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Adolescent changes in human brain function are not entirely un-
derstood. Here we used multi-echo functional magnetic resonance
imaging (fMRI) to measure developmental change in functional con-
nectivity (FC) of resting-state oscillations between pairs of 330 cor-
tical regions and 16 subcortical regions in 298 healthy adolescents
scanned 520 times. Participants were aged 14-26 years, and were
scanned on one to three occasions at least 6 months apart. We
found two distinct modes of age-related change in FC: “conserva-
tive” and “disruptive”. Conservative development was characteristic
of primary cortex, which was strongly connected at 14 years and be-
came even more connected in the period 14-26 years. Disruptive de-
velopment was characteristic of association cortex and subcortical
regions, where connectivity was re-modelled: connections that were
weak at 14 years became stronger during adolescence, and connec-
tions that were strong at 14 years became weaker. These modes of
development were quantified using the maturational index (MI), es-
timated as Spearman’s correlation between edge-wise baseline FC
(at 14 years, F C14) and adolescent change in FC (∆F C14−26), at
each region. Disruptive systems (with negative MI) were activated
by social cognition and autobiographical memory tasks in prior fMRI
data, and significantly co-located with prior maps of aerobic glycoly-
sis (AG), AG-related gene expression, post-natal cortical surface ex-
pansion, and adolescent shrinkage of cortical thickness. The pres-
ence of these two modes of development was robust to numerous
sensitivity analyses. We conclude that human brain organisation is
disrupted during adolescence by re-modeling of functional connec-
tivity between association cortical and subcortical areas.
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During adolescence the human brain undergoes substantial1

changes in both structure (1, 2) and function (3, 4).2

Accurately describing these maturational processes is key to3

understanding the parallel changes in cognition and behaviour,4

as well as the vulnerability to mental health disorders (5), that5

characterize this critical developmental period.6

Functional brain networks derived from fMRI have proven7

to be useful for understanding large-scale brain organization8

(6, 7). The nodes of these fMRI networks correspond to9

macroscopic brain regions and the edges correspond to the10

correlations in brain activity, or so-called functional connectiv-11

ity (FC), between pairs of regionally localised, low frequency12

oscillations. Several studies have reported age-related changes13

in functional brain networks during adolescence, but the find-14

ings are overall somewhat inconsistent. This is likely due in15

part to small sample sizes, the lack of longitudinal data, and 16

significant variation in fMRI data pre-processing and analysis 17

methods (see SI Appendix, Table S1). In addition, although 18

subcortical nuclei are theoretically well-recognised components 19

of frontal cortico-striato-thalamic circuits, subcortical connec- 20

tivity has generally been measured only for a few nuclei or 21

ignored altogether (see SI Appendix, Table S2). 22

Multiple prior resting-state fMRI studies of human brain 23

development in childhood and adolescence replicably reported 24

an age-related increase in the strength of long-range connec- 25

tions accompanied by a decrease in the strength of short-range 26

connections (8–11). Since long-range connections tend to be 27

concentrated on association cortical areas involved in higher- 28

order cognitive functions, these results were consistent with 29

prior work suggesting that primary sensory and motor areas 30

mature earlier in childhood, whereas association areas show 31

relatively protracted maturation, extending into adolescence 32

and early adulthood (1, 2, 12–14). 33

However, it has since become clear that these changes in 34

FC attributed to age might have been confounded by the 35

effects of in-scanner head motion (13, 15–17). It is now well- 36
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Fig. 1. Regional strength of functional connectivity (weighted degree) of cortical areas and subcortical nuclei at 14 years (F C14) and regional change in strength
of connectivity during adolescence (∆F C14−26). A) Regional strength for each of 330 cortical and 16 subcortical nodes was regressed on a linear function of age for
all participants (N = 520 scans from 298 participants; mixed effects model). B) Parameters of cortico-cortical (left) and cortico-subcortical connectivity (connectivity). For
subcortico-cortical and subcortico-subcortical connectivity, see SI Appendix, Fig. S4. C) Heterogeneous F C14 and ∆F C14−26 of individual subcortical nuclei to cortex
(subcortical regions are ordered by decreasing average rate of change). Due to bilateral symmetry and space constraints, only left hemispheres are visualised.

