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ABSTRACT

Mounting evidence supports an association between eating behaviour (EB) and obesity.

However, poor characterisation of the nature of this relationship limits its application to

obesity prevention. This thesis aims to advance understanding of the association between

EB and the aetiology of obesity. Across 5 studies, a combination of approaches was used

to interrogate: (1) the role of EB in genetic predisposition to obesity, (2) the interaction

between infant EB and maternal attitudes in the determination of infant milk intake and

weight and (3) the genetic basis of EB traits and risk-taking.

First, the effect of body mass index (BMI)-related genetic variants on adult body composition

was investigated using a genetic risk score (GRS) approach in the Fenland study (n=9667).

The BMI-GRS primarily influenced fat mass, confirming its utility in modelling the effects

of adiposity and BMI, as well as in exploring the mechanisms of genetic predisposition to

obesity. Emotional eating (EE), uncontrolled eating (UE) and cognitive restraint (CR) were

then modelled as potential mediators and modifiers of the BMI-GRS to BMI association

amongst adults in the Fenland (n=3515) and EDEN (n=2154) studies. The association was

partially mediated by EE and UE, and modified by CR. These results indicate that whilst

appetitive EB traits (EE and UE) lie on the causal pathway between genetics and weight

status in adulthood, restraint may protect genetically vulnerable individuals from obesity.

Having demonstrated that interactions between obesity determinants can impact adult

weight, I described the association of infant EB to both infant milk intake and weight in the

Baby Milk Trial (n=669). I then investigated whether this could be modified by maternal

factors. Positive maternal attitudes towards following healthy infant feeding guidelines

attenuated the association between infant EB and both outcomes. Finally, I performed

GWAS to explore the genetic basis of risk-taking and adult EB, behavioural phenotypes

with a hypothesised role in the aetiology of obesity. A total of 26 genetic variants were

identified in association with risk-taking (n=436,236). In aggregate, these were linked to

higher BMI but heterogeneity in the impact of individual variants suggested the involvement

of multiple pathways. No variants were identified for EE, UE or CR. This analysis was likely

under-powered due to low sample size (n≤ 11,843) but indicated a genetic basis for UE that

partially overlaps with that of BMI.



Abstract

Using a combination of approaches, this work demonstrates the role of EB pathways in the

aetiology of obesity. The findings contribute to a deeper understanding of their likely causal

role and the implications of their relationships with other behavioural traits, highlighting a

range of behaviours as potential targets for obesity prevention amongst both infants and

adults.
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CHAPTER 1

INTRODUCTION

1.1 Background

The epidemiological study of eating behaviour (EB) is a relatively new field of research.

Scalable measurement tools for EB, facilitating a population-based approach, were first

developed in 1970s at a time when rising levels of obesity sparked interest in the factors

involved in the determination of excessive weight gain. Today mounting evidence supports

an association between EB and body weight. However, the nature of the causal pathways

underlying this association are poorly understood. In particular, the aetiological role of

restraint over eating is debated and the relationship between EB and other determinants of

obesity, including the genetic basis of body mass index (BMI), is largely unknown. Applying

a combination of genetic and observational methods, the work described in this thesis aims

to advance understanding of the relationship between EB and the aetiology of obesity.

This introductory chapter places the work in context. Sections 1.2 and 1.3 provide def-

initions and discuss common measurement methods for both obesity and EB in large,

epidemiological studies. Drawing upon both cross-sectional and longitudinal evidence,

the association between EB and weight is then reviewed in Section 1.4. This leads into a

discussion of the role of EB in the specific aetiological pathways to obesity of relevance to

this thesis in Sections 1.5 and 1.6. Finally, Section 1.7 describes and elaborates upon the

aims of this work.
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1.2 Overweight and obesity

The importance of EB to public health derives primarily from its proposed associations with

weight status and, in particular, overweight and obesity. These serious medical conditions

are characterised by the excessive accumulation of body fat with implications for health

and well-being [1]. Unlike other major threats to global health, including tobacco use and

childhood malnutrition, no country has ever achieved substantial or sustained declines

in obesity prevalence, making excess body weight a major challenge for the twenty-first

century [2–4]. In the following section, the measurement, classification and burden of

overweight and obesity are discussed. Together, this provides a background and rationale

for the study of pathways relevant to their aetiology.

1.2.1 Classification

1.2.1.1 Adults

In adulthood, overweight and obesity are typically identified using BMI, a non-invasive

proxy measure of adiposity calculated by dividing a person’s weight (kg) by their height

squared (m2). Amongst adults over the age of 20 years, the World Health Organisation’s

(WHO) classification system categorises an individual’s BMI as underweight, normal weight,

overweight or obese on the basis of the thresholds provided in Table 1.1. These thresholds

are designed to reflect adiposity-related health risks associated with different levels of BMI.

The relationship between BMI and adiposity is discussed in greater detail in Chapter 3.

Table 1.1 The WHO thresholds for the classification of BMI

BMI range

Underweight <18.5kg/m2

Normal weight 18.5kg/m2 − 24.9kg/m2

Overweight 25.0kg/m2 − 29.9kg/m2

Obese ≥ 30kg/m2

Adapted from WHO, 2006 [5]. World Health Organisa-

tion (WHO); Body mass index (BMI)
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1.2.1.2 Children and infants

Amongst paediatric and adolescent populations under the age of 20 years, sex-specific

growth charts that account for age are used to reflect degrees of adiposity. BMI-for-age refer-

ence charts are most often used to compare a child’s BMI to that of the reference population

mean. Both the WHO and the International Obesity Task Force (IOTF) have developed

reference charts for children aged 5-19 years and 2-18 years, respectively, designed for use

across populations [6, 7]. At present, the IOTF reference is the most widely used [8]. On the

basis of evidence that BMI is a poor surrogate for adiposity in early life, weight-for-length

growth reference or standard charts are used amongst infants [9]. In contrast to reference

charts, which reflect typical growth, standard charts are designed to reflect optimal growth

and are typically derived using data from healthy, breastfed infants of non-smoking mothers

[10]. Although global standards exist for use across populations, including the WHO growth

standard for infants aged 0-2 years, many countries use population-specific charts. In the

UK, the British 1990 growth reference (UK90) is widely used [11].

Growth standard and reference charts most often classify BMI or weight-for-length on

the basis of an individual’s centile or standard deviation (SD) from the mean. However,

given a lack of evidence for direct associations between these cut-offs and health risks, this

approach has been criticised as arbitrary [7]. Obesity-related morbidity often develops in

adulthood and any associations between childhood obesity and disease in later life may

be mediated, or confounded, by adult weight status [7]. As a pragmatic solution, the IOTF

thresholds were specifically designed to correspond to the adult BMI categories.

1.2.2 Prevalence

The Global Burden of Disease study (GBD) provides a comprehensive annual assessment of

global health trends, incorporating data from surveys, surveillance programs, databases,

reports and published studies across 195 countries and territories worldwide. In 2015,

using the IOTF and WHO classification systems, the GBD study estimated the prevalence

of obesity to be 5% amongst children (108 million) and 12% amongst adults (604 million)

[8]. These figures reflect a doubling in the age-standardised prevalence of obesity across

more than 70 of the countries included in the analysis since 1980 and continuous increases

across the majority of remaining countries [8]. Alongside elevated fasting plasma glucose,

high BMI is the only leading disease risk factor included in the study not to have declined in

at least some GBD study regions since 2010 [12].

Figure 1.1 shows the age-standardised prevalence of overweight and obesity from 1980 to

2013, based on GBD data [4]. Globally, the prevalence has been rising since 1980 with the

steepest rate of increase observed during the 1990s. Attenuation in the rate of increase post-

2002 has been driven by the stabilisation of obesity prevalence in high income countries
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[4]. Children and individuals in low income countries continue to experience the greatest

increases in prevalence [8, 3, 4].

In the UK, the Health Survey for England provides annual BMI data from a representative

sample of the population residing in England. The most recent figures show that the majority

of adults over the age of 20 years are either overweight or obese (66% of men and 57% of

women) and almost 1 in 5 children in England begin primary school overweight, rising to 1

in 3 by age 11 [13–15].

Even under the most optimistic assumptions, the GBD predicts that the global prevalence

of obesity will continue to increase to 2040 and beyond [16]. In 2040, it is estimated that

high BMI will rank second only to high blood pressure amongst the global risk factors for

years of life lost across all 195 regions (Figure 1.2) [16].

(a) Adults aged ≥ 20 years (b) Children aged 2-19 years

Figure 1.1 Age-standardised prevalence of overweight and obesity across 183 countries
between 1980 and 2013. This figure is adapted from Ng et al, 2014 [4]. It shows the age-
standardised prevalence of overweight and obesity (A) and obesity alone (B) from across
183 countries, covering 21 global regions, between 1980 and 2013. Overweight and obesity
were identified using the IOTF cut-offs for children and the WHO cut-offs for adults.
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Figure 1.2 Top 5 leading risk factors contributing to projected years of life lost in 2040.
Adapted from Foreman et al, 2018 [16]. The figure shows the global risk-attributable years
of life lost between the 2040 reference forecast, 2040 better health scenario, and 2040 worse
health scenario. The better and worse health scenarios were computed by taking the 85th

and 15th percentiles of annualised rates of change observed across all locations and years in
the past. The differences between the reference scenario and the better and worse health
scenarios are grouped and colour-coded by cause. The black solid vertical lines represent
all-cause attributable years of life lost in the 2040 reference forecast, red dashed vertical
lines represent all-cause attributable years of life lost in the 2040 worse health scenario, and
green dashed vertical lines all-cause attributable years of life lost in the 2040 better health
scenario.

1.2.3 Consequences

Cardiovascular disease (CVD), type 2 diabetes (T2D), musculoskeletal disorders, certain

cancers and asthma are well-established sequelae of high BMI, all of which can lead to

premature mortality and reduced quality of life [2, 17–20]. In 2016, an estimated 4.5 million

deaths and 135.4 million disability adjusted life years (DALYs) worldwide were directly

attributable to obesity [2]. Beyond its implications for systemic health, high BMI can also

result in adverse psychosocial outcomes, including depression, internalising disorders and

poor school performance [21, 18, 22].

Given a wealth of epidemiological evidence linking both high and low BMI to adverse health

outcomes, a J-shaped association between BMI and all-cause mortality has been assumed,

with the lowest risks being experienced by those within the normal BMI range [23]. However,

evidence suggesting improved survival amongst overweight individuals for some health

conditions has challenged this assertion. For example, one study found that excess all-cause

mortality amongst individuals classified as overweight or obese masked a reduced risk

of mortality from non-CVD and non-cancer causes [24]. A separate study amongst 4000

American adults suggested increased mortality from T2D amongst normal weight versus

obese individuals, even following adjustment for confounding [25]. Other studies have

failed to identify increased all-cause mortality amongst overweight individuals [26, 27].

Together, this evidence has called into question the dangers associated with high BMI and

led some to assert that the degree of concern surrounding overweight and obesity exceeds

the true public health relevance of these conditions [27]. Conversely, a recent meta-analysis
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of prospective observational studies showed a continuous increase in the risk of death with a

BMI above 25kg/m2 [2]. By restricting the analysis to individuals who reported no history of

having smoked and those without chronic disease, this study dealt with potential sources of

bias in previous studies, including smoking status and reverse causation due to pre-existing

chronic disease. In combination, the weight of the observational evidence suggests that it

would be premature to assert that being overweight is risk-free. More recently, this assertion

has been supported by the findings of Mendelian randomisation (MR) studies.

MR is described in detail in Section 6.3.2.9. Briefly, where observational studies repeatedly

suggest an association between an exposure and an outcome, causality is just one potential

explanation. The association may also result from sources of bias, including confounding,

or from reverse causation [28]. Whilst longitudinal analyses reduce the probability that

reverse causality explains the results, ideally a randomised controlled trial (RCT) would

be performed in order to reduce the potential impact of confounding. However, RCTs are

not feasible or ethical for all exposures. MR is conceptualised as a natural RCT whereby

genotype is used as a proxy for levels of an exposure. MR analyses mirror RCTs in several

important ways. First, alleles are sorted independently such that the inheritance of one trait

is independent of others, controlling for confounding. Second, an individual’s genotype is

fixed at conception, eliminating the potential for reverse causation. As the genetic basis of

BMI has become better established through genome-wide association studies (GWAS), MR

has been used to interrogate the association between BMI and health outcomes.

A 2019 MR analysis amongst 56,150 and 366,385 participants from the Nord-Trøndelag

Health and UKB studies (including 12,915 and 10,344 deaths, respectively) identified a

causal J-shaped association between BMI and all-cause mortality in the total population,

and a causal linear association amongst never smokers [29]. In the total cohort, the lowest

risk of all-cause mortality was observed amongst individuals with a BMI in the normal

range (between 22 and 25kg/m2). An increase of 1 genetically predicted BMI unit led to a

5% (95% confidence interval (CI): 1%, 8%) increase in mortality risk amongst overweight

participants and a 9% (95% CI: 4%, 14%) higher risk of mortality amongst obese participants.

The same increase in genetically predicted BMI was associated with a 34% (95% CI: 16%,

48%) reduction in risk of all-cause mortality amongst underweight participants and a 14%

(95% CI: -1%, 27%) reduction amongst normal weight participants with a BMI within the

lower bounds of the normal range (18.5-19.9kg/m2) [29]. A 2018 review of MR studies found

consistent support for a causal association between BMI and both T2D and hypertension

[30]. Results for coronary artery disease (CAD) are less consistent but overall support a

causal association, with the best powered MR studies identifying a positive association

between BMI and CAD [30]. Evidence for a causal association between BMI and depression

is mixed [19, 31, 21]. Overall, MR studies support a linear association between BMI and

all-cause mortality amongst never smokers and have generally supported a causal role for

BMI in cardio-metabolic disease.
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High BMI is also associated with substantial economic costs. Globally, medical costs for

obese individuals are approximately 30% higher than for those of normal weight [32]. In

2014, the annual obesity-related medical spend in the US was estimated to be $149.4 billion

[33]. Additional indirect costs include productivity losses, work absenteeism, disability and

premature mortality [34]. Whilst these costs are hard to quantify, estimates suggest the

annual cost of obesity-related absenteeism and premature mortality in the US to be $6.38

billion and $30.15 billion, respectively [34]. On an individual level, a 2016 UK Biobank (UKB)

MR study suggested that obesity is causally associated with lower income and deprivation

amongst women [35].

1.2.4 Summary

In sum, overweight and obesity are serious medical conditions with manifold implications

for both individuals and societies. Their global significance is compounded by increases

in prevalence, particularly amongst some of the most vulnerable groups in global society

(children and individuals in low income countries). Despite data detailing of the scale of the

problem and accompanying large-scale characterisation of the potential causes [36], to date,

no country has developed or implemented successful prevention or treatment programs

for obesity at scale [37]. As such, research into the factors involved in the aetiology and

maintenance of obesity is of paramount importance to global health.
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1.3 Eating behaviour

Since aetiological studies of obesity began, inter-individual variations in behaviour have

been an important focus for research. In particular, EB has received attention [38]. Contin-

ued focus on EB is supported by the rise of permissive food environments globally. Such

environments create an enhanced opportunity for the behavioural expression of EB ten-

dencies, thus facilitating their impact on weight and health. In the following section, a

working definition of EB is provided, followed by a discussion of its questionnaire-based

measurement.

1.3.1 Definition

EB is an umbrella term used to describe the habitual behavioural patterns that characterise

an individual’s response to food, food-related cues and food consumption. These patterns

are the behavioural realisations of relatively stable underlying behavioural tendencies, re-

ferred to throughout this thesis as EB traits [39, 40]. EB traits are thought to result from

the interplay between genetic and environmental influences and modulate responses to

internal and external cues to commence or cease eating. Some EB traits, such as the enjoy-

ment of food and response to feelings of satiety, emerge and can be measured during early

infancy and exhibit levels of intra-individual continuity across early childhood comparable

to that of stable personality traits [41]. Others, such as the exercising of conscious control

over consumption, which involves the denial of internal or external cues to eat motivated by

a desire to control weight or shape, rely upon the complex cognitive capacities required to

engage in goal-oriented behaviour [42, 43]. These capacities arise later in development and,

as such, certain EB traits are only apparent in adulthood. The following section summarises

the measurement of EB by questionnaire in large population-based studies.

1.3.2 Measurement by questionnaire

Anecdotal observations suggesting that the EB of individuals who are obese is distinguish-

able from that of their normal weight counterparts led to the earliest attempts to formally

operationalise EB in the mid-1970s. These efforts were motivated by the desire to quantify

eating styles relevant to the development and maintenance of obesity. The traits most

widely measured by contemporary questionnaires can broadly be traced back to three main

theories of obesogenic EBs:

• Psychosomatic theory. First proposed by Kaplan and Kaplan in the 1950s, this theory

attributes over-eating to dysphoric emotional states. The authors contend that obese

individuals misattribute unpleasant emotions to hunger or attempt to self-soothe

using food [44]. The theory is reflected in measures of emotional eating (EE) [44, 45].
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• Externality theory. This theory suggests that obese individuals have a reduced ability

to identify and respond to internal physiological signals of hunger and satiety ap-

propriately. They thus rely upon external cues to guide the initiation and cessation

of eating [46]. This theory is reflected in measures of uncontrolled eating (UE) and

external eating.

• Restraint theory. This theory attributes overeating to the intentional restriction of

food intake motivated by a desire to influence body shape or weight [47–49]. This

restriction is hypothesised to lead to overeating primarily through psychological

mechanisms [50]. These include excessive eating in response to the breaking of a

rigid dietary rule or a lowering of inhibitions due to, for example, the consumption of

alcohol or unpleasant emotions [48]. The theory is reflected in measures of cognitive

restraint (CR). Restrained eaters are thought to rely primarily on conscious control

to regulate their food intake, as opposed to physiological cues. Subsequent work

has shown that CR is generally driven by a desire to prevent weight gain rather than

to instigate weight loss [51] and describes the subjective experience of eating less

than desired [52]. This does not necessarily result in negative energy balance and

reflects attempts to limit consumption regardless of the behavioural realisation of

these efforts [53]. Consequently, CR and dieting are considered as distinct, if partially

overlapping, concepts. In support of this conceptual distinction, restrained eaters

show different reactions to food in controlled settings when compared to dieters [52].

Subsequent work, suggesting that restraint is a response to high BMI and reporting

associations to healthy eating patterns such as higher fruit and vegetable intake, has

called the aetiological role of restraint in obesity into question [51, 54].

These theories are not thought to be mutually exclusive and contemporary questionnaires

typically assess a range of EB traits based in each of the theories. In general, EB question-

naires rely upon Likert scales, combining an individual’s response across a number of items,

each grading the extent to which an individual identifies with a statement, to quantify the

extent to which their typical EB is characterised by a particular EB trait. In its original form, a

Likert scale consisted of 5 possible responses grading the intensity of a respondent’s attitude

to a statement on a linear scale from Strongly agree to Strongly disagree, with the odd number

of items allowing for a neutral response as the central point of the scale [55]. Subsequent

Likert scales have included both greater and smaller ranges of possible responses, including

the use of even numbers precluding a neutral response.

Separate questionnaires are used amongst infants, children and adults. This section will

focus on the measurement of EB amongst adults and infants, as these are the groups of

relevance to this thesis.
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1.3.2.1 Adults

A number of questionnaires have been developed for use in adult populations. Some, such

as the Restraint Scale [48, 38], Power of Food Scale [56] and Emotional Eating Scale [57],

focus on one EB trait. Others use sub-scales to measure a number of separate EB traits in

the same questionnaire. These include the Dutch Eating Behaviour Questionnaire (DEBQ)

[58], Three Factor Eating Questionnaire (TFEQ) [47] and, more recently, the Adult Eating

Behaviour Questionnaire (AEBQ) [59]. Throughout the studies that comprise this thesis, the

TFEQ is used to measure EB in adults. Alongside the DEBQ, it is the most widely used adult

EB questionnaire.

The Three Factor Eating Questionnaire

The original 51-item version of the TFEQ (the TFEQ-51), sometimes referred to as the

Eating Inventory (EI), was published in the 1980s [47]. It was initially designed to measure

restraint and problematic EBs related to restraint. The questionnaire was constructed by

collating items from two existing questionnaires, the Restraint Scale (10 items) [48, 38]

and Latent Obesity Questionnaire (40 items) [60], alongside 17 additional items added on

the basis of the authors’ clinical experience working with obese patients. The Restraint

Scale measured restraint over eating with the goal of controlling weight, whilst the Latent

Obesity Questionnaire identified normal weight individuals who failed to slow their eating

during the course of a meal, and thus were considered to have a latent tendency to become

obese which they counter-acted through restraint. Three EB traits (cognitive restraint (CR),

disinihibition and hunger) were identified through factor analysis and the number of items

was reduced to 51 [47].

The three EB traits can be understood as follows: CR reflects the exercising of conscious con-

trol over food intake with the intention of influencing body shape or weight (example item:

I deliberately take small helpings as a means of controlling my weight) [47]. Disinhibition

refers to the subjective experience of loss of control over eating (example item: Sometimes

when I start eating, I just can’t seem to stop) and measures reactivity to external food cues

as well as eating in response to dysphoric emotions [47]. Finally, Hunger provides a more

general measure of appetite and describes the experience of extreme hunger and cravings

for food (example item: I often feel so hungry that I just have to eat something) [47].

The majority of the items comprising the TFEQ-51 (36 of 51) are scored by individuals

selecting either True or False to indicate whether the statements apply to them. Fourteen

of the remaining 15 items are measured using a 4-point Likert scale, indicating how often

individuals engage in the behaviours described by the item. The final item (On a scale of 0

to 5, where 0 means no restraint in eating (eating whatever you want, whenever you want)
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and 5 means total restraint (constantly limiting food intake and never “giving in”), what

number would you give yourself?) is measured on a 6-point Likert scale.

Following its publication, a number of studies designed to explore the factor structure of the

TFEQ-51 were conducted. These produced inconsistent findings. Whilst some identified

three distinct traits based on the 51 items [61], others did not [40]. In particular, studies

variously reported that only a modest number of the 51 items loaded strongly onto any

specific factor [61], that two or more related constructs might be embedded within the CR

scale [62–64] and that over-eating in response to negative emotions (emotional eating) may

constitute a separate factor [65, 40].

As a result of lack of coherence in the literature and the desire for a more concise ques-

tionnaire, the questionnaire was eventually revised and reduced to an 18-item version (the

TFEQ-R18) in 2000 (Appendix C.1) [40]. The revision was based on findings amongst 4377

obese participants from the Swedish Obese Subjects study suggesting that although the CR

scale was valid and should be maintained, the majority of the items assigned to the hunger

and disinhibition scales reflected a single, latent construct and should be combined to form

a new scale, termed uncontrolled eating (UE) [40]. A third cluster of items labelled emotional

eating (EE) was also identified from items on the disinhibition scale and was assigned to its

own scale. For 17 of the 18 items, the dichotomous rating system was replaced by a 4-point

Likert scale from Definitely false (1 point) to Definitely true (4 points) [40]. The final item (On

a scale of 1 to 8, where 1 means no restraint in eating (eating whatever you want, whenever

you want it) and 8 means total restraint (constantly limiting food intake and never “giving

in”), what number would you give yourself?) is measured on an 8-point scale. For this item,

individuals who select 1 or 2 are coded 1, 3 and 4 are coded 2, 5 and 6 are coded 3, finally,

scores of 7 and 8 are coded 4. The EB traits can be understood as follows:

• EE (3 items). Reflects the tendency to eat in response to dysphoric emotions. The

3 items comprising the scale specifically refer to loneliness, anxiety and sadness

(example item: When I feel lonely, I console myself by eating).

• UE (9 items). Describes a tendency to overeat accompanied by a subjective sense of

loss of control over consumption. The scale is dominated by items reflecting extreme

appetite (example item: I get so hungry that my stomach often seems like a bottomless

pit).

• CR (6 items). The meaning of this scale was not altered from the TFEQ-51 and the

items assess the intention to restrict food intake with the objective of influencing

body shape or weight (example item: I consciously hold back at meals in order not to

gain weight).

In 2005, the TFEQ-R18 was further revised by adding three additional items to the EE scale

in order to increase the discrimination of the scale, resulting in the TFEQ-R21 [66]. These
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additional items assessed eating in response to nervousness (item: If I feel nervous, I try to

calm down by eating), tension (item: When I feel tense or wound up, I often feel a need to

eat) and feelings of depression (item: When I feel downhearted and depressed, I want to

eat).

Despite being originally developed in an obese population, the factor structure of the TFEQ-

R18 replicated the findings of an earlier study in a sample of normal weight participants [67]

and has subsequently been replicated amongst both obese and normal weight populations

across a range of settings [68–70].

The Dutch Eating Behaviour Questionnaire

Throughout the studies reported in this thesis, the TFEQ-R18 and TFEQ-R21 are used to

measure adult EB. However, given its wide use in studies that inform the aims of this thesis,

the DEBQ is mentioned here in brief. Like the TFEQ, the DEBQ was first developed in the

mid-1980s but has since undergone revision. In its original form, the questionnaire was

comprised of 33 self-assessed items measuring the three EB traits. These are described

below. Participants are asked to select how well each of the 33 items describes their typical

EB on a 5-point Likert scale from Seldom to Very often. The questionnaire was translated

into English twice during the late 1980s. The second translation replaced the word Seldom

with Rarely [71].

• EE (13 items). This scale resembles the EE scale of the TFEQ and measures the extent

to which a person eats in response to unpleasant emotions. However, the specific

emotions referred to in this questionnaire differ from the TFEQ-R18 (example item:

Do you have a desire to eat when you are cross?).

• External eating (10 items). This scale resembles elements of both the UE and EE

scales of the TFEQ and reflects the Externality theory of obesogenic EB. It measures

behaviour around foods that are particularly appealing or accessible (example item:

Can you resist eating delicious foods?).

• Restrained eating (10 items). This scale is analogous to CR scale of the TFEQ and

refers to the intention to limit food intake in order to influence shape or weight

(example item: Do you watch exactly what you eat?).

Most studies have confirmed the factor structure of the DEBQ, including studies from the

UK [71], Spain [72], Turkey [73], Germany [74] and Malta [75]. Minor modifications have

been suggested by other investigations [72].
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1.3.2.2 Infants

The self-assessed nature of the adult EB questionnaires detailed above make them devel-

opmentally inappropriate for use amongst infants and children, who lack the insight and

ability to understand and articulate the motivations behind their EB [76]. As concern sur-

rounding childhood obesity grew with evidence of its rising prevalence (see Section 1.1),

scalable methods facilitating the measurement of childhood EB based on parental report

were developed. These include the Children’s Eating Behaviour Questionnaire (CEBQ), the

DEBQ parent-report form (DEBQ-P) and the child versions of the TFEQ-R18 and TFEQ-

R21 [77, 78]. In 2011, the Baby Eating Behaviour Questionnaire (BEBQ) was developed for

the measurement of EB during the period of exclusive milk-feeding [39]. It remains the

only questionnaire designed to measure infant EB during this developmental period. The

questionnaire items are detailed in full in Appendix C.1.

The BEBQ is comprised of 17 parent-assessed items measuring 4 EB traits, in addition to a

single item measuring general appetite (GA). The questionnaire items are provided in full

in Appendix C.1 and were derived from items comprising the CEBQ. The authors used a

combination of a review of the literature and qualitative interviews with the mothers of

young children to analyse which of the 8 CEBQ-measured EB traits could be appropriately

applied to infants through inclusion in the BEBQ [39]. A total of 4 EB traits were selected

and the items comprising these scales were modified or excluded, based on developmental

appropriateness. New items were also added where relevant. The traits are scored on a

5-point scale from Never to Always and can be understood as described in Table 1.2. To-

gether Enjoyment of Food (EF) and food responsiveness (FR) are considered ‘food approach’

behaviours. Conversely, Slowness in Eating (SiE) and satiety responsiveness (SR) are con-

sidered to be associated with ‘food avoidance’. Confirmatory factor analysis has partially

replicated the factor structure of the BEBQ in an Australian sample, identifying EF, FR and

SiE, but not SR [79].

Table 1.2 Description of the BEBQ eating behaviour traits

Description Example item

EF (4 items) Perceived liking for milk and feeding My baby enjoys feeding time

FR (6 items) Drive to eat My baby is always demanding a feed

SR (4 items) Ease of becoming full My baby gets full up easily

SiE (3 items) Pace of typical feeding My baby feeds slowly

GA (1 item) Size of appetite My baby has a big appetite

Based on Llewellyn et al [39]. Enjoyment of Food (EF); Food responsiveness (FR); Satiety responsiveness (SR);

Slowness in Eating (SiE); General appetite (GA)
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1.3.3 Strengths and limitations of questionnaire-based measures

In humans, EB can be measured either by questionnaire, through laboratory-based assess-

ment or, in theory, in naturalistic settings. Ideal measures of EB are both valid (i.e they reflect

the trait that they intend to measure) and reliable (i.e. the results from a single participant

are consistent when collected on repeat occasions) (Figure 1.3) [80]. These concerns must

also be balanced against practical considerations including cost and participant burden.

Throughout this thesis, EB is measured by questionnaire. The strengths and limitations

of questionnaire-based measures with respect to practicality, validity and reliability are

discussed in the following section.

Figure 1.3 Validity and reliability. The centre of the large, white circles represent the true
value. The small blue circles represent measures from a single participant taken on different
occasions. (A) represents a valid and reliable measure. The values obtained from a single
participant are consistent both with each other and the true value. (B) represents a measure
with low validity but high reliability. The measure is repeatable over time but does not reflect
the true value of the construct that it intends to measure. (C and D) represent measures
with low validity and reliability. The measures do not accurately reflect the true construct
that they are intended to measure, nor are they repeatable over time.

1.3.3.1 Feasibility

Questionnaire-based measures are low-cost, non-invasive, relatively rapid to complete and

require no special training to administer. These qualities make them appropriate for the

collection of large amounts of data and attractive to both study teams and participants. This

is particularly important in light of evidence that measures perceived to invade privacy or

require excessive commitment are more often refused by participants [81]. Additionally,

questionnaires can be used to assess the typical patterns of EB of interest to obesity research.

By contrast, laboratory-based studies typically observe a single eating episode, which may

not be representative of eating in naturalistic settings [82]. Finally, questionnaires are

standardised measures and results can easily be compared and combined between studies

using the same questionnaire. Standardised protocols have been developed for laboratory

measures of EB. However, the extent to which protocols are followed varies between studies

and may complicate the comparison of results [83].
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1.3.3.2 Validity and reliability

Despite their many practical advantages, there are drawbacks to questionnaire-based meth-

ods. Foremost, they are not objective and their validity and reliability requires assessment.

The validity of questionnaire-based measures depends upon participant’s insight into their

own behaviour, or that of their child, as well as the intention to report accurately and hon-

estly. Given widespread stigmatisation of obesity, social desirability bias, a phenomenon

whereby individuals aim to project a favourable image of themselves when reporting per-

sonal details or behaviours, may influence the reporting of weight-related behaviour such

as EB [84]. Obesity has been shown to predict under-reporting of total energy intake relative

to objective measures [85]. However, these concerns are not unique to questionnaire-based

measures and may also bias laboratory-based assessments. For example, participants in one

study reported that they would eat less if they believed that their EB was being monitored.

Further, manipulating their beliefs about whether they were being observed resulted in

changes to their consumption [86, 82]. Another study also found that heightened awareness

of observation reduced consumption of energy dense snack food, particularly amongst

obese participants and those who reported high disinhibition and low restraint [87]. As such,

even laboratory measures based on objective data may be biased by social desirability bias.

The fact that questionnaires can be completed in relative privacy and scored by individuals

blinded to the identity, and crucially the appearance, of the participant may reduce the

possibility of biased reporting.

There is no gold-standard for the measurement of EB against which questionnaires can be

validated. In the absence of a gold-standard, triangulation between questionnaire results,

weight, food intake and laboratory-based EB assessment would ideally be performed to

assess validity, alongside assessment of the internal validity of questionnaire items. In

practice, associations between questionnaire-based measures of EB traits and body weight,

BMI or self-reported food intake have been used to infer validity. In the case of the TFEQ-R18,

these studies have widely demonstrated the questionnaire’s ability to identify differences in

EB in the general population that relate to both weight status and food intake [88, 89, 68, 90–

92]. However, as a result of inconsistencies between self-report and laboratory-observed

measures, concern still surrounds the validity of self-reported EE across questionnaires

[93]. It has been proposed that self-reported EE represents a type of recall bias, whereby

‘concerned eaters’ retrospectively misattribute episodes of over-eating to emotional distress

[93]. Given the absence of a gold-standard, it is unclear at present whether the laboratory

or questionnaire-based measures of EE are at fault. In the future, naturalistic monitoring

of EB through m-Health devices, such as swallowing or motion sensors [94, 95], have the

potential to facilitate better validation of EB measures.

In the case of the BEBQ, good internal validity between the items of the EF, FR and SiE scales

have been demonstrated [39, 79], alongside associations between the behaviours and infant
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weight (Section 1.4.2). The validity of the BEBQ is further supported by CEBQ validation

studies of the same EB traits in children [96–102].

1.3.3.3 Summary

Only a small number of studies have assessed the reliability of questionnaire-based EB

measures. Those that have suggest that the BEBQ and TFEQ-R18 are both reliable [91, 103–

105]. The scales comprising the questionnaires have also been shown to be internally

valid [39, 79, 88]. However, there is no gold-standard measure fo r the assessment of ex-

ternal validity. Thus, despite consistent associations between EB and both BMI and food

intake, continued scrutiny is required. Better validation in the future maybe facilitated by

naturalistic monitoring using m-Health technologies.
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1.4 Eating behaviour and body weight

The importance of EB to public health derives primarily from its associations with weight.

In this section, the cross-sectional and prospective associations between EB and weight

amongst adults and infants are discussed.

1.4.1 Adults

1.4.1.1 Emotional eating

Consistent, positive cross-sectional associations have been identified between EE, measured

using the TFEQ-R18, TFEQ-R21 or DEBQ, and adult BMI. These findings are replicated

across a number of studies including Swiss [106, 107], French [108], Finnish [109, 110, 68],

Canadian [111], American [112, 113], German [114] and British study populations [115, 116].

However, it is notable that a number of investigations involving adolescent participants

have not replicated this finding [116–118]. Indeed, one study including over 9000 Dutch

adolescents with a mean age of 13 years identified a negative association between EE,

measured using the DEBQ, and the probability of being overweight amongst boys [119].

A separate cross-sectional study reported that whilst EE, measured using the TFEQ-R18,

was positively associated with BMI in both adults and 16-17 year old adolescents, the

magnitude of this association was greatest amongst the adult participants [107]. Together,

these findings suggest that either the associations between EE and BMI strengthen with

age, or that insight into EE improves with age. Cross-sectional studies cannot be used

to infer causality. Longitudinal investigations, whilst still subject to potential biases and

confounding, are more informative in this regard. A number of longitudinal studies have

indicated that EE is prospectively linked to adult weight gain [120, 121, 106, 122, 123].

However, most of these studies are relatively small-scale and have followed individuals over

time periods of just 1-2 years. The largest study followed 3735 Finnish adults aged 25-74

years over 7 years [123]. Overall, the available evidence to date links EE to both BMI and

weight gain in adults [122].

1.4.1.2 Uncontrolled eating

Many of the studies reporting a positive cross-sectional relationship between EE and BMI,

also identify positive, cross-sectional associations between UE and adult BMI [110, 112, 114,

124, 88]. Studies using the TFEQ-51, which measures disinhibition and hunger (behaviours

for which the majority of items were combined in later versions of the TFEQ under UE), have

also identified positive, cross-sectional associations with BMI [125, 111, 126] and prospec-

tive associations with weight gain [127–129]. However, the results are less consistent for the

external eating scale of the DEBQ. In particular, some studies amongst adolescents report
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negative cross-sectional and prospective associations between external eating and BMI

[118, 116, 119], whilst positive associations have been reported amongst adult populations

[130, 121]. Overall, TFEQ-R18 measures of UE have shown consistent associations with

weight and weight gain over time. However, measures of similar constructs, notably external

eating, have produced less consistent results.

1.4.1.3 Cognitive restraint

Cross-sectional studies of the association between restraint and BMI primarily report a

positive association, with higher restraint being associated with higher BMI and probability

of being overweight [119, 124, 107, 110, 68, 112, 114, 92]. However, a minority of studies

have found no cross-sectional association between restraint and BMI [126, 125]. Additional

studies suggest that these inconsistent findings may be the result of a BMI-dependent rela-

tionship between CR and BMI. Although some investigations found consistent associations

between CR and BMI amongst all BMI groups [68], others suggest that CR is positively

associated with BMI amongst normal weight, but not overweight, individuals [131, 88]. Few

studies have directly investigated this potential non-linear association. However, amongst

326 adults with a mean BMI of 26.6 kg/m2 (range: 18 kg/m2-46.5 kg/m2), an inverted U-

shaped relationship between CR and BMI was reported, with lower CR values being reported

by individuals at the extremes of the study sample’s BMI distribution [132].

In keeping with the initial conceptualisation of CR as an obesogenic behaviour, CR has been

found to predict weight gain in some studies [127, 110, 133, 134]. However, approximately

half of studies find no prospective association between CR and weight gain based on both

objective measures of BMI [131] and retrospective report [128, 121]. A growing number of

studies suggest that increases in BMI prospectively predict increases in CR, indicating that

CR may represent a reaction to weight gain, as opposed to a causal factor [131, 135–137].

For example, a study amongst 3735 Finnish adults aged 25-74 years showed that whilst

baseline CR did not predict BMI change over 7 years, BMI change predicted increases in

CR over the same time period [138]. The same study indicated that genetic risk of obesity,

modelled using a genetic risk score for BMI (BMI-GRS), was associated with higher CR,

suggesting that CR might provide a proxy for susceptibility to weight gain. In this study

individuals with high BMI-GRS scores gained more weight between the age of 20 years

and the baseline assessment than those with low BMI-GRS scores. However, the effect was

less pronounced amongst those with higher CR. A recent review of the effect of dietary

restraint on BMI change amongst non-obese individuals (BMI 18.5-29.9 kg/m2) concluded

that restraint is a weak and inconsistent positive predictor of weight gain and concurred

that CR may represent a proxy measure of susceptibility to weight gain [51]. Overall, the

available evidence suggests that CR is inconsistently associated with weight gain and could

represent a response to weight status.
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1.4.2 Infants

To date, the majority of studies of infant EB traits are cross-sectional and many are small

scale. In general, these investigations report negative associations between weight and the

‘food avoidance’ scales of the BEBQ (SR and SiE) and positive associations between weight

and the ‘food approach’ scales (FR and EF) [139, 79]. Amongst 4634 infants from the UK

Gemini twin cohort and 167 infants from the Australian New Beginnings: Healthy Mothers

and Babies study, respectively, negative associations were reported between both SR and

SiE with weight [139, 79]. The UK study also demonstrated small but statistically significant

positive associations between the food approach scales and weight. Whilst the Australian

study replicated the positive association between EF and weight, no association between

FR and weight was found [79]. A separate study of 85 mother-infant dyads from the UK and

Israel suggested weak associations between the BEBQ EB traits and infant weight z-score

amongst infants aged 2-6 months [140].

The BEBQ was designed to quantify EB traits measured using the CEBQ in childhood

amongst infants (see Section 1.3.2). Given that the CEBQ predates the BEBQ, a greater

number of studies have investigated the consequences of FR, SR, SiE and EF in children.

Amongst children, EF and FR have been consistently positively linked to BMI across a range

of cross-sectional studies [96–101]. The same studies have shown negative associations

between both SR and SiE and childhood BMI. For example, higher BMI standard deviation

scores (BMI-SDS) were positively associated with lower SR and higher FR in both 3-5 year

olds and 8-11 year olds in one study [102].

In light of the reported cross-sectional associations, longitudinal studies are needed to help

clarify the direction of causality between infant EB and body weight. These investigations

generally suggest that infant EB prospectively influences weight gain [141, 142]. For example,

one study showed that appetite measured at 3 months was associated with the degree of

weight gain from 3-9 months, as well as demonstrating a positive association with weight

at both 9 and 15 months [141]. A separate study amongst 210 infants from the GUSTO

cohort found that SR at 3 months was negatively associated with BMI at 6 months and with

less rapid weight gain from 3-6 months [143]. Conversely, FR at 3 months was positively

associated with BMI at 6 months and with more rapid weight gain from 3-6 months [143].

However, this longitudinal evidence does not conclusively demonstrate causality. It remains

possible that infant EB and weight gain share a common aetiology, that weight in very early

life influences the development of EB or that the relationship is bi-directional. For example,

amongst 4350 mother-infant dyads from the Generation R Study, more rapid fetal growth

from late pregnancy to birth was associated with reduced SR at 4 years [144]. Similarly,

higher birth weight was associated with a more appetitive EB profile, characterised by higher

FR and EF, and lower SR scores at 4 years [144]. These findings suggest that intrauterine

growth may potentially impact the development of EB.
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Some evidence also suggests an effect of infant weight on EB traits. Accelerated weight

gain from 0-5 years was associated with reduced SR and higher daily calorie consumption

at 5 years in one study and children who grew rapidly from 6-36 months showed lower

SR and higher FR scores at 3-6 years in another study [145, 146]. Lack of baseline EB

data complicate the drawing of definitive conclusions from these studies. One study has

explored the relationship between EB and weight in both directions, concluding that whilst

weight predicts appetite from 3-15 months, appetite predicts weight to a greater extent [141].

Amongst children, the association between EB and BMI also appears to be bi-directional.

Higher scores on the appetitive EB trait scales (FR and EF) have been reported both as a

cause and consequence of weight gain. In one study, between the ages of 4-8 years, high

FR predicted a steeper increase in BMI-SDS, whilst BMI-SDS also predicted increases in

FR and decreases in SR [147]. In another study, being at risk of becoming overweight at

age 5 (defined as a BMI >85th percentile) predicted the emergence of dietary restraint and

disinhibited eating at age 9 [148].

