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Object similarity, in brain representations and conscious perception, must reflect a combination of the visual
appearance of the objects on the one hand and the categories the objects belong to on the other. Indeed, visual
object features and category membership have each been shown to contribute to the object representation in
human inferior temporal (IT) cortex, as well as to object-similarity judgments. However, the explanatory
power of features and categories has not been directly compared. Here, we investigate whether the IT object
representation and similarity judgments are best explained by a categorical or a feature-based model. We use
rich models ( > 100 dimensions) generated by human observers for a set of 96 real-world object images. The
categorical model consists of a hierarchically nested set of category labels (such as “human”, “mammal”, and
“animal”). The feature-based model includes both object parts (such as “eye”, “tail”, and “handle”) and other
descriptive features (such as “circular”, “green”, and “stubbly”). We used non-negative least squares to fit the
models to the brain representations (estimated from functional magnetic resonance imaging data) and to
similarity judgments. Model performance was estimated on held-out images not used in fitting. Both models
explained significant variance in IT and the amounts explained were not significantly different. The combined
model did not explain significant additional IT variance, suggesting that it is the shared model variance
(features correlated with categories, categories correlated with features) that best explains IT. The similarity
judgments were almost fully explained by the categorical model, which explained significantly more variance
than the feature-based model. The combined model did not explain significant additional variance in the
similarity judgments. Our findings suggest that IT uses features that help to distinguish categories as stepping
stones toward a semantic representation. Similarity judgments contain additional categorical variance that is

not explained by visual features, reflecting a higher-level more purely semantic representation.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

importance of category membership in explaining IT responses.
Object category membership is a characteristic of the whole ob-

Inferior temporal (IT) neurons in primates are thought to re-
spond to visual image features of intermediate complexity, con-
sisting of object parts, shape, color, and texture (Komatsu et al.,
1992; Kobatake and Tanaka, 1994; Tanaka, 1996; Kayaert et al.,
2003; Yamane et al., 2008; Freiwald et al., 2009; Issa and DiCarlo,
2012). Consistent with this selectivity profile, moderately scram-
bled object images activate human IT almost as strongly as their
intact counterparts (Grill-Spector et al., 1998). These findings
suggest that object representations in IT are feature-based. How-
ever, the literature on human IT (Kanwisher et al., 1997; Epstein
and Kanwisher, 1998; Haxby et al., 2001; Downing et al., 2001;
Kriegeskorte et al., 2008b; Mur et al., 2012) has stressed the
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ject, and requires a representation that is invariant to variations in
visual appearance among members of the same category. Many
studies have indicated that category membership of perceived
objects can explain a significant proportion of the IT response
variance, at the level of single neurons (e.g. Tsao et al., 2006), and,
more strongly, at the level of brain regions (e.g. Kanwisher et al.,
1997; Epstein and Kanwisher, 1998; Tsao et al., 2003; Mur et al.,
2012) and neuronal population codes (e.g. Haxby et al., 2001;
Hung et al., 2005; Kiani et al., 2007; Kriegeskorte et al., 2008b).
The representation in a neuronal population code can be
characterized by its representational geometry (Kriegeskorte et al.
2008a; Kriegeskorte and Kievit 2013). The population’s re-
presentational geometry is defined by the distance matrix among
the representational patterns and reflects what stimulus proper-
ties are emphasized and de-emphasized in the representation. The
IT representational geometry has been shown to emphasize cer-
tain category divisions that are behaviorally relevant to a wide

0028-3932/© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Schematic overview of model creation and fitting. The schematic shows a set of example images and feature-based model dimensions. We defined the model di-
mensions (e.g. “circular”, and “ear”), and the value of each image on these dimensions, by asking human observers to generate and verify image descriptions. We subse-
quently created a model RDM for each dimension, which indicates for each pair of images whether they have the same or a different value on that dimension. Finally, we
implemented non-negative least squares (LS) fitting to find the single-dimension model-RDM weights that optimally predict the data RDM. Each model includes a confound-
mean predictor. The weights were estimated using a cross-validation procedure to prevent overfitting.
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variety of species, including the division between animate and
inanimate objects and, within that, between faces and bodies
(Kriegeskorte et al., 2008b; Kiani et al., 2007). Additional support
for the importance of categories in shaping IT comes from the fact
that successful modeling of IT responses to natural objects appears
to require a categorical component of one form or another. Until
recently, models using categorical labels (provided by humans)
clearly outperformed image-computable models in predicting IT
responses (e.g. Naselaris et al.,, 2009; Huth et al., 2012). Recently,
deep convolutional neural networks trained on category-dis-
crimination tasks to achieve high performance (e.g. Krishevsky
et al., 2012) have been shown to explain the IT representation
better than any previous image-computable models (Kriegeskorte,
2015; Yamins et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014;
Cadieu et al., 2014).

Despite the importance of both features and categories in the
human and primate IT literature, there is little work directly com-
paring the explanatory power of features and categories for explain-
ing the IT representation. Given that the categorical structure in the IT
object representation must emerge from constituent object parts and
features, both types of information may account for variance in the IT
representational geometry. Recent observations have indeed also
suggested the existence of a continuous component in the IT object
representation (Kriegeskorte et al., 2008b; Connolly et al., 2012; Mur
et al,, 2013; Sha et al., 2015). The continuous component might for
instance be driven by object shape variations (Op de Beeck et al.,
2001; Haushofer et al., 2008; Drucker and Aguirre, 2009). The pre-
sence of a continuous component hints at an underlying feature-
based code. The idea that feature-based population coding might
underlie a categorical representation is consistent with previous
cognitive theory and experimental work (Tyler and Moss, 2001; Op
de Beeck et al., 2008a; Tsunoda et al., 2001; Vogels, 1999), and with
the proposal that IT contains feature detectors optimized for category
discrimination (Sigala and Logothetis, 2002; Ullman et al, 2002;
Ullman, 2007; Lerner et al., 2008).

A second related question is which type of representation best
explains perceived object similarity. Perceived object similarity has
been shown to reflect both the continuous and categorical compo-
nents of the IT object representation (Edelman et al., 1998; Op de
Beeck et al., 2001, 2008b; Haushofer et al., 2008; Mur et al., 2013).
However, this leaves open what the relative contributions of visual
features and categories are to perceived object similarity. Possible
clues come from classic psychophysics work, which suggests an im-
portant role for category information in object perception (e.g. Rosch
et al., 1976). Moreover, object similarity judgments are more strongly
categorical than the IT object representation and show additional
category divisions not present in the IT representation, including the
division between human and non-human animals, and between
manmade and natural objects (Mur et al,, 2013).

Here we investigate the extent to which features and categories
or a combination of both can account for object representations in
IT and for object similarity judgments. We constructed a feature-
based and a categorical model from object descriptions generated
by human observers for a set of 96 real-world object images (the
same set as used in Kriegeskorte et al., 2008b). The categorical
model consists of a hierarchically nested set of category labels
(such as “human”, “mammal”, and “animal”). The feature-based
model includes both object parts (such as “eye”, “tail”, “handle”)
and other descriptive features (such as “circular”, “green”, and
“stubbly”). These rich models (114 category dimensions, 120 fea-
ture-based dimensions) were fitted to the brain representation of
the objects in IT and early visual cortex (based on functional
magnetic resonance imaging data), and to human similarity
judgments for the same set of objects. The models were fitted
using non-negative least squares and tested on independent sets
of images. Fig. 1 shows a schematic overview of model creation

and fitting. We used representational similarity analysis (Krie-
geskorte et al., 2008a; Nili et al.,, 2014) to compare the perfor-
mance of the feature-based and categorical models in explaining
the IT representation and the similarity judgments.

2. Methods
2.1. fMRI experiment

Acquisition and analysis of the fMRI data have been described
in Kriegeskorte et al. (2008b), where further details can be found.

2.11. Subjects

Four healthy human volunteers participated in the fMRI ex-
periment (mean age=35 years; two females). Subjects were right-
handed and had normal or corrected-to-normal vision. Before
scanning, the subjects received information about the procedure
of the experiment and gave their written informed consent for
participating. The experiment was conducted in accordance with
the Institutional Review Board of the National Institutes of Mental
Health, Bethesda, MD.

2.1.2. Stimuli

Stimuli were 96 colored images of objects from a wide range of
categories, including faces, animals, fruits, natural scenes, and
manmade objects. The stimuli are shown in Supplementary Fig. 1.

