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Abstract

Background

Measures of the contribution of influenza to Streptococcus pneumoniae infections, both in

the seasonal and pandemic setting, are needed to predict the burden of secondary bacterial

infections in future pandemics to inform stockpiling. The magnitude of the interaction

between these two pathogens has been difficult to quantify because both infections are

mainly clinically diagnosed based on signs and symptoms; a combined viral–bacterial test-

ing is rarely performed in routine clinical practice; and surveillance data suffer from con-

founding problems common to all ecological studies. We proposed a novel multivariate

model for age-stratified disease incidence, incorporating contact patterns and estimating

disease transmission within and across groups.

Methods and findings

We used surveillance data from England over the years 2009 to 2017. Influenza infections

were identified through the virological testing of samples taken from patients diagnosed with

influenza-like illness (ILI) within the sentinel scheme run by the Royal College of General

Practitioners (RCGP). Invasive pneumococcal disease (IPD) cases were routinely reported

to Public Health England (PHE) by all the microbiology laboratories included in the national

surveillance system. IPD counts at week t, conditional on the previous time point t−1, were

assumed to be negative binomially distributed. Influenza counts were linearly included in the

model for the mean IPD counts along with an endemic component describing some sea-

sonal background and an autoregressive component mimicking pneumococcal transmis-

sion. Using age-specific counts, Akaike information criterion (AIC)-based model selection

suggested that the best fit was obtained when the endemic component was expressed as a

function of observed temperature and rainfall. Pneumococcal transmission within the same

age group was estimated to explain 33.0% (confidence interval [CI] 24.9%–39.9%) of new
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cases in the elderly, whereas 50.7% (CI 38.8%–63.2%) of incidence in adults aged 15–44

years was attributed to transmission from another age group. The contribution of influenza

on IPD during the 2009 pandemic also appeared to vary greatly across subgroups, being

highest in school-age children and adults (18.3%, CI 9.4%–28.2%, and 6.07%, CI 2.83%–

9.76%, respectively). Other viral infections, such as respiratory syncytial virus (RSV) and

rhinovirus, also seemed to have an impact on IPD: RSV contributed 1.87% (CI 0.89%–

3.08%) to pneumococcal infections in the 65+ group, whereas 2.14% (CI 0.87%–3.57%) of

cases in the group of 45- to 64-year-olds were attributed to rhinovirus. The validity of this

modelling strategy relies on the assumption that viral surveillance adequately represents

the true incidence of influenza in the population, whereas the small numbers of IPD cases

observed in the younger age groups led to significant uncertainty around some parameter

estimates.

Conclusions

Our estimates suggested that a pandemic wave of influenza A/H1N1 with comparable

severity to the 2009 pandemic could have a modest impact on school-age children and

adults in terms of IPD and a small to negligible impact on infants and the elderly. The sea-

sonal impact of other viruses such as RSV and rhinovirus was instead more important in the

older population groups.

Author summary

Why was this study done?

• Since the deadly 1918 Spanish flu, pandemic preparedness has been crucial for many

governments: in the United Kingdom, a pandemic is high on the government’s national

risk register of civil emergencies [1].

• Previous research has shed light on the central role of secondary bacterial infections,

suggesting a synergistic interplay of influenza virus and S. pneumoniae, a bacterium that

infects the lungs.

• Quantifying the magnitude of such interaction at the population level is of central

importance to inform public health policy: in England, current decision-making on

required sizes of an antibiotic stockpile for use in a future pandemic lacks scientific

evidence.

What did the researchers do and find?

• We analysed routinely collected population-level counts of invasive pneumococcal dis-

ease (IPD) cases.

• We decomposed the incidence of IPD in terms of endemic pneumococcal circulation, a

seasonal contribution, and an influenza-driven component.
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• We proposed a novel multivariate age-stratified modelling framework to assess the con-

tribution of influenza across seasons and age groups.

What do these findings mean?

• We found that influenza played a more important role towards explaining IPD during

the 2009 pandemic than during seasonal epidemics.

• This role was particularly prominent in school-age children.

• These results are valuable to quantify the possible contribution of influenza to the bur-

den of IPD in a future pandemic of influenza with similar characteristics to the 2009

pandemic.

Introduction

Just one century ago, the "1918 Spanish Influenza" is thought to have caused at least 50 million

deaths worldwide despite influenza often naively being considered to be a nonsevere disease.

Hence, a number of researchers in recent decades have tried to understand the drivers of such

severity in the fear of a new pandemic [2–4]. Viral–bacterial synergism, in particular with S.

pneumoniae, is considered to have played a major role in the observed mortality rate, as post-

mortem examinations revealed the presence of bacteria in the lungs of many influenza-

infected individuals [5].