1.4.3 Summary

In sum, consistent evidence supports a role for both UE and EE in weight gain in adult

populations across diverse settings. Food approach behaviours (EF and FR) also promote

weight gain in children and infants, whilst EB associated with food avoidance (SR and

SiE) are typically associated with lower BMI in these age groups. Studies suggest that

whilst associations between body weight and EB are likely to be bi-directional in infancy

and childhood, the impact of EB on body weight exceeds that of body weight on EB. The

literature provides less clarity regarding the role of CR, a trait measured exclusively in

adulthood. CR generally demonstrates positive cross-sectional associations with BMI at

least amongst normal weight individuals. However, associations may be BMI-dependent

and prospective data suggests that the association may be the result of reverse causality,

with high levels of CR representing a response to high weight status.
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1.5 Eating behaviour and the aetiology of obesity

Together Sections 1.2, 1.3 and 1.4 demonstrate the importance of the relationship between

EB and weight to public health, as well as highlighting areas where further research is needed

to clarify associations. Here the role of EB in selected aetiological pathways to obesity is

elaborated. Section 1.5.1 discusses the role of EB in genetic predisposition to obesity,

Section 1.5.2 reviews the interplay of infant EB and parent control over infant feeding in

the development of obesity and Section 1.5.3 discusses the potential contribution of GWAS

studies of EB traits to the understanding of obesity.

1.5.1 Eating behaviour and the genetic aetiology of obesity

Obesity is a heritable phenotype. A meta-analysis of BMI GWAS studies, published in

2015, identified 97 genetic variants reaching genome-wide significance, together explaining

∼ 2.7% of inter-individual variation in BMI [149]. The mechanisms through which these

variants act to influence body weight are largely unknown. However, it has been proposed

that EB traits provide one plausible mechanism. The predominant theory regarding the rela-

tionship between EB and the genetics of BMI is depicted in Figure 1.4. The theory proposes

that the ‘appetitive’ EB traits (i.e. EB traits associated with increases in food consumption as

a result of responsiveness (or lack of responsiveness) to cues of hunger and satiety) lie on

the causal pathway between genetics and BMI, partially mediating genetic predisposition

to obesity [102].

Figure 1.4 Eating behaviour as a mediator of genetic susceptibility to obesity.

Evidence in support of this theory arises from several sources. First, in aggregate, the 97

variants implicated by BMI-associated loci demonstrate enriched expression in the central

nervous system (CNS) [149]. This suggests a role for cognitive pathways, and hence for

behaviour, in the determination of BMI (Figure 1.5) [149]. Further, the enrichment is

particularly pronounced in the hypothalamus, pituitary gland, hippocampus and limbic

system, areas of the brain with established roles in the central regulation of eating [149].

Second, twin studies have demonstrated shared genetic influences for appetitive traits and

weight during infancy [139]. Amongst 4634 twins from the Gemini cohort study, the genetic

correlation between the BEBQ measured EB traits and weight at 3 months was between

0.22 and 0.37, suggesting that the genetic basis of EB and weight is partially shared, at least
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during infancy [139]. Moreover, indirect evidence that EB mediates genetic predisposition

to obesity derives from the observation that hyperphagia in monogenic obesity syndromes

drives weight gain [150]. This is described more fully in Section 1.5.3.1.

Figure 1.5 Tissues enriched for genes implicated by BMI-associated loci. Adapted from
Locke et al [149]. The graph shows that genes within BMI-associated loci show enriched
expression in the CNS. Tissues are sorted by physiological system along the x-axis and
plotted against the -log10(p-value) on the y-axis. The horizontal dotted line represents
statistically significant enrichment. Significantly enriched tissues are displayed in black.

The findings of gene discovery studies for BMI have facilitated candidate gene analyses for

EB and energy intake, based on BMI-associated variants. Together, the findings of these

studies support a role for EB in genetic predisposition to obesity. FTO has the greatest

magnitude of effect of any known common variant on BMI [149]. As a consequence, it has

attracted much research attention. Amongst children, the BMI increasing FTO allele has

been linked to increased FR, decreased SR and increased palatable food consumption after

a meal [151–154]. In adults, FTO has been linked to higher total energy intake [155], binge

eating [156] and CR [112]. MC4R has been linked to both UE [157] and EE [158], NMB to

disinhibition and hunger [159], HTR2A to food reinforcement [160] and MTCH2 to EE [112].

Studies of the aggregated effects of BMI-associated variants on EB have also shown posi-

tive associations with EE and UE in adulthood [161, 112], negative associations with SR in

childhood and positive associations with appetite in infancy [162, 163]. Prior to the study

reported in Chapter 4 (published in 2017), direct testing of mediation of genetic predispo-

sition to obesity by EB had been performed in three studies: two in children and one in

adults [163, 164, 161]. Amongst 2258 children with a mean age of 10 years, SR mediated the

association between 28 BMI-associated loci and weight [163]. A second study in children

did not replicate these findings, reporting that the association between 32 BMI-associated

loci and weight gain was not mediated by EB traits amongst 652 children aged 6-8 years

[164]. Both studies were conducted in European cohorts and derived EB measures using the
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CEBQ. It is possible that, as a result of lower sample size, the latter study was not powered

to detect a true mediating effect. Alternatively, mediation may not be present in younger

age groups, the mediation effect may be of weight status established in early life and not

of weight gain or the findings of the earlier study may be spurious. A 2019 study reported

that the association between appetite, measured by a single item, partially mediated the

association between 16 BMI-associated loci and BMI amongst 1142 French children aged

2-5 years [162]. This suggests that the discrepancy between the results of the earlier studies

is not due to differences in the age of the children.

The single pre-existing study amongst adults tested for mediation of the association between

90 BMI-associated loci and BMI by UE and EE in two Finnish cohorts, comprised of 4632

and 1231 individuals, respectively [161]. The BMI-GRS to BMI association was mediated

by EE in both cohorts and by UE in one cohort. As a result of the small number of studies

conducted, the limited number of BMI-associated loci included and the lack of investigation

of the role of CR in genetic predisposition to obesity, more research is required to provide

clarity.

1.5.1.1 Summary

Whilst several lines of evidence suggest that EB lies on the causal pathway between the

genetics of BMI and realised weight, no studies prior to that reported in Chapter 4 had

investigated mediation of genetic predisposition to obesity by EB traits based on the full

range of 97 BMI-associated variants. Further, possible relationships between EB and genetic

predisposition to obesity, beyond mediation, had not been interrogated. This is of particular

importance to the understanding of the role of CR in obesity. Whilst it is possible that

cross-sectional associations between CR and BMI are explained by a causal influence of

CR on BMI, the evidence is mixed. If CR represents a weight-limiting strategy for those

predisposed to obesity, it may modify, rather than mediate, genetic predisposition. This is

explored in Chapter 4.

1.5.2 Infant eating behaviour, parental feeding styles and obesity

1.5.2.1 Rapid infant weight gain and obesity

The first 1000 days, from conception to the age of 2 years, have been identified as a critical

period for determining vulnerability to overweight and obesity in later life [37, 165, 166].

The best established risk factor operating during this period is rapid infant weight gain. A

systematic review of the risk factors for childhood obesity in early life published in 2016,

identified 46 studies including high infant weight and rapid infant growth as an exposure, 45

of which reported significant positive associations [165]. The review concluded that rapid
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infant weight gain is the only postnatal factor, besides infant birthweight, with consistent

evidence supporting a causal association with childhood obesity. More recently, a 2018

systematic review replicated this finding in adults, reporting an association between rapid

infant weight gain and adult obesity [166].

In early life, there is a close association between energy intake and weight. By contrast,

studies have not been able to provide clear evidence of a substantive link between energy

expenditure and infant weight outcomes [167, 168]. As a result, rapid weight gain during

infancy is thought to be primarily determined by factors influencing infant energy intake.

Mounting evidence indicates that these include both infant and parental influences [37, 165].

In Chapter 5 the independent and interacting roles of maternal attitudes to following

healthy infant feeding recommendations and infant EB in the determination of infant milk

intake and weight is interrogated. Here, the role of infant EB and parental feeding behaviour

in the determination of infant weight, is elaborated.

1.5.2.2 Parental feeding styles and responsive feeding

As detailed in Section 1.4, the role of restraint over eating in obesity is contentious. Whilst

some researchers conceptualise restraint as a problematic EB trait that disposes to a loss

of control over eating and, hence, obesity [38], others argue that it represents a response

to weight gain [51]. In infancy, the role of parental control over infant feeding, whereby

a parent restricts the amount of food an infant consumes in order to prevent excessive

weight gain, is similarly contentious. Parents and other caregivers make decisions regarding

how, how often and how much to feed their infants. Four parenting styles, related to the

implementation of a range of care-giving activities, including feeding, have been identified

and elaborated in the literature. These comprise authoritative, authoritarian, neglectful and

permissive styles [169, 170].

Figure 1.6 Parenting styles matrix. Based on Sokol et al [169]. The matrix shows 4 parenting
styles: Authoritative, Authoritarian, Permissive and Neglectful, illustrating how they are
defined with relation to responsivity and demandingness.

Each style is characterised by different degrees of responsiveness which can be understood

as the degree of nurturing and warmth parents display towards the child, and demanding-

ness, the extent to which a parent establishes and enforces boundaries for the child. The

relationship of these dimensions to parenting styles is depicted in Figure 1.6. As shown
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in Figure 1.6, neglectful parents are neither demanding nor responsive to their child. This

parenting style is characterised by a pervasive lack of involvement in care-giving [171]. By

contrast, authoritative parents are both demanding and responsive. Parents employing this

style convey clear standards, monitor their child’s behaviour and enforce boundaries. How-

ever, their interactions with their children are also characterised by high levels of warmth.

They are able to respond to their child’s needs in a way that is neither overly intrusive

nor restrictive [171]. In common with the authoritative style, authoritarian parenting is

characterised by high levels of control and boundary enforcement. However, parents em-

ploying this style exhibit low levels of warmth and responsiveness [171]. Finally, parents

employing a permissive parenting style are warm and responsive towards their children but

do not define, enforce or monitor boundaries for the child’s behaviour. This style avoids

parent-child conflict [171].

A systematic review of longitudinal evidence published in 2017 concluded that an authorita-

tive parenting style (high levels of both warmth and control) may be associated with reduced

risk of obesity and overweight in children [169]. However, the role of parental control in

infant feeding is debated. It has previously been assumed that infants have a natural ability

to self-regulate their food intake and do not require high levels of external control to achieve

optimal growth. As such, high levels of parental control have been hypothesised to impair

the natural development self-regulation and lead to excessive weight gain. Thus, research

to date has primarily focused on the promotion of responsive parenting and the prevention

of excessive parental control [172].

Figure 1.7 Responsive feeding. Based on DiSantis et al [172]. The figure illustrates the
parent-child interaction and its hypothesised consequences for infant weight gain.

Responsive parenting as applied to infant feeding is known as responsive feeding and

consists of parental awareness and appropriate interpretation of infant cues of hunger

and satiety coupled with consistent, developmentally appropriate responses [172]. In

order for a successful, responsive interaction to occur, the infant must also be active by

providing clear, accurate signals of their needs. If an optimal interaction is achieved, it is

hypothesised to facilitate the development of nascent infant self-regulatory capacity, which
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in turn diminishes the risk of rapid infant weight gain (Figure 1.7) [172]. Non-responsive

feeding practices are those which rely primarily upon maternal control to determine how

and when an infant is fed. Non-responsive styles include restriction, pressurisation, active

encouragement to eat, praise for eating or using food as a comfort or reward [173].

1.5.2.3 Responsive feeding and infant weight

Cross-sectional studies have broadly supported a role for non-responsive feeding practices

in adverse infant weight outcomes. A 2011 review of the evidence regarding responsive feed-

ing and childhood overweight in high income countries identified consistent associations

between pressurised and restrictive feeding, both non-responsive styles predominantly

identified through parent-report questionnaires, and both lower and higher infant weight,

respectively [174]. This replicated the results of a 2004 review which reported a positive

association between restrictive feeding practices and infant weight based upon 22 studies

[175]. Few studies use objective measures of parental feeding behaviour and thus may be

subject to reporting bias. However, a review of observational studies published in 2015

replicated these findings, reporting a positive association between restrictive feeding prac-

tices and body weight amongst children aged 2-6 years [176]. Further, a 2018 study using

video recordings of laboratory-based parent-child feeding interactions also suggested that

parental discouragement (and encouragement) to eat is associated with higher BMI z-score

[177]. The majority of the studies included in all three reviews (25/31, 19/22 and 12/13)

were cross-sectional and it is thus unclear whether these styles were the cause or effect of

childhood weight outcomes.

Indeed, a number of longitudinal investigations have indicated that maternal feeding

practices represent a response to a child’s characteristics, such as weight status, as opposed

to a cause [178]. Amongst 1920 8 month old infants enrolled in the Gemini cohort, maternal

pressure to eat was associated with lower birthweight and lower infant appetite at 3 months,

whilst maternal restriction was associated with high infant appetite at 3 months, suggesting

that parents were adjusting their feeding style in response to their child’s EB and birthweight

[179]. Further studies are needed to provide greater clarity as longitudinal evidence has

also suggested that restriction precipitates the tendency to over-eat, particularly amongst

children with low inhibitory control [171].

In addition to evidence that non-responsive styles might constitute reactions to infant

characteristics as opposed to aetiological factors involved in weight gain, the assumption

that infants naturally self-regulate has been called into question. An RCT of an intervention

designed to promote baby-led weaning, whereby children self-feed, suggests that children

over-consume if given control over their intake [180]. The BLISS intervention, designed to

promote baby-led approaches to complementary feeding was delivered through 5 or more

group sessions and three face-to-face contacts from 5 to 9 months. Whilst no differences in
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mean BMI z-score were observed between the intervention and control arms of the trial at

12 or 24 months, children in the intervention arm demonstrated higher probability of being

overweight at 24 months, as well as lower SR and food fussiness and higher EF [181, 180].

These findings indicate that some degree of control over infant feeding might be beneficial

and calls into question the wisdom of an entirely responsive approach, as infants may

over-consume relative to their needs.

Several RCTs of interventions designed to promote responsive parenting have been con-

ducted, providing varying degrees of support for the role of responsive feeding in infant

weight gain. These include both the NOURISH and INSIGHT trials. The NOURISH trial

intervention achieved changes in maternal behaviours with mothers in the intervention

arm reporting more responsive feeding behaviours than those in the control arm [173].

However, these changes did not result in differences to infant’s BMI z-score or probability

of being classified as overweight at 2 or 5 years old [173, 182]. By contrast, the INSIGHT

trial of a separate responsive parenting intervention reduced the pace of infant weight gain

from 6 months to 1 year and the probability of being classified as overweight at 1 year [183].

However, by age 3 years, whilst the children in the responsive parenting group had a lower

mean BMI z-score, they did not differ from children in the control arm with respect to mean

BMI percentile or probability of being overweight or obese [184].

1.5.2.4 Summary

Overall, the relationship between infant EB, parental feeding practices and infant weight

gain remains unclear. In particular, whether parental control over infant feeding is detrimen-

tal to the development of self-regulation and leads to over-eating, or represents a reaction

to infant characteristics, remains uncertain. Further research is required, particularly in

light of the importance of this developmental period to later life obesity risk. Chapter 5

investigates the role of a measure of parental control (parental attitudes towards following

healthy infant feeding guidelines) in the determination of infant milk intake and body

weight.

1.5.3 The genetics of eating behaviour and obesity

As described in Section 1.4, the relationship between EB and weight may result from bi-

directionality or reverse causality, particularly in the case of CR. The results of GWAS studies

can help to elucidate the underlying biology of traits, including the biological pathways

involved. They can also be used to identify traits that share a genetic basis and to interrogate

causal relationships through MR (this method is elaborated in Chapter 6). Thus, GWAS

could be applied both to understand the genetic basis of EB and to explore the role of EB in

the aetiology of obesity.
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1.5.3.1 The heritability of eating behaviour

Twin studies and evidence from monogenic obesity syndromes together indicate a genetic

basis for EB. A number of investigations have used family and twin designs to estimate

the heritability of EB. The majority have found evidence that CR, UE, EE, and related EB

phenotypes, are heritable. Heritability estimates for EE from twin studies fall between 9%

and 60% [66, 115]. The heritability estimates for UE, and its related traits (external eating,

disinhibition and hunger), are comparable and fall between 0% and 69% [185, 186, 115].

Notably with regards to this thesis, TFEQ-R18 measures of UE have been estimated to

be 45-69% hertiable [115], whilst measures of hunger assessed using the TFEQ-51 have

evidenced lower heritability [186–188]. Overall, findings from functional MRI studies further

support the heritability of EB, suggesting that brain responses to food cues are under genetic

influence [189]. In the case of CR, heritability estimates from twin studies range from 0% in

one study using the TFEQ-51 [186] to around 50% in studies using the TFEQ-R18 or TFEQ-21

[66, 115, 188]. A study using the DEBQ to measure restraint fell in the middle of this range,

providing a heritability estimate of 31% [190]. Taken together, twin studies suggest that EB

traits are heritable in adulthood.

Studies amongst infants and children have shown mixed results. Amongst 2402 British

twin pairs aged under 3 months, the BEBQ has been used to demonstrate the heritability

of SiE (84%), SR (72%), FR (59%) and EF (53%) [104]. Further, amongst children, a twin

study involving almost 5500 British twin pairs determined that FR and SR were 75% and

63% heritable, respectively [102]. Traits related to questionnaire measures of EB, including

eating rate and eating in the absence of hunger, have also exhibited evidence of heritability

in twin and family studies [191, 192]. However, two recent twin studies suggest that there is a

low genetic influence over EE in childhood. Amongst 2054 5 year old twins from the Gemini

study, emotional over- and under-eating were both estimated to be 7% (95% CI: 6%-9%)

heritable [193]. This finding was replicated amongst a sample of almost 400 twins from

another British cohort, selected from lean or obese families, which detected no evidence for

the heritability of emotional over- or under-eating [194]. Overall, existing studies suggest

that the EB traits measured in infancy are heritable. However, emotional under-eating and

over-eating in childhood are likely to be more substantively influenced by environmental

factors.

Certain monogenic obesity syndromes, characterised by extreme, early-onset obesity re-

sulting from a mutation in a single gene, also suggest a genetic basis for EB. For example,

extreme obesity in association with congenital leptin deficiency is secondary to pathological

hyperphagia [150]. Leptin therapy typically results in weight loss amongst these individuals,

achieving its effects through the normalisation of appetite. The therapy has no demonstra-

ble effects on either basal metabolic rate or energy expenditure [150]. Similarly, mutations

in the MC4R gene which result in obesity are also associated with hyperphagia [150]. Asso-

ciations between MC4R mutations and reduced SR in children have been reported [195].
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Conversely, most studies of associations with adult TFEQ-measured EB traits have reported

no associations with MC4R mutations [195].

Together, these studies suggest a genetic basis for EB traits and thus indicate that genetic

approaches may be informatively applied to the study of EB.

1.5.3.2 The genetic basis of eating behaviour

Despite evidence for a genetic basis of EB, prior to the study reported in Chapter 7, no

GWASs of EB traits measured in the general population have been reported. In part, this is

due to the large sample sizes required for well-powered GWAS coupled with the relatively

small sample sizes with overlapping genome-wide genotyping and EB trait information

available in existing large-scale studies [196]. In the Fenland study, for example, despite a

total sample size of over 12,000, just 3515 participants completed the TFEQ-R18 and EB

trait data was not collected as part of UKB. By contrast, pathologies of eating have been the

subject of several published GWAS.

A 2016 GWAS of food addiction, measured using the Yale Food Addiction Scale, amongst

9000 participants identified no genome-wide significant results [197]. The existence of food

addiction is debated and its relationship to EB traits measured in the general population

remains largely unknown, limiting the interpretation of these findings with regards to the

EB traits of interest to this thesis [198, 199]. The largest GWAS of anorexia nervosa (AN)

was reported amongst 3500 cases and 11,000 controls of European ancestry in 2017 [200].

This study identified a single genome-wide significant locus on chromosome 12 (rs4622308)

which had previously been associated with both type 1 diabetes and rheumatoid arthritis

[200]. AN demonstrated significant negative genetic correlations with BMI, insulin, glucose,

and lipid phenotypes and a positive genetic correlation with high density lipoprotein (HDL)

cholesterol levels and psychiatric traits [200]. Whilst these results are informative, suggesting

the potential for a shared genetic basis for eating-related behaviour and metabolic traits,

including BMI, eating disorders represent clinically significant aberrations in EB. They are

serious mental illnesses characterised by persistent, pathological alterations in EB and

associated with a core psychopathology of overvaluation of shape or weight [201, 202].

The extent to which eating disorders are continuous with non-pathological EB traits is the

subject of ongoing debate and, as such, GWAS results for AN cannot be extrapolated.

1.5.3.3 Summary

Despite evidence suggesting a genetic basis for adult EB, no GWAS studies have been

conducted. This results, in part, from low sample sizes with intersecting genome-wide

genotyping and EB data in individual studies and represents a significant gap in the existing

literature.
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1.6 Risk-taking propensity and the aetiology of obesity

As reported in Section 1.5.1, genes implicated by BMI-related genetic loci demonstrate

enriched expression in the CNS, implicating behavioural pathways in the aetiology of

obesity [149]. Alongside EB traits, other behaviours also represent potential pathways. The

tendency to take risks has been shown to demonstrate positive cross-sectional associations

with overweight and obesity [203, 204]. Whether these associations are causal and whether

they are independent of EB is not yet known. In the following section, the definition and

measurement of risk-taking propensity is discussed and its association with BMI is reviewed.

1.6.1 Definition and measurement

Risk-taking propensity describes an underlying tendency to engage in reward-seeking ac-

tions despite the possibility of negative consequences [205]. The willingness to take risks in

light of a known balance of potential positive and negative consequences is considered the

core characteristic of risk-taking propensity and a feature that distinguishes this phenotype

from other, related traits [206]. For example, risk-taking is closely linked to impulsivity,

a multi-faceted construct defined by high levels of urgency (the tendency to experience

frequent, strong impulses under conditions of negative mood), lack of perseverance when

tasks are boring or difficult, lack of premeditation and sensation-seeking (the pursuit and

enjoyment of new experiences) [207, 208]. Impulsivity and risk-taking propensity are dis-

tinguished by the fact that risk-taking propensity does not require risk-engagement to be

unplanned or motivated by the seeking of novelty. However, the distinction is not clear-cut.

Some researchers contend that risk-taking behaviour is rooted primarily in sensation-

seeking and thus encompasses some aspects of impulsivity [209]. In light of its associations

with realised risk-taking behaviours, here impulsivity is considered a subset of risk-taking

propensity [210, 211].

There is no gold-standard measurement of risk-taking propensity. However, several be-

havioural and self-report measures are widely used. Amongst behavioural measures, the

most commonly employed are the Iowa Gambling Task (IGT) and the Balloon Analogue Risk

Task (BART). In the IGT, participants are given access to several decks of cards alongside

a starting amount of money. They are asked to pick 100 cards from the decks. Each of

the cards represents a monetary loss or gain. The decks each have an equal probability of

yielding losses or gains [212]. However, as participants discover during the course of the

task, some decks are high-risk, high-reward decks (meaning that the profits and losses are

both high. However, the value of the losses in these decks exceeds the value of the gains)

whilst others are low-risk, low-reward decks (meaning that they yield lower gains but also

lower losses. However, the value of the gains exceeds the value of the losses). In the long-run,

the high-risk decks will result in a net loss, whilst the low-risk decks will result in net gains.
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A participant’s tendency to risk high losses in the pursuit of high gains, rather than to rely

on the low-risk decks, is considered a measure of their propensity to take risks.

In the BART, participants are instructed to blow up virtual balloons by clicking a button on a

computer [213]. Each pump inflates the virtual balloon and the participant receives money

for the number of pumps he or she delivers. However, the balloon will eventually explode at

an unspecified point, if over-inflated. If this happens the participant will receive no money.

Over repeated trials, participant risk-taking propensity is inferred from the willingness to

risk balloon explosion [213].

Studies assessing the validity of the IGT and BART measures of risk-taking propensity

have generally found both measures to be associated with risk-taking behaviour (such as

substance and alcohol abuse) but not with each other [214]. It has been proposed that,

whilst BART measures intentional risk-taking, the time it takes to learn which decks are

risky in the IGT means that IGT may reflect unintentional risk-taking, particularly in the

early stages of the task [214].

Self-report measures of risk-taking propensity also exist. These vary in complexity from

single question measures to multi-item questionnaires. For example, Dohmen and col-

leagues measure risk-taking propensity in response to a single question: “How do you see

yourself? Are you generally a person who is fully prepared to take risks or do you try to

avoid taking risks? Please tick a box on the scale, where the value 0 means not at all willing

to take risks and the value 10 means very willing to take risks” [215]. This measure has

been shown to predict smoking and other risk behaviours, but is not widely used [216].

UKB measures risk-taking on the basis of a single, un-validated question with a binary

(yes/no) response: “Would you describe yourself as someone who takes risks?”. By contrast,

the Domain Specific Risk Taking scale (DOSPERT) [217] and Sensation seeking scale [218]

measure risk-taking propensity using multiple items. The items are combined to develop a

risk-taking propensity score, with domain specific scores indicating risk-taking propensity

specific to particular domains of behaviour (financial, ethical, health/safety, social, and

recreational) in the DOSPERT questionnaire.

1.6.2 Risk-taking propensity and obesity

1.6.2.1 The association between risk-taking propensity and health

Overall, risk-taking propensity is considered an important risk-factor for behaviours that

impact health, including smoking, alcohol use, drug use, sexual behaviours and driving

safety. For example, higher levels of risk-taking propensity measured through BART and

self-report questionnaires have been linked to higher rates of smoking, unprotected sex,

driving dangerously and alcohol use [216, 219, 213, 220]. A 2017 systematic review of 17

studies identified impaired IGT performance (indicating higher risk-taking propensity)
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amongst individuals with gambling disorder and alcohol use disorder [221]. Whilst these

findings have not always been replicated [216], there is a general consensus that risk-taking

propensity is associated with health-related behaviour.

1.6.2.2 The association between risk-taking propensity and body weight

More recently, several studies have reported cross-sectional associations between the

propensity to take risks and obesity [203, 204]. For example, amongst 121 participants,

overweight and obese men took more risks in the IGT and obese women exhibited higher

impulsivity, relative to those of normal weight [203]. In another study, compared to their

normal weight peers, adolescents with a BMI above the 99th percentile for their age and

sex reported greater odds of a range of risk-taking behaviours, including smoking and hav-

ing used drugs or alcohol before their last sexual encounter [222]. Other findings suggest

that obese individuals are more likely to neglect long-term outcomes in decision-making,

making them more prone to impulsive actions [207]. Obesity has also been associated with

risky decision-making, inferred from lower scores on the IGT [223, 224], and lower scores

on measures of executive functioning [225].

A 2018 meta-analysis of 72 studies including a total of 4900 overweight and obese partici-

pants reported that overweight was associated with reductions in inhibition, whilst obesity

was associated with broad impairments to executive functioning (the ability to organise

and inhibit sets of actions in order to achieve a goal) [226, 227]. A systematic review of the

association between personality and obesity, published in 2015, identified neuroticisim,

impulsivity, conscientiousness and self-control as personality traits of relevance to obesity

[204]. Specifically, neuroticism (a measure of negative emotionality, particularly in response

to adverse experiences [228]) and impulsivity (the tendency to act without forethought

and to exhibit a lack of behavioural inhibition [229]) were identified as risk factors for the

emergence of obesity [204]. Conversely, conscientiousness (a measure of goal-directed

behaviour [230]) and self-control were found to protect against weight gain [204]. In some

conceptual models, including the Five Factor Personality model, impulsivity is considered a

component of neuroticism [228] and studies suggest that impulsivity may partially underlie

the link between neuroticism and obesity [204, 230]. For example, analyses in the Baltimore

Longitudinal Study of Ageing, a cohort with follow-up data spanning more than 50 years,

showed that positive longitudinal associations between neuroticism and weight gain were

primarily explained by inter-individual differences in impulsivity [231].

Few studies have explored the underlying personality traits associated with EB. However,

two investigations have reported positive cross-sectional associations between both ex-

ternal eating and EE with neuroticism amongst students and obese adults, respectively

[230, 232]. The larger of these studies reported that, amongst obese participants, the as-

sociation was driven by impulsiveness [230]. In the same study, restraint was linked to
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higher conscientiousness, lower neuroticism and more extraversion and openness [230].

A single study amongst 55 adult women has also reported that high levels of impulsivity

interact with food cravings to increase reactions to palatable food cues [233]. Other studies

have also linked impulsivity to eating-related traits and behaviours associated with higher

energy intake, including snacking [234, 235]. In particular, attentional impulsivity (the

inability to stay focused) has been positively associated with measures of the salience of

external food cues, such as the pleasantness of high-calorie foods, perceptions of hunger,

disinhibition and external eating [236, 237]. It has been hypothesised that high attentional

impulsivity might increase susceptibility to palatable food cues, inducing over-eating and

leading to weight gain over time [238]. However, the observation of ADHD-like symptoms

(characterised by high impulsivity) in the majority (∼ 80%) of homozygous carriers of MC4R

mutations, who suffer early-onset severe obesity, suggests the possibility of reverse causality

or shared pathways [239].

1.6.2.3 The genetics of risk-taking propensity and the aetiology of obesity

Whilst studies suggest an association between risk-taking propensity and obesity, the di-

rection of causality, the presence of confounding and the potential mechanisms of this

association, including EB, require further investigation. In these regards, GWAS and down-

stream analyses can be used to inform understanding. Heritability estimates for risk-taking

range between 0-55%, indicating that it may be possible to study risk-taking from a genetic

perspective [240–242].

Prior to the work reported in Chapter 6, several gene discovery studies of risk-taking had

been conducted. The first was a candidate gene study in 23andMe, which explored associa-

tions between CADM2 and a range of personality traits, including risk-taking propensity

assessed by the question: Overall, do you feel comfortable or uncomfortable taking risks?

[243]. Amongst 140,500 participants in this study, CADM2 was linked to risk-taking propen-

sity [243]. A GWAS of risk-taking propensity has also been conducted among 116,225 UKB

participants based on the question: Would you describe yourself as someone who takes risks?

[242]. The study identified two genome-wide significant loci, one within CADM2 and the

other within the human leukocyte antigen (HLA) region on chromosome 6. A novel positive

genetic correlation between risk-taking and obesity was reported in this study, suggesting a

shared genetic basis for these traits [242].

The risk-taking propensity phenotype is now available in a greater number of UKB par-

ticipants, facilitating a larger GWAS study of this trait which may be better powered to

identify a larger number of genetic variants. This would enable a better understanding of

the underlying biology of risk-taking propensity, as well as having the potential to inform a

deeper understanding of the association between risk-taking and obesity.
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1.6.3 Summary

Cross-sectional associations between measures of risk-taking propensity and obesity sug-

gest that risk-taking behaviour might play a causal role in the development of obesity.

However, obesity has previously been shown to have implications for cognition, raising the

possibility of reverse causality [244]. Further, poor sleep quality has been linked to both

obesity and risk-taking [245, 246]. Thus there is a possibility that confounding may explain

the observed correlations. Better characterisation of the genetic basis of risk-taking propen-

sity has the potential to facilitate understanding of the relationship between risk-taking and

obesity, including exploration of the role of EB in this pathway.
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1.7 Thesis Aims

The over-arching aim of this PhD is to contribute to the understanding of the association

between EB and the aetiology of obesity. Within this remit, three sub-aims are interrogated

through 5 studies. These are depicted in Figure 1.8. The diagram is not intended to represent

all possible relationships between the included variables, but depicts those of central

relevance to this thesis. The aims are elaborated in Figure 1.9.

Figure 1.8 Aims of the thesis. Associations relevant to this thesis are indicated by arrows
or lines in the figure. The dashed lines or arrows indicate novel contributions to the litera-
ture, whilst the solid lines represent established associations replicated by this work. The
arrows represent hypothesised or reported causal associations, whilst the lines represent
interactions. Under Aim 3, GWAS are performed to elucidate the genetics of both EB and
risk-taking propensity, thus these circles are dashed. The genetic variants involved in the
determination of BMI will be taken from a previous GWAS meta-analysis [149].
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Figure 1.9 Elaboration of the aims of the thesis.
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CHAPTER 2

DATA SOURCES

The work reported in this thesis is based primarily upon data from two population-based

cohort studies and one randomised controlled trial (RCT). General information regarding

these studies, including recruitment, data collection and laboratory methods, are pro-

vided in this chapter. Details of sub-populations, phenotypes and other study populations

pertinent to particular studies are discussed within the relevant chapters.
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2.1 The Fenland study

2.1.1 Background

The Fenland study is a population-based cohort study designed to investigate the inde-

pendent and interacting effects of environmental, lifestyle and genetic influences on the

development of obesity, type 2 diabetes and related metabolic disorders. Relatively young

individuals were recruited to the cohort to facilitate investigation of the early processes and

pathways involved in metabolic illness, unaffected by therapy or co-existing disease.

The Fenland study has two distinct phases. Phase I, during which baseline data was collected

from participants, took place between 2005 and 2015. Phase II was launched in 2014 and

involved repeating the measurements collected during Phase I, alongside the collection

of new measures. All participants who had consented to being re-contacted after their

Phase I assessment were invited to participate in Phase II. At least 4 years must have elapsed

between visits. As a result of this stipulation, recruitment to Phase II is ongoing.

2.1.2 Participants

Adults born between 1950 and 1975 and registered at participating general practices in

Cambridge, Ely, Wisbech and the surrounding Cambridgeshire region were eligible for

inclusion in the study [247]. Individuals fulfilling these criteria were identified through

National Health Service (NHS) primary care practice lists and invited to participate in

the study through their general practitioner (GP) [247]. Exclusion criteria were: clinically

diagnosed diabetes, inability to walk unaided, terminal illness (life expectancy <1 year at

the time of recruitment), clinically diagnosed psychotic disorder, pregnancy or lactation.

A total of 46,020 individuals were approached, resulting in the enrolment of 12,435 partici-

pants (response rate: 27%).

2.1.3 Data collection

Participants attended one of three Medical Research Council (MRC) Epidemiology Unit

testing centres where anthropometric and body composition measures were taken, blood

samples were collected and questionnaires were completed. The following discussion de-

scribes the collection of data relevant across the studies reported in this thesis. Phenotypes

relevant to specific studies are described within the relevant chapters.
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2.1.3.1 Anthropometric and body composition measures

Anthropometric and body composition measures were collected by trained staff following

standard, established protocols [247]. Volunteers were barefoot and wore light clothing

during the assessment. Weight was measured to the nearest 100g using a calibrated scale

(Tanita model BC-418 MA; TanitaTM, Tokyo, Japan) and height was measured to the near-

est 0.1cm using a calibrated wall-mounted stadiometer (Seca 240; SecaTM, Birmingham,

UK). Waist (WC) and hip circumference (HC) were measured to the nearest 0.1cm using

a non-stretchable fibre-glass insertion tape (D-loop tape; Chasmors Ltd, London, UK).

Waist and hip measurements were each taken twice. If measures differed by >3cm, a third

measurement was taken. The mean of the two or three measurements was recorded and

used in the analyses reported in this thesis. Waist-to-hip ratio (WHR) was calculated by

dividing WC by HC.

Full body dual-energy x-ray absorptiometry (DXA) scans (GE Lunar Prodigy Advanced, GE

Medical Systems, Hartfield, UK) were used to derive fat, lean and bone mass measurements

across body regions. Scans were performed for all consenting participants weighing ≤
140kg. Beyond this threshold, the scanner was considered insufficiently precise to warrant

performing the scan. Fat, lean and bone mass measures in the total body, trunk, android,

gynoid and leg regions were generated and appendicular lean mass (lean mass in the legs

+ lean mass in the arms) was calculated. The DXA software (enCORE software version

14.10.022 to 16, GE Medical Systems) also generated estimates of visceral adipose tissue

within the android region (VAT) for individuals whose girth allowed them to fit within the

scanning area and who had >1g of VAT. Using these VAT measurements alongside total

android fat mass, values for subcutaneous adipose tissue within the android region (SAT)

were generated (SAT = android fat mass−VAT) and VAT/SAT ratio was calculated.

2.1.3.2 Eating behaviour

Eating behaviour (EB) traits were assessed using the 18-item version of the Three Fac-

tor Eating Questionnaire (TFEQ-R18), completed during the baseline assessment. The

questionnaire is provided in full in Appendix C.1 [40] and described in detail in Chapter 1.

2.1.3.3 Genetic data

DNA extraction from ethylenediamine tetraacetic acid (EDTA) whole blood was performed

using a standard technique at Whatman BioSciences (Cambridge, UK). DNA was genotyped

at the MRC Epidemiology Unit (Cambridge, UK) on one of three platforms: the Affymetrix

UK Biobank Axiom array (n=9,368), the Affymetrix Genome-Wide Human SNP 5.0 array

(n=1,402) or the Illumina Infinium CoreExome-24 array (n=1,664). Standard sample-level

quality control (QC) procedures were applied (call rate: ≥ 95%, minor allele frequency
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(MAF): >0.1%, p-value for deviation from Hardy-Weinberg equilibrium (PHW E )> 5×10−6).

Missing genotypes and those not directly measured were imputed via IMPUTE version2

[248] based on the 1000 Genomes (1000G) Project European haplotype reference [249]. The

exact 1000G version used was dependent upon the array and date of imputation. All required

single nucleotide polymorphisms (SNPs) within the sub-populations comprising this thesis

could be imputed in this manner with sufficient accuracy (imputation information value

>0.4).

2.1.4 Funding

The Fenland study is funded by the MRC (MCU106179471, MCUU12015/1, MCPC13046).

2.1.5 Ethical approval

Written informed consent was attained from all participants and the study was approved by

the Cambridge Local Research Ethics Committee.
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2.2 The UK Biobank study

2.2.1 Background

UK Biobank (UKB) is a large, population-based prospective cohort study, established in the

early 2000s to facilitate investigation of the determinants of human health, morbidity and

mortality in middle to old age [250]. Data on an extensive list of exposures, coupled with

prolonged follow-up of cause-specific outcomes is held and remains fully open access for

research deemed to be in the public interest [251].

2.2.2 Participants

Recruitment took place between 2006 and 2010. Individuals who lived within ∼ 25 miles of

an assessment centre were identified through centralised NHS primary care registrations

and invited to participate. Those aged 40-69 years without pre-existing health conditions

were targeted in order that the study population was both old enough that a reasonable

number of incident disease outcomes could be anticipated during the early years of follow-

up and young enough that the initial assessment took place before illness had impacted

upon exposures [252]. Approximately 9.2 million invitations were mailed, resulting in

the enrolment of 503,325 participants (a response rate of ∼ 5%) [253]. Participants were

aged 37-73 years (99.5% between 40 and 69 years) and had no known pre-existing health

conditions.

2.2.3 Data collection

Participants attended one of the 22 UKB assessment centres for a baseline assessment.

A detailed catalogue of the data collected and protocols for each variable are available

on the UKB data showcase at: http://biobank.ctsu.ox.ac.uk/crystal/. Briefly, participants

completed a touchscreen questionnaire designed to assess socio-demographic characteris-

tics, early life exposures, medical history, lifestyle factors, cognitive function, hearing and

psychosocial characteristics. Aspects of this questionnaire were clarified and elaborated

upon in individual interviews with trained staff. In addition, a range of basic physical

measurements were taken. Blood, urine and saliva samples were also collected [253]. The

collection of data relevant across the studies reported in this thesis is described below.

Specific phenotypes of relevance to particular studies are described within the relevant

chapters.
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2.2.3.1 Anthropmetric and body composition measures

Body size and composition measurements were collected by trained staff using standard

procedures. Standing height was measured barefoot using a calibrated wall-mounted

stadiometer (SecaTM 240cm height measure) [254]. Weight and bioimpedance data were

collected using a TanitaTM BC-418MA body composition analyser (Tanita, Tokyo, Japan)

[254]. Participants were weighed barefoot and without heavy outer clothing. BMI was

calculated by bioimpedance and derived from anthropometric measures using the equation:

weight(kg)/height(m2).

2.2.3.2 Genetic data

The majority of participants (n=487,409) were genotyped using the Affymetrix Applied

Biosystems UK Axiom array (Santa Clara, CA, USA). This array was designed to maximise

marker overlap with the existing Affymetrix Applied Biosystems UL BiLEVE Axiom Array,

which was used to genotype the first 49,950 participants [255]. The arrays are very similar,

with >95% shared content [256]. SNPs were excluded prior to imputation if they were multi-

allelic, had missing data or a MAF of <1%. Phasing was performed using a modified version

of the SHAPEIT2 algorithm. Imputation was performed using IMPUTE v2 and a merged

reference panel comprised of the 1000 Genomes Project Phase 3 and UK10K haplotype

reference panels.

2.2.4 Funding

UKB was established by the Wellcome Trust, MRC, Department of Health, Scottish Govern-

ment and Northwest Regional Development Agency. Funding was also contributed by the

Welsh Assembly Government and the British Heart Foundation.

2.2.5 Ethical approval

Ethical approval was obtained from the North West Multi-centre Research Ethics Committee

(reference number 06/MRE08/65), the National Information Governance Board for Health

and Social Care in England and Wales and the Community Health Index Advisory Group in

Scotland.
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2.3 The Baby Milk Trial

2.3.1 Background

The Baby Milk Trial is an RCT that aims to evaluate the efficacy, cost-effectiveness and

acceptability of a multi-component intervention designed to reduce formula-milk intake

and prevent excessive weight gain amongst formula-fed infants [257]. In England, almost

75% of mothers initiate breastfeeding at birth but only 44% are still breastfeeding at 6-8

weeks [258]. Thus, the majority of infants receive formula milk within 2 months of birth.

Given the high prevalence of formula-feeding, the promotion of healthy growth amongst

formula-fed infants is a public health priority, alongside support for breastfeeding,.

2.3.2 Participants

Healthy, full-term infants who were fully or partially formula-fed within 14 weeks of birth

were eligible for inclusion. Exclusion criteria comprised: low birth weight (<2500g), pre-term

birth (<37 weeks gestation), the use of special formulas (soya-based, lactose-free, hydrolysed

or anti-reflux), major malformations and the presence of hormonal or metabolic disease

that might interfere with growth or nutrition [257]. Participants were recruited through: GP

practices (n=279; 42%), a mail-out using the centralised NHS integrated database SystmOne

(n=183; 27%), research staff on a postnatal hospital ward (n=157; 23%), referral from health

visitors and community midwives (n=12; 2%) or self-referral (n=38; 6%). A total of 2133

mother-infant dyads were assessed for eligibility, resulting in the randomisation of 669

parent-child sets [259].