2.1.3. Experimental design and task

Stimuli were presented using a rapid event-related design
(stimulus duration, 300 ms; interstimulus interval, 3700 ms) while
subjects performed a fixation-cross-color detection task. Stimuli
were displayed on a uniform gray background at a width of 2.9°
visual angle. Each of the 96 object images was presented once per
run. Subjects participated in two sessions of six nine-minute runs
each. In addition, subjects participated in a separate block-localizer
experiment. Stimuli (grayscale photos of faces, objects, and places)
were presented in 30-s category blocks (stimulus duration:
700 ms; interstimulus interval: 300 ms). Subjects performed a
one-back repetition-detection task on the images.

2.14. Functional magnetic resonance imaging
Blood-oxygen-level-dependent fMRI measurements were per-
formed at high resolution (voxel volume: 1.95 x 1.95 x 2 mm?), using
a 3 Tesla General Electric HDx MRI scanner, and a custom-made 16-
channel head coil (Nova Medical Inc.). We acquired 25 axial slices that
covered inferior temporal (IT) and early visual cortex bilaterally
(single-shot, gradient-recalled Echo Planar Imaging: matrix size:
128x96, TR: 2 s, TE: 30 ms, 272 volumes per run, SENSE acquisition).

2.1.5. Estimation of single-image activity patterns

fMRI data were preprocessed in BrainVoyager QX (Brain In-
novation) using slice-scan-time correction and head-motion cor-
rection. All further analyses were conducted in Matlab (The
MathWorks Inc.). Single-image activity patterns were estimated
for each session by voxel-wise univariate linear modeling (using
all runs except those used for region-of-interest definition). The
model included a hemodynamic-response predictor for each of the
96 stimuli along with run-specific motion, trend and confound-
mean predictors. For each stimulus, we converted the response-
amplitude (beta) estimate map into a t map.

2.1.6. Definition of regions of interest

All regions of interest (ROIs) were defined on the basis of in-
dependent experimental data and restricted to a cortex mask
manually drawn on each subject’s fMRI slices. IT was defined by
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selecting the 316 most visually-responsive voxels within the in-
ferior temporal portion of the cortex mask. Visual responsiveness
was assessed using the t map for the average response to the 96
object images. The t map was computed on the basis of one third
of the runs of the main experiment within each session. To define
early visual cortex (EVC), we selected the 1057 most visually-re-
sponsive voxels, as for IT, but within a manually defined anato-
mical region around the calcarine sulcus within the cortex mask.
EVC does not show a clear categorical structure in its responses,
and was therefore included in our analyses as a control region.

2.1.7. Construction of the representational dissimilarity matrix

For each ROI, we extracted a multivoxel pattern of activity (t
map) for each of the 96 stimuli. For each pair of stimuli, activity-
pattern dissimilarity was measured as 1 minus the Pearson linear
correlation across voxels within the ROI (0 for perfect correlation,
1 for no correlation, 2 for perfect anticorrelation). The resulting
4560 pairwise dissimilarity estimates were placed in a re-
presentational dissimilarity matrix (RDM). RDMs were constructed
for each subject and session separately and then combined by
averaging across sessions and subjects. The RDMs capture the in-
formation represented by a brain region by characterizing its re-
presentational geometry (Kriegeskorte et al., 2008a; Kriegeskorte
and Kievit, 2013). The representational geometry of a brain region
reflects which stimulus information is emphasized and which is
de-emphasized.

2.2. Object-similarity judgments

Acquisition and analysis of the object-similarity judgments
have been described in Mur et al. (2013), where further details can
be found.

2.2.1. Subjects

Sixteen healthy human volunteers participated in the similar-
ity-judgment experiment (mean age=28 years; 12 females).
Subjects had normal or corrected-to-normal vision; 13 of them
were right-handed. Before participating, the subjects received in-
formation about the procedure of the experiment and gave their
written informed consent for participating. The experiment was
conducted in accordance with the Ethics Committee of the Faculty
of Psychology and Neuroscience, Maastricht University, The
Netherlands.

2.2.2. Stimuli
Stimuli were the same 96 object images as used in the fMRI
experiment. The stimuli are shown in Supplementary Fig. 1.

2.2.3. Experimental design and task

We acquired pairwise object-similarity judgments for the 96
object images by asking subjects to perform a multi-arrangement
task (Kriegeskorte and Mur, 2012). During this task, the object
images are shown on a computer screen in a circular arena, and
subjects are asked to arrange the objects by their similarity, such
that similar objects are placed close together and dissimilar ob-
jects are placed further apart. The multi-arrangement method uses
an adaptive trial design, showing all 96 object images on the first
trial, and selecting subsets of objects with weak dissimilarity
evidence for subsequent trials. In other words, the method will
“zoom in” to objects that were placed close together on previous
trials. The multi-arrangement method allows efficient acquisition
of a large number of pairwise similarities. Each subject performed
the task for one hour. In the instruction, we intentionally did not
specify which object properties to focus on, as this would have
biased our perspective on the mental representation of the objects.

2.2.4. Construction of the representational dissimilarity matrix
Subjects were instructed to use the entire arena on each trial.
Consequently, only the relations between distances on a single
trial, not the absolute on-screen distances, were meaningful. For
each subject, dissimilarity estimates were therefore averaged
across trials using an iterative procedure, alternately scaling the
single-trial estimates to match their evidence-weighted average,
and recomputing the evidence-weighted average, until con-
vergence (Kriegeskorte and Mur, 2012). RDMs were constructed
for each subject separately and then combined by averaging across
subjects. The resulting RDM captures which stimulus information
is emphasized and which is de-emphasized in object perception.

2.3. Defining the categorical and feature-based models

We performed two behavioral experiments to obtain the ca-
tegorical and feature-based models.

In Experiment 1, a group of human observers generated cate-
gory and feature descriptions for the 96 object images. These de-
scriptions are the model dimensions. In Experiment 2, a separate
group of human observers judged the applicability of each model
dimension to each image, thereby validating the dimensions
generated in Experiment 1, and providing, for each image, its value
(present or absent) on each of the dimensions. The images’ values
on the validated model dimensions define the model. Figs. 2 and 3
show the categorical and feature-based models, respectively.

2.3.1. Experiment 1: Object descriptions

Fifteen healthy human volunteers participated in Experiment 1
(mean age=26 years; 11 females). Subjects were native English
speakers, right-handed, and had normal or corrected-to-normal
vision. Before participating, the subjects received information
about the procedure of the experiment and gave their written
informed consent for participating. The experiment was con-
ducted in accordance with the Cambridge Psychology Research
Ethics Committee, Cambridge, United Kingdom.

During the experiment, we asked subjects to generate de-
scriptions, of categories and features, for the 96 object images. In
the instruction, we defined a category as “a group of objects that
the shown object is an example of”. The instructions further stated
that an object can belong to multiple categories at once, with ca-
tegories ranging from specific to more and more abstract. We
defined features as “visible elements of the shown object, in-
cluding object parts, object shape, color and texture”. The in-
struction contained two example images, not part of the 96 object-
image set, with category and feature descriptions. We asked sub-
jects to list a minimum of five descriptions, both for categories and
for features. See Appendix A for detailed subject instructions.

The entire measurement session took three hours, approximately
equally divided between the generation of category and feature de-
scriptions. The order of the two tasks was counterbalanced across
subjects. The 96 images were shown, in random order, on a computer
screen using a web-based implementation, with text boxes next to
each image for subjects to type category or feature descriptions.
Subjects could scroll down to move to the next few images, and press
a button when they were done to save their data.

We subsequently selected, for categories and features sepa-
rately, those descriptions that were generated by at least three out
of 15 subjects. This threshold corresponds to the number of sub-
jects that on average mentioned a particular category or feature
for a particular image. The threshold is relatively lenient, but it
allows inclusion of a rich set of descriptions, which were further
pruned in Experiment 2. We subsequently removed descriptions
that were either inconsistent with the instructions or redundant.
After this step, there were 197 category descriptions and 212
feature descriptions. These descriptions are listed in Appendices B
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Fig. 2. Categorical model. Rows correspond to model dimensions (114 in total); columns correspond to the 96 object images. Each image is centered with respect to the
column that it corresponds to (e.g. the first column shows the values of the toothbrush on each dimension). Black indicates that a category is present; white indicates that it
is absent. Gray values might appear for merged dimensions. For display purposes, the labels of some of the merged dimensions are truncated. The labels are listed in full in
Appendix E. (To see the object images in color, the reader is referred to the web version of this article.)

and C. Thirteen of them were right-handed. Before participating, the
subjects received information about the procedure of the experi-
2.3.2. Experiment 2: Validation ment and gave their written informed consent for participating.