The synergistic interplay between influenza and S. pneumoniae has been validated in animal

models [6]; however, routine ascertainment of coinfection remains difficult and expensive in

humans [7]: individual-level data on the exposure are hard to acquire because pathogens often

circulate silently within a host population or manifest themselves through nonspecific clinical

symptoms [8–10]. Infections due to each pathogen are separately identified in the presence of

a corresponding disease, and the likelihood of an improved understanding of pathogen inter-

actions strongly relies on indirect inference.

Time series of respiratory diseases are characterised by strong seasonal patterns, with an

increased incidence in the winter months in temperate areas of the world. Disentangling the

contribution towards S. pneumoniae of the influenza virus from other risk factors that exhibit

the same seasonal variation (e.g., weather, daylight, circulation of other pathogens, etc.) [11]

can be challenging. A variety of regression methods have been suggested in the general frame-

work of burden estimation, especially for excess morbidity and mortality due to seasonal and

pandemic influenza [12, 13].

Using sentinel testing of suspected influenza cases, the presence and magnitude of influenza

virus in the community is usually summarised by the proportion of positive tests by viral type

(and/or subtype). The so-called virological regression model includes influenza circulation as a

covariate in a cyclic regression model for respiratory infections, in which seasonality of disease

is described by sine and cosine terms [14, 15]. Lagged effects of virological circulation, or other

confounders that exhibit annual variation in intensity or timing, can also be included [16].

The most adequate distribution for the outcome variable has been widely debated: [17] argued

that counts of disease should be modelled as Poisson distributed, employing a log-link
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function; however, such a link implies an exponential increase of the outcome with respect to

the number of confirmed influenza cases and multiplicative effects of covariates (i.e., respira-

tory viruses). As these assumptions are quite unrealistic, [18] and [19] suggested the use of a

generalized linear model (GLM) with a Poisson error distribution but identity link [20, 21].

Previous work estimated the burden of influenza on syndromic healthcare contacts, such as

lower respiratory tract infection (LRTI) [3], acute respiratory illness (ARI) [22], or respiratory

hospital admissions [23]; however, this has not elucidated the relative contribution of the inter-

action between influenza virus and S. pneumoniae relative to shared seasonality [3, 24, 25]. Ref-

erence [26] estimated the percentage of invasive pneumococcal disease (IPD) cases

attributable to influenza and respiratory syncytial virus (RSV) using regression models; how-

ever, since we are dealing with a transmissible pathogen, the independence among observa-

tions they assume is unlikely to hold. Autoregressive integrated moving average (ARIMA)

models have also been proposed [27]; however, such an approach and its multivariate counter-

part, ARIMAX, require applying preliminary transformations to the original data when non-

stationary behaviour is detected. The necessity of choosing model order via an empirical

procedure based on model fit, along with the limited interpretability of coefficients, precludes

ARIMA methods as a sensible choice for our scope [28].

We combined the key strengths of each of the previous approaches into a single flexible

regression model, following the work of [29]: weekly IPD counts were decomposed into an

endemic component, with sine–cosine waves describing cyclic winter outbreaks, and an epi-

demic autoregressive component, in which lagged IPD counts entered the model linearly

using an identity link function [30]. A time-varying covariate could also be linearly added to

the model, with the corresponding coefficient expressing the association between the two time

series after taking into account shared drivers [31].

We extended the modelling framework of [29] to address a number of issues. First, we were

interested in investigating the contribution of several pathogens to the incidence of IPD: other

viruses such as RSV and rhinovirus have been speculated to interact with S. pnuemoniae,

showing an association with an increased risk of IPD [32, 33]. In contrast to this existing work,

we jointly modelled the epidemic evolution of viruses of interest by simultaneously including

them as covariates in models of the IPD counts. Secondly, associations between pathogens

have been suggested to be heterogeneous across age groups [34]; hence, we implemented mul-

tivariate versions of the model allowing estimation of age-specific associations. The multivari-

ate structure also permitted decomposition of IPD transmission between and across age

groups by incorporating contact patterns. Finally, as there is evidence that meteorological con-

ditions such as temperature and humidity affect seasonality and intensity of outbreaks [35,

36], we replaced sinusoidal functions with observed weather information. Compared to previ-

ous work [37, 38], we proposed a phenomenological model that expresses IPD dynamics as a

function of autoregressive components, viral infections, age-specific contact patterns, and sea-

sonal confounders without making strong assumptions on the transmission mechanism, aim-

ing to provide a parsimonious characterisation of the drivers of IPD patterns over time.