2.3.3 Data collection

2.3.3.1 Anthropometric measures

Anthropometric measurements were collected by trained research staff using standard

operating procedures. The measurement team was blind to the trial group allocation of

the infants and both the measurement team and parents were advised not to discuss group

allocation. Infant weight was measured to the nearest 0.01kg using SecaTM Infant Electronic

Scales whilst infants were undressed. Infant supine length was measured to the nearest

0.5cm on a KiddimeterTM or Starters matTM whilst the infant wore only a nappy. Parental

weight and body fat was measured using a TanitaTM scale and height was measured using a

SecaTM wall-mounted stadiometer [257].
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2.3.3.2 Infant eating behaviour

Infant EB traits were assessed using the retrospective version of the Baby Eating Behaviour

Questionnaire (BEBQ), a validated, 17-item, parent-report questionnaire, completed at the

6 month follow-up assessment [39]. The questionnaire is provided in full in Appendix C.1

and described in detail in Chapter 1.

2.3.4 Funding

The Baby Milk Trial is funded by the National Prevention Research Initiative (http://www.

npri.org.uk. Grant no. MR/J000361/1). The work was undertaken under the auspices of

the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Cen-

tre of Excellence which is funded by the British Heart Foundation, Cancer Research UK,

Economic and Social Research Council, MRC, the National Institute for Health Research,

and the Wellcome Trust. The Funding Partners relevant to this award are: Alzheimer’s Re-

search Trust, Alzheimer’s Society, Biotechnology and Biological Sciences Research Council,

British Heart Foundation, Cancer Research UK, Chief Scientist Office (Scottish Government

Health Directorate), Department of Health, Diabetes UK, Economic and Social Research

Council, Health and Social Care Research and Development Division of the Public Health

Agency (HSC RD Division), MRC, The Stroke Association, Wellcome Trust, Welsh Assembly

Government and World Cancer Research Fund [257].

2.3.5 Ethical approval

Ethical approval was obtained from the Cambridgeshire 4 Research Ethics Committee

(Ref:10/ H0305/9), and informed written consent was attained from all participants. The

trial was registered at Current Controlled Trials ISRCTN20814693 on 3rd October 2010.
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CHAPTER 3

GENETIC SUSCEPTIBILITY TO OBESITY AND ADULT

BODY COMPOSITION

Publications

Clifton E. A. D., Day F. R., De Lucia Rolfe E., Forouhi N. G., Brage S., Griffin S. J., Wareham N.

J. and Ong K. K. (2017). Associations between body mass index-related genetic variants and

adult body composition: the Fenland cohort study. International Journal of Obesity. 41(4),
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I generated the BMI-GRS, conducted the statistical analyses and jointly interpreted the

results. I wrote this chapter and the resulting manuscript.

45



Genetic susceptibility to obesity and adult body composition

3.1 Summary

BMI is a widely used surrogate measure of adiposity but does not distinguish fat from

lean or bone mass. The genetic determinants of BMI are thought to predominantly influ-

ence adiposity. However, this has not been confirmed. The utility of genetic risk scores

for BMI (BMI-GRSs), comprised of known BMI-related genetic variants, in exploring the

relationships of measured BMI and adiposity to health-related outcomes, including eating

behaviour (EB), depends upon the extent to which these scores reflect adiposity. In this

study, the association between BMI-related genetic variants and body composition was

characterised amongst 9667 adults aged 29-64 years from the Fenland study. The results

showed that a weighted BMI-GRS, comprised of 96 BMI-related genetic variants, was pos-

itively associated with fat, lean and bone mass across all body regions. Associations of

the greatest magnitude were identified with fat mass, intermediate associations with lean

mass and associations of the lowest magnitude with bone mass. All of the 28 SNPs that

showed nominally significant associations with BMI in this participant group (p<0.05) were

positively associated with fat mass and 13 demonstrated adipose-specific effects. Together,

these findings indicate that the genetic determinants of BMI are associated with adult body

composition in ways that mirror measured BMI. Together they influence adiposity to a

greater extent than either lean or bone mass and are not associated with body fat distribu-

tion. As such, the BMI-GRS can be used to model the effects of measured BMI and total

body adiposity on health and other outcomes in adulthood, as well as to investigate the

mechanisms of adipose pathways, including EB traits in Chapter 4.
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3.2 Background

As described in Chapter 1, overweight and obesity describe states of excess adiposity that

confer risks to health [1]. They are most often identified using BMI which is calculated by

dividing an individual’s weight (kg) by their squared height (m2). The utility of BMI stems

from its ability to approximate total body adiposity on the basis of scalable, non-invasive

anthropometric measurements alone. Whilst BMI is designed to reflect adiposity and

demonstrates strong, positive, linear associations with total body fat in largely sedentary

populations across diverse settings [261–263], it is also positively influenced by fat-free mass

[264]. Fat-free mass is comprised of both lean and bone mass. In the general population,

these components of body mass demonstrate less inter-individual variability than fat mass,

and thus contribute less to variability in BMI [265]. However, both traits can lead to the

misclassification of an individual’s adiposity-related health risk when using BMI under

certain circumstances [266–271]. For example, non-significant associations between BMI

and adposity have been reported amongst elite middle-distance runners [272]. Further,

Pacific Islanders and those of Asian ethnicity demonstrate higher and lower fat-free mass

relative to Europeans at the same levels of BMI, respectively [263, 273].

Figure 3.1 Android and gynoid fat.
Android fat is located around the
body trunk, whilst gynoid fat is lo-
cated around the hips and thighs.

A further limitation to the ability of BMI to fully con-

vey adiposity-related health risk is insensitivity to

body fat distribution [274, 275]. Robust evidence

from large-scale studies supports an independent

association between fat stored in the android region

(Figure 3.1), measured using waist circumference

(WC), and type 2 diabetes (T2D), cardiovascular dis-

ease (CVD) and all-cause mortality [266, 268]. Fur-

ther cross-sectional and longitudinal evidence to-

gether indicate that the type of abdominal fat (vis-

ceral versus subcutaneous) also impacts health [276].

Over 5 years of follow-up amongst 3100 Framingham

Heart Study participants with a mean age of 50 years,

visceral adipose tissue in the android region (VAT)

was positively associated with incident CVD, after ad-

justment for both known clinical risk-factors and to-

tal adiposity (hazard ratio = 1.44 (95% CI: 1.08,1.92))

[277]. Further, a meta-analysis of 41 studies compar-

ing pre-diabetic and diabetic individuals to non-diabetics indicated greater differences in

visceral than subcutaneous adipose tissue (SAT) [278].

Genetic factors contribute to the determination of BMI and estimates from twin studies indi-

cate that heritability falls between 31% and 90% [279]. In 2015, a large GWAS meta-analysis
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including over 300,000 individuals identified 97 independent, genome-wide significant

BMI-related genetic variants, together accounting for ∼ 2.7% of inter-individual variability

in BMI [149]. It is thought that, in aggregate, the association of these variants with body

composition mirrors that of measured BMI. Thus, that they reflect adiposity to a greater

extent than lean or bone mass, and are not associated with body fat distribution. In order

to assess the utility of BMI-related genetic variants in modelling the effects of measured

BMI and adiposity on health, it is important to determine whether, in combination, their

relationships to body composition mirror those of measured BMI. This also has implications

for studies designed to interrogate the mechanisms of genetic susceptibility to obesity using

genetic risk scores for BMI (BMI-GRSs), including that reported in Chapter 4. In this study,

under the assumption that the BMI-GRS primarily reflects adipose pathways, EB traits are

modelled as mediators and modifiers of the BMI-GRS to BMI association.

The majority of previous studies exploring the relationship between BMI-related genetic

variants and body composition have focused on single genes. For example, one study

amongst 4500 female British twins (mean age: 53 years) investigated the associations

between 5 single nucleotide polymorphisms (SNPs) in the FTO haplotype block and hip

circumference (HC), WC, waist-to-hip ratio (WHR), lean and fat mass [280]. The study

reported positive associations between all 5 of the SNPs and both WC and HC, 4 of the

SNPs and both BMI and lean mass and 3 of the SNPs and fat mass. None of the SNPs were

associated with WHR. In a separate study amongst 1890 European and African-American

adolescents (mean age 16 years), 2 variants near MC4R were shown to be associated with

weight, WC, body fat percentage (BF%), VAT and SAT measures [281]. Another study also

examined the relationships between 8 BMI-associated SNPs and both BF% and height,

reporting directionally consistent associations between all 8 SNPs and BF% and weaker, but

generally positive, associations with height amongst 14,000 European participants [282]. A

smaller investigation reported positive associations between 31 of 32 BMI-associated SNPs

with adiposity amongst 8000 European adults from the Atherosclerosis Risk in Communities

(ARIC) study [283]. Whilst knowledge of the associations between single variants and body

composition is informative in elucidating the mechanisms of particular variants, it does

not fully inform understanding of the overall utility of a BMI-GRS comprised of multiple

variants.

A limited number of studies have employed a GRS approach, summarising the combined

effect of multiple BMI-related genetic variants in a single score. A study published in 2014

reported significant, positive associations between an unweighted 29 SNP BMI-GRS and

both WC and HC, but not WHR, amongst 787 Algerian adults [284]. This finding indicates

that genetic susceptibility to obesity, like measured BMI, may be associated with total

adiposity but not body fat distribution. The results of a separate study, also published in

2014, supported these findings amongst 1500 French adults using an unweighted BMI-GRS

comprised of 31 SNPs, in addition to demonstrating a positive association between the

score and body fat percentage (BF%) [285]. A 2015 investigation partially replicated the
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results, reporting a positive association between a 90 SNP BMI-GRS and WC amongst 4632

and 1200 Finnish adults from the DILGOM and FinnTwin12 studies [161]. This study did

not examine any other anthropometric or body composition traits.

Overall, few previous studies have investigated the combined effect of BMI-related genetic

variants on body composition. Those that have are based on both a limited number of

known BMI-related genetic variants and a limited range of body composition measures. No

previous investigations have explored the association of the 97 known BMI-related genetic

variants with fat, lean and bone mass across body regions, or characterised the associations

between individual SNPs and each of these outcomes.

The present investigation reports the association between BMI-related genetic variants,

summarised in a weighted BMI-GRS, and fat, lean and bone mass, alongside anthropometric

measures, across body regions in a large, adult sample. A secondary analysis was performed

to characterise the associations between individual SNPs and total body fat, lean and bone

mass.
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3.3 Participants and methods

3.3.1 Participants

The study population of the present analysis comprised 9667 individuals (53% women)

aged 29-64 years with complete body composition and genome-wide genotype information

enrolled in the Fenland study. For a full description of the Fenland study, see Section 2.1.

3.3.2 Methods

3.3.2.1 Construction of a weighted genetic risk score for BMI

Genotyping was performed as described in Section 2.1. A weighted BMI-GRS was then

calculated for each participant. The 97 BMI-related SNPs reported in the 2015 Locke

et al. BMI GWAS meta-analysis were considered for inclusion in the score [149]. One

SNP, rs2033529 (nearest gene: TDRG1), was tri-allelic and could not be incorporated. The

remaining 96 were included and the BMI-GRS was constructed according to a previously

reported method [283].

Each participant was assigned a value of 0, 1 or 2 for each of the 96 SNPs, indicating

the number of BMI-increasing alleles. This value was multiplied by the European-only

sex-combined effect estimate for the BMI-increasing allele reported by Locke et al. [149].

Finally, the products across all 96 SNPs were summed for each participant to give a single,

aggregated score reflecting genetic susceptibility to obesity.

The European sex-combined estimates were selected to weight the score as they most closely

reflected the demography of the Fenland study population (of the participants included in

this study 99% identified as white and 92% as white British (Appendix A.1)). In the absence

of sex-specific effects for the majority of the 96 included loci (only two show evidence of

heterogeneity in the discovery sample), the sex-combined effect estimates were used [149].

These estimates have greater precision than the sex-specific estimates due to the larger

sample size from which they are calculated.

The effect estimates from Locke et al. were generated using inverse normally transformed

residual measurements and cannot be translated to BMI units. To aid the interpretation of

the results, the BMI-GRS for each participant was multiplied by the standard deviation (SD)

increase in BMI per unit increase in the BMI-GRS, adjusted for age, in the Fenland study

population. This scaling of the score was performed separately in each sex, as the main

analyses were sex-stratified. After this adjustment, 1 BMI-GRS unit corresponds to 1 SD of

BMI-GRS predicted BMI in this sample.
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Overall, the formula for the BMI-GRS was as follows:

GRS j = (
96∑

i=1
si j wi )×βGRS

The GRSj refers to the BMI-GRS for individual j; 96 reflects the number of SNPs included in

the score; sij is the number of BMI-increasing alleles at SNP i for individual j; wi is the effect

estimate of SNP i on inverse normally transformed BMI, as reported by Locke et al.; βGRS is

the regression coefficient of the weighted BMI-GRS on BMI z-score, adjusted for age, in this

Fenland study population (βGRS = 0.94 in men; 0.83 in women). This last parameter was

included to align all effect estimates to a +1 SD change in BMI in this population.

3.3.2.2 The assessment of anthropometric and body composition measures

Anthropometric and body composition measures were collected as described in Section 2.1.

Anthropometric measures were collected using standard protocols and body composition

measures were collected through DXA scanning. The following variables were included in

this analysis: BMI (kg/m2), weight (kg), WC (cm), HC (cm), WHR (WC/HC), height (cm) and

BF%. Fat, lean and bone mass measurements in the total body, trunk, android and gynoid

regions were included alongside bone and fat mass in the legs and appendicular lean mass.

Android and gynoid measures were taken from the regions highlighted in Figure 3.1. Trunk

measurements are generated by summing measurements from the torso and pelvic region

and appendicular lean mass comprises the sum of total lean mass in the arms and legs.

Finally, VAT (kg) and SAT (kg) were included alongside VAT/SAT ratio.

3.3.2.3 The association between the BMI-GRS and body composition

The BMI-GRS was tested for cross-sectional associations with the anthropometric and body

composition variables in sex-stratified, age-adjusted linear regression models. Besides

age, no further covariates were added to the models. As genotype is fixed at conception

and remains constant throughout life, the association between the BMI-GRS and the out-

comes should not be vulnerable to confounding. This is discussed in greater detail in

Section 6.3.2.9. The distributions of the residuals from these regressions were checked to

ensure that the anthropometric and body composition variables did not require transfor-

mation and a Bonferroni corrected p-value of p < 1.04×10−3, corrected for 48 tests (24 in

each sex), was used to account to multiple testing in the assessment of significance.

The analysis was sex-stratified. Whilst just 2 of the 96 BMI-related SNPs demonstrated

heterogeneity between the sexes for BMI in the discovery sample, genes implicated by

some of the included SNPs have previously shown sex-specific effects on body composition

measures, including WHR, VAT, SAT and BF% [149, 286–288]. For example, IRS1 is more
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strongly associated with BF% in men than women [289, 290]. Further, measured BMI has

sex-specific associations with some of the included body composition measures. At similar

levels of BMI, women typically have more lower extremity fat whilst men have higher VAT

mass [291]. As a result, it was plausible that the BMI-related genetic variants included in

this analysis could have heterogeneous effects on body composition.

To facilitate comparison of the effect estimates derived from variables measured in different

units, the anthropometric and body composition variables were all standardised to z-scores

(mean=0; SD=1).

In order to aid the assessment of the validity of the findings, the pattern of missing data was

interrogated for body composition variables missing information for ≥ 1% of participants.

Individuals with missing values were compared to the rest of the cohort for sex, age, ethnicity

and BMI using logistic regression, Chi-squared tests or Fisher’s exact tests, as appropriate.

3.3.2.4 The association between measured BMI and body composition

The association between measured BMI and the anthropometric and body composition

variables was analysed for the purposes of comparing the associations to that of the BMI-

GRS with the same outcomes. The main analysis (described above) was repeated, replacing

the BMI-GRS with measured BMI in the models. Measured BMI was standardised (mean=0;

SD=1).

3.3.2.5 Sensitivity analyses

Two sensitivity analyses were performed. First, to ensure that heterogeneity in the effects

of variants comprising the BMI-GRS between the sexes did not influence the results, the

main analysis was repeated using sex-specific BMI-GRS scores. These were weighted using

the European-only sex-specific effect estimates from Locke et al [149]. Second, the main

analysis was repeated amongst participants with self-reported white ethnicity.

3.3.2.6 The association between individual genetic variants and body composition

The relationship between the BMI-related SNPs and body composition was investigated on

an individual SNP basis to identify individual SNPs or SNP groups associated with particular

components of body composition. The sample size of this analysis was only a fraction of that

of the GWAS meta-analysis from which the SNPs were identified and was not powered to

detect associations between all 96 SNPs and BMI individually. Only SNPs that demonstrated

nominally significant associations with BMI in this cohort were included in this analysis.
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3.3 Participants and methods

SNPs were considered in linear regression models characterising their age and sex-adjusted

associations with total body fat, lean and bone mass. Body composition measures were

standardised to z-scores and, in the absence of significant heterogeneity in the associations

between the BMI-GRS and body composition or an interaction between sex and the BMI-

GRS, both sexes were combined to maximise power. The results were used to construct a

heat map colour-coding the z-statistic for the association of each SNP with total body fat,

lean and bone mass. To avoid spurious precision, z-statistic values between −0.5 and 0.5

were displayed as neutral.

All analyses were performed in Stata version 14 (StataCorp LCC, College Station, TX) and

figures were produced using R version 3.2.2.
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3.4 Results

3.4.1 Characteristics of the study participants

Table 3.1 Descriptive characteristics of the Fenland study participants (n=9667)

Men Women

Total (%) Mean (SD) Min. Max. Total (%) Mean (SD) Min. Max. p-val.a

Sex 4522 (46.8%) – – – 5145 (53.2%) – – – –

Age – 48.5 (7.5) 29.4 63.7 – 48.6 (7.4) 30.0 64.0 0.43

White British
3999/4334

(92.3%) – – –
4527/4922

(92.0%) – – – 0.60

BMI (kg/m2) 4522 27.2 (3.9) 15.3 49.1 5145 26.5 (5.2) 14.5 52.5 <0.01

BMI statusb

Underweight 15 (0.3%) – – – 42 (0.8%) – – – <0.01

Normal weight 1326 (29.3%) – – – 2325 (45.2%) – – – <0.01

Overweight 2208 (48.8%) – – – 1694 (32.9%) – – – <0.01

Obese 973 (21.5%) – – – 1084 (21.1%) – – – 0.59

Weight (kg) 4522 86.1 (13.4) 42.9 139.0 5145 71.3 (14.4) 38.2 138.7 <0.01

HC (cm) 4520 103.1 (6.8) 76.2 144.7 5135 103.5 (10.3) 75.5 168.0 0.02

WC (cm) 4521 97.0 (11.2) 65.6 184.2 5142 85.5 (12.5) 59.0 141.0 <0.01

WHR 4519 0.9 (0.1) 0.7 1.9 5133 0.8 (0.1) 0.6 1.1 <0.01

Height (cm) 4522 177.7 (6.8) 129.5 200.5 5145 164.1 (6.3) 140.4 189.8 <0.01

Body fat % 4522 29.0 (6.0) 9.1 47.2 5145 37.5 (7.1) 7.7 58.6 <0.01

Total body (kg)

Fat mass 4522 25.4 (8.3) 5.8 60.6 5145 27.5 (10.2) 2.9 79.3 <0.01

Lean mass 4522 57.5 (6.8) 31.3 84.8 5145 41.5 (5.3) 27.4 69.0 <0.01

Bone mass 4522 3.15 (0.39) 1.72 4.92 5145 2.39 (0.31) 1.42 3.66 <0.01

Trunk (kg)

Fat mass 4522 14.6 (5.6) 1.9 41.0 5145 13.5 (6.2) 1.0 46.8 <0.01

Lean mass 4522 27.1 (3.2) 13.9 40.1 5145 20.4 (2.6) 12.9 36.0 <0.01

Bone mass 4522 1.0 (0.2) 0.4 1.6 5145 0.7 (0.1) 0.4 1.3 <0.01

Android (kg)

Fat mass 4522 2.6 (1.2) 0.2 7.7 5145 2.2 (1.2) 0.1 8.9 <0.01

Lean mass 4522 4.3 (0.6) 2.1 6.7 5145 3.2 (0.4) 2.0 6.1 <0.01

Bone mass 4522 0.1 (0.0) 0.0 0.1 5145 0.1 (0.0) 0.0 0.1 <0.01

Gynoid (kg)

Fat mass 4522 3.8 (1.2) 0.8 9.6 5145 5.0 (1.7) 0.3 13.5 <0.01

Lean mass 4522 9.2 (1.2) 3.6 14.2 5145 6.6 (0.9) 3.8 10.7 <0.01

Bone mass 4522 0.3 (0.1) 0.1 0.5 5145 0.2 (0.0) 0.1 0.4 <0.01

Leg (kg)

Fat mass 4522 7.5 (2.3) 1.1 23.5 5145 10.3 (3.6) 1.0 30.3 <0.01

Bone mass 4522 1.2 (0.2) 0.1 2.0 5145 0.9 (0.1) 0.5 1.4 <0.01

Appendicular lean (kg) 4522 27.1 (3.7) 9.0 43.2 5145 18.2 (2.9) 10.4 32.2 <0.01

VAT (kg) 4517 1.4 (0.8) 2×10−3 5.6 4929 0.6 (0.5) 1×10−3 4.2 <0.01

SAT (kg) 4517 1.2 (0.5) 0.1 4.6 4929 1.6 (0.7) 0.1 6.7 <0.01

VAT/SAT ratio 4517 1.2 (0.8) 2×10−3 10.1 4929 0.4 (0.3) 8×10−4 3.8 <0.01

Standard deviation (SD); body mass index (BMI); hip circumference (HC); waist circumference (WC); waist-to-

hip ratio (WHR); visceral adipose tissue (VAT); subcutaneous adipose tissue (SAT)
a p-value refers to the difference in mean values between men and women calculated using a 2 sample Student’s

t-test, Mann-Whitney-U test or Chi-squared test
b WHO BMI categories: Underweight <18.5kg/m2; Normal weight ≥18.5 and <25.0kg/m2; Overweight ≥25kg/m2

and <30kg/m2; Obese ≥30kg/m2

– Not applicable
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The characteristics of the 9667 Fenland participants of the present analysis are summarised

in Table 3.1. Approximately half were women (n=5142; 53%) and, reflecting UK population

norms, the majority of participants were either overweight or obese (3181 men (70%) and

2778 women (54%)) [14]. All anthropometric and body composition measures exhibited

statistically significant sexual dimorphism (p<0.05) and the majority of the participants self-

reported their ethnicity as white (9137; 99%). Detailed information regarding self-reported

ethnicity is provided in Appendix A.1.

VAT, SAT and VAT/SAT ratio were the only variables with ≥ 1% missing data (n=221 miss-

ing; 2% of the cohort). The majority of missing data resulted from VAT measures of <1g

(n=207; 94%) as the DXA software was not able to estimate values for these individuals.

The remaining participants with missing values were too large in relation to the scanner

for accurate estimates to be made. Compared to the rest of the cohort, individuals with

missing data exhibited higher mean age (48.6 versus 44.7 years; p<0.01), were more likely

to be female (98% versus 52%; p<0.01) and had a lower median BMI (21.5kg/m2 versus

26.3kg/m2; p<0.01).

3.4.2 The BMI-GRS and body composition

The BMI-GRS was positively associated with all the included anthropometric and body

composition variables (Figure 3.2; Table 3.2). Of the 48 associations tested (24 in each sex),

43 were statistically significant at the Bonferroni-corrected p-value threshold for 48 tests

(p < 1.04×10−3). Only VAT/SAT ratio (men: β=0.06 SDs (95% CI: -0.12, 0.24); p=0.54; women:

0.28 SDs (95% CI: 0.09, 0.47); p = 4.29×10−3), android bone mass in men (β=0.29 SDs (95%

CI: 0.10, 0.48); p = 2.74×10−3) and height (men: β=-0.02 SDs (95% CI: -0.21, 0.17); p=0.85;

women: 0.10 SDs (95% CI: -0.10, 0.30); p=0.31), did not reach statistical significance.

The BMI-GRS demonstrated associations of the greatest magnitude with the adiposity

variables, intermediate associations with the lean mass variables and associations of the

lowest magnitude with the bone mass variables and height (Figure 3.2). This pattern was

replicated across all body regions, as well as in the total body measures. Alongside the effect

estimates for the age-adjusted regressions of the BMI-GRS on the body composition vari-

ables, Figure 3.2 displays the variance in each of the body composition variables explained

by measured BMI (R2). The R2 values mirror the association of the BMI-GRS with body

composition.

The effect estimates for the BMI-GRS on the fat mass variables were comparable across

body regions. For men, the highest effect estimate was for SAT mass and the lowest was

for VAT mass. For women, the highest estimate was for total body fat and the lowest was

for VAT mass. In both sexes, effect estimates were greater for SAT than for VAT mass. For

each SD increase in BMI-GRS predicted BMI, we observed a 0.98 SD (95% CI: 0.79, 1.16)

increase in SAT mass for men and a 0.92 SD (95% CI: 0.72, 1.12) increase for women. The
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corresponding VAT estimates were 0.62 SDs (95% CI: 0.44, 0.80) and 0.70 SDs (95% CI: 0.51,

0.90) for men and women, respectively.

The BMI-GRS demonstrated significant positive associations with WHR: β=0.61 SDs (95%

CI: 0.43, 0.79), p = 5.33×10−11 for men and 0.41 SDs (95% CI: 0.21, 0.60), p = 4.24×10−5 for

women. Directionally consistent but not statistically significant associations were observed

for VAT/SAT ratio in both sexes: β=0.06 SDs (9% CI: -0.12, 0.24), p=0.54 for men and 0.28

SDs (95% CI: 0.09, 0.47), p = 4.29×10−3 for women.

Figure 3.2 Associations of the BMI-GRS and measured BMI to body composition. The
columns display the effect estimates from age-adjusted linear regressions of the BMI-GRS
on the specified anthropometric or body composition variable z-score. The units are: SD
change in the body composition variable per unit increase in BMI-GRS predicted BMI. The
bars represent the 95% CIs for these estimates. The squares display the variance in BMI
explained by the body composition variable from age-adjusted linear regression of body
composition on BMI z-scores on a scale of 0-1 (the R2 values). Anthropometric, adposity,
lean and bone measures are grouped and distinguished by shading.
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Table 3.2 Associations between the BMI-GRS and body composition

Men Women

Beta (95% CI) p-value Beta (95% CI) p-value

Weight 0.91 (0.72, 1.10) 2.2×10−21∗ 1.01 (0.81, 1.20) 9.9×10−24∗

WC 0.91 (0.72, 1.09) 9.6×10−22∗ 0.89 (0.69, 1.08) 6.2×10−19∗

HC 0.91 (0.72, 1.09) 4.1×10−21∗ 0.96 (0.76, 1.20) 1.6×10−21∗

WHR 0.61 (0.43, 0.79) 5.3×10−11∗ 0.41 (0.21, 0.60) 4.2×10−5∗

Height -0.02 (-0.21, 0.17) 0.85 0.10 (-0.10, 0.30) 0.31

BF% 0.74 (0.55, 0.92) 9.1×10−15∗ 0.80 (0.61, 0.99) 4.1×10−16∗

Total fat 0.90 (0.71, 1.09) 3.8×10−21∗ 0.96 (0.77, 1.16) 6.1×10−22∗

Trunk fat 0.88 (0.70, 1.07) 1.3×10−20∗ 0.93 (0.73, 1.12) 1.0×10−20∗

Android fat 0.87 (0.69, 1.06) 3.2×10−20∗ 0.92 (0.72, 1.11) 2.5×10−20∗

Gynoid fat 0.87 (0.68, 1.06) 1.8×10−19∗ 0.90 (0.70, 1.09) 3.7×10−19∗

Legs fat 0.80 (0.62, 0.99) 7.2×10−17∗ 0.89 (0.69, 1.09) 8.6×10−19∗

SAT 0.98 (0.79, 1.16) 2.2×10−24∗ 0.92 (0.72, 1.12) 3.7×10−19∗

VAT 0.62 (0.44, 0.80) 1.9×10−11∗ 0.70 (0.51, 0.90) 2.2×10−12∗

VAT/SAT 0.06 (-0.12, 0.24) 0.54 0.28 (0.09, 0.47) 4.3×10−3

Total lean 0.68 (0.49, 0.86) 1.9×10−12∗ 0.85 (0.65, 1.04) 2.7×10−17∗

Trunk lean 0.65 (0.46, 0.84) 1.6×10−11∗ 0.75 (0.56, 0.95) 7.6×10−14∗

Android lean 0.63 (0.45, 0.82) 4.3×10−11∗ 0.77 (0.57, 0.96) 2.5×10−14∗

Gynoid lean 0.59 (0.40, 0.78) 6.9×10−10∗ 0.81 (0.62, 1.01) 3.0×10−16∗

Append. lean 0.65 (0.46, 0.84) 9.6×10−12∗ 0.88 (0.68, 1.07) 1.1×10−18∗

Total bone 0.39 (0.20, 0.58) 5.7×10−5∗ 0.45 (0.26, 0.65) 4.0×10−6∗

Trunk bone 0.48 (0.29, 0.67) 6.0×10−7∗ 0.60 (0.40, 0.79) 1.4×10−9∗

Android bone 0.29 (0.10, 0.48) 2.7×10−3 0.42 (0.22, 0.62) 2.8×10−5∗

Gynoid bone 0.32 (0.13, 0.51) 9.7×10−4∗ 0.56 (0.36, 0.76) 2.2×10−8∗

Legs bone 0.36 (0.18, 0.55) 1.6×10−4∗ 0.51 (0.31, 0.70) 3.4×10−7∗

Confidence interval (CI); waist circumference (WC); hip circumference (HC); waist-to-hip ratio

(WHR); body fat percentage (BF%); visceral adipose tissue (VAT); subcutaneous adipose tissue

(SAT); Appendicular (Append.)
a Effect estimates (Beta) are the age-adjusted SD change in the body composition variable per

SD increase in genetically predicted BMI from the age-adjusted linear regression of the scaled

BMI-GRS on body composition z-score
∗p<1.04×10−3
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3.4.3 Measured BMI and body composition

Measured BMI was positively associated with all the anthropometric and body composition

variables tested, except for height, which demonstrated a small, negative association with

BMI in both sexes (Figure 3.3; Table 3.3). All of the associations were statistically significant

after Bonferroni correction for multiple testing (p < 1.04×10−3).

Mirroring the association between the BMI-GRS and body composition, measured BMI

showed associations of the greatest magnitude with the adiposity variables, intermediate

associations with the lean mass variables and associations of the lowest magnitude with the

bone mass variables and height. This pattern was replicated across all body regions, as well

as in the total body measures.

Figure 3.3 Body composition predicted by the BMI-GRS (columns) and body composi-
tion predicted by BMI (squares). The columns display the effect estimates from age-
adjusted linear regressions of the BMI-GRS on the specified anthropometric or body com-
position variable z-scores, with 95% CIs. The effect estimates represent the SD change in
each body composition variable per unit increase in BMI-GRS predicted BMI. The squares
display the effect estimates from the age-adjusted linear regressions of BMI z-scores on the
specified body composition variable z-scores. The effect estimates are SD change in body
composition per SD increase in BMI. Anthropometric, adposity, lean and bone measures
are grouped and distinguished by shading.
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Table 3.3 Associations between measured BMI and body composition

Men Women

Beta (95% CI) p-value Beta (95% CI) p-value

Weight 0.88 (0.87, 0.89) <1.0×10−25∗ 0.93 (0.92, 0.94) <1.0×10−25∗

WC 0.88 (0.87, 0.90) <1.0×10−25∗ 0.89 (0.88, 0.91) <1.0×10−25∗

HC 0.83 (0.81, 0.85) <1.0×10−25∗ 0.91 (0.90, 0.92) <1.0×10−25∗

WHR 0.63 (0.61, 0.65) <1.0×10−25∗ 0.47 (0.45, 0.49) <1.0×10−25∗

Height -0.08 (-0.11, -0.05) 2.7×10−8∗ -0.11 (-0.14, -0.08) 6.1×10−15∗

BF% 0.73 (0.71, 0.75) <1.0×10−25∗ 0.81 (0.80, 0.83) <1.0×10−25∗

Total fat 0.89 (0.87, 0.90) <1.0×10−25∗ 0.94 (0.93, 0.95) <1.0×10−25∗

Trunk fat 0.89 (0.87, 0.90) <1.0×10−25∗ 0.92 (0.91, 0.93) <1.0×10−25∗

Android fat 0.87 (0.86, 0.89) <1.0×10−25∗ 0.91 (0.90, 0.92) <1.0×10−25∗

Gynoid fat 0.82 (0.80, 0.83) <1.0×10−25∗ 0.87 (0.86, 0.89) <1.0×10−25∗

Legs fat 0.75 (0.73, 0.77) <1.0×10−25∗ 0.84 (0.82, 0.86) <1.0×10−25∗

SAT 0.75 (0.73, 0.77) <1.0×10−25∗ 0.90 (0.89, 0.91) <1.0×10−25∗

VAT 0.77 (0.75, 0.79) <1.0×10−25∗ 0.78 (0.77, 0.8) <1.0×10−25∗

VAT/SAT 0.27 (0.24, 0.30) <1.0×10−25∗ 0.36 (0.34, 0.39) <1.0×10−25∗

Total lean 0.62 (0.6, 0.64) <1.0×10−25∗ 0.65 (0.63, 0.67) <1.0×10−25∗

Trunk lean 0.58 (0.56, 0.60) <1.0×10−25∗ 0.58 (0.56, 0.60) <1.0×10−25∗

Android lean 0.58 (0.55, 0.60) <1.0×10−25∗ 0.57 (0.55, 0.59) <1.0×10−25∗

Gynoid lean 0.54 (0.52, 0.57) <1.0×10−25∗ 0.58 (0.56, 0.61) <1.0×10−25∗

Append. lean 0.61 (0.58, 0.63) <1.0×10−25∗ 0.67 (0.65, 0.69) <1.0×10−25∗

Total bone 0.32 (0.30, 0.35) <1.0×10−25∗ 0.31 (0.28, 0.33) <1.0×10−25∗

Trunk bone 0.49 (0.47, 0.52) <1.0×10−25∗ 0.48 (0.46, 0.51) <1.0×10−25∗

Android bone 0.24 (0.21, 0.27) <1.0×10−25∗ 0.33 (0.30, 0.35) <1.0×10−25∗

Gynoid bone 0.29 (0.26, 0.32) <1.0×10−25∗ 0.4 (0.37, 0.42) <1.0×10−25∗

Legs bone 0.23 (0.20, 0.26) <1.0×10−25∗ 0.25 (0.22, 0.27) <1.0×10−25∗

Confidence interval (CI); waist circumference (WC); hip circumference (HC); waist-to-hip ratio

(WHR); body fat percentage (BF%); visceral adipose tissue (VAT); subcutaneous adipose tissue (SAT);

Appendicular (Append.)
a Effect estimates (Beta) are the age-adjusted SD change in body composition per SD increase in

measured BMI from the age-adjusted regression of the BMI z-score on body composition z-score
∗p<1.04×10−3

3.4.4 Sensitivity analyses

The associations between the BMI-GRS and body composition followed similar patterns

in both sexes and no statistically significant differences between the effect estimates were

identified. Sensitivity analyses using sex-specific BMI-GRSs, weighted using the sex-specific

estimates from Locke et al. [149] were conducted (Appendix A.2 & A.3). Further sensitivity

analyses were conducted amongst participants who reported white ethnicity (Appendix A.4

& A.5). Neither analysis altered the conclusions.
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3.4.5 Individual genetic variants and body composition

Figure 3.4 Heat map of the associations between the 28 SNPs that exhibited nominally
significant associations with BMI in this cohort, clustered by their associations with fat,
lean and bone mass. The values and colour-coding indicate the z-statistic (Beta/SE) from
the age and sex-adjusted linear regressions of each SNP on the standardised body composi-
tion variables (mean=0; SD=1).

Of the 96 SNPs included in this analysis, 28 demonstrated nominally significant associations

with measured BMI in this cohort (p<0.05). All 28 exhibited positive associations with fat

mass, of which 22 were nominally significant. Positive associations with lean mass were

observed for 24 of the 28 SNPs (86%), of which 11 were nominally significant, and 20 of

the 28 SNPs (71%) demonstrated positive associations with bone mass, of which 8 were

nominally significant. All 28 SNPs demonstrated the greatest magnitude of association with

fat mass (Appendix A.6).
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3.4 Results

A heat map was constructed to display the associations of the 28 SNPs with total body fat,

lean and bone mass (Figure 3.4). The primary clustering of body composition variables on

the x-axis separated fat from lean and bone mass. The primary clustering of the SNPs on

the y-axis separated 15 SNPs associated with a global increase in all three body composition

measures, from 13 SNPs with apparent adipose-specific effects. MTCH2 is notable amongst

these, as it demonstrated a nominally significant, negative association with bone mass:

β=-0.78 SDs of bone mass (95% CI: -1.52, -0.04); p=0.04 (Appendix A.6).
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3.5 Discussion

3.5.1 Summary and context of the main findings

This analysis characterised the associations between BMI-related genetic variants and

adult anthropometric and body composition traits. Amongst 9667 predominantly white

British adults from the Fenland study, the BMI-GRS demonstrated positive, age-adjusted

associations with total and regional fat, lean and bone mass. Associations of the greatest

magnitude were observed for adiposity variables, intermediate associations were observed

for lean tissue variables, and associations of the lowest magnitude were observed for bone

variables and height. This pattern was replicated across all body regions and mirrors the

relationship between measured BMI and body composition both in this participant group

and other adult populations [292, 293]. This finding confirms the utility of the BMI-GRS in

modelling the effects of measured BMI on outcomes of interest, as well as supporting its

use in interrogating the mechanisms of adipose pathways, including EB in Chapter 7.

Corroborating and extending the results of other studies, we found a positive association

between the BMI-GRS and BF% [283, 282, 285, 294]. The most recent study of a BMI-GRS

and BF% in a European population reported that each BMI-increasing allele was associated

with a 0.14% (95% CI: 0.05, 0.24) increase in BF% (p=0.004) [285]. The study included 31

SNPs combined to form an unweighted score and 1578 adult participants. Our results

confirm this association using a weighted BMI-GRS comprised of a greater number of

variants and a sample size over 6 times as large. Further, consistent with previous studies,

we found significant, positive associations between the BMI-GRS and WC, HC and weight

[284, 285]. We did not find an association with height. In the present study, the BMI-GRS

was positively associated with WHR. The findings from two previous studies of a BMI-GRS

on WHR were directionally consistent but not statistically significant in either BMI-adjusted

or BMI-unadjusted analyses [284, 285]. These previous investigations included 1578 and

740 participants, respectively. Thus this study is better powered to detect associations.

The association of the BMI-GRS with VAT/SAT ratio did not reach statistical significance.

This novel finding suggests that the genetic regulation of BMI may be independent of the

mechanisms that regulate the relative distribution of visceral and subcutaneous fat in the

abdominal region. This supports investigations using different methods that show only

modest overlap between the genetic regulation of BMI and VAT/SAT ratio. Only 7 of 32

BMI-related loci were associated with VAT/SAT ratio among European adults in one study

[287] and 1 of 12 BF%-associated SNPs was associated with VAT/SAT ratio in a separate study

[290]. Discrepancy between the findings for WHR and VAT/SAT ratio speculatively indicate

that WHR and VAT/SAT may measure different aspects of central adiposity. While WHR

provides a measure of central relative to peripheral fat, VAT/SAT ratio measures the relative

distribution of internal and subcutaneous fat within the abdominal region. An alternative
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explanation for the findings is that differential measurement error is not consistent between

WHR and VAT/SAT.

In this cohort, 28 SNPs exhibited nominally significant associations with BMI on an individ-

ual basis. All 28 were positively associated with fat mass and showed a greater magnitude of

association with fat than with lean or bone mass. The SNPs clustered into two main groups

by their associations with body composition. Approximately half (n=15) were associated

with a global increase in fat, lean and bone mass, whilst the remaining 13 exhibited more

adipose-specific effects. This supports evidence from a recent GWAS of lean mass, suggest-

ing some but not total overlap between the genetics of fat and lean mass [295]. In particular,

FTO was 1 of 5 genome-wide significant SNPs associated with lean mass, and was also

strongly associated with lean mass in the present study. This corroborates the observation

of concurrent reductions in both lean and fat mass observed amongst FTO-deficient mice

[296]. The SNP near MC4R showed significant positive effects on fat, lean and bone mass in

this study. This is in keeping with the observation that MC4R-deficient individuals exhibit

elevations in both fat and fat-free mass [150].

3.5.2 Strengths and limitations

This study was the first to examine the relationship between a BMI-GRS and fat, lean and

bone mass across body regions. We present novel findings representing an extension of

previous investigations through increased sample size, SNP number and body composition

outcome measures. However there are limitations. The results pertain only to adults aged

29-64 years. Whilst many genetic variants are associated with BMI throughout life [297],

associations between specific BMI-related variants and some body composition phenotypes

are age-dependent [298, 299]. For example, a meta-analysis of data from 4 birth cohort

studies did not find an association between a BMI-GRS (comprised of 16 adult BMI SNPs)

and BF% in infancy and early childhood [298]. Other studies have reported inconsistent

associations between specific SNPs and BMI at different stages of adulthood [299, 300].

Larger studies may be powered to explore relationships in different phases of adulthood and

the present results should not be extrapolated to children or the elderly. However, the gene

discovery sample included adults of all ages and consistency in the results across all body

regions indicate robust findings that may be generally applied to early and middle-aged

adults.

The findings cannot be extrapolated to individuals >140kg, non-Europeans or those with

metabolic disease. The sample size of this investigation limited its power to robustly de-

tect associations between the individual SNPs and body composition. Finally, the cross-

sectional nature of the study did not facilitate exploration of causal relationships between

the components of body composition.
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3.5.3 Conclusions

In combination, 96 BMI-related genetic variants are positively associated with adult adipos-

ity, with intermediate effects on lean mass and weaker effects on bone mass. This pattern

mirrors the relationship between measured BMI and body composition in this age group.

The findings support the use of the BMI-GRS in the causal modelling of the impact of

adult BMI and total body adiposity on health and other outcomes. Further, the results

suggest that the BMI-GRS can be used to interrogate the mechanisms of BMI and adipose

pathways. This is highly relevant to the study of EB in Chapter 4 and applies also to the

Mendelian randomisation (MR) investigations reported in Chapters 6 and 7. The results

indicate that BMI-related SNPs may be associated either with a global increase in mass or

adipose-specific effects. As a result, MR analyses using BMI-related genetic variants will

need to carefully consider possible heterogeneous effects. Future studies are needed both to

replicate this finding and to further explore the associations and mechanisms of individual

SNPs.
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CHAPTER 4

MEDIATION AND MODIFICATION OF GENETIC SUS-

CEPTIBILITY TO OBESITY BY EATING BEHAVIOUR
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4.1 Summary

A number of genetic variants demonstrate robust, genome-wide significant associations

with BMI, primarily reflecting an impact on adiposity (Chapter 3). However, the mech-

anisms through which these variants act to influence BMI, and the factors with which

they interact, are not well understood. Chapter 3 illustrates that genetic susceptibility to

obesity, summarised through a weighted genetic risk score for BMI (BMI-GRS) comprised

of 96 BMI-related genetic variants, primarily reflects fat mass and can thus be used to

interrogate the mechanisms of adipose pathways. In this study, eating behaviour (EB) traits

were modelled as potential mediators and modifiers of genetic susceptibility to obesity.