recognised that small (<1 mm), transient head movements37

during scannning can bias estimation of correlations between38

fMRI time series and this is a critical issue for developmental39

studies because younger participants may find it more difficult40

to remain stationary in the scanner.41

Here, we measured resting-state FC maturation in an ac-42

celerated longitudinal study of 298 healthy adolescents, aged43

14-26 years, scanned one to three times. To correct fMRI time44

series for effects of participant in-scanner motion, we used45

multi-echo scans (18) denoised using multi-echo independent46

component analysis (ME-ICA; 19, 20) to identify and discard47

components of fMRI time series unrelated to the BOLD signal.48

We further corrected residual effects of head motion using49

linear regression, and investigated robustness of our findings50

to head movement by extensive supplementary analyses. For51

each pre-processed fMRI dataset, we estimated the Pearson’s52

correlation between all pairs of regional mean time series from53

each of 330 cortical areas and 16 subcortical nuclei. We identi-54

fied two modes of developmental change in fMRI connectivity,55

defined by positive or negative maturational index (MI), and56

assessed the psychological and biological relevance of these so-57

called “conservative” or “disruptive” systems by meta-analysis58

of prior task-related fMRI data and by testing for anatom-59

ical co-location of the MI map with prior maps of cortical60

metabolism, gene expression, post-natal areal expansion and61

adolescent cortical shrinkage.62

Results63

Head movement. A total of 36 scans were excluded by one64

or more quality control criteria, including high in-scanner65

motion (µ(FD) > 0.3 mm or max(FD) > 1.3 mm; see SI66

Appendix). Following scan exclusion, regional fMRI time67

series were available at 330 cortical areas and 16 subcortical68

structures for 298 participants (151 females), scanned a total69

of 520 times (see SI Appendix text and Fig. S1).70

In these data, we found no evidence of an age-related change71

in head movement, indexed by framewise displacement (FD;72

15). However, there was a positive correlation between FC73

and head movement, and also distance dependence of the74

correlation between FC and FD, which was greater when the 75

distance between nodes was greater (SI Appendix, Fig. S2). 76

These confounding effects of head movement on connectivity 77

in ME-ICA pre-processed data were corrected by regressing 78

FC on mean FD (21, 22). The residual (mean FD-corrected) 79

estimates of FC were not significantly correlated with head 80

motion and there was no distance dependence of the relation- 81

ship between residual FC and FD (SI Appendix, Fig. S2). We 82

therefore used this movement correction pipeline of ME-ICA 83

followed by FD regression as the basis for further analysis 84

of functional connectivity. We subsequently confirmed that 85

the results obtained from our main analysis (N = 520) were 86

qualitatively and quantitatively consistent with the results 87

obtained by a sensitivity analysis using only a subset of “low- 88

motion” fMRI data (N = 182) that had been acquired without 89

discernible head motion (FD < 0.2 mm for each of 100 con- 90

secutive volumes; 23) and analysed without FD-regression (SI 91

Appendix, Fig. S24-28 and Fig. S36-37). To test robustness 92

of our results to an alternative movement correction strategy, 93

we also used global signal regression (GSR) for movement 94

correction of the whole sample (N = 520) and obtained results 95

that were qualitatively consistent and correlated with results 96

obtained both from our main analysis and the low-motion 97

data (SI Appendix, Fig. S29-35 and Fig. S36-37). 98

Age-related change of connectivity strength. The functional 99

connectivity (FC), or weight of an edge between two nodes, 100

as defined by the correlation between a pair of regional fMRI 101

time series, was generally positive. The global mean correla- 102

tion weakly increased with age (t(221) = 2.3, P = 0.023; SI 103

Appendix, Fig. S3). For each regional node, we estimated 104

its strength of connectivity (or weighted degree) by averaging 105

the correlations between it and all other regions. We also 106

calculated the strength of connectivity specifically within or 107

between cortical and subcortical subsets of nodes. Using a 108

mixed effect linear model of age-related change, we estimated 109

the “baseline” strength of FC at age 14 years, FC14, and the 110

linear rate of change in weighted degree as a function of age, 111

∆FC14−26 (Fig. 1A), for each node. We also estimated the 112

baseline and age-related change in FC for each edge. 113
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Fig. 2. Maturational index. A) The maturational index (MI) for each brain region is defined as the correlation of edge-wise baseline F C14 versus rate of change ∆F C14−26.
Panel B) Estimation of MI is illustrated for two exemplar regions: left somatosensory cortex which illustrates a “conservative” mode of development with positive MI; and left
posterior cingulate cortex which illustrates a “disruptive” mode of development with negative MI. C) Visualisation of the Maturational Index for all cortical regions, and D)
subcortical regions (the left/right arrow corresponds to the left/right hemisphere).