Methods

Data

Influenza is generally diagnosed based on influenza-like illness (ILI), defined as the simulta-

neous presence of signs and symptoms such as high fever, cough, and myalgia; however, only

virological testing allows the ascertainment of the responsible pathogen. For this reason, we

estimated influenza incidence by combining two data sources. The Royal College of General

Practitioners Research and Surveillance Centre (RCGP RSC) collects weekly numbers of

Estimating age-stratified influenza-associated IPD: Time-series model of population surveillance data

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002829 June 27, 2019 4 / 21

https://doi.org/10.1371/journal.pmed.1002829


general practice consultations for several clinical diagnoses of communicable and respiratory

diseases, including ILI. The population monitored by the RCGP RSC practices covers an aver-

age population of approximately 1.4 million persons, 2.6% of England, considered to be repre-

sentative of the national population in terms of age, gender, deprivation index, and

prescription patterns [39]. As part of routine virological surveillance, in general practices par-

ticipating in the RCGP RSC scheme, a proportion of ILI cases is swabbed and the samples are

tested for influenza A (H1 or H3 subtypes), influenza B, RSV, and human metapneumovirus

(hMPV) by the Public Health England (PHE) reference laboratory [39]. The number of speci-

mens tested and the number of positives for each virus were stratified by week of test and age

group to derive the proportion of virologically positive specimens. This proportion was then

multiplied by ILI counts to compute the corresponding age and time-specific consultations

attributable to influenza.

S. pneumoniae (the pneumococcus) infection is often asymptomatic, as this is a commensal

bacterium of the human nasopharynx; nonetheless, its progression to the lower respiratory

tract and blood can cause severe disease, namely IPD. In the UK, counts of positive isolates for

a number of clinically significant pathogens are reported weekly to PHE by all the microbiol-

ogy laboratories included in the national surveillance system and are stored in the Second

Generation Surveillance System (SGSS) database. Counts of IPD, RSV, and rhinovirus infec-

tions were extracted from SGSS. Consistency in testing over time and space was guaranteed by

the ‘United Kingdom Standards for Microbiology Investigations’, a diagnostic algorithm

applied across laboratories to patients presenting with different clinical syndromes [40].

Finally, estimates of the population of England by age group, during each season, were

obtained from the Office for National Statistics [41], and weather information such as daily

central England temperature and daily England and Wales precipitation were downloaded

from the MetOffice HadCET data repository [42].

This study is reported as per the Guidelines for Accurate and Transparent Health Estimates

Reporting (GATHER) [43] (S1 Checklist). The study did not have a prospective design, and

analysis was planned as we retrospectively gathered information on routinely collected and

publicly available data sources, considering England as being representative of temperate areas

in the northern hemisphere, where the time series of interest feature typical winter peaks. The

time period considered ranged from 1 January 2009 to 31 December 2017, with the 2009 pan-

demic period defined to include the three waves, from week 15/2009 to week 26/2011 [44].

Disease incidence was categorised into five age groups: 0–4, 5–14, 15–44, 45–64, and 65+ years

old, as in similar studies [26].

Statistical model

When dealing with two strongly associated time-series representing infectious disease inci-

dence, the modelling framework presented by [31] allows quantification of the relationship

between outbreaks of the two pathogens of interest. Denoting by Yt the random variables rep-

resenting counts of disease Y at weeks t = 1,. . .,T, it is assumed they are Poisson distributed: Yt|

Yt−1~Poi(μt), with conditional mean μt expressed as

mt ¼ poptnt þ lYt� 1 þ tXt� 1; ð1Þ

where νt is an endemic log-linear predictor that, multiplied by an offset such as population size

popt, might describe incidence due to seasonal or sociodemographic variation; Yt−1 is a tempo-

ral interaction (epidemic component) whose coefficient λ represents the transmission of infec-

tion from time t−1 to time t; and Xt−1 are lagged counts of disease X, with the coefficient τ
quantifying the strength of association between Yt and Xt−1. For overdispersed counts, the
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Poisson distribution for the observation model can be replaced by a negative binomial with

overdispersion parameter ψ:

YtjYt� 1 � NegBinðmt;cÞ: ð2Þ

The decomposition of the contribution of several phenomena in additive components,

along with the small number of parameters, makes interpretation very straightforward while

preserving biologically meaningful relationships among the quantities of interest. Moreover,

compared to the parameter-driven models briefly reviewed in the introduction that are charac-

terised by harmonic functions, the presence of an observation-driven component in model (1)

could capture outbreaks more easily, as λ expresses the additional temporal dependence

beyond the seasonality explained by the parametric model [45]. Finally, modelling overdisper-

sion instead of assuming Poisson-distributed outcomes allows further flexibility.