Amongst 3515 and 2154 participants from the Fenland and EDEN studies, the Sobel test was

used to assess the mediating effect of the three TFEQ-R18 measured EB traits (emotional

eating (EE), uncontrolled eating (UE) and cognitive restraint (CR)) on the BMI-GRS to BMI

association. In addition, interaction terms were used to assess modification of the asso-

ciation by each of the EB traits in turn. In both cohorts, the BMI-GRS to BMI association

was partially mediated by both EE and UE in separate sex-combined analyses. CR did

not mediate the association, except amongst EDEN women. CR modified the association

between the BMI-GRS and BMI amongst men in both cohorts and Fenland women. In

these participant groups, the association between the BMI-GRS and BMI was strongest in

the lowest tertile of CR, and weakest in the highest tertile. Together, the findings indicate

that genetic susceptibility to obesity is partially mediated by the appetitive EB traits (EE

and UE), whilst high levels of cognitive control over eating (CR) may attenuate the impact

of BMI-related genetic variants on realised BMI in adulthood. Interventions designed to

support CR, or to reduce appetitive EB traits, might help to protect genetically vulnerable

individuals from obesity.
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4.2 Background

A 2015 GWAS meta-analysis of BMI, including over 300,000 participants, identified 97

genetic variants demonstrating individual, genome-wide significant associations with BMI

in adulthood [149]. However, the mechanisms through which these variants influence body

weight are not well understood [149]. This represents an important gap in the literature,

limiting the application of GWAS findings to interventions designed to prevent or reverse

excessive weight gain. Chapter 3 demonstrated that known BMI-related genetic variants

are primarily associated with fat mass. As such, these variants can used to interrogate the

mechanisms of the genetic pathways involved in adiposity, including EB.

Here, we investigated the role of EB traits (EE, UE and CR) in the mediation and modification

of genetic susceptibility to obesity in adulthood. These traits can be measured using the

TFEQ-R18 (Appendix C.1) and are described in greater detail in Chapter 1. Briefly, EE is

designed to measure overeating in response to dysphoric emotional states. It is assessed by

combining participant responses across three questionnaire items measuring the tendency

to eat in the context of loneliness, anxiousness and sadness (example item: when I feel

anxious, I find myself eating) [40]. UE is measured through 9 items and quantifies the

tendency to overeat, generally in response to external food cues and ignoring internal

signals of satiety, accompanied by a subjective loss of control over consumption (example

item: Sometimes when I start eating, I just can’t seem to stop) [40]. Finally, CR is measured

through 6 items and conveys an individual’s intention to restrict their food intake with

the objective of influencing their shape or weight (example item: I deliberately take small

helpings as a means of controlling my weight) [40]. Together, EE and UE are considered

appetitive EB traits, whereas recent research suggests that CR may represent a conscious

response to weight status [302, 138, 51]. As outlined in Chapter 1, twin studies amongst

adult populations suggest that the TFEQ-R18 measured EB traits have a genetic basis

[124, 66]. Although specific genetic variants have yet to be identified (Chapter 7), these

findings indicate that genetic approaches can be used to study the relationships between

EB and other traits, including BMI.

The Behavioural Susceptibility Theory (BST) of obesity posits that genetic susceptibility

to obesity is mediated by appetitive EB traits, such as EE and UE [102]. In support of this

theory, twin studies have demonstrated shared genetic influences on appetitive traits and

weight during infancy [139] and associations between specific BMI-related genetic variants

and aspects of EB have been reported. These are outlined in Chapter 1. Whilst these same

statistical associations would be anticipated if changes in BMI resulted in alterations to

appetitive EB traits, longitudinal studies in adults suggest that EE and UE are the cause,

rather than the consequence, of weight change. Further, in aggregate, genes implicated

by BMI-related genetic variants show enriched expression in regions of the brain with an

established role in the central regulation of eating [149]. Indeed, a functional Magnetic
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Resonance Imaging (fMRI) investigation amongst 44 adolescent women reported that

responsivity of the brain’s reward circuitry to food cues was positively associated with future

weight gain [303]. It is still possible that a bi-directional association exists between EB and

obesity, whereby increases in BMI enhance or perpetuate appetitive EB traits. Knowledge of

the biology of EB traits through studies including that reported in Chapter 7, will help to

inform understanding in the future. However, at present, the weight of evidence suggests

that EE and UE can be modelled on the causal pathway to BMI.

The possibility that EB traits mediate genetic susceptibility to obesity has been directly ex-

amined in three studies pre-dating the work described in this chapter. Two were conducted

amongst children and one amongst adults [163, 164, 161]. The earliest study, published in

2014, reported partial mediation of a 28 SNP BMI-GRS to BMI association by satiety respon-

siveness (SR) amongst 2258 children with a mean age of 10 years [163]. SR is measured by

the parent-completed children’s eating behaviour questionnaire (CEBQ) and describes a

child’s receptivity to feelings of fullness (example item: my child cannot eat a meal if s/he

has had a snack just before) [77]. It is negatively correlated with weight [163]. The study did

not interrogate other EB traits as mediators of the association. A later study, published in

2016, did not detect mediation of the association between a 32 SNP BMI-GRS and weight

gain by child EB traits amongst 652 children aged 6-8 years [164]. Both studies were con-

ducted amongst European participants and derived EB measures using the CEBQ. There

are several possible explanations for the discrepancy in results. It is possible that, as a result

of lower sample size, the 2016 study was not powered to detect a true mediating effect, that

mediation is not present in a younger age group, that the mediating effect is of weight status

established in early life and not of weight gain or that the findings of the earlier study were

spurious. A third study amongst children, published in 2019, following the work reported

in this chapter, showed that appetite, measured by a single item, partially mediated the

association between a 16 SNP BMI-GRS and BMI amongst 1142 French children aged 2-5

years [162]. This indicates that the age of participants in the earlier studies does not explain

the discrepancy in results.

The single pre-existing study amongst adults tested for mediation of a 90 SNP BMI-GRS

to BMI association by EE and UE in two Finnish cohorts, comprised of 4632 and 1231

individuals, respectively [161]. The BMI-GRS to BMI association was mediated by EE in both

cohorts and by UE in the larger of the two cohorts. A separate study, in adults, described the

association of a 32 SNP BMI-GRS with UE and EE, reporting positive associations between

the score and both traits, but did not explicitly test for mediation [112].

No prior studies had examined mediation of the BMI-GRS to BMI association by CR, or

modification of this association by any EB traits. Further, no studies had used all 96 bi-allelic

BMI-associated variants in their analysis. Here EE, UE and CR were tested as potential

mediators and modifiers of genetic susceptibility to obesity, summarised as a 96 SNP BMI-

GRS, in two large, well-characterised population-based adult cohort studies.
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4.3 Participants and methods

4.3.1 Participants

4.3.1.1 The Fenland study

The Fenland study population of this analysis comprised 3515 individuals (53% women)

aged 35-64 years with intersecting EB, genotype and BMI data. For a full description of the

Fenland study, see Section 2.1.

4.3.1.2 The EDEN study

The EDEN study (Etude des Déterminants pré et postnatals de la santé et du développement

de l’ENfant (Study of pre- and early postnatal determinants of child health and develop-

ment)) is a French prospective cohort study established in 2003 to assess the pre and

postnatal determinants of childhood growth, development and health [304]. Recruitment

took place between 2003 and 2006. All pregnant women who attended prenatal clinics at

two French university hospitals, located in Nancy and Poitiers, France, prior to 24 weeks

amenorrhoea were invited to participate. Of the 3758 women approached, 2002 were

recruited to the cohort (a response rate of 53%). Exclusion criteria comprised: multiple

pregnancy, maternal diabetes diagnosed prior to pregnancy, illiteracy in French or plans

to move outside the region in the next 3 years. On several occasions during pregnancy

and follow-up, mothers were asked to complete questionnaires regarding their health and

lifestyle, including their EB. A clinical examination was organised between 24 and 28 weeks

amenorrhoea where a blood sample was taken for genotyping. Fathers were invited to par-

ticipate at any time during the mother’s pregnancy. The study population for this analysis

comprised 2154 individuals (56% women) aged 18-56 years with complete EB, genotype

and BMI data.

The EDEN study was approved by the Ethics Committee of the University Hospital of

Kremlin-Bicêtre on 12th December 2002. Data files were declared to the National Committee

for Processed Data and Freedom. Written informed consent was obtained from both

parents.

4.3.2 Methods

4.3.2.1 Construction of a weighted genetic risk score for BMI

In Fenland, genome-wide genotyping was performed using the Affymetric UK Biobank

Axiom array, as described in Section 2.1. In EDEN, genotyping for 27 BMI-related genetic
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variants was performed at the MRC Epidemiology Unit, Cambridge (iPLEX platform, Se-

quenom). These 27 variants were taken from Speliotes et al. (2010) [283].

In both cohorts, a BMI-GRS was constructed using the method described in Section 3.3.2.1.

Briefly, the number of BMI-increasing alleles for each participant at each locus (0,1 or 2) was

multiplied by the effect estimate for the BMI-increasing allele at that locus. The products

at each locus were then summed to create a score for each participant. In Fenland, the 96

biallelic BMI-related SNPs identified in the 2015 Locke et al. GWAS meta-analysis, and used

to create the BMI-GRS in Chapter 3, were included in the score. Given the predominance

of white British participants in the Fenland sample, the Fenland BMI-GRS was weighted

by the European-only, sex-combined effect estimates from Locke et al. [149]. In EDEN,

the BMI-GRS comprised 27 BMI-related genetic variants identified by Speliotes et al. and

weighted by their European-only, sex-combined effect estimates in that study [283].

The 27 loci that comprised the EDEN BMI-GRS were all present in the Fenland BMI-GRS.

Further, they were amongst the most strongly associated signals in the Fenland score [149].

Thus they explain a larger proportion of the variance in BMI than the additional 69 SNPs that

comprise the Fenland BMI-GRS. The 96 SNP Fenland BMI-GRS explained 4% of the variance

in BMI amongst Fenland men and 1% amongst Fenland women. The corresponding figures

for the 27 SNP EDEN BMI-GRS amongst EDEN participants were 3% and 1%. The units of

the effect estimates used to weight the Fenland and EDEN BMI-GRSs were different. To

facilitate comparison between the studies, the BMI-GRSs were standardised by z-score

transformation in both cohorts.

4.3.2.2 The assessment of eating behaviour

The EB traits were measured using the TFEQ-R18 in Fenland and the TFEQ-R21 in EDEN [40,

66]. The questionnaires are described in greater detail in Chapter 1. Both questionniares

measure EE, UE and CR. The TFEQ-R21 was developed from the TFEQ-R18 by adding 3

additional items to the EE subscale of the questionnaire with the intention of improving the

discrimination of the scale. All other items are identical between the two questionnaires.

The TFEQ-R18 was initially developed in an obese population but has been validated for use

in normal weight populations and can accurately distinguish different patterns of EB in the

general population [68, 89]. The factor structure of the TFEQ-R21 has also been replicated

in a population-based study of Swedish male twins [66].

Fenland participants completed the TFEQ-R18 at their baseline assessment. In the EDEN

cohort, parents completed the TFEQ-R21 at their child’s 2 year follow-up assessment. In

both studies, subscale scores were generated for each participant and transformed to a

0-100 scale using the following equation [89]:
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raw score− lowest possible raw score

possible raw score range
×100

The raw score refers to the mean of the items that comprise the EB trait scale multiplied

by the total number of items on the trait’s subscale. This step accounts for missing data.

The lowest possible raw score refers to the lowest possible raw score a participant could

receive for the subscale. For example, as each item on the subscales is scored from 1 to 4, if

the subscale is comprised of 3 items, the lowest possible raw score would be 3 (indicating

a mean score of 1 on the subscale items, multiplied by the 3 items on the subscale). The

possible raw score range is the highest possible raw score on the subscale, minus the lowest

possible score on the subscale.

The scaled scores were then standardised to a mean of 0 and SD of 1. Cronbach’s alpha was

used to test the inter-correlations between the individual questionnaire items of each EB

trait separately in both cohorts. On the basis of convention, a threshold of 0.6 was chosen

for inclusion of items [305]. The observed between-item correlations within each EB trait

fell between 0.75 and 0.87 in Fenland, and between 0.76 and 0.93 in EDEN, suggesting a

high level of reliability of all the EB trait scales.

4.3.2.3 The assessment of body mass index

In Fenland, anthropometric measurements were taken during participant’s baseline visit

as described in Section 2.1. Weight was measured to the nearest 0.1kg using electronic

scales (TANITA model BC-418 MA; TanitaTM, Tokyo, Japan) and height was measured to

the nearest 0.1cm using a wall-mounted stadiometer (SECA 240; SecaTM, Birmingham, UK).

Participants were measured and weighed barefoot and were asked to remove heavy items of

clothing.

In EDEN, maternal weight was measured to the nearest 0.1kg using electronic scales (Ter-

raillon SL-351, Hanson Ltd, Hemel Hempstead, UK) at the 1 and 3 year follow-up visits. At

2 year follow up, mothers reported their current weight but were not weighed. Paternal

weight was measured at baseline, self-reported or reported by the mother. Parental heights

were measured to the nearest 0.2cm using a wall-mounted stadiometer (SECA 206, SecaTM,

Hamburg, Germany). In instances where paternal heights were not measured objectively,

they were self-reported or reported by the mother. Participants were weighed and mea-

sured barefoot and were asked to remove heavy items of clothing. For the mothers, an

attempt was made to ensure that the weight used was collected as close to the time of the EB

data collection as possible. In order of preference, self-reported weight at 2 year follow-up

(55%), the mean of weight measured at 1 year follow-up and weight measured at 3 year

follow-up (15%) or weight measured at 1 year follow-up (30%) was used. At the baseline

assessment, mothers also self-reported their pre-pregnant BMI. This was used in sensitivity
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analyses. Amongst fathers for whom anthropometric measurements during pregnancy were

unavailable, we used self-reported height and weight at baseline (11%), or father’s height

and weight reported by the mother at baseline (6%).

4.3.2.4 The analysis of mediation

Mediation occurs when the relationship between an exposure (in this case, the BMI-GRS)

and an outcome (in this case, BMI) is explained by the presence of a third variable (the

mediator) which lies on the causal pathway between them (Figure 4.1). The mediator may

be wholly or partly responsible for the association between the exposure and the outcome.

Figure 4.1 Depiction of the mediation analysis. Path a shows the association between the
genetic basis for BMI (the BMI-GRS) and EB; Path b shows the association between EB and
BMI; Path c shows the association between the BMI-GRS and BMI; Path c’ represents the
association between the BMI-GRS and BMI, adjusted for EB.

To test the theory that EB is a mediator of genetic predisposition to obesity, the association

between the BMI-GRS and BMI was analysed in linear regression models with the BMI-GRS

modelled as the exposure and BMI as the outcome. The models were adjusted for age, sex

and, in the EDEN cohort, recruitment centre. This constituted the base model, represented

by Path c in Figure 4.1.

If an EB trait was associated with both the exposure (BMI-GRS) and the outcome (BMI), in

separate linear regression models adjusted for age, sex and, in EDEN, recruitment centre,

we tested for mediation. The base model was adjusted for the EB trait. The presence of

mediation was established using the Sobel test [306, 307] and quantified using the mediation

ratio [308]. The mediation ratio was calculated using the equation: ((β−β′
)/β), where β is

the effect estimate for the BMI-GRS from the regression of the BMI-GRS on BMI (adjusted

for age, sex and, in EDEN, recruitment centre) (Path c in Figure 4.1) and β
′

is the effect

estimate for the BMI-GRS from the same regression after the model is additionally adjusted

for EB (Path c’ in Figure 4.1).

4.3.2.5 The analysis of effect modification

Effect modification occurs when the association between an exposure and an outcome

differs depending on the level of a third variable (the modifier) [309]. Standard approaches

to the assessment of mediation, including the Sobel test, assume no interaction between
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the exposure and the mediator and do not provide a method to test for mediation and

modification simultaneously [310]. Thus separate models were used to test for modification.

Conditions can exist whereby mediation and modification occur along the same pathway

(e.g. mediated modification and moderated mediation). However, a single variable cannot

simultaneously be considered as both a mediator and a modifier of the same association

[309]. As the association between genetic susceptibility to obesity and EB is uncertain, we

separately modelled the EB traits as both mediators and modifiers.

To test whether the association between the BMI-GRS and BMI was modified by EB, an inter-

action term (BMI-GRS×EB trait score) was added to the base model for each EB trait. Effect

modification was identified if the effect estimate for the interaction term was statistically

significant (p<0.05). In order to better characterise the interaction, if effect modification

was identified, the cohort was split into tertiles based on scores for the modifying EB trait.

The BMI-GRS to BMI association was then tested separately within each tertile of the EB

trait score.

4.3.2.6 Sensitivity analyses

In the EDEN cohort, the main analyses were repeated using maternal pre-pregnant BMI,

reported at baseline. This analysis was performed in order to ascertain whether the results

were influenced by recent pregnancy, which may be associated with both EB traits and BMI.

4.3.2.7 Preliminary analyses

Sex stratification. As described in Chapter 3, most known genetic determinants of BMI

do not exhibit heterogeneous effects between the sexes [149]. In the Locke et al. discovery

sample, just 2 of the 97 identified variants demonstrated evidence of heterogeneity [149].

However, their associations to EB traits may be sex-specific. In order to determine whether

the analyses should be stratified by sex, we tested for modification of the age-adjusted BMI-

GRS to EB trait association by sex in linear regression models in both cohorts. This analysis

indicated that sex modified the relationship between the BMI-GRS and CR in Fenland (p-

value for the interaction term (p-interaction)=0.02) but not UE (Fenland: p-interaction=0.34;

EDEN: p-interaction=0.89), EE (Fenland: p-interaction=0.26; EDEN: p-interaction=0.57) or

CR in EDEN (p-interaction=0.12). Although sex did not modify the association between the

BMI-GRS and CR in EDEN, as a result of the presence of modification in the larger Fenland

study, the analyses of mediation and modification by CR were sex-stratified in both cohorts.

Linear regression. To determine whether the relationship between EB traits and BMI could

be appropriately modelled using linear regression, we plotted the associations between the

EB and BMI (Figure 4.2). The associations of EE and UE to BMI were approximately linear,

suggesting that linear regression is appropriate. However, the relationship between CR and

73



Genetic susceptibility to obesity and eating behaviour

BMI appeared non-linear (Figure 4.2c). To account for this, both CR and its quadratic term

(CR×CR) were added to regression models when testing for mediation by CR. Figure 4.2

shows the association between EB and BMI in Fenland. The associations in EDEN were

consistent (Appendix B.1).

(a) Emotional eating (b) Uncontrolled eating (c) Cognitive restraint

Figure 4.2 The association between the EB traits and BMI in the Fenland study. The
graphs plot the EB trait scores (0-100) on the x-axis against BMI (kg/m2) on the y-axis.
The association amongst women is shown in blue and the association amongst men is
shown in orange. The shaded areas indicate 95% CIs.

Associations between the EB traits. If EB traits were identified as mediators of the BMI-

GRS to BMI association, we planned to determine whether their mediating effect was

independent or occurred through a shared mechanism. In order to ascertain whether

this additional analysis was necessary, we explored the correlations between the EB traits.

In both cohorts, all three EB traits were positively correlated with each other in the sex-

combined sample. The appetitive traits, EE and UE, were particularly highly correlated

(Table 4.1). To ascertain whether any mediating effects of the appetitive EB traits were

independent, or occurred through a shared mechanism, we planned additional analyses

that simultaneously accounted for both EE and UE in the same model. First, mediation was

assessed in models where both EB traits were controlled for simultaneously, representing

the specific effects of each EB, whilst controlling for the other. Second, we modelled the

mediating effect of the residuals from a model predicting EE from UE (and vice-versa) on

the BMI-GRS to BMI relationship. This was designed to examine the mediating effect of the

component of each EB that occurs independently of the other EB.

Analyses were performed using Stata version 14 (StataCorp LCC, College Station, TX) in

Fenland and SAS version 9.3 (SAS, Cary, NC) in EDEN. Figures were produced using R

version 3.3.2.
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Table 4.1 Correlations between emotional eating, uncontrolled eating and cognitive re-
straint

Total cohorta Men Women

EE UE CR EE UE CR EE UE CR

Fenland

Emotional eating 1.00 – – 1.00 – – 1.00 – –

Uncontrolled eating 0.64∗ 1.00 – 0.65∗ 1.00 – 0.65∗ 1.00 –

Cognitive restraint 0.16∗ 0.03∗ 1.00 0.16∗ 0.05 1.00 0.04 <−0.01 1.00

EDEN

Emotional eating 1.00 – – 1.00 – – 1.00 – –

Uncontrolled eating 0.60∗ 1.00 – 0.60∗ 1.00 – 0.67∗ 1.00 –

Cognitive restraint 0.37∗ 0.21∗ 1.00 0.34∗ 0.20∗ 1.00 0.31∗ 0.23∗ 1.00

Correlations were assessed using the Pearson’s correlation coefficient

Emotional eating (EE); Uncontrolled eating (UE); Cognitive restraint (CR)
∗p< 0.05
a Total cohort refers to the combined cohort including both men and women

– Not applicable
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4.4 Results

4.4.1 Characteristics of the study participants

The study population of the present analysis comprised 3515 Fenland participants (1869

women; 53%) and 2154 EDEN participants (1200 women; 56%) (Table 4.2). The mean age in

Fenland (51 years amongst both sexes) was higher than in EDEN (men: 32 years; women: 30

years) and the prevalence of obesity (men: 24%; women: 22%) was approximately double

that in EDEN (men: 9%; women: 11%). The Fenland participants also scored higher on all

three EB traits. In both cohorts, women reported higher scores for all EB traits than men. In

the combined cohort of both sexes, which was larger and thus had a greater power to detect

correlations than the sex-stratified cohort, all the EB traits were positively correlated with

each other. However, the appetitive traits (EE and UE) were more strong correlated with

each other than with CR (Table 4.1).

Table 4.2 Descriptive characteristics of the Fenland (n=3515) and EDEN (n=2154) study
participants

Fenland EDEN

Men
(n=1646)

Women
(n=1869)

Men
(n=954)

Women
(n=1200)

Age (years) 50.7 (7.3) 50.9 (7.2) 32.2 (5.6) 29.9 (4.7)

BMI (kg/m2) 27.6 (4.2) 26.6 (5.3) 25.2 (3.6) 24.1 (4.8)

BMI status

Underweight 0.4% (7) 1.2% (22) 0.7% (7) 6.2% (74)

Normal weight 27.2% (449) 43.9% (821) 51.6% (492) 60.6% (727)

Overweight 48.2% (793) 33.3% (622) 38.7% (369) 21.8% (262)

Obese 24.1% (397) 21.6% (404) 9.0% (86) 11.4% (137)

Emotional eating 27.1 (24.8) 42.2 (28.0) 16.2 (21.1) 34.5 (27.4)

Uncontrolled eating 29.1 (17.5) 31.0 (17.7) 23.3 (18.5) 23.4 (17.7)

Cognitive restraint 35.5 (19.0) 45.8 (19.1) 20.7 (18.0) 32.7 (21.2)

Values are mean (SD) or % (n). WHO BMI categories: Underweight <18.5kg/m2; Normal

weight 18.5−24.9kg/m2; Overweight ≥ 25kg/m2; Obese ≥ 30kg/m2. EB traits scores are

scaled from 0-100

4.4.2 The analysis of mediation

4.4.2.1 The association between eating behaviour traits and BMI

EE and UE demonstrated positive linear associations with BMI in both cohorts (Table 4.3;

Figure 4.2). When both EE and UE were considered simultaneously in the same model,
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both maintained significant but reduced associations with BMI in Fenland (EE: β =1.35

kg/m2 (95% CI: 1.15, 1.55); p<1x10−10. UE: β=0.65kg/m2 (95% CI: 0.45, 0.85); p<1x10−10)

(Appendix A.7). In EDEN, only EE remained associated with BMI (EE: β=1.08 kg/m2 (95%

CI: 0.85, -1.31); p<1x10−10. UE: β=0.22kg/m2 (95% CI: -0.02, 0.46); p=0.05).

The BMI-GRS to CR association was modified by sex (see Section 4.3.2.7). As a result, CR

was analysed in men and women separately. In both cohorts, and amongst both men and

women, there was a quadratic association between CR and BMI (Table 4.4, all p<0.001

for the quadratic term). At lower levels of CR, CR was positively associated with BMI, but

at higher levels of CR, the association between CR and BMI became negative in Fenland

and plateaued in EDEN (Figure 4.2c; Appendix B.1). When the cohorts were separately

stratified into two groups based on BMI, comprising normal weight participants (BMI

<25kg/m2) and overweight/obese participants (BMI ≥25kg/m2), a positive linear association

between CR and BMI was found amongst all groups with BMI <25kg/m2 (Fenland: men:

β =0.24kg/m2 (95% CI: 0.10, 0.37); p = 7.0× 10−4; women: β =0.25kg/m2 (95% CI: 0.13,

0.36); p = 2.0×10−5. EDEN: men: β=0.57kg/m2 (95% CI: 0.43, 0.72); p < 1.0×10−10; women:

β=0.69kg/m2 (95% CI: 0.55, 0.83); p < 1.0×10−10). However, amongst overweight and obese

participants, a negative association between CR and BMI was found amongst Fenland men

(β=−0.22kg/m2 (95% CI: -0.43, -0.00); p=0.05) and women (β=−0.64kg/m2 (95% CI: -0.97,

-0.33); p = 8.3×10−5). No association was found between CR and BMI amongst overweight

and obese participants in EDEN (men: β=0.01kg/m2 (95% CI: -0.13, 0.16); p=0.85. Women:

β=−0.08kg/m2 (95% CI: -0.28, 0.11); p=0.40).

4.4.2.2 The association between the BMI-GRS and eating behaviour traits

In both cohorts and in both sexes combined, the BMI-GRS was positively associated with

both EE and UE (EE: Fenland: p=0.02; EDEN: p=0.01. UE: Fenland: p = 5.0×10−4; EDEN:

p=0.04). Amongst men in both cohorts, the BMI-GRS was not associated with either the

linear or quadratic CR term p>0.05) (Table 4.4). Amongst women in both cohorts, the

BMI-GRS was positively associated with the linear CR term (p<0.05) but not to the quadratic

CR term (p>0.05). These results are shown in Table 4.4.

Individual SNP to EB associations are generally under-powered due to limited sample sizes

in both cohorts. However, in Fenland, 9 of the 96 BMI-associated SNPs included in the

BMI-GRS showed nominally significant associations (p<0.05) with EE (6 positive), 8 with UE

(5 positive) and 5 with CR (1 positive) (Appendix A.9). In EDEN, 4 of the 27 SNPs included

in the BMI-GRS showed nominally significant associations with EE (3 positive), 3 with UE (1

positive) and 2 with CR (2 positive) (Appendix A.10).
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4.4.2.3 Mediation by the eating behaviour traits

Emotional eating and Uncontrolled eating. In both cohorts, EE and UE partially mediated

the association between the BMI-GRS and BMI (Table 4.3). For EE, the mediation ratio

(Sobel test p-value) was 10% (p=0.02) in Fenland and 11% (p=0.01) in EDEN. For UE, the

corresponding values were 12% (p=0.0006) in Fenland and 6% (p=0.04) in EDEN. Controlling

for UE, EE did not independently mediate the BMI-GRS to BMI association in either cohort.

Controlling for EE, UE no longer mediated the association in EDEN. However, it remained a

partial mediator in Fenland (mediation ratio: 3% (Sobel test p-value = 0.02)) (Appendix A.7).

When the residuals from the regression of EE on UE (and UE on EE) were tested as a mediator

of the association between the BMI-GRS and BMI, only the residuals from the regression on

EE on UE, representing the independent effects of UE, in Fenland appeared to mediate the

association (mediation ratio: 4% (Sobel test p-value = 0.01)) (Appendix A.8).

Cognitive restraint. The quadratic CR term did not meet the pre-defined conditions to

be analysed as a mediator in Fenland or amongst EDEN men (see Section 6.3.2) as it was

not associated with both the BMI-GRS and BMI (Table 4.4). Despite the non-linearity of

the association between CR and BMI, amongst EDEN women only, the linear CR term was

associated with both the BMI-GRS and BMI. In this group only, the linear CR term appeared

to mediate the association between the BMI-GRS and BMI (mediation ratio=19%; Sobel test

p-value=0.0009).

78



4.4 Results

Ta
b

le
4.

3
M

ed
ia

ti
o

n
o

ft
h

e
B

M
I-

G
R

S
to

B
M

I
as

so
ci

at
io

n
b

y
E

E
an

d
U

E

B
M

I-
G

R
S

to
E

B
E

B
to

B
M

I
B

M
I-

G
R

S
to

B
M

I
B

M
I-

G
R

S
to

B
M

I
(a

d
j.

fo
r

E
B

)

E
ff

ec
ts

iz
ea

(9
5%

C
I)

p
-v

al
.

E
ff

ec
ts

iz
eb

(9
5%

C
I)

p
-v

al
.

E
ff

ec
ts

iz
ec

(9
5%

C
I)

p
-v

al
.

E
ff

ec
ts

iz
ed

(9
5%

C
I)

p
-v

al
.

So
b

el
te

st
p

-v
al

.
M

ed
ia

ti
o

n
ra

ti
o

(%
)

E
m

o
ti

o
n

al
ea

ti
n

g

Fe
n

la
n

d
(n

=3
51

5)
0.

04
(0

.0
1,

0.
07

)
0.

02
1.

78
(1

.6
3,

1.
94

)
<

1
×1

0−
10

0.
70

(0
.5

4,
0.

85
)

<
1
×1

0−
10

0.
63

(0
.4

8,
0.

78
)

<
1
×1

0−
10

0.
02

10
.0

%

E
D

E
N

(n
=2

15
4)

0.
06

(0
.0

1,
0.

10
)

0.
01

1.
22

(1
.0

4,
1.

39
)

<
1
×1

0−
10

0.
62

(0
.4

4,
0.

80
)

<
1
×1

0−
10

0.
55

(0
.3

8,
0.

72
)

4
×1

0−
10

0.
01

10
.8

%

U
n

co
n

tr
o

ll
ed

ea
ti

n
g

Fe
n

la
n

d
(n

=
35

15
)

0.
06

(0
.0

3,
0.

09
)

5
×1

0−
4

1.
50

(1
.3

5,
1.

65
)

<
1
×1

0−
10

0.
70

(0
.5

4,
0.

85
)

<
1
×1

0−
10

0.
61

(0
.4

6,
0.

76
)

<
1
×1

0−
10

6
×1

0−
4

12
.0

%

E
D

E
N

(n
=2

15
4)

0.
04

(0
.0

0,
0.

09
)

0.
04

0.
92

(0
.7

4,
1.

10
)

<
1
×1

0−
10

0.
62

(0
.4

4,
0.

80
)

<
1
×1

0−
10

0.
58

(0
.4

0,
0.

75
)

1
×1

0−
10

0.
04

6.
4%

E
at

in
g

b
eh

av
io

u
r

(E
B

);
ge

n
et

ic
ri

sk
sc

o
re

fo
r

B
M

I
(B

M
I-

G
R

S)
;b

o
d

y
m

as
s

in
d

ex
(B

M
I)

E
ff

ec
ts

iz
es

ar
e

fr
o

m
li

n
ea

r
re

gr
es

si
o

n
m

o
d

el
s

ad
ju

st
ed

fo
r

ag
e,

se
x

an
d

(i
n

E
D

E
N

)
re

cr
u

it
m

en
tc

en
tr

e
T

h
e

B
M

I-
G

R
S

an
d

E
B

tr
ai

ts
co

re
s

w
er

e
st

an
d

ar
d

is
ed

to
z-

sc
o

re
s.

B
M

I
w

as
in

kg
/m

2

a
SD

ch
an

ge
in

E
B

p
er

SD
in

cr
ea

se
in

th
e

B
M

I-
G

R
S;

b
ch

an
ge

in
B

M
I

(k
g/

m
2

)
p

er
SD

in
cr

ea
se

in
E

B
;c

ch
an

ge
in

B
M

I
(k

g/
m

2
)

p
er

SD
in

cr
ea

se
in

th
e

B
M

I-
G

R
S;

d
ch

an
ge

in
B

M
I

p
er

SD
ch

an
ge

in
th

e
B

M
I-

G
R

S,
ad

ju
st

ed
fo

r
E

B

79



Genetic susceptibility to obesity and eating behaviour

Tab
le

4.4
M

ed
iatio

n
o

fth
e

B
M

I-G
R

S
to

B
M

I
asso

ciatio
n

b
y

C
R

B
M

I-G
R

S
to

E
B

E
B

to
B

M
I

B
M

I-G
R

S
to

B
M

I
B

M
I-G

R
S

to
B

M
I

(ad
j.fo

r
E

B
)

E
ffectsize

b

(95%
C

I)
p

-val.
E

ffectsize
c

(95%
C

I)
p

-val.
E

ffectsize
d

(95%
C

I)
p

-val.
E

ffectsize
e

(95%
C

I)
p

-val.
So

b
eltest

p
-val.

M
ed

iatio
n

ratio
(%

)

C
o

gn
itive

restrain
t(lin

ear
term

)

M
enFen

lan
d

(n
=1646)

0.00
(-0.05,0.05)

0.94
0.14

(-0.06,0.35)
0.17

0.79
(0.60,0.99)

<
1×

10 −
10

–
–

–
–

E
D

E
N

(n
=954)

0.04
(-0.02,0.10)

0.21
0.98

(0.76,1.20)
<

1×
10 −

10
0.37

(0.15,0.60)
1×

10 −
3

–
–

–
–

W
o

m
en

Fen
lan

d
(n

=1869)
0.07

(0.03,0.12)
9×

10 −
4

0.10
(-0.15,0.35)

0.42
0.61

(0.38,0.85)
5×

10 −
7

–
–

–
–

E
D

E
N

(n
=1200)

0.10
(0.04,0.15)

6×
10 −

4
1.62

(1.36,1.88)
<

1×
10 −

10
0.80

(0.53,1.07)
6×

10 −
9

0.65
(0.39,0.90)

<
1×

10 −
10

9×
10 −

4
19.0%

C
o

gn
itive

restrain
t(q

u
ad

ratic
term

) a

M
enFen

lan
d

(n
=1646)

0.00
(-0.01,0.01)

0.96
-1.80

(-2.53,-1.07)
2×

10 −
6

0.79
(0.60,0.99)

<
1×

10 −
10

–
–

–
–

E
D

E
N

(n
=954)

-0.02
(-0.09,0.04)

0.51
-0.34

(-0.55,-0.14)
9×

10 −
4

0.37
(0.15,0.60)

1×
10 −

3
–

–
–

–

W
o

m
en

Fen
lan

d
(n

=1869)
-0.01

(-0.02,0.01)
0.31

-2.16
(-3.02,-1.30)

8×
10 −

7
0.61

(0.38,0.85)
5×

10 −
7

–
–

–
–

E
D

E
N

(n
=1200)

-0.01
(-0.08,0.05)

0.71
-0.49

(-0.71,-0.27)
1×

10 −
5

0.80
(0.53,1.07)

6×
10 −

9
–

–
–

–

E
atin

g
b

eh
avio

u
r

(E
B

);gen
etic

risk
sco

re
fo

r
B

M
I

(B
M

I-G
R

S);b
o

d
y

m
ass

in
d

ex
(B

M
I).E

ffectsizes
an

d
95%

C
Is

are
fro

m
lin

ear
regressio

n
m

o
d

els
ad

ju
sted

fo
r

age,sex
an

d
(in

E
D

E
N

)
recru

itm
en

tcen
tre.T

h
e

B
M

I-G
R

S
an

d
T

F
E

Q
sco

res
w

ere
allstan

d
ard

ised
to

z-sco
res

(m
ean

=0;SD
=1).

a
E

ffectestim
ates

refer
to

th
e

q
u

ad
ratic

term
.M

o
d

els
w

ere
ad

d
itio

n
ally

ad
ju

sted
fo

r
th

e
lin

ear
term

;
b

SD
ch

an
ge

in
E

B
p

er
SD

in
crease

in
th

e
B

M
I-G

R
S;

c
ch

an
ge

in
B

M
I

(kg/m
2)

p
er

SD
in

crease
in

E
B

;
d

ch
an

ge
in

B
M

I
(kg/m

2)
p

er
SD

in
crease

in
th

e
B

M
I-G

R
S;

e
ch

an
ge

in
B

M
I

(kg/m
2)

p
er

SD
in

crease
in

th
e

B
M

I-G
R

S
ad

ju
sted

fo
r

E
B

.–
N

o
tap

p
licab

le.T
h

e
E

B
w

as
n

o
tasso

ciated
w

ith
b

o
th

th
e

B
M

I-G
R

S
an

d
B

M
I

an
d

,as
su

ch
,co

u
ld

n
o

tb
e

co
n

sid
ered

as
a

m
ed

iato
r

80



4.4 Results

4.4.3 The analysis of effect modification

A nominally significant interaction between CR and the BMI-GRS on BMI was observed

amongst men in both cohorts (Fenland: p-interaction=0.04; EDEN: p-interaction=0.0001)

and Fenland women (p=interaction=0.0004) but not EDEN women (p=interaction=0.15). EE

and UE did not interact with the BMI-GRS in either cohort (all p>0.05).

Amongst all groups demonstrating evidence of a BMI-GRS×CR interaction, grouping the

participants into tertiles by CR score showed that the association between the BMI-GRS and

BMI was strongest in the lowest tertile of CR and weakest in the highest tertile (Figure 4.3;

Table 4.5).

(a) Fenland (b) EDEN

Figure 4.3 Association between the BMI-GRS and BMI within tertiles of CR. The graphs
plot the effect estimates and 95% CIs from the linear regression of the BMI-GRS on BMI
(y-axis) by tertiles of CR (x-axis). The units are change in BMI (kg/m2) per SD increase in
the BMI-GRS. The regressions were sex-stratified and age-adjusted. In EDEN, recruitment
centre was also included in the models.

Table 4.5 The BMI-GRS to BMI association within tertiles of cognitive restraint

Men Women

Effect sizea

(95% CI) p-value
Effect sizea

(95% CI) p-value

Fenland

Lowest CR tertile 0.97 (0.64, 1.30) <0.0001 0.98 (0.59, 1.37) <0.0001

Middle CR tertile 0.87 (0.53, 1.21) <0.0001 0.42 (-0.03, 0.87) 0.07

Highest CR tertile 0.40 (0.05, 0.75) 0.03 0.21 (-0.17, 0.60) 0.28

EDEN

Lowest CR tertile 0.72 (0.36, 1.07) <0.0001 0.30 (-0.08, 0.69) 0.10

Middle CR tertile 0.47 (0.09, 0.85) 0.02 0.81 (0.36, 1.25) 0.0004

Highest CR tertile -0.18 (-0.57, 0.21) 0.40 0.92 (0.44, 1.40) 0.0002

Cognitive restraint (CR)
a Effect sizes are from the linear regression of the BMI-GRS on BMI, adjusted for participant age. The units are

change in BMI (kg/m2) per SD increase in the BMI-GRS
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4.4.4 Sensitivity analyses

In EDEN, using the self-reported pre-pregnant BMI of women in place of the self-reported

2 year post-partum BMI, did not substantially alter the results of the mediation analysis.

EE, UE and the linear CR term each remained partial mediators of the BMI-GRS to BMI

association explaining 11%, 7% and 22% of the association, respectively (Sobel test p-values:

0.01, 0.03 and <0.01) (Appendix A.11).
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4.5 Discussion

4.5.1 Summary and context of the main findings

This analysis showed that genetic susceptibility to obesity is both mediated and modified

by different aspects of EB. These findings were based on 3515 predominantly white British

adults aged 35-64 years from the Fenland study and 2154 French adults aged 18-56 years

from the EDEN study. In these groups, appetitive EB traits (EE and UE) partially mediated

the association between the BMI-GRS and BMI whilst, with the exception of EDEN women,

the association was modified by CR. The results highlight the importance of behavioural

pathways in the aetiology of obesity. Relationships between other aspects of behaviour and

body weight are explored in Chapters 5 and 6.

4.5.1.1 Appetitive traits.

In both the Fenland and EDEN cohorts, EE and UE demonstrated positive linear associations

with both BMI and the BMI-GRS, allowing them to be tested as mediators. Although

the present investigation was cross-sectional, precluding the drawing definitive causal

inferences, the positive association between BMI and these traits is consistent with reports

that appetitive EB traits predict weight gain in adulthood [106, 120, 123, 127]. In keeping

with the weight of evidence that appetitive EB traits impact BMI, we modelled EB as the

exposure and BMI as the outcome in all models. Future prospective research and genetic

studies (such as Chapter 7) are needed to further confirm this direction of association.

The finding that EE and UE partially mediated genetic susceptibility to obesity corroborates

a growing body of evidence in support of BST [102]. This theory is outlined in Chapter 1 and

proposes that appetitive EB traits lie on the causal pathway between BMI-related genetic

variants and obesity. Previous evidence in support of BST includes enriched expression of

genes associated with obesity-related genetic variants in brain regions involved in appetite

regulation [149] and reported relationships between single BMI-related genetic variants

and appetitive aspects EB [158, 151, 159, 160]. Explicit testing for mediation of genetic

susceptibility to obesity by appetitive traits had only previously been reported by three

studies, one in adults and two in children. Our findings extended these reports, testing CR

as a mediator and exploring modification of this pathway by EE, UE and CR for the first

time. Following the publication of our study, two further investigations have been reported.

The single previous adult study tested for mediation of the association between a 90 SNP

BMI-GRS and BMI by UE and EE in two Finnish cohorts: DILGOM (adults aged 25-74

years) and FinnTwin12 (adults aged 21-26 years ) [161]. In keeping with our findings, EE

partially mediated the association in both cohorts. However, UE was a partial mediator in

DILGOM only. The lack of mediation by UE in FinnTwin12 may reflect differences between
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the FinnTwin12 participants and other cohorts. Notably, the FinnTwin12 participants had a

mean age of 22 years, 8 years younger than the mean age amongst EDEN women (mean age:

30 years), who constitute the next youngest group. Further research is therefore needed to

determine whether age influences the mediating effect of UE. However, results in children

suggest this is an unlikely explanation. The finding may also be explained by low levels of

obesity in FinnTwin12 (6% of men and 5% of women compared to 20% of men and 23% of

women in DILGOM). CR was not tested as a mediator.