Fourteen healthy human volunteers participated in Experiment  The experiment was conducted in accordance with the Cambridge
2 (mean age=28 years; seven females). Subjects were native Psychology Research Ethics Committee, Cambridge, United
English speakers and had normal or corrected-to-normal vision. Kingdom.
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absent. Gray values might appear for the merged dimensions. For display purposes, the labels of some of the merged dimensions are truncated. The labels are listed in full in
Appendix E. (To see the object images in color, the reader is referred to the web version of this article.)

The purpose of Experiment 2 was to validate the descriptions
generated during Experiment 1. We therefore asked an in-
dependent group of subjects to judge which descriptions correctly
described which images. During the experiment, the object images
and the descriptions, each in random order, were shown on a
computer screen using a web-based implementation. The object

images formed a column, while the descriptions formed a row;
together they defined a matrix with one entry, or checkbox, for
each possible image-description pair. We asked the subjects to
judge for each description, whether it correctly described each
object image, and if so, to tick the associated checkbox. Subject
could scroll up and down and left to right while they were going
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Fig. 4. Single-dimension model RDMs of the categorical model. The single-dimension model RDMs were created by determining for each dimension (i.e. each row in Fig. 2)
which object pairs have the same value (category present or absent for both objects; dissimilarity=0) and which object pairs have a different value (category present for one
object, and absent for the other; dissimilarity=1). Dissimilarity values in the range (0 1) might appear for merged dimensions. For merged dimensions only the first label of

the merged set is shown. Merged dimensions are indicated with an asterisk.
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Fig. 5. Single-dimension model RDMs of the feature-based model. The single-dimension model RDMs were created by determining for each dimension (i.e. each row in Fig. 3)
which object pairs have the same value (feature present or absent for both objects; dissimilarity=0) and which object pairs have a different value (feature present for one
object, and absent for the other; dissimilarity=1). Dissimilarity values in the range (0 1) might appear for merged dimensions. For merged dimensions only the first label of
the merged set is shown. Merged dimensions are indicated with an asterisk.
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through the images and descriptions, and press a button when
they were done to save their data. See Appendix D for detailed
subject instructions.

A measurement session took approximately three hours, during
which a subject would only have time to judge either the category or
the feature descriptions. Of the 14 subjects, six judged category de-
scriptions, six judged feature descriptions, and the remaining two
judged both. This resulted in eight subjects for the category validation
experiment and eight subjects for the feature validation experiment.

We subsequently kept, for categories and features separately,
those image-description pairs that were judged as correct by at least
six out of eight subjects. This relatively strict threshold aims at in-
cluding only those image descriptions that can generally be expected
to be judged as correct. This procedure creates a binary vector for
each description with length equal to the number of object images,
where 1 indicates that the description applies to the image (present),
and 0O indicates that it does not (absent). Descriptions whose resulting
binary vectors only contained zeros (i.e. they were not ticked for any
image by at least six people) were removed. This reduced the number
of descriptions to 179 for the categories, and 152 for the features. We
subsequently removed any obvious incorrect ticks, which mainly in-
volved category-related ticks during the feature validation experi-
ment (e.g. ticking “hammer” for an image of a hammer instead of for
an image of a gun). As a final step, to increase the stability of the
weights estimated during regression, we iteratively merged binary
vectors that were highly correlated (r> 0.9), alternately computing
pairwise correlations between the vectors, and averaging highly-
correlated vector pairs, until all pairwise correlations were below
threshold. The resulting set of 114 category vectors forms the cate-
gorical model (Fig. 2) and the resulting set of 120 feature-based
vectors forms the feature-based model (Fig. 3). Merged vectors might
contain values in the range (0 1). The final sets of descriptions are
listed in full in Appendix E.

2.3.3. Creating model RDMs

In order to compare the models to the measured brain re-
presentation and similarity judgments, the models and the
data should reside in the same representational space. This
motivates transforming our models to “RDM space”: for each
model dimension, we computed, for each pair of images, the
squared difference between their values on that dimension.
The squared difference reflects the dissimilarity between the
two images in a pair. Given that our models are binary, the
dissimilarities are either 0 or 1. A dissimilarity of O indicates
that two images have the same value on a dimension, i.e. the
category or feature is present or absent in both images. A dis-
similarity of 1 indicates that two images have a different value
on a dimension, i.e. the category or feature is present in one
image, and absent in the other. Merged dimensions might
contain dissimilarities in the range (0 1). Figs. 4 and 5 show the
single-dimension model RDMs for the categorical and feature-
based model, respectively.

2.4. Non-negative least-squares fitting of the representational
models

We could predict the brain representation and dissimilarity
judgments by making the assumption that each model dimen-
sion contributes equally to the representation. We use the
squared Euclidean distance as our representational dissimilarity
measure, which is the sum across dimensions of the squared
response difference for a given pair of stimuli. The squared
differences simply sum across dimensions, so the model pre-
diction would be the sum of the single-dimension model RDMs.
However, we expect that not all model dimensions contribute
equally to the brain representation or similarity judgments. This

motivates weighting the model dimensions to optimally predict
the measured object representation. This approach not only
increases the model’s explanatory power, it might also yield
information about the relevance of each dimension in explain-
ing the measured object representation.

One approach would be to explain each measured response
channel by a linear combination of the model dimensions. This is
known as population or voxel receptive field modeling in the fMRI
literature (Dumoulin and Wandell, 2008; Kay et al., 2008; Mitchell
et al., 2008). It requires estimating one parameter per model di-
mension for each measured response channel and enables general
linear remixing of the model representational space to explain the
measured representation. The model representational space can
be stretched, squeezed, and sheared along arbitrary dimensions to
account for the measured representation. The large number of
parameters usually requires the use of strong priors on the
weights (implemented, for example, by regularization penalties
used in fitting). In the present scenario, for example, fitting over
100 dimensions per model to predict responses to only 96 stimuli,
would yield perfect prediction accuracy on the training set due to
overfitting. Moreover, the fit would not be unique without a prior
on the weights. Here we take the alternative approach of weighted
representational modeling (Diedrichsen et al., 2011), where a
single weight is fitted for each model dimension. In this approach,
the model representational space can be stretched and squeezed
along its original dimensions. However, it cannot be stretched or
squeezed along oblique dimensions or sheared. Weighted re-
presentational modeling has the advantage of giving more stable
and interpretable fits and being directly applicable to similarity
judgments. Importantly, it does not require a prior on the weights
(i.e. no regularization penalty), which would bias the estimated
weights. Our particular approach to weighted representational
modeling follows Khaligh-Razavi and Kriegeskorte (2014), using
non-negative least squares and cross-validation across images.

Imagine we had an RDM based on spike counts from a population
of neurons. If we found the weights by which to multiply the values
on each dimension, so as to optimally predict the neuronal data RDM,
we would have an indication of the variance each dimension explains
in the representational space (resulting from the number of neurons
responding to that dimension and the gain of the neuronal responses
with respect to that dimension).

Because the squared differences simply sum across dimensions in
the squared Euclidean distance, weighting the dimensions and com-
puting the RDM is equivalent to a weighted sum of the single-di-
mension RDMs. When a dimension is multiplied by weight w, then
the squared differences along that dimension are multiplied by w2
We can therefore perform the fitting on the RDMs, finding the non-
negatively weighted average of the single-dimension model RDMs
that best explains the RDM of the measured representation (Fig. 1;
Khaligh-Razavi and Kriegeskorte 2014). Eq. (1) shows that the weights
for the model dimensions in the original space can be obtained by
taking the square root of the non-negative weights that are estimated
for the single-dimension model RDMs.

wif, () — wf, OF = If, () — f, (HIPw} )

where w is the weight given to dimension k, f, (i) is the value on
dimension k for stimulus i, and f, (j) is the value on dimension k for
stimulus j. In our case, values are either O (absent) or 1 (present).
We used squared Euclidean distances as the representational dis-
similarity measure. The brain RDMs were computed using correla-
tion distance, which is equivalent to the squared Euclidean distance
computed for normalized representational patterns.