At 14 years, all cortical regions had positive cortico-cortical114

connectivity strength and the most strongly connected nodes115

were located in primary motor and sensory cortical areas.116

Cortico-subcortical connectivity strength had a similar anatom-117

ical distribution, with stronger connectivity between primary118

cortical areas and subcortex, at baseline (Fig. 1B). Age-related119

rates of change in connectivity strength were also region-120

ally heterogeneous. Cortico-cortical connectivity strength121

increased in most regions during adolescence, most rapidly122

in primary motor and sensory cortex. However, age-related123

change in the strength of cortico-subcortical connectivity had124

a different anatomical distribution. The most positive rates125

of increase in connectivity were between subcortical nodes126

and association cortical areas, whereas some primary motor127

and sensory cortical areas had negative age-related changes in128

strength of connectivity with subcortical regions (Fig. 1B).129

To further investigate cortico-subcortical connectivity, we130

estimated FC14 and ∆FC14−26 between each cortical area131

and each bilateral pair of 8 subcortical regions (Fig. 1C).132

At baseline, the putamen, the pallidum and the thalamus133

were strongly connected to many cortical areas; whereas the134

amygdala and the accumbens had somewhat lower strength of135

cortical connectivity overall. Over the course of adolescence,136

the amygdala (PFDR < 0.05), the hippocampus (PFDR <137

0.05) and the diencephalon had increased cortical connectivity;138

whereas the putamen, the pallidum, and the thalamus, had139

decreased strength of connectivity with primary somatomotor140

and premotor cortex, but increased strength of connectivity141

to frontal and parietal association cortex. See SI Appendix142

(Fig. S4 and Table S3) for details.143

Maturational index. For each regional node, there was often a144

strong relationship between baseline connectivity FC14 and145

adolescent change in connectivity ∆FC14−26 for the 345 edges146

connecting it to the rest of the network. We defined the mat-147

urational index (MI) as the signed coefficient (Spearman’s148

ρ) of the relationship between FC14 and ∆FC14−26 for each149

node (Fig. 2A). MI was often significantly non-zero by statisti-150

cal tests including a permutation test controlling for regional151

contiguity and hemispheric symmetry (Pspin; Fig. S5). For152

example, the left somatosensory cortex had strongly positive153

MI, indicating that the edges with strongest FC at baseline154

showed the greatest positive increase in FC during adolescence.155

Conversely, left posterior cingulate cortex had strongly nega-156

tive MI, indicating that the edges with weakest FC at baseline157

showed the greatest positive increase in FC during adolescence 158

(Fig. 2B). To put it another way, in somatosensory cortex and 159

other regions with MI > 0 there was a conservative mode of 160

developmental change: connections that were already strong 161

at 14 become stronger by the age of 26. Whereas, in posterior 162

cingulate cortex and other regions with MI < 0, there was a 163

