantum-
Boltzmann-conserving classical dynamics. This approach ensures that static thermal averages
remain exact and independent of time, and that the approximate TCFs satisfy the detailed
balance condition. Such methods can fully account for zero-point energy (ZPE) effects and
certain kinds of tunnelling, which is argued to be sufficient for many condensed-matter
simulations, where coupling to the environment ensures rapid quantum decoherence [4, 14,
18].
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2.3.1 Normal-mode coordinates

Before we begin the discussion of path-integral dynamics approximations, it will be convenient
to introduce the so-called “normal-mode” coordinates,

Q̃n =
1√
N

N∑
l=1

Tlnql ⇔ ql =
√

N
ν∑

n=−ν
TlnQ̃n, (2.40)

where N is odd,2 ν = (N − 1)/2, and Tln are elements of an orthogonal transformation matrix

Tln =




N−1/2 n = 0,√
2/N sin(2πln/N) n = 1, . . . , ν,√
2/N cos(2πln/N) n = −1, . . . ,−ν.

(2.41)

The normalisation by N−1/2 in Eq. (2.40) is added to prevent the numerical values of Q̃n from
diverging in the limit as N → ∞. With this normalisation, the coordinates scale as O(N0)
and the n = 0 component is the ring-polymer centroid

Q̃0 =
1
N

N∑
l=1

ql . (2.42)

Such coordinates are frequently referred to as “normal modes” because they diagonalise the
ring-polymer spring potential

1
N

SN (q) = S̃N (Q̃) =
∑
|n|≤ν

mω2
nQ̃

2
n

2 , (2.43)

where

ωn = 2ωN sin
(πn

N

)
. (2.44)

Expressed in normal-mode coordinates, the ring-polymer Hamiltonian becomes

1
N

HN (p, q) = H̃N (̃P, Q̃) =
∑
|n|≤ν

{
P̃

2
n

2m
+

mω2
nQ̃

2
n

2

}
+

1
N

N∑
l=1

V

(√
N

∑
|n|≤ν

TlnQ̃n

)
(2.45)

where the final term is the external potential Ṽ N (Q̃). In the absence of this potential, the
coordinates Q̃ are precisely the ring-polymer normal modes, with natural frequencies |ωn |.

2For the sake of brevity, we do not extend this to even N , which has been done elsewhere [92].
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2.3.2 (Thermostatted) Ring-Polymer Molecular Dynamics

In PIMD, thermal averages of static properties [see Eq. (2.38)] are calculated using the molec-
ular dynamics approach. The ring polymers are equilibrated at an inverse temperature of
βN and propagated according to the classical equations of motion given by Eq. (2.2) with
a Hamiltonian HN (p, q). A thermostat is often attached to the beads, to ensure proper and
efficient sampling of the ring-polymer Boltzmann distribution [92].

Presented in this way, the ring-polymer dynamics is entirely fictitious, serving only as
a means to sample the distribution (but see Section 2.3.4). However, it can be shown that
interpreting the dynamics literally often produces a reasonable approximation to the exact
quantum KTCF,

CAB(t) ≈ lim
N→∞
⟨A(0)B(t)⟩N ≡ lim

N→∞
(2π~)−N

ZN

∫
dNp

∫
dNq e−βN HN (p,q) AN (q)BN (qt), (2.46)

where BN (qt) is the estimator evaluated at a time t along the trajectory. This is because the
Ring-Polymer Molecular Dynamics (RPMD) approximation satisfies several important criteria
[5, 93]:

1. it correctly reduces to the classical TCF in the high-temperature limit;

2. it is exact for static thermal averages and for KTCFs at t = 0;

3. it conserves the quantum Boltzmann distribution;

4. it is exact for the harmonic oscillator if either of A or B is linear in position;

5. it is in general a high-order short-time approximation.

Additionally, RPMD transition-state theory (RPMD TST) has been shown to be identical
with the exact quantum transition-state theory (QTST) [80], and to bear a close relation to
semiclassical instanton rate theory [79]. It is thus routinely applied to calculations of reaction
rate constants, including in the deep tunnelling regime [7, 12, 14], and has also been used to
study quantum diffusion in liquid hydrogen [8], water [9], and metal lattices [94–96].

One area in which RPMD runs into difficulty is the simulation of vibrational spectra [10].
The fictitious ring-polymer dynamics produces spurious resonances of the centroid Q̃0 with
the “non-centroid” fluctuation modes, Q̃n,0. The resonances appear as unphysical peaks in
the simulated spectra, and can also interfere with physical features. A partial solution was
proposed by Rossi et al. [15], who suggested attaching a white-noise Langevin thermostat to
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each of the non-centroid modes, thus changing the equations of motion to

dP̃n

dt
= −∂VN (Q̃)

∂Q̃n
− mω2

nQ̃n − γnP̃n +

√
2mγn

β
ξn(t) (2.47a)

dQ̃n

dt
=

P̃n

m
. (2.47b)

The only change compared to RPMD is the addition of the last two terms in Eq. (2.47a). These
involve the friction γn and the random noise ξn(t), which is an uncorrelated Gaussian process
with zero mean and unit variance, i.e. ⟨ξn(t)⟩ = 0 and ⟨ξn1(0)ξn2(t)⟩ = δn1n2δ(t). Note that the
coefficient multiplying ξn(t) contains a factor of β instead of the βN that appears in Eq. (16)
of Ref. [15]. We have made the change because the equations of motion for bead coordinates
(p, q)with a Hamiltonian HN (p, q) and temperature βN are exactly equivalent to the equations
of motion for normal-mode coordinates (̃P, Q̃) with a Hamiltonian H̃N (̃P, Q̃) and temperature
β. The second representation is better suited for our discussion, and so we adopt it from here
onwards.

The thermostat dampens the fluctuations of the non-centroid modes, reducing the un-
physical artefacts that corrupt the RPMD spectra. Since we do not wish to interfere with the
dynamics of the centroid, the centroid friction is set to zero, γ0 = 0, although sometimes this
may be replaced by a weak global thermostat to improve the sampling (see Chapter 5 and
Ref. [16]). The friction parameters of the non-centroid modes are chosen as a compromise
between damping the spurious resonances and minimising interference with the vibrational
dynamics of the centroid. They are generally defined as

γn = λ × 2|ωn |, (2.48)

where 2|ωn | is the friction that minimises the energy decorrelation time of a free ring polymer.
Numerical simulation and harmonic analysis suggest that setting λ = 0.5 gives the optimal
result for simulating Thermostatted Ring-Polymer Molecular Dynamics (TRPMD) spectra [15,
83]. This value is used in all of our TRPMD simulations.

Simulated TRPMD spectra generally give accurate positions of the vibrational fundamental
bands, although the line shapes are broadened by the interactions with the thermostatted
non-centroid modes, especially at low temperatures. Despite this, TRPMD remains the most
reliable of the three methods in this chapter, excluding Matsubara dynamics, when applied to
spectroscopic simulations. A recent modification by Rossi et al. [84, 97] that uses coloured-
noise (correlated) thermostatting may further improve this approximation by reducing the
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unphysical broadening. The modified approach is discussed further in Chapter 5, where we
compare the results from Ref. [84] against our simulated spectra.

2.3.3 Centroid Molecular Dynamics

An alternative approach is to make a mean-field approximation to the exact quantum TCF,
which is discussed at length in Chapters 3 and 4. Here we give a brief account of the first
successful method to use this kind of approximation. Centroid Molecular Dynamics (CMD),
proposed by Cao and Voth [78], approximates quantum TCFs as

CAB(t) ≈ (2π~)
−1

Z0

∫
dP̃0

∫
dQ̃0 e−β[P̃

2
0/2m+F (Q̃0)] A(Q̃0)B(Q̃0,t), (2.49)

where

Z0 =
1

2π~

∫
dP̃0

∫
dQ̃0 e−β[P̃

2
0/2m+F (Q̃0)]. (2.50)

The free energy F (Q̃0) corresponds to the centroid-constrained mean-field force

−∂F (Q̃0)
∂Q̃0

=

∫
dN P̃

′∫ dNQ̃
′
δ(Q̃′0 − Q̃0) e−βH̃N (̃P′,Q̃′)

(
− ∂ṼN (Q̃′)

∂Q̃
′
0

)
∫

dN P̃
′∫ dNQ̃

′
δ(Q̃′0 − Q̃0) e−βH̃N (̃P′,Q̃′)

, (2.51)

which gives rise to the CMD equations of motion

dP̃0
dt
= −∂F (Q̃0)

∂Q̃0

dQ̃0
dt
=

P̃0
m
. (2.52)

The resulting dynamics satisfies the same criteria as listed for (T)RPMD in Section 2.3.2
[78], subject to the caveat that both A and B must be linear in position (or momentum), and
therefore only depend on the centroid.

If one or both of the operators are non-linear, CMD has to rely on the additional approx-
imation AN (q) ≈ A(Q̃0), meaning that the static thermal averages and the t = 0 values of
the TCFs are no longer exact. However, in the next few chapters we will see that (at least
in some cases) this is relatively minor compared to the artefacts produced by the mean-field
approximation when it falls outside of its region of validity.

Once again, simulated vibrational spectra provide an instructive example. At high tem-
peratures CMD produces high-quality approximations to exact quantum spectra, both in
terms of band positions and line shapes [10, 85]. This includes systems with non-linear dipole
moments, where the “static” approximation to the dipole estimator appears to play a very
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minor role [17, 20]. In this regime, CMD can be said to outperform its chief competitor,
TRPMD.

At lower temperatures the mean-field approximation begins to break down, in what
is commonly referred to as the “curvature problem” [85, 86]. This causes the simulated
vibrational bands to shift to lower frequencies and eventually broaden, both of which are
unphysical artefacts. The curvature problem is discussed in much greater detail in Chapter 3,
where we analyse its origins and propose a way to overcome it. For now it suffices to say that
the severity of the problem can prevent the use of CMD in spectroscopic simulations of some
systems even at room temperature.

2.3.4 Matsubara Dynamics

The path-integral approximations we have so far discussed were originally introduced as
heuristic techniques. Despite this, their success implies that there must be an underlying
theory that rigorously combines exact quantum Boltzmann statistics with classical dynamics in
a way that satisfies the detailed balance condition. This theory, called “Matsubara dynamics”,
was developed by Althorpe and co-workers [81]. They showed that classical dynamics
emerges naturally from the path-integral representation of the exact KTCF when the paths
are constrained to be smooth,

Q̃n = 0 for |n| > (M − 1)/2 ≡ µ where M ≪ N .

This condition is equivalent to neglecting the effects of real-time quantum coherence, which
is often justified in the condensed phase.

In Chapter 3 we derive Matsubara dynamics in a way that simplifies the original reasoning
in Ref. [81] and improves the convergence properties of the corresponding TCFs. At this stage
we simply state that, without any further approximations, the smoothness condition gives
rise to the Matsubara TCF

CMats
AB (t) = lim

M→∞
αM(2π~)−1

Z̃M

∫
dM P̃M

∫
dMQ̃Me−β[H̃M−iθM ]AM(Q̃M)BM(Q̃M,t). (2.53)

Here, the Matsubara Hamiltonian is

H̃M (̃PM, Q̃M) =
|P̃M |2
2m
+

1
N

N∑
l=1

V

(∑
|n|≤µ

√
NTlnQ̃n

)
, (2.54)



22 Background theory

where Q̃M are the “smooth” Matsubara positions Q̃ |n|≤µ, and P̃M are the corresponding
momenta. The Matsubara phase θM is given by

θM =
∑
|n|≤µ

ωnP̃nQ̃−n, (2.55)

the function AM(Q̃M) is the estimator AN (q) restricted to the Matsubara subspace,

AM(Q̃M) = lim
N→∞

1
N

N∑
l=1

A
( ∑
|n|≤µ

√
NTlnQ̃n

)
, (2.56)

with an analogous definition for BM(Q̃M). The remaining terms are

αM = ~
(1−M)[(M − 1)/2]!2 (2.57)

and

Z̃M = αM(2π~)−1
∫

dM P̃M

∫
dMQ̃Me−β[H̃M−iθM ]. (2.58)

Crucially, the dynamics of the coordinates P̃M and Q̃M is purely classical and conserves the
quantum Boltzmann distribution e−β[H̃M−iθM ]. In the case when the number of Matsubara
modes is M = 1, the expression is identical to the classical thermal TCF in Eq. (2.9).

The TCFs calculated according to Eq. (2.53) not only satisfy all of the properties listed in
Section 2.3.2, but are also exact for any pair of properties A and B in the harmonic limit [81,
83]. Furthermore, it has been shown that CMD, RPMD, and TRPMD are all approximations to
Matsubara dynamics [82, 83]. All this, together with supporting numerical calculations, leads
us to believe that Matsubara dynamics is the most rigorous way of combining exact quantum
statistics with classical dynamics.

The reason for introducing further approximations, as done in CMD and (T)RPMD, is the
Matsubara phase θM , which gives rise to a sign problem. Because of the phase, the Boltzmann
distribution is complex (it is now a quasiprobability distribution), and the integrand in Eq. (2.53)
is highly oscillatory. Such integrals cannot be evaluated using importance sampling unless the
system is small enough for a brute-force approach [98, Ch. 4], making Matsubara dynamics
too expensive to be used as a practical method [81]. Instead, it is best seen as a theoretical
framework, within which one can devise practical path-integral approximations, as we shall
see in the next few chapters.



Chapter 3

Mean-field Matsubara dynamics

3.1 Derivation

To obtain a mean-field approximation to the exact Kubo-transformed time-correlation function
we start from its path-integral representation,

CAB(t) = lim
N→∞

(2π~)−N

ZN

∫
dNq

∫
dNp

[
e−βĤ ]

N (p, q) AN (q) eL̂N t BN (q), (3.1)

derived in Appendices A.1 and A.2. The generalised Wigner transform [e−βĤ]N and the
path-integral Liouvillian L̂N are defined in Eqs. (A.14) and (A.22) respectively. Following Hele
et al. [81], we refer to the long-established result that quantum thermal averages of static
properties can be calculated exactly while only using smooth Feynman paths [99, 100]. Hence
we restrict the estimators AN and BN to the subspace of smooth normal-mode coordinates
(see Section 2.3.1), suppressing their dependence on {Q̃n, |n| > (M − 1)/2}, where M ≪ N ,
so that

AN (q), BN (q) N→∞−−−−−→
M≪N

AM(Q̃M), BM(Q̃M)
with

AM(Q̃M) = lim
N→∞

1
N

N∑
l=1

A
( ∑
|n|≤µ

√
NTlnQ̃n

)
, (3.2)

and µ ≡ (M − 1)/2 for odd M . To make an analogy with a discrete Fourier transform, this is
equivalent to applying a low-pass filter to a discretised Feynman path. The frequencies of the
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remaining smooth modes tend to the bosonic Matsubara frequencies [101]

lim
n
N→0

ωn =
2πn
β~
≡ ω̃n, (3.3)

which is why Q̃M are referred to as the “Matsubara modes”. Using the smoothed estimators
in Eq. (3.2), the value of CAB(0) remains exact as M →∞, and so no approximation is made
to the quantum statistics.

Now we introduce the only approximation that we apply to the quantum dynamics, which
is to replace the exact Liouvillian with its mean-field average,

L̂MF(̃PM, Q̃M) = lim
N→∞

∫
dNp

∫
dNq

[
e−βĤ

]
N δ(q, Q̃M) δ(p, P̃M) L̂N (p, q)∫

dNp
∫

dNq
[
e−βĤ

]
N δ(q, Q̃M) δ(p, P̃M)

, (3.4)

where δ(q, Q̃M) constrains the smooth components of the path at Q̃M , as defined in Eq. (A.36).
In terms of the Matsubara modes, the exact Liouvillian is

lim
N→∞

L̂N = LM + lim
N→∞

L̂N,M, (3.5)

where

LM = lim
N→∞

[
1
m
P̃M · ∇Q̃M

− Ṽ N (Q̃)2N
~

sin
(
~

2N
←−∇ Q̃M

· −→∇ P̃M

) ]
. (3.6)

The arrows over the gradient operators indicate the direction in which they act. LM contains
all the derivatives involving only the modes with indices |n| ≤ µ, and L̂N,M contains the
remaining terms. We can get an explicit expression for L̂N,M [81], but this isn’t necessary
since the expression vanishes under mean-fielding. In addition, if we choose our Matsubara
modes so that (M3/N2) → 0 as N →∞ [88], LM reduces to the classical Liouvillian,

LM = lim
N→∞

[
1
m
P̃M · ∇Q̃M

− ∇Q̃M
Ṽ N (q) · ∇P̃M

]
. (3.7)

On calculating its mean-field average (see Appendix A.3), we get

L̂MF(̃PM, Q̃M) =
∑
|n|≤µ

P̃n

m
∂

∂Q̃n
− ∂FM(Q̃M)

∂Q̃n

∂

∂P̃n
, (3.8)
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where

e−βFM (Q̃M )=
(

m
2πβN~2

) (N−M)/2
N M/2

∫
dNq δ(q, Q̃M) e−β[WN (q)−S̃M (Q̃M )], (3.9)

S̃M(Q̃M) =
∑
|n|≤µ

mω̃2
nQ̃

2
n

2 , (3.10)

and

WN (q) = 1
N

N∑
l=1

[
V(ql) +

mω2
N

2 (ql+1 − ql)2
]
. (3.11)

The exact KTCF is therefore approximated by

C̃[M]AB (t) =
(2π~)−M

ZM

∫
dMQ̃M

∫
dM P̃M e−β[HM−iθM ]AM(Q̃M)eL̂MFt BM(Q̃M), (3.12)

where

HM =
|P̃M |2
2m

+ FM(Q̃M) (3.13)

is the mean-field Hamiltonian,

θM =
∑
|n|≤µ

ω̃nP̃nQ̃−n (3.14)

is the Matsubara phase, and the partition function ZM is defined in Eq. (3.17). The Liouvillian
can be expressed as the Poisson bracket

L̂MF(̃PM, Q̃M) = { · ,HM}, (3.15)

showing that the mean-field Hamiltonian is conserved. Furthermore, the same argument as
in the original formulation [81] shows that the Matsubara phase θM is also conserved by the
dynamics. Therefore Eq. (3.12) conserves the MF Matsubara quasiprobability distribution.

The only difference between our formulation and the original derivation in Ref. [81] is the
step that takes Eq. (3.7) to Eq. (3.8). Whereas we make no further approximations, the original
approach truncates the dependence of the external potential on the non-Matsubara modes,

Ṽ N (Q̃) → Ṽ M(Q̃M) ≡
1
N

N∑
l=1

( ∑
|n|≤µ

√
NTlnQ̃n

)
. (3.16)

On the one hand, this allows the integration in Eq. (3.9) to be done analytically, giving a
“truncated” Matsubara potential in closed form. On the other hand, this approximation means
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that the truncated Matsubara partition function, static thermal averages, and t = 0 values
of the TCFs are only exact in the limit as M →∞. In contrast, the MF Matsubara partition
function,

Z = ZM =
1

(2π~)M
∫

dMQ̃M

∫
dM P̃M e−β[HM−iθM ], (3.17)

is exact for any choice of M , as are the static thermal averages and t = 0 values of TCFs
involving linear operators.

The case of M = 1 is special because it does not have a phase. At this point MF Matsubara
dynamics reduces to CMD, which can be viewed as the first rung of a ladder of approximations
that in the limit as M →∞ tend to the most general quantum-Boltzmann-conserving classical
dynamics. Given that CMD typically approximates exact quantum TCFs better than classical
dynamics, we hope that MF Matsubara dynamics will generally be a better approximation than
the original “truncated” Matsubara dynamics for the same number of modes M . In the rest of
this chapter we report on the numerical simulations that test this idea for a one-dimensional
quartic potential and a two-dimensional model of an OH bond.

3.2 The one-dimensional quartic potential

In this section we consider the quartic potential V(q) = q4/4, a popular one-dimensional
test system that is particularly demanding of approximate dynamics methods due to its high
levels of quantum coherence.

3.2.1 Numerical results

To assess the performance of MF Matsubara dynamics we calculate the position ACF (Â = B̂ =

q̂) at β = 1 and β = 8. We work in reduced units throughout, so that m = 1 and ~ = 1. The
exact reference TCFs are calculated by solving the time-independent Schrödinger equation
in the discrete variable representation due to Colbert and Miller [25]. We compare these
against the results from four approximate methods: classical dynamics, truncated Matsubara
dynamics (M = 3), CMD, and MF Matsubara dynamics (M = 3).