We estimated the single-dimension model RDM weights with a
non-negative-least-squares fitting algorithm (Lawson and Hanson,
1974; also see Khaligh-Razavi and Kriegeskorte, 2014) in Matlab
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Fig. 6. Model predictions of the IT object representation. (A) The IT RDM shows a prominent animate/inanimate division, and a face cluster within the animates. The RDM is
based on fMRI data from 4 human subjects, averaged at the level of the dissimilarities. Each entry of the RDM represents IT activity-pattern dissimilarity (1 - Pearson's r; 316
most visually-responsive bilateral IT voxels defined using independent data). The RDM was transformed into percentiles for visualization (see color bar). (B) Model pre-
dictions of the IT representation, after weighting the single-dimension model RDMs to optimally predict the IT representation (using independent data). Data and model-

prediction RDMs were transformed into percentiles for visualization (see color bar). The residuals were computed based on the transformed RDMs, and highlight which
components of the IT RDM cannot be explained by the models.
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Fig. 7. Model performance for IT: the categorical and feature-based models perform equally well. (A) The bar graphs show the correlation between the IT RDM and each of the

The gray bar represents the noise ceiling, which indicates the
expected performance of the true model given the noise in the data. (B) The multidimensional scaling plot (criterion: metric stress; distance measure: 1—r, where r is
Spearman correlation coefficient) visualizes the relationships between the IT RDM and the RDMs predicted by the fitted models. Distances between RDMs reflect their
dissimilarity. The thickness of the lines reflects the inevitable distortions that are introduced by dimensionality reduction.

2.5. Comparing the explanatory power of categorical and feature-
based models

2.5.1. Visualization of the model predictions

To get an impression of the stimulus information that the fitted
models can represent, we show the model predictions in Figs. 6, 8,
and 10. Model predictions are shown for the categorical model, the
feature-based model, and a combined model, which contains all
234 categorical and feature-based dimensions. The figures also
show the data RDMs (IT, EVC, and similarity judgments,
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p < 0.05 corrected). Error bars show the standard error of the mean based on bootstrap resampling of the stimulus set. The gray bar represents the noise ceiling, which
indicates the expected performance of the true model given the noise in the data. (B) The multidimensional scaling plot (criterion: metric stress; distance measure: 1—r,
where r is Spearman correlation coefficient) visualizes the relationships between the EVC RDM and the RDMs predicted by the fitted models. Distances between RDMs
reflect their dissimilarity. The thickness of the lines reflects the inevitable distortions that are introduced by dimensionality reduction.

respectively) that the models were fitted to, as well as the residual
dissimilarity variance that cannot be explained by the models. The
residuals were computed by subtracting the predicted dissim-
ilarities from the data dissimilarities. Before subtracting, the pre-
dicted and data RDM were each separately rank-transformed and
scaled into [0 1], so that the residuals lie in the range [—1 1], or
[—100 100] if expressed in dissimilarity percentiles.

2.5.2. Inferential analysis on model performance

We used the representational similarity analysis (RSA) toolbox
for inferential analyses (Nili et al., 2014). We quantified model
performance by measuring the correlation between the data dis-
similarities and the dissimilarities predicted by the models. We
used Kendall's rank correlation coefficient tau a as the correlation
measure. For each model, we computed the correlation coefficient
between each subject’s data RDM and the RDM predicted by the
model. Panels A of Figs. 7, 9, and 11 show the subject-average
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Fig. 10. Model predictions of the similarity judgments. (A) The similarity-judgment RDM shows four main clusters corresponding to humans, non-human animals, natural
objects, and manmade objects, and a tight cluster of human faces. The RDM is based on similarity judgments from 16 human subjects, averaged at the level of the
dissimilarities. Each entry of the RDM represents the judged dissimilarity between two images. The RDM was transformed into percentiles for visualization (see color bar).
(B) Model predictions of the similarity judgments, after weighting the single-dimension model RDMs to optimally predict the similarity judgments (using independent data).
Data and model-prediction RDMs were transformed into percentiles for visualization (see color bar). The residuals were computed based on the transformed RDMs, and
highlight which components of the similarity-judgment RDM cannot be explained by the models.
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asterisk (stimulus-label randomization test, p < 0.05 corrected). Significant differences between models in how well they can account for the similarity judgments are
indicated by horizontal lines plotted above the bars (stimulus-bootstrap test, p < 0.05 corrected). Error bars show the standard error of the mean based on bootstrap
resampling of the stimulus set. The gray bar represents the noise ceiling, which indicates the expected performance of the true model given the noise in the data. (B) The
multidimensional scaling plot (criterion: metric stress; distance measure: 1—r, where r is Spearman correlation coefficient) visualizes the relationships between the si-
milarity-judgment RDM and the RDMs predicted by the fitted models. Distances between RDMs reflect their dissimilarity. The thickness of the lines reflects the inevitable
distortions that are introduced by dimensionality reduction.

correlation coefficients for the fitted (“fitted weights”) as well as
the non-fitted (“equal weights”) models.

The relationships between the data RDMs and the RDMs pre-
dicted by the fitted models are visualized in panels B of Figs. 7,
9 and 11. The RDMs reside in a high-dimensional space, spanned by
the number of dissimilarities contained in the RDM. The distances

Please cite this article as: Jozwik, K.M,, et al., Visual features as stepping stones toward semantics: Explaining object similarity in IT and
perception with non-negative least squares. Neuropsychologia (2015), http://dx.doi.org/10.1016/j.neuropsychologia.2015.10.023



Kamila Jozwik

Kamila Jozwik

http://dx.doi.org/10.1016/j.neuropsychologia.2015.10.023
http://dx.doi.org/10.1016/j.neuropsychologia.2015.10.023
http://dx.doi.org/10.1016/j.neuropsychologia.2015.10.023

16 K.M. Jozwik et al. / Neuropsychologia ® (AER) ERE-REE

between RDMs in this space are indicative of their relatedness, i.e.
similar RDMs will be placed close together. Because a high-di-
mensional space is difficult to visualize, we used multidimensional
scaling (MDS; criterion: metric stress; distance measure: 1-r,
where r is Spearman correlation coefficient) to place the RDMs in a
two-dimensional space which preserves the distances between
RDMs as well as possible. The thickness of the gray lines reflects the
(minimal) distortions that were introduced by the reduction in di-
mensionality: thin lines indicate that the actual distance in the
high-dimensional space is shorter than displayed; thick lines in-
dicate that the actual distance is longer than displayed.

3. Results and discussion

3.1. What dimensions do the categorical and feature-based model
consist of?

Fig. 2 lists the dimensions of the categorical model, and shows
whether they are present or absent for each of the 96 object images.
Roughly half of the 114 model dimensions are basic-level categories
(Rosch et al., 1976), including “face”, “banana”, and “hammer”. A few
model dimensions describe sub-ordinate categories, such as “great
dane”. The remaining model dimensions describe super-ordinate
categories with increasing levels of abstraction, including “mam-
mal”, “animal”, and “organism/living”. In other words, the model
consists of a hierarchically nested set of category labels. Approxi-
mately one third of the labels describe merged dimensions. Di-
mensions were merged when their absent/present profiles across
the 96 images were highly correlated (r> 0.9). The merged di-
mensions consist of semantically similar labels (e.g. “nonliving/
manmade”, “boy/child/young”), some of which are expected to be
less correlated for larger image sets. On average, each object image
was described by 5.1 categorical labels (standard deviation=2.0).

Fig. 3 lists the dimensions of the feature-based model, and
shows whether they are present or absent for each of the 96 object
images. Roughly two-thirds of the 120 model dimensions are ob-
ject parts (e.g. “eye”, “arm”, “torso”). The remaining model di-
mensions describe object shape (e.g. “curved”, “rectangular”),
color (e.g. “red”, “green”), and texture (e.g. “stubbly”, “woolly”).
Finally, a few of the feature-based dimensions are objects which
are part of multi-object scenes (e.g. “building”, "shoes”, and
“glasses”). These features overlap with some of the basic-level
categories listed for the categorical model. However, these over-
lapping features are only listed as present for the feature-based
model if they are part of a multi-object scene. /Approximately one
fifth of the feature-based labels describe merged dimensions. Di-
mensions were merged when their absent/present profiles across
the 96 images were highly correlated (r> 0.9). [The merged di-
mensions consist of labels describing similar features (e.g. “round/
circular”), but also of labels that were each uniquely used to de-
scribe a single object (e.g. “purple/seat/wheels” for the office
chair), These dimensions are expected to be less correlated for
larger image sets. On average, each object image was described by
5.5 feature-based labels (standard deviation=3.6).