disruptive mode of developmental change: connections that 164

were weak at 14 got stronger by the age of 26 (and connections 165

that were strong at baseline became weaker) (Fig. 2C,D). 166

Conservative changes in connectivity were concentrated in 167

primary motor and sensory areas, corresponding to cytoar- 168

chitectonic classes 1 and 5 in the von Economo atlas (24), 169

and the insula (Fig. 3A). This anatomical distribution maps 170

onto motor, ventral attention and visual networks previously 171

defined by independent component analysis of adult resting 172

state fMRI data (Fig. 3B) (25). Disruptive changes in connec- 173

tivity were concentrated in association cortex (von Economo 174

class 2) and limbic cortex, corresponding to fronto-parietal, 175

default mode and limbic resting state networks. Subcortical 176

nodes were almost all characterized by disruptive development, 177

with weak baseline connectivity to association cortex becoming 178

stronger, and strong baseline connectivity to primary motor 179

or sensory cortex becoming weaker (Fig. 2D). 180

For further details on adolescent changes in functional 181

connectivity at the finer grained level of edges, see SI Appendix, 182

Fig. S6-S8. 183

Contextualising adolescent change in functional connectivity. 184

We used a meta-analytic tool (Neurosynth; 26) to identify 185

cognitive processes or experimental task conditions that were 186

associated with prior task-related activation of disruptively 187

vs. conservatively developing cortical systems (Fig. 3C,D). 188

Disruptive changes in FC were located in cortical areas that 189

were activated by memory, mentalising and social processing 190

tasks. Conversely, conservative changes in FC were located in 191

cortical areas that were activated by motor and sensory tasks. 192

We estimated cortical thickness shrinkage at each cortical 193

node in a cross-sectional dataset of structural MRI scans 194

collected from 297 of the participants in this fMRI study (1). 195

The cortical areas with the most negative rates of thickness 196

change (or fastest shrinkage) had the most negative MI (ρ 197

= 0.16, P = 0.0052, Pspin = 0.036; Fig. 4A). However, two 198

other structural MRI markers of adolescent brain development 199

were not significantly co-located with MI in this sample (SI 200

Appendix, Fig. S9). 201
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Fig. 3. Maturational index in anatomical and psychological context. A) Distribution of maturational index for each cytoarchitectonic class of the von Economo atlas
(24), and B) for resting state networks derived from prior resting state FC analysis by Yeo (25). In both cases, subcortical regions were considered as an additional eighth
class/subnetwork. The violin plots are coloured by average MI within the corresponding class of regions. C-D) Word clouds of cognitive terms associated with cortical brain
regions that have C) disruptive (blue) or D) conservative (red) modes of development (Neurosynth decoding (26)). The size of cognitive terms corresponds to the correlation of
corresponding meta-analytic maps generated by Neurosynth with each of the two modes (top).