The model in Eq 1 can be easily extended to deal with stratified time series: [46] imple-

mented a multivariate version for spatial disease spread and later embedded an age-structure

into it [47]. We followed a similar approach when modelling disease counts in age group a,

Ya,t, where a2 {0–4, 5–14, 15–44, 45–64, 65+}. Two transmission components were included

at this stage:

mt;a ¼ popt;ant;a þ laYt� 1;a þ �a

X

k6¼a

ck;aYt� 1;k6¼a þ taXt� 1;a: ð3Þ

In addition to the transmission of one pathogen within age group a, quantified by λa, we

explicitly incorporated the transmission of the same pathogen across age groups through ϕa.

In order to account for heterogeneity of contact patterns, counts of disease in groups k6¼a
were weighted by the element ck,a of a contact matrix (e.g., POLYMOD or any other measure

of social distancing between group k and a [48]). Hence, the coefficient ϕa, paired with such a

linear combination of disease cases, represents the contribution of transmission from other

population subgroups to disease in age group a. Both transmission coefficients were specified

to be age-specific because, despite accounting for contact patterns, some age groups are

known to be more susceptible to infection than others. We also allowed heterogeneity across

groups for the remaining model parameters, as the interaction between influenza and S. pneu-
moniae has also been suggested to vary with age [7]. Finally, we extended this setting to incor-

porate more than two time series, estimating the association of the outcome of interest with

more than one pathogen (e.g., other indicators of viral circulation such as rhinovirus and RSV

incidence).

Models in Eqs 1 and 2 are both implemented in the R package ‘surveillance’ through the

hhh4 function. For the model in Eq 3, in which multiple covariates were added, our algorithm

simultaneously fitted models for different strata incorporating the contact structure. Similarly

to the hhh4 function, we also obtained maximum-likelihood estimates via a (globally conver-

gent) Newton-Raphson type algorithm. To ensure positivity, parameters were optimised on

the log-scale—i.e., log(ψ) and log(λ) were used. Uncertainty about the proportions of IPD cases

attributable to each virus was estimated by resampling n = 10,000 datasets from the fitted

model and taking the 95% confidence intervals (CIs) to be the empirical 2.5% and 97.5% per-

centiles across the resampled datasets.

Results

A total of 62,679 ILI consultations within the sentinel scheme and of 45,601 IPD cases nation-

wide have been notified over 9 years. Fig 1 displays the temporal trend of all ILI and influenza-

confirmed consultation rates respectively, where influenza-confirmed counts (referred to as
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‘Flu’ from now on) were obtained as described in the Methods. A clear seasonal pattern is visi-

ble, with regular outbreaks in the winter months and epidemics lasting 10–15 weeks, except

for 2009, when the A/H1N1 pandemic started in spring. Virological testing is not systemati-

cally performed during the summer; hence, the Flu data are quite sparse off-season. Nonethe-

less, it is evident how, even during winter, the influenza cases do not closely mimic the ILI

curve, confirming the nonspecificity of the ILI diagnosis. In the IPD time series (Fig 1, bottom

panel), peaks appear to be similar across seasons both in terms of amplitude and timing, with a

gradual increase of cases from autumn to a winter peak, followed by a decline in summer. The

incidence rate per 1,000,000 population is plotted in this case, as IPD is rare.

We followed the analysis strategy reported in full in the S1 Appendix. Briefly, the best for-

mulation for the model in Eq 1 was first identified in terms of Akaike information criterion

(AIC) values. A summary of model comparison is presented in Table 1: starting from a Poisson

distributional assumption and one set of harmonic functions (S = 1, see S1 Appendix), more

Fig 1. ILI and Flu incidence rate in the top panel; IPD incidence rate in the bottom panel. ILI, influenza-like illness; IPD, invasive

pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g001
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complicated versions of the endemic component were assessed by replacing trigonometric

waves with weather variables (model C). We also tested whether multiple lags for covariates

better described the observed patterns: considering lags q = 1,. . .,Q where Q = 5—i.e., includ-

ing up to 5 weeks before time t, we saw no gain in adding either Flu or IPD lagged counts

when q>1. The only variables whose lagged values improved model fit were rainfall and tem-

perature; nonetheless, the parameter representing the decline in weight attributed to lagged

values was optimally chosen to be pweather = 0.8, suggesting that only 20% of the weight is

attributed to observations more than one week before (model D).

Evaluating the model in terms of one-step-ahead forecasts, we selected 30 weeks as the ini-

tial time window of observed data, and we repeated the forecast for each of the remaining 440

weeks. We reassuringly found mean log(s(P,x)) (see S1 Appendix) to be minimal for the en-

demic formulation including weather information, with lags weighted according to pweather =

0.8 (model D).