In 2018, following the publication of the present study, the mediation of genetic suscep-

tibility to obesity by EB traits was tested in the Quebec Family Study [311]. Amongst 750

adults with a mean age of 44 years, the association between an unweighted 97 SNP BMI-GRS

and BMI was partially mediated by disinhibition and susceptibility to hunger, measured

using the TFEQ-51. Following failures to replicate the factor structure of the TFEQ-51, the

questionnaire was revised and reduced to create the TFEQ-R18 [40]. During this revision,

items on the disinhibition and hunger scales were primarily assigned to UE and reflect

appetitive EB traits [40]. Thus these findings can broadly be considered to replicate ours.

This study is the only other investigation to test CR as a mediator. It replicated our findings

suggesting that CR does not mediate genetic susceptibility to obesity. The study did not

explore effect modification.

Amongst children, mediation of a 28 SNP BMI-GRS to BMI association by SR was demon-

strated in 8-11 year olds (n=2258) [163]. SR measures sensitivity to feelings of hunger and

fullness and is only measured in adults using the Adult Eating Behaviour Questionnaire

(developed in 2016) [59]. No formal comparison studies have been reported comparing SR

to either UE or EE. However, the items that comprise the SR scale of the CEBQ are compara-

ble to some items that comprise the UE scale of the TFEQ-R18. A second study amongst

6−8 year olds did not detect mediation of the association between a 32 SNP BMI-GRS and

weight gain by EB (n=662) [164]. It is possible that this study was not powered to detect

mediation, or that mediation is not evident for weight gain. A third study published in

2019 showed that appetite, measured by a single item, partially mediated the association

between a 16 SNP BMI-GRS and BMI amongst 1142 children aged 2-5 years from the EDEN

study [162]. Together, these findings suggest that the mediating effect of appetitive EB traits

demonstrated in adulthood may also be evident amongst young children. Future research

is needed to highlight specific aspects of childhood EB that mediate genetic susceptibility to

obesity and how these relate to EB traits in adulthood. Studies using weight gain, as opposed

to weight or BMI, as the outcome are also needed amongst both adults and children.

4.5.1.2 Cognitive restraint.

Our results suggest that the relationships between CR, the BMI-GRS and BMI are distinct

from those of EE and UE. First, the association between CR and BMI was quadratic. Amongst
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underweight and normal weight participants (BMI <25kg/m2), there was a positive linear

association, whilst amongst overweight and obese participants (BMI ≥ 25kg/m2), the asso-

ciation was negative in Fenland women and non-significant in all other groups. Previously,

studies have assessed the association between CR and BMI in linear models. Whilst some

have identified a positive association [119, 124, 107, 110, 68, 112, 114, 92], others have re-

ported no association [126, 125]. Two previous studies have suggested that CR is positively

associated with BMI amongst normal weight but not overweight individuals [131, 88]. Thus

these findings contribute to research suggesting that the association between CR and BMI

is BMI-dependent.

We do not conclude that CR is a positive mediator of the genetic susceptibility to higher BMI,

as indicated by EDEN women. Supported by evidence that changes in BMI predict changes

in CR, we speculate that CR represents a response to increasing BMI amongst normal weight

individuals [136–138]. This is supported by evidence from other studies suggesting that

CR is more often motivated by a desire to prevent weight gain than to instigate weight

loss [312, 51]. Further, in a previous study, higher scores for restraint were identified in

non-obese adults who reported a history of obesity compared to non-obese adults with no

history of obesity [313]. This speculatively suggests that CR might be an effective means of

controlling the weight amongst normal weight individuals with a propensity to, or history

of, weight gain. Conversely, the abandonment of restraint might contribute to overweight

and obesity, explaining the quadratic association in our study [131, 88]. Longitudinal data

with repeated assessments of EB and BMI, as well as genetic evidence, are needed to better

understand this relationship.

In support of a limiting effect of CR on BMI, we show for the first time that CR modifies the

association between the BMI-GRS and BMI. In all groups showing an interaction between

the BMI-GRS and CR on BMI (men in both cohorts and Fenland women), the effect of

the BMI-GRS on BMI was strongest amongst those with the lowest levels of CR and was

weakest amongst those with the highest levels of CR. This novel finding suggests that CR

may protect genetically susceptible individuals from excessive weight gain. Following the

publication of this investigation, our finding of an interaction between the BMI-GRS and CR

has been replicated using weight gain as the outcome. In a cohort of ∼ 5000 Finnish adults

aged 25-74 years enrolled in the DILGOM study, the association between the BMI-GRS and

annual weight gain from age 20 years to baseline was modified by CR [138]. Dietary restraint

might be beneficial to weight control. Whilst interventions to alter CR have not yet been

developed, other behaviours that encourage control over consumption are modifiable. The

role of maternal attitudes that are amenable to change in modifying determinants of infant

weight gain is explored in Chapter 5.
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4.5.2 Strengths and limitations

This study was conducted amongst two large, well phenotyped, population-based cohorts.

Both used the same validated measure of EB, facilitating direct comparison of results. Given

the public health significance of obesity and mixed messages regarding the role of restraint

over eating, with some evidence suggesting that restraint leads to weight gain, the findings

make an important contribution to the literature.

The main limitation was the cross-sectional design of the analyses. We chose to model EB

traits as the cause, rather than the outcome, of BMI. This decision was based on evidence

from longitudinal research suggesting a prospective association between appetitive traits

and weight gain in adulthood and the expression of genes associated with BMI-related

genetic variants in regions of the brain involved in appetite regulation. However, further

longitudinal research is needed, especially in the case of CR. Genetic evidence could also be

used in the future to help clarify causality (as in Chapters 6 and 7). Further, whilst the results

in the two cohorts are broadly consistent, no modifying effect of CR was identified amongst

EDEN women. EBs and BMI were assessed in EDEN women at 2 years post-partum, a time

when CR and weight are plausibly still altered by pregnancy. However, the results were

similar when using self-reported pre-pregnant BMI and it remains uncertain why CR might

have a different relationship with BMI in this group, particularly in light of replication of the

CR modification results in a subsequent study published in 2018 [138].

4.5.3 Conclusions

Our results indicate that genetic susceptibility to obesity in adulthood is partially mediated

by appetitive EB traits and modified by CR. These findings support the view that appetitive

traits lie on the causal pathway between genetics and weight status and suggest that they

may provide a target for obesity prevention. Further, the findings demonstrate a novel

relationship between the genetic determinants of obesity and CR, indicating that CR may

protect genetically vulnerable individuals from obesity. This challenges the assertion that

high levels of CR increase obesity risk and highlights CR as an additional target for obesity

prevention.
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CHAPTER 5

MATERNAL ATTITUDES TO FOLLOWING HEALTHY

INFANT FEEDING GUIDELINES AND THE ASSOCIA-

TIONS BETWEEN INFANT EATING BEHAVIOUR,

MILK INTAKE AND BODY WEIGHT

Publications

This study is being prepared for submission:

Clifton, E.A.D., Amy, A.L., Day, F.R., Sharp, S.J., Griffin, S.J., Ong, K.K. and Lakshman,

R. (2019). Positive maternal attitudes to healthy infant feeding guidelines attenuate the

associations between infant appetitive traits and both infant milk intake and body weight.

Contributions

I planned this project and devised the analysis plan in collaboration with my supervisors.

I cleaned and prepared the Baby Milk Trial dataset such that it could be used in this and

other projects, including the main trial paper. I generated the EB trait and maternal atti-

tudes scores, conducted the statistical analyses and jointly interpreted the results with my

supervisors. I wrote this chapter and the resulting manuscript, which is being prepared for

submission.
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5.1 Summary

Infancy is increasingly recognised as a critical period for the development of lifetime obesity

risk. The findings reported in Chapter 4 suggest that whilst appetitive eating behaviour

(EB) traits lie on the causal pathway between genetics and body weight in adulthood,

the determinants of obesity can also be modified by exerting control over consumption.

However, exercising restraint requires cognitive capabilities that do not arise during infancy.

Whether there are modifiable maternal factors that interact with infant appetitive EBs, and

could attenuate their associations with milk intake and body weight in early life, is not

yet known. Amongst 669 infants enrolled in the Baby Milk Trial, we demonstrated age

and sex-adjusted cross-sectional associations between two infant EB traits (infant food

responsiveness (FR) and satiety responsiveness (SR)), measured using the Baby Eating

Behaviour Questionnaire (BEBQ), and both infant milk intake and body weight. We then

analysed whether maternal attitudes to following healthy infant feeding guidelines were

associated with these outcomes and, secondarily, whether they modified the effect of the

infant EB traits. Positive maternal attitudes to following healthy infant feeding guidelines

were associated with lower infant milk intake and body weight. Further, maternal attitudes

attenuated the positive association between infant FR and infant milk intake (p=0.049) and

the negative association between infant SR and infant body weight (p=0.01). Overall, in

this formula-fed cohort, positive maternal attitudes to following healthy infant feeding

guidelines attenuated the association between infant EB traits and both milk intake and

body weight. These findings indicate that promoting positive maternal attitudes to feeding

guidelines may help infants to achieve a healthy weight through ensuring appropriate milk

consumption, regardless of their EB tendencies.
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5.2 Background

The mediation and modification of genetic susceptibility to obesity by adult EB traits is

characterised and described in Chapter 4. The findings support other evidence suggesting

that appetitive EB traits lie on the causal pathway to obesity, indicating that EE and UE

partially mediate the effect of the genetic determinants of BMI. Further, CR was shown

to modify genetic susceptibility to obesity. Whilst interventions designed to support CR

may help genetically vulnerable adults to avoid or reverse obesity in the future, cognitive

strategies are not applicable to early life due to their dependence on self-awareness and

self-control, abilities that arise later in development [314]. Rapid weight gain during the first

1000 days, from conception to the age of 2 years, is considered an important determinant of

lifetime obesity risk [165, 37, 166]. Whether known determinants of infant weight gain for

which there are no existing interventions, interact with modifiable factors to influence milk

intake and body weight is not yet known. Here, we investigated the associations between

infant EB traits, maternal attitudes to following healthy infant feeding guidelines, infant

milk intake and infant body weight.

Infant EB and its relationship to weight is described in detail in Section 1.4.2. Briefly, EB in

infancy is typically assessed using the BEBQ, a parent-report questionnaire that measures 4

EB traits: food responsiveness (FR; 6 items), satiety responsiveness (SR; 3 items), enjoyment

of food (EF; 4 items) and slowness in eating (SiE; 4 items) (Appendix C.1). Higher scores on

the FR and EF scales of the questionnaire are considered to be associated with a greater

tendency towards ‘food approach’. FR conveys an infant’s desire to eat (example item: my

baby is always demanding a feed) and EF measures perceived liking for milk and feeding

(example item: my baby enjoys feeding time). Higher scores on SiE and SR are together

considered to be associated with greater ‘food avoidance’ and describe the pace of typical

eating (example item: my baby feeds slowly) and ease of becoming full (example item: baby

gets full up easily), respectively [39].

Infant EB traits demonstrate longitudinal stability between the ages of 3 and 15 months [104].

In separate studies amongst young children, the same traits have also been reported to track

between 2-5 years, 3-4 years and 4-11 years [315, 316, 41]. Infant EB profiles characterised

by high drive to eat (high FR) and muted response to feelings of fullness during feeding (low

SR) are prospectively associated with more rapid weight gain during the first 15 months of

life [142]. Further, infant appetite measured at 3 months predicts weight gain over the first 2

years of life [143]. Although some evidence suggests that the relationship between infant

appetite and infant weight may be bi-directional, the prospective association of infant EB

to weight gain is stronger than the association of weight gain to EB [141].

In light of their links to weight gain, in theory, infant EB traits provide a potential infant-

specific target for obesity prevention. However, their determinants are elusive. Twin studies

suggest that they are heritable and share a genetic basis with weight but no gene discovery
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analyses have been performed and specific genetic variants have yet to be identified [104].

Amongst adults, this is addressed in Chapter 7. The role of other potential determinants of

infant EB traits is supported by mixed evidence. For example, in separate studies, previous

breastfeeding has been positively associated with SR measured at 6-12 months and 18-

24 months, and with SiE [317, 145, 181]. However, these studies may be vulnerable to

reverse-causality, whereby breastfeeding is stopped amongst infants with low SR and SiE.

Furthermore, no impact on FR or EF was identified and a separate study reported decreased

SR and increased FR amongst previously breastfed infants, suggesting a more appetitive

profile [39].

Parental feeding styles and practices have also been analysed as potential determinants

of infant EBs. Amongst 323 mother-child dyads, maternal restriction, emotional feeding

and encouragement to eat were associated with increases in EF, EE and general appetite in

children, whilst maternal monitoring was associated with reductions in ‘food approach’ EBs

(EF and FR), amongst 2-3 year olds [318]. The same study showed that parental practices

are also responses to child EB. Overall, whilst maternal concerns and behaviours have been

correlated with infant EB, the totality of the evidence leaves the directions of effect unclear

[175]. A 2004 systematic review based on 22 studies concluded that parental restriction was

associated with higher childhood weight [175]. However, 19 of the 22 studies were cross-

sectional. Amongst over 400 Australian mother-infant dyads, the mothers of infants with

higher SR and lower EF reported greater concern about their infant becoming underweight

whilst the mothers of infants with higher FR reported more concern about their infant

becoming overweight [319]. This suggests that parental concern and feeding responses may

be reactions to, rather than causes of, infant eating characteristics. In sum, as a result of

poor understanding of their determinants, there are no known interventions that reliably

influence the development of infant EB traits.

Alongside infant EB traits, parental feeding styles have separately been associated with

infant weight trajectories in prospective studies [141, 320]. Unlike infant EBs, parental feed-

ing behaviours are modifiable. Interventions designed to influence these behaviours have

successfully promoted healthy infant weight gain in randomised controlled trials (RCTs)

[183, 321, 259]. For example, an intervention designed to promote responsive parenting

reduced infant weight gain up to the age of 6 months, probability of overweight at 1 year and

BMI z-score at 3 years, relative to a home-safety intervention [183, 184]. Further, an RCT of

an intervention designed to promote responsive feeding, reduce milk intake and promote

weight monitoring slowed infant weight gain and reduced milk intake amongst infants

aged up to 6 months, relative to general advice [321, 259]. These trials tested interventions

that balanced responsivity to a child’s cues of hunger and satiety with a degree of parental

control over consumption.

In light of evidence that infants gain weight at a similar pace whether or not they are given

control of their consumption through practices such as baby-led weaning, parental attitudes
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and behaviours may be important to the avoidance of overfeeding [180, 322]. This may

be particularly pertinent amongst infants with more appetitive EB profiles, who have a

tendency to over-consume. The results of the Baby Milk Trial indicate that parental attitudes

to following infant feeding guidelines are modifiable [321]. However, little is known about

their relationship to infant feeding and body weight.

Here were explored the associations between maternal attitudes to following healthy infant

feeding guidelines, infant EB traits, infant milk intake and infant body weight amongst

formula-fed infants enrolled in the Baby Milk Trial. The study was designed to determine

whether the impact of infant EB traits can be modified by maternal attitudes.
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5.3 Participants and methods

5.3.1 Participants

Participants in this analysis comprised 669 mother-infant dyads enrolled in the Baby Milk

Trial (mean infant age: 2 months). A full description of the Baby Milk Trial is provided in

Section 2.3.1.

5.3.2 Methods

5.3.2.1 The assessment of infant eating behaviour

Infant EB was assessed using the retrospective version of the BEBQ, completed at the 6

month follow-up assessment (Appendix C.1). The questionnaire is described in greater

detail in Chapter 1. Briefly, the BEBQ is a parent-report measure used to derive scores for

4 infant traits through 18 items: FR (6 items), SiE (4 items), SR (3 items) and EF (4 items)

[39]. A single item measures general appetite. Each item is scored on a 5-point Likert scale,

where higher scores indicate higher levels of the EB to which the item corresponds. The

mean score for items comprising each of the 4 EB traits was calculated, resulting in a score

between 1 to 5 for each of the 4 EB traits. In order to limit the number of tests performed, it

was decided a priori that only FR and SR would be included in the analyses. These are the

most widely studied of the infant EBs.

Cronbach’s alpha was used to test the inter-correlations between the individual question-

naire items comprising each scale. For both FR and SR, these were 0.80, suggesting a high

level of internal consistency between the items comprising each EB trait.

5.3.2.2 The assessment of maternal attitudes to infant feeding guidelines

Maternal attitudes to following healthy infant feeding guidelines were assessed at baseline,

following recruitment to the Baby Milk Trial, but prior to intervention exposure. An 11-

item self-report questionnaire designed to measure theory-based constructs surrounding

parental attitudes to infant feeding was used (Appendix C.2) [323]. Each item was scored

on a 5 point scale from Strongly disagree (scored as 1) to Strongly agree (scored as 5), with

higher scores reflecting greater endorsement of the item. The questionnaire was used to

generate scores on three sub-scales: self-efficacy (SE; 4 items), outcome expectancy (OE; 5

items) and intention (2 items).

SE and OE are important constructs in Social Cognitive Theory (SCT), which emphasises

their role as mediators of behavioural change. In support of this theory, higher SE and
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OE scores have been associated with greater success in changing behaviour [324]. The

intentions measurement was derived from the Theory of Planned Behaviour [325]. This

theory hypothesises that, alongside perceptions of control, intentions to perform behaviour

account for considerable variance in realised actions. A meta-analysis of 94 studies to-

gether comprising 8461 participants, illustrated that intentions, identified by planning,

enhanced the likelihood of goal achievement beyond motivational components alone [326].

In the context of infant feeding, it has been hypothesised that SE, OE and intentions are

determinants of parental feeding behaviours [257].

SE describes an individual’s belief that they are capable of organising and executing the

actions required to manage a particular situation [327]. In the context of infant feeding, it

describes parental confidence in their ability to monitor their child’s feeding and growth

and to overcome barriers to these activities such that their child gains weight appropriately

(example item: I am confident that I can follow the new feeding recommendations, even if

my baby cries between feeds). OE describes an individual’s understanding of the probable

outcome of following a particular course of action [327]. For example, the degree to which a

parent expects their child to gain weight healthily if they follow feeding guidelines (example

item: If I follow the new feeding recommendations, my baby’s growth will be optimal).

Intention describes how strongly a parent plans to follow feeding guidelines (example item:

I intend to follow the new feeding recommendation).

Beyond the Baby Milk Trial, these constructs have not previously been applied to infant

EB. This questionnaire is un-validated and has yet to be used in other studies. As such, the

independence of the three theory-based attitudes that it measures had not previously been

assessed. In order to explore the factor structure of the questionnaire and to determine

whether three distinct attitudes could be identified in this sample, a factor analysis of the

11 items was performed. The analysis suggested the existence of one underlying factor

with an eigenvalue >1.0 (eigenvalue= 4.12) (Table 5.1). Ten of the 11 items demonstrated

strong, positive loadings onto this single factor (Appendix A.12). One item on the SE scale,

(It would be difficult for me to follow the feeding recommendations if my partner and family

do not support me), demonstrated a weak, negative loading onto this factor. The identified

factor explained just 1% of the variance in the item (Appendix A.12).

Based on the findings of the factor analysis it was concluded that the questionnaire did not

measure three distinct maternal attitude constructs, as hypothesised. Instead, the majority

of the items (10/11) likely reflect a single construct. As a result, we generated a combined

maternal attitudes score (MAS) by taking the mean of the 10 items that loaded positively

and strongly onto the single identified factor. We excluded the 11th item. Higher scores

reflect more positive attitudes to following healthy infant feeding guidelines.

Cronbach’s alpha for the 10 items comprising the MAS was 0.9, indicating high internal

consistency.
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Table 5.1 Factor analysis of the maternal attitudes questionnaire

Factor Eigenvalue

Factor 1 4.12

Factor 2 0.99

Factor 3 0.41

Factor 4 0.14

Factor 5 0.07

Factor 6 -0.01

Factor 7 -0.12

Factor 8 -0.12

Factor 9 -0.15

Factor 10 -0.18

Factor 11 -0.20

5.3.2.3 The assessment of infant milk intake and body weight

Infant milk intake. Infant milk intake was measured using parent-completed question-

naires delivered at baseline, prior to intervention exposure, when infants were approxi-

mately 2 months old (mean age=2.3 months (SD=0.9)). Values for typical total daily milk

consumption were calculated for each infant by summing the volume of: formula-milk,

expressed breastmilk and milk from direct breastfeeds consumed over a typical 24 hour

period. Formula-milk and expressed breastmilk intake were both assessed by multiplying

the number of parent-reported feeds in 24 hours by the average parent-reported quantity

consumed per feed. To calculate the quantity of milk consumed from direct breastfeeds, the

following equation was applied, based on the estimation that infants aged under 7 months

drink approximately 13.5ml/minute during breastfeeding [328]:

(Number of feeds in 24 hours)× (Average feed duration (mins)×13.5(ml/min))

We excluded three mother-infant dyads from the milk intake analysis. The calculated

values of total milk consumption for these infants were <300ml/day. These values were

substantially lower than the lowest retained value (340.8ml/day) and were considered to be

implausibly low.

Infant weight. Infant weight was measured at baseline by trained research assistants at

a research clinic using standard operating procedures (see Section 2.3.1). Infants were

weighed naked using a Seca Infant Electronic Scale to the nearest 0.01kg. Weight standard

deviation scores (SDSs) were calculated using the WHO 2006 Growth Standard and adjusted

for infant age and sex.
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5.3.2.4 The association of infant EB and maternal attitudes to infant milk intake and

body weight

Age and sex-adjusted linear regression models were used to test the associations between

infant EBs and milk intake. Infant sex was tested as a modifier of this association with the

intention of running sex stratified models if there was evidence of modification. The same

model, replacing infant EB with the MAS, was used to investigate the association between

the maternal attitudes and milk intake. The analyses were repeated using infant weight SDS

as the outcome.

At the time of the baseline assessment, participants had not been exposed to the interven-

tion. Thus the entire cohort was analysed together, without stratification or adjustment

for intervention group. The residuals from the regressions were checked for normality to

ensure that linear models were appropriate.

5.3.2.5 The analysis of effect modification

Effect modification is described in Section 4.3.2.5. Briefly, effect modification is said to

occur when the relationship between an exposure and an outcome differs by levels of a

third variable (the modifier). In this instance, the MAS was analysed as an effect modifier of

the association between infant EB and both infant milk intake and body weight. If a main

effect of both the infant EB and MAS on infant milk intake or body weight SDS was found,

we tested the interaction between the EB and MAS in the following linear regression model:

Milk intake or weight ∼ (Infant EB×MAS)+ Infant EB+MAS+ Infant sex+ Infant age

In order to interrogate the presence of differential effects between the groups, if an interac-

tion was detected, the cohort was divided into tertiles according to MAS. The association

between the infant EB and milk intake (or body weight SDS) was then tested separately

within each tertile.

5.3.2.6 Sensitivity analysis

Sensitivity analyses were performed, repeating the main analysis with additional adjust-

ment for maternal BMI, maternal age, maternal education level and maternal self-reported

ethnicity.
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5.4 Results

5.4.1 Characteristics of the study participants

A total of 669 mother-infant dyads were included in the analysis (Table 5.2). There was an

approximately even split between female and male infants (n=308 female; 46%). The mean

age of the mothers at the time of the baseline assessment was 31.6 years (SD=5.8) and the

majority reported their ethnicity as white (n=617 (94% of 653 who reported their ethnicity)).

FR, SR and MAS were each provided on a scale of 1-5. The mean milk intake of infants was

900.0ml/day (SD=214.4) and mean weight SDS, based on the WHO 2006 Growth Standard,

was -0.11SDs (SD=0.9). All infants were receiving formula milk at baseline. A small minority

were also receiving some breastmilk (n=87; 13%).

Table 5.2 Descriptive characteristics of the Baby Milk Trial participants (n=669)

Total (n=669)

Infant characteristics
Age (months) 2.3 (0.9)
Female 308 (46%)
Weight (kg) 5.5 (0.9)
Weight SDSa -0.1 (0.9)
Infant EBb Food responsiveness 2.1 (0.7)

Satiety responsiveness 2.4 (0.7)
Milk intake (ml/day) 900.0 (214.4)
Receiving any breastmilk 87 (13%)

Maternal characteristics
Attitudes score (MAS)b 3.4 (0.6)
Age (yrs) 31.6 (5.8)
White ethnicity 617 (94%)
Education group Degree or higher 243 (38%)

A-level/below degree 142 (22%)
GCSE/vocational 246 (38%)
Below GCSE 11 (2%)

BMI (kg/m2) 27.9 (5.5)

Paternal characteristics
BMI (kg/m2) 28.0 (5.2)

Eating behaviour (EB); Body mass index (BMI); standard deviation score (SDS);
Values are n (%) or mean (SD)
All information was collected at baseline, excluding infant EB, which was collected
at 6 month follow-up
a Weight SDS was based on the WHO 2006 Growth Standard and adjusted for
infant sex and age
b Infant EB traits and the MAS are on a 1-5 scale

96



5.4 Results

5.4.2 Infant EB traits and the maternal attitudes score

The infant EB scores were negatively correlated with each other (Pearson’s correlation

coefficient=-0.28; p<0.0001). There was no association between either of the infant EB traits

and the MAS (all p ≥ 0.05) (Table 5.3).

Table 5.3 Associations between infant EB traits and the MAS

Beta-MAS
(95% CI) p-value

Food responsiveness -0.04 (-0.11, 0.02) 0.19

Satiety responsiveness 0.02 (-0.05, 0.02) 0.02

Maternal attitudes score (MAS)

Effect estimates and p-values are from the linear regression

model: MAS ∼ infant EB (FR or SR) + infant sex + infant age

Units of the effect estimate are change in MAS per 1 point in-

crease in FR or SR

5.4.3 Infant EB traits and the maternal attitudes score to infant milk intake and

body weight

Table 5.4 Associations between infant EB traits and the MAS with infant milk intake and
body weight SDS

Milk intake Body weight SDS

Beta (95% CI)
(ml/day)a p-value

Beta (95% CI)
(SDs)b p-value

Infant EB

Food responsiveness 42.6 (18.7, 66.5) <0.001 0.26 (0.16, 0.35) <0.001

Satiety responsiveness -40.1 (-63.6, -16.6) 0.001 -0.18 (-0.27, -0.08) <0.001

Maternal attitudes score -68.4 (-96.6, -40.2) <0.001 -0.13 (-0.25, -0.02) 0.03

Eating behaviour (EB); standard deviations (SDs); standard deviation score (SDS)

Effect estimates and p-values are from the linear regression model: [infant milk intake or weight SDS] ∼
[infant EB or MAS] + infant sex + infant age
a Units of the effect estimate are change in milk intake (ml/day) per 1 point increase in FR, SR or the

MAS
b Units of the effect estimate are change in infant weight SDS (SDs) per 1 point increase in FR, SR or the

MAS

Both infant EB and the MAS were associated with infant milk intake and infant weight

SDS in separate linear regression models, adjusted for infant age at baseline and infant sex

(Table 5.4). Infant FR was positively associated with these outcomes, whilst infant SR and
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the MAS were both negatively associated (all p<0.05). There was no evidence that infant sex

modified the associations (Appendix A.14 and A.13).

5.4.4 The analysis of effect modification

We tested the associations between the infant EB traits to infant milk intake and weight SDS

for effect modification by the MAS. The results are reported separately for milk intake and

body weight.

5.4.4.1 Infant milk intake

There was evidence of an interaction between infant FR and the MAS on infant milk intake

(p = 0.049) (Table 5.5). When the cohort was split into tertiles according to the MAS, the

association between FR and milk intake was only significant amongst infants whose mothers

were members of the lowest MAS tertile (Beta = 66.8ml/day per unit increase in FR (95%

CI: 17.8, 115.8); p = 0.01). In the middle and highest MAS tertiles, there was no significant

association between infant FR and infant milk intake (Middle tertile: Beta = 24.1ml/day

(95% CI: -12.5, 60.7); p = 0.20; Highest tertile: Beta = 36.0ml/day (95% CI: -4.0, 76.1); p = 0.08)

(Figure 5.1; Appendix A.15). There was no evidence of an interaction between infant SR

and the MAS on infant milk intake (p = 0.28) (Table 5.5).

Figure 5.1 The association between infant food responsiveness and infant milk intake
by tertiles of the MAS. The association between infant FR and infant milk intake within
tertiles of the MAS is plotted on the y-axis. The tertiles of the MAS are shown on the x-axis.
The graph shows attenuation of the FR to milk intake association with higher MAS. Effect
estimates are ml/day per 1 point increase in FR and are displayed with 95% CIs.
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Table 5.5 The interaction between infant EB traits and the MAS in the determination of
infant milk intake

β-infant EB(a)
(95% CI) p-value

β-MAS(b)
(95% CI) p-value

β-interaction(c )
(95% CI) p-value

Food responsiveness

MAS 174.7 (35.3, 314.2) 0.01 11.9 (-78.3, 102.0) 0.80 -40.1 (-80.1, -0.13) 0.049

Satiety responsiveness

MAS -113.9 (-251.5, 23.6) 0.10 -124.9 (-220.3, -29.4) 0.01 21.3 (-17.4, 60.1) 0.28

Eating behaviour (EB); maternal attitudes score (MAS)

Effect estimates and p-values are from the regression: Infant milk intake ∼ (Infant EB × MAS) + infant EB + MAS

+ infant sex + infant age. The units are change in infant milk intake (ml/day) per 1 point increase in a infant EB,
b the MAS or c the combined effect of infant EB and MAS

5.4.4.2 Infant body weight SDS

There was evidence of an interaction between infant SR and the MAS on infant weight

SDS (p = 0.01) (Table 5.6). When the cohort was split into tertiles based on the MAS,

the association between infant SR and weight SDS was strongest amongst infants whose

mother’s MAS scores were in the lowest tertile (Beta = -0.28 SDs/unit increase in infant SR

(95% CI: -0.47, -0.10); p=0.003) and weakest in the highest tertile (Beta = -0.02 SDs (95% CI:

-0.19, 0.14); p=0.77) (Figure 5.2; Appendix A.16;). There was no interaction between infant

FR and the MAS on infant body weight SDS (p = 0.13) (Table 5.6).

Figure 5.2 The association between infant satiety responsiveness and infant weight SDS
by tertiles of the MAS. The association between infant SR and infant weight SDS within
tertiles of the MAS is plotted on the y-axis. The tertiles of the MAS are shown on the x-axis.
The graph shows attenuation of the SR to weight SDS association by higher MAS. Effect
estimates are SDs of infant weight per 1 point increase in SR and are displayed with 95% CIs.
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Table 5.6 The interaction between infant EB traits and the MAS in the determination of
infant weight SDS

β-infant EBa

(95% CI) p-value
β-MASb

(95% CI) p-value
β-interactionc

(95% CI) p-value

Food responsiveness

MAS 0.69 (0.11, 1.27) 0.02 0.17 (-0.21, 0.54) 0.38 -0.13 (-0.29, 0.04) 0.13

Satiety responsiveness

MAS -0.94 (-0.15, -0.37) <0.01 -0.64 (-1.04, -0.23) <0.01 0.22 (0.06, 0.38) 0.01

Eating behaviour (EB); maternal attitudes score (MAS)

Effect estimates and p-values are from the regression: Infant weight SDS ∼ (Infant EB × MAS) + infant EB + MAS

+ infant sex + infant age. The units are change in infant weight SDS (SDs) per 1 point increase in a infant EB,
b the MAS or c the combined effect of infant EB and MAS

5.4.5 Sensitivity analyses

The associations between the infant EBs and MAS with infant milk intake and infant body

weight SDS were not substantively altered after adjustment for maternal BMI, maternal age,

maternal education and maternal ethnicity. All of the associations remained directionally

consistent and statistically significant following the addition of these variables to the models

(Appendix A.17). The adjustments did not substantively alter the results of the interaction

analyses. The MAS×SR interaction term remained statistically significant in the infant SR to

infant weight SDS regression (p=0.01), although the FR×MAS interaction no longer reached

statistical significance in the infant FR to infant milk regression (p=0.07) (Appendix A.18).

100



5.5 Discussion

5.5 Discussion

5.5.1 Summary and context of the main findings

Amongst 669 mother-infant dyads enrolled in the Baby Milk Trial, infant EB traits (FR and

SR) and maternal attitudes to following healthy infant feeding guidelines were separately

associated with both infant milk intake and body weight during the period of exclusive

milk-feeding. Whilst infant SR and maternal attitudes were negatively associated with

both outcomes, FR was positively associated. Beyond their separate associations, there was

evidence of an interaction between infant EB traits and maternal attitudes. Specifically, more

positive maternal attitudes towards following healthy infant feeding guidelines attenuated

the positive association between infant FR and infant milk intake, such that the magnitude

of the positive association between FR and milk intake was greatest in the lowest tertile

of the maternal attitudes score and was non-significant in both the middle and highest

tertiles. Positive maternal attitudes also attenuated the negative association between infant

SR and infant body weight, such that the magnitude of the negative association between SR

and infant body weight was highest in the lowest tertile of the maternal attitudes score and

lowest in the highest tertile.

Together, the findings highlight maternal attitudes to following healthy infant feeding

guidelines as a potential novel determinant of infant weight and milk intake with the

ability to modify the impact of infant EB traits on these outcomes. As such, these attitudes

represent a possible target for interventions designed to promote healthy infant weight.

Recent data from the UK in 2017 indicates that 75% of children aged 0-12 months consume

more than the average estimated energy requirement and weigh above the median WHO

growth standard [329]. Given the known association between infant weight gain and obesity,

this raises concern about lifetime obesity risk [141, 165]. Mounting evidence suggests

that over-feeding can be driven either by infants or their caregivers [180]. For example,

formula-fed infants typically exhibit more rapid weight gain trajectories than their breastfed

counterparts [330, 331]. This is thought to be driven, in part, by parent-led over-feeding,

including the encouragement to empty bottles [332]. In addition, trial evidence suggests that

allowing infants to control their intake through encouraging self-feeding during weaning

does not aid the development of self-regulation but rather leads to infant-driven over-

feeding [180]. Insufficient weight gain during infancy can also result from either infant or

parent-driven factors and weight faltering can adversely impact immunity, linear growth,

final height and cognitive development [333–336].

In light of evidence that consumption and growth depend on both parent and infant driven

factors, infant feeding outcomes are increasingly considered the joint responsibility of

infants and their caregivers. Specifically, infants are responsible for detecting and accurately

signalling feelings of hunger and satiety whilst caregivers are responsible for interpreting
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and responding appropriately to these signals (Chapter 1) [173, 182]. Our results support

this assertion. Consistent with previous research, we report positive associations between

infant’s drive to eat (FR) and both milk intake and weight SDS, whilst infant’s sensitivity to

feelings of fullness (SR) demonstrated negative associations with both outcomes [141–143].

Further, we demonstrated a negative association between maternal attitudes to following

healthy infant feeding guidelines and these outcomes for the first time. This supports

experimental research suggesting that parental behaviours can limit infant food intake

and weight gain [183, 337]. Alongside their separate effects, the results demonstrated an

interplay between parents and infants in determining food intakes and body weight for the

first time. The finding that both obesity-increasing (FR) and decreasing (SR) infant EB traits

are modified by maternal attitudes is consistent with evidence that interventions to support

healthy feeding interactions prevent both infant weight faltering and infant overweight

[333].

Corroborating the findings reported in Chapter 4, the results of this study demonstrate that

the determinants of obesity interact. Both investigations illustrate that influences within

conscious control, that promote the monitoring and regulation of energy intake (CR and

maternal attitudes to feeding guidelines, respectively), can attenuate the impact of variables

that are either unmodifiable (genetic susceptibility to obesity) or cannot be modified by

existing interventions (infant FR and SR) on body weight.

5.5.2 Strengths and limitations

This study draws on the detailed assessment of infant milk intakes, weight and EB from

the Baby Milk Trial. Infant weight was measured by trained researchers, using established

protocols, and infant EB traits were measured using a widely used and well-validated

questionnaire. The study also applies a recently developed instrument to assess maternal at-

titudes to following infant feeding guidelines for the first time and illustrates the importance

of these attitudes to infant weight and milk intake.

There were several limitations. The study population was limited to formula-fed infants.

Whilst formula feeding is common practice both in the UK and globally and facilitated

more accurate quantification of milk intake in this analysis [338], the results may not

be generalisable to infants who are breastfed. Further, the associations and interactions

reported here are cross-sectional. We have assumed that infant EBs and maternal attitudes

influence infant milk intake and weight SDS with minimal reverse causality. Robust evidence

supports a causal impact of infant EBs on weight and consumption [141]. However, it is

possible that infant weight and milk intake influenced the maternal attitudes. The lack of

an association between maternal attitudes and infant EB in this sample supports the notion

that maternal attitudes may be independent of infant factors at this time point. However,

longitudinal analyses are required to provide clarity in this regard.
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There are also limitations to the measurement of infant EB and maternal attitudes. Infant

EB was measured at the 6 month follow-up assessment but referred to EB in the first 3

months, during the period of exclusive milk feeding. The mothers filled in a retrospective

version of the BEBQ, and the importance of referring exclusively to the first 3 months of

life was stressed. The questionnaire is validated and used widely amongst infants, even

beyond 6 months of age, and indeed was developed amongst 8 month old infants [39].

However, it is possible that subsequent infant EB and experiences at 6 months may have

impacted maternal responses. The maternal attitudes questionnaire has not been validated

against realised feeding behaviour. The associations of the maternal attitudes score to infant

milk intake and weight in the anticipated directions is reassuring in this regard. However,

these associations require replication and the aspects of feeding behaviour impacted by

the attitudes should be explored. Further, the questionnaire items were found to represent

a single underlying construct. Future research is needed to measure and understand the

separate implications of SE, OE and intention with regards to infant feeding.

A final note pertains to the recruitment of mother-infant pairs to the study. As mothers

were responsible for completing the questionnaires, the study was only able to examine

maternal attitudes. In all instances the mothers were the primary caregivers and this is

generally representative of infants in the UK at age 2 months, when paternity leave has

typically ended. We anticipate that paternal attitudes, and the attitudes of other caregivers,

would also influence infant feeding and body weight where responsibilities are shared or

mothers are not the primary caregivers.

5.5.3 Conclusions

For the first time, this study demonstrated an interaction between maternal and infant

factors in the determination of infant milk intake and body weight. The findings showed that

modifiable maternal attitudes to following healthy infant feeding guidelines are associated

with lower milk intake and weight. Further, in the same way that CR modified the impact

of genetic susceptibility to obesity on BMI in Chapter 4, maternal attitudes modified the

impact of infant EB traits on both milk intake and weight. Interventions designed to promote

positive maternal attitudes to following healthy infant feeding guidelines may support

healthy infant weight and intake amongst formula-fed infants during a critical period of

development for the determination of lifetime obesity risk. The findings support the results

of Chapter 4, demonstrating interactions between determinants of obesity and highlighting

promising intervention targets that may influence the impact of known but, as yet, un-

modifiable determinants of obesity.
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6.1 Summary

Previous studies have linked risk-taking to both obesity and eating behaviour (EB). How-

ever, the direction of causality and mechanisms of this association are not yet understood.

Chapters 4 and 5 indicate that separate behavioural phenotypes are linked to the aetiology

of obesity in different ways and that a better understanding of these pathways can highlight

potential targets for obesity prevention. Here, a genetic approach was used to investigate the

likely causal association between risk-taking, EB and BMI. A GWAS of risk-taking propensity

was conducted amongst 436,236 white European participants enrolled in the UK Biobank

(UKB) study. Genome-wide associations were identified at 26 loci (p < 5× 10−8), 24 of

which were novel. These loci implicated genes exhibiting enriched expression in the GABA

and GABA receptor pathways. Modelling the effect of risk-taking on BMI using Mendelian

Randomisation (MR) indicated a positive effect (0.25 approximate SDs of BMI (SE: 0.06);

p < 7×10−5), whilst a reverse MR indicated no effect of BMI on risk-taking. Within the MR of

risk-taking to BMI, the impact of individual risk-associated SNPs was highly heterogeneous.

This suggests a complex relationship between the traits, arising from multiple shared path-

ways as opposed to a single causal mechanism. Positive genetic correlations were identified

between risk-taking and WHR, childhood obesity, ever smoking, attention-deficit hyper-

activity disorder (ADHD), bipolar disorder (BPD) and schizophrenia, alongside a negative

genetic correlation with age at first birth amongst women. A genetic risk score for risk-taking

(risk-GRS) showed positive associations with EE amongst men in the Fenland study cohort.

Together, these findings confirm the utility of GWAS in exploring the relationship between

behaviour and obesity and suggest that the behavioural pathways involved in risk-taking

propensity may play a role in obesity, smoking and psychiatric disorders.
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6.2 Background

Risk-taking propensity describes a tendency to engage in reward-seeking actions despite

the possibility of negative consequences [205]. Whilst risk-taking typically peaks during

adolescence, inter-individual differences demonstrate longitudinal stability and risk-taking

propensity is considered a stable trait, representing an established risk factor for a range

of health-related behaviours including smoking, alcohol use and binge-eating [240, 340–

342, 206, 343]. Together Chapters 4 and 5 indicate that behavioural pathways are involved

in the aetiology of obesity. Increasingly, research suggests a specific association between

risk-taking and BMI [203, 204].

Cross-sectional associations between risk-taking and obesity have been reported across

a range of experimental and observational studies. Amongst 121 participants, overweight

and obese men took more risks in a laboratory-based gambling task and obese women

exhibited higher impulsivity, relative to those of normal weight [203]. In addition, compared

to their normal weight peers, adolescents with a BMI above the 99th percentile for their age

and sex exhibit greater odds of a range of risk-taking behaviours, including smoking and

having used drugs or alcohol before their last sexual encounter [222]. Other findings suggest

that obese individuals are more likely to neglect long-term outcomes in decision-making,

making them more prone to impulsive actions [207].