We further compared the maturational index map (Fig.202

2C) to nine independently produced maps of a range of brain203

functional and developmental parameters, including: (i) evo-204

lutionary and post-natal surface expansion of the cortex (27);205

(ii) metabolic rates of glucose, oxygen and aerobic glycolysis206

(AG) measured by PET (28); (iii) microarray measures of gene207

expression for 116 genes previously associated with AG (14)208

and extracted from the Allen Human Brain Atlas (29) as in209

(30); and (iv) areal scaling of the cortical surface (31).210

We found that disruptive cortical regions (with negative211

MI) had faster rates of postnatal surface expansion (ρ = -0.28,212

P = 8.7·10-7, Pspin = 0.036), higher metabolic rates of glucose213

(ρ = -0.41, P < 10-10, Pspin = 0.0032), higher rates of AG as214

measured by the glycolytic index (ρ = -0.56, P < 10-10, Pspin215

< 10-4), and higher expression of AG-related genes (ρ = -0.34,216

P = 1.8·10-5, Pspin = 0.0006) (Fig. 4B-D).217

All P-values reported above were corrected for a total of218

12 multiple comparisons using the false discovery rate (FDR).219

For details see Fig. 4 and SI Appendix Fig. S9 and Table S4.220

Sensitivity analyses. To evaluate the robustness of our results,221

we verified that the MI is consistent when edge-wise FC14222

and ∆FC14−26 are derived from 1,000 sets of independent223

random half-splits of the data (2x 260 scans), and when MI224

components are separately derived using cortico-cortical and225

subcortico-subcortical edges only (to account for potential226

differences in sub/cortical tSNR) (Fig. S10-S11).227

Further, we repeated main analyses (Figs. 1-4) under five228

conditions: (i) using a different cortical parcellation (SI Ap-229

pendix, Fig. S12-S15); (ii) in a subset of 298 cross-sectional230

scans (to rule out longitudinal effects of “regression to the231

mean”; SI Appendix, Fig. S16-S19); (iii) in a subset of 396232

scans from a single scanner (to rule out scanner site effects;233

SI Appendix, Fig. S20-S23); (iv) in a subset of low-motion234

time-series from 182 scans, displaying no discernible motion235

(SI Appendix, Fig. S24-S28); and (v) in the whole sample pre-236

processed using global signal regression (GSR; SI Appendix,237

Fig. S29-S35). In all cases, the following key results of the238

main analysis were recapitulated: (i) two modes of adolescent239

change in functional connectivity were defined by positive and240

negative MI; (ii) conservatively maturing brain systems, de-241

fined by MI > 0, were concentrated in primary cortical areas, 242

and disruptively maturing brain systems, defined by MI < 0, 243

were concentrated in subcortical and association cortical ar- 244

eas; and (iii) disruptively maturing systems were significantly 245

co-located with prior maps of aerobic glycolysis (AG) and 246

AG-related gene expression. Additionally, FC14, ∆FC14−26 247

and MI metrics were positively correlated between the main 248

analysis and the sensitivity analyses of GSR pre-processed 249

data, and a low-motion subset of data (SI Appendix, Fig. 250

S36-37). 251

Discussion 252

We have reported results from an accelerated longitudinal 253

study of adolescent development of functional connectivity 254

(FC) in the healthy human brain. In a large, population- 255

representative sample of resting-state fMRI data, balanced for 256

age and sex, and controlled for head motion, we found evidence 257

for two modes of maturational change in the age range 14 to 258

26 years, which we called conservative and disruptive. 259

The conservative mode of change was consolidating, or 260

making stronger over the course of adolescence, the connec- 261

tivity of specialised sensory or motor cortical areas that were 262

already highly connected at age 14. Conservatively, “the rich 263

get richer”. In contrast, the disruptive mode of change was 264

to make connectivity stronger in areas where it was relatively 265

weak at age 14, or to make it weaker where it was relatively 266

strong at the start of adolescence. Disruptively, “the rich get 267

poorer and the poor get richer”. Disruptive maturation was 268

characteristic of association and limbic cortex, corresponding 269

to default mode, fronto-parietal and limbic fMRI networks, 270

and previously activated by tasks related to memory, theory 271

of mind, and social cognition. Disruptive maturation was also 272

characteristic of subcortical structures. 273

We hypothesised that the disruptive pattern of changes in 274

macroscopic functional connectivity, measured by fMRI, was 275

reflective of changes in microscopic, synaptic connectivity in 276

association cortical and subcortical brain systems (2). We 277

explored this hypothesis by comparing the fMRI map of matu- 278

rational index (MI) to prior brain maps of structural, genomic 279

and metabolic parameters of adolescent development. 280
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Fig. 4. Disruptive and conservative modes of fMRI maturation in developmental and metabolic context. A) Maturational index was positively correlated with ∆CT (1) -
regions which had disruptive development (MI < 0) had faster rates of cortical thickness (CT) shrinkage during adolescence. B) MI was negatively correlated with a prior map of
postnatal cortical surface area (28) - disruptive maturation was greater in regions that showed greatest expansion after birth. C) MI was negatively correlated with a prior map of
the glycolytic index, a measure of aerobic glycolysis (AG; 28); and D) MI was negatively correlated with a prior map of brain regional expression of AG-related genes (29, 30).