Fitted values for all components according to model formulations B and D are shown in

Figs 2 and 3. The number of IPD cases attributed to Flu during the entire study period was as

Table 1. Model comparison in terms of AIC and one-step-ahead forecast (log[s(P,x)]).

Distribution Endemic Covariate AIC log(s[P,x])

A Poi S = 1 Flu 5,107.61 5.805

B NB S = 1 Flu 4,043.95 4.408

C NB rain + temp, lag = 1 Flu 4,029.19 4.400

D NB rain + temp, lags = 5 (pweather = 0.8) Flu 4,027.82 4.390

E NB rain + temp, lags = 5 (pweather = 0.8) Flu + rhinov 3,997.93 4.361

F NB rain + temp, lags = 5 (pweather = 0.8) Flu + rhinov + RSV 3,992.95 4.334

Abbreviations: AIC, Akaike information criterion; NB, negative binomial; Poi, Poisson; rhinov, rhinovirus; RSV, respiratory syncytial virus; temp, temperature

https://doi.org/10.1371/journal.pmed.1002829.t001

Fig 2. Model (B) of IPD and influenza with one set of harmonic functions. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g002
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low as 199 according to model D, including weather variables—i.e., 0.45% (CI < 0.01%–

1.59%) of all the IPD cases. However, 100 of these cases happened during the three pandemic

waves, 0.83%, CI< 0.01%–2.94%, of all the observed IPD cases in that period, suggesting that

the pandemic strain might have been responsible for an increased incidence. As a sensitivity

analysis, we selected Flu counts referring only to the three pandemic waves: the increase in

AIC was minimal compared to model D including Flu counts over all the study period, sug-

gesting that the role of seasonal Flu is marginal. We also considered each season as a separate

covariate, with results plotted in S1 Fig.

Finally, we investigated whether other viruses also interact with S. pneumoniae: the number

of rhinovirus (model E in Table 1) and RSV (model F) infections were sequentially added to

the selected model D (the observed time series are plotted in S2 and S3 Figs). Rhinovirus alone

greatly enhanced the fit to the data, and the inclusion of RSV on top of Flu and rhinovirus still

resulted in model improvement. Hence, the best-fitting model (F) for mean IPD counts at

time t takes the form

mIPD;t ¼ popt½expðaþ g
X5

q¼1

wqðweatherÞtempt� q þ d
X5

q¼1

wqðweatherÞraint� qÞ�þ

þlIPDt� 1 þ tFlut� 1 þ yrhinovirust� 1 þ zRSVt� 1

ð4Þ

with overdispersion parameter ψ and decay parameter for wq(weather) fixed to pweather = 0.8.

Point estimates and standard errors for the coefficients are reported in Table 2, and relative

contributions are pictured in Fig 4: rhinovirus explained 6.97% (CI 4.27%–10.28%) of all the

IPD cases, 2.48% (CI 0.51%–4.52%) were attributed to RSV, and only 0.67% (CI < 0.01%–

1.69%) were attributed to Flu. Overall, the three viruses accounted for 10.12% (CI 7.18%–

13.77%) of IPD cases at population level.

Selected plots displaying age-specific incidence can be found in S4–S6 Figs. For consistency,

we used for all age groups the distributional assumption and the endemic component that

Fig 3. Model (E) of IPD and influenza with rainfall and temperature. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g003
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fitted the univariate time series best (model D). Thus, when considering attribution of IPD to

Flu, model selection started by considering the model in Eq 3: IPDt,a|IPDt−1,a~NegBin(μIPD,t,a,

ψa) where

mIPD;t;a ¼ popt;a½expðaa þ ga

X5

q¼1

wqðweatherÞtempt� q þ da

X5

q¼1

wqðweatherÞraint� qÞ�þ

þtaFluAt� 1;a þ laIPDt� 1;a þ �a

X

k6¼a

ck;aIPDt� 1;k6¼a

ð5Þ

However, this required estimating 35 coefficients, not a very parsimonious option. Hence,

we tried model reduction by testing whether any of the coefficients could be the same across

groups. Full model comparison is reported in S1 Table. AIC decreased from 13,218.85 (model

G, with all age-specific coefficients) to 13,216.32 by using a shared rainfall coefficient, i.e., δa =

Table 2. Coefficient estimates for the model of IPD including Flu, rhinovirus, and RSV as covariates.