The distinction that we make between feature-based and ca-
tegorical models roughly maps on to the distinction between part-
based and holistic representations. The two distinctions share the
idea that IT representations of whole objects must emerge from
representations of constituent object parts and features. This idea
is supported by evidence which suggests that whole objects might
be represented as complex conjunctions of features (e.g. Tsunoda
et al, 2001; Bussey et al., 2005; Erez et al., 2015). The terms
“holistic” and “categorical” are related because category mem-
bership describes an object at a holistic level. However, a catego-
rical object representation does not only require integration of

features into a holistic object, it also requires a certain level of
invariance to variations in visual appearance among members of
the same category. Both of these requirements might be im-
plemented by distributed population coding in IT (e.g. Tsunoda
et al., 2001; Vogels, 1999). The relative invariance to within-cate-
gory variation displayed at the level of IT, as indicated by stepwise
response profiles and clustering of activity patterns according to
category (e.g. Mur et al., 2012; Kriegeskorte et al., 2008b), has been
taken to indicate that the representation is categorical. Our cate-
gorical model is inspired by these findings. However, the re-
presentation also contains a continuous or non-categorical com-
ponent, as indicated by graded response profiles and replicable
within-category dissimilarity variance (e.g. Mur et al., 2012; Krie-
geskorte et al., 2008b). This continuous component hints at an
underlying feature-based code, consistent with evidence that IT
neurons preferentially respond to visual image features of inter-
mediate complexity (e.g. Tanaka, 1996; Yamane et al., 2008).

To enable comparison of the models to the measured object
representations, which reflect dissimilarities between objects in
brain activity and perception, we computed the dissimilarities
between objects along each model dimension. Figs. 4 and 5 show
the single-dimension model RDMs of the categorical and feature-
based model, respectively.

3.2. Feature-based and categorical models explain the same com-
ponent of variance in IT

The IT object representation is shown in Fig. 6A. As described
previously (Kriegeskorte et al., 2008b), the IT object representation
shows a categorical structure, with a top-level division between
animate and inanimate objects, and a tight cluster of (human)
faces within the animate objects. We fitted three models to the IT
representation: the categorical model, the feature-based model,
and a combined model which contains all categorical and feature-
based single-dimension model RDMs. Fig. 6B shows the model
predictions of the IT representation, as well as the variance un-
explained by the models. The categorical model predicts the di-
vision between animate and inanimate objects and the cluster of
(human) faces within the animate objects. The feature-based
model also predicts these two prominent characteristics of the IT
representation. The residuals indicate that neither model can fully
explain the cluster of animate objects because both models predict
relatively high dissimilarities between faces and bodies. This
mismatch seems somewhat more pronounced for the feature-
based model. The prediction of the combined model looks similar
to the prediction of each of the two separate models.

To quantify how well the models explain the IT representation,
we correlated the model-prediction RDMs with the IT RDM using
Kendall’'s tau a. We included both the fitted models (“fitted
weights”) and the non-fitted models (“equal weights”). We used a
stimulus-label randomization test to determine for each model
whether its prediction was significantly correlated to the IT RDM.
Fig. 7A shows that each of the model-prediction RDMs is sig-
nificantly related to the IT RDM. However, none of the models
reaches the noise ceiling, suggesting that the models can still be
improved. The noise ceiling indicates the expected performance of
the true model given the noise in the data (Nili et al., 2014). We
subsequently tested which models performed better than others
using bootstrap resampling of the stimulus set. The pairwise
model comparisons show that the non-fitted feature-based model
performs worse than several other models, namely the fitted ca-
tegorical model and the fitted and non-fitted combined model. No
other model comparisons are significant. Importantly, this in-
dicates that the fitted feature-based and fitted categorical model
perform equally well. Furthermore, among the fitted models,
combining the two models does not improve model performance.
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This suggests that the feature-based and categorical models ex-
plain overlapping variance in the IT object representation. This is
consistent with the observation that the two models generate si-
milar predictions (Fig. 6B). The multidimensional scaling (MDS)
plot shown in Fig. 7B further supports the results. The MDS plot
visualizes the relationships between the fitted-model predictions
and the IT representation. Distances between the representations
reflect dissimilarity, such that similar representations are placed
close together and dissimilar representations are placed further
apart. The three models are approximately equally far away from
the IT representation.

We previously showed that objects that elicit similar activity
patterns in IT tend to be judged as similar by humans (Mur et al.,
2013). This suggests that the IT representation might be predicted
from perceived object similarity. Can object-similarity judgments
explain the IT representation equally well as the feature-based and
categorical models? We repeated our analysis, this time including the
similarity judgments as a model. The model “dimensions” in this case
are individual subjects (16 in total). Results are shown in Supple-
mentary Fig. 2. The pairwise model comparisons show that the si-
milarity judgments can explain the IT representation equally well as
the fitted feature-based and fitted categorical models. The fitted si-
milarity judgments perform better than several other models,
namely the non-fitted feature-based model, the non-fitted catego-
rical model, and the non-fitted similarity judgments. The finding that
the fitted similarity judgments outperform the non-fitted similarity
judgments indicates that fitting significantly improves the prediction.

We performed the same analysis for early visual cortex (EVC),
which serves as a control region. The EVC representation does not
show a strong categorical structure, except for a very weak cluster
of human faces (Fig. 8A). After fitting the models to the EVC re-
presentation, the categorical model predicts a weak cluster of
human faces, but none of the models seem to be able to ade-
quately predict the EVC representation (Fig. 8B). This observation
is confirmed by inferential analyses. Fig. 9 shows that none of the
model-prediction RDMs is significantly related to the EVC RDM. In
other words, none of the models can explain the EVC re-
presentation. We repeated this analysis, including the similarity
judgments as a model. Supplementary Fig. 3 shows that the si-
milarity judgments also cannot explain the EVC representation.
This suggests that the feature-based and categorical models, as
well as the similarity judgments, capture stimulus information
that is not emphasized at the level of EVC. This is consistent with
EVC’s known functional selectivity for lower-level image proper-
ties such as oriented lines and edges (Hubel and Wiesel, 1968).

3.3. The categorical model almost fully explains similarity judg-
ments, outperforming the feature-based model

The object-similarity judgments are shown in Fig. 10A. As de-
scribed previously (Mur et al., 2013), the similarity judgments
show a categorical structure that reflects and transcends the IT
object representation. The judgments reflect the division between
animate and inanimate objects that is prominent in the IT re-
presentation, and also show a tight cluster of human faces. How-
ever, in addition, the similarity judgments emphasize human-re-
lated category divisions, including the division between human
and non-human animals, and between manmade and natural
objects. Fig. 10B shows the model predictions of the similarity
judgments, and the residual variance unexplained by the models.
The prediction of the categorical model shows a close match to the
similarity judgments, with four main clusters corresponding to
humans, non-human animals, natural objects, and manmade ob-
jects, and a tight cluster of human faces. The feature-based model
cannot predict the four main category clusters prevalent in the
similarity judgments, but it can predict the division between

animate and inanimate objects and the tight clusters of human
and animal faces, which the similarity judgments share with the IT
representation.

As shown in Fig. 11A, each of the model-prediction RDMs is sig-
nificantly related to the similarity judgments. Performance of the fit-
ted categorical and combined models approaches the noise ceiling,
suggesting that these models can almost fully explain the similarity
judgments. The pairwise model comparisons show that these two
models outperform all other models, including the fitted feature-
based model. This finding suggests that the categorical model can
explain variance in the similarity judgments that the feature-based
model cannot explain. This is consistent with the observation that the
feature-based model cannot predict the four main category clusters
prevalent in the similarity judgments. The next best model is the non-
fitted categorical model, followed by the non-fitted combined model
and the fitted feature-based model. The latter two models each out-
perform the non-fitted feature-based model, which is ranked last. The
fact that each fitted model outperforms its non-fitted counterpart
suggests that fitting significantly improves the prediction. The MDS
plot in Fig. 11B further supports the results, showing that the cate-
gorical and combined model are more closely related to the similarity
judgments than the feature-based model.