All four methods rely on the standard velocity Verlet algorithm to integrate the equations
of motion, and use a local Langevin thermostat [92, 102] with friction γ0 = 1.0 a.u. to ensure
proper sampling during the thermalisation. The forces for three-mode Matsubara dynamics
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are derived from the analytical M = 3 Matsubara potential,1

Ṽ M(Q̃0, r1) = 1
4Q̃

4
0 +

3
2Q̃

2
0r2

1 +
3
8r4

1, (3.18)

where

r1 =

√
Q̃

2
1 + Q̃

2
−1. (3.19)

The mean-field forces for CMD and MF Matsubara dynamics [MF(3)] are approximated
with interpolating cubic splines [98]. The imaginary-time translation symmetry of the MF
Matsubara potential means that a two-dimensional grid in Q0 and r1 is sufficient for the MF(3)
calculations. We refer the reader to Appendix A.6 for further simulation details.
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Figure 3.1 Kubo-transformed position ACFs for the quartic oscillator V(q) = q4/4 at β = 1 (top) and
β = 8 (bottom). Panels (a) and (c) compare “truncated” Matsubara dynamics to the exact quantum
results, and panels (b) and (d) compare MF Matsubara dynamics to the same set of results. The number
in parentheses refers to the number of Matsubara modes. Note that one-mode truncated Matsubara
dynamics is equivalent to classical dynamics, whereas one-mode MF Matsubara dynamics is equivalent
to CMD.

1See supplementary material for Ref. [81].
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The results of our calculations are shown in Figure 3.1, where the top two panels show
the high-temperature regime (β = 1), and the bottom two panels show the low-temperature
regime (β = 8). At β = 1 there is little difference between the “truncated” approximations
in panel (a) and the mean-field approximations in panel (b). This is because at β = 1 the
first Matsubara frequency (ω̃1 = 2π a.u.) is significantly higher than the natural oscillation
frequency of ∼1 a.u. Hence the mean-fielded modes are nearly harmonic (the spring term in
Eq. (3.11) dominates the potential energy term) and do not contribute much to the free energy
FM(Q̃M). On the other hand, at β = 8 there is a significant difference between the two sets of
results (panels (c) and (d) of Figure 3.1). The first Matsubara frequency is now of the same
magnitude as the natural oscillation frequency, and the corresponding normal modes must
make a considerable contribution to the free energy FM(Q̃M), creating noticeable deviations
from the truncated potential Ṽ M(Q̃M).

Unsurprisingly, none of the approximations reproduce the long-time behaviour of the
quantum TCF, which keeps oscillating indefinitely due to quantum coherence. The latter
can be described as the interference between forward–backward paths in the path-integral
representation of the quantum TCF [66]. All of the approximations considered in this work set
the difference between such paths to zero, explicitly neglecting real-time quantum coherence.
Despite this, the CMD results for this potential become a better approximation to the exact TCF
as the temperature is decreased. This feature, first explained by Ramírez and López-Ciudad
[103], arises whenever the thermal energy is small compared to the separation between the
ground state energy E0 and the first excited state E1. In this regime, the CMD potential
becomes increasingly harmonic, with a frequency approaching the correct quantum limit of
(E1 − E0)/~ [88]. Hence CMD TCFs of linear operators tend to the exact result as β→∞.

Overall our calculations confirm that truncated and MF Matsubara dynamics produce
similar results when the harmonic frequencies of the mean-fielded modes ω|n|>µ exceed the
“physical” oscillation frequency of the potential V(q). We also see that when this condition is
not met, the mean-field approach gives a better approximation than its truncated counterpart
with the same number of modes. Further analysis is complicated by the Ramírez oscillations,
which lead to uncharacteristically good agreement between the CMD TCF and the exact
quantum result at low temperatures. Such behaviour should not be expected in condensed-
phase systems, which have closely spaced energy levels and never reach the Ramírez limit,
kBT ≪ (E1 − E0), in practical simulations. To get a more realistic picture we must consider a
higher-dimensional potential. This requires a way to calculate mean-field forces on the fly, as
grid-based calculations are unfeasible for M > 1 beyond one-dimensional potentials due to
the exponential scaling of the grid size with system dimensionality.
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3.2.2 Adiabatic implementation

Single-mode (M = 1) MF Matsubara dynamics reduces to CMD, for which there is a well-
established way of calculating mean-field forces on the fly, known as Adiabatic Centroid
Molecular Dynamics (ACMD) [10, 104]. ACMD approximates the mean-field forces on the
centroid by making the non-centroid modes move on a faster timescale. This is achieved by
shifting them to an adiabatic frequency Ω and scaling the corresponding masses,

ωn → Ω, m→ m(ωn/Ω)2. (3.20)

To ensure ergodicity, the non-centroid modes are additionally subjected to thermostatting.
As the separation of timescales increases in the limit Ω → ∞, the time averages of the
instantaneous forces on the centroid tend to the true mean-field averages, and the dynamics
of the centroid becomes equivalent to CMD [104]. This comes at the cost of having to use a
smaller time step for the numerical propagation to remain stable. In practice, convergence is
reached at relatively small values of Ω (see e.g. Ref. [10]), making ACMD a practical method.
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Figure 3.2 MF Matsubara (M = 3) position ACFs for the quartic potential V(q) = q4/4 calculated using
interpolated forces (“exact MF”) and on-the-fly forces yielded by the adiabatic algorithm (“adiabatic
MF”). The two sets of results are in close agreement at both temperatures (β = 1, N = 16 and
β = 8, N = 64) for an adiabatic frequency Ω = 4NN/(N−1)/β~.

A similar approach should work for MF Matsubara dynamics with M > 1. The only
reservation is that at small adiabatic frequencies Ω the Matsubara phase θM is not conserved
on the decorrelation timescale of the TCF. This could mean that to converge the dynamics,
impractically large values of Ω have to be used. In our simulations we find that this is not the
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case. Figure 3.2 compares the Matsubara TCFs calculated using interpolated (“exact MF”) and
on-the-fly (“adiabatic MF”) forces. We chose the adiabatic frequency according to a modified
prescription due to Habershon et al. [10],

Ω = 4 × N N/(N−1)/β~, (3.21)

where the factor of 4 had to be introduced in order to reach satisfactory agreement with the
reference TCFs. Further simulation details can be found in Appendix A.6. While considerable,
the adiabatic frequency is not so large as to be prohibitively expensive, so we can hope to
converge at least some MF Matsubara TCFs for the two-dimensional system in the following
section.

3.3 The two-dimensional Morse potential

We consider a two-dimensional “champagne-bottle” model of a vibrating, rotating OH bond
similar to that used in Ref. [85]. The radial polar coordinate r represents the OH bond length
and the polar angle θ represents rotation in the plane. The potential is taken to be a Morse
function

V(r) = D0
[
1 − e−α(r−req)]2 (3.22)

with req = 1.8324, D0 = 0.18748 and α = 1.1605 a.u.; the reduced mass is set to m = 1741.05 a.u.
In what follows we compare various path-integral approximations to the vibrational density
of states (also called the power spectrum), which can be obtained from the position ACF [9],

N(ω) = ω2
∫ ∞

−∞
dt e−iωtCq·q(t) f (t), (3.23)

or the velocity ACF2

N(ω) =
∫ ∞

−∞
dt e−iωtCv·v(t) f (t). (3.24)

The factor f (t) is a window function that dampens the tail of the TCF, reducing ringing
artefacts due to imperfect convergence. When applied to the exact quantum TCF, f (t) serves
the additional purpose of removing the recurrences caused by real-time quantum coherence.
In our two-dimensional model, the recurrences are well separated from the initial decay of

2See supplementary material for Ref. [16].
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the TCF, suggesting a sensible choice for f (t) to be a sigmoid window with a sharp cut-off,

f (t) = 1
1 + e(|t |−t1/2)/w , (3.25)

with t1/2 = 400 fs and w = 25 fs. We refer to Appendix A.6 for further details on how the
exact reference spectra were calculated.

We choose to focus on the power spectrum because it derives from a linear function of
position.3 The exact estimators AM(Q̃M) = BM(Q̃M) = Q̃0 can therefore be used for any
choice of M , allowing us to focus on the approximations made to the dynamics, without
having to also consider the approximations made to the statistics. We calculate the power
spectrum instead of directly comparing the TCFs because the differences between the various
approximations are seen more clearly in the frequency domain. Additionally, the power
spectrum is proportional to the infrared absorption spectrum of a linear dipole moment µ ∝ q,
giving further physical meaning to our results.

3.3.1 Convergence of mean-field Matsubara dynamics calculations

Before we compare MF Matsubara dynamics to other approximations, we need to determine
the adiabatic separation that produces sufficiently accurate mean-field forces. We define the
adiabatic frequency differently to Eq. (3.21), setting

ωn → Ω = γN
β~

m→ mn = m
(
β~ωn

γN

)2
, (3.26)

where γ is the “adiabaticity parameter”. Otherwise, we follow the procedure outlined in
Section 3.2.2. The convergence study is conducted for T = 200 K, where the Matsubara sign
problem is mild enough to yield converged TCFs after relatively few sample trajectories. The
resulting spectra are plotted in Figure 3.3, illustrating the convergences of MF Matsubara
dynamics (M = 3, N = 32) with respect to the adiabaticity parameter.

As seen from the figure, the rotational peak at 200 cm−1 and the vibrational fundamental
at 3600 cm−1 converge quickly with respect to the adiabatic separation. The only major
changes with increasing γ are the “wiggles” at around 700 and 3000 cm−1. These are artefacts
due incomplete convergence with respect to M that are also present in truncated Matsubara
spectra and are not due to under-sampling. The spurious wiggles at 3000 cm−1 disappear if the
fluctuations about the centroid Q̃0 are approximated by local normal modes (see Appendix A.4),

3Equivalently, a linear function of momentum, with AM (Q̃M ) = BM (Q̃M ) = P̃0/m.
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Figure 3.3 Vibrational power spectra for the two-dimensional Morse potential in Eq. (3.22), calculated
with three-mode adiabatic MF Matsubara dynamics at T = 200 K, using N = 32 ring-polymer beads.
The plot illustrates convergence with respect to the adiabaticity parameter γ, with key features at
200 and 3600 cm−1 already converged at γ = 16. The features at 700 cm−1 and 3000 cm−1, which take
longer to converge, are known artefacts and are not important for subsequent analysis.

suggesting that they are caused by rotation–vibration coupling. The wiggles at 700 cm−1

probably arise from the way that the elliptical (M = 3) Matsubara loops scatter off the curved
potential energy surface, and would disappear in the limit M →∞ or if we used curvilinear
rather than Cartesian coordinates (see Chapter 4).

Based on these results, we conclude that an adiabatic separation of γ = 32 is sufficient
to get converged Matsubara spectra. The sign problem prevents us from further increasing
M to ascertain the convergence of the spectra with respect to the number of Matsubara
modes, but we can draw some conclusions from the temperature dependence of the spectral
features in Figure 3.4. On the left, in colour, are shown the MF Matsubara spectra calculated
at 300–600 K for M = 3 and at 200 K for M = 5. These are the highest values of M that
it was possible to converge. The grey dashed lines show the mean-field spectra for 600 K,
M = 1 (more intense), and 200 K, M = 3 (less intense). On the right are the results from the
analogous truncated Matsubara simulations.

The two sets of results show qualitatively different behaviour. Three-mode MF Matsubara
dynamics produces vibrational fundamentals with the same maximum absorption frequency
until the temperature drops to 200 K. At this point the three-mode result is shifted to the red;
increasing the number of modes to M = 5 causes the absorption maximum to move back
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Figure 3.4 Vibrational power spectra for the two-dimensional Morse potential in Eq. (3.22), calculated
with adiabatic MF Matsubara dynamics (left) and truncated Matsubara dynamics (right) at temperatures
between 200 and 600 K. The coloured solid lines were calculated using M = 5 at T = 200 K , and M = 3
at T ≥ 300 K . The two intense dashed peaks in grey are for T = 600 K, M = 1. The other two dashed
peaks are for T = 200 K, M = 3.

into alignment with the high-temperature results.4 In contrast, the truncated three-mode
Matsubara spectra steadily shift to the blue as the temperature is lowered, mirroring classical
simulations. Given that thermal energy is small compared to vibrational excitation energy,
we expect a temperature-independent absorption maximum, and MF Matsubara dynamics
is in line with this expectation. We take this as an indication that our mean-field dynamics
results are essentially converged with respect to M , unlike their truncated counterparts.

3.3.2 Comparison of path-integral approximations

In the top panel of Figure 3.5 we show the exact power spectra for the two-dimensional Morse
potential, calculated for temperatures between 200 and 800 K using the DVR due to Colbert
and Miller [25]. In this temperature range the thermal energy kBT is much smaller than
the separation between the vibrational energy levels, and so we expect the only vibrational
transition to be from the ground state to the first excited state. This is indeed the case, with
the stretch fundamental showing a temperature-independent maximum at 3588(1) cm−1.

The bottom three panels show the various approximations to the exact quantum spectra,
calculated using different path-integral methods. In the second panel we show the results
of mean-field Matsubara dynamics simulations, where the spectra at 200, 400, and 600 K are

4The maxima are at 3603, 3606, 3608, 3610, and 3611 cm−1 at 200–600 K.
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Figure 3.5 Exact power spectra
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potential in Eq. (3.22), compared
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shift that grows rapidly on de-
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the same as in Section 3.3.1 (M = 5, M = 3 and M = 3 respectively), and the spectrum at
800 K is from a CMD calculation (M = 1), which at this temperature is likely close to the
converged Matsubara result. Even with the convergence artefacts discussed in Section 3.3.1,
the Matsubara results in Figure 3.5 are in strikingly good agreement with the exact quantum
results across the entire 200–800 K range. Most importantly, the Matsubara vibrational peak
positions are correctly independent of temperature. The only difference is a 22 cm−1 blueshift,
which remains constant to within the sampling error,5 and a broadening of the vibrational
line shapes, which in part could be due to incomplete adiabatic separation, as suggested by
the comparison of the (adiabatic) MF Matsubara and (grid-based) CMD results at T ≥ 400 K.

5The blueshifts are 22, 22, 20, and 17 cm−1 at 800, 600, 400, and 200 K, with a 4 cm−1 error bar at 200 K.
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In the third panel we show the CMD spectra, which suffer from the well-known “curvature
problem” [85, 86], whereby the CMD vibrational peak shifts to the red as the temperature is
decreased. Two aspects of this behaviour are worth pointing out. First, as discussed previously,
the CMD peak at 800 K aligns with the Matsubara results at lower temperatures and is in very
close agreement with the exact quantum peak, except for the 22 cm−1 blueshift and a slight
broadening. For comparison, the classical peak at this temperature (not shown) is blueshifted
by about 105 cm−1 on account of zero-point energy violation, and is similarly broadened.
Second, the redshifting of the CMD peak increases gradually down to about 250 K, and the
line shape scarcely changes; below 250 K, the redshift increases dramatically (to 215 cm−1at
200 K), and the line shape broadens noticeably. We return to these two points in the next
section.

In the last panel of Figure 3.5 we show the spectra calculated using TRPMD with a PILE
thermostat (friction parameter λ = 0.5). As expected, TRPMD does very well in predicting
the position of the absorption maximum, which is correctly temperature-independent and
blueshifted relative to the exact quantum result by about 28 cm−1. Unlike in the Matsubara
spectra, the TRPMD peaks are significantly broadened, especially at the lower temperatures.
This effect is well-known and caused by the coupling of the centroid to the strongly ther-
mostatted non-centroid modes. We believe that the additional blueshift is also due to the
thermostat. In Chapter 5 we will see that both these effects are mitigated in coloured-noise
TRPMD proposed by Rossi et al. [84].

In summary, Matsubara dynamics spectra closely approximate the exact quantum result.
If we rule out the possibility of a long convergence tail in M changing the position of the
vibrational peak, the 22 cm−1 redshift and the slight narrowing of the quantum vibrational
peak are the only significant quantum coherence effects. Based on the position of this peak,
we can also infer that CMD agrees closely with Matsubara dynamics at 800 K, and gives a
reasonable approximation down to about 250 K. In this temperature range, the CMD redshifts
are small and can be corrected by releasing the |n| = 1 Matsubara modes from the mean field.
Below 250 K, the CMD redshift increases dramatically, with |n| = 2 modes required to correct
the redshift at 200 K. Further calculations (not shown) suggest that many more modes would
be required at lower temperatures. This parallel between the curvature problem in CMD
and the number of modes required to converge Matsubara dynamics is very suggestive and
prompts further investigation.
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Figure 3.6 The CMD mean-field force −dF (R0)/dR0 (red line) plotted on top of the corresponding
radial distribution function ∝ R0e−βF(R0) (shaded blue). The dotted vertical lines indicate the position
of the critical radius Rc given by Eq. (3.27). Note that Rc coincides with the onset of the flattening of
the force, and that the Boltzmann distribution overlaps Rc at 200 K.

3.3.3 Analysis of the curvature problem in CMD

To investigate why CMD breaks down rapidly below 250 K, we plot in Figure 3.6 the centroid
mean-field force −dF/dR0, R0 =

√
X̃2

0 + Ỹ 2
0 , at 600 and 200 K, and overlay this with the CMD

radial distribution function (RDF). As has been noted previously [85, 86], the force flattens for
R0 below a certain radius, and this radius increases as the temperature decreases. Figure 3.6
shows clearly why CMD breaks down below about 250 K: at 600 K the quantum Boltzmann
distribution is well separated from the flat region, but at 200 K the distribution starts to overlap
it.

It is easy to identify the origin of the flattening. Figure 3.7 shows the centroid-constrained
ring-polymer distribution at three points along a single trajectory at 600 and 200 K. The 200 K
trajectory is one of the 6% of trajectories that make it into the flat region at this temperature.
During the 600 K trajectory, the distribution moves as a relatively compact “blob”, stretching
slightly at the inner turning point as it pushes against the repulsive wall; the minimum-energy
ring polymer within the distribution is collapsed onto a point at the centroid. During the
200 K trajectory, by contrast, the distribution smears out at the turning point, where the
minimum-energy ring polymer has a delocalised geometry. Since this geometry is an extremal
point on the ring-polymer potential energy surface, subject to the centroid constraint, the
path followed by the beads corresponds to a periodic orbit on the inverted potential energy
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surface subject to a time-averaged constraint. In other words, the centroid constraint in CMD
gives rise to artificial instantons below 250 K.

t = 0.0 fs t = 2.9 fs t = 4.8 fs

t = 0.0 fs t = 2.3 fs t = 5.0 fs

T = 600 K

T = 200 K

Figure 3.7 Snapshots of CMD trajectories on the Morse potential of Eq. (3.22), shown as a black
contour plot with r = req indicated with a dotted line. The centroid-constrained bead distributions are
shown in red and the corresponding minimum-energy ring-polymer configurations are in blue. The
initial configurations for the trajectories were taken from a short thermostatted PIMD simulation, and
were chosen to have extremely short, but thermally accessible, inner turning points. Note the artificial
instanton in the 200 K trajectory at t = 5.0 fs.

We can make analogies with instanton formation in quantum rate theory [13, 79, 105–107]
to understand what is happening at lower temperatures. In rate theory, instantons form below
a cross-over temperature; in the centroid mean-field dynamics considered here, it is more
convenient to first define a “cross-over radius” Rc. By minimising the ring-polymer energy
subject to the centroid constraint, one can show that (see Appendix A.5)

Rc = − 1
mω̃2

1

dV
dr

�����
r=Rc

. (3.27)

The values of Rc at 600 and 200 K are shown in Figure 3.6, and are generally found to coincide
with the onset of the flat region of the centroid force. For R0 < Rc, the potential is sufficiently
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curved that a centroid-constrained ring polymer can minimise its energy by stretching and
moving radially outwards, following an approximately parabolic curve that cuts through
the circular potential energy surface. For R0 > Rc, the potential is not sufficiently curved
for the ring polymers to lower their energy by cutting through the potential, hence the
minimum-energy configuration is collapsed to a point at the centroid.

Given the dependence of the critical radius on temperature, quantum Boltzmann statistics
can respond to the curvature of the potential in two distinct ways, giving rise to “shallow
curvature” and “deep curvature” regimes, which are loosely analogous to the “shallow tun-
nelling” and “deep tunnelling” regimes in quantum rate theory [79]. Above the cross-over
temperature (250 K in our model), the critical radius is not thermally accessible, and the
ring-polymer distribution fluctuates about the centroid. Hence the repulsive part of the
mean-field potential is only softened slightly. Below the cross-over temperature, the critical
radius becomes thermally accessible and gives rise to artificial instantons in the dynamics.
The ring-polymer distribution at the inner turning point now fluctuates about the artificial
instanton instead of the centroid, drastically softening the mean-field potential. This explains
why CMD gives a reasonable approximation to Matsubara dynamics above the cross-over
temperature, but a poor one below it. Although tested on a simple model, we expect this
result to generalise, and for it to be possible to estimate the cross-over temperature in bulk
systems by searching for centroid-constrained instantons.