Estimate Std. Error

α −3.1831 0.0066

γ −0.4572 0.0052

δ −0.0838 0.0034

log(ψ) 3.5064 0.0080

log(τ) −1.2946 0.3240

log(θ) 2.9821 0.0193

log(z) 1.8944 0.0742

log(λ) 5.8521 2e-04

Abbreviations: IPD, invasive pneumococcal disease; RSV, respiratory syncytial virus; Std., standard

https://doi.org/10.1371/journal.pmed.1002829.t002

Fig 4. Model (F) including influenza, rhinovirus, and RSV. IPD, invasive pneumococcal disease; RSV, respiratory syncytial virus.

https://doi.org/10.1371/journal.pmed.1002829.g004
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δ for any age (model H). Finally, the utility of multiple lags for Flu and IPD was considered,

but once again a benefit from including past values only pertained to weather variables.

Estimated coefficients and standard errors for model H are shown in S2 and S3 Tables. The

τa parameters associated with influenza were quite heterogeneous across age groups, showing

an inverse U–shaped tendency: almost null in young children and the elderly and more promi-

nent in other age groups. However, because of the very small size and associated large uncer-

tainty of the parameters τ5 and τ65+, we refitted the model fixing them to zero (model I). The

attributed proportions of IPD cases estimated from this model are reported in Table 3, esti-

mated coefficients and standard errors are shown in Tables 4 and 5, and fitted values for all

age groups are plotted in Figs 5–9.

According to model I, IPD was driven by Flu in school-age children (8.40%, CI 4.12%–

13.66%) and adults aged 15–44 years (3.55%, CI 1.64%–5.76%), and these components were

strikingly higher in the pandemic period: 18.30% (CI 9.43%–28.16%) and 6.07% (CI 2.83%–

9.76%), respectively.

Adding rhinovirus in the best-fitting model I led to the biggest AIC reduction, from

13,216.32 to 13,167.31, when its contribution was quantified by an age-specific coefficient θ.

Lastly, the addition of RSV further contributed to AIC reduction (13,153.89). Hence, the final

model took the form

mIPD;t;a ¼ poptnt;a þ taFlut� 1 þ yarhinovirust� 1 þ zaRSVt� 1þþ

þlaIPDt� 1 þ �a

X

k6¼a

cj;iIPDk6¼a;t� 1

ð6Þ

where nt;a ¼ exp½aa þ ga

X5

q¼1
wqðweatherÞtempt� q þ d

X5

q¼1
wqðweatherÞraint� qÞ�. As for the

model with only Flu, because of large uncertainty about coefficients close to 0, the coefficients

θ5−14, θ15−44, z5−14, and z15−44 were fixed to zero (models J and K). Fitted values for all age

Table 3. Model I: Relative proportions (%) of IPD cases attributed to pneumococcal transmission within and across age groups and to influenza overall or in the

pandemic period.

Age, years Pneumococcal Transmission Influenza A

Within Group Across Groups Overall AH1N1pmd09

<5 26.42 (16.16–34.49) 18.73 (4.67–33.14) 0.00 0.00

5−14 15.70 (5.32–24.17) 27.32 (2.18–55.97) 8.40 (4.12–13.66) 18.30 (9.43–28.16)

15−44 19.47 (10.33–27.07) 50.67 (38.79–63.16) 3.55 (1.64–5.76) 6.07 (2.83–9.76)

45−64 23.65 (14.79–31.03) 41.64 (31.61–51.49) 0.92 (<0.01–2.94) 1.19 (<0.01–3.78)

65+ 33.02 (24.89–39.88) 34.45 (26.02–43.24) 0.00 0.00

Abbreviations: IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.t003

Table 4. Model I: Coefficient estimates for the age-specific model of IPD including Flu.

Age, years α γ δ log(ψ) log(τ) log(λ) log(ϕ)

<5 −2.2818 −0.3173 −0.0372 2.5131 - 2.1816 1.2908

5–14 −4.4221 −0.3688 −0.0372 1.5905 −3.2617 2.2835 1.3644

15–44 −4.0347 −0.4770 −0.0372 3.024 −1.6285 3.7285 4.0934

45–64 −2.7756 −0.3419 −0.0372 3.1729 −2.1502 3.4786 3.6104

65+ −1.9382 −0.4640 −0.0372 3.1881 - 3.4232 4.2462

Abbreviation: IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.t004
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groups are plotted in S7–S11 Figs; coefficients and standard errors are listed in S4 and S5

Tables, whereas the relative contribution of the components is described in Table 6.

Model K showed that the association between RSV and IPD was strongest in the elderly

(3.91%, CI 1.83%–6.38%, of cases in the 65+ group and 4.18%, CI 1.58%–6.91% of cases in the

45–64 group), and rhinovirus played an important role in the same age groups: 5.43% (CI

2.23%–8.91%) in the 45–64 group and 5.68% (CI 3.03%-8.32%) in the 65+ group.