We previously showed that objects that elicit similar activity pat-
terns in IT tend to be judged as similar by humans (Mur et al., 2013).
In other words, perceived object similarity can be predicted from the
IT object representation. How does the explanatory power of the IT
representation compare to that of the categorical and feature-based
models? We repeated our analysis, this time including the IT re-
presentation as a model. The model “dimensions” in this case are
individual subjects (4 in total). Results are shown in Supplementary
Fig. 4. The pairwise model comparisons show that the IT representa-
tion can explain the similarity judgments equally well as the fitted
feature-based model. However, the fitted categorical and combined
models outperform the IT representation in explaining the similarity
judgments. This finding is consistent with the observation that the
similarity judgments emphasize several human-related category di-
visions that can be predicted by the categorical model but that are not
present in the IT representation. In sum, our findings suggest that
certain aspects of the stimulus information emphasized by the simi-
larity judgments cannot be captured by visual features.

The fact that the performance of the categorical model ap-
proaches the noise ceiling indicates that there is not much room
for model improvement. This is consistent with the observation
that the categorical model falls within the range of inter-subject
variability of the similarity judgments (Supplementary Fig. 5C). In
other words, the single-subject similarity judgments do not seem
more similar to each other than to the categorical model. For EVC,
and to a lesser extent for IT, this is not the case: the models appear
further away from the single-subject data (Supplementary Fig. 5A
and B). This suggests that the models can still be improved, and
corroborates the fact that model performance does not reach the
noise ceiling for EVC or IT.

3.4. Visual features as stepping stones toward semantics

We found that features, categories, and the combined model
explained about equal (and not significantly different) amounts of
IT representational variance. The fact that features as well as ca-
tegories explain IT representational variance is consistent with
previous literature (e.g. Tanaka, 1996; Yamane et al, 2008;
Kanwisher et al.,, 1997; Haxby et al., 2001; Kriegeskorte et al.,
2008b). Importantly, the fact that the feature-based model did not
explain significant additional variance when added to the cate-
gorical model, and vice versa, implies that the two models share
the variance that they explain. The explanatory power of both
models thus derives from their shared variance component (see
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features categories

Features, categories, and combined model

IT explain equal variance.
Categories and combined model
similarity explain equal variance.
judgments

Features explain less variance.

W explanatory model variance

[T] non-explanatory model variance

Fig.12. Features correlated with categories explain the IT representation and similarity
Jjudgments reflect additional categorical variance. We found that features, categories,
and the combined model explained about equal (and not significantly different)
amounts of IT representational variance. This implies that the categorical model
does not explain additional variance not explained by the feature-based model and
vice versa. The explanatory power of both models thus derives from their shared
variance component. This is consistent with the idea that visual features correlated
with categorical divisions account for the IT representation, whereas features un-
related to categories do not. For similarity judgments, the categorical model ex-
plained most of the variance and the feature-based model explained significant, but
significantly less variance. The feature-based model did not explain significant
additional variance when added to the categorical model, implying that the var-
iance it explains is shared with the categorical model.

Fig. 12). This suggests that visual features correlated with catego-
rical divisions account for the IT representation, whereas features
unrelated to categories do not. This idea is consistent with earlier
proposals that IT contains feature detectors optimized for category
discrimination (Sigala and Logothetis, 2002; Ullman et al., 2002;
Ullman, 2007; Lerner et al., 2008). Our findings extend the ex-
perimental evidence in favor of these proposals to the level of
population coding as measured with fMRI. Whereas previous
studies have either studied the contribution of visual features and
categories to the IT representation separately (e.g. Yamane et al.,
2008; Haxby et al., 2001), or focused on disentangling their con-
tributions (e.g. Baldassi et al., 2013), our results unite the two by
suggesting that the visual features represented in IT might serve as
stepping stones toward a representation that emphasizes catego-
rical boundaries or higher-level semantic dimensions.

For the similarity judgments, the categorical model explained
most of the variance and the feature-based model explained sig-
nificant, but significantly less variance. This finding is consistent
with previous studies that have suggested an important role for
category information in object perception (e.g. Rosch et al., 1976;
Mur et al., 2013). Furthermore, the feature-based model did not
explain significant additional variance when added to the cate-
gorical model, implying that the variance it explains is shared with
the categorical model (see Fig. 12). Our findings suggest that the
similarity judgments contain categorical variance that is not ex-
plained by visual features, reflecting a higher-level more purely
semantic representation. Our results further elucidate the nature
of the previously reported relationship between the IT object re-
presentation and the similarity judgments (Mur et al., 2013).
Specifically, they suggest that the dissimilarity variance that each
can explain in the other is driven by the shared variance compo-
nent of features and categories.

3.5. Which model dimensions contribute most to explaining the
object representations?

Fitting the models to the measured object representations not
only increases the models’ explanatory power, it might also yield

information about the relevance of each dimension in explaining
the measured object representation, as indicated by the weight
that each dimension receives during fitting. In the ideal scenario of
spike count measurements for an infinite set of images, the
weights would give an indication of the variance each dimension
explains in the representational space (resulting from the number
of neurons responding to that dimension and the gain of the
neuronal responses with respect to that dimension). In the current
study, we are several steps away from this ideal scenario. First, we
analyze fMRI data. fMRI voxels might not sample the dimensions
of the underlying neuronal representational space equally (Krie-
geskorte et al., 2010). This compromises the interpretability of the
weights. Second, the number of images was limited to 96. This
increases multicollinearity between the model predictors. Multi-
collinearity does not reduce model performance, however, it de-
creases the stability of the weights. In addition, due to the limited
number of images, many dimensions only applied to one parti-
cular image. It is unclear to what extent the weights that these
dimensions receive during fitting generalize to new images.

Given these considerations, we performed an exploratory
analysis on the dimension weights. We first determined, for each
of the measured object representations, which of the single-di-
mension model RDMs were significantly related to the re-
presentation. This gives an indication of the relevance of the di-
mensions in explaining the representation when each dimension
is considered in isolation. We computed Kendall’s rank correlation
coefficient tau a between each single-dimension model RDM and
the data RDM, and performed inference by bootstrap resampling
the stimulus set (1,000 resamplings, p < 0.05 corrected). Sup-
plementary Fig. 6 displays the categories and features whose
model RDMs show a significant correlation with the IT re-
presentation, and with the similarity judgments, respectively. Thé
font size of the category and feature-based labels reflects the re-
lative strength of their correlation with the data dissimilarities. For
both the IT representation and the similarity judgments, relevant
category labels include super-ordinate categories such as “organ-
ism/living”, “nonliving/manmade”, “animal”, “face”, and “food/
edible”. The feature-based label “head” is prominently present for
both the IT representation and the similarity judgments. Further
relevant feature-based labels include labels correlated with ani-
macy or the presence of a face for the IT representation (e.g. “skin”,
“hair”, “nose/mouth”) and labels describing object shape and color
for the similarity judgments (e.g. “symmetrical”, “red”, “green”).
Subsequently, we inspected the dimension weights obtained by
non-negative least-squares fitting. The dimension weights are
shown in Supplementary Fig. 7. Only weights for dimensions that
applied to more than one image are shown. The 15 to 20 first-
ranked dimensions show a reasonable overlap with the dimen-
sions shown in Supplementary Fig. 6. These observations are
consistent with the idea that IT répresents visual features that are
informative about category membership. Future studies should
use larger image sets and additional inferential procedures to va-
lidate the results of our exploratory analysis.

Our results demonstrate the feasibility of weighted re-
presentational modeling (Diedrichsen et al., 2011) for fitting
models based on image labels obtained from human observers. In
weighted representational modeling, a single weight is fitted for
each model dimension. In other words, the model representational
space can be stretched and squeezed along its original dimensions
to best explain the measured representation. This allows less
flexibility than population or voxel receptive field modeling (Du-
moulin and Wandell, 2008; Kay et al., 2008; Mitchell et al., 2008),
in which the model representational space can additionally be
sheared along arbitrary dimensions to account for the measured
representation. However, the increased flexibility of voxel re-
ceptive field modeling comes at the cost of a larger number of
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parameters, i.e. a weight is fitted for each model dimension and
each measured response channel. This requires a prior on the
weights, which biases the estimated weights. Weighted re-
presentational modeling does not require a prior on the weights,
and has the advantage of giving more stable and interpretable fits
and being directly applicable to similarity judgments.