Whilst studies suggest an association between risk-taking propensity and obesity, the di-

rection of causality and potential mechanisms of this association, including EB, require

further investigation. Aspects of impulsivity, a trait closely linked to risk-taking, have been

consistently associated with measures of dietary and eating-related behaviour linked to

over-eating, including snacking [234, 235]. In particular, attentional impulsivity (the in-

ability to stay focused) has been positively associated with measures of the salience of

external food cues, such as the pleasantness of high-calorie foods, perceptions of hunger,

disinhibition and external eating [236, 237]. It has been hypothesised that high attentional

impulsivity might increase susceptibility to palatable food cues, inducing over-eating and

leading to weight gain over time [238]. However, the observation of ADHD-like symptoms

in the majority (∼ 80%) of homozygous carriers of MC4R mutations, who suffer early-onset

severe obesity, suggests the possibility of reverse causality or shared pathways [239]. One

approach to exploring the causal relationships between risk-taking, EB and BMI is MR using

genetic variants associated with risk-taking as instrumental variables.

Heritability estimates from twin studies of risk-taking, using both experimental and self-

report measures, range between 0-55%, indicating that it may be possible to study risk-

taking from a genetic perspective [240, 241]. Further, gene discovery studies of risk-related

behaviours have been reported. Among 125,667 adults enrolled in UKB, 38 loci were identi-

fied for age at first sexual intercourse [344]. One SNP identified in this analysis is intronic

to CADM2 (rs57401290) and has subsequently been associated with risk-taking assessed
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by the question: Overall, do you feel comfortable or uncomfortable taking risks? in an

independent sample of 140,487 participants from 23andMe using a phenome-scan for

associations between CADM2 and a range of personality traits (rs1865251; correlation (r 2)

with rs57401290 = 0.78) [243]. A GWAS of risk-taking propensity has been conducted among

116,225 UKB participants based on the question: Would you describe yourself as someone

who takes risks?. The study identified two genome-wide significant loci, one within CADM2

and the other within the human leukocyte antigen (HLA) region on chromosome 6. Genetic

correlations between risk-taking and schizophrenia, BPD, ADHD, post-traumatic stress

disorder, smoking and obesity were reported [242].

To identify genetic variants robustly associated with risk-taking propensity, we performed

the largest GWAS to-date amongst 436,236 white Europeans from UKB. The findings were

linked to other genome-wide results for obesity and other outcomes, as well as for gene

expression. A risk-GRS was used to examine associations with EB, food-related behaviour

and dietary intake.
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6.3 Participants and methods

6.3.1 Participants

6.3.1.1 UK Biobank

Genome-wide genotype and risk-taking data from 436,236 white European participants

aged 40-69 years in UKB was included in this analysis. Further details of UKB, including the

recruitment and genotyping methods are provided in greater detail in Chapter 2.

6.3.1.2 The Fenland study

The Fenland study population of the present analysis comprised up to 11,441 individuals

(52% women) aged 30-64 years with complete genome-wide genotype, dietary intake, food-

related behaviour and EB data. For a full description of the Fenland cohort, including

recruitment see Chapter 2.

6.3.2 Methods

6.3.2.1 The assessment of risk-taking propensity in UKB

As part of their baseline assessment, UKB participants completed a touchscreen question-

naire including the question: Would you describe yourself as someone who takes risks?.

Possible responses were: Yes, No, Don’t know or Prefer not to answer. A total of 482,173

participants responded either Yes (n=129,877; 27%) or No (n=352,296; 73%). Those who

answered Don’t know or Prefer not to answer (n=19,538) were excluded from this analysis.

The same question was posed again to a sub-set of the participants during follow-up assess-

ments. The baseline assessments took place between 2006−2010, the first and second repeat

assessments were taken from 2012−2013 and 2014 onwards, respectively. As the sample

size substantially decreased between follow-ups, the baseline responses of all participants

were used in the primary GWAS analysis.

6.3.2.2 The assessment of eating behaviour in the Fenland study

Emotional eating (EE), uncontrolled eating (UE) and cognitive restraint (CR) were measured

at baseline using the TFEQ-R18 (Appendix C.1) [40]. These EB traits and the scoring of the

TFEQ, are described in more detail in Chapter 1. As in Chapters 4 and 7 the EB trait scores

were scaled to give a score between 1 and 100 [89].
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A total of 3515 participants (53% women) aged 35–64 years with intersecting EB and geno-

type data were included in the analysis. The EB analyses were sex-stratified based on

evidence that EE, UE and CR all significantly higher amongst women. In this sample, the p-

value for the difference between men and women were p<0.0001 for UE and EE and p<0.01

for CR. Further, the findings of Chapter 4 suggest that sex may modify the association

between BMI-associated loci and CR.

6.3.2.3 The assessment of food-related behaviour in the Fenland study

Food-related behaviour was measured as part of the baseline general questionnaire admin-

istered to Fenland participants. To assess snacking while watching television, participants

answered: Apart from meals, how often do you snack on foods while watching television?.

Possible answers were: Never or rarely, Occasionally, Usually, Always. To assess frequency

of eating home-cooked meals, participants answered the question: When you eat your

main meal at home, how often do you usually eat home-cooked meals?. Possible answers

were: Never or less than once a month, 1–2 times/week, 3–5 times/week, 5+ times/week.

Finally, to assess the frequency with which participants typically eat breakfast, participants

answered: How often do you usually eat breakfast?. Possible answers were: Never or less

than once a month, 1–2 times/week, 3–5 times/week, 5+ times/week.

As the food-related behaviour groups were not continuous and their distributions were

markedly non-normal with the majority of participants selecting the most healthy response

available, we coded the variables into binary variables for analysis in logistic regression

models. In general, 0 represented the more healthy response and included all participants

who selected the most healthy option, and 1 indicated the less healthy response and in-

cluded participants who selected the remaining options (Table 6.1). For frequency of eating

breakfast, the coding was reversed, such that 0 represented those who rarely skip breakfast

and 1 represented those who regularly skip breakfast.

A total of up to 11,441 participants (53%) women, aged 30-64 years had intersecting food-

related behaviour and genetic data and were included in this analysis.

Table 6.1 Coding of food-related behaviours in the Fenland study

Coded 0 Coded 1

Home-cooked food ≥ 5 times/week < 5 times/week

Snacking in front of the TV Never or rarely Occasionally, usually or always

Frequency of skipping breakfast < 2 times/week ≥ 2 times/week
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6.3.2.4 The assessment of diet in the Fenland study

Habitual daily calorie, fat, protein, carbohydrate, fruit, vegetable and fibre intakes were

measured using the food frequency questionnaire (FFQ) completed by Fenland participants

at baseline. The FFQ is a validated 130-item semi-quantitative questionnaire that records

habitual, self-reported intake over the previous year. Food intake frequency was converted

to daily energy (kcal/day) and nutrient intakes (g/day) using FETA 2.53 software [345]. A

total of 8981 participants (53% women) aged 30–64 years had intersecting genotype and

dietary data and were included in the analysis.

6.3.2.5 Genotyping, imputation and quality control

The 2017 imputed genetic data, based on the Haplotype Reference Consortium (HRC) panel

release from UKB, comprising 7,736,308 million SNPs, was used in the GWAS analysis of risk-

taking propensity. Genotyping, imputation, phasing and quality control (QC) are described

in greater detail in Chapter 2. Briefly, 487,409 of the UKB participants were genotyped

using the Affymetrix Applied Biosystems UK Axiom array (Santa Clara, CA, USA), designed

to optimise imputation performance in GWAS studies. A small number (n=49,950) were

genotyped using the Affymetrix Applied Biosystems UL BiLEVE Axiom Array [255]. These

arrays share 95% of their marker content [256]. SNPs were excluded prior to imputation if

they were multi-allelic, had missing data or had a minor allele frequency (MAF) of < 1%.

Phasing was performed using a modified version of the SHAPEIT2 algorithm. Imputation

was performed using IMPUTE 2 and a merged reference panel comprised of the 1000

Genomes Project Phase 3 and UK10K haplotype reference panels. In addition to UKB QC

procedures, we defined a white European ancestry set based on k-means clustering using

the first 5 genetic principle components (PCs). Individuals who genetically appeared to be

white European but did not specify their ethnicity were included in the analysis. However,

all those who specifically self-identified as non-white European were excluded, regardless

of genetic information.

6.3.2.6 Genome-wide association study

Main analysis. GWAS are used to identify individual genetic variants associated with a

trait of interest. Participants are genotyped at points of the genome that commonly show

inter-individual variation (i.e. where the less common allele occurs at a frequency of >1%

of the population). The association between all of these genotyped points and the trait of

interest are then evaluated. Due to the large number of tests being performed, a p-value of

5×10−8 is conventionally used as the threshold for significance in GWAS.

In this analysis, the top 10 PCs were significantly, but minimally, associated with the odds

of risk-taking, indicating the presence of population substructure. This is shown in Ap-
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pendix A.19. GWAS testing for associations between SNPs and self-reported risk-taking

was performed using a linear mixed model (LMM) implemented in BOLT-LMM [346]. This

approach minimises the effect of population structure by adjusting for the top 10 PCs

identified and any additional substructure, as well as permitting the inclusion of related

individuals in the analysis, thus maximising statistical power.

Loci were established through distance-based clumping, using a distance of 1Mb. Sex,

age and genotyping array were included as covariates. SNPs were filtered based on an

imputation information quality (info) of > 0.5 and MAF > 1%. Individuals were excluded

based on ancestry, withdrawal from the UKB study, sex mismatch or failure of genetic

QC. A total of 436,236 individuals of white European ancestry and 7,736,308 variants were

included.

Heritability analyses were performed using restricted maximum likelihood implemented

in BOLT-LMM, which computes heritability on the observed scale [346]. Genetic variance

was calculated for all genotyped autosomal SNPs for which QC was performed, adjusting

for chip status, age, sex and the top 10 genetically determined PCs (n=612,622). Only

unrelated individuals of white European ancestry were included in the heritability analysis

(n=339,414).

The assessment of repeated measures of risk-taking in UKB. We assessed the stability of

the measure of risk-taking used in UKB by comparing participant’s responses at baseline to

those taken during the first and second follow-up assessments. We report the percentage

of participant’s who recorded consistent responses, alongside a p-value calculated using

repeat measures ANOVA.

Quasi-replication. In the absence of an appropriate data set in which to directly replicate

our risk-taking results, we conducted a quasi-replication using a closely related phenotype,

Ever smoking. Given lack of access to an independent data set in which to conduct suitably

powered analyses, this was conducted in the same European ancestry UKB sample and

was used to look up our genome-wide significant SNPs for risk-taking. The UKB sample

of the Ever smoking analysis comprised 450,406 individuals (207,229 ever smokers (46%)

and 243,177 never smokers). Ever smoking was considered an appropriate phenotype for

quasi-replication as a result of its known associations to measures of risk-taking. Across a

number of studies, smoking status has been shown to predict other risk-taking behaviours,

including seat-belt wearing, speeding and risky sexual activity [347, 348].

6.3.2.7 Pathway and tissue enrichment analysis

MAGENTA was used to implement a gene set enrichment analysis-based approach test-

ing the genome-wide discovery data for associations with biological pathways defined

in GoTerm, PANTHER, KEGG, Biocarta, Reactome and Ingenuity. MAGENTA maps each
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gene in the genome to a single index SNP with the lowest p-value within a window ranging

from 110kb upstream to 40kb downstream of the gene. This p-value, representing a gene

score, is then corrected in a regression model for confounding factors such as gene size,

SNP density and linkage disequilibrium (LD)-related properties. Each mapped gene in the

genome is then ranked by its adjusted gene score. The observed number of gene scores in a

given pathway with a ranked score above the 75th percentile threshold is calculated. This

observed statistic is then compared to one calculated from randomly permuted pathways

of an identical size. The comparison generates an empirical Gene Set Enrichment Analysis

(GSEA) p-value for the pathway. An individual pathway was defined as being significantly

enriched when it reached a false discovery rate (FDR) < 0.05 in either analysis.

Tissue enrichment analysis was performed using the genotype-tissue expression (GTEx)

database [349]. This approach uses stratified LD score regression, a method for partitioning

heritability from GWAS summary statistics, to test whether trait heritability is enriched

in regions surrounding genes with the highest specific expression in a given tissue [350].

Significance thresholds were established using a Bonferroni correction for the number of

tests performed.

6.3.2.8 The analysis of genetic correlations

Linkage disequilibrium (LD) score regression was used to identify genetic correlations

(rg) between risk-taking and 12 traits of interest [351]. These traits were defined a prioi

and comprised a range of adiposity-associated phenotypes, risk-related behaviours and

psychiatric disorders. Genetic information regarding these traits was accessed through

publicly available databases. The traits comprised: BMI, WHR, childhood obesity, birth

weight, type 2 diabetes, age at first birth, ever smoking, years of schooling, anorexia nervosa,

ADHD, BPD and schizophrenia.

6.3.2.9 Mendelian randomisation analysis of risk-taking and BMI

When observational studies consistently report an association between two variables, such

that the finding is unlikely to be spurious, causality is just one potential explanation. The

association may also result either from confounding or reverse causation. Confounding

describes a situation whereby the association between an exposure and an outcome is

explained by a third, extraneous variable. This variable, the confounder, is associated

with both the exposure and the outcome but does not lie on the causal pathway between

them [28]. Reverse causality describes a situation whereby the variable assumed to be the

exposure is, in reality, the outcome [28].
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(a) Confounding (b) Reverse causality

Figure 6.1 Confounding and reverse causality. The diagram illustrates the concepts of con-
founding and reverse casuality. (a) depicts confounding whereby the association between
an exposure and an outcome is explained, fully or in part, by the presence of a third variable
known as the confounder. The confounder is associated with both the exposure and the
outcome but does not lie on the causal pathway. (b) depicts reverse causality whereby the
hypothesised outcome variable exerts an influence on the assumed exposure.

Randomised controlled trials (RCTs) can be used to help overcome these sources of bias.

Individuals are randomly assigned to either an intervention or control arm, a process which

diminishes the potential for unmeasured confounding to bias the results. Delivery of the

exposure subsequent to randomisation helps to eliminate reverse causality. However, RCTs

are not feasible or ethical for all exposures. MR is conceptualised as a natural RCT whereby

genotype is used as a proxy for levels of an exposure. As illustrated in Figure 6.2, MR analy-

ses mirror RCTs in several important ways. First, alleles are sorted independently such that

the inheritance of one trait is independent of others, controlling for confounding. Second,

genotype is fixed at conception, eliminating the potential for reverse causality.

Figure 6.2 Comparison of Mendelian randomisation and Randomised controlled trials.
Adapted from Burgess et al, 2012 [352]. The diagram compares MR analyses to the design of
RCTs.

Conventional inverse variance weighted MR. In this study, we conducted a bi-directional

MR analysis of risk-taking to BMI using all genome-wide significant variants for risk-taking

from the present GWAS. An unpublished GWAS meta-analysis of BMI using UKB plus GIANT
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data and comprising a total of 772,825 individuals provided effect estimates for BMI. For the

risk-taking to BMI analyses, SNPs were aligned to the risk-increasing allele. For the BMI to

risk-taking MR, SNPs were aligned to the BMI-increasing allele. We first used conventional

inverse variance weighted (IVW) MR. This analysis performs a linear regression of the

genetic associations with the exposure on the genetic associations with the outcome of

interest, weighting by the inverse-variance of the genetic associations with the outcome.

This ensures that effect estimates with higher precision carry more weight in the overall

regression, regardless of effect size.

In order to be valid, the genetic instruments used to estimate MR exposures must meet the

following instrumental variable assumptions [353]. These are depicted in Figure 6.3.

• (1) They must be robustly associated with the exposure.

• (2) They must not be associated with confounders of the association between the

exposure and the outcome.

• (3) They must only be associated with the outcome through the exposure.

Figure 6.3 Assumptions of Mendelian randomisation. Adapted from Bowden et al, 2016
[354]. The assumptions of MR are indicated by the numbers and correspond to the list above.
(1) depicts the robust associations assumed between the genetic variant and the exposure;
(2) represents an association between the variant and a confounder, which invalidates
the variant and (3) represents associations between the variant and the outcome, which
invalidates the variant.

Conventional IVW MR assumes that all genetic variants included in the analysis are valid

instruments on the basis of these assumptions, thus that they predict the exposure with

precision and do not exert an influence on the outcome through pathways that are not

under investigation in the MR analysis. Only assumption (1) can be tested directly. Hori-

zontal pleiotropy can affect MR when variants used to model the exposure influence the

outcome variable through biological pathways that are independent of the exposure. If the

combination of these pleiotropic effects is directional (i.e. it has a mean that differs from 0),

the IVW MR estimate will be biased. Thus, two pleiotropy-robust MR analyses, MR Egger

and weighted median MR, were performed to detect violations of, and conduct analyses

robust to, assumptions (2) and (3).

MR Egger. The MR Egger method is similar to that of conventional IVW MR but provides a

quantitative estimate of directional pleiotropy and an effect estimate which accounts for its
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presence [355]. In contrast to conventional IVW MR, in MR Egger analyses, the regression is

not constrained to pass through the origin. In the absence of directional pleiotropy, when

the gene-exposure association is 0, the gene-outcome association should also be 0 and the

y-intercept should pass through the origin. Departure of the y-intercept from 0 indicates

directional pleiotropy and quantifies its presence [355]. The MR Egger effect estimate is

provided by the slope of the regression and is robust even in the event that all variants used

to model the exposure impact the outcome through pleiotropic pathways [355]. However,

MR Egger relies on the assumption that the variant-exposure association is independent

of the direct effects of variants on the outcome. This is known as the InSIDE (Instrument

Strength Independent of Direct Effect) assumption. The drawback of this method is low

statistical power, susceptibility to weak instruments (which tend to bias results toward the

null) and the inability to test the InSIDE assumption [356].

Weighted median MR. Weighted median MR complements MR Egger. In this method, the

MR estimates (the ratio of the gene-outcome to gene-exposure ratios) are ordered by mag-

nitude and weighted by the inverse of the variance of the ratio estimate [354]. To account

for unbalanced heterogeneity, the contribution of genetic variants with heterogeneous

ratio estimates is then down-weighted and the median estimate is taken [354]. Unlike MR

Egger which allows all variants to have pleiotropic effects, the weighted median method

requires a minimum of 50% of variants to be valid. However, it is more robust to violation

of the InSIDE assumption and allows for variants that are invalid as a result of violations

to any of the instrumental variable assumptions depicted in Figure 6.3. This method also

provides greater precision than MR Egger if all genetic variants have similar magnitudes of

association with the exposure [354, 356].

Leave-one-out analyses. Finally, to identify specific SNPs associated with risk-taking or

BMI that might drive overall effects evident in the MR analysis, a leave-one-out analysis

was planned. The MR of risk-taking to BMI was repeated with each of the genome-wide

significant SNPs for risk-taking removed, in turn.

It is important to note that MR is also limited by factors beyond pleiotropy that cannot be

controlled for but should be considered. Canalisation and compensation might mitigate the

effects of genetic changes on outcomes. Further, complexity in the biology of exposures may

make causal inferences about the dimensions of a trait that are important to an outcome

difficult to infer without biological knowledge [356].

All MR analyses were conducted in R version 3.3.1.

6.3.2.10 The analysis of the genetic risk score for risk-taking

To characterise the effect of risk-taking propensity on EB traits and food-related behaviour,

a weighted risk-GRS was constructed amongst Fenland participants (n=11,249) using the
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summary statistics from the present GWAS for weighting. The 26 SNPs showing genome-

wide significant associations with risk-taking in this analysis were included in the score. The

score was constructed in the same way as the BMI-GRS in Chapters 3 and 7. Briefly, at each

SNP, the number of risk-increasing alleles (0, 1 or 2) was multiplied by the effect estimate for

the risk-increasing allele from this GWAS. The products across all 26 risk-associated SNPs

were then summed for each participant.

The association between the risk-GRS and the EB traits was examined in Fenland using

sex-stratified, age-adjusted linear regression models. The association between the risk-

GRS and both the dietary and food-related behaviour variables was analysed in Fenland

using age and sex-adjusted linear or logistic regression models, as appropriate. Outcome

variables were log-transformed if they were not normally distributed, in order to improve the

normality of the residuals. The following 12 traits were analysed using the risk-GRS: EE, UE,

CR, total calorie intake per day (kcal/day), fat intake (g/day), fibre intake (g/day), protein

intake (g/day), carbohydrate intake (g/day), fruit and vegetable intake (g/day), snacking

while watching TV, frequency of skipping breakfast (times/week) and number of home

cooked meals (times/week). The analysis was conducted in Stata version 14 (StataCorp LCC,

College Station, TX).
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6.4 Results

6.4.1 Characteristics of the study participants

The GWAS sample comprised 436,236 UKB participants of white European ancestry (235,954

women; 54%). Of these, 113,882 (26%) responded Yes and 322,354 (74%) responded No to

the question: Would you describe yourself as someone who takes risks?. The mean age of

participants at enrolment was 56.8 years (SD=8.0).

Table 6.2 Descriptive characteristics of UKB participants by answer to the ques-
tion: Would you describe yourself as someone who takes risks? (n=436,236)

Yes (n=113,882) No (n=322,354) p-valuea

Female 44,982 (39.5%) 190,972 (59.2%) < 1×10−200

Age (years) 55.8 (8.2) 57.1 (7.9) < 1×10−200

BMI (kg/m2) 27.7 (4.7) 27.3 (4.8) 3×10−81

Age at first birth (years)b 25.2 (4.9) 25.4 (4.5) 1×10−20

Ever smoked 60,670 (53.3%) 139,579 (43.3%) < 1×10−200

Alcohol frequency Median: 3 or 4 times a week Median: Once or twice a week < 1×10−200

Drug addiction 372 (0.33%) 343 (0.11%) 4×10−32

Any eating disorder 252 (0.08%) 83 (0.07%) 0.22
Schizophrenia 348 (0.12%) 134 (0.11%) 0.17
Depression 19,222 (6.18%) 7,041 (5.96%) 2×10−14

Age completed education 16.7 (2.4) 16.6 (2.1) 7×10−6

Body mass index (BMI)

Values are mean (SD) or n (%), except for alcohol frequency where the responses were on a 6-point scale ranging

from Never to Daily or almost daily. Possible responses were: Never, Special occasions only; 1-3 times/month;

1-2 times/week; 3-4 times/week; Daily or almost daily.
a Age and sex-adjusted models were used to calculate the p-value from the regression of risk-taking to the

variable (linear for continuous phenotypes; logistic for binary phenotypes and ordered categorical for alcohol

frequency)
b Data for women only, the p-value is from a model with only age adjustment

All data regarding health and health-related behaviour was collected by self-report

Compared to non-risk-takers, those who self-identified as risk-takers were more likely to be

male, younger and to have a higher BMI (Table 6.2). They were also more likely to report

specific risk-taking behaviours, such as ever having smoked or experienced substance

addiction. Amongst women who reported having had children, risk-takers gave birth to

their first child at a younger age. Whilst these differences were significant, in many cases,

their magnitude was small. We did not find any association between risk-taking and clinical

eating disorders or schizophrenia, both of which were reported by very small numbers of

individuals. However, there was a positive association between risk-taking and depression.

Surprisingly, risk-takers reported a slightly older age at leaving education. However, the SD

for this outcome was larger amongst the risk-takers, indicating greater variability (Levene’s

test p < 1×10−8).
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The assessment of repeated measures of risk-taking. Risk-taking propensity was recorded

on repeat occasions amongst a sub-set of participants. Repeat measures ANOVA showed

that risk-taking propensity at each time point was associated with risk-taking propensity at

later time points (p = 6.02×10−6). Overall, the consistency of responses was moderate. Of

all UKB participants with repeated risk-taking measures, including those of non-European

ancestry, 16,385 out of 19,006 (86%) recorded the same response between baseline and their

first follow-up, 10,102 of 12,084 (84%) recorded the same response between baseline and

their second follow-up and 3300 of 3816 (86%) recorded the same response between their

first and second follow-ups.

6.4.2 Genomic loci

Figure 6.4 Manhattan plot of the GWAS of risk-taking propensity. The plot illustrates the
results of the GWAS of 436,236 participants of white European ancestry in UKB. Negative
log-transformed p-values for each SNP (y-axis) are plotted by chromosomal position (x-
axis). The red-dashed line indicates the threshold for statistical significance (p = 5×10−8).
The blue dots indicate variants within a 1Mb region of a genome-wide significant signal.

In this analysis, 26 loci were associated with risk-taking propensity (p < 5×10-8) (Figure 6.4;

Table 6.3). We observed a low intercept value for the LD score regression GWAS (1.02, SE:

0.01), indicating that the vast majority of test statistic inflation (lambda genomic control

(GC)=1.37) is due to polygenicity rather than population structure. The effect estimates

(odds of self-reported risk-taking propensity) ranged from 1.022 to 1.049 per allele. The

strongest signal, rs6762267, lies intronic in CADM2 on chromosome 3. This SNP is in high LD

with both SNPs previously reported in association with risk-taking, which were also intronic

to CADM2 (rs57401290: r2 = 0.78; rs13084531: r2 = 0.49) [344, 242]. Other correlated CADM2

variants have also previously been reported in association with BMI (rs13078960: r2 = 0.21)

[149], educational attainment (rs62263923: r2 = 0.27; rs55686445: r2 = 0.27) [357, 358] and

alcohol consumption (rs9841829: r2 = 0.49) [359]. The second strongest signal identified

(rs727644) lies intronic in FOXP2, which has previously been associated with age at first

birth in women (rs10953766: r2 = 0.14) [360].

Other notable association signals include rs58560561 within SDCCAG8, which has been

reported in association with educational attainment (rs2992632: r2 = 0.76) [357]; rs6923811
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near POM121L2 and rs3117340 near OR14J1, which have both been reported in associa-

tion with autistic spectrum disorder (rs141342723: r2 = 0.13; rs115329265: r2 = 0.24, re-

spectively) [361]; and rs4801000 near TCF4 (rs9636107: r2 = 0.46) and rs283914 within

TBC1D5 (rs4330281: r2 = 0.58), which have been reported in association with schizophrenia

[362]. In addition, NEGR1 has previously been reported in association with BMI [149],

although our signal appears independent of that reported signal (rs3101336; r2 with our

signal (rs4233093)=0.02).

Table 6.3 Twenty-six genome-wide significant loci for risk-taking propensity

rsID Chr. Pos. Gene
SNP

location Alleles
Allele
freq. OR 95% CI p-val. Disorders and phenotypes

rs6762267 3 85513115 CADM2N ,E Intronic C/A 0.38 1.049 1.041–1.058 6.60×10−31 –

rs727644 7 114109349 FOXP2N ,E Intronic G/A 0.60 1.031 1.023–1.040 4.00×10−14 Speech & language disorder

rs62519827 8 65481947 CYP7B1E ,M Intergenic T/C 0.89 1.042 1.029–1.055 6.00×10−11 Spastic paraplegia

rs9841382 3 181408124 SOX2-OT N Intronic C/T 0.14 1.038 1.026–1.049 7.10×10−11 CNS abnormalities; developmental delay

rs58560561 1 243537729 SDCCAG8N ,E Intronic G/T 0.65 1.028 1.019–1.036 7.20×10−11 Educational attainment; Bardet–Biedl syndrome

rs992493 4 106180264 TET2N Intronic T/C 0.19 1.033 1.023–1.043 2.50×10−10 –

rs6923811 6 27289776 POM121L2N Intergenic T/C 0.68 1.027 1.019–1.036 3.90×10−10 Autistic spectrum disorder

rs7817124 8 81404008 ZBTB10N Intronic C/G 0.24 1.030 1.020–1.039 6.10×10−10 —

rs4801000 18 53456943 TCF4N Intergenic G/A 0.34 1.025 1.017–1.034 3.40×10−9 Schizophrenia

rs4653015 1 33776431 ZNF362E Intergenic T/C 0.26 1.027 1.018–1.037 3.80×10−9 —

rs12476923 2 145830053 DKFZp686O1327N Intronic A/C 0.34 1.025 1.017–1.034 4.70×10−9 —

rs283914 3 17330649 TBC1D5N ,E Intronic T/C 0.53 1.024 1.016–1.032 5.30×10−9 Schizophrenia

rs4233093 1 73446245 NEGR1N Intergenic A/G 0.52 1.024 1.016–1.032 5.30×10−9 Neuronal growth

rs7829912 8 33479228 DUSP26N Intergenic T/C 0.56 1.024 1.016–1.032 5.90×10−9 —

rs3117340 6 29210596 OR14J1N Intergenic G/T 0.62 1.024 1.016–1.033 7.00×10−9 Autistic spectrum disorder; sensory experience

rs1381287 14 98597552 RP11-61O1.1N ,E Intergenic T/C 0.46 1.023 1.015–1.032 9.90×10−9 —

rs28520003 22 46411969 LINC00899E Intergenic G/A 0.69 1.025 1.016–1.034 1.10×10−8 —

rs12115650 9 126367705 DENND1AN Intronic G/A 0.72 1.026 1.017–1.035 1.50×10−8 —

rs11226319 11 104221573 PDGFDN Intergenic A/G 0.16 1.032 1.021–1.043 1.50×10−8 Neocortical development

rs1358391 7 115111838 SNORA25N Intergenic G/T 0.51 1.023 1.015–1.031 1.50×10−8 —

rs12617392 2 27336827 CGREF1N ,E Intronic C/A 0.56 1.023 1.015–1.031 1.80×10−8 —

rs542883 2 45143382 SIX3N ,E Intergenic C/G 0.56 1.023 1.015–1.031 2.20×10−8 Holoprosencephaly

rs10823791 10 73338334 CDH23N Intronic T/A 0.40 1.023 1.015–1.031 3.60×10−8 Usher syndrome; deafness

rs34905321 6 109131107 ARMC2N Intergenic T/C 0.57 1.022 1.014–1.031 3.90×10−8 —

rs891124 16 71440756 CALB2N Intergenic T/C 0.71 1.024 1.016–1.033 4.10×10−8 —

rs35914833 14 94182383 PRIMA1N Intergenic T/C 0.68 1.024 1.015–1.033 5.00×10−8 —

Chromosome (Chr.); Position (Pos); Odds ratio (OR); Confidence interval (CI); Central nervous system (CNS)
N Nearest gene; E eQTL; M Missense
a Effect allele/other allele
b Effect allele frequency

Several of the genes that co-locate with risk-taking signals are reported to be mutated in

rare disorders of central nervous system (CNS) functioning and neuro-developmental delay.

For example, CDH23 is mutated in Usher syndrome, characterised by profound deafness

[363], CYP7B1 is mutated in a rare form of spastic paraplegia [364], SIX3 is mutated in

holoprosencephaly resulting in major mental retardation [365] and mutations in FOXP2 are

associated with speech and language disorder 1 [366]. Moreover, mutations in SOX2-OT are

associated with CNS abnormalities and neuro-developmental delay [367] and mutations in

SDCCAG8 are associated with Bardet–Biedl Syndrome, features of which include obesity and

neuro-developmental delay [368]. Other signals co-localise near genes that regulate CNS or

sensory neural function. These include, NEGR1 which is involved in neuronal growth [369],

OR14J1, which is involved in sensory experience [370] and PDGFD, which is involved in

human neocortical development [371]. One lead SNP (rs62519827) is in high LD (r2 = 0.98)

120



6.4 Results

with a missense variant (rs62519835) in BHLHE22, which encodes a transcription factor

involved in neuronal differentiation and is also an eQTL for CYP7B1.

6.4.2.1 Quasi-replication

Whilst a true replication of our results was not possible due to lack of available, independent

data, we conducted a GWAS of Ever smoking in UKB in order to look up genome-wide

significant SNPs for risk-taking. The sample comprised 207,229 ever smokers (46%) and

243,177 never smokers. The results are presented in Appendix A.20. Eleven of the 26 risk-

taking SNPs showed Bonferroni significant associations with ever smoking (corrected for 26

tests: p < 0.0019) and 13 reached nominal significance (p < 0.05). All nominally significant

SNPs demonstrated directionally consistent associations between risk-taking and smoking.

In total, 21 of the 26 SNPs were directionally consistent.

6.4.2.2 Chip heritability

The chip heritability estimate for risk-taking propensity in UKB was 8.4% (95% CI: 8.0%,

8.8%).

6.4.3 Pathways and tissues associated with risk-taking

(a) Tissues (b) Brain regions

Figure 6.5 Tissues showing enriched expression of genes implicated by risk-associated
loci. The dotted lines indicate statistical significance (Bonferroni-corrected p-value of
partitioned heritability calculated by stratified LD score regression). Figure 6.5a: GTEx
analysis indicates that genes implicated by risk-associated loci show enriched for expression
in the CNS and hematopoietic/immune system. Figure 6.5b: GTEx analysis indicates genes
within risk-associated loci show enriched expression in specific brain regions.
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Tissue enrichment analysis using the GTEx database indicated that genes co-located with

risk-taking variants were enriched for expression in the CNS (p = 1.80×10−9) and immune

system (p = 8.20×10-4) (Figure 6.5a). Of specific CNS tissues, the hippocampus, frontal cor-

tex, cortex, anterior cingulate cortex and hypothalamus showed enrichment of expression

after correction for multiple testing (Figure 6.5b).

To identify mechanisms that influence risk-taking propensity, we performed a system-

atic test of all annotated biological pathways for enrichment of genes located near risk-

associated variants using MAGENTA. Two overlapping pathways were associated with

risk-taking: the gamma aminobutyric acid (GABA) pathway (false discovery rate (FDR)

based on 75% cutoff=0.006) and GABA receptor pathway (FDR based on 75% cutoff=0.04).

Overlap between these pathways is depicted in Figure 6.6.

Figure 6.6 Overlap between genes in the GABA and GABA receptor pathways

6.4.4 Genetic correlations

The genetic correlations between risk-taking propensity and 12 adiposity-related, risk-

behaviour and psychological traits were calculated using LD score regression. After Bonfer-

roni correction for multiple testing, risk-taking propensity showed positive genetic corre-

lations with: WHR, childhood obesity, ever smoking, ADHD, BPD and schizophrenia; and

negative genetic correlations with age at first birth in women (all p< 0.004). A nominally

significant, positive genetic correlation was also observed between risk-taking and BMI

(p=0.03) (Table 6.4; Figure 6.7).
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Figure 6.7 Genetic correlations between risk-taking propensity and selected traits.
Whole-genome LD score regression tested genome-wide SNP associations for risk-taking
against similar data for 12 BMI-related traits. Error bars show the 95% CIs for these esti-
mates. Green indicates a positive association and purple indicates a negative association.
Dark colours indicate a significant association, after adjustment for multiple testing. After
correction for multiple testing, WHR, childhood obesity, age at first birth, ever smoking,
ADHD, bipolar disorder and schizophrenia remained significant.

Table 6.4 Genetic correlations between risk-taking propensity and selected traits

Genetic correlation
(rg) SE p-value

BMI 0.0705 0.0323 0.03∗

WHR 0.1019 0.0277 0.0002∗∗

Childhood obesity 0.137 0.04 0.0006∗∗

Birth weight 0.0319 0.0274 0.24

Type 2 Diabetes 0.0439 0.0401 0.27

Age of first birth -0.2287 0.0302 3.6×10−14∗∗

Ever smoked 0.2901 0.0414 2.5×10−12∗∗

Years of schooling 0.0176 0.0232 0.45

Anorexia Nervosa -0.0302 0.0323 0.35

ADHD 0.3807 0.1115 0.0006∗∗

Bipolar disorder 0.2788 0.0403 4.4×10−12∗∗

Schizophrenia 0.2317 0.0245 3.2×10−21∗∗

Body mass index (BMI); Waist-to-hip ratio (WHR); Attention deficit hyperac-

tivity disorder (ADHD); Standard error (SE)
∗Nominally significant (p<0.05)
∗∗Bonferroni significant (p<0.004), corrected for 12 tests
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6.4.5 Genome-wide significant signals for BMI

Of the 26 risk-associated loci, 4 demonstrated genome-wide significant associations with

BMI (Table 6.5), including two novel signals: rs891124, which is an eQTL for CALB2 and

rs35914833 at PRIMA1. These loci were derived from a combination of UKB and the GIANT

consortium data and have not been reported in any previous BMI GWAS studies. Signals at

CADM2 and ZBTB10 have previously been associated with BMI [149].

The risk-increasing variants at CADM2, CALB2 and PRIMA1 were associated with higher

BMI. However, the risk-increasing variant at ZBTB10 was associated with lower BMI. Signals

at CALB2, ZBTB10 and PRIMA1 showed nominally significant associations (p< 0.05) with TV

snacking, skipping breakfast and daily energy intake, respectively (Table 6.5). None of the 4

loci were associated with EE, UE or CR (all p> 0.05) (Table 6.6).

Table 6.5 Associations between the 4 risk-taking loci that were genome-wide significant
signals for BMI and food-related behaviour in the Fenland study

BMI TV snacking Home-cooked meals Skipping breakfast Energy (kcal/day)

Variant Gene Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value

rs891124 CALB2 0.01 (0.002) 3.5×10−10 0.12 (0.05) 0.02∗ 0.04 (0.03) 0.21 0.01 (0.03) 0.86 3.86 (11.0) 0.73

rs35914833 PRIMA1 0.02 (0.002) 5.3×10−14 −0.05 (0.05) 0.34 −0.03 (0.03) 0.33 −0.04 (0.03) 0.20 30.3 (11.0) 0.01∗

rs6762267 CADM2 0.02 (0.002) 1.7×10−15 0.09 (0.05) 0.07 0.02 (0.03) 0.45 0.03 (0.03) 0.36 12.3 (10.2) 0.23

rs7817124 ZBTB10 −0.01 (0.002) 1.8×10−9 0.09 (0.06) 0.10 −0.03 (0.03) 0.36 0.08 (0.03) 0.02∗ 12.4 (11.5) 0.28

Body mass index (BMI); Standard error (SE)

SNPs were aligned to the risk-increasing allele. Effect estimates (Beta and SE) were derived from linear or

logistic regressions of the variant to the named trait, adjusted for age and sex. Beta from logistic regressions

are odds ratios (TV snacking, home-cooked meals and skipping breakfast). Beta for linear regressions are SD

change in BMI per risk-increasing allele or change in energy intake (kcal/day) per risk increasing allele. BMI

was a continuous outcome standardised within the BMI meta-analysis. TV snacking was coded: 0: never/rarely;

1: occasionally/ usually/ always. Home-cooked food was coded: 0: 5+ home-cooked meals/week; 1: 0−5

home-cooked meals/week. Skipping breakfast was coded: 0: <2 times/week; 1: ≥2 times/week

*Nominally significant (p< 0.05)

Table 6.6 Associations between the 4 risk-taking loci that were genome-wide significant
signals for BMI and EB traits in the Fenland study

BMI Emotional eating Uncontrolled eating Cognitive restraint

Variant Gene Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value Beta (SE) p-value

rs891124 CALB2 0.01 (0.002) 3.5×10−10 1.12 (0.71) 0.11 0.48 (0.47) 0.30 0.03 (0.51) 0.96

rs35914833 PRIMA1 0.02 (0.002) 5.3×10−14 0.06 (0.71) 0.93 -0.01 (0.47) 0.98 -0.11 (0.51) 0.83

rs6762267 CADM2 0.02 (0.002) 1.7×10−15 0.95 (0.65) 0.15 0.69 (0.43) 0.11 0.33 (0.47) 0.48

rs7817124 ZBTB10 -0.01 (0.002) 1.8×10−9 0.31 (0.73) 0.67 0.17 (0.48) 0.72 0.37 (0.52) 0.48

Body mass index (BMI); Standard error (SE)

SNPs were aligned to the risk-increasing allele. Effect estimates (Beta and SE) were derived from linear

regressions of the variant to the named trait, adjusted for age and sex, and represent SD change in BMI

per risk-increasing allele or change in EB score per risk-increasing allele. BMI was a continuous outcome

standardised within the BMI meta-analysis. The EBs were scaled from 0-100

*Nominally significant (p< 0.05)
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6.4.6 Bi-directional MR analyses of risk-taking propensity and BMI

Using results from the present GWAS and an unpublished meta-analysis of BMI involving

772,825 individuals from GIANT and UKB, we conducted a bi-directional MR analysis of risk-

taking and BMI. In the IVW model, genetically predicted risk-taking propensity predicted

higher BMI (0.25 approximate SDs of BMI (SE=0.06); p= 6.7 × 10−5), while genetically

predicted BMI did not predict risk-taking propensity (p=0.23) (Table 6.7). Neither the MR

Egger nor the weighted median MR results were significant.

Table 6.7 Bi-directional MR analyses of risk-taking and BMI

Analysis Beta (SE) p-value

Risk-taking to BMI

Conventional MR (IVW) 0.251 (0.063) 6.7×10−5

MR Egger 0.885 (0.985) 0.37

Weighted Median MR 0.091 (0.121) 0.45

BMI to risk-taking

Conventional MR (IVW) 0.004 (0.004) 0.23

MR Egger 0.002 (0.017) 0.88

Weighted median MR −0.008 (0.007) 0.26

Between SNP heterogeneitya N/A 9.9×10−8

Body mass index (BMI); Mendelian Randomisation (MR); Inverse-

weighted variance (IVW); Standard error (SE); Not applicable (N/A)

MR Egger intercept was not significant
a The p-value refers to the Cochran’s Q statistic from the conventional

IVW risk-taking to BMI MR analysis

A high level of between SNP heterogeneity was detected using Cochran’s Q statistic applied to

the IVW risk-taking to BMI MR analysis (p= 9.9×10−8), with individual risk-increasing alleles

showing strong associations with either higher or lower BMI (Figure 6.8). We performed

a leave-one-out analysis, whereby we repeated the MR analysis of risk-taking to BMI 26

times with each of the genome-wide significant SNPs for risk-taking removed in turn. The

results suggested that all 4 of the individually genome-wide significant SNPs for BMI had a

substantial effect on the heterogeneity of the data (Appendix B.2). We performed a further

MR analysis of risk-taking to BMI excluding the 4 risk-taking SNPs that were also genome-

wide significant for BMI, and found no association between risk-taking propensity and

BMI (β from IVW MR=0.01 (SE=0.07); p=0.91) and no evidence of heterogeneity (p=0.24).

Similarly, a random effects IVW MR model, combining the estimates calculated when

treating each risk-associated SNP as an individual instrument, also provided no evidence

for an overall causal relationship between risk-taking and BMI (Appendix B.3).
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Figure 6.8 Funnel plot showing the heterogeneity in the association between the 26
genome-wide significant SNPs for risk-taking and BMI. Each data point represents one
of the 26 SNPs. The SNP-specific MR estimate for the association of risk-taking with BMI
(approximate SDs of BMI per risk-increasing allele) (x-axis) is plotted against the SE of this
association (y-axis). The summary estimate for all 26 SNPs combined is marked by the solid
black line. The dotted lines, originating from the summary estimate and marking a triangle,
represent the expected 95% CIs of the combined effect estimate, assuming the variants have
an effect on BMI. The vertical red-dotted line indicates the null.