Positron emission tomography (PET) has been used to map281

oxidative metabolism of glucose and non-oxidative metabolism282

of glucose in the presence of oxygen: aerobic glycolysis (AG).283

AG is thought to generate energy specifically for brain devel-284

opmental processes and PET measurements of glycolytic index285

(GI) demonstrated that association cortex has sustained AG286

throughout adolescence to early adulthood (14, 28) (whereas287

primary cortical areas had relatively low AG after late child-288

hood (14, 28)). We found that glycolytic index (GI) was highly289

correlated with maturational index (MI). Association cortical290

and subcortical regions with MI < 0 had GI > 0; whereas mo-291

tor and sensory cortical areas with MI > 0 had GI < 0. This292

result was corroborated by the significant spatial correlation293

between a prior map of expression of AG-related genes and the294

fMRI map of MI. Disruptively developing brain regions had295

higher levels of AG-related genes than conservatively develop-296

ing regions. We regard these convergent results as indicating297

that disruptive adolescent development of fMRI connectivity298

represents a metabolically expensive process of re-modelling299

in association cortex and subcortical structures.300

We also found significant correspondence between the fMRI301

map of MI and the map of cortical shrinkage derived from302

structural MRI data in the same sample. Cortical shrinkage303

is the most well-replicated result in MRI studies of adolescent304

brain development and has been mechanistically explained as305

a marker of synaptic pruning and/or intra-cortical myelination306

(1). Another structural measure of developmental activity was307

provided by a prior map of post-natal expansion of cortical308

surface area (27). Association cortex has both greater surface309

area expansion and more disruptive development of FC. We310

regard these results as convergently indicating that disruption311

of FC between regions is co-located with cortical systems that312

are most structurally active in their adolescent development.313

Finally, we used meta-analysis of existing task-related fMRI314

data to identify cognitive processes that activated cortical areas315

coinciding with the two modes of adolescent brain development.316

Conservative systems were activated by sensory and motor317

functions that would normally have been operational since318

early childhood. Disruptive systems were activated by a range319

of “higher-order” functions, such as working memory, theory-of-320

mind and autobiographical memory, which are later maturing321

social and cognitive processes.322

These results generate the hypothesis that disruptive func-323

tional connectivity drives the emergence of more sophisticated324

socialising, mentalizing and executive skills as young people 325

grow into independent adults. Moreover, they support the 326

corollary hypothesis that psychiatric disorders or subclinical 327

psychopathology could arise in young people from atypical 328

maturation of association cortico-subcortical circuits (32–34). 329

Methodological issues. Strengths of the study include the 330

accelerated longitudinal design and the balanced sample of 331

healthy young people stratified by age and sex. Limitations 332

include co-location of adolescent fMRI maps with prior maps 333

of gene expression measured post mortem in adults, lack of 334

simultaneously measured cognitive or behavioural data, and 335

insufficient resolution of 3T MRI to measure the multiple func- 336

tionally specialised sub-nuclei comprising subcortical nodes. 337

Concerning the crucial factor of in-scanner head motion (15– 338

17): for our main analysis, we processed multi-echo (ME) fMRI 339

time series with ME-ICA in an effort to disambiguate BOLD 340

components from non-neuronal sources of fMRI dynamics 341

(19, 20). This denoising step alone was not sufficient (23) so 342

we used regression to further correct functional connectivity 343

for linear dependence on head motion (FD regression) (21, 344

22). Data pre-processed by this pipeline passed standard QC 345

criteria for head movement impact on functional connectivity 346

(SI Appendix, Fig. S2). To assess the robustness of our results 347

to this choice of movement correction pipeline, we conducted 348