3.6. Conclusion

We have shown that visual features can explain the IT re-
presentation to a considerable extent and that categorical pre-
dictors do not explain additional IT variance beyond that explained
by features. However, only visual features related to categories
appeared effective at explaining IT representational variance. This
is consistent with IT consisting of visual feature detectors that are
designed (by visual development or evolution) to emphasize ca-
tegorical divisions. Similarity judgments reflect additional cate-
gorical variance not explained by visual features. Our results are
consistent with the view that IT uses visual features as stepping
stones toward a representation that emphasizes categorical
boundaries or higher-level semantic dimensions.

We used weighted representational modeling to estimate the
contributions of visual features and categories in explaining the IT
representation. Weighted representational modeling (Diedrichsen

Appendix A
Instructions (Experiment 1)

Categories

et al., 2011) provides a useful methodology for exploring the de-
gree to which different representational models can explain a re-
presentation. Such models have much fewer parameters than
voxel/population receptive field models, can be fitted without
priors that bias the weight estimates and can be applied directly to
representational dissimilarity matrices (including those from hu-
man similarity judgments). The particular approach of non-nega-
tive least squares with cross-validation across stimuli (Khaligh-
Razavi and Kriegeskorte 2014) is shown here to be useful not only
for fitting combinations of image-computable model representa-
tions, but also for models based on labels obtained from human
observers.
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During this experiment, you will be asked to describe a set of 96 object photos. The photos will be shown on a computer screen. You can type
your descriptions in boxes placed next to the photo. Please type as many descriptions as possible, with a minimum of 5 per photo. The experiment
consists of two parts, each of which takes about 1.5 hours You are encouraged to take a short break whenever you feel you are getting tired.

During this part of the experiment, you will be asked to describe the categories that each object belongs to. A category is a group of
objects that the shown object is an example of. An object can belong to multiple categories at once, with categories ranging from specific to
more and more abstract (high-level). Please see the examples to get an idea of how to describe the object photos in terms of their categories.

If you have any questions, please feel free to ask them now.

Specific category (name of the object)

Example

Intermediate-level categories

High-level categories

Example

lizard 4| [reptile, vertebrate, animal, organism /,} natural, living |
kettle ~/| |pot, utensil, implement /) artificial, nonliving 4|
|

Vz Vz 4|
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Features

During this experiment, you will be asked to describe a set of 96 object photos. The photos will be shown on a computer screen. You can type
your descriptions in boxes placed next to the photo. Please type as many descriptions as possible, with a minimum of 5 per photo. The experiment
consists of two parts, each of which takes about 1.5 hours. You are encouraged to take a short break whenever you feel you are getting tired.

During this part of the experiment, you will be asked to describe the features of each object. Features are visible elements of the object.
They include object parts, object shape, colour, and texture. Please see the examples to get an idea of how to describe the object photos in
terms of their features. If you have any questions, please feel free to ask them now.

parts shape colour texture

Example

¥ tail, trunk, head, legs, toes | lelongated, curved /| |brown, green | [rough, scales, skin P

Example

spout, handle, lid, knob /) [round, curvec /) |silver, black /) [smocth, shiny, metal 4

Appendix B
Category descriptions (Experiment 1)
Descriptions listed by at least 20% of the subjects

accessory, adult, amphibian, animal, ape, apple, apple core, appliance, arch, architecture, archway, armadillo, art, artificial, aubergine,
baboon, baby, baby bottle, baby crocodile, baby monkey, ball of wool, banana, big cat, bird, body part, bottle, bovine, boy, building, buildings,
bulb, bush, camel, canine, carbohydrate, carnivore, carrot, carrots, cassette, cassette tape, cat, cattle, chair, chef, child, chili, chimpanzee,
church, city, clothing, cold-blooded, communication, construction, container, cooker, cooking, country, courgette, cow, crocodile, dancer, dog,
dome, door, dwelling, ear, eaten, ecosystem, edible, electricity, elephant, eggplant, entrance, equipment, eye, face, farm, feline,female, fiber,
finger, fingers, fist, flag, flightless, food, fox, frog, fruit, furniture, garden, garlic, gesture, giraffe, glass, goat, grape, grapes, great dane, gun, hair,
hammer, hand, hearing, herbivore, home, horned, house, human, hygiene, implement, japanese flag, key, kitchen, kiwi, kiwi fruit, knitting,
lake, landscape, leaf, lettuce, light, light bulb, limb, lion, livestock, living, logs, male, mammal, man, manmade, maple leaf, material, mobile
phone, monkey, monument, music, natural, nonliving, object, occupation, office chair, organ, organism, ostrich, oven, pear, pepper, person,
pet, phone, pinecone, pine cone, pineapple, plastic, plant, pliers, potato, primate, quadruped, radish, recording, red pepper, religion, reptile,
road, road sign, roof, root, roundabout sign, salad, seasoning, seat, seed, sense, sheep, shelter, shrub, sight, sign, skyscrapers, snake, spice,
steeple, stone, stop sign, stove, structure, symbol, technology, tomato, tool, toothbrush, topiary, tree, trees, tuber, umbrella, urban, utensil,
vegetable, vertebrate, vision, warning, water, waterfall, weapon, wig, wolf, woman, wood, wool, yarn, young, zebra

Removed descriptions

A subset of the descriptions generated by the subjects was removed by the experimenters. The removed descriptions and the rationale
for removal are listed below.

Composites

Baby bottle (Each listed separately)

Baby crocodile (Each listed separately)

Baby monkey (Each listed separately)

Kiwi fruit (Each listed separately)
Singular/plural

Buildings (Building is listed - more general)
Carrot (Carrots is listed - more frequent)
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Grape (Grapes is listed — more frequent)

Trees (Tree is listed — more general)

Spelling

Pine cone (Pinecone is listed — more frequent)
Synonyms

Eggplant (Aubergine is listed - more frequent)
Redundancy

Ball of wool (Wool is listed - more frequent)
Cassette (Cassette tape is listed - more frequent)

Features, not categories
Fiber

Finger(s)

Glass

Plastic

Steeple

Stone

Appendix C
Feature descriptions (Experiment 1)
Descriptions listed by at least 20% of the subjects

angular, antenna, apple core, apron, arch, arched, archway, arm, arms, arrow, arrows, back, ball, bark, barrel, beak, beard, beige, black, blonde,
blue, body, boots, bottle, branches, brick, bricks, bristles, bristly, brown, brush, building, buildings, bulb, bulbous, bumpy, bunch, buttons, canopy,
cap, case, cheeks, chest, circle, circular, clouds, cloves, coiled, cold, collar, core, crane, cranes, cream, crunchy, cubic, curved, cylindrical, dark
green, dials, dimples, dome, domed, door, doors, dress, ear, ears, elongated, eye, eyes, eyebrow, eyebrows, eyelashes, fabric, face, feathers,
feathery, feet, filament, finger, fingers, fingernails, firm, fist, flag, flat, flesh, flowerbed, forehead, forest, fruit, fur, furry, glass, glasses, goatee, gold,
grapes, grass, green, grey, ground, hair, hairy, hammer, hand, hands, handle, handles, hard, hat, head, hob, hobs, hole, holes, hooves, horns,
house, humps, iris, irregular, jacket, juicy, key, key, knuckles, label, lake, leaf, leafy, leather, leaves, legs, lever, lid, light blue, line, lips, logs, long,
lumpy, man, mane, material, metal, metallic, moustache, mouth, muzzle, nail, nails, neck, necklace, nose, nostrils, orange, oval, oven, overalls,
palm, papery, path, peach, pear, pear-shaped, pink, plants, plastic, pointed, pointy, pole, potato, pupil, purple, rectangle, rectangular, red, rock,
rocks, roof, root, rough, round, rounded, rubber, rubbery, scales, scaly, screen, screw, seat, seeds, shadow, shaft, sharp, shiny, shirt, shoes, short,
shoulder, shoulders, shrub, sign, silky, silver, skin, sky, slimy, smooth, snout, socks, soft, soil, solid, spherical, spikey, spiky, spire, square, stalk,
stalks, star, steeple, stem, step, steps, sticky, stone, straight, strands, stripes, stubble, stubbly, sunglasses, symmetrical, tail, tall, tan, tape, teal,
teat, teeth, thin, thumb, toes, tongue, top, torso, tower, tree, trees, triangular, trigger, trousers, trunk, tusks, veins, vest, wall, walls, warm, water,
waterfall, wavy, waxy, wet, wheels, whiskers, white, window, windows, wings, wood, wooden, wool, woolly, wrist, yellow

Removed descriptions

A subset of the descriptions generated by the subjects was removed by the experimenters. The removed descriptions and the rationale
for removal are listed below.