6.4.7 Risk-taking propensity, eating behaviour and dietary patterns

An analysis of the relationship between genetically predicted risk-taking (risk-GRS) and

both EB and dietary patterns was performed amongst the Fenland study participants. Ge-

netically predicted risk-taking propensity showed positive associations with EE in men, after

adjustment for multiple testing, and nominally significant positive associations with total

daily kcal, fat and protein intake in the combined cohort of men and women (Table 6.8).

The ranges of the EB trait scores were as follows: CR: 0–100; UE: 0–96.3; EE: 0–100. The

food-related behaviour variables were initially ordered categorical variables. However, their

distributions were markedly non-normal. To account for this, they were dichotomised and

logistic regression was performed. In all cases, the category containing the majority of

participants was split from the rest of the sample. This was designed to increase the sample

size of the comparison group and to maximise power. The analysis revealed a nominally

significant positive association between the risk-GRS and odds of skipping breakfast more

than twice a week (OR=1.05 (95% CI: 1.02, 1.07)). No associations were observed between

the risk-GRS and UE, CR, total daily fibre, fruit and vegetable or carbohydrate intake. Ge-

netically predicted risk-taking propensity did not predict the odds of eating home-cooked

meals or snacking in front of the television (Table 6.8).
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Table 6.8 Association between the risk-GRS and diet, food-related behaviours and EB
traits in the Fenland study

Total (n) Beta (95% CI) r2 p-value

All participants: nutrient intake

Energy (kcal/day) 8981 803.5 (140.1, 1466.8) 0.042 0.02∗

Total fat (g/day)a 8981 0.52 (0.12, 0.92) 0.042 0.01∗

Fruit and vegetables (g/day)a 8844 0.46 (-0.07, 0.99) 0.044 0.09

Protein (g/day)a 8981 0.36 (0.06, 0.66) 0.010 0.02∗

Fibre (g/day)a 8981 0.28 (-0.10, 0.66) 0.005 0.15

Carbohydrates (g/day)a 8981 0.25 (-0.10, 0.60) 0.028 0.16

All participants: food-related behavioursb

TV snacking 4414 1.03 (0.99, 1.06) – 0.46

Home cooked food 11,439 0.99 (0.97, 1.01) – 0.59

Skipping breakfast 11,441 1.05 (1.02, 1.07) – 0.03∗

Men only: eating behaviours

Emotional eating (0-100) 1646 94.6 (35.7, 153.6) 0.007 0.002∗∗

Cognitive restraint (0-100) 1646 -2.62 (-48.0, 42.7) 0.005 0.91

Uncontrolled eating (0-100) 1646 32.0 (-9.3, 73.3) 0.019 0.13

Women only: eating behaviours

Emotional eating (0-100) 1869 -21.2 (-82.7, 40.6) 0.002 0.50

Cognitive restraint (0-100) 1869 -21.2 (-63.3, 20.8) 0.005 0.32

Uncontrolled eating (0-100) 1869 14.8 (-24.0, 53.6) 0.013 0.45

All models were linear or logistic regressions of the risk-GRS to the variable, adjusted for age and sex. Sex-

stratified models were only adjusted for age

TV snacking was coded: 0: never/rarely; 1: occasionally/ usually/ always. Home-cooked food was coded: 0: 5+

home-cooked meals/week; 1: 0−5 home-cooked meals/week. Skipping breakfast was coded: 0: <2 times/week;

1: ≥2 times/week
∗Nominally significant (p<0.05)
∗∗Bonferroni significant after adjustment for 15 tests (p<0.003)
a Log-transformed
b Logistic regression. Effect estimates are odds ratios
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6.5 Discussion

6.5.1 Summary and context of the main findings

Amongst 436,236 adult UKB participants, this analysis identified 26 genetic loci associated

with self-reported risk-taking propensity, 24 of which are novel. The results support the util-

ity of gene discovery in investigating the biological pathways of health-related behaviours,

as well as the mechanisms of their association with health outcomes. Of particular rele-

vance to the aims of this thesis, we were able to use genetic instruments to interrogate the

association between risk-taking and obesity reported in observational studies using both

MR and GRS approaches [341, 203, 372].

As anticipated for a behavioural trait, the findings suggest that the genetics of risk-taking

act primarily through the CNS. In addition to the cortex, 4 specific brain regions exhibit-

ing enriched expression for genes associated with risk-taking propensity were identified.

These comprised the pre-frontal cortex, hippocampus, anterior cingulate cortex and hy-

pothalamus, all regions that have previously been implicated in risk-related traits through

functional magnetic resonance imaging (fMRI) studies. Decreases in pre-frontal cortex acti-

vation during experimental risk-taking tasks have been linked to declines in self-reported

risk-taking behaviour in adolescents [373], the hippocampus has an established role in

behavioural inhibition (the tendency to withdraw from unfamiliar situations, people or

environments) [374], the anterior cingulate cortex has been implicated in assessing the

value of exercising control whilst performing a task [375], and the hypothalamus is involved

in the processing of innate and learned fear, including fear of pain, predators and aggression

[376]. Additionally, enriched expression of risk-associated genes in the immune system

supports growing evidence suggesting a role for the immune system in human behaviour

[377]. Research has primarily concerned clinically relevant mood and behavioural aberra-

tions, including depression [378]. However, an association between immune function and

personality has been proposed [379].

Genetic correlations between risk-taking and schizophrenia, BPD and ADHD confirm the

findings of a smaller, overlapping GWAS of risk-taking among 116,255 UKB participants

[242]. Given the genetic and symptomatic overlap between major mental disorders, as well

as diagnostic migration and co-segregation within families, traits with trans-diagnostic

relevance are important to understanding shared vulnerabilities and mechanisms.

Of particular relevance to this thesis and to the application of GWAS to the EB traits in

Chapter 7, we were able to interrogate the relationship between risk-taking and obesity

in downstream analyses. We observed novel genetic correlations between risk-taking and

both childhood obesity and WHR, suggesting a shared genetic basis for these traits. We

also observed a nominally significant, positive genetic correlation with adult BMI. This

finding is in partial agreement with the results of a smaller GWAS of risk-taking propensity

128



6.5 Discussion

in an overlapping UKB participant group which reported a Bonferroni significant genetic

correlation between BMI and risk-taking propensity [242]. The IVW MR analysis linked

some risk-taking pathways to BMI in adulthood. The high levels of heterogeneity in this

analysis indicate that genetic correlation, which assumes a linear association between

effect sizes for both traits across the genome, may not adequately summarise the complex

relationship between risk-taking and BMI.

Of the risk-taking to BMI MR analyses, only the IVW MR generated a significant result. Whilst

this analysis assumes the absence of horizontal pleiotropy, it has the highest statistical

power of the MR analyses performed [356]. The finding of 4 SNPs with strong, genome-wide

associations with both risk-taking and BMI, but variable directional consistency, supports

the finding of between SNP heterogeneity, and suggests the existence of diverse, pleiotropic

pathways linking these two traits, as opposed to a single causal mechanism.

In order to elucidate pathways that may be involved in the association between risk-taking

and BMI, we conducted a risk-GRS analysis interrogating the association of risk-taking

propensity to EB, dietary patterns and food-related behaviour. The results suggested that

risk-taking propensity may be associated with EE in men, as well as higher daily calorie, fat

and protein intake and greater odds of regularly skipping breakfast in both sexes. These

findings require replication but speculatively indicate that obesogenic EBs and dietary

practices could provide a mechanism through which some facets of risk-taking propensity

are related to BMI. Chapter 7 uses genetic instruments to further address these questions

with reference to risk-taking and EB.

6.5.2 Strengths and limitations

This is the largest gene discovery effort for risk-taking propensity to-date, increasing the

sample size of the largest previous study by approximately 4-fold. Given the importance

of risk-taking phenotype to a range of important health-related behaviours and outcomes,

including obesity, this study makes an important contribution to the literature. The large

sample size facilitated the identification of a larger number of genetic variants with smaller

effect sizes than previous efforts. These variants could then be used in downstream analyses

to interrogate the relationship between risk-taking and BMI for the first time. Further

strengths include the use of a single study from which all participants were drawn (UKB).

This ensured that there were no differences in study design, conduct, measurement or

processing techniques between studies.

The main limitation was the measurement of risk-taking propensity, which was self-reported

and based on the answer to a single, un-validated question. However, responses were

moderately stable in the sub-set of participants with repeated measures. Moreover, self-

identification as a risk-taker was associated with classically risk-taking behaviours, including

alcohol consumption, smoking, drug addiction and age at first birth, in the anticipated
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ways. There is no gold-standard measurement for risk-taking propensity. Studies most often

rely upon self-report but behavioural measures, derived from laboratory tasks, are also

widely used. Where studies rely on self-report, questionnaires typically comprise multiple

items [380]. Research amongst those involved in extreme sports cautions against assuming

psychological or behavioural homogeneity in risk-taking populations [381]. While some

risk-takers in these studies take impulsive risks, others take planned risks in response to

feelings of confidence and self-efficacy, justified by experience and the development of

expertise [381, 382]. Some researchers argue that impulsivity and risk-taking propensity are

distinct and governed by related, but separate, neurobiological mechanisms [383, 384, 208].

The use of a single question and lack of clarifying questions to determine why respondents

self-identify as risk-takers is an important limitation of this study that precludes a discussion

of the facets of risk-taking propensity that are being captured, or how these are related to

health and other outcomes. This is one potential explanation for the heterogeneity observed

in the MR results, with some risk-increasing alleles being associated with reductions in

BMI. It is possible that, whilst some aspects of risk-taking propensity are related to obesity,

others are either protective or not involved. Future research is needed to provide clarity. A

further limitation was the inability to replicate the results in an independent dataset, due

to lack of available data on risk-taking propensity in any independent cohorts. Whilst we

performed a quasi-replication in a related phenotype (Ever smoking), future studies are

needed to directly replicate the findings.

6.5.3 Conclusions

This study advances understanding of the genetic basis for risk-taking, identifying 26 risk-

associated loci and highlighting a common genetic basis for risk-taking and a range of

health-related phenotypes. Building on observational research, the findings also indicate

that the association between risk-taking and BMI is likely the result of shared biological

pathways, as opposed to a single, causal mechanism. However, some aspects of risk-taking

propensity may dispose to obesity through dietary decisions and behaviour. This finding

requires replication and it is likely that many pathways, some associated with lower BMI,

are involved. Overall the findings confirm the utility of gene discovery in illuminating the

relationship between behaviour and obesity.
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CHAPTER 7

THE GENETIC DETERMINANTS OF EATING

BEHAVIOUR

Publications

There are, as yet, no publications associated with this work.

Contributions

I planned this project and devised the analysis plan in collaboration with my supervisors.

I conducted the GWAS analysis in the Fenland cohort, identified the other participating

cohorts and liaised with their analysts to perform individual cohort GWAS analyses. I

performed collation, quality control and meta-analysis of the study-level results for all con-

tributing cohorts. I performed all the downstream analyses, jointly interpreted the results

with my supervisors and wrote this chapter. At present, there is no resulting manuscript.
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7.1 Summary

Building upon the findings of Chapter 6 which illustrated the utility of genome-wide gene

discovery studies to the investigation of the relationship between behavioural traits and obe-

sity, this chapter describes the first GWAS of emotional eating (EE), uncontrolled eating (UE)

and cognitive restraint (CR). Separate GWAS of white, European adults were conducted in 4

population-based study cohorts with intersecting genome-wide genotyping and eating be-

haviour (EB) information. The included studies comprised: the Fenland study, FinnTwin12,

the Nurse’s Health Study (NHS) and the Health Professionals Follow-up Study (HPFS). The

results were then meta-analysed, resulting in a final sample size of up to 11,843 participants

for each of the three EB traits. No genome-wide significant associations were identified.

However, the chip heritability estimate for UE was 11% (95% CI: 3%, 19%) and positive

genetic correlations between UE and both BMI and waist-to-hip ratio (WHR) indicate a

shared genetic basis for these traits. The chip heritability estimates for EE and CR were

non-significant (2% (95% CI: -8%, 12%) and 1% (95% CI: -7%, 9%), respectively). Mendelian

randomisation (MR) analyses demonstrated a positive effect of BMI on all three EB traits.

Whilst the impact of individual variants was highly heterogeneous, sensitivity analyses

further suggested that BMI is causally implicated in EB. MR analyses also showed a positive

effect of risk-taking propensity on UE, but not EE or CR. Overall, the findings suggest that

UE is a heritable trait that shares a genetic basis with BMI and may be positively influenced

by risk-taking propensity. Larger studies may be better powered to identify specific variants

and further illuminate the biology of EE, UE and CR.
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7.2 Background

Chapter 6 supports the utility of genome-wide association studies (GWAS) in illuminating

the underlying biology of behavioural traits and clarifying their associations with health.

Several lines of evidence indicate a genetic basis for EB, suggesting that a GWAS could

be used to study EB traits. These are summarised in Chapter 1. Briefly, amongst adults,

heritability estimates from twin studies range between 9%-60% for EE [66, 115], 45%-69%

for UE [115] and cluster around 50% for CR [115, 66, 188]. Moreover, known BMI-associated

genetic variants show enriched expression in the CNS, broadly suggesting a role for be-

havioural pathways. This enrichment is particularly pronounced in brain regions with an

established role in the central regulation of eating [149]. Moreover, studies using a BMI-GRS

approach, including Chapter 4, have indicated that appetitive EB traits mediate genetic

predisposition to obesity, further indicating a role for genetics in EB [161, 301, 311].

No GWAS studies of EE, UE or CR have previously been reported. Besides isolating specific

genetic variants and illuminating biological pathways, GWAS has the potential to inform

several outstanding questions in EB research. First, whether all EB traits have a genetic

basis is debatable. In particular, some twin studies have not found restraint to be heritable.

For example, a 2003 study amongst 580 female twins did not identify evidence of heritabiliy

for CR, measured using the TFEQ-51 [186]. Twin studies amongst toddlers and young

children also suggest that emotional under and overeating are not substantively influenced

by genetics in early life [385, 193, 194]. Whether this is also true in adulthood requires

further analysis. Second, the extent to which EB traits reflect distinct biological pathways

is also a matter of debate. EE and UE demonstrate strong, positive correlations and it

has been asserted that they may not represent separate constructs [185]. Finally, studies

including Chapter 4, typically model EB as a cause of weight gain. The extent to which

reverse causality explains associations between EB and BMI is not known. In particular,

mounting evidence supports the view that CR represents a marker of previous weight gain,

as opposed to an aetiological factor in the development of obesity [138, 51]. Bi-directional

MR studies, facilitated by gene discovery, could help to disentangle cause and effect.

The development of validated questionnaires has facilitated the measurement of EB in large-

scale studies, making GWAS of EB traits a possibility. The most widely used and studied

questionnaire in adult populations is the TFEQ-R18 (described in detail in Chapter 1 and

provided in Appendix C.1). The questionnaire has been validated in both obese and healthy

weight populations across a range of settings [68] and measures three EB traits: EE (3 items),

UE (9 items) and CR (6 items) [40].

In order to specify the genetic basis of EB traits, we performed the first GWAS of EE, UE

and CR amongst over 11,500 white European participants from 4 population-based cohorts.

Downstream analyses were designed to investigate the relationship between the EBs, as

well as their associations to BMI and risk-taking.
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7.3 Participants and methods

7.3.1 Participants

To maximise the sample size of the analysis, data from 4 separate study cohorts was meta-

analysed. A literature search was used to identify studies with intersecting genome-wide

genotyping data and TFEQ-R18 or TFEQ-R21-measured EB traits. A total of three cohorts,

alongside the in-house Fenland study cohort, responded to the request. All included studies

measured EB using the TFEQ-R18, genotyped samples on a genome-wide array and imputed

samples to the HRC reference panel. All included participants were of self-reported white,

European ethnicity.

7.3.1.1 The Fenland study

The Fenland study population of the present analysis comprised 3515 individuals, 1869

women (53.2%) and 1646 men, aged 35-64 years with complete genome-wide genotype and

EB information. A detailed description of the Fenland study is provided in Section 2.1.

7.3.1.2 FinnTwin12

FinnTwin12 is an ongoing cohort study of Finnish twins born between 1983 and 1987

comprising ∼ 2700 families. The first phase took place when the twins were aged 11-12 years

[386]. The TFEQ-R18 was administered during the fourth phase of the study, conducted

between 2006 and 2008 when twins were 21–26 years old. The majority of the twins were

successfully recontacted for this study phase (n=1347 individual twins, 50% of the overall

sample and 73% of the target sample). A total of 1295 participants provided blood and/or

saliva samples for genotyping [387]. The study population of the present analysis comprised

1238 individuals, 670 women (54.2%) and 568 men, aged 21-26 years with complete genome-

wide genotype and EB information.

7.3.1.3 The Health Professionals Follow-up Study (HPFS)

The HPFS was established in 1986. Over 50,000 male health professionals aged 40-75

years and residing in the US completed a medical and lifestyle questionnaire. Follow-

up questionnaires were mailed every two years and blood samples for genotyping were

collected from ∼ 18,000 men between 1993 and 1996 [112]. In 2010, the TFEQ-R18 was

included as a supplementary questionnaire mailed to participants for whom genome-wide

genotype data was available [112]. Intersecting EB and genotype information for the present

analysis was available for 2696 men.
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7.3.1.4 The Nurse’s Health Study (NHS)

The NHS was established in 1976. Over 100,000 female nurses residing in 11 large US states

completed a mailed medical and lifestyle questionnaire [388]. Follow-up questionnaires

were sent every two years. In 2010, the TFEQ-R18 was included as a supplementary ques-

tionnaire mailed to participants for whom genome-wide genotype data was available [112].

Intersecting EB and genotype information for the present analysis was available for 4869

women.

7.3.2 Methods

7.3.2.1 The assessment of eating behaviour

All included cohorts measured EB using the TFEQ-R18 (Appendix C.1). This questionnaire

measures three EB traits: EE (3 items), UE (9 items) and CR (6 items). The traits and their

scoring is described in greater detail in Chapter 1. As in other chapters, in all cohorts, the

EB scores for each participant were scaled to 1-100 [89].

7.3.2.2 Genome-wide association analyses

Genotyping, imputation and quality control (QC) procedures were applied independently

in each study guided by an analysis plan sent to study analysts (Appendix C.3). Centralised

QC was also performed prior to meta-analysis. The analysis plan described phenotype

measurement, GWAS instructions, standard QC procedures, imputation requirements and

the statistics and file format required. SNPs were filtered prior to imputation on the basis

of call rate (>95%), minor allele frequency (MAF; >1%) and Hardy Weinberg Equilibrium

(HWE) p-value >1×10−6. Following imputation, mono-morphic SNPs and variants with

an imputation quality score of <0.3 were excluded. Individual samples were filtered on the

basis of missingness (>5% of genotypes), relatedness, population stratification, gonosomal

abnormalities, sex-mismatch, duplication of samples or outlying ethnicity. All studies were

then imputed to the most up-to-date HRC imputation panel.

In light of evidence that women typically score higher on all EB traits than men and that the

association between the BMI-GRS and CR is modified by sex (Chapter 4) [301], the GWAS

were initially sex-stratified. This resulted in a total of 6 GWAS in each cohort. The association

between SNPs and each of the three EB traits was analysed using an additive model including

age and study-specific covariates, as appropriate (e.g. study site). We conducted the analysis

in the Fenland cohort and included the first three principal components (PCs) as covariates

in the model. We did not include any other study-specific covariates. The results of the

individual GWAS analyses were hosted on an Secure File Transfer Protocol (SFTP) site.
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7.3.2.3 Quality control

After the analysts responsible for conducting the GWAS in each of the 4 cohorts had loaded

files to the SFTP site, file and meta-level QC were performed prior to meta-analysis [389].

File-level QC

File-level QC steps were performed using the EasyQC protocol developed by Winkler and

colleagues [389]. Files were checked to ensure correct naming of variables and alignment of

alleles to the same strand, as specified in the analysis plan. SNPs with missing or invalid

data, including mislabeled alleles or non-sensical values, were then removed alongside any

remaining mono-morphic SNPs and SNPs on the sex chromosomes. A minimum minor

allele count of 7 and participant number of 30 individuals were applied to each SNP. Files

were also checked to ensure that the QC procedures specified in the analysis plan had been

correctly followed. SNPs with a call rate of <95%, imputation quality of <0.3, HWE p-value

of <1×10−6 or MAF <1% were removed. The data in each file was then reduced such that 4

significant digits were given for effect estimates, SEs, p-values and effect allele frequencies

(EAF).

Meta-level QC

Following file-level QC, between-study (meta-level) comparisons of statistics were made to

identify study-specific problems. The following plots were generated in each study file:

SE-N plots. The inverse median of the SE of effect estimates across all SNPs was plotted

against the square root of the sample size. The inverse proportionality between the median

SE and the square root of the sample size derives from the fact that the sampling variance

of a linear regression–derived effect estimate of a specific SNP depends on the variance of

the phenotype, the variance of the SNP genotype and the sample size [389]. Studies are

expected to fall on a diagonal, with larger studies towards the top right and smaller studies

towards the bottom left. Significant deviations from this pattern indicate a problem. This

step did not indicate problems with any study files.

P-Z plots. These plots compare the p-value for each SNP against the p-values calculated

from the z-statistics (Beta/SE). Results are expected to correspond exactly. Deviations

indicate a problem with the reported p-values, effect estimates or SEs. This step did not

indicate problems with any study files.

EAF plots. The EAFs were plotted against those reported in the 1000 Genomes phase 3

reference panel. Results are expected to line up on a diagonal and deviations from this
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pattern indicate strand issues, miscoding of alleles or ancestry errors. This step did not

indicate problems with any study files.

Figure 7.1 QQ-plot highlighting problems
with HPFS data genotyped on the Illumina
platform.

Quantile-Quantile (QQ) plots. QQ plots

display the expected -log10 of the p-values

based on a theoretical chi-squared distribu-

tion (x-axis) against the observed -log10 of

the p-values (y-axis). Results are expected

to line up on a diagonal, indicating no sig-

nificant difference from the null expecta-

tion, with a possible small deviation to the

top right of chart, indicating a small num-

ber of possible, true associations. An early

deviation from the null (as shown in Fig-

ure 7.1), indicates that a number of low or

moderate p-values are more significant than expected. Confounding is likely and population

stratification, in particular, may be suspected.

This step indicated problems with the HPFS files genotyped on the Illumina platform for

all three EB traits. Figure 7.1 exemplifies these issues, depicting the QQ plot of the HPFS

Illumina file for EE. As a result of issues highlighted by the QQ plots, the HPFS files genotyped

on the Illumina platform for all three EB traits were excluded prior to meta-analysis. The

remaining HPFS files were genotyped on the Affymetrix platform. This led to the loss of 475

participants from the CR analysis and 474 participants from both the EE and UE analyses.

7.3.2.4 GWAS meta-analysis

The meta-analyses for all three EB traits were conducted using the inverse standard error

(SE) weighted approach in the METAL package [390]. This approach weights the effect

estimates for each SNP by the corresponding SE. In effect, this adjusts the effect estimate

for the sample size. The package also implements Cochran’s Q test for heterogeneity to

identify heterogeneity between effect estimates in different files. Following meta-analysis,

results were retained if they represented SNPs (as opposed to insertions or deletions), their

MAF was >1% and the SNP was present in all study files. This left ∼ 8million SNPs in each

meta-analysed file. Distance-based clumping was used to identify independent signals.

SNPs were considered representative of the same signal if they fell within 1000 kb of the

lead SNP, taken to be the SNP with the lowest p-value.

In keeping with the analysis plan, sex-specific meta-analyses were performed first. The

combined results files for men and women were then meta-analysed. This step identified

no evidence of heterogeneity between the sexes. To increase power, downstream analyses

were performed using the sex-combined results.
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7.3.2.5 The analysis of genetic correlations

To quantify the proportion of loci shared between the EB traits and both BMI and WHR,

genetic correlations (rg) were assessed using LD score regression. These were performed

in LDHub using the publicly available genetic information for BMI and WHR accessible

through the database [351]. Genetic correlations between the EB traits were performed

using LDSC software version 1.0.0, following the procedure described by Bulik-Sullivan et al.

[351]. This method was also used to generate chip heritability estimates for the EB traits.

7.3.2.6 Mendelian randomisation analysis of BMI to the eating behaviour traits

Section 6.3.2.9 describes MR in detail. Conventional IVW MR was used to investigate the

relationship between BMI and EB. MR Egger and weighted median MR were performed

as sensitivity analyses. The SNP effect estimates for BMI were regressed on the SNP effect

estimates for each of the EBs in turn. SNPs were aligned to the BMI-increasing allele.

The BMI-associated SNPs included in this analysis were taken from the 2015 Locke et al.

GWAS meta-analysis for BMI [149]. All 96 bi-allelic SNPs showing genome-wide significant

associations with BMI were included and weighted by the European-only, sex-combined

effect estimates [149]. The analysis was performed in R version 3.2.2.

7.3.2.7 Individual BMI-associated SNPs and eating behaviour traits

The association between the 96 bi-allelic BMI-associated SNPs and the EB traits was inves-

tigated on an individual, SNP by SNP basis. Effect estimates and SEs were taken from the

sex-combined meta-analysed GWAS summary statistics for EB in this analysis. SNPs were

aligned to the BMI-increasing allele and a z-statistic was generated for each SNP (Beta/SE).

As in Chapter 3, the results were used to construct a heat map colour-coding the z-statistic

for the association of each SNP with EB. To avoid spurious precision, z-statistics between

0.5 and 0.5 were displayed as neutral. This analysis was performed in Stata version 14

(StataCorp LCC, College Station, TX) and the heatmap was constructed in R version 3.2.2.

7.3.2.8 Mendelian randomisation analysis of risk-taking to the eating behaviour traits

Conventional IVW MR, MR Egger and weighted median MR were used to interrogate the

relationship between risk-taking propensity and EB, as described in Section 7.3.2.6. The

SNP effect estimates for risk-taking propensity were regressed on the SNP effect estimates for

each of the EBs in turn. All 26 SNPs that demonstrated genome-wide significant associations

with risk-taking propensity in Chapter 6 were included in this analysis [339]. SNPs were

aligned to the risk-increasing allele and weighted by the sex-combined effect estimates

[339]. The analysis was performed in R version 3.2.2.
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7.4 Results

7.4.1 Characteristics of the study participants

Four study cohorts were included in the GWAS meta-analysis. The total sample comprised

11,843 participants (7404 women (62.5%)).

Table 7.1 Studies included in the GWAS meta-analysis

Study
Total
(N)

Age
(years)

BMI
(kg/m2)

EE
(0-100)

UE
(0-100)

CR
(0-100)

Fenland

Men 1646 50.7 (7.3) 27.6 (4.2) 27.1 (24.8) 29.1 (17.5) 35.5 (19.0)

Women 1869 50.9 (7.2) 26.6 (5.3) 42.1 (28.0) 31.0 (17.7) 45.8 (19.1)

FinnTwin12

Men 568 22.4 (0.7) 24.1 (3.6) 16.1 (18.7) 34.4 (17.5) 26.2 (17.8)

Women 670 22.4 (0.7) 22.8 (3.9) 36.4 (25.9) 33.9 (17.0) 40.5 (21.3)

HPFS

Men 2221 74.3 (7.3) — 17.6 (22.0) 20.0 (15.9) 46.5 (21.6)

NHS

Women 4869 66.9 (6.6) — 32.0 (27.4) 23.4 (17.0) 48.4 (20.2)

Numbers are N or Mean (SD)

Missing data or not applicable (—); Body mass index (BMI); Emotional eating (EE); Uncontrolled

eating (UE); Cognitive restraint (CR); Health Professionals Follow-up Study (HPFS); Nurse’s Health

Study (NHS)

Age refers to the age of participants when their EB data was collected

Table 7.1 highlights variation in the age of participants in the different cohorts when their

EB data was collected. FinnTwin12 had the youngest participants (mean age: 22.4 years (SD:

0.7 years)) and the HPFS study had the oldest participants (mean age: 74.3 years (SD: 7.3

years)). In Fenland, the mean BMI of both men and women was overweight (27.6kg/m2 and

26.6kg/m2, respectively). The mean BMI of participants in the FinnTwin12 study was within

the WHO normal weight range (22.4kg/m2 for both men and women). No BMI data was

provided for participants in the HPFS or NHS cohorts.

7.4.2 Genomic loci

The sex-specific GWAS meta-analyses for all three EB traits identified no associations that

reached the threshold for genome-wide significance (p<5×10−8) (Appendix B.4, B.5 and

B.6). Meta-analysis of men and women together showed no heterogeneity in results. As

would be expected by chance in the absence of any heterogeneity, the mean heterogeneity p-

value was p=0.50 and 5% of the p-values were <0.05 for all three EB traits. As such, men and
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women were analysed together. No loci were associated with EE, UE or CR at the threshold

for genome-wide significance (p<5×10−8) in the sex-combined analysis (Figure 7.2). To

increase power, all subsequent analyses were based on the sex-combined cohort.

(a) Emotional eating. (n=11,809)

(b) Uncontrolled eating. (n=11,827)

(c) Cognitive restraint. (n=11,843)

Figure 7.2 Manhattan plots showing the results of the sex-combined GWAS meta-
analyses for EE, UE and CR. The plots show the results of the GWAS meta-analysis amongst
participants from the Fenland, FinnTwin12, HPFS and NHS studies. Each dot represents a
SNP. SNP chromosomal positions (x-axis) are plotted against the negative log-transformed
p-values for the association of each SNP with EB (y-axis). The horizontal yellow line on
each chart indicates a p-value of 1×10−5). No genome-wide significant loci were identified.
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7.4.3 Chip heritability

UE demonstrated the highest heritability estimate of the EB traits (11% (95% CI: 3%, 19%)).

The estimated heritability of EE and CR was 2% (95% CI: −8%, 12%) and 1% (95% CI: (−7%,

9%), respectively (Table 7.2). The low heritability estimates, particularly for EE and CR,

adversely affect the reliability of the downstream MR analyses reported in Section 7.4.5.

Table 7.2 Chip heritability estimates for the eating behaviour traits

Heritability SE

Emotional eating 0.02 0.05

Uncontrolled eating 0.11 0.04

Cognitive restraint 0.01 0.04

Standard error (SE)

7.4.4 Genetic correlations

7.4.4.1 Genetic correlations between EE, UE and CR

The genetic correlation (rg) between EE and UE was positive, but not significant due to

a very large SE (rg (SE) = 1.08 (1.29); p-value=0.40). We were unable to estimate genetic

correlations for CR as a result of the low heritability estimate for this trait.

7.4.4.2 Genetic correlations of eating behaviour with BMI and WHR

Table 7.3 Genetic correlations of eating behaviour with BMI and WHR

rg (SE) p-value

Emotional eating

BMI 1.22 (2.01) 0.54

WHR — —

Uncontrolled eating

BMI 0.43 (0.10) 6.5×10−6

WHR 0.29 (0.09) 0.002

Cognitive restraint

BMI — —

WHR 0.81 (1.85) 0.66

Genetic correlation (rg); Standard error (SE); Body mass

index (BMI); Waist-to-hip ratio (WHR); — Missing
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UE showed positive genetic correlations with both BMI (p=6.4×10-6) and WHR (p=0.002).

These were statistically significant after correction for multiple testing (Bonferroni corrected

p-value for 6 tests <0.02) (Table 7.3). The low heritability estimates for EE and CR impacted

the analysis and LDHub was not able to estimate the genetic correlation between EE and

WHR, or CR and BMI. EE and CR did not show evidence of genetic correlation with either

BMI or WHR.

7.4.5 Mendelian randomisation analyses of BMI to EB

Using results from the present GWAS meta-analysis alongside those from the 2015 Locke et

al. meta-analysis of BMI GWAS studies [149], we conducted a uni-directional MR of BMI to

EB. Given that no genome-wide significant loci for EB were identified, bi-directional MR

was not possible. The 96 bi-allelic SNPs identified in the BMI meta-analysis were included

alongside their European-only sex-combined effect estimates and SEs. Effect estimates and

SEs from the current study were also taken from the sex-combined analysis. SNPs were

aligned to the BMI-increasing allele. The results are shown in Table 7.4 and Figure 7.3.

Table 7.4 Mendelian randomisation analyses of BMI to eating behaviour

Analysis Beta (SE) p-value

BMI to Emotional eating

Conventional MR (IVW) 12.03 (1.64) <0.00001**

MR Egger 12.07 (4.03) 0.003**

Weighted Median MR 9.99 (2.86) 0.0005**

BMI to Uncontrolled eating

Conventional MR (IVW) 5.85 (1.09) <0.00001**

MR Egger 7.62 (2.69) 0.005**

Weighted median MR 6.66 (1.57) 0.00002**

BMI to Cognitive restraint

Conventional MR (IVW) 6.50 (1.14) <0.00001**

MR Egger 8.01 (3.04) 0.009*

Weighted median MR 7.16 (1.85) 0.001**

Body mass index (BMI); Mendelian Randomisation (MR); Inverse-

weighted variance (IVW); Standard error (SE).

Beta units are genetically predicted change in TFEQ-R18 EB score

per genetically predicted 1 unit increase in BMI (BMI units from

Locke et al are inverse normally transferred residual BMI mea-

surements)
* Nominally significant (p<0.05)
** Bonferroni significant after adjustment for 9 tests (p<0.009)
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For each of the EB traits, the three MR analyses conducted showed nominally significant

positive associations between BMI and EB (p<0.05). Eight of the 9 analyses were also

significant at a Bonferroni p-value corrected for 9 tests (p<0.006). The one exception to this

was the MR Egger for BMI to CR, which was not significant at this level (p=0.009). The MR

Egger is the least powered of the MR analyses.

(a) Emotional eating (b) Uncontrolled eating

(c) Cognitive restraint

Figure 7.3 Dosage plots showing the results of the Mendelian randomisation analyses of
BMI to EB. Each dot represents one of the 96 BMI-associated SNPs, 95% CIs are represented
by black lines. The effect of each SNP on BMI on the x-axis is plotted against its effect on
EB on the y-axis. The coloured lines represent the MR results. Red represents the IVW MR,
blue represents the MR Egger and green represents the weighted median MR. All three MRs
are present on each plot. However, where results overlap, some lines are not visible.
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The between-SNP heterogeneity estimate derived from the IVW MR analyses using Cochran’s

Q statistic was significant for all the EB traits (EE: p=5.6×10−245; UE: p=9.3×10−221 ; CR:

p=7.0×10−250). Thus, despite the aggregated positive association, some BMI-increasing alle-

les are negatively associated with particular EB traits. This may reflect horizontal pleiotropy

or lack of precision in the effect estimates for EB due to the low sample size and power of

the EB GWAS meta-analysis. Given this uncertainty, at these levels of heterogeneity, only

the weighted median MR analysis can be considered robust.

(a) Emotional eating (b) Uncontrolled eating (c) Cognitive restraint

Figure 7.4 Funnel plots showing heterogeneity in the association between the 96 bi-
allelic BMI-associated SNPs and the EB traits. Each data point represents one of the 96
BMI-associated SNPs. The SNP-specific MR estimate for the association of BMI with EB
(x-axis) is plotted against the SE of this association (y-axis). The summary estimate for
all 96 SNPs combined is marked by the solid black line. The grey-dotted lines, originating
from the summary estimate and marking a triangle, represent the expected 95% CIs of the
combined effect estimate. The vertical red-dotted line indicates the null.

7.4.6 BMI-associated SNPs and eating behaviour traits

To depict the effect of BMI-associated SNPs on EB in more detail, a heat map was con-

structed. The map displays the associations between the 96 bi-allelic BMI-associated SNPs

with EE, UE and CR (Figure 7.5). SNPS were aligned to the BMI-increasing allele.

The primary clustering of EB traits on the x-axis separated CR from the appetitive traits

(EE and UE). The primary clustering of SNPs on the y-axis separated a group of 14 SNPs

associated with an increase in all three EB traits from the remaining 82 SNPs. A second group

of 18 SNPs was identified that are positively associated with UE and, to a lesser extent, EE,

but are either negatively or neutrally associated with CR. The remaining 64 BMI-associated

SNPs show weak associations with EB. These findings support the results of the MR analyses,

highlighting heterogeneity in the influence of BMI-associated SNPs on EB.
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Figure 7.5 Heat map of the 96 bi-allelic BMI-associated SNPs clustered by their associa-
tions with the EB traits. The values and colour-coding indicate the z-statistic (Beta/SE)
from the age and sex-adjusted linear regression of each SNP on the standardised EB traits
(mean=0; SD=1).
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7.4.7 Mendelian randomisation analyses of risk-taking to EB

Using results of the present GWAS meta-analysis alongside those from the GWAS of risk-

taking reported in Chapter 6, a uni-directional MR of risk-taking to the EB traits was con-

ducted. The 26 SNPs which showed genome-wide associations with risk-taking in Chapter 6

were included. The results are shown in Table 7.5 and Appendix B.7.

Table 7.5 Mendelian randomisation analyses of risk-taking to eating behaviour

Analysis Beta (SE) p-value

Risk-taking to Emotional eating

Conventional MR (IVW) 25.0 (13.1) 0.06

MR Egger 9.49 (60.7) 0.88

Weighted Median MR 29.1 (19.2) 0.13

Risk-taking to Uncontrolled eating

Conventional MR (IVW) 29.0 (7.61) 0.0001**

MR Egger 110.4 (35.0) 0.002**

Weighted Median MR 30.6 (10.8) 0.005**

Risk-taking to Cognitive restraint

Conventional MR (IVW) −5.07 (9.04) 0.58

MR Egger −30.6 (41.7) 0.46

Weighted Median MR −10.2 (13.3) 0.44

Mendelian Randomisation (MR); Inverse-weighted variance

(IVW); Standard error (SE)
** Bonferroni significant after adjustment for 9 tests (p<0.009)

The IVW, MR Egger and weighted median MRs showed statistically significant, positive

associations between risk-taking and UE at the Bonferroni corrected p-value threshold for

9 tests (p<0.006). The MR analyses of risk-taking to EE and CR did not yield significant

results. The p-values for the IVW MR were p=0.06 and p=0.58, respectively. A significant

degree of between SNP heterogeneity was detected in all of the IVW analyses (EE: p <1×
10−200; UE: p=2.9×10−200; CR: p=2.5×10−193). This was unsurprising given that 4 of the

SNPs included in this analysis are also genome-wide significant for BMI (Chapter 6) and

BMI SNPs demonstrate heterogeneous associations with EB (Section 1.4). Individual risk-

associated SNPs were associated with higher or lower levels of EB. Figure 7.6 displays the

large SNP effect estimates for EB, likely the result of low precision, as well as between-SNP

heterogeneity.
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(a) Emotional eating (b) Uncontrolled eating (c) Cognitive restraint

Figure 7.6 Funnel plot showing heterogeneity in the association between the 26 risk-
associated SNPs and the eating behaviour traits. Each data point represents one of the 26
risk-associated SNPs. The SNP-specific MR estimate for the association of risk-taking with
EB (x-axis) is plotted against the SE of this association (y-axis). The summary estimate for
all 26 SNPs combined is marked by the solid black line. The grey-dotted lines, originating
from the summary estimate and marking a triangle, represent the expected 95% CIs of the
combined effect estimate. The vertical red-dotted line indicates the null.
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7.5 Discussion

7.5.1 Summary and context of the main findings

Here we report the results of the first genome-wide gene discovery study of EE, UE and CR.

The genetic basis of these traits was assessed in GWAS meta-analyses amongst over 11,500

white European adults from 4 study cohorts.

No genetic variants showing genome-wide significant associations with any of the EB traits

were identified. However, UE was estimated to be 11% heritable (95% CI: 3%, 19%) and

demonstrated a shared genetic basis with both BMI and WHR. This estimate is comparable

to the heritability estimate of 8% (95% CI: 7%-9%) for risk-taking estimated from the UKB

sample in Chapter 6 and is generally in line with chip heritability estimates for other be-

havioural and personality traits estimated on the observed scale [391, 392]. As an increasing

number of studies collect intersecting EB and genome-wide genotype information, it is

likely that larger investigations will be powered to detect specific associations for UE in the

future. The heritability estimates for both EE and CR were negligible at 2% (95% CI: −8%,

12%) and 1% (95% CI: −7%, 9%), respectively. In light of the fact that the majority of twin

studies in adulthood suggest a genetic basis for these traits, this finding was unanticipated

[66, 124]. Given the wide 95% CIs, it is likely that the analysis lacked the power to detect

a genetic basis for these traits. However, it is also plausible that EE and CR are primarily

determined by environmental factors in adulthood. Twin studies suggesting that emotional

over and under-eating in early childhood are learnt behaviours provide some tentative

support for this suggestion with respect to EE [193, 385, 194].

EE and UE show consistent, positive phenotypic correlations across a range of studies,

leading some researchers to assert that they reflect a single underlying construct [185].

Chapter 4 reported that EE does not mediate the association between the BMI-GRS and

BMI independently of UE, suggesting that the elements of EE relevant to the genetics of BMI

might be captured by UE. However, EE and UE showed no evidence of genetic correlation in

the present analysis. The analysis was under-powered due to the low heritability estimate

for EE, and should not be considered conclusive evidence of no genetic overlap. However,

it does not directly support the assertion that the traits reflect a single construct from a

genetic perspective [185].

EB traits have typically been considered to be a cause, rather than a consequence, of obesity

and have been modelled as such throughout the studies that comprise this thesis. In the MR

analyses, BMI-increasing alleles were, in aggregate, positively associated with all of the EB

traits, suggesting that BMI might play a causal role in EE, UE and CR. The main MR analyses

were supported by the results of MR Egger and weighted median MR, adding weight to this

finding. In the case of CR, this interpretation supports mounting evidence that high BMI

leads people to consciously limit their food intake and thus that CR is a response to weight
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status, rather than risk-factor for weight gain [51]. However, if, as other studies, including

Chapter 4, have suggested, some BMI-associated loci are linked to BMI through a primary

association with appetitive EB traits, the same MR results would be expected. In the absence

of robust genetic instruments to model EB traits, all that can be robustly concluded from

these results are that EB and BMI lie on the same causal pathway. Overall, in the absence of

reliable genetic proxies for EB, the conclusions that can be drawn from the MR analysis are

limited.

Not all BMI-associated loci were associated with EB in the anticipated ways. Whilst BMI-

increasing alleles at some loci show the anticipated positive associations with the EB traits,

others show neutral or negative associations with one, or all, of the EB traits. Notwithstand-

ing power limitations, this suggests that whilst some of the pathways involved in BMI may

be relevant to EB, others are likely to be unrelated and may instead reflect different aspects

of health-related physiology or behaviour. Taken together with the MR analyses reported

in Chapter 6, which indicated a high level of heterogeneity in the influence of individual

risk-associated SNPs with BMI, these results suggest that behavioural traits have complex

associations with BMI. Better powered studies are needed to provide more precise SNP

effect estimates for EB, diminishing the possibility that the MR findings are the result of

error.