Chapter 4

Quasicentroid molecular dynamics

4.1 Introduction

In the previous chapter we showed that a mean-field approximation to the Kubo-transformed
time-correlation function can produce accurate results, provided that the mean-field distribu-
tion is centred on the dynamical coordinate. The reason for Centroid Molecular Dynamics
(CMD) breaking down at low temperatures is that its choice of coordinate allows artificial
instantons to form, causing the mean-field distribution to fluctuate about these delocalised
structures rather than the centroid (“the curvature problem”). Treating CMD as a special
single-mode case of mean-field Matsubara dynamics, we can overcome this by releasing more
normal-mode coordinates from the mean field. This works as a proof of concept, but does
not constitute a practical solution to the curvature problem, since non-centroid modes (or
any linear combination thereof) introduce a phase factor into the Boltzmann distribution,
creating a sign problem and rendering the calculation of converged time-correlation functions
unfeasible in all but the smallest systems. In light of this, we set out to formulate a theory of
mean-field approximations to the quantum KTCF in curvilinear coordinates, hoping that this
can yield a phase-free dynamics that is based on ring-polymer distributions that are compact
about the dynamical coordinate.

4.2 Derivation

We begin by deriving the mean-field approximation for a general set of curvilinear coordinates
in Section 4.2.1. There, we give the sufficient conditions for the corresponding dynamics to be
real and phase-free, and therefore not affected by the sign problem. In Section 4.2.2 we give a
particular example of curvilinear coordinates that satisfy these conditions, and discuss some
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approximations to the their exact equations of motion. These approximations enable the
practical implementation of a new method, which we call Quasicentroid Molecular Dynamics
or QCMD.

4.2.1 General curvilinear coordinates

Consider a set of curvilinear coordinates that are related to the Matsubara modes by a canonical
transformation [1],

ξk = ξk(Q̃M), P̃ |n|≤µ =
M∑

k=1

∂ξk

∂Q̃n
πk, (4.1)

where k = 1 . . . M . For the sake of brevity, we will drop the subscript M in X̃M and assume
that X̃ always refers to the set of modes with |n| ≤ (M − 1)/2 ≡ µ. In terms of these
coordinates, the mean-field Matsubara Hamiltonian in Eq. (3.13) is

HM(π, ξ) = 1
2π
⊤G−1π + FM(ξ), (4.2)

where we introduce the metric tensor [89]

Gkl =
∑

n

∂Q̃n

∂ξk

∂Q̃n

∂ξl
(4.3)

and use mass-weighted coordinates throughout. Expressed in these coordinates, the Matsubara
phase is

θM(π, ξ) =
∑
|n|≤µ

ω̃nQ̃nP̃n =

M∑
k=1

(∑
|n|≤µ

ω̃nQ̃n
∂ξk

∂Q̃n

)
πk = c⊤π, (4.4)

where the components of the vector c are defined by the sum in brackets, and where we adopt
the shorthand notation n ≡ −n. Defining a new set of variables

π = π − iGc, (4.5)

the exact quantum partition function can be written as

Z =
1

(2π~)M
∫

dMξ

∫
dMπ e−βHM (π,ξ), (4.6)
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where

HM(π, ξ) = 1
2π
⊤G−1π + FM(ξ) + 1

2c
⊤Gc, (4.7)

which does not appear to contain a complex phase. In reality, the phase is now part of
the complex momenta π, and the sign problem persists. For the partition function this can
be overcome by shifting the integration contour onto the real axis, making π real. Then
HM becomes precisely the RPMD Hamiltonian that has been mean-fielded over the non-
Matsubara modes, with the last term in Eq. (4.7) being the spring energy in Eq. (3.10), expressed
in curvilinear coordinates.

Repeating the same procedure for the time-correlation function in Eq. (3.12) does not
solve the sign problem: analytically continuing the dynamics in this way makes it complex,
as previously shown by Willatt et al. [82, 88]. Despite this, we may be able to obtain a real,
phase-free dynamics if we apply a mean-field approximation to some of (π, ξ). Let us divide
the curvilinear coordinates into two sets, so that ξ = (ξa ξb) and π = (πa πb). We mean field
the Matsubara Liouvillian in Eq. (3.8) over (πb, ξb), to get a new operator

LMF(πa, ξa) =
∫

dMπ′
∫

dMξ′ e−βHM (π ′,ξ ′) δ(ξ′, ξa) δ(π′, πa) L̂MF(π′, ξ′)∫
dMπ′

∫
dMξ′ e−βHM (π ′,ξ ′) δ(ξ′, ξa) δ(π′, πa)

, (4.8)

with

δ(ξ′, ξa) =
∏
k∈a

δ
(
ξ′k − ξk

)
, (4.9)

and an analogous definition for δ(π′, πa). The Matsubara Liouvillian can be written as

L̂MF = La + Lb, (4.10)

where La acts only on set a and will become the operator LMF upon mean-fielding, whereas
Lb acts only on set b and can be discarded. We show in Appendix B.1 that

La =
∑
k∈a

{(
G−1π

)
k
∂

∂ξk
+

M∑
j=1

c j
∂(Gc)k
∂ξ j

∂

∂πk
−

[
∂FM

∂ξk
+

1
2π
⊤ ∂G−1

∂ξk
π +

1
2c
⊤∂G
∂ξk

c
]

∂

∂πk

}

+ i
∑
k∈a

{
ck

∂

∂ξk
+

M∑
j=1

(
G−1π

)
j

[(
∂G
∂ξk

c
)

j
−

(
∂Gc
∂ξ j

)
k

]
∂

∂πk

}
. (4.11)
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We can make the first term in the imaginary part of the Liouvillian vanish by requiring that
ck∈a = 0. Note that

ck =
∑
|n|≤µ

ω̃nQ̃n
∂ξk

∂Q̃n
= −

∑
|n|≤µ

dQ̃n

dτ
∂ξk

∂Q̃n
= −dξk

dτ , (4.12)

where τ is imaginary time, and the derivative dQ̃n/dτ is defined in Eq. (B.6). Therefore
enforcing the condition ck∈a = 0 is equivalent to making all ξk∈a invariant under imaginary-
time translation. In Appendix B.2.2 we prove that it is possible to make all of ξ satisfy this
property, except for a single coordinate ξτ , which instead satisfies

∂Q̃n

∂ξτ
= α

dQ̃n

dτ = −αω̃nQ̃n, (4.13)

where α is a proportionality constant, so that

ck = −dξk

dτ = −α
−1 ∂ξk

∂ξτ
=



−α−1 if ξk ≡ ξτ,
0 otherwise.

(4.14)

We also prove that each of the coordinates in such a symmetrised set is either symmetric (Σ+)
or antisymmetric (Σ−) with respect to imaginary-time reversal, τ → −τ. Choosing all of ξk∈a

to be Σ+ (see Appendix B.2.3) causes the imaginary terms in the Liouvillian to vanish under
mean-fielding, giving

LMF(πa, ξa) = { · ,HMF} =
∑
k∈a

∂HMF
∂πk

∂

∂ξk
− ∂HMF

∂ξk

∂

∂πk
(4.15)

where

e−βHMF(πa,ξa) =
1

(2π~)b
∫

dMπ′
∫

dMξ′e−βHM (π,ξ) δ(ξ′, ξa) δ(π′, πa)

= lim
N→∞

1
(2π~)N−a

∫
dNp

∫
dNq e−βN HN (p,q) δ(q, ξa) δ(p, πa), (4.16)

with HN (p, q) denoting the ring-polymer Hamiltonian in Eq. (2.29). In the final line we rely on
the fact that the free energy HMF(πa, ξa) is a static property, and must therefore be the same
in the limit M →∞, regardless of whether the curvilinear coordinates (πa, ξa) are defined
in terms of all the normal modes or are restricted to the Matsubara space. This allows us to
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re-express the variables in terms of the bead coordinates, with

δ(q, ξa) =
∏
k∈a

δ
(
ξ′k(q) − ξk

)
(4.17)

and

δ(p, πa) =
∏
k∈a

δ

( N∑
l=1

∂ql

∂ξk
pl − πk

)
. (4.18)

The exact KTCF is then approximated by

C [a]AB (t) =
1

(2π~)a
∫

daπa

∫
daξa e−βHMF(πa,ξa)A(ξa)eLMF(πa,ξa)t B(ξa), (4.19)

where A(ξa), B(ξa) are some suitably chosen estimators. From Eq. (4.15) we see that the
corresponding dynamics is real, classical, and conserves the mean-field quantum Boltzmann
distribution.1 Crucially, it does not suffer from the sign problem and should therefore be
computationally tractable, provided that the derivatives of the Hamiltonian in Eq. (4.15) are
available. In the next section we discuss how this can be achieved in practice for a particular
set of curvilinear coordinates.

4.2.2 Polar quasicentroids

One set of coordinates that are invariant under imaginary-time translation and reversal
are the Cartesian centroids Q̃0. They are key to the CMD method, and form a good basis
for the mean-field approximation of quantum TCFs so long as the mean-field ring-polymer
distribution fluctuates about Q̃0. We have seen in Chapter 3 that this is not always the case
on curved potential energy surfaces, where the distribution can instead fluctuate about a
delocalised instanton. This causes the quality of the mean-field approximation to deteriorate
and leads to the curvature problem. Rather than using Cartesian centroids, which are the
averages of Cartesian coordinates,

X̃0 =
1
N

N∑
l=1

xl Ỹ0 =
1
N

N∑
l=1

yl, (4.20)

1We have shown this for a one-dimensional system, but can easily generalise.
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we can instead consider the averages of polar coordinates,

R =
1
N

N∑
l=1

rl Θ =
1
N

N∑
l=1

θl, (4.21)

defined here for a two-dimensional system, so that2

rl =

√
x2

l + y
2
l θl = tan−1(yl/xl). (4.22)

Clearly these coordinates have Σ+ symmetry, and so their mean-field dynamics must be
real and phase-free. Furthermore, on the potential energy surfaces considered here, it is
impossible for a ring polymer constrained at an average radius and angle to lower its energy
by stretching into an instanton (see Appendix B.3.1). This ensures that the coordinates (R,Θ)
always describe the centre of the ring-polymer distribution, rather than its approximate focal
point. The exact mean-field Hamiltonian associated with these coordinates is given by

e−βHMF(πR,πΘ,R,Θ) = N
(

m
2πβN~2

)N−1∫
dNr′

∫
dNθ′

× J(r′)
ρ(r′)e

−β[T(πR,πΘ,ρ(r′))+WN (r′,θ ′)]δ(R′ − R)δ(Θ′ − Θ),
(4.23)

where we have integrated the momenta analytically (see Appendix B.3.2), and defined

T(πR, πΘ, ρ) =
π2

R

2m
+

π2
Θ

2mρ2 , ρ(r) =
(

1
N

N∑
l=1

r2
l

)1/2
, J(r) =

N∏
l=1

rl . (4.24)

In principle, we could now use Eq. (4.15) to set up the equations of motion for R and Θ.
However, standard numerical integrators rely on the Hamiltonian being separable [46], and so
we would like to write HMF as a sum of a kinetic energy that depends only on the momenta,
and a potential energy that depends only on the positions. To do this, we introduce the
Cartesian coordinates

Qx = R cosΘ Qy = R sinΘ. (4.25)

In general, Q , Q̃0 due to the non-linear relation between bead Cartesian and polar coordi-
nates. However, it is easy to show that Q ≃ Q̃0 if the distribution is reasonably compact, and
that Q→ Q̃0 in the high-temperature limit. We will therefore refer to Q as the position of the

2The branch cut in tan−1 is chosen so that all the beads lie on the same branch.
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“quasicentroid”. We can express the mean-field kinetic energy in terms of the quasicentroid
momenta if we approximate the moment of inertia 2mρ2 by 2mR2, giving

T(πR, πΘ, ρ) ≃
π2

R

2m
+

π2
Θ

2mR2 =
|P|2
2m

, (4.26)

which factorises out of the integral in Eq. (4.23). For consistency, we also make the substitution
ρ(r) → R in the remaining factor, which defines the mean-field potential energy FMF.
On expanding its gradient ∇QFMF it appears that the mean-field forces have significant
contributions from the springs SN (r, θ), in contrast to the centroids in CMD. In fact, we show
in Appendix B.3.3 that the spring forces are cancelled almost exactly by contributions from
the Jacobian J(r), so we can make the approximation

∂FMF

∂Q
≃ 1

Z(Q)

〈
∂VN (q)
∂Q

〉
(R,Θ)
, (4.27)

where

⟨· · ·⟩(R,Θ) ≡ N
(

m
2πβN~2

)N−1∫
d2Nq′ (· · ·) e−βWN (q′) δ(R′ − R) δ(Θ′ − Θ), (4.28)

and Z(Q) = ⟨1⟩(R,Θ). A similar approximation in Chapter 5 will allow us to calculate mean-
field forces in more complicated systems. Combining Eqs. (4.26) and (4.27) we get the QCMD
time-correlation function, which in two dimensions reads

CAB(t) = 1
(2π~)2

∫
d2P

∫
d2Q e−βH(P,Q)A(Q)B(Qt), (4.29)

with

H(P,Q) = |P|2/2m + F(Q), (4.30)

where F(Q) ≃ FMF(Q) is the free energy obtained by doing work with the approximate force
in Eq. (4.27), and Qt is the quasicentroid configuration that has been propagated for time t

according to

ÛQ = P/m, ÛP = −∇F(Q). (4.31)

In the next section we test how well this approximation works for the quantum TCFs of a
two-dimensional model system.
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4.3 The two-dimensional Morse potential

We consider the Morse potential of Section 3.3 and use QCMD to calculate the power spectrum
defined in Eqs. (3.23) and (3.24). We compare our results to the outcomes of CMD simulations,
which only approximate the dynamics, but conserve the exact quantum Boltzmann distribution
and use the exact position and velocity estimators. QCMD replaces the exact mean-field
Hamiltonian with the one defined in Eq. (4.30) and substitutes (P,Q) for the exact estimators
(̃P0, Q̃0). We thus expect QCMD to be less accurate than CMD when the temperature is high
enough to neglect the curvature problem. However at lower temperatures, where it cannot
be neglected, we expect the better treatment of the dynamics by QCMD to far outweigh the
small errors in the Boltzmann distribution.
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Figure 4.1 Simulated vibrational
power spectra for the Morse potential
in Eq. (3.22). The spectra in the first
and third panel (exact and CMD) are
the same as in Figure 3.5. The QCMD
spectra in the second panel are new
and show an OH-stretch peak (around
3600 cm−1) that maintains its shape
and, to a large extent, its position
as the temperature is lowered from
800 to 200 K. Overall the absorption
maximum (dotted line) only shifts
by about 15 cm−1. This is in contrast
to CMD, for which the OH stretch
shifts by over 200 cm−1and noticeably
broadens as the temperature is
lowered.

To run the QCMD simulations, we first calculate the mean-field forces in Eq. (4.27). Because
the Morse potential is centrosymmetric, the corresponding estimator takes the form

−∂VN (q)
∂Q

=
Q
R

fR(q), (4.32)
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where

fR(q) ≡ −
∂VN (q)
∂R

= − 1
N

N∑
l=1

ql

rl
· ∇V(ql), (4.33)

which does not depend on Θ. It is therefore sufficient to calculate ⟨ fR(q)⟩(R,Θ) on a one-
dimensional grid in R, using standard PIMD [50] and imposing the quasicentroid constraints
with SHAKE/RATTLE [50, 108–110]. Further simulation details can be found in Appendix B.4.

The simulated spectra (Figure 4.1) are in excellent agreement with the exact quantum
results at all temperatures tested, with no sign of a curvature problem. Figure 4.2 makes a
close comparison of the QCMD OH-stretch band with the mean-field Matsubara results of
Section 3.3. We see that the QCMD peaks have small (≈10 cm−1) blueshifts with respect to
the Matsubara peaks. The shifts change slightly with temperature, ranging from 14 cm−1 at
800 K to 6 cm−1 at 200 K. This variation appears to be the result of small differences in the
line shape, rather than an underlying curvature problem. It may also partly stem from the
convergence artefacts in the Matsubara results.
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Figure 4.2 A zoomed-in view
of the QCMD spectra in the
OH-stretch region, overlaid with
the mean-field Matsubara spectra
(black lines) from the second panel
of Figure 3.5.

As expected, the QCMD distributions show no artificial instantons (see Figure 4.3), always
remaining compact about the quasicentroid. Alternatively, we can say that the quasicentroid
is always representative of the mean-field bead distribution, residing at or near its mode.3 This
is precisely the property that we have singled out as crucial for the accuracy of a mean-field
approximation, and our results give further support to this idea. Even as we attempt to
push QCMD to its limits by reducing the simulation temperature to 50 K, the ring-polymer
distribution remains compact, and the agreement of QCMD with the exact quantum spectrum

3Here “mode” is meant in a statistical sense, and not as in “normal mode”.
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t = 0.0 fs t = 2.9 fs t = 4.9 fs

Figure 4.3 Snapshots of a 200 K QCMD trajectory on the Morse potential of Eq. (3.22), shown as a black
contour plot with r = req indicated with a dotted line. The quasicentroid-constrained bead distribution
is drawn in red and the corresponding quasicentroid is in blue. The initial configuration was taken
from a thermalised QCMD trajectory, and chosen to have an extremely short, yet thermally accessible,
inner turning point. Note that the bead distribution remains compact about the quasicentroid, in
contrast to the 200 K CMD trajectory in Figure 3.7.

is as close as at the higher temperatures shown in Figure 4.1. This suggests that QCMD
continues to give a good approximation to Matsubara dynamics down to 50 K, where we are
unable to compute the Matsubara spectrum due to the severity of the sign problem.

Given the excellent agreement of the QCMD and Matsubara spectra, we expect that the
approximations QCMD makes to the quantum Boltzmann distribution and the estimators are
relatively small. This can be tested by comparing QCMD static averages with the results of
exact quantum calculations. We find that the QCMD expectation values of the bond length
are in perfect agreement with the exact values (to within sampling error) at all temperatures
tested. The largest error in the t = 0 limit of the dipole autocorrelation function is 2% at 200 K,
and the dipole-derivative autocorrelation function is exact at t = 0 by construction. Overall,
this confirms that the additional approximations made by QCMD do not have a significant
effect, and encourages us to apply the new method to more complicated systems.



Chapter 5

Vibrational dynamics of water

5.1 Implementation

In the previous chapter we introduced Quasicentroid Molecular Dynamics (QCMD)—a new
path-integral method based on the mean-field dynamics of curvilinear centroids. We have
shown that QCMD produces remarkably accurate approximations to Matsubara dynamics
spectra of a two-dimensional model system. Now we will use QCMD to simulate the vi-
brational dynamics of more complex systems, namely a single (gaseous) water molecule
described by the Partridge–Schwenke potential [111, 112], and a box of water molecules in the
condensed phase (96 molecules for ice, 128 for liquid), described by the q-TIP4P/F potential
[11]. To do this, we define a new set of quasicentroid coordinates, suitable for a bent triatomic
molecule, and introduce some further approximations that allow us to calculate the mean-field
forces on the fly.

5.1.1 Quasicentroid coordinates

To describe a single water molecule we need nine coordinates, which should ideally give rise
to compact mean-field distributions. By analogy with Section 4.2.2, we define three of them
to be the bond-angle centroids

R1 =
1
N

∑
l

rl1, rl1 =
��q(OH1)

l

��, R2 =
1
N

∑
l

rl2, rl2 =
��q(OH2)

l

��, (5.1a)

Θ =
1
N

∑
l

θl, θl = arccos
[
q(OH1)

l · q(OH2)
l

rl1rl2

]
, (5.1b)
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where q(OH1,2)
l = q(H1,2)

l − q(O)l are the displacement vectors between the oxygen and hydrogen
atoms in the l-th water molecule replica (l = 1 . . . N).

A further six coordinates are needed to specify the centre of mass (CoM) and the orientation.
For this we take inspiration from molecular spectroscopy, where such external degrees
of freedom are defined using the Eckart frame. This relates the instantaneous molecular
configuration to a reference geometry—usually the equilibrium structure [113, 114]. In our
“Eckart-like” frame, the instantaneous configuration is that of the ring polymers describing a
water molecule, and the “reference” is given by the corresponding quasicentroids. These are
oriented so as to satisfy the conditions

∑
α,l

mα(q(α)l − Q
(α)) = 0, (5.2a)

∑
α,l

mαQ
(α) × (q(α)l − Q

(α)) = 0, (5.2b)

where Q
(α) are the atom quasicentroids with α = (H1,H2,O). It is easy to show that these

conditions are equivalent to
∑
α

mα(Q̃(α)0 − Q
(α)) = 0, (5.3a)

∑
α

mαQ
(α) × (Q̃(α)0 − Q

(α)) = 0, (5.3b)

where Q̃
(α)
0 are the atom centroids. Unlike the internal (bond-angle) coordinates, the external

coordinates are defined implicitly. We can get an explicit form for the quasicentroid CoM
coordinate from Eq. (5.2a), or, equivalently, Eq. (5.3a); namely, we can show that it is equal
to the centroid centre of mass. We cannot easily get an explicit form for the orientational
coordinate, but can describe some of their properties. In particular, it can be shown that
enforcing the orientational Eckart condition in Eqs. (5.2b) and (5.3b) has the effect of rotating
the molecule so that the sum

∑
α,l

mα |q(α)l − Q
(α) |2

or, equivalently, ∑
α

mα |Q̃(α)0 − Q
(α) |2,
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is minimised [115, 116]. Therefore, according to our definition, the quasicentroid configuration
of a ring-polymerised water molecule has the internal coordinates given by Eq. (5.1), shares
its centre of mass with the ring-polymerised molecule, and is oriented so as to minimise the
mass-weighted sum of square distances between the quasicentroids and the corresponding
replica atoms (or, equivalently, their centroids).