Discussion

Using English surveillance data, we quantified the magnitude of the interaction between influ-

enza virus and S. pnuemoniae in seasonal and pandemic settings by proposing a multivariate

extension of the HHH modelling framework. Such interaction was estimated to be quite small

when looking at population-wide counts (model D). These results are consistent with previous

research, showing a small association at aggregate level [24]. We found evidence to support the

hypothesis of an age-specific interaction [34], the contribution of Flu towards IPD being sig-

nificant in school-age children and adults aged 15–44 but not in other age groups (model I).

Moreover, the components of IPD explained by influenza were strikingly higher during the

Table 5. Model I: Coefficient standard errors for the age-specific model of IPD including Flu.

Age, years α γ δ log(ψ) log(τ) log(λ) log(ϕ)

<5 0.0033 0.0017 0.0012 0.0385 - 0.0109 0.0142

5−14 0.0145 0.0092 0.0012 0.0718 0.1035 0.0517 0.0222

15−44 0.0063 0.006 0.0012 0.0220 0.0661 0.0068 9e-04

45−64 0.0128 0.0113 0.0012 0.0158 0.7316 0.0036 0.001

65+ 0.0017 0.0011 0.0012 0.0101 - 0.0018 0.0012

Abbreviation: IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.t005

Fig 5. Model I: Fitted IPD values for infants. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g005
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2009 pandemic period in the same age groups. This supports findings of Weinberger and col-

leagues [49]. Other viruses also appeared to interact with S. pneumoniae with various intensi-

ties across age groups: both RSV and rhinovirus played an important role in 45- to 64- and 65

+-year-olds (models F and K respectively). Such findings support previous evidence of inter-

play among these pathogens, with differential behaviour across ages [50, 51].

Fig 6. Model I: Fitted IPD values for school-age children. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g006

Fig 7. Model I: Fitted IPD values for young adults. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g007
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The additive structure of the model allowed us to quantify the contribution of multiple

viruses to the IPD counts, and at the same time the multivariate age-specific model allowed a

better characterisation of each of these interactions. Another important advantage of the

modelling framework used here was the potential to assess pneumococcal disease

Fig 9. Model I: Fitted IPD values for the elderly. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g009

Fig 8. Model I: Fitted IPD values for the 45–64 age group. IPD, invasive pneumococcal disease.

https://doi.org/10.1371/journal.pmed.1002829.g008
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transmission. Our findings suggested that 50.70% (CI 38.19%–63.20%) of pneumococcal dis-

ease in adults aged 15–44 years, potential parents of young children, was transmitted from

other age groups. Transmission within group, on the other hand, prevailed in preschool chil-

dren and 65+-year-olds: 26.32% (CI 16.24%–33.95%) and 23.75% (CI 14.97%–30.68%), respec-

tively (model K). We speculate this could be due to higher incidence of IPD in care homes or

in immunocompromised people.

Finally, the endemic component captured considerable proportions of IPD incidence in all

age groups. We can think of this seasonal background as the proportion of disease probably

due to some common environmental factors. The adequacy of temperature and rainfall obser-

vations to replace harmonic functions, supported by enhanced model fit both at aggregate and

age-specific level, reinforces this hypothesis. The appropriateness of shared coefficients for

rainfall also suggests that disease seasonality has similar timing across the entire population.

Any estimates of association between two pathogens such as influenza and pneumococcus,

both transmitted through air droplets and typical of the winter season, are fraught with uncer-

tainties. First, the validity of this modelling strategy relies on the assumption that viral surveil-

lance is consistent over time and adequately represents the true burden in the population [52].

If this assumption does not hold, apparent trends over time might be due to improved diag-

nostics or enhanced reporting rather than to a real change in incidence. Our analysis

accounted for imperfect detection and reporting of influenza using primary care data and inte-

grating results of virological testing. Reverse transcription PCR (RT-PCR) testing of respira-

tory specimens is the “gold standard” for confirming a viral presence, and the long-term

sentinel scheme implies doctors are not solicited to test because of increased alertness. How-

ever, only a subset of infected people seek healthcare, symptomatic disease being a necessary

condition. Further, test results may still be subject to misclassification depending on when the

specimen is obtained during the illness, and timeliness in reporting results can vary across

clinical practices. Future work might exploit the availability of serological testing to better

approximate the magnitude and timing of any influenza outbreak. Finally, we simply multi-

plied the proportion of positive samples by the ILI rates, whereas a joint modelling approach

would take uncertainty into account. In terms of IPD data, we believe that testing policies

must be consistent over time because of the life-threatening nature of such a condition. Thanks

to UK-wide guidelines [40], we believe that reporting was relatively stable over time, making

surveillance data as reliable as possible. Nonetheless, the limited numbers of cases, especially in

the age-specific analysis, made the resulting estimates uncertain.