The findings reported in Chapter 6 suggested that risk-taking may influence food intake,

with risk-prone individuals consuming more calories per day [339]. To explore the possibility

of a link between risk-taking and EB traits, we performed MRs of risk-taking to the EB traits.

These analyses demonstrated a significant positive association between risk-associated

SNPs and UE. Although individual SNPs showed evidence of heterogeneity, the overall

association persisted in sensitivity analyses, suggesting a true, causal association. No

association between risk-taking and EE or CR was identified. This contrasts to the results

reported in Chapter 6 which suggest a causal role for risk-taking in EE using a GRS approach,

but detected no association with UE. The present analysis included a greater sample size

which would be expected to increase the power of the analysis and may explain differences

in the UE results between the studies. It may be that the risk to EE association reported in

Chapter 6 is spurious. However, the sparse genetic profile of the EB traits was used to reflect

EB in the MR analysis and this is likely to be weak relative to the phenotypic measure used

in Chapter 6, particularly for EE for which no genetic basis was identified in the present

study. As such, it remains plausible that risk-taking is causally involved in appetitive EB.

Further research is needed to provide clarification.

7.5.2 Strengths and limitations

This study represents the only genome-wide discovery effort for EE, UE and CR to date. An

acceptable GWAS sample size was achieved by combining data from 4 separate cohorts. A
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substantial strength of the study was that all the cohorts used the same, widely used and

validated questionnaire (the TFEQ-R18) to measure three well studied EB traits. Further,

the analysts for each study followed a pre-defined protocol, ensuring the harmonisation

of procedures. This controlled for issues including population stratification by restricting

the sample to those of white European ancestry. The results of the individual GWAS studies

underwent rigorous central QC prior to meta-analysis. Although the study did not detect

any associations between genetic loci and EB, the results were used in downstream analyses

providing insights into the relationship between EB and obesity, WHR and risk-taking.

A significant limitation of the present analysis was its sample size. Whilst the study included

over 11,500 participants, by the standards of contemporary GWAS, and particularly GWAS

meta-analyses, it was not a large study and was under-powered to detect specific variant

associations. In part, the sample size was limited by the range of methods used to assess

EB and the lack of clarity regarding how they relate to each other. These include different

questionnaires (such as the DEBQ and TFEQ-51), as well as laboratory-based measures.

The study was restricted to cohorts measuring EB using the TFEQ-R18 or TFEQ-R21 and

required that both EB and genome-wide genetic information were present in the same

cohort. A final note pertains to the age of the participants which varied from a mean of 22.4

years in the FinnTwin12 cohort to a mean of 74.3 years in the HPFS cohort. Given evidence

that the heritability of behavioural traits can change with age [393], this may have limited

the power of the study to detect associations relevant at different points of adulthood.

7.5.3 Conclusions

This study was designed to identify the genetic basis of EE, UE and CR and use these results

to elucidate the biological pathways involved in EB, as well as to interrogate the relationship

between EB and health. No specific genetic variants were identified in association with any

of the EB traits and the analysis was likely under-powered due to low sample size. However,

the results indicate that UE is heritable and shares a genetic basis with both BMI and WHR.

Future studies, including a greater number of participants, will be better powered to identify

specific associations for UE and may also detect a genetic basis for EE and CR.
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8.1 Summary of the aims, rationale and methods

The central aim of this thesis is to advance understanding of the relationship between eating

behaviour (EB) and the aetiology of obesity. Within the remit of this over-arching goal,

three inter-related research aims were identified. These were to explore: (1) the role of EB

in genetic predisposition to obesity, (2) the interaction between infant EB and modifiable

maternal attitudes to following healthy infant feeding guidelines on infant body weight and

milk intake and (3) the genetic basis of behaviours relevant to obesity. The relationship

between these aims is depicted in Figure 8.1 and elaborated below. The dashed lines and

shading represent novel associations investigated and reported in this thesis. The solid lines

represent previously established associations replicated within specific chapters.

Figure 8.1 Diagrammatic representation of the aims of the thesis. Aim 1 is represented
in green, Aim 2 in orange and Aim 3 in grey. The diagram is not intended to represent all
relationships between the included variables, but depicts those of central relevance to this
thesis. All associations (indicated by arrows or lines) were analysed within the thesis. The
dashed lines and arrows indicate novel contributions to the literature, whilst the solid lines
represent established associations replicated in this work. Arrows represent hypothesised
causal associations, whilst lines represent interactions. Under Aim 3, GWAS were performed
to elucidate the genetic basis of EB traits and risk-taking propensity. Genetic variants
involved in the determination of BMI were taken from a previous GWAS meta-analysis [149]
and used across the individual studies comprising this thesis.
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8.1.1 Aim 1: The role of EB in genetic predisposition to obesity

Figure 8.2 The role of EB in genetic predisposition to obesity. Under this aim, adult EB
traits measured by the TFEQ-R18 (emotional eating (EE), uncontrolled eating (UE) and
cognitive restraint (CR)) were modelled as potential mediators (A) and modifiers (B) of
genetic susceptibility to obesity. Genetic variants involved in the determination of BMI were
taken from a previous GWAS meta-analysis [149].

Pathway and tissue expression analyses of BMI GWAS results, candidate gene studies and

evidence from monogenic obesity syndromes together suggest that EB traits lie on the causal

pathway between genetics and obesity [149, 150]. Prior to the work reported in Chapter 4,

two previous studies in adult populations had directly tested this assertion by modelling

appetitive adult EB traits (emotional eating (EE) and uncontrolled eating (UE)) as potential

mediators of the association between a genetic risk score for BMI (BMI-GRS) and measured

BMI. Both found that these traits partially mediate the association [112, 161]. However,

there were several limitations to these investigations. Both studies relied on the untested

assumption that the BMI-GRS reflects adiposity pathways, included a limited number of the

97 known BMI-related genetic variants in the BMI-GRS (32 and 90, respectively) and only

modelled EB traits as mediators of genetic predisposition to obesity. Further, the first study

modelled the EB traits as mediators in the same model and thus was unable to differentiate

between the separate effects of the traits [112]. The second study reported conflicting results

for UE, finding that it mediated the BMI-GRS to BMI association in one study cohort, but

not the other [161].

Chapters 3 and 4 were designed to address these gaps in the literature and to inform a

more complete understanding of the relationship between EB and genetic predisposition to

obesity. BMI-GRSs, summarising the combined effect of BMI-related genetic variants on

BMI, reflect all genetic pathways involved in the determination of obesity that current GWAS

have the power to detect. Chapter 3 interrogated the assumption that genetic predisposition

to obesity, expressed by a BMI-GRS comprised of the 96 biallelic BMI-related variants

reported by Locke et al. [149], can be used to understand adiposity pathways, such as EB. The

relationship between the BMI-GRS and both anthropometric traits and body composition

was analysed in sex-stratified, age-adjusted linear regression models in the Fenland cohort

(n=9667).
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Chapter 4 then modelled the appetitive EB traits (EE and UE) alongside cognitive restraint

(CR), as potential mediators and modifiers of genetic predisposition to obesity separately

in the Fenland (n=3515) and EDEN (n=2154) studies. Using a 96 SNP BMI-GRS, the Sobel

test and mediation ratio were used to identify and quantify mediation, whilst statistical

interaction analyses were used to detect effect modification. This study included a greater

number of BMI-related genetic variants than previous investigations and represented the

first time that CR was modelled as a mediator of genetic predisposition to obesity and that

modification of BMI-GRS to BMI association by EB traits had been considered.

8.1.2 Aim 2: The interaction between infant EB traits and modifiable maternal

attitudes on infant milk intake and body weight

Figure 8.3 Infant EB traits and maternal attitudes to following healthy infant feeding
guidelines. Under this aim, the association between two infant EB traits measured by the
BEBQ (food responsiveness (FR) and satiety responsiveness (SR)) and both infant milk
intake and body weight was described (A), alongside the separate association between
maternal attitudes to following healthy infant feeding guidelines and these outcomes (B).
The association between maternal attitudes and infant EB was then modelled (C) and,
finally, the interaction between infant EB and maternal attitudes on infant milk intake and
body was interrogated (D).

The first 1000 days from conception to 2 years are considered a critical period for devel-

opment of obesity risk and consistent evidence links infant weight trajectories during this

period to lifetime obesity [37, 165]. As such, infancy represents an important developmental

period during which obesity prevention has the theoretical potential to be particularly

effective. However, the determinants of infant weight gain and status, and the relationships

between them, are incompletely understood. Under Aim 2, the role of infant EB traits and

maternal attitudes to following healthy infant feeding guidelines in determining infant milk

intake and body weight was investigated.

Infant EB traits are known, heritable influences on weight in early life [104, 141, 139, 143].

Associations between parental factors, such as feeding styles, and infant weight gain have

also been demonstrated primarily through intervention studies that target parental feeding

behaviours [183]. Whilst infant and parental factors have separately been implicated in

weight outcomes, prior to the work reported in Chapter 5, the impact of maternal attitudes

to infant feeding and the interactions between infant and maternal factors had not been

explored. This is particularly important because whilst infant EB traits cannot yet be

modified by interventions, parental behaviours and attitudes are modifiable.
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Chapter 4 introduced the notion that behaviours extraneous to the causal pathways be-

tween determinants of BMI and realised weight status can protect vulnerable individuals

from obesity. In particular, restraint over eating (measured by CR) was shown to interact

with genetic susceptibility to obesity, attenuating its effect on realised BMI. This evidence

indicates that restriction over eating may intervene in pathways to obesity. As such, it was

hypothesised that it may be possible to protect infants with an appetitive EB profile from

obesity by targeting parental factors that promote control over infant consumption in accor-

dance with healthy guidelines. In Chapter 5, the association between infant EB traits and

both infant milk intake and weight was described amongst the Baby Milk Trial participants

(n=669). Further, a score reflecting maternal attitudes to following healthy infant feeding

guidelines was generated based on a recently designed self-report questionnaire [323]. The

associations of the maternal attitudes score to these infant outcomes was also described.

The interaction between infant EB traits and the maternal attitudes score was then assessed

using an interaction term added to the separate age and sex-adjusted linear regression of

these traits on infant milk intake and body weight.

8.1.3 Aim 3: The genetic basis of behaviours associated with obesity

Figure 8.4 The genetic basis of behaviours associated with obesity. Under this aim, the
genetic basis of risk-taking propensity and EB traits measured by the TFEQ-R18 (EE, UE
and CR) was investigated through GWAS. In downstream analyses, the genetic correlation
between these phenotypes, as well as between the phenotypes and BMI, was performed and
Mendelian randomisation (MR) was used, where possible, to interrogate causal associations.

A range of behaviours have been implicated in the aetiology of obesity. However, the

biological mechanisms underlying these associations, as well as the directions of association,

have yet to be conclusively determined. In the case of EB, the role of CR is particularly

debatable. Whilst CR was initially conceptualised as a problematic EB, recent studies

including Chapter 4 suggest that it may represent a response, as opposed to a cause, of

susceptibility to obesity [301]. In order to advance understanding of the mechanisms and

causality in associations between behaviour and obesity, GWAS of risk-taking propensity

(Chapter 6) and EB traits (EE, UE and CR) in adulthood (Chapter 7) were performed. Risk-

taking propensity was selected as a phenotype of interest on the basis of an existing body

of literature linking risk-taking to health and health-related behaviours, notably including
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both obesity and EB. This literature is summarised in Chapter 6. Alongside the central aim

of exploring the mechanisms of the relationship between risk-taking and obesity, this study

was also designed to confirm the utility GWAS to the study of behaviour and obesity.

Prior to the work reported in this thesis, no GWAS studies of EE, UE or CR had been con-

ducted. In part, this reflects the limited availability of intersecting EB and genome-wide

genotype information. Lack of knowledge regarding the genetic basis of these traits limits

understanding of the biological pathways involved in EB, as well as the biological distinction

or overlap between EB traits. The lack of genetic characterisation also precludes Mendelian

randomisation (MR) analyses based on genetic variants which could be used to elucidate

the associations between EB, weight and other health outcomes.

A GWAS meta-analysis of the EB traits measured by the TFEQ-R18 (EE, UE and CR) was facil-

itated by combining data from 4 cohorts of white European ancestry (n>11,500 for each EB

trait). The study was conceived to explore the biological pathways involved in EB and their

relationship to obesity. Work published during the progress of this thesis added additional

interest to the findings. First, twin studies indicating that emotional under and overeating

amongst toddlers and young children are not substantively heritable added intrigue to the

heritability estimates for EE in adulthood [385, 193, 194]. Further, Chapter 4 suggested that

EE and UE might influence BMI through overlapping pathways, contributing to ongoing

debate regarding the distinction between these traits. Some researchers now argue that they

reflect a single underlying construct [185]. Understanding the genetic determinants of EE

and UE would provide insights into their underlying biology, contributing to the debate on

their independence.
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8.2 Summary of the main findings

8.2.1 Aim 1: The role of EB in genetic predisposition to obesity

8.2.1.1 Genetic susceptibility to obesity reflects adiposity to a greater extent than lean

or bone mass

In Chapter 3, amongst 9667 participants from the Fenland study, the BMI-GRS comprised

of 96 biallelic BMI-associated genetic variants [149], was associated with adult body com-

position and anthropometric measures, such as height and waist-to-hip ratio (WHR), in

ways that mirror the associations between measured BMI and these traits. In particular, the

BMI-GRS reflected variation in adiposity to a greater extent than either lean or bone mass,

and was not associated with height or body fat distribution. The results were consistent

amongst both men and women. A total of 26 SNPs included in the BMI-GRS demonstrated

nominally significant associations with BMI in this study sample. Approximately half of

these showed adipose-specific effects, whilst the remainder were associated with a global

increase in fat, lean and bone mass. The study showed that a BMI-GRS, based on all known,

biallelic BMI-associated genetic variants (n=96), can be used to reflect genetic predispo-

sition to total adiposity in white, European populations of both sexes. This supports the

utility of the score as a tool to examine the causal effect of adiposity and measured BMI on

outcomes of interest in future studies. It also supports the use of the BMI-GRS as tool to

investigate the mechanisms of adiposity pathways, such as EB.

8.2.1.2 Appetitive EB traits mediate genetic predisposition to adult obesity

Chapter 4 built directly upon these findings. The results indicated that the appetitive EB

traits, EE and UE, partially mediate the association between the BMI-GRS and BMI amongst

adult participants from the Fenland and EDEN study cohorts (n=3515 and 2154, respec-

tively). By contrast, in 3 of 4 population groups studied (Fenland men and women and

EDEN men), CR was not found to be a mediator of the association, suggesting that the

mediation effect is particular to appetitive EB traits. It is unclear why EDEN women demon-

strated different results from the other three population groups studied. Subsequent work in

other cohorts has also suggested that CR does not mediate genetic predisposition to obesity

[311, 138]. Thus we do not conclude that CR was a true mediator, even amongst EDEN

women. Adjusting for both EE and UE in the same model provided evidence for overlap in

the pathways through which these traits mediate genetic predisposition to obesity. Specifi-

cally, following adjustment for UE, EE was no longer a mediator in either cohort. Given that

the appetitive EB traits together mediated just a portion (∼10%) of the relationship between

the BMI-GRS and BMI, the results support the involvement of other pathways. These may

reflect unmeasured EB traits, other behaviours or non-behavioural pathways.
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8.2.1.3 Cognitive restraint modifies genetic predisposition to adult obesity

Amongst three of the 4 population groups studied (Fenland men and women, as well as

EDEN men), CR modified the association between the BMI-GRS and BMI. At high levels

of CR, the positive association between the BMI-GRS and BMI was attenuated. Coupled

with the mediation results, these findings indicate that EB traits have diverse associations

with genetic predisposition to obesity and that CR is distinct from EE and UE. Whilst the

appetitive traits likely lie on the causal pathway, CR may interact with genetic predisposition

to influence realised weight.

8.2.2 Aim 2: The interaction between infant EB traits and modifiable maternal

attitudes on infant milk intake and body weight

8.2.2.1 Infant EB traits and maternal attitudes to following healthy infant feeding guide-

lines are separately associated with infant milk intake and body weight

In Chapter 5, infant food responsiveness (FR) was positively associated with infant milk

intake and body weight amongst 2 month old infants enrolled in the Baby Milk Trial (n=669).

Further, infant satiety responsiveness (SR) was negatively associated with both outcomes.

Maternal factors were also shown to be important. Specifically, maternal attitudes to follow-

ing infant healthy feeding guidelines, summarised as a single score reflecting the strength

of intentions to follow healthy feeding guidelines, feelings of self-efficacy in following guide-

lines and the expectation of positive results, were negatively associated with infant milk

intake and body weight.

8.2.2.2 The association of infant EB traits to infant milk intake and body weight is mod-

ified by maternal attitudes during a critical period of development

This built upon Chapter 4, drawing upon the conclusion that obesity determinants can

interact to influence BMI. Thus, the impact of unmodifiable determinants, or those for

which interventions have yet to be developed, can be altered by interventions targeting

modifiable traits. Maternal attitudes to following healthy infant feeding guidelines inter-

acted with infant EB traits, modifying their association with milk intake and weight. Positive

maternal attitudes reduced the magnitude of the positive association between infant FR

and milk intake, as well as the magnitude of the negative association between infant SR and

body weight. The maternal attitude score was not associated with infant EB. These results

provide evidence that modifiable maternal factors, that do not influence infant EB traits

directly, can modify the effect of infant EB traits on health-related outcomes in early life and

have the potential to prevent high weight, as well as weight faltering. The findings require

replication and longitudinal analyses are needed to explore relationships over time.
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8.2.3 Aim 3: The genetic basis of behaviours associated with obesity

8.2.3.1 GWAS provide insights into the relationship between behaviour and obesity

Risk-taking propensity. A total of 26 genetic variants associated with risk-taking propensity

were identified, 24 of which were novel. Together, these variants show enriched expression in

both the CNS and immune system. Enrichment in the CNS implicates behavioural pathways.

However, future studies are required to clarify the role of the immune system in risk-taking.

In contrast to a previous study in a smaller, overlapping sample [242], the genetic correlation

between risk-taking and adult obesity did not reach statistical significance at the Bonferroni

corrected level in our study, suggesting that these traits may not share a substantive genetic

basis. However, this may vary by age as there was a genetic correlation between risk-taking

and childhood obesity. Bi-directional MR provided evidence that BMI does not influence

risk-taking. Thus, correlations between risk-taking and BMI observed in epidemiological

studies are likely driven by risk-taking. However, the association is complex and results from

shared biological pathways, some of which operate in opposing directions, as opposed to a

single, causal mechanism. It seems likely that different aspects of risk-taking propensity are

associated with BMI in different ways. Future studies are needed to refine measurements of

risk-taking such that the behaviours relevant to health, and their biological pathways, can

be identified.

Eating behaviour traits. Having established that a GWAS approach could be used to ad-

vance understanding of the relationships between behaviour and obesity in Chapter 6,

Chapter 7 reported the results of the first GWAS of EE, UE and CR. No specific genetic

variants were identified. The study was likely under-powered and highlights the need for

large GWAS sample sizes to detect associations for behavioural traits. However, the results

suggested that UE is a heritable trait. Downstream analyses further indicated that UE shares

a genetic basis with both BMI and WHR, and that it is positively influenced by risk-taking

propensity.

8.2.4 Summary

Overall, the findings indicate that different aspects of EB have different relationships to

genetic susceptibility to obesity in adulthood. Whilst appetitive EB traits lie on the causal

pathway between genes and BMI, restraint may modify these innate pathways. In infancy,

the impact of EB traits on milk intake and weight can also be modified, as illustrated by the

interaction between maternal attitudes and infant EBs on these outcomes. Well-powered

gene discovery studies of obesity-related behaviours have the potential to provide insights

into the mechanisms underlying the associations between behaviour and obesity. However,

large sample sizes are required to identify specific genetic variants. Risk-taking propensity

and obesity likely share biological pathways, and UE shares a genetic basis with BMI.
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8.3 Implications and future research

The results reported in Section 8.2 have implications for obesity prevention, the concep-

tualisation of EB traits and future research. These are discussed in turn in the following

section.

8.3.1 Implications for obesity prevention

Foremost, the results of Chapters 4 and 5 together highlight the likely causal associations

between appetitive EB traits and obesity in both infancy (FR and SR) and adulthood (EE and

UE). They thus suggest that these EB traits provide a target for obesity prevention. Another

central conclusion of the work is that the impact of obesity determinants that are either

unmodifiable or that we do not yet know how to change, can be altered throughout the life-

course, without direct or invasive intervention designed to change the pathways themselves.

The results of Chapter 4 show, for the first time, that CR modifies genetic predisposition

to obesity. This indicates that CR represents a potential target for obesity prevention in

adulthood that may be of particular benefit to individuals who are genetically susceptible

to obesity. The findings corroborate a mounting body of evidence suggesting that CR does

not lead to weight gain, as initially hypothesised, but may instead be beneficial to obesity

prevention [51]. However, future research is needed to clarify the prospective relationship

between CR and weight. In particular, whether CR can be used to prevent weight gain, to

promote weight loss or both. Further, given the quadratic association between CR and

BMI observed in Chapter 4, it is important to determine if CR has different prospective

associations with BMI across the BMI spectrum. Modifiable environmental determinants of

CR, as well as the factors, such as dichotomous thinking, that differentiate CR from dieting

and make it a better tool for controlling weight, also require identification [394, 395].

The results of Chapter 5 indicate that maternal attitudes to following healthy infant feeding

guidelines could also represent an intervention target with the potential to reduce the

impact of infant EB traits on milk intake and weight. The maternal attitudes explored in

this thesis were strengthened amongst mothers in the intervention arm of the Baby Milk

Trial, indicating that they are amenable to change and providing direction as to how this

may be achieved [259]. However, the findings require replication in other cohorts, as well as

amongst breastfed infants and infants of different ages. Wider use of the maternal attitudes

questionnaire would facilitate this.

8.3.2 Theoretical implications

The work described in this thesis contributes to several ongoing discussions in the EB

literature. These are elaborated here.
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8.3.2.1 Behaviour and genetic predisposition to obesity

Beyond confirming that appetitive EB traits mediate genetic predisposition to obesity in

adulthood, the results highlight other, novel relationships between EB and the genetics of

obesity. In particular, the results suggest that CR interacts with the BMI-GRS. Whilst this

requires replication in other cohorts, it indicates that to fully understand the relationship

between EB and the genetics of obesity, there is a need to explore associations beyond

mediation. The mediation results from our analysis are consistent across a number of

studies [112, 161, 311]. However, no investigations have previously or subsequently explored

effect modification. A 2018 study of the relationship between EB and the BMI-GRS to BMI

relationship, published after the investigation reported in Chapter 4, again only assessed

mediation [311]. The EB questionnaires developed through the 1970s and 1980s were

designed to better understand the EB of obese individuals and leave a legacy of focus on

obesogenic EB traits which may restrict research if the potential limiting effect of certain EB

traits on weight is not actively considered.

8.3.2.2 Behaviour and complex associations with obesity

Chapters 6 and 7 both highlight that the biology of behavioural phenotypes is highly com-

plex. Single number summaries of complex behaviours are likely to mask multiple biological

pathways, which may have different, and even opposing, associations with specific health

outcomes. Previous research has also shown that sub-types of impulsivity are associated

with UE in different ways [396] and divergent associations between different aspects of

CR (e.g. rigid versus flexible restraint) and BMI have been demonstrated in a separate

study [311]. This study found that flexible restraint was negatively associated with BMI,

rigid control demonstrated a positive association and other aspects of restraint showed

no evidence of association [311]. Together, these findings suggest that associations be-

tween crudely measured behavioural traits and health-related phenotypes, such as BMI,

might mask the importance of specific pathways which can only be isolated through greater

scrutiny. Efforts should be made to identify the particular aspects of behaviour that are driv-

ing associations such that interventions can be optimised. Moreover, behavioural measures

should be subject to continued scrutiny. For example, analysing the factor structure of the

maternal attitudes questionnaire in Chapter 5 indicated that the items measured a single

construct, rather than three distinct attitudes. In instances where there is clear evidence

that questionnaire measures do not reflect biological reality, and are instead conflating

several biologically distinct phenotypes or unnecessarily separating measures of the same

underlying trait, questionnaires should be revised and refined.
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8.3.2.3 The understanding of eating behaviour traits

The work reported in this thesis makes three central contributions to literature on the un-

derstanding of EB traits. First it contributes to the ongoing debate regarding the distinction

between EE and UE. Second, it illuminates the relationship between CR and obesity. Finally,

it has implications for the presentation of EB as immutable traits largely controlled by

genetic influences. These are elaborated below.

The distinction between EE and UE

Citing the high correlation between EE and UE, some researchers have argued that these

traits, alongside other measures designed to quantify behaviours surrounding overeating,

reflect a single latent construct [185]. Following this argument, the present separation of

these traits is an example of the jangle fallacy whereby different names are used for the

same underlying construct, creating artificial divisions in research that complicate the

interpretation of findings [185].

Here, the finding that EE and UE are highly correlated was replicated. Further, the results

indicate that they are likely to share some biological pathways with respect the mediation

of genetic predisposition to obesity (Chapter 4). However, evidence that these traits might

reflect distinct aetiologies, with UE having a more substantial genetic basis than EE, was

also provided in Chapter 7. There are explanations for this finding that are consistent with

the argument that they should be combined. The GWAS in Chapter 7 may simply have been

underpowered to accurately detect and estimate heritability for EE. Alternatively, UE and

EE may measure different extremities of the same underlying trait or EE may cover a more

restricted spectrum of the underlying trait which UE summarises more fully, making the

analysis of UE better powered in the limited sample size available [397]. These ideas require

further research. However, at present, conflating EE and UE may limit research attempting

to uncover the aetiology and implications of EB. As noted, future research is needed to

better understand the components of behavioural measures that are important to specific

health outcomes. Whether or not EE is a component of UE, having an isolated measure

reflecting the tendency to overeat in response to dysphoric emotions may be helpful in this

regard.

Cognitive restraint and obesity

All three EB traits measured by the TFEQ, were initially conceptualised as obesogenic

behaviours, high levels of which would be expected to result in weight gain. Longitudinal

studies have broadly continued to support this view with regards to UE and EE [106, 127,

128]. However debate still surrounds the role of CR in weight gain. Some studies report

that obesity predicts increases in CR [135], whilst others report a prospective association
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between CR and weight gain [134] and others still report that CR is associated with weight

loss [398].

In this thesis, a quadratic association between CR and BMI is reported, suggesting that

the relationship between CR and BMI is BMI-dependent. Low levels of CR were reported

amongst individuals at the extreme ends of the BMI spectrum (Chapter 4). Whilst it is

possible that CR is causally linked to increases in BMI amongst normal weight individuals, a

positive linear association, such as that demonstrated by EE and UE, would be anticipated

if CR was simply, causally linked to weight gain across the BMI spectrum. The positive

association between CR and BMI amongst normal weight participants in Chapter 4 is

interpreted as indicating that CR is a response to weight gain that may prevent individuals

from becoming overweight or obese. This corroborates the findings of a 2013 review of

prospective studies of the association between CR and weight gain amongst normal weight

adults [51]. In 19 of the 20 studies included in the review, CR did not predict weight gain [51].

It also supports other studies reporting increases in CR in response to weight gain [138].

The inverse association between CR and weight amongst overweight individuals in Chap-

ter 4 requires further research. However, it may indicate that the abandonment of cognitive

control over food intake in this group might facilitate weight gain or the maintenance of

obesity. The results also show that high levels of CR attenuate the association between ge-

netic predisposition to obesity and realised weight status. This suggests that CR is protective

against obesity, at least amongst genetically vulnerable individuals. Together, these results

support mounting evidence that CR does not lead to obesity but instead may be beneficial

for controlling weight [51].

Heritability

EB is widely considered to be heritable and twin studies have suggested a substantial role for

genetics in the determination of the adult EB traits examined in this thesis (EE, UE and CR)

[66]. Here, the findings confirmed that UE is a partially heritable trait (Chapter 7). However,

no evidence to support a substantive genetic basis for EE or CR was found. The GWAS

analysis was underpowered due to low sample size and it is possible that larger studies

will identify a genetic basis for these traits in the future. It is also interesting to note that

UE has the largest number of contributing items in the TFEQ-R18 questionnaire (9 items,

versus 3 items for EE and 6 items for CR), suggesting that it may be better specified than

the other two phenotypes. However, the notion that environmental influences are likely to

play a substantial role in the determination of EB traits is important. It suggests that future

research could be designed to identify modifiable, environmental determinants.
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8.3.3 Future research

The work contained within this thesis points to several specific opportunities for future

research. These have been mentioned in the previous sections and are elaborated here.

8.3.3.1 Focus on implications for obesity prevention

As highlighted in Section 8.3.1, replicating and building upon the results of the analyses

with the most immediate potential for obesity prevention is of paramount importance to

the translation of this work into actionable evidence. Foremost, the findings amongst both

infants and adults suggest that EB traits could represent targets for obesity prevention. The

finding that CR modifies genetic predisposition to obesity requires replication, particularly

in light of the fact that this effect was not identified amongst EDEN women. If this result is

replicated with consistency, it will be important to determine the factors that differentiate

CR from dieting and which make it a better tool for the prevention of weight gain. Further,

the longitudinal associations between CR and BMI, across the BMI spectrum should also be

examined in greater detail [88]. Given the finding that EB traits may not be substantively

heritable, aetiological environmental factors that are amenable to change are of particular

interest to future research for all EB traits. Longitudinal data is now available across a

number of cohorts which could be exploited to identify these factors. Moreover, further

research is needed in respect to the maternal attitudes studied in Chapter 5. As a first step,

replication of our findings is required in order to build an evidence base for targeting these

maternal attitudes in obesity prevention interventions.

8.3.3.2 Increase the sample size for eating behaviour gene discovery

The work contained within this thesis is cross-sectional and relied upon the informed

assumption that EB should be modelled as the cause, rather than the consequence of BMI.

However, the results of the MR analyses in Chapter 7 indicate that BMI may be aetiologically

involved in EB traits. Whilst this is just one interpretation of the findings and, in the absence

of genetic predictors of EB, merely indicates that EB and BMI occur on a shared pathway,

other studies have also suggested this direction of association [399]. It was hoped that

the results of the GWAS reported in Chapter 7 could be used to further interrogate the

direction of causality using bi-directional MR, as well as to explore the biological pathways

involved in EB. However, the GWAS was under-powered to detect any specific variants and

thus it was not possible to fulfil this aim in full. Future research should aim to increase

the sample size of EB GWAS such that specific variants can be identified. Ideally, these

efforts would include the collection of EB data in large-scale epidemiological studies using

validated questionnaires. Further, sample sizes can be increased through collaboration

and consolidation between existing studies. Different EB traits are measured in infants and
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children. Similar sample size issues limit the ability to conduct GWAS of these traits. This

should be addressed in future studies.

8.3.3.3 Refine measures of behavioural traits

The range of measures used to assess EB, with little clarity as to how they are related, is a

major obstacle to the consolidation of findings in EB research. As highlighted in Chapter 7

this limits the sample sizes available for studies requiring large amounts of data to detect

small associations. Further, it restricts meaningful comparisons between the findings

of studies based on different questionnaires, as well as impeding longitudinal research,

as different traits are typically measured in childhood and adulthood. Uncovering the

biological basis of EB traits can be used to highlight points of differentiation and overlap

between separate measures which will be important to consolidating the literature.

Beyond EB, Chapter 6 suggests that the crude measures of behavioural traits sometimes

used in large cohort studies may not accurately reflect biological reality. For example, we

identified multiple pathways underlying the link between risk-taking propensity and BMI.

These pathways may represent different, biologically distinct aspects of the risk-taking with

divergent associations to health. As such, crude measures could mask true associations

between aspects of risk-taking propensity and traits of interest, including obesity, leading to

erroneous conclusions regarding the health implications of behaviour. Future work should

aim to isolate specific pathways, or aspects of behaviour, as well as identifying how these

may be more accurately measured.
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8.4 Strengths and limitations

The results and conclusions of this work must be interpreted in the context of its strengths

and limitations. Considerations specific to particular studies are presented in the relevant

chapters. Here, over-arching considerations are discussed.

8.4.1 Bias

Bias describes systematic errors in the design, conduct or analysis of studies that may result

in a distortion of the relationship between exposures and outcomes [400]. In contrast to

random error, which is inversely related to the sample size of a study, biases are not reduced

by increasing sample size. Here, the potential impact of both information and selection bias

is considered with reference to this thesis.

8.4.1.1 Selection bias and the representativeness of the sample

Selection bias arises when study participants differ from the population from which they

are drawn in systematic ways. This may result from sampling, attrition or non-response

bias. Whilst the findings of studies subject to these biases may be internally valid, there are

limitations to their generalisability. Pre-defined exclusion criteria limit external validity in a

known capacity. For example, the Baby Milk Trial recruited only healthy, term, formula-fed

infants of normal birthweight [257]. As such, results from this study should not be consid-

ered applicable to other groups, notably those who are breastfed or born prematurely. The

genetic work in this thesis also has limited external validity. In order to avoid population

stratification, the GWAS analyses described in Chapters 6 and 7 were restricted to individu-

als of European ancestry. Replication of the findings in different ancestry groups is required

before the results can be generalised.

The known limitations of generalisability are made clear within specific chapters. However,

unspecified differences between participants and the general population may also exist.

Of particular concern is the healthy volunteer effect, a phenomenon whereby individuals

who respond to requests to participate in research are healthier than the general population

from which they are drawn [401]. The work described in this thesis relies primarily upon

data from UKB, the Fenland study and the Baby Milk Trial. In the case of UKB there is direct

evidence for the healthy volunteer effect. The response rate for requests to participate in the

UKB study was 5.5% [402]. Relative to the general population, participants were less likely to

be obese, smoke, drink alcohol on daily basis or live in a socio-economically deprived area

than the general population [402]. Participants also reported fewer health conditions and

experienced lower all-cause mortality at 70-74 years than the general population [402]. No

formal comparisons of either the Fenland or Baby Milk Trial participants with the general
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population are available. The response rate for Fenland was ∼ 27%. Reflecting the census

population of the area, participants primarily reported white ethnicity [403] and, in keeping

with UK population norms, the majority were overweight [14]. In the Baby Milk Trial, 31% of

those assessed for inclusion were randomised (699/2133) [259]. In the absence of evidence

to the contrary, it is reasonable to assume that these studies may be subject to the healthy

volunteer effect.

Overall, the study findings should be generalised with caution, particularly bearing in mind

known exclusion criteria. These exclusion criteria, as well as the characteristics of the

study participants are detailed in each study to make clear the limits of external validity.

Replication of the findings in other participant groups will increase confidence in the

generalisability of the results.

8.4.1.2 Information bias and the measurement of eating behaviour

Throughout this thesis, EB traits were measured by questionnaire. The tools used are

validated and have been shown to be reliable. However, they are not objective measures.

They rely on parent- or self-report and, as such, depend upon the insight of participants

into their own behaviour, or those of their child, as well as the intention to report them

accurately. These issues are discussed in detail in Chapter 1. In particular, systematic bias

in the reporting of EB on the basis of BMI due to perceptions of social desirability is of

concern. Whilst it was not possible to validate EB measures specifically in our studies, the

strong, positive associations between the appetitive EB traits and BMI (or body weight)

in this thesis, as well as the wider literature, is reassuring. Chapter 4 also reports a novel

quadratic relationship between CR and BMI, with a negative correlation between weight

and CR being observed amongst the most obese participants. Together these results suggest

that, on average, overweight individuals did not report high levels of restraint and low levels

of EE and UE, as would be anticipated if social desirability bias systematically influenced

reporting amongst this group.

The BEBQ relies on parent-report. This presents challenges for the measurement of EB

beyond self-report measures and it is possible that parental factors, including EB or con-

cerns regarding their child’s eating, influence parental responses. We were unable to test

correlations between maternal and infant EB in our study, as data on maternal EB was not

collected. However, other studies suggest that such correlations exist, at least with regard

to eating-related traits, such as food intake [404]. Whether these associations are true or

the result of mother’s conflating their characteristics with those of their children remains

unknown. In a recent study, mother’s who reported concern about their child becoming

underweight reported higher levels of SR in their child, whilst mothers concerned that their

child might become overweight reported higher levels of FR in their child [319]. This study

was cross-sectional and the direction of causality could not be determined. Prospective
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associations between appetite and weight gain suggest that appetite is linked to growth and

might be the cause, rather than the consequence, of maternal concern [143].

On balance, the use of validated questionnaire-based measures for EB is a strength of

this work, particularly in light of the need to analyse and interpret data from multiple

cohorts together in Chapters 4 and 7. As m-Health technologies that are able to objectively

measure typical EB in free-living populations are developed (e.g. [405, 406]), the validation

of questionnaire-based measures of EB traits should be continued and results should be

replicated using objectively measured data.

8.4.2 Error

Random error refers to non-systematic mistakes in the measurement of variables of interest

to a study. It is, by definition, random, such that error in the measurement of one variable

is not dependent upon the level of any other variable. Error acts to diminish the ability of

a study to detect differences between groups, increasing the probability of Type II errors

(failures to reject a false null hypothesis). Where true associations are correctly identified,

random error adversely affects the precision of effect estimates. Unlike bias, the impact of

random error on a study is inversely related to the sample size. Thus a clear strength of this

research was the large sample sizes used throughout.

8.4.3 Chance

Throughout this thesis, effect estimates are presented alongside p-values and 95% confi-

dence intervals (CIs). The p-value quantifies the probability of the observed data under the

null hypothesis, thus specifying the probability that a significant result is the consequence

of chance. The 95% CIs compliment the p-value, providing a range within which, on 95%

of occasions with re-sampling from a given population, the true population parameter is

expected to fall [309]. A standard p-value threshold of 0.05 has been applied to identify

significant associations throughout this work, alongside Bonferroni correction to maintain

a family wise error rate of 5% in instances of multiple testing [407].

The standard threshold of p< 5×10−8 was also applied to assess the significance of the

GWAS results in Chapters 6 and 7. This threshold was established in 2005, alongside the

earliest GWAS studies, and is based on an estimate of the number of common, independent

genetic variants distinguishing haplotypes across the entire genome [408]. However, as

new imputation panels have increased the number of haplotypes that can be distinguished,

the correction has become approximate and outdated for use alongside the imputation

panels included in this thesis. Although recent studies have suggested that p< 5×10−8

remains appropriate for testing common genetic variation (MAF >5%) in European popu-

lations [408], there remains a possibility that the results reported in Chapter 6 result from
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chance and replication is required. Overall, clear communication of p-values and 95% CIs

throughout the thesis, alongside the application of appropriate thresholds for significance

and correction for multiple testing, is a clear strength of the research.

Replication is one approach used to provide reassurance that chance does not account

for the results. In the case of mediation of the BMI-GRS to BMI association by appetitive

traits reported in Chapter 4, the consistency in our results, alongside their plausibility

and replication in other studies make a strong case for a true finding. In GWAS studies,

it is common practice to replicate genetic associations from discovery-stage analyses in

independent, ancestry-matched cohorts [409]. In the case of the risk-taking analysis the lack

of access intersecting risk-taking and genetic data from any independent samples made

this impossible. However, indirect confirmation of results for the related Ever Smoking

phenotype strengthens the case in favour of the reported associations reflecting truth. All

novel findings reported in this thesis require replication.

8.4.4 Confounding

Figure 8.5 Confounding. The confounding variable is related to both the exposure and the
outcome of interest but does not lie on the causal pathway between them.

A confounding factor is an extraneous variable that is independently associated with both

the exposure and the outcome but does not lie on the causal pathway between them. The

presence of confounding threatens the internal validity of a study and is a major concern in

observational research, such as that reported in this thesis. As elaborated in Section 6.3.2.9,

the random assortment of alleles such that traits are inherited independently, facilitates the

controlling of confounding through using genotype as a proxy for an exposure of interest

[410]. Throughout this thesis, wherever possible, MR was used to support any assertions

made. Beyond the MR analyses, attempts were made to account for confounding through

the inclusion of variables considered to be potential confounders in statistical models.

Sensitivity analyses were also used, adjusting for a wider range of potential confounders

than the main analyses. For example, throughout Chapter 5 all models in the main analyses

were adjusted for both infant sex and age. Other covariates (maternal BMI, education and

ethnicity) were added to these models as sensitivity analyses. The same approach was taken

to the exploration of confounding in Chapter 4. Age, sex and study centre (where appropri-

ate) were included in models, and sensitivity analyses, adjusting for a more comprehensive

list of potential confounders, were reported for the EB to BMI associations. Whilst it remains
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possible that unmeasured, and unconsidered confounders, are important to the reported

associations in these studies, reasonable methods to account for confounding were taken.

In gene discovery efforts, such as those described in Chapters 6 and 7, systematic differ-

ences in allele frequencies between sub-groups of a population, for example on the basis

of ancestry, can confound associations between genetic variants and phenotypes. This is

known as population stratification. As such, we restricted our analyses to individuals of self-

reported European ancestry and further accounted for this potential source of confounding

through the use of BOLT-LMM or adjustment for principal components.

8.4.5 Reverse causality

Figure 8.6 Reverse causality. Reverse causality occurs when the variable assumed to be the
outcome in an association, exerts an influence on the variable assumed to be the exposure.
This may wholly, or partially, account for the observed association.

The work described in this thesis was designed to illuminate the association between EB and

obesity. In particular, we planned to use genetic variants to infer the direction of causation

between EB and BMI through MR (Section 6.3.2.9). In observational research, associations

between variables can result from reverse causality, whereby the variable assumed to be

the exposure is, in reality, the outcome [28]. The fact that an individual’s genotype is fixed

at conception eliminates the potential for reverse causality when genetic instruments are

used as a proxy for an exposure. However, given that genetic variants for EB traits that did

not violate the assumptions of MR were not available, reverse causality is a central concern.

Informed assumptions were made regarding the direction of causation between EB and

BMI. In particular, Chapters 4 and 5 rely upon the assumption that BMI and body weight

are the consequence, rather than the cause, of EB. This was based on consistent evidence

from longitudinal studies suggesting an association between EB and weight change.

The finding that BMI-related genetic variants are associated with EB, reported in Chapter 7,

does not necessarily contradict this conclusion. In the absence of any genetic variants that

robustly predict EB, bi-directional