Figure 5.1 A typical ring-polymer geometry
from a QCMD water simulation at 150 K, show-
ing how the quasicentroids defined using the
Eckart-like conditions are oriented so that the
atom centroids (red) almost coincide with the
atom quasicentroids (blue).

The Eckart-like conditions thus ensure that the quasicentroid-constrained ring-polymer
distribution is compact with respect to the orientational degrees of freedom, and that the
atom centroids and quasicentroids are usually very close (see Figure 5.1).

5.1.2 Quasicentroid forces

To calculate the quasicentroid forces we make use of the two approximations in Section 4.2.2.
We first assume that the kinetic energy of the Cartesian quasicentroids is separable, so that

ÛQ(α) = P
(α)/mα, (5.4)

where P
(α) is the Cartesian quasicentroid momentum of atom α, and mα is its mass. Next

we assume that the quasicentroid forces derived from the ring-polymer springs and the
transformation Jacobian average to zero, so that

ÛP = −∂FMF

∂Q
≃ 1

Z(Q)

〈
−∂VN (q)

∂Q

〉
Q

, (5.5)

where

⟨· · ·⟩Q =
∫

dq′ (· · ·) e−βWN (q′)δ(Q′ − Q), (5.6)

and Z(Q) = ⟨1⟩Q̃. To get an expression for −∂VN (q)/∂Q we introduce bond-angle coordinates
for each of the water-molecule replicas. These are the rl1, rl2, and θl defined in Eq. (5.1). To
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complete the set we define the centre-of-mass coordinates

q(c)l =

(∑
α

mαq
(α)
l

)/ (∑
α

mα

)
, (5.7)

and the orientational coordinates ωl , which we leave unspecified. For a given molecule, its
l-th replica experiences a centre-of-mass (CoM) force

f (c)l = −
∂V(q)
∂q(c)l

= −
∑
α

∂V(q)
∂q(α)l

. (5.8)

The replica also experiences a torque about its centre of mass,

τ(c)l = −
∂V(q)
∂ωl

= −
∑
α

(
q(α)l − q

(c)
l

) × ∂V(q)
∂q(α)l

. (5.9)

The Cartesian forces acting on atom α of this replica can be written as

−∂V(q)
∂q(α)l

= f (α)int,l + mα

[
f (c)l

mtot
+

(
I−1
l τ(c)l

)
×

(
q(α)l − q

(c)
l

)]
, (5.10)

where Il is the inertia tensor about q(c)l [89, pp. 950–951]. The first term in square brackets
is the atom’s contribution to the net CoM force. The second term is its contribution to the
rotational force about the CoM. The remainder f (α)int,l is its contribution to the internal forces,
which act to distort the molecule but contribute no net CoM force or torque. From these we
can isolate the forces on the bond lengths rlk (k = 1, 2),

f (rk )l =
q(OHk )

l

rlk
· f (Hk )

int,l , (5.11)

and the bond angle θl ,

f (θ)l =
rl1

sin θl

(
q(OH1)

l

rl1
cos θl −

q(OH2)
l

rl2

)
· f (H1)

int,l . (5.12)

In the absence of an external torque, the corresponding internal quasicentroid forces are just
the averages

f
(Rk )
=

1
N

N∑
l=1

f (rk )l f
(Θ)
=

1
N

N∑
l=1

f (θ)l . (5.13)
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When there is a net torque acting on the molecule, this remains a good approximation, as the
Eckart conditions in Eq. (5.2) minimise the coupling between the vibrational and rotational
coordinates [114]. Converted to Cartesian representation, Eq. (5.13) becomes

f
(Hk )
int =

Q
(OHk )

Rk
f
(Rk )
+

1
Rk sinΘ

(
Q
(OHk )

Rk
cosΘ − Q

(OHj )

Rj

)
f
(Θ) (5.14a)

f
(O)
int = −

(
f
(H1)
int + f

(H2)
int

)
, (5.14b)

where (k, j) = (1, 2) or (2, 1). For the external forces, the CoM component is also a simple
average,

f
(c)
=

1
N

N∑
l=1

f (c)l . (5.15)

The same is not true for the rotational component, but in the absence of an explicit expression
for the orientational quasicentroid coordinate we nonetheless approximate the corresponding
torque as

τ(c) ≃ 1
N

N∑
l=1

τ(c)l . (5.16)

Substituting the quasicentroid coordinates and forces from Eqs. (5.14) to (5.16) into Eq. (5.10)
gives the final expression for −∂VN (q)/∂Q.

Note on the quasicentroid torque The approximation we made in Eq. (5.16) is somewhat
crude and leads to low-frequency artefacts in simulated infrared absorption spectra (see
Section 5.3). We have since devised a different approximation, which gives the quasicentroid
torque as the solution to

MI−1τ =
∑
α

[
f
(α)
int × D̃

(α)
+
∂VN (q)
∂Q̃
(α)
0

× D(α)
]
, (5.17)

where D
(α) and D̃

(α) denote the (quasi-)centroid coordinates in the CoM frame, and I is the
quasicentroid inertia tensor about the centre of mass. The matrix M is given by

Mj k =
∑
α

mα

{(
D
(α)· D̃(α))δ j k − D

(α)
j D̃

(α)
k

}
, (5.18)
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as derived in Appendix C.1. At the time of writing, this expression was still undergoing
numerical testing and showing great promise based on preliminary results from simulations
of q-TIP4P/F liquid water at 300 K [117].

5.1.3 Adiabatic propagator

In Section 4.3 of the previous chapter and in Section 5.2 of this chapter we apply QCMD to
systems that are small enough for the mean-field quasicentroid forces to be pre-calculated on
a grid. To apply QCMD to larger systems, we will adapt the adiabatic CMD (ACMD) algorithm
used in previous work to calculate the mean-field centroid force on the fly [104, 118, 119].
As discussed in Chapter 3, ACMD achieves adiabatic separation by making the non-centroid
modes move on a faster timescale, scaling their masses and frequencies as

mn = m → mn = m
(
β~ωn

γN

)2
ωn → ωn =

γN
β~

(5.19)

where γ is the “adiabaticity parameter”. The time-averaged forces on the centroid tend to
their exact mean-field value in the limit as γ →∞ [104], although relatively small values of
γ are sufficient to produce converged rovibrational spectra. For example, a value of γ = 64
gives a good approximation to CMD in gas-phase water at 150 K.

It is possible to modify ACMD to adiabatically separate the motion of the quasicentroids
from that of the other degrees of freedom. As part of this, we need to address the fact that
QCMD does not explicitly define the “non-quasicentroid” modes, and even if it did, the RPMD
Hamiltonian expressed in such coordinates would not be separable [46]. Therefore we cannot
achieve adiabatic separation by rescaling the masses of a subset of the ring-polymer degrees
of freedom. Instead, we modify all of the masses, scaling the centroid mass by γ−2 and
the non-centroid masses by the factor in Eq. (5.19). Alongside the mass-scaled (“fast”) ring-
polymer system we introduce a second (“slow”) system that consists of the quasicentroids with
unmodified physical masses. The two systems are propagated in parallel using a modification
of the constrained integrator due to Leimkuhler and Matthews [110]. A propagation step
begins with the thermostatting of the momenta:

O1. Propagate the quasicentroid momenta P for half a time step (∆t/2) under the action of
a Langevin thermostat.

O2. Propagate the bead momenta p for ∆t/2 under the path-integral Langevin (PILE) ther-
mostat [92], followed by RATTLE [109] to constrain the quasicentroid components.
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The momenta are then updated according to the forces acting on the system:

B1. Propagate P for ∆t/2 under the quasicentroid forces.

B2. Propagate p for ∆t/2 under the forces derived from the ring-polymer potential WN (q),
followed by RATTLE.

Then, the positions are updated:

A1. Propagate the quasicentroid positions Q for a full time step ∆t according to the current
values of the momenta P.

A2. Propagate the bead positions q for ∆t according to the current values of p, followed by
SHAKE [108], which constrains the ring-polymer geometry to be consistent with the
quasicentroid configuration Q at the end of step A1.

The propagation step is concluded by executing B1–B2 using the forces evaluated at the
updated positions, followed by O1–O2. A useful feature of this algorithm is that it requires
explicit forces only on the quasicentroids (B1) and the bead coordinates (B2), but does not
require explicit forces on the non-quasicentroid modes. This new adiabatic QCMD (AQCMD)
algorithm reduces to ACMD in the special case that the “quasicentroid coordinate” is the ring-
polymer centroid, which leads us to suppose that the two algorithms have similar convergence
properties.

5.2 Gaseous water

Given the quasicentroid coordinates and forces in Sections 5.1.1 and 5.1.2, we can now perform
a QCMD simulation of gaseous water. We haven chosen the Partridge–Schwenke potential to
describe the internal forces [111], together with the corresponding dipole-moment function
[112] to calculate the infrared absorption spectrum.

There are no external forces acting on the water molecules in our simulations, so in the
notation of Eq. (5.10), −∂V(q)/∂q(α)l = f (α)int,l. The mean-field averages of the internal forces
expressed in terms of ξ = (ξ1, ξ2, ξ3) = (R1, R2,Θ) depend only on these coordinates, and not
on the position of the centre of mass or the molecular orientation. We may therefore write

⟨. . .⟩ξ =
1

z0(ξ)
∫

dq′ e−βWN (q′)(. . .) δ(ξ′− ξ),

z0(ξ) =
∫

dq′e−βWN (q′) δ(ξ′− ξ),
(5.20)
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where (. . .) are the f
(R1)
, f
(R2)
, and f

(Θ) defined in Eqs. (5.11) to (5.13). We pre-calculate the
mean-field averages on a grid and convert them into Cartesian representation as per Eq. (5.14).
Using cubic splines to interpolate between grid points, we propagate an ensemble of QCMD
trajectories subject to these mean-field forces, and calculate the ACF

Cµµ(t) = 1
(2π~)9

∫
dP

∫
dQ e−βH(P,Q) µ(Q) · µ(Qt), (5.21)

with

H(P,Q) =
∑
α

[
P
(α)]2/2mα + F(Q), (5.22)

where F(Q) is the free energy obtained by doing work with the approximate mean-field
forces. As in Sections 3.3 and 4.3, we damp the TCF before calculating its Fourier transform,
this time using a Hann window [98] of width w = 750 fs [see Eq. (C.9)]. This produces the
QCMD IR absorption spectrum, which we compare to the corresponding exact quantum,
CMD, and TRPMD simulation results. The exact spectra are calculated using the DVR3D
package of Tennyson et al. [120], and the path-integral results are obtained using standard
PIMD techniques, as detailed in Appendix C.3. A comparison with Matsubara dynamics is
not possible because the sign problem is too severe.

From Figure 5.2, we see that QCMD works extremely well for gas-phase water. The
overall agreement with the exact quantum results is excellent, even at 150 K, where there
is again no sign of a curvature problem. There are small differences between the QCMD
and quantum spectra: the QCMD bend (≈1600 cm−1) and stretch (≈3800 cm−1) have different
internal structures from those in the exact spectrum, and the stretch is blueshifted by about
60 cm−1. The main cause of these differences is most likely the neglect of quantum coherence
by QCMD. Note that the positions of the TRPMD bands are very close to those of the QCMD
bands, implying that, as expected, TRPMD gives a good description of the short-time dynamics
of gas-phase water.

As in the two-dimensional model, the gas-phase water QCMD distributions remain com-
pact at inner turning points because there are no quasicentroid-constrained instantons. Fig-
ure 5.3 compares the distributions at inner turning points of an “extreme” QCMD and CMD
trajectory at 150 K. As in the two-dimensional case, the QCMD distribution remains localised,
whereas the CMD distribution spreads around a centroid-constrained instanton. This arte-
fact breaks the approximate axial symmetry around the OH bond, causing the mean-field
ring-polymer distribution to become bimodal (“banana-shaped”).



5.2 Gaseous water 57

0.0

5.0

×10−4

0.0

5.0

0.0

5.0

0.0

5.0

ω [cm−1]

N
(ω
)[

a.
u.
]

QM

600 K 300 K 150 K

QCMD

CMD

0 400 1200 1600 2000 3200 3600 4000

TRPMD

Figure 5.2 Simulated rovibra-
tional absorption spectra for
gaseous water, obtained after
damping the time-correlation
function with a 750 fs Hann win-
dow. The QCMD results were cal-
culated using the bond-angle cen-
troids of Section 5.1.1, and show
good agreement with the exact
quantum results (QM), with no
sign of the redshift and broad-
ening seen in the CMD stretch.
Note that the absorption intensi-
ties are scaled by a factor of 4.5
for ω > 1200 cm−1.

To assess the magnitude of the approximations that QCMD makes to the exact quantum
Boltzmann distribution, we once again consider the thermal averages of some static properties.
Comparison of the average QCMD OH bond lengths with those obtained using standard
PIMD shows very small differences (0.1% at 150 K), indicating that, as for the two-dimensional
model, the approximate distribution in Eq. (5.22) is very close to the exact quantum Boltzmann
distribution. Note that, since the Partridge–Schwenke dipole moment is non-linear [112],
neither CMD nor QCMD are exact in the t → 0 limit for the quantum KTCF [16, 104], and
that both methods neglect the Matsubara fluctuation terms necessary to completely describe
the dipole-moment dynamics at low temperatures [81, 82].

Before continuing to simulations of water in the condensed phase, we use this opportunity
to test the AQCMD algorithm on gas-phase water at 150 K. We find that a value of γ = 64
is sufficient to reproduce the spectrum obtained by interpolating the force on a grid. The
adiabatic simulation requires a time step of ∆t = 0.1/γ fs, i.e. γ times smaller than what
would have been used to propagate the dynamics without the mass scaling. We note that
the same values of γ and ∆t are required to converge ACMD at this temperature, and hence
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CMD QCMD

Figure 5.3 Ring-polymer distributions (dots) at the inner turning points of CMD and QCMD trajecto-
ries corresponding to very short (but thermally accessible) OH bond lengths, taken from the gas-phase
water simulations at 150 K. The CMD distribution fluctuates about an artificial instanton (spheres),
whereas the QCMD distribution fluctuates about a point.

that the AQCMD algorithm uses approximately the same amount of CPU time as the ACMD
algorithm, since most of the time is spent evaluating the forces on the ring-polymer beads.

In condensed-phase simulations, converged ACMD results can be obtained at significantly
lower adiabatic separation [10, 104], provided that the strength of the thermostat acting on
the non-centroid modes is carefully tuned [16]. This approach is known as partially-adiabatic
CMD (PA-CMD). At this stage we do not attempt a similar partially-adiabatic implementation
of QCMD and view it as an important step in future methodological development.

5.3 Liquid water and ice

Given the promising results from QCMD simulations of gaseous water, we are encouraged to
apply our method to condensed-phase simulations. This time we use the q-TIP4P/F potential
energy surface and the associated linear dipole moment [11], which allows us to draw a direct
comparison with the results of a previous study comparing path-integral approximations of
the rovibrational spectrum for this model system [16].

5.3.1 Overview of the spectrum

We run CMD, TRPMD, and QCMD simulations, calculating the ACF of the net dipole moment

µ =
∑
α

µα,
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and its time-derivative Ûµ, where the index α runs over the molecules in the simulation box.
The TCFs are converted into infrared absorption spectra according to [9, 10]

n(ω)σ(ω) = β

6cVϵ0

∫ ∞

−∞
dt e−iωtC Ûµ· Ûµ(t) f (t) = βω2

6cVϵ0

∫ ∞

−∞
dt e−iωtCµ·µ(t) f (t), (5.23)

where V is the volume of the simulation cell, n(ω) is the refractive index, σ(ω) is the absorp-
tion cross-section, and f (t) is the Hann window function that dampens the tail of the TCF
and reduces ringing artefacts [98]. The widths of the Hann windows used in the different
temperature regimes are given in the caption to Figure 5.4.

To compute the QCMD spectra we use the AQCMD algorithm described in Section 5.1.3 as
a means to calculate the mean-field forces on the fly. Converged AQCMD results are obtained
for γ = 8 at 600 K, and γ = 32 at 300 K. At 150 K, we consider adiabaticity parameters up
to γ = 128, until the positions of the peaks and the t → 0 limit of the dipole-derivative
TCFs are both converged. At the highest adiabatic separation, the intensity of the stretch
peak may not yet be converged (see Appendix C.2), but preliminary calculations with the
improved quasicentroid torque estimator suggest otherwise. With these values of γ, the QCMD
calculations are approximately 2, 8, and 32 times more expensive than the corresponding
CMD calculations, which use the partially adiabatic algorithm [10, 104] and hence smaller
values of γ. Further simulation details for this and other path-integral calculations in this
section can be found in Appendix C.3.

At 600 K, the QCMD spectra are in very close agreement with TRPMD and CMD (Fig-
ure 5.4). Measured from the peak maximum, the QCMD OH stretch at 3600 cm−1 is blueshifted
by about 15 cm−1 relative to CMD and TRPMD. The bend at 1600 cm−1 and the libration peak
at 500 cm−1 are almost identical in all three methods.

At 300 K, noticeable differences emerge due to the curvature problem in CMD and the
peak broadening in TRPMD, although these problems are less severe than in the gas-phase
at this temperature [16, 85, 86]. The CMD stretch peak is redshifted relative to TRPMD by
about 50 cm−1; the QCMD stretch peak is blueshifted by about 20 cm−1. The bend peaks are
in good agreement for all three methods. The libration band in QCMD is slightly redshifted;
this is almost certainly because of the approximation we made to the quasicentroid torque in
Eq. (5.16).

In 150 K ice, there are major differences between the three sets of results, mainly in the
stretch region. The curvature problem is strong, artificially broadening and redshifting the
CMD stretch by more than 100 cm−1. The TRPMD stretch is also severely broadened. In
contrast, the QCMD stretch is sharp, with resolved symmetric and antisymmetric bands.
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Figure 5.4 Simulated infrared ab-
sorption spectra for q-TIP4P/F wa-
ter, at 600 K (compressed liquid),
300 K (liquid), and 150 K (ice
Ih), obtained by damping the time-
correlation function with a Hann
window of width w = 600 fs at 600
and 300 K, and w = 800 fs at 150 K.
The bond-angle centroids used in
the QCMD simulations appear to
have eliminated the redshifts and
broadening seen in the CMD stretch
band at 300 and 150 K.

The splitting of the stretch band is a feature specific to the q-TIP4P/F potential and is also
observed in classical simulations, but not in experimentally measured spectra [121, 122].
Using a shorter Hann window of 500 fs to coalesce the QCMD stretch peaks (not shown)
gives a QCMD stretch that is blueshifted by about 10 cm−1 with respect to TRPMD, and is
more than twice as intense at its maximum. Note that, as mentioned above, the intensity of
the QCMD stretch may not have converged with respect to γ. All three methods remain in
close agreement in the libration and bend regions, except for a small redshift in the QCMD
libration band, comparable to what we see at 300 K.

5.3.2 Stretch region

To better assess the performance of QCMD in the stretch region (> 2000 cm−1), we compare
our results with two other methods: the coloured-noise version of TRPMD, developed by
Rossi et al. [84], and the local monomer approximation (LMon) of Bowman and co-workers
[16, 123–126]. Both methods are expected to do well in the stretch region of the spectrum,
but suffer from artefacts at lower frequencies.
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In coloured-noise TRPMD, the white-noise PILE thermostat used in most TRPMD calcu-
lations is replaced by a generalised Langevin equation (GLE) thermostat that is designed to
minimise the dynamical disturbance to the centroids at certain pre-tuned frequencies [84].
Using the GLE(C) parametrisation of the thermostat in Ref. [84] (along with the other simula-
tion parameters in this reference), we propagated eight independent 100 ps TRPMD+GLE(C)
trajectories at 300 and 150 K using the i-PI package due to Ceriotti and co-workers [127]. The
resulting spectra in the stretch region are shown in Figure 5.5; the low-frequency parts of the
spectra, which are corrupted by the thermostat, are shown in Appendix C.3.2.