Categories, not features (i.e. describes the whole object)
Apple core
Arch
Archway
Ball

Bottle
Brush
Bulb
Bunch
Dome
Face

Flag

Fruit
Grapes
Key

Logs

Man
Material
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Oven
Pear
Potato
Shrub
Sign

Not visible
Apron
Cold
Crunchy
Filament
Firm
Hard
Juicy
Warm
Soft
Solid
Sticky
Top

Singular/plural - > singular form is listed (more general), unless only plural form was mentioned at 20%
Arms

Arrows

Bricks

Buildings

Cranes

Doors

Ears

Eyebrows

Eyes

Finger (Plural listed)
Hands

Handles

Hobs

Holes

Leaf (Plural listed)
Leg (Plural listed)
Nails

Rocks

Shoulders

Stalks

Steps

Trees

Walls

Windows

Redundancy

Circle (Circular is listed)

Dark green (Green is listed)

Fingernails (Nail is listed)

Light blue (Blue is listed)

Metal (Metallic is listed — more closely describes the actual texture)
Rectangle (Rectangular is listed)

Rubber (Rubbery is listed - more closely describes the actual texture)
Spikey (Spiky is listed)

Wood (Wooden is listed — more closely describes the actual texture)
Wool (Woolly is listed — more closely describes the actual texture)
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Appendix D
Instructions (Experiment 2)
Object categories

During this experiment, you will be shown words and photos of
objects. You will be asked to judge, for each of the listed words,
whether it correctly describes each photo. The photos will be shown on
a computer screen. If you think that a given description is true for a
given photo, please tick the checkbox next to the photo. Please feel free
to touch the screen to tick the checkbox or use the mouse if this feels
more comfortable. You can click in the boxes at any place in the cell. If
you think that a given description does not apply to any of the photos
please do not tick any checkbox. Some descriptions will apply to one
photo only and others to multiple photos. If you do not know the
definition of a given description please ask.

Please try to be as accurate as possible. Please scroll left, right,
up and down using the vertical and horizontal scrolling bars or the
touchscreen. Please scroll with two fingers to avoid accidental
ticking the checkboxes with one finger. We encourage you to
concentrate on one description and then to scroll down through
all the photos to tick the checkbox where applicable and then
move to the next description. Please do not leave any descriptions
for later but try to move through the descriptions one by one. The
experiment takes approximately 3 hours. You are encouraged to
take a short break whenever you feel you are getting tired.

You will be asked to judge category descriptions. A category is a
group of objects that the shown object is an example of. An object
can belong to multiple categories at once, with categories ranging
from specific to more and more abstract (high-level).

Please enter the given subject number at the top of the page.
Please press the “Done” button at the bottom of the page after
you have generated all the descriptions, and then click the
download link. If you have any questions, please feel free to ask
them now.

The figure below shows a screenshot from the top left corner of
the image-by-category-description sheet for one particular subject.

canine pear great dane ° °

Object features

During this experiment, you will be shown words and photos of
objects. You will be asked to judge, for each of the listed words,
whether it correctly describes each photo. The photos will be shown on

a computer screen. If you think that a given description is true for a
given photo, please tick the checkbox next to the photo. Please feel free
to touch the screen to tick the checkbox or use the mouse if this feels
more comfortable. You can click in the boxes at any place in the cell. If
you think that a given description does not apply to any of the photos
please do not tick any checkbox. Some descriptions will apply to one
photo only and others to multiple photos. If you do not know the
definition of a given description please ask.

Please try to be as accurate as possible. Please scroll left, right,
up and down using the vertical and horizontal scrolling bars or the
touchscreen. Please scroll with two fingers to avoid accidental
ticking the checkboxes with one finger. We encourage you to
concentrate on one description and then to scroll down through
all the photos to tick the checkbox where applicable and then
move to the next description. Please do not leave any descriptions
for later but try to move through the descriptions one by one. The
experiment takes approximately 3 hours. You are encouraged to
take a short break whenever you feel you are getting tired.

You will be asked to judge feature descriptions. Features are
visible elements of the object. They include object parts, object
shape, colour, and texture.

Please enter the given subject number at the top of the page.
Please press the “Done” button at the bottom of the page after you
have generated all the descriptions, and then click the download
link. If you have any questions, please feel free to ask them now.

The figure below shows a screenshot from the top left corner of
the image-by-feature-description sheet for one particular subject.

fabric clouds teal ° °

Appendix E
Final lists of descriptions (Experiment 2)
Categories

(114 descriptions)

Animal
Armadillo
Artificial
Aubergine
Baboon
Banana
Body part
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Bottle Zebra

Building Frog/amphibian

Camel Structure/architecture
Carnivore Potato/carbohydrate
Carrots Occupation/chef
Chimpanzee Spice/chili

Cold-blooded Religion/church
Courgette Skyscrapers/city
Crocodile Roof/dome

Dancer House/dwelling

Door Hearing/ear

Elephant Food/edible

Entrance Tool/equipment

Face Woman/female

Fist Wolf/fox

Fruit Weapon/gun

Garlic Wig/hair

Gesture Pliers/implement

Giraffe Water/lake

Goat Maple leaf/leaf

Grapes Organism/living

Great dane Wood/logs

Hammer Nonliving/manmade
Hand Sign/road sign

Herbivore Adult/human/person
Home Apple/apple core/eaten
Horned Arch/archway/monument
Key Bird/flightless/ostrich
Kiwi Bovine/cattle/cow
Landscape Boy/child/young

Lettuce Bulb/light/light bulb
Limb Canine/dog/pet

Livestock Cassette tape/music/recording
Male Communication/mobile phone/phone
Mammal Country/flag/japanese flag
Man Knitting/wool/yarn
Monkey Big cat/cat/feline/lion
Natural Chair/furniture/office chair/seat
Object Eye/organ/sight/vision
Pear Bush/garden/plant/shrub/topiary
Pepper Appliance/cooker/cooking/kitchen/oven/stove
Pinecone

Pineapple

Primate

Radish Features

Red pepper

Reptile (120 descriptions)

Road

Roundabout sign Arched

Salad Arm

Sense Arrow

Sheep Back

Shelter Beard

Snake Black

Stop sign Blonde

Symbol Blue

Technology Branches

Tomato Brick

Toothbrush Bristles

Tree Brown

Umbrella Building

Urban Cheeks

Vegetable Chest

Vertebrate Coiled

Warning Collar

Waterfall Core
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Curved Teeth

Cylindrical Thumb

Dimples Tongue

Domed Torso

Dress Tower

Ear Tree

Eye Trigger

Eyelashes Waterfall

Feet White

Flesh Window

Fur Wooden

Furry Wo.olly

Glass Wrist

Glasses Yellow

Goatee Legs/body

Green Cloves/b}llbous

Grey Round/circular

Hair Wall/door

Hairy Forehead/eyebrow

Handle Hand/fingers

Head Ground/grass

Hooves Trousers/hat

Horns Path/house

Humps Pup'11/1r15

Knuckles Whiskers/mane

Leafy Nose/mputh

Leaves Socks/pink

Lips Sharp/scaly

Long Tusks/trunk

Metallic Wet/water

Moustache Antenna/buttons/screen

Nail Cloqu/forest/lake

Neck Cubic/hob/square

Necklace Pu_rple/seat/wheels

Nostrils Spire/steeple/tall .

Overalls Beak/feathers/feathery/wings

Palm

Pear-shaped

Plants

glalstlc Appendix F. Supplementary material
ole

ge;tangular Supplementary data associated with this article can be found in

Re ¢ the online version at doi:10.1016/j.neuropsychologia.2015.10.023.
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