two major sensitivity analyses, of a low-motion dataset and 349

of the whole dataset after motion correction by global signal 350

regression (GSR). The results were not identical across main, 351

low-motion and GSR analyses; but there are many possible 352

factors, besides uncorrected or corrected effects of head motion, 353

that could contribute to observed differences, e.g., the smaller 354

sample size and shorter length of fMRI time series available 355

for the low-motion analysis. However, it is reassuring that 356

estimates of MI, baseline FC and adolescent change in FC 357

were strongly correlated between different movement correction 358

pipelines (SI Appendix, Fig. S36 and S37); and on this basis 359

key results of our main analysis were replicated in the low- 360

motion subset of scans and in the GSR-corrected scans; see SI 361

Appendix for details. 362

Conclusion. Disruptive change in functional connectivity be- 363

tween association cortex and subcortical nuclei is likely re- 364

flective of a metabolically expensive process of human brain 365

development in adolescence. 366
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Materials and Methods367

368

Participants. A demographically balanced cohort of 298 healthy369

adolescents (151 females) aged 14-26 years, scanned a total of 520370

times, was included in this study. There were approximately equal371

numbers of male and female participants (∼60) in each of 5 age-372

defined strata at baseline: 14-15 years inclusive, 16-17 years, 18-19373

years, 20-21 years and 22-24 years. The study was approved by374

the National Research Ethics Service, and conducted in accordance375

with NHS research governance standards. Participants aged 16 or376

older gave informed consent; younger participants gave informed377

assent and parental consent.378

MRI acquisition and pre-processing. Scanning was at three sites, all379

operating identical 3T MRI systems (Magnetom TIM Trio, Siemens380

Healthcare, VB17 software). Resting-state fMRI data were acquired381

using a multi-echo EPI sequence (18): 263 volumes; TR = 2.42382

s; GRAPPA with acceleration = 2; matrix size = 64 x 64 x 34;383

FOV = 240 x 240 mm; in-plane resolution = 3.75 x 3.75 mm; slice384

thickness = 3.75 mm with 10% gap, 34 oblique slices; bandwidth =385

2368 Hz/pixel; TE = 13, 30.55, 48.1 ms.386

For fMRI pre-processing, we used multi-echo independent com-387

ponent analysis (ME-ICA; 19, 20) to identify neuronal sources of388

fMRI variance that were retained to generate a time series at each389

voxel (35) which was bandpass filtered by the discrete wavelet trans-390

form (Daubechies 4 wavelet) to the frequency range 0.025-0.111391

Hz. Geometric re-alignment of scan volumes was used to estimate392

6 motion parameters (3 translation, 3 rotation), from which we393

derived estimates of volume-to-volume head motion - or framewise394

displacement (FD; 15). Mean FD was used as a measure of head395

movement in each scan session.396

Parcellation and functional connectivity estimation. fMRI data were397

parcellated by a prior cortical template into 360 bilaterally symmet-398

ric regions (36), as well as 16 subcortical regions from FreeSurfer399

software (37), yielding a total of 376 regions. Regional fMRI time400

series were estimated by averaging over all voxels in each parcel. 30401

cortical regions (near frontal and temporal poles) were excluded due402

to low regional mean signal, defined by a low Z-score of mean signal403

intensity (Z < −1.96) in at least one scan. For sensitivity analyses404

we used an alternative parcellation of cortex into 308 parcels of405

approximately equal surface area (∼5cm2; 38, 39; see SI Appendix).406

Functional connectivity (FC) matrices were estimated for each407

scan using Pearson’s correlations between all pairs of regional time408

series. Age-related change in FC was modelled using linear mixed409

effect models that included age as the main fixed effect of interest,410

sex and scanner-site as fixed effect covariates, and a subject-specific411

intercept as a random effect (see SI Appendix for further details).412

Data and code. Data has been uploaded to the Cambridge Data413

Repository: [link inserted at proof stage]. Code used to conduct414

analyses is available from FV’s github: [link inserted at proof stage].415
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