In the LMon method, the solid or liquid is equilibrated using standard PIMD techniques,
then the Schrödinger equation for the nuclei is solved for each monomer independently,
with all degrees of freedom except for the internal and a few intramolecular modes of the
monomer held fixed [123–126]. Here we use the results of previous LMon calculations [16],
in which the PIMD equilibration was done using the same simulation parameters as in the
TRPMD calculations of Section 5.3.1. The calculations were performed using a four-mode
approximation (LMon-4), in which the internal modes of the water molecule are in turn coupled
to each of its three librational modes. We convolve the raw data from these calculations with
the same time windows as used in the QCMD calculations (see Appendix C.3), to obtain the
spectra shown in Figure 5.5. The approximate treatment of the intermolecular modes means
that LMon-4 gives a relatively poor description of the spectrum at 600 K (not shown) and of
the libration at all temperatures (see Appendix C.3.2).
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Figure 5.5 The stretch region of the in-
frared absorption spectra from the same
QCMD simulations as in Figure 5.4, com-
pared with TRPMD+GLE(C) spectra cal-
culated as in Ref. [84], and LMon-4 spec-
tra taken from Ref. [16]. The inset mag-
nifies the combination-band part of the
spectrum.
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The agreement between the QCMD and TRPMD+GLE(C) stretch peaks is excellent: at
300 K the peaks are almost identical; at 150 K the TRPMD+GLE(C) peaks line up with the
QCMD peaks, but are somewhat broader, with the bifurcation just visible. This broadening is to
be expected since the thermostat couples more strongly to the centroid at lower temperatures.
There is probably some cancellation of errors between these two sets of results, as the QCMD
method makes a number of static approximations (see Sections 5.1.2 and 5.1.3), and the GLE(C)
thermostat interferes strongly with the libration, which is coupled to the dynamics of the
stretch modes. One piece of evidence for such errors is that the 300 K QCMD peak is slightly
less intense than the TRPMD+GLE(C) peak, whereas one would expect the reverse to be true.
Nevertheless the agreement between QCMD and TRPMD+GLE(C) in the stretch region is
remarkable, suggesting that both methods give excellent approximations to that part of the
spectrum.

The QCMD and LMon-4 results are also in good agreement in the stretch region (Figure 5.5).
Clearly one cannot use LMon-4 as a quantum benchmark, since it includes only a few degrees
of freedom in the monomer dynamics, which is probably why it does not reproduce the
bifurcation of the stretch peak. Even so, we think the comparison in Figure 5.5 highlights an
important weakness in the QCMD approach, shared by CMD [128] and TRPMD [16]. The
LMon-4 spectrum gives a libration-bend combination band at roughly 2300 cm−1 (see the inset
of Figure 5.5) and a Fermi resonance that forms a shoulder in the stretch peak at 3200 cm−1.
Both of these are much more intense than the corresponding features in the QCMD, CMD
and TRPMD spectra. While we cannot say how well the LMon-4 calculations describe these
features, it seems highly likely that QCMD, CMD and TRPMD grossly underestimate their
intensities. This is not surprising, as we expect such features to depend strongly on Matsubara
fluctuations [81, 82] and possibly on quantum coherence—effects which QCMD, CMD and
TRPMD neglect.

5.3.3 Static properties

On the basis of the simulated infrared spectra, it seems likely that QCMD approximates
the quantum Boltzmann distribution nearly as well as it does in the gas phase and in the
two-dimensional model. However, the condensed-phase calculations rely on additional
approximations to the quantum Boltzmann distribution: the mean-field forces are calculated
using approximate estimators, especially the external torques (see Section 5.1.2), and the
AQCMD algorithm only samples the exact mean-field distribution in the limit γ →∞.

To test the magnitude of these static approximations, we compare the AQCMD radial
distribution functions (RDFs) for the liquid at 300 K and ice at 150 K with the exact quantum
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Figure 5.6 Simulated oxygen–hydrogen O—H and oxygen–oxygen O—O radial distribution functions
(RDFs) for q-TIP4P/F water, calculated using QCMD (red) and standard PIMD (black). Hydrogen–
hydrogen RDFs (not shown) are in similarly close agreement. The QCMD results are given for an
adiabatic separation of γ = 64 at 300 K and γ = 128 at 150 K. Only the intermolecular part of the
distribution is shown for O—H; the intramolecular distributions obtained using the two methods agree
to within graphical accuracy.

RDFs from PIMD simulations (see Figure 5.6). As expected, the AQCMD RDFs are close to
the exact values, although there are small errors at 300 K, indicating that AQCMD gives a
slightly less structured liquid than it should. Given that the AQCMD RDFs are in almost
perfect agreement with the exact values for 150 K ice, and that the intramolecular peaks in
the O–H RDF (not shown) agree to within graphical accuracy, we think that the small errors
at 300 K are mainly the result of approximating the monomer torques by Eq. (5.16). A small
contribution to the errors might also arise from incomplete adiabatic separation: increasing γ
from 32 (not shown) to 64 brings the AQCMD RDF at 300 K closer to the PIMD reference.

These results suggest that QCMD gives an excellent approximation to the quantum
Boltzmann distributions in water and ice, except for small errors in the long-range correlations
at 300 K, which are most likely due to the approximation made to the quasicentroid torque
estimator in Eq. (5.16). This approximation is also thought to cause the small redshift in the
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libration band of the infrared spectrum at 300 and 150 K (see Figure 5.4). An improved torque
estimator, such as the one proposed at the end of Section 5.1.2, may be able to reduce these
small errors [117].



Chapter 6

Conclusions and further work

In this work we have set out to improve our understanding of the path-integral methods
designed to combine exact quantum Boltzmann statistics with classical dynamics. Much
progress in this direction has been made by Althorpe and co-workers [81–83, 88], who
developed Matsubara dynamics—a rigorous mathematical framework within which many of
the approximate methods discussed in this thesis can be derived. We have built on their work
by proposing an alternative, mean-field formulation of Matsubara dynamics, presented in
Chapter 3. The improved convergence properties of the new formulation have allowed us
to perform numerical simulations that have yielded new insight into the properties of the
CMD method. Our conclusions have lead us to develop a new path-integral approximation
(QCMD), which we have shown in Chapter 4 to correct the failings of CMD in simulations
of the rovibrational dynamics of a two-dimensional model system. We have subsequently
used QCMD in Chapter 5 to simulate different phases of water, showing that our new method
offers the most accurate approximation of its vibrational fundamental features compared to
other quantum-Boltzmann-conserving path-integral methods available at the time of writing.

We have started our work by reformulating Matsubara dynamics as a mean-field approxi-
mation to the quantum Kubo-transformed time-correlation function (see Section 3.1). The
original derivation by Hele et al. [81] arrived at a classical path-integral dynamics by mean-
fielding the jagged collective path coordinates (non-Matsubara modes), while restricting the
dependence of the external potential to only the smooth coordinates (Matsubara modes). This
“truncated” formulation describes the quantum statistics exactly, but only in the limit of in-
finitely many Matsubara modes, which has prevented the application of Matsubara dynamics
to numerical simulations of all but the simplest potentials [81–83]. In our formulation, we do
not make any assumptions as to the functional form of the external potential, thus retaining
an exact description of the quantum Boltzmann distribution for any number of the remaining
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Matsubara coordinates. This has enabled us to converge some mean-field Matsubara dynamics
simulations of a chemically relevant two-dimensional model system introduced in Section 3.3,
which we have been unable to do using the original formulation. The new results allow us
to gauge the effect of quantum coherence on the vibrational dynamics of our model system;
even for this low-dimensional potential they appear to be minor, slightly sharpening the
vibrational fundamental band and shifting it to the red by about 20 cm−1.

Our results also suggest that at sufficiently high temperatures (around 800 K for this
model) CMD comes very close to fully converged Matsubara dynamics, singling it out for
use in spectroscopic simulations. However, as discussed in Section 3.3.3, low-temperature
CMD suffers from the curvature problem, which we find can be divided into two distinct
regimes. In the “shallow curvature” regime CMD predicts the correct line shapes (compared
to Matsubara dynamics), and its high-frequency peaks shift to the red relatively slowly as
the temperature is lowered. At this point the three lowest modes in Matsubara dynamics are
sufficient to correctly describe the main spectral features. At lower temperatures still, in the
“deep curvature” regime, CMD line shapes deteriorate, and the redshift rapidly increases. In
this regime many more Matsubara modes are needed.

We have found that the deep curvature regime is connected to the formation of artificial
instantons in CMD. At low temperatures, a ring polymer with a centroid constrained to
a (thermally accessible) position around the inner turning point can lower its energy by
expanding into a delocalised minimum-energy configuration (instanton). In this case, the
beads of the centroid-constrained ring polymer no longer fluctuate about the centroid, but
rather about the instanton, leading to an artificially softened mean-field force. Bearing in mind
that CMD agrees with Matsubara dynamics in the high-temperature regime, and that only a
few Matsubara modes are required for an accurate description of the vibrational fundamentals
in the shallow curvature regime, we conclude that a mean-field approximation to the exact
KTCF can lead to accurate rovibrational spectra, provided that the approximation gives rise
to mean-field distributions that are always centred on the dynamical (non-mean-fielded)
coordinate.

One way of achieving this is to release more Matsubara modes from the mean field,
which introduces a phase and creates a sign problem. Releasing any linear combination of
Matsubara modes has similar consequences. This has motivated us to construct a mean-field
approximation to Matsubara dynamics based around curvilinear coordinates (Section 4.2.1).
We have shown that this approximation can lead to real, phase-free dynamics, provided that
the dynamical coordinates are invariant under imaginary time translation and reversal. An
upper bound on the number of such coordinates is just over half the number of Matsubara
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modes (see Appendix B.2.2), and so the approach has a considerable degree of flexibility. For
now we have chosen to keep a single dynamical coordinate per physical degree of freedom,
basing our mean-field dynamics on curvilinear centroids or quasicentroids (Section 4.2.2).

We have named our dynamical coordinates “quasicentroids” because they are always
close to (but not on top of) the Cartesian centroids. This proximity allows us to make several
approximations to the mean-field dynamics of the quasicentroids, which we have shown to
be minor, and which greatly simplify the practical implementation of QCMD (Section 4.3).
In particular, we have assumed that the mean-field quasicentroid Hamiltonian is separable,
and that the contributions to the mean-field forces are largely from the external potential.
This has allowed us to use a standard symplectic algorithm (velocity Verlet [49]) to integrate
the quasicentroid dynamics, and has enabled us to calculate the approximate mean-field
forces in simulations of gaseous and condensed-phase water without needing to define a
complementary set of “non-quasicentroid” coordinates.

The drawbacks of having to make these assumptions are far outweighed by the robustness
of the QCMD mean-field approximation. The quasicentroid coordinates have been chosen
because they force the ring-polymer distribution to remain compact at all times, so that the
quasicentroid approximately coincides with the mode1 of the distribution. This fixes the
design flaw of CMD, preventing the formation of artificial instantons and overcoming the
curvature problem. For our two-dimensional model, simulated QCMD fundamental bands are
close to the exact quantum results at all the temperatures that we have tested (50–800 K), and
are nearly on top of the Matsubara dynamics spectra. We have obtained similarly encouraging
results for gaseous water (Section 5.2), where QCMD is seen to improve on the approximations
derived from established path-integral methods.

For simulations in the condensed phase we have had to introduce a suitable set of rotational
quasicentroid coordinates (vibrational and translational coordinates follow trivially from the
results in Chapter 4). We have taken inspiration from molecular spectroscopy, defining the
quasicentroid orientation in terms of an “Eckart-like” frame (Section 5.1.1). This definition
rigorously minimises the spread of the mean-field distribution in the gas phase and appears
to be near-optimal in the condensed phase.

We have tackled the issue of calculating mean-field forces on the fly by adapting the
adiabatic CMD (ACMD) algorithm (Section 5.1.3). The resulting adiabatic QCMD algorithm
(AQCMD) has similar convergence properties to ACMD and requires approximately the same
amount of computational resources to produce converged infrared absorption spectra. There
remains the important distinction that ACMD has a partially adiabatic variant (PA-CMD),

1Here we use the term “mode” in the statistical sense, rather than as in “normal mode”.
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which, in effect, interpolates between TRPMD and CMD [10, 104]. This method makes use of
much smaller levels of adiabatic separation, reducing the simulation time to no more than
several times that of TRPMD. It is not currently possible to formulate a partially adiabatic
version of QCMD because we have not been able to implement a curvilinear analogue of
TRPMD. To do this, we would have to define a full set of curvilinear coordinates (including the
“non-quasicentroid” fluctuations) and integrate the corresponding non-separable equations of
motion. This is a challenging problem that will have to be addressed in future development.

Despite the need for relatively high levels of adiabatic separation, the AQCMD algorithm
is efficient enough to yield converged infrared spectra for liquid water and ice (Section 5.3),
although the convergence of ice simulations is tentative. The calculations have required
additional approximations to the mean-field forces, most notably to the quasicentroid torque
(Section 5.1.2). Even so, analysis of static properties calculated with QCMD suggests that
these approximations are relatively minor, and can likely be further reduced by improving
the torque estimator as described at the end of Section 5.1.2. Apart from a small redshift
in the libration peak, QCMD simulations appear to give an excellent approximation to the
exact spectra, as far as can be judged from comparison to other path-integral methods and
approximate wavefunction-based calculations (LMon-4, see Section 5.3.2). Work is currently
underway to improve the AQCMD algorithm, which we hope will soon allow us to run
simulations using more realistic (and expensive) water potentials, such as MB-pol [20, 129].
With these potentials we could directly compare simulated spectra with experimental results,
thus getting both an exact reference, and an opportunity to use our method in a predictive
and interpretative capacity.

It remains to address the two major weaknesses of QCMD. First, similarly to the path-
integral dynamics approximations introduced in Chapter 2, QCMD is a (quasi-)centroid-
following method that only provides a reliable approximation to the dynamics of a small
(centroid-like) subset of the Matsubara coordinates. Because of this, QCMD, as well as CMD
and (T)RPMD, generally give poor results for non-linear operators, which depend explicitly
on the dynamics of the Matsubara fluctuation modes. The same is true for overtones and
combination bands, which are strongly influenced by the dynamical coupling of the centroids
to the non-centroid fluctuations. The only way around this is to use a method that provides
a more accurate description of these fluctuations. We hope that the development of such
a practical method can be aided by the theory of mean-field approximations presented in
Chapter 4.

Nevertheless, it should be noted that while polarisable dipole-moment surfaces such as
MB-pol are highly non-linear functions of position, classical, CMD, and TRPMD simulations
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of the vibrational fundamental peak intensities show good overall agreement with experiment
[17, 128, 130]. This suggests that the main function of the non-linearity is, in this case, to
describe the inhomogeneous distribution of local dipole moments, each of which fluctuates
almost linearly. We thus expect QCMD calculations using such dipole-moment surfaces to still
produce accurate descriptions of fundamental features, despite the reservation concerning
general non-linear operators.

The second weakness of QCMD in its current form is that it is specific to systems comprised
of bent triatomic molecules. The question of how it can be generalised to other systems is
equivalent to asking how readily we can identify collective degrees of freedom that give rise
to compact ring-polymer distributions. Building on the ideas of Chapter 5, generalisations
to systems comprised of small, semi-rigid molecules should be relatively straightforward.
In fact we have recently started developing an approach that should be able to tackle most
non-dissociative molecular systems. However our ultimate goal is an algorithm that can
identify and follow the optimal collective bead coordinate on the fly, automatically ensuring the
compactness of the mean-field distribution, and thus giving the best mean-field approximation
to Matsubara dynamics.





Appendix A

Mean-field Matsubara dynamics

A.1 Path-integral time-correlation function

We derive the path-integral representation of the Kubo-transformed time-correlation function
following previous work by Althorpe and co-workers [81, 88]. For the sake of brevity, we
drop the normalisation of the TCF by the partition function Z [see Eq. (2.20)] in this and the
following section. First, we convert the imaginary-time integral in the Kubo transform of
Eq. (2.21) into a Riemann sum,

CAB(t) = lim
N→∞
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[
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Next, using the cyclic permutation property of the trace, we rewrite the sum as
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From here onwards we omit the integration bounds. Assuming for the sake of simplicity that
both Â and B̂ are functions of the position operator q̂, each term in the sum can be cast in a
“ring-polymerised” form,
∫
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��Â[
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where we relabel the original integration variable q→ xN , insert resolutions of the identity
in terms of x′l, zl and xl (in that order, left to right) between each pair of imaginary- and
real-time propagators, and act with Â and B̂ to obtain the factors A(xN ) and B(zl). We then
insert a set of resolutions of the identity
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between each pair of adjacent factors of e−βN Ĥ , and
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immediately before |xN⟩ in Eq. (A.3). This leads to the highly symmetric expression
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where
∫

dNx =
∫

dx1 · · ·
∫

dxN , and similarly for x′ and z. Writing each of the terms in Eq. (A.1)
in this way, we note that the result is invariant under the cyclic permutation of the indices
k = 1, . . . , N , allowing us to replace A(xN ) with AN (x) as defined in Eq. (2.39). We then
transform the integration variables from x and x′ to

qk =
(
xl + x′l

)/2 and ∆k = x′l − xl, (A.7)

to get
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with BN (z) defined analogously to AN (x). Lastly, we expand the double sum

AN (q − ∆/2)BN (z) = 1
N2

N∑
j=1

N∑
l=1

A(q j − ∆ j/2)B(zl) (A.9)

and consider the N(N − 1) off-diagonal terms ( j , l). For these, integration over z j in Eq. (A.8)
can be performed analytically, producing a factor of δ(∆ j) and allowing A(q j − ∆ j/2) to be
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replaced with A(q j). This simplification cannot be made for the N remaining diagonal terms
( j = l), each of which upon integration evaluates to the “right” time-correlation function,

C[R]AB (t) = Tr[Âe−βĤeiĤt/~B̂e−iĤt/~]. (A.10)

The summed contribution of such terms to Eq. (A.8) scales as N−1, and can therefore be
neglected in the limit as N →∞. This leads to the final path-integral representation of the
Kubo-transformed TCF,
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��ql + ∆l/2

〉 ×
〈
ql + ∆l/2
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concluding the derivation.

A.2 Path-integral Liouvillian

To obtain a phase-space representation of the exact TCF, we insert

1
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into Eq. (A.11). After changing the order of integration we get
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where we introduce the generalised Wigner transforms
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and
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as first defined by Hele et al. [81]. Note that the second expression is just a sum of one-
dimensional Wigner transforms
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B(t)W (pl, ql),
(A.16)

where B(t)W is the Weyl symbol corresponding to the operator B̂(t). To derive the exact
quantum Liouvillian in the path-integral representation, we consider the time derivative of
the KTCF,

d
dt

CAB(t) = Tr
{

Âβ
dB̂(t)

dt

}
= Tr

{
Âβ

(
i
~

[
Ĥ, B̂(t)] )} . (A.17)

Retracing the steps in Eqs. (A.1) to (A.13) we arrive at

d
dt

CAB(t) = lim
N→∞

1
(2π~)N

∫
dNq

∫
dNp

[
e−βĤ ]

N (p, q) AN (q)

× 1
N

N∑
l=1

i
~
[Ĥ, B̂(t)]W (pl, ql).

(A.18)

Next we note the following properties of the Wigner transform:

1. the functional form of monomial operators that depend only on momentum p̂ or only
on position q̂ is invariant under the transformation [47, Eq. (2.41)], so that

HW (p, q) = p2/2m + V(q) and BW (q) = B(q);
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2. the Wigner transform of a commutator [Ω̂1, Ω̂2] is proportional to the Moyal bracket
[47, Eqs. (2.59) to (2.65)], so that

i
~
[Ω̂1, Ω̂2]W = −{{Ω1,Ω2}},

where

{{Ω1,Ω2}} ≡ −2
~
Ω1,W (p, q) sin

(
~

2

[←−−
∂

∂p

−−→
∂

∂q
−
←−−
∂

∂q

−−→
∂

∂p

])
Ω2,W (p, q),

and the overhead arrows indicate the direction in which the derivatives act.

Substituting these results into Eq. (A.18) gives

d
dt

CAB(t) = lim
N→∞

1
(2π~)N

∫
dNq

∫
dNp

[
e−βĤ ]

N (p, q)AN (q) ×

1
N

N∑
l=1

H(pl, ql)2
~

sin
(
~

2

[←−−
∂

∂pl

−−→
∂

∂ql
−
←−−
∂

∂ql

−−→
∂

∂pl

])
B(t)W (pl, ql).