Despite our efforts to mimic disease mechanisms, a number of assumptions were made in

our analysis. First, we assumed the lag between events to be at least 1 week. Dealing with

weekly data, this was the best approximation we could choose within a biologically plausible

range [53]. However, the infectious time might be shorter than the chosen time unit, and any

unknown delay in reporting might introduce some bias. Second, we assumed autoregressive

Table 6. Model K: Relative proportions (%) of IPD cases attributed to pneumococcal transmission within and across age groups, to influenza, rhinovirus, and RSV.

Age Endemic Influenza Rhinovirus RSV IPD Same Age IPD Other Age

<5 50.35 (34.23–66.91) 0.00 4.49 (<0.01–12.20) 1.31 (<0.01–5.26) 26.32 (16.24–33.95) 17.53 (3.28–32.61)

5–14 49.94 (21.31–75.08) 8.54 (4.21–13.43) 0.00 0.00 15.68 (5.06–24.10) 25.84 (1.65–55.97)

15–44 26.35 (15.85–38.35) 3.56 (1.69–5.82) 0.00 0.00 19.40 (10.59–26.88) 50.70 (38.19–63.20)

45–64 29.24 (20.87–39.76) 0.91 (<0.01–2.83) 5.43 (2.23–8.91) 4.18 (1.58–6.91) 17.15 (8.04–24.27) 43.09 (32.64–53.07)

65+ 29.05 (21.65–38.27) 0.00 5.68 (3.03–8.32) 3.91 (1.83–6.38) 23.75 (14.97–30.68) 37.62 (29.41–46.45)

Abbreviations: IPD, invasive pneumococcal disease; RSV, respiratory syncytial virus.

https://doi.org/10.1371/journal.pmed.1002829.t006
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coefficients to be fixed over time. This implies that pneumococcal transmission has no sea-

sonal behaviour, and likewise, the interaction with influenza is the same in summer and win-

ter. Such an assumption is meant to include any season-specific variation into the endemic

component that summarises a number of unknown aspects such as, for example, climatic

influence on disease susceptibility. Fixed autoregressive coefficients also helped to keep our

model easy to interpret and to avoid overfitting. Third, contact patterns across age groups

were approximated by the POLYMOD matrix, which was estimated on a sample of people liv-

ing in England in 2005–2006 [48]. Current patterns might be different, and real contact proba-

bilities might not be constant over time. Nevertheless, the use of age-structured contact

patterns led to improved model fit compared to an assumption of random mixing between age

groups. Fourth, we are aware that pneumococcus is often carried by healthy individuals who

might silently transmit the pathogen. In the present analysis, we could not disentangle pneu-

mococcal carriage from disease, as that would have required detailed individual information,

such as testing asymptomatic people to detect carriage. Compartmental models with mecha-

nistic assumptions could be employed in future work to fully reconstruct the epidemic process

[54].

Despite the above limitations, our modelling strategy successfully improved existing under-

standing of interaction between multiple pathogens: our estimates are valuable to quantify the

possible contribution of influenza to the burden of IPD in a future pandemic of influenza with

similar characteristics to the 2009 pandemic, bearing in mind that it was considered relatively

mild, compared for example to the 1918 pandemic. The proposed model could be usefully

employed by many countries that rely on infectious disease surveillance for informing policy,

in terms of both pandemic preparedness and pneumococcal vaccine introduction. Further-

more, we believe our approach could be valuably applied to retrospectively investigate relation-

ships of other notifiable diseases. For example, the contribution of viruses to secondary

bacterial infections due to Staphylococcus aureus and Streptococcus pyogenes requires future

investigation to better inform antibiotic prescription policies.

We have clarified the role of the influenza virus on severe pneumococcal infections, in both

seasonal and pandemic settings. Although the seasonal contribution does not appear to be rel-

evant, the interaction with pandemic strains resulted significant, particularly in younger age

groups. These findings have implications for pandemic preparedness in terms of advising on

antibiotic stockpiles, for which currently there is no clear evidence. Finally, a further extension

could tackle spatial dynamics if region-specific counts are available, as they would provide a

more detailed understanding of spatiotemporal dependencies inherent to the disease and its

drivers. However, dynamics of diseases involve processes at different scales of hosts, space, and

time, and the attribution of a causal role of one pathogen or another remains a challenging

problem [55].
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