(A.19)

Because mixed derivatives of V(ql) are zero, we can rewrite this as

d
dt

CAB(t) = lim
N→∞

1
(2π~)N

∫
dNq

∫
dNp

[
e−βĤ ]

N (p, q)AN (q)L̂N
[
B̂(t)]N (p, q) (A.20)

CAB(t) = lim
N→∞

1
(2π~)N

∫
dNq

∫
dNp

[
e−βĤ ]

N (p, q)AN (q)eL̂N t BN (q), (A.21)

where L̂N is the exact path-integral Liouvillian

L̂N =
1
m
p · ∇q − VN (q)2N

~
sin

(
~

2
←−∇q · −→∇p

)
, (A.22)

and

VN (q) = 1
N

N∑
l=1

V(ql), (A.23)

concluding the derivation.
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A.3 Mean-field approximation

Consider the exact quantum partition function, given by Eq. (A.21) with AN (q) = BN (q) = 1.
The generalised Wigner transform in the integrand can be written as

[
e−βĤ ]

N (p, q)
N→∞−−−−→

(
m

2πβN~2

)N/2∫
dN∆ exp

{
− βN

N∑
l=1

1
2

[
V

(
ql +
∆l

2

)
+ V

(
ql − ∆l

2

)] }
×

exp
{
− βN

N∑
l=1

mω2
N

2

[
(ql+1 − ql)2 + 1

4 (∆l+1 + ∆l)2 − ∆l(ql+1 − ql−1)
]
− iωN pl∆l

}
, (A.24)

where βN = β/N and ωN = (βN~)−1. We now make the orthogonal transformation

xl =

ν∑
n=−ν

TlnXn (A.25)

where the matrix elements Tln are defined in Eq. (2.41), N is odd, ν = (N −1)/2, and xl denotes
any of pl, ql, ∆l . The corresponding “normal-mode” coordinate Xn denotes Pn, Qn, or Dn

respectively. After the transformation, the second line of Eq. (A.24) becomes

exp
{
− βN

ν∑
n=−ν

mω2
nQ2

n/2 + mΩ2
nD2

n/2 + mωnΩnDnQ−n − iωN PnDn

}
, (A.26)

where

ωn = 2ωN sin
(πn

N

)
and Ωn = ωN cos

(πn
N

)
. (A.27)

We now integrate over the coordinates with |n| > (M − 1)/2 ≡ µ for some positive odd M ,

ZM(P′M,Q′M) =
1

(2π~)M
(

m
2πβN~2

)N/2∫
dNQ

∫
dMPM

∫
dMDM

×
∏
|n|≤µ

δ
(
Qn −Q′n

)
δ
(
Pn − P′n

)

× exp
{
− βN

[ ν∑
n=−ν

mω2
nQ2

n/2 +
{

f +(Q,DM) + f −(Q,DM)
}/2]}

× exp
{
− βN

[ µ∑
n=−µ

mΩ2
nD2

n/2 + mωnΩnDnQ−n − iωN PnDn

]}
, (A.28)
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where XM is the subset of normal-mode coordinates {Xn | −µ ≤ n ≤ µ} and

f ±(Q,DM) = 1
N

N∑
l=1

V ©«
ν∑

n=−ν
TlnQn ±

∑
|n|≤µ

TlnDn
ª®¬
. (A.29)

Note that for |n| ≤ µ,

lim
N→∞
M≪N

Ωn = ωN ∼ O(N) and lim
N→∞
M≪N

ωn =
2πn
β~
≡ ω̃n ∼ O(1). (A.30)

This means that the term on the last line of Eq. (A.28) tends to a delta function. To show
this, we define the “Matsubara modes” (so called because ω̃n are the bosonic Matsubara
frequencies),

X̃n = Xn/
√

N ∼ O(1). (A.31)

We then rewrite the last line of Eq. (A.28) in the specified limit as

exp
{
− βmω2

N

2
∑
|n|≤µ

[
D̃n +

1
ωN
(ω̃nQ̃−n − iP̃n/m)

]2}
exp

{
βm
2

∑
|n|≤µ

[
ω̃nQ̃−n − iP̃n/m

]2
}

N→∞−−−−−→
M≪N

(
2π

βmω2
N

)M/2
δM(D̃M) exp

{
−β

∑
|n|≤µ

[
P̃

2
n

2m
− mω̃2

nQ̃
2
n

2 + iω̃nP̃nQ̃−n

] }
(A.32)

After integrating over D̃M we get

ZM(P′M,Q′M) =
(

N
2π~

)M (
mN

2πβN~2

)(N−M)/2∫
dNQ̃

∫
dM P̃M

∏
|n|≤µ

δ
(
Q̃n − Q̃

′
n

)
δ
(
P̃n − P̃

′
n

)

× exp
{
−β

[ ∑
|n|≤µ

(
P̃

2
n

2m
+ iω̃nP̃nQ̃−n

)
+

∑
|n|>µ

mω2
nQ̃

2
n

2 +
1
N

N∑
l=1

V
(∑

n

√
NTlnQ̃n

)]}
. (A.33)

Hence the exact quantum partition function can be written as

Z =
1

(2π~)M
∫

dMQ̃M

∫
dM P̃M e−βHM (̃PM,Q̃M )e−iβθM (̃PM,Q̃M ), (A.34)
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whereHM (̃PM, Q̃M) is the mean-field Hamiltonian

e−βHM (̃P,Q̃) =
1

(2π~)N−M

∫
dNq

∫
dNp δ(q, Q̃M) δ(p, P̃M) e−βN [HN (p,q)−NS̃M (Q̃M )], (A.35)

δ(x, X̃M) =
µ∏

n=−µ
δ

( N∑
l=1

N−1/2Tlnxl − X̃n

)
. (A.36)

Here, HN (p, q) is the ring-polymer Hamiltonian, S̃M(Q̃M) is the spring energy of the Matsubara
modes, and θM (̃PM, Q̃M) is the Matsubara phase, defined in Eqs. (2.29), (3.10) and (3.14)
respectively. We can integrate the momenta analytically, to get

Z =
1

(2π~)M
∫

dMQ̃M

∫
dM P̃M e−β[|P̃M |2/2m+FM (Q̃M )]e−iβθM (̃PM,Q̃M ), (A.37)

where the free energy FM(Q̃M) is defined in Eq. (3.9). Eq. (A.37) is analogous to the “truncated”
Matsubara partition function of Ref. [81], which tends to the same limit as M →∞, but differs
by the sign of the Matsubara phase θM . As shown by Willatt [88, Section. 3.3.2], changing the
sign is equivalent to the simultaneous reversal of real (t → −t) and imaginary (l → N − l)
time, which leaves the partition function and the TCFs we consider here unaffected. For this
reason, and to be consistent with previous work, we write the phase factor as eiβθM from here
on.

To calculate the approximate Liouvillian in Eq. (3.4), we need only consider the mean-field
average of ∇Q̃M

VN (q), as all the other terms in the nascent Liouvillian of Eq. (3.7) depend only
on the Matsubara coordinates and are unaffected by the mean-fielding. Repeating the steps in
Eqs. (A.24) to (A.33) with an additional factor of ∇Q̃M

VN (q), we get

∫
dNp

∫
dNq

[
e−βĤ

]
N δ(q, Q̃M) δ(p, P̃M)∇Q̃M

VN (q)∫
dNp

∫
dNq

[
e−βĤ

]
N δ(q, Q̃M) δ(p, P̃M)

=

∫
dNq δ(q, Q̃M)∇Q̃M

VN (q) e−β[WN (q)−SM (Q̃M )]∫
dNq δ(q, Q̃M)e−β[WN (q)−SM (Q̃M )]

= ∇Q̃M
FM(Q̃M),

(A.38)

which leads to the final expression for the mean-field Liouvillian in Eq. (3.8).
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A.4 Local normal-mode approximation

We can understand the origin of some of the spurious features discussed in Section 3.3.1 by
considering a local normal-mode approximation to Matsubara dynamics. Here the approxi-
mation is derived using the “truncated” Matsubara formalism, but can easily be extended to
the mean-field picture. To find the local normal modes, we expand the Matsubara potential
about the centroid,

Ṽ M(Q̃M) = Ṽ M(Q̃0) + [Q̃
′]⊤∇Q̃

′Ṽ M(Q̃0) +
1
2 [Q̃

′]⊤K(Q̃0) Q̃
′
+ O(Q̃′)3, (A.39)

where Q̃0 is a vector of Matsubara coordinates with all the non-centroid modes set to zero,
and Q̃

′ is a truncated vector of normal-mode coordinates with the centroids removed. By
converting to bead representation it is straightforward to show that the linear term vanishes,
and so the transformation that diagonalises the dynamical matrix K(Q̃0) is precisely the local
normal mode transformation. The dynamical matrix has a particularly simple form,

Kni,mj =
1
N

[
N∑

l=1

∂

∂Q̃ni

∂

∂Q̃mj
V

(
µ∑

k=µ

√
NTlkQ̃k

)]
=

N∑
l=1

TlnTlm
∂2V(Q̃0)
∂Q̃0,i∂Q̃0, j

= K (F)i j δnm, (A.40)

where n, m, and k run over the normal mode indices, i and j index the F spatial dimensions,
and K(F) is the F × F Hessian matrix calculated for the potential V(x) at x = Q̃0. For a
two-dimensional axially symmetric potential

V(Q̃0) = V(R0) R0 =
√

X̃2
0 + Ỹ 2

0 ,

the Hessian is

K(2)(Q̃0) = ©«
cos2Θ0

d2V
dR2

0
+ sin2Θ0

1
R0

dV
dR0

1
2 sin 2Θ0

[
d2V
dR2

0
− 1

R0
dV
dR0

]
1
2 sin 2Θ0

[
d2V
dR2

0
− 1

R0
dV
dR0

]
sin2Θ0

d2V
dR2

0
+ cos2Θ0

1
R0

dV
dR0

ª®¬
(A.41)

where

X̃0 = R0 cosΘ0 Ỹ0 = R0 sinΘ0. (A.42)

This matrix is diagonalised by

U(Q̃0) =
(
cosΘ0 − sinΘ0

sinΘ0 cosΘ0

)
=

1
R0

(
X̃0 −Ỹ0

Ỹ0 X̃0

)
, (A.43)
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which corresponds to the local normal modes (not to be confused with the quasicentroids of
Chapters 4 and 5)

Qni =

2∑
j=1

U jiQ̃nj ⇔ Q̃ni =

2∑
j=1

Ui jQnj (A.44a)

for n , 0, and

Q0i = Q̃0i (A.44b)

for n = 0. The coordinates Qn1 and Qn2, n , 0, can be identified as the vibrational and the
rotational modes, respectively. Expressed in these coordinates, the Matsubara Hamiltonian
becomes

H̃M(P,Q) = 1
2m

P
⊤
G−1P + Ṽ M

({
Q0,UQn | n , 0

})
, (A.45)

where G−1 is the inverse metric tensor

[G−1]ni,mj =
∑
k,s

∂Qks

∂Q̃ni

∂Qks

∂Q̃mj
. (A.46)

We distinguish three groups of elements:

1. n, m , 0 ⇒ [G−1]ni,mj = δnmδi j

2. n = 0, m , 0 ⇒ [G−1]0i,mj = −
2∑

s=1

∂U js

∂Q̃0i
Qms ≡ B(m)i j

3. n = m = 0 ⇒ [G−1]0i,0 j = 1 +
∑
k,0

2∑
s=1

B(k)is B(k)js

For an axially symmetric potential

∂U

∂ X̃0
=

1
R0

(
sin2Θ0

1
2 sin 2Θ0

−1
2 sin 2Θ0 sin2Θ0

)
∂U

∂Ỹ0
=

1
R0

(
−1

2 sin 2Θ0 − cos2Θ0

cos2Θ0 −1
2 sin 2Θ0

)
,

and so the coupling matrices B(k) scale as O(|Qk |/|Q0 |). These couple the dynamics of the
centroid and the local normal modes. If we neglect this coupling, we get the approximate
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local-normal-mode (LNM) Hamiltonian

HM(P,Q) = 1
2m

P
⊤
P + Ṽ M

({
Q0,UQn | n , 0

})
, (A.47)

with the corresponding equations of motion

dPni

dt
= −∂Ṽ M

∂Qni

dQni

dt
=

Pni

m
, (A.48)

where
∂Ṽ M

∂Qn,0,i
=

2∑
s=1

Usi
∂Ṽ M

∂Q̃n,0,s
(A.49)

and
∂Ṽ M

∂X0
=
∂Ṽ M

∂ X̃0
− sinΘ0

R0

∑
k,0

[
X̃k
∂Ṽ M

∂Ỹk
− Ỹk

∂Ṽ M

∂ X̃k

]

∂Ṽ M

∂Y 0
=
∂Ṽ M

∂ X̃0
+

cosΘ0
R0

∑
k,0

[
X̃k
∂Ṽ M

∂Ỹk
− Ỹk

∂Ṽ M

∂ X̃k

]
.

(A.50)

The transformation in Eq. (A.43) defines a rotating frame of reference that follows the
centroid coordinate. Neglecting B(k) removes the coupling between this rotation and the
fluctuations of the non-centroid modes [131, §39]. Since these fluctuations are in turn coupled
to the vibrational dynamics of the centroid, the local normal-mode approximation has the
net effect of removing the part of the centroid rovibrational coupling that is mediated by the
non-centroid modes.

In Figure A.1 we compare the three-mode truncated Matsubara spectra calculated at
200 K with and without the LNM approximation. The only significant difference between
the two spectra is the disappearance of the spurious wiggles at around 3000 cm−1 when the
LNM approximation is used, which strongly suggests that their origin lies in the rotational
dynamics of the centroid. We get similar results for mean-field Matsubara dynamics (not
shown), obtained by replacing Ṽ M in Eqs. (A.48) to (A.50) with FM . Presumably when the
number of Matsubara modes M is sufficiently large, the ring polymer can deform to follow
the curve of the potential energy surface without unphysical interference with the dynamics
of the centroid, although this is clearly not the case for the elliptical M = 3 ring-polymer
loops.
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Figure A.1 IR absorption spectra for the two-dimensional Morse potential in Eq. (3.22), simulated using
three-mode (M = 3) truncated Matsubara dynamics and its local-normal-mode (LNM) approximation
at T = 200 K. The neglect of rovibrational coupling between the centroid and non-centroid modes
in the LNM approximation causes the high-frequency wiggles (magnified in the inset) to disappear,
while leaving the rest of the spectrum largely unaffected.

A.5 The cross-over radius of CMD

To derive the expression for the cross-over radius in Eq. (3.27), consider the ring-polymer
potential WN (q) expressed in plane polar coordinates,

WN (r, θ) = 1
N

N∑
l=1

{
V(rl) +

mω2
N

2
[(rl − rl+1)2 + rlrl+1(θl − θl+1)2

]
+ O(θl − θl+1)4

}
, (A.51)

rl =
√

xl + yl θl = tan−1(yl/xl). (A.52)

To find the centroid-constrained instanton, we minimise WN (q) subject to

1
N

N∑
l=1

rl cos θl = X̃0
1
N

N∑
l=1

rl sin θl = Ỹ0. (A.53)

Without loss of generality we set Ỹ0 = 0, constraining the centroid to lie on the x-axis. In
the derivation we will approach the critical radius Rc from above, so that until Rc is reached,
the minimum-energy configuration remains collapsed at the centroid. Hence we can expand



A.5 The cross-over radius of CMD 83

Eq. (A.51) to second order in (rl − X̃0) and θl

WN (r, θ) = 1
N

N∑
l=1

{
V(X̃0) + dV

dX̃0
(rl − X̃0) + 1

2
d2V

dX̃2
0
(rl − X̃0)2 +

mω2
N

2 (rl − rl+1)2 +
mω2

N

2 X̃2
0 (θl − θl+1)2

}
.

(A.54)

It will now be convenient to introduce polar “normal-mode coordinates”

Rn =
1√
N

N∑
l=1

Tlnrl Θn =
1√
N

N∑
l=1

Tlnθl, (A.55)

where the transformation matrix Tln is defined in Eq. (2.41). Expanding the first constraint in
Eq. (A.53) to second order in Rn,0 and Θn yields

R0 − X̃0 =
1
2 X̃0

∑
n

Θ
2
n,

which we may use to simplify the term

1
N

N∑
l=1
(rl − X̃0)2 =

∑
n

R2
n − X̃0

(
2R0 − X̃0

)

=
∑

n

R2
n −

(
R0 − 1

2 X̃0
∑

n

Θ
2
n

) (
R0 +

1
2 X̃0

∑
n

Θ
2
n

)
=

∑
n

R2
n − R2

0,

(A.56)

correct to second order in Θn. With this simplification, the potential energy becomes

WN (r, θ) = V(X̃0) + 1
2
∑
n,0

{
d2V

dX̃2
0
+ mω2

n

}
R2

n +
1
2
∑

n

{
X̃0

dV

dX̃0
+ mω2

n X̃2
0

}
Θ

2
n,

which implicitly incorporates the first constraint from Eq. (A.53). The second constraint
can be incorporated explicitly using the method of Lagrange undetermined multipliers [89,
pp. 167–173]. It is then straightforward to show that for d2V/dX̃2

0 > 0 the extremal points are
Θ0 = 0, Rn,0 = 0, and

X̃0

{
dV

dX̃0
+ mω2

n X̃0

}
Θn = 0.
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This has a non-trivial solution for Θ±1 , 0 when

X̃0 = − 1
mω2

1

dV

dX̃0
, (A.57)

which, after relaxing the condition that the centroid lie on the x-axis and taking the limit
N →∞, gives us the final expression in Eq. (3.27).

A.6 Simulation details

A.6.1 The one-dimensional quartic potential

DVR calculations To calculate the exact Kubo-transformed time-correlation functions in
Section 3.2 we used the 10 lowest eigenstates of the quartic oscillator V(q) = 1/4q4. These
were calculated in the discrete variable representation (DVR) proposed by Colbert and Miller
[25], on a grid of 500 points ranging from −7 to 7 a.u.

PIMD calculations The mean-field forces for CMD and three-mode mean-field Matsubara
dynamics [MF(3)] were calculated using standard PIMD techniques [50]. In both cases we used
N = 16 beads at β = 1 and N = 64 beads and β = 8. The non-centroid modes Q̃n were subject
to a local Path-Integral Langevin Equation thermostat (PILE-L) [92] with friction parameters
γn = ωn, whereωn are the frequencies defined in Eq. (2.44). We used the symplectic propagator
from Ref. [92] to integrate the equations of motion while holding M Matsubara modes fixed.

In the case of CMD we only needed to constrain the centroid Q̃0 (M = 1). The positions
at which it was fixed spanned either 65 (for β = 1) or 129 (for β = 8) equally spaced points
between −10 and 10 a.u. At each point we ran 100 independent trajectories that were first
equilibrated for teq = 10β~ and then propagated for 105 steps with an integration step
∆t = 0.01β~. We recorded the value of

−∂Ṽ M

∂Q̃0
= − 1

N

N∑
l=1

∂V(ql)
∂ql

after each time step, and calculated its average over the steps and trajectories to obtain the
mean-field centroid force at each grid point.

In the case of three-mode Matsubara dynamics we had to additionally constrain Q̃±1.
Defining

ρ1 =

√
Q̃

2
−1 + Q̃

2
1 φ1 = tan−1

(
Q̃1/Q̃−1

)
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we note that by imaginary-time translation symmetry, the three-mode Matsubara potential
does not depend on θ1 (see [88, Eq. 3.65–3.70]). Hence we only needed to consider a two-
dimensional grid in Q̃0 and ρ1. This was done by setting Q̃−1 = 0 and letting (Q̃0, Q̃1) take
on values on a 65 × 33 regular grid ranging from (−10, 0) to (10, 10). At each point we ran
5 independent trajectories that were first equilibrated for teq = 10β~, and then propagated
for 106 steps with an integration time step ∆t = 0.005β~. The mean-field centroid force was
calculated as before, and the non-centroid force was calculated as the thermal average of

−∂Ṽ M

∂ρ1
= −∂Ṽ M

∂Q̃1

�����
Q̃−1=0

where − ∂Ṽ M

∂Q̃n
= −N−1/2

N∑
l=1

Tln
∂V(ql)
∂ql

.

Dynamics simulations To calculate the time-correlation functions in Figure 3.1 we propa-
gated a set of ntraj independent trajectories for each of CMD, Matsubara, mean-field Matsubara
[MF(3)], and classical dynamics using the velocity Verlet algorithm [49], with an integra-
tion time step ∆t = 0.01β~. The forces for CMD and MF(3) were obtained by cubic spline
interpolation [98] of the pre-calculated values described above.

Table A.1 Simulation parameters for the one-dimensional quartic potential. The pa-
rameters are for both β = 1 and β = 8, unless indicated otherwise.

CMD
Classical Matsubara MF(3)

AMF(3)

β = 1 β = 8

ntraj 800 800 640 65536 5120
nsample 104 105 105 102 103

trel 2β~ 2β~ β~ 2 8
tprod 40 40 30 20 30

Each trajectory was first equilibrated for teq = 10β~ using a Langevin thermostat with
friction γ0 = 1. This was followed by a series of alternating production intervals of length
tprod, where the thermostat was switched off, and relaxation intervals of length trel, where
the thermostat was switched on. At every production interval we calculated the correlation
of the centroid position with its value at the start of the interval, giving a total of nsample

contributions to the thermally averaged TCF per trajectory. An analogous procedure was
used for the adiabatic [AMF(3)] simulations in Section 3.2.2, except that the time step was set
to ∆t = 0.02 at both temperatures, and the symplectic integrator from Ref. [92] was used to
propagate the ring-polymer dynamics. In addition, a PILE-L thermostat was acting on the
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non-Matsubara modes (n , 0, ±1) at all times, with a friction parameter γ = Ω, where Ω is
defined in Eq. (3.21). In Table A.1 we summarise the values of ntraj, nsample, trel, and tprod used
by the different methods.

It remains to add that the trajectories in Matsubara and mean-field Matsubara dynamics
simulations do not sample the phase in the Boltzmann distribution of Eq. (3.12), and so to get
the time-correlation functions we had to calculate

C̃[M]AB =
〈
eiβθMAM(0)BM(t)

〉 × 〈
eiβθM 〉−1

,

where

⟨· · ·⟩ =
∫

dM P̃M

∫
dMQ̃M (· · ·) e−βHM (̃PM,Q̃M ).

For the denominator, we may deform the integration contour so as to get a positive definite
estimator 〈

eiβθM 〉
=

〈
e−βS̃M (Q̃M )

〉
,

where S̃M(Q̃M) is defined in Eq. (3.10). This estimator has better convergence properties and
is used in all our Matsubara-dynamics calculations.

A.6.2 The two-dimensional Morse potential

DVR calculations To calculate the exact KTCFs (and hence the exact power spectra),
we transformed the Schrödinger equation to plane polar coordinates and separated it into
an angular and a radial part. The angular equation was solved analytically, and the radial
equations were solved numerically in the DVR representation due to Colbert and Miller [25,
App. A2]. For the calculation we used a radial grid of 1000 points ranging from 0 to 6 a.u.,
and kept all the eigenstates with energies below 0.1875 a.u.

PIMD calculations To calculate the mean-field centroid forces for the CMD simulations
in Section 3.3.2 we used a procedure analogous to the one described in Appendix A.6.1. By
symmetry, the mean-field angular forces on the centroid are zero, and so we only needed
to consider the radial forces at a range of displacements from the origin. We did so by
constraining the y-component of the centroid at Ỹ0 = 0 and letting X̃0 take on values on
a regular grid of npts points between 0.5 and 2.0 Å. At each point we ran 5 independent
trajectories that were first equilibrated for 3 ps and then propagated for 2000 ps under a PILE-L
thermostat with non-centroid friction γn = ωn. The number of beads N , the grid size npts, and
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the integration time step ∆t are summarised in Table A.2 for the different temperatures in
Figure 3.5.

Table A.2 Simulation parameters for CMD
mean-field force calculations for the two-
dimensional Morse potential.

T/K 200 400 600–800

N 64 32 16
npts 129 65 65
∆t/fs 0.05 0.10 0.10

Dynamics simulations To calculate the time-correlation functions used to produce the
spectra in Sections 3.3.1 and 3.3.2, we followed a procedure analogous to the one described
in Appendix A.6.1. Unless indicated otherwise, the number of ring-polymer beads at the
different temperatures was taken to be the same as in the PIMD calculations in Table A.2.

Table A.3 Mean-field Matsubara dynamics simulation parameters for the two-dimensional Morse
potential. The numbers in brackets are for the five-mode simulation. The adiabatic separation is
γ = 32 throughout.

T/K 200 400 500 600 800

N 32(24) 32 16 16 16
ntraj 64(512) 64 64 64 256
nsample 103(5×105) 1000 4000 4000 4000

We used an integration time step of ∆t = 0.1 fs everywhere except for mean-field Matsub-
ara dynamics, which required ∆t = 0.1/γ fs, where γ is the adiabaticity constant. All TCFs
were calculated to span 500 fs. At the start of each simulation we equilibrated the system
for 500 fs under a PILE-L thermostat with a centroid/dynamical-mode friction γ0 = 1.0 fs−1,
except for TRPMD, which used the more optimal γ0 = 0.01 fs−1. The non-centroid/mean-
fielded-mode friction was set to γn = ωn. The subsequent production intervals where each
1000 fs long and separated by relaxation intervals of 100 fs. To accelerate convergence we
made use of horizontal statistics, time-averaging the contributions to the TCFs over each
production interval, as described in Ref. [48, Sec. 6.3.2].
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Table A.4 Selected simulation parameters for the methods in Figures 3.4
and 3.5. Unless stated otherwise, the parameters are the same at all tempera-
tures.

CMD TRPMDa Matsubara

M = 3 M = 5

ntraj 5 4 8 10
nsample 106 103 b 5 × 108

a Except at 800 K, where ntraj = 8 and nsample = 4000.
b nsample = 104 at 200 K, 4 × 104 at 300 and 400 K, and 16 × 104 at 500 and 600 K.

Mean-field Matsubara dynamics was propagated using the adiabatic algorithm with γ = 32.
The number of beads, trajectories, and production intervals used at the different temperatures
is summarised in Table A.3. Truncated Matsubara dynamics was propagated using the standard
velocity Verlet algorithm [49]. To calculate the forces, we propagated a ring-polymer with
N = 16 beads, explicitly constraining the Matsubara modes with |n| > (M − 1)/2 to zero.
CMD was also propagated under the velocity Verlet algorithm and used pre-calculated grid
forces that were interpolated with cubic splines [98]. TRPMD was propagated using the
symplectic integrator from Ref. [92]. The number of trajectories and production intervals in
these simulations is summarised in Table A.4.



Appendix B

Quasicentroid molecular dynamics

B.1 Matsubara Liouvillian in curvilinear coordinates

In Section 4.2.1 we consider the part of the mean-field Matsubara Liouvillian that acts only on
the curvilinear coordinates (πa, ξa). This is derived from the Liouvillian expressed in terms
of (π, ξ),

L̂MF(π, ξ) = { · ,HM} =
M∑

k=1

{
∂HM

∂πk

∂

∂ξk
− ∂HM

∂ξk

∂

∂πk

}

=

M∑
k=1

{(
G−1π

)
k
∂

∂ξk
− ∂FM

∂ξk

∂

∂πk
−

[
1
2π
⊤∂G

−1

∂ξk
π

]
∂

∂πk

}
,

(B.1)

where we have used the fact that (π, ξ) are related to the Matsubara modes by a canoni-
cal transformation, so that L̂MF(π, ξ) can be written as a Poisson bracket [1]. Under the
transformation in Eq. (4.5), the derivatives in the above expression change according to

∂

∂πk
→ ∂

∂πk

∂

∂ξk
→ ∂

∂ξk
− i

M∑
j=1

∂(Gc) j
∂ξk

∂

∂π j
.

(B.2)

Expanding Eq. (B.1) in terms of the new variables and using the relation

∂M
∂x

M−1 = −M∂M−1

∂x
⇔ M

∂M−1

∂x
M = −∂M

∂x
, (B.3)

which holds for any invertible matrix M, we obtain the final expression in Eq. (4.11).
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B.2 Imaginary-time symmetries

In Chapter 4, we use symmetry to derive the sufficient conditions for the mean-field Liouvillian
to be real. Here we give a brief summary of the symmetry relations that lead to this result.

B.2.1 Matsubara modes

For the following derivation, it will be convenient to define Matsubara coordinates in the
continuum picture as the Fourier coefficients of a path q(τ) that is periodic in imaginary time
τ with period β~:

Q̃n =




√
2
β~

∫ β~

0 dτ cos(ω̃nτ)q(τ), −µ ≤ n < 0,
√

2
β~

∫ β~

0 dτ sin(ω̃nτ)q(τ), 0 < n ≤ µ,
1
β~

∫ β~

0 dτ q(τ), n = 0,

(B.4)

where µ = (M − 1)/2, and M is odd. Considering the effect of imaginary-time translation,
R̂τ′q(τ) = q(τ + τ′), it follows that [88]

R̂τ′

[
Q̃n

Q̃n

]
=

[
cos(ω̃nτ

′) sin(ω̃nτ
′)

− sin(ω̃nτ
′) cos(ω̃nτ

′)

] [
Q̃n

Q̃n

]
, (B.5)

where n > 0 and n ≡ −n. From this we conclude that

dQ̃n

dτ = lim
δτ→0

δτ−1[R̂δτQ̃n − Q̃n] = −ω̃nQ̃n, (B.6)

which holds for all values of n, given the convention ω̃n = −ω̃n and ω̃0 = 0. We also note that
if we treat (Q̃n, Q̃n) as the (x, y) coordinates of a point on a two-dimensional plane, translation
in imaginary time by τ′ is equivalent to rotation by an angle −ω̃nτ

′ (i.e. for positive τ′, the
rotation is clockwise).

Going back to the definition in Eq. (B.4), it is clear that under the reversal of imaginary
time, Êq(τ) = q(−τ), the coordinates transform as

ÊQ̃n = Q̃n and ÊQ̃n = −Q̃n. (B.7)
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Finally, reflection in imaginary time about a point τ′, such that σ̂τ′q(τ) = q(2τ′ − τ), acts on
the Matsubara coordinates as

σ̂τ′

[
Q̃n

Q̃n

]
=

[
cos(2ω̃nτ

′) sin(2ω̃nτ
′)

sin(2ω̃nτ
′) − cos(2ω̃nτ

′)

] [
Q̃n

Q̃n

]
≡ Ê • R̂2τ′

[
Q̃n

Q̃n

]
, (B.8)

where • denotes composition of operations. Therefore we can deduce the behaviour of a
function of Matsubara modes under reflection based on how it transforms under imaginary
time translation and reversal. The centroid Q̃0 is clearly unaffected by any of these transfor-
mations. It follows that the centroid forms the basis for the Σ+ irreducible representation of
the C∞v point group [132], and that pairs of modes Q̃±n form the bases for the Π, ∆, Φ, . . .
irreducible representations. The momenta P̃M transform in the same way as the positions,
from which it can be shown that the Matsubara phase θM transforms as the Σ− irreducible
representation, and that the Matsubara HamiltonianHM transforms as Σ+.

B.2.2 Symmetrised coordinates

We now prove that it is possible to construct a set of coordinates that satisfy Eqs. (4.13)
and (4.14), and discuss their symmetry properties. First, we introduce the plane polar coordi-
nates (ρn, φn), such that

Q̃n = ρn cos(φn) ρn =

√
Q̃

2
n + Q̃

2
n,

Q̃n = ρn sin(φn) φn = tan−1
(
Q̃n/Q̃n

)
.

(B.9)

Given the results of Appendix B.2.1, these transform according to

R̂τ′ρn = ρn R̂τ′φn = φn − ω̃nτ
′,

Êρn = ρn Êφn = −φn,
(B.10)

which is consistent with the analogy between the pair of modes (Q̃n, Q̃n) and a rotating vector.
Next we note that

ψn = φn − nφ1 (1 < n ≤ µ) (B.11)

satisfies

R̂τ′ψn = ψn and Êψn = −ψn. (B.12)
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The angles ψn are analogous to body-fixed angles in many-particle systems. Hence we define
a set of coordinates {Q̃0, ρ1, φ1, ρn, ψn | 1 < n ≤ µ} such that

Q̃1 = ρ1 cos(φ1),
Q̃1 = ρ1 sin(φ1),

Q̃n = ρn cos(ψn + nφ1),
Q̃n = ρn sin(ψn + nφ1).

(B.13)

The centroid Q̃0 and the radii ρn (0 < n ≤ µ) are invariant under imaginary-time translation
and reversal. They all transform according to the Σ+ irreducible representation of the C∞v
group. The angles ψn (1 < n ≤ µ) are invariant under translation and change sign under
inversion. This corresponds to the Σ− irreducible representation. The angle φ1 satisfies

∂Q̃n

∂φ1
= nQ̃n, (B.14)

as per Eq. (4.13) with a proportionality constant α = −ω̃−1
1 . Therefore this set of coordinates

has exactly the symmetry properties described in Section 4.2.1. Other sets with the same
symmetries can be constructed by combining even and odd functions of the Σ+ and Σ−

coordinates. In what follows we discuss some of the properties of such symmetrised sets.

Symmetries of the momenta The momenta associated with a symmetrised set of coordi-
nates ξ , such that ξτ ∈ ξ satisfies Eq. (4.13), are given by

πl =
∑

n

∂Q̃n

∂ξl
P̃n. (B.15)

To determine their symmetry, we need to know how the partial derivatives ∂
∂ξl

transform under
imaginary time translation and reversal. For ξl , ξτ it follows trivially that the corresponding
irreducible representation Γl is the same as for the coordinate ξl . For ξl ≡ ξτ we observe that

R̂τ′
∂

∂ξτ
=

∂

∂(ξτ + α−1τ′) =
∂

∂ξτ
and Ê

∂

∂ξτ
= − ∂

∂ξτ
, (B.16)

which means that Γτ = Σ−. Apart from the possible change of sign of the partial derivative, the
sum in Eq. (B.15) is unaffected by imaginary-time transformations. Therefore πl ∼ Γl , which
is to say that the momenta conjugate to Σ+ coordinates transform as Σ+, and the momenta
conjugate to Σ− coordinates transform as Σ−. The remaining momentum πτ is proportional
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to the Matsubara phase θM ,

πτ =
∑

n

∂Q̃n

∂ξτ
P̃n = −α

∑
n

ω̃nQ̃nP̃n = −αθM, (B.17)

and also transforms as Σ−.

Symmetries of the metric tensor The components of the metric tensor are given by

Gkl =
∑

n

∂Q̃n

∂ξk

∂Q̃n

∂ξl
, (B.18)

and are clearly invariant under imaginary-time translation. It is also clear that a component
Gkl is symmetric under imaginary-time reversal if both ξk and ξl change sign or remain the
same, and is antisymmetric otherwise. This can be summarised as

Γkl = Γk ⊗ Γl, (B.19)

where Γkl is the irreducible representation that characterises Gkl , and the product Γk ⊗ Γl is
given by

Σ
+⊗ Σ+ = Σ+ Σ

+⊗ Σ− = Σ−,
Σ
−⊗ Σ+ = Σ− Σ

−⊗ Σ− = Σ+.
(B.20)

B.2.3 Symmetrised Liouvillian

For a symmetrised set of coordinates that satisfy Eqs. (4.13) and (4.14), the part of the Matsubara
Liouvillian defined in Eq. (4.11) simplifies to

Re{La} =
∑
k∈a

(
∂HM

∂πk

∂

∂ξk
− ∂HM

∂ξk

∂

∂πk
+ α−2 ∂Gkτ

∂ξτ

∂

∂πk

)
, (B.21a)

Im{La} = 2
∑
k∈a

M∑
j=1

(
G−1π

)
j

[ ∑
|n|≤µ

ω̃n
∂Q̃n

∂ξ j

∂Q̃n

∂ξk

]
∂

∂πk
. (B.21b)

We have already shown that the metric tensor G is invariant under τ-translation. It follows
that ∂Gkτ

∂ξτ
= 0, and so the last term in Eq. (B.21a) vanishes. The Hamiltonian HM has Σ+

symmetry, and if we insist that all of ξk∈a are also Σ+, then Eq. (B.21a) is Σ+ overall and
survives mean-fielding. To determine the symmetry of the imaginary term in Eq. (B.21b), we
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use

G−1
kl =

∑
n

∂ξk

∂Q̃n

∂ξl

∂Q̃n
, (B.22)

which allows us to write

Im{La} = 2
∑
k∈a

∑
n,n′

M∑
l, j=1

ω̃nπl
∂ξl

∂Q̃n′

∂ξ j

∂Q̃n′

∂Q̃n

∂ξ j

∂Q̃n

∂ξk

∂

∂πk

= 2
∑
k∈a

∑
n

M∑
l=1

ω̃nπl
∂ξl

∂Q̃n

∂Q̃n

∂ξk

∂

∂πk
= 2

∑
k∈a

[∑
n

ω̃n
∂Q̃n

∂ξk
Pn

]
∂

∂πk
,

(B.23)

where PM are the Matsubara counterparts of the analytically-continued curvilinear momenta π.
Comparing the expression in brackets to Eq. (B.17) we conclude that the imaginary part of
the Matsubara Liouvillian is Σ− and must therefore vanish under mean-fielding.

B.3 Polar quasicentroids

B.3.1 Instantons in a two-dimensional rotor

In Section 4.2.2 we claim that constraining a ring-polymer at an average radius and angle
prevents it from stretching into an instanton. We now prove this for a two-dimensional
rotor described by the centrosymmetric potential V(r). Expressed in polar coordinates, the
ring-polymer potential energy is

WN (r, θ) = 1
N

N∑
l=1

{
V(rl) +

mω2
N

2 [r2
l + r2

l+1 − 2rlrl+1 cos(θl − θl+1)]
}
. (B.24)

We will minimise WN (r, θ) subject to the conditions in Eq. (4.21). Introducing the “normal-
mode” coordinates R, Θ from Eq. (A.55) we expand WN in a Taylor series about

R0 = R Θ0 = Θ

and truncate at second order in Rn,0 and Θn,0, to get

WN (r, θ) ∼ V(R) +
∑
n,0

{[
1
2

d2V
dR2 +

mω2
n

2

]
R2

n +
mω2

n

2 R2
Θ

2
n

}
(B.25)
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It follows that at the point where the ring polymer is about to form an instanton,

∂WN

∂Θn
= mω2

nR2
Θn = 0, (n , 0) (B.26)

i.e. the minimum-energy configuration will not have a spread in the angular degrees of
freedom. Similarly for the radial degrees of freedom

∂WN

∂Rn
=

d2V
dR2 Rn + mω2

nRn = 0 ⇒ Rn = 0 or − d2V
dR2

0
= mω2

n, (n , 0). (B.27)

Therefore an instanton can only form when the radial curvature of the potential is below
−4π2m/β2~2. Polar quasicentroids have been chosen to approximate the vibrational dynamics
of bound atoms, for which we can expect the curvature to be positive in thermally accessible
regions. For example, the smallest radius of negative curvature in the Morse potential of
Eq. (3.22) is

rc = req +
ln 2
α
≈ 2.43 a.u. (B.28)

This is well outside the thermally accessible region at any of the temperatures considered in
this work, and we should therefore see no spurious instantons in quasicentroid distributions.

B.3.2 Polar mean-field Hamiltonian

Consider the curvilinear coordinates ξ = {rl, θl | l = 1, . . . , N} defined in Eq. (4.22), with the
corresponding momenta

π
(r)
l = [ql · pl]/rl π

(θ)
l = ql × pl . (B.29)

We wish to calculate the mean-field Hamiltonian

e−βHMF(πR,πΘ,R0,Θ0) = lim
N→∞

1
(2π~)2N−2

∫
dNπr

∫
dNπθ

∫
dNr

∫
dNθ e−β[TN (π,ξ)+WN (ξ)]

δ

(
1
N

N∑
l=1

π
(r)
l − πR

)
δ

(
1
N

N∑
l=1

π
(θ)
l − πΘ

)
δ

(
1
N

N∑
l=1

rl − R0

)
δ

(
1
N

N∑
l=1

θl − Θ0

)
. (B.30)

The integral over the momenta can be performed analytically. First we write the kinetic
energy as

TN (π, ξ) = 1
2mN

[
π⊤r INπr + π⊤θ Dπθ

]
, (B.31)
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where IN is the N × N identity matrix, and

D = diag
[
r−2

1 . . . r−2
N

]
. (B.32)

Next, we introduce the “normal-mode” coordinates

Π
(r)
n =

1√
N

N∑
l=1

Tlnπ
(r)
l Π

(θ)
n =

1√
N

N∑
l=1

Tlnπ
(θ)
l , (B.33)

which allows us to explicitly impose the constraint in Eq. (B.30). Under this transformation,

TN (Π, ξ) = 1
2m

[
Π⊤r INΠr +Π

⊤
θ D̃Πθ

]
, (B.34)

where

D̃ = T⊤DT. (B.35)

The integral over Πr factorises straightforwardly. It evaluates to

∫
dNπr e−

βN
2m π⊤r INπr δ

(
1
N

N∑
l=1

π
(r)
l − πR

)
=

N N/2e−βπ2
R/2m

∏
n,0

( ∫ ∞

−∞
dΠ(r)n e−β[Π

(r)
n ]2/2m

)
= N N/2e−βπ2

R/2m
(
2πm
β

) (N−1)/2
. (B.36)

The integral over Πθ can be factorised by performing a block-LDU decomposition of D̃ (see
Appendix D.2 and [49, pp. 415–420]). It evaluates to

∫
dNπθ e−

βN
2m π⊤θ Dπθδ

(
1
N

N∑
l=1

π
(θ)
l − πΘ

)
= N N/2e−βπ2

Θ
/2mρ2

ρ−1 |D̃|−1/2
(
2πm
β

) (N−1)/2
, (B.37)

where ρ is the root-mean-square radius in Eq. (4.24). The matrix D̃ is related to D by an
orthogonal transformation, and so

|D̃| = |D| =
N∏

l=1
r−2

l . (B.38)

Combined, these results produce the final expression in Eq. (4.23).
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B.3.3 Approximations to the Liouvillian

In Section 4.2.2 we say that the exact mean-field Hamiltonian can be approximated so that it
becomes separable when expressed in terms of the Cartesian quasicentroids in Eq. (4.25). To
see why this is a good approximation, consider the root-mean-square radius ρ(r) defined in
Eq. (4.24). Using the normal-mode coordinates from Eq. (A.55) we get

ρ(r) = R2 + y2, with y2 ≡
∑
n,0
(Rn/R)2. (B.39)

We can expand the ρ-dependent part of the integrand in Eq. (4.23) in a Taylor series about
y = 0 to give

ρ(r′)−1e−βT(πR,πΘ,ρ(r′)) = R−1e−βT(πR,πΘ,R)
[
1 + y2

(
βπ2
Θ

2mR2 − 1
)
+ O(y4)

]
. (B.40)

The approximation in Eq. (4.26) corresponds to truncating this series at the first term, which
is justified so long as the radial centroid of the ring-polymer distribution is large compared to
its spread. Furthermore, the thermal averages of functions of R and Θ are unaffected by this
truncation, which indicates that the coefficient of the neglected terms are on average small.

Using this approximation to factorise the kinetic energy allows us to define the mean-field
potential FMF, such that

e−βFMF(R,Θ) =N
(

m
2πβN~2

)N−1∫
dNr′

∫
dNθ′ ×

[J(r′)/R] e−β[VN (r′,θ)+S̃N (r′,θ ′)] δ(R′ − R) δ(Θ′ − Θ)
(B.41)

The corresponding forces contain contributions from the external potential VN (r, θ), the
springs S̃N (r, θ), and the Jacobian J(r)/R. We will now show that for a centrosymmetric
potential VN (r) the spring and the Jacobian contributions cancel each other almost exactly. In
this case, integration over the angles in Eq. (B.41) can be performed analytically. Following
Kleinert [133, pp. 697–699] we get

e−βFMF(R) ∝ R−1
∫

dNr′ δ(R′ − R)
∞∑

M=−∞

N∏
l=1

ĨM

(mr′l r
′
l+1

βN~2

)
×

exp
{
−βN

N∑
l=1

(
V(r′l ) +

mω2
N

2 [r′l − r′l+1]2
) }
,

(B.42)
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where we omit the proportionality constant and use Kleinert’s notation for the weighted
modified Bessel functions ĨM . Provided that the potential V(r) is strongly repulsive at the
origin, so that contributions from rl → 0 are negligible, we may use the first term in the
asymptotic expansion

ĨM(z) z→∞−−−−→ e−(M2−1/4)/2z + · · · (B.43)

to simplify the expression

lim
N→∞

∞∑
M=−∞

N∏
l=1

ĨM

(
mrlrl+1
βN~2

)
= e f (r)/4θ3(0|i f (r)/π), (B.44)

where

f (r) = lim
N→∞

βN~
2

2m

N∑
l=1

1
rlrl+1

= lim
N→∞

βN~
2

2m

N∑
l=1

r−2
l (B.45)

and

θ3(z |τ) = 1 + 2
∞∑

M=1
eiM2πτ cos(2Mz) (B.46)

is the third Jacobi theta function with lattice parameter τ [Eq. 20.2.3 in 134]. We may use the
lattice transformation [Eq. 20.7.32 in 134],

θ3(z |τ) = (−iτ)−1/2e−iz2/πτθ3(−z/τ | −1/τ) (B.47)

to approximate

θ3(0|i f (r)/π) =
√

π

f (r) θ
(
0|iπ/ f (r)) =√

π

f (r)

[
1 + 2

∞∑
M=1

e−M2π2/ f (r)
]
≈

√
π

f (r) . (B.48)

This is an extremely accurate approximation for values of r that contribute significantly to
the mean-field force calculations in Section 4.3 (relative error less than 10−12). With these
simplifications, the mean-field force can be written as

−∂FMF
∂R

= − 1
Z(R)

〈
1
βR
+

1
β

(
1

2 f (r′) −
1
4

)
∂ f (r′)
∂R′

+
∂VN (r′)
∂R′

〉
, (B.49)

where

⟨· · ·⟩ =
∫

dNr′ (· · ·)
√

π

f (r′)e
f (r′)/4 exp

{
−βN

N∑
l=1

(
V(r′l ) +

mω2
N

2 [r′l − r′l+1]2
)}
δ(R′− R) (B.50)
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Expanding in a Taylor series about rl = R gives

1
Z(R)

〈
1
βR
+

1
β

(
1

2 f (r′) −
1
4

)
∂ f (r′)
∂R′

〉

=
~2

4mR3 +
1

Z(R)

〈
3y2

βR

(
β~2

2mR2 − 1
)
+ O(y3)

〉
,

(B.51)

where y is defined in Eq. (B.39). The first term is a quantum mechanical correction to the
centrifugal barrier [Eq. 8.21 in 133]. For systems considered in this work it can be safely
neglected. The remaining term is second order in y and can also be neglected, provided that
the bead distribution is radially compact. Once the corresponding terms are removed from
Eq. (B.49), Eq. (4.27) follows directly.

B.4 Simulation details

To calculate the mean-field averages of the radial quasicentroid force in Eq. (4.33), we ran
constrained PIMD simulations with the quasicentroid radius R fixed at values spanning a
regular grid of 128 points between 1.5 and 2.5 a.u, and the angle Θ fixed at 0. At each point
we ran a single trajectory that was first equilibrated for 0.5 ps and then propagated for 50 ps
under a PILE-L thermostat with friction

γn =




0.01 fs−1 if n = 0,

|ωn | otherwise.

The number of beads used at the different temperatures is the same as in Table A.2. To
integrate the constrained equations of motion we used the OBABO scheme proposed by
Leimkuhler and Matthews [110], where the letters denote the sequence of operations needed
to propagate the system through a single time step and have the following meaning:

O. Propagate the ring-polymer momenta for ∆t/2 under the PILE-L thermostat [92], fol-
lowed by RATTLE [109] to constrain the quasicentroid components.

B. Propagate the momenta for ∆t/2 under the forces derived from the ring-polymer
potential WN (q), followed by RATTLE.

A. Propagate the ring-polymer positions for ∆t according to the current values of the
momenta, followed by SHAKE [108] to constrain the quasicentroid coordinates at the
specified values.
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The resulting mean-field forces were interpolated with cubic splines and used for the QCMD
simulations in Section 4.3. The QCMD simulations followed the procedure outlined in Ap-
pendix A.6.2, with a total of 8 independent trajectories propagated at each temperature. Each
one was first equilibrated for 10 ps under a Langevin thermostat with friction γ0 = 0.01 fs−1

and then propagated for a total of 105 sampling intervals of 2 ps, separated by relaxation
intervals of 0.5 ps, using an integration time step ∆t = 0.2 fs.



Appendix C

Vibrational dynamics of water

C.1 Quasicentroid torque

To arrive at the alternative approximation to the quasicentroid torque we rewrite the rotational
Eckart condition in Eq. (5.3b) as

∑
α

mαD
(α)× D̃(α) = 0, (C.1)

where

D
(α)
= Q

(α)− Q(c), D̃
(α)
= Q̃

(α)
0 − Q̃

(c)
0 , (C.2)

and Q
(c)
= Q̃

(c)
0 is the (quasi-)centroid centre of mass. We then differentiate Eq. (C.1) twice

with respect to time,

∑
α

mα
ÜD(α)× D̃(α) =

∑
α

mα
Ü̃D(α)× D(α) − 2

∑
α

1
mα

P
(α)× P̃(α), (C.3)

and use Newton’s second law to write

mα
Ü̃D(α) = −∂VN (q)

∂Q̃
(α)
0

. (C.4)

According to our approximations in Eqs. (5.4) and (5.5), quasicentroids undergoing mean-field
dynamics satisfy

mα
ÜD(α) = 1

Z(Q)

〈
−∂VN (q)
∂Q
(α)

〉
Q

. (C.5)
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Hence we write the non-mean-field quasicentroid acceleration as

mα
ÜD(α) = −∂VN (q)

∂Q
(α) + . . . , (C.6)

where (. . .) denotes terms that vanish under mean-fielding, which we will ignore. Similarly,
we expect the last term of Eq. (C.3) to vanish under mean-fielding, as none of the remaining
quantities depend on momenta. Equation (C.3) then becomes

−
∑
α

∂VN (q)
∂Q
(α) × D̃

(α) ∼ −
∑
α

∂VN (q)
∂Q̃
(α)
0

× D(α), (C.7)

where “∼” means that the two sides are approximately equal under mean-fielding. We then
expand the quasicentroid forces as in Eq. (5.10), getting after cancellation

∑
α

[
f
(α)
int + mα

(
I−1τ

) × D(α)] × D̃(α) ∼ −∑
α

∂VN (q)
∂Q̃
(α)
0

× D(α). (C.8)

Finally, rearranging the vector triple product on the left-hand side leads to Eqs. (5.17) and (5.18).

C.2 Convergence of AQCMD spectra for water

Convergence of the AQCMD infrared absorption spectra with respect to the adiabatic separa-
tion γ at 600 and 300 K was tested by simulating liquid water using a box of 32 molecules, sub-
ject to periodic boundary conditions [48, 49]. The simulated spectra converged at γ = 8 and 32
respectively, as shown in Figure C.1.

The convergence with respect to γ for ice at 150 K had to be tested using a larger simulation
box of 96 molecules, in order to ensure a zero net dipole moment [135]. The highest value
tested was γ = 128, which was sufficient to converge the positions of all the bands in the
spectrum, but not the relative intensity of the bend and stretch bands (see Figure C.1). However,
the dipole-derivative TCF was converged for t = 0 already at γ = 64. This, together with
the abrupt nature of convergence at 300 K, suggests that the γ = 128 spectrum is close to
convergence at 150 K.
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Figure C.1 Simulated infrared absorption spectra in the OH-stretch region of q-TIP4P/F water at 600,
300, and 150 K, calculated with the AQCMD algorithm of Section 5.1.3 at different levels of adiabatic
separation γ. In all cases the position of the absorption maximum remains largely unchanged with
increasing γ, and only the intensity is noticeably affected. The spectrum at 300 K demonstrates that
convergence of the intensity may be quite abrupt, and similar behaviour is anticipated at 150 K.

C.3 Simulation details

C.3.1 Gaseous water

PIMD calculations To calculate the mean-field forces for the CMD and QCMD simulations
in Section 5.2 we ran a set of constrained PIMD trajectories on a 64× 64× 64 grid in the (quasi-
)centroid OH bond lengths and bond angle, R1, R2, and Θ. At each grid point we propagated a
single trajectory subject to a PILE-L thermostat, using the same friction parameters and means
of imposing the constraints as described in Appendix B.4. All other simulation parameters
are summarised in Table C.1.

Dynamics simulations To calculate the time-correlation functions that yielded the spectra
in Figure 5.2, we ran a set of 50 independent trajectories for each of TRPMD, CMD, and QCMD.
Each trajectory was equilibrated for 1500 fs, followed by a series of 1000 production intervals
of 2000 fs, separated by relaxation intervals of 300 fs. The (quasi-)centroid thermostat was
turned off during the production intervals, and turned back on for equilibration and relaxation.
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Table C.1 PIMD simulation parameters for calculating the mean-field QCMD
and CMD forces for Partridge–Schwenke gaseous water.

T/K 150 300 600

N 64 32 16
(Rmin, Rmax)/a.u. (1.65, 2.05) (1.50, 2.50) (1.50, 2.50)
(Θmin, Θmax) (90°, 126°) (85°, 130°) (85°, 130°)
∆t/fs 0.05 0.10 0.10
tprod/ps 5 10 10

The TCF samples from each of the production intervals were time-averaged as described
in Appendix A.6.2. TRPMD simulations used a PILE-L thermostat with frictions

γn =




0.01 fs−1 if n = 0,

|ωn | otherwise,

and an integration time step ∆t = 0.1 fs. The number of ring-polymer beads at the different
temperatures was the same as for the PIMD simulations in Table C.1. CMD and QCMD
simulations used a Langevin thermostat with friction γ0 = 0.01 fs−1 and an integration time
step ∆t = 0.2 fs, with the mean-field forces obtained by cubic spline interpolation of the
pre-calculated values.

C.3.2 Liquid water and ice

Liquid water Simulations of the hot compressed liquid (600 K) and the liquid at ambient
conditions (300 K) were carried out using a cubic cell of 128 molecules subject to periodic
boundary conditions [48, 49]. The cell length was set to 34.1351 a.u. at 600 K and 29.5958 a.u.
at 300 K. At each temperature we initialised 8 independent trajectories starting from a set
of water molecules on a bcc lattice, with their orientations randomised. Each trajectory
was propagated under a global Langevin thermostat for 100 ps [92, 102]. The resulting
configurations were then converted into collapsed ring polymers of 16 beads at 600 K and 32
beads at 300 K. These were propagated under the PILE-G thermostat [92] for a further 100 ps,
to yield the equilibrated starting configurations for the path-integral simulations.

The TRPMD and CMD time-correlation functions were calculated by propagating the
equilibrated configurations for a further 100 ps under the PILE-G thermostat. For CMD
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we used the partially adiabatic algorithm with an adiabaticity constant γ = 4. The QCMD
time-correlation functions were calculated by propagating the equilibrated configurations for
35 ps according to the procedure set out in Section 5.1.3, with an adiabaticity constant γ = 8
at 600 K and γ = 32 at 300 K. The ring polymers were subject to a PILE-L thermostat [92], and
the quasicentroids were subject to a global Langevin thermostat, to ensure proper sampling.
The first 10 ps of each QCMD trajectory were discarded prior to the calculation of the TCF.

Throughout the simulation the PILE thermostats were set up to have non-centroid frictions
γn = λ×2ωn, whereωn are the normal-mode frequencies from Eq. (2.44) in the case of TRPMD,
and the adiabatic frequency from Eq. (5.19) in the case of (Q)CMD. The values of the parameter
λ, the (quasi-)centroid friction γ0, and the simulation time step ∆t are summarised in Table C.2.

Table C.2 Simulation parameters for calculating the in-
frared absorption spectra of q-TIP4P/F liquid water.

CMD TRPMD
QCMDa

QC RP

λ 0.01 0.5 — 0.5
γ0/fs−1 0.01 0.01 0.01 0.01γ
∆t/fs 0.1/γ 0.1 0.1/γ
a QC and RP denote the quasicentroid and ring-polymer

subsystems respectively.

Ice Ih Simulations of ice Ih were carried out using an orthorhombic cell with sides a =

25.6156, b = 29.5783, and c = 27.8867, all in atomic units. The initial configuration was the
same as used by Willatt [88]. Alternatively, we could have used one of the optimised configura-
tions suggested by Hayward and Reimers [135]. The key point is that the configuration has to
satisfy the Bernal–Fowler ice rules [136] and possess a zero net dipole moment. Starting from
this configuration, we propagated 15 independent trajectories, first using classical dynamics,
and then TRPMD with N = 64 ring-polymer beads. The simulation parameters for this
equilibration were the same as for the liquid. Eight of the equilibrated configurations were
then used to initialise 100 ps long TRPMD and CMD trajectories that were propagated using
the same simulation parameters as for the liquid.

For the QCMD simulation we took all 15 of the thermalised ring-polymer configurations
and further equilibrated them using the adiabatic algorithm of Section 5.1.3 (γ = 128), with
a PILE-L thermostat acting on the ring polymer and a local Langevin thermostat acting on
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the quasicentroids. Equilibration was followed by a series of three production intervals,
each lasting 2.5 ps, with a global Langevin thermostat acting on the quasicentroids. These
intervals were separated by periods of relaxation, during which a local Langevin thermostat
acted on the quasicentroids for 300 fs. A PILE-L thermostat was acting on the ring polymers
throughout the simulation, with the thermostat friction and integration time step set to the
values in Table C.2.

LMon-4 and TRPMD+GLE(C) For completeness, in Figure C.2 we look at the full range
of frequencies covered by the simulated QCMD, TRPMD+GLE(C) and LMon-4 spectra. The
stretch regions of these spectra are plotted separately in Figure 5.5 and discussed in Sec-
tion 5.3.2. As mentioned in Section 5.3.2, LMon-4 and TRPMD+GLE(C) provide poor descrip-
tions of the libration band, which is why we did not consider the entire range of frequencies
in the main body of this work.

To calculate the TRPMD+GLE(C) spectra, we took 8 equilibrated starting configurations
and propagated them for 100 ps using the i-PI simulation package [127]. The simulation
parameters were the same as used by Rossi et al. in Ref. [84].
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Figure C.2 Simulated infrared spectra from Figure 5.5, showing the libration and bend regions.

To calculate the smooth LMon-4 spectra we needed to post-process the raw output data,
which consisted of a list of square transition dipole moments µ2

i at discrete frequencies ωi . To
convert the dipole-derivative ACFs into spectra, the path-integral calculations used Eq. (5.23)
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with a Hann window [98]

f (t) =



cos2 ( πt
2w

) |t | ≤ w,
0 |t | > w,

(C.9)

where w is the width of the window. Therefore, to be consistent with these results, we
calculated the discrete convolution of the raw LMon-4 data with the Fourier transform of the
Hann window:

n(ω)σ(ω) ∝
∑

i

µ2
i f̃ (ω − ωi) where f̃ (ω) = sin(ωw)

ω[1 − (ωw/π)2] . (C.10)

The proportionality constant was chosen to match the QCMD spectrum integrated between
2600 and 4500 cm−1.





Appendix D

Useful mathematical relations

This details the mathematical relations used in some of our derivations. Appendix D.1 lists
several integrals involving the multivariate Gaussian distribution. Appendix D.2 looks at the
block-LDU factorisation of a matrix, where L denotes a unit lower triangular matrix, U is unit
upper triangular, and D is a direct sum of two square matrices (and therefore block-diagonal).

D.1 Multivariate Gaussian integrals

Consider the integral

I(A, b) =
∫
RN

dNx exp
{
−β

[
1
2x
⊤Ax − b⊤x

]}
(D.1)

where A is a symmetric positive definite matrix that is diagonalised by a real orthogonal
transformation U,

U⊤AU = diag(λ1, . . . , λN ) ≡ Λ. (D.2)

Let us define

U⊤x ≡ y, U⊤b ≡ v, (D.3)

so that
1
2x
⊤Ax − b⊤x =

N∑
l=1

[
1
2λl y

2
l − vl yl

]
=

N∑
l=1

1
2λl(yl − vl/λl)2 −

N∑
l=1

1
2 v

2
l /λl . (D.4)

Defining

ỹl ≡ yl − vl/λl (D.5)
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and expressing the integral in terms of the new variable yields

I(A, b) =
n∏

i=1

∫ ∞

−∞
dỹi e−

β
2 λi ỹ

2
i e

β
2 λ
−1
i v2

i =

n∏
i=1

√
2π
βλi

e
β
2 λ
−1
i v2

i =

(
2π
β

)n/2
|A|−1/2 e

β
2 b
⊤A−1b. (D.6)

Now let us calculate the (scaled) first moment of the multivariate Gaussian distribution,

j(M,A, b) =
∫

dx (Mx) exp
{
−β

[
1
2x
⊤Ax − b⊤x

]}
, (D.7)

where M is some general matrix. We express the multiplicative factor as

Mx = MUy = MU
(
ỹ + Λ−1v

)
(D.8)

and substitute into the integral over ỹi . The linear term vanishes upon integration, leaving

j(M,A, b) = I(A, b)MUΛ−1v = I(A, b)MA−1b. (D.9)

Finally, we calculate the (scaled) second moment

K(M,A, b) =
∫

dx (x⊤Mx) exp
{
−β

[
1
2x
⊤Ax − b⊤x

]}
. (D.10)

Writing

x⊤Mx =
[
U⊤x

]⊤ U⊤MU
[
U⊤x

] ≡ y⊤Γy, (D.11)

we expand a single term

yiΓi j y j = ỹiΓi j ỹ j + viλ
−1
i Γi j ỹ j + ỹiΓi jλ

−1
j v j + viλ

−1
i Γi jλ

−1
j v j . (D.12)

The middle terms are odd and vanish upon integration. The remaining two terms yield

K(M,A, b) = I(A, b)
(

1
β

Tr[A−1M] + b⊤A−1MA−1b
)
. (D.13)
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D.2 Matrix block-LDU decomposition

Consider a square matrix M and its inverse m, that are subdivided into blocks according to

M =

(
A B
C D

)
m =

(
a b
c d

)
, (D.14)

where A, B, C, D are u × u, u × v, v × u, and v × v respectively, and the same holds for the
blocks in m. The matrix M can be decomposed as [137]

(
A B
C D

)
=

(
Iuu BD−1

0vu Ivv

)
︸          ︷︷          ︸

U

(
M/D 0uv

0vu D

)
︸         ︷︷         ︸

Σ

(
Iuu 0uv

D−1C Ivv

)
︸          ︷︷          ︸

L

(D.15)

where Iuu is a u × u identity matrix and 0uv is a u × v matrix of zeros. M/D denotes the Schur
complement of block D in matrix M, and is defined as

M/D := A − BD−1C. (D.16)

It can be shown that

L−1 =

(
Iuu 0uv

−D−1C Ivv

)
, (D.17)

and that an analogous result holds for U. Using this, the inverse of M can be written as

M−1 = L−1Σ−1U−1 =

(
[M/D]−1 −[M/D]−1BD−1

−D−1C[M/D]−1 [M/A]−1

)
. (D.18)

Comparing this block-wise to M−1 = m, we arrive at the relations

[M/D]−1 = a [M/A]−1 = d, (D.19a)

−D−1C = ca−1 −BD−1 = a−1b, (D.19b)

which we use when calculating the mean-field Hamiltonian in Section 4.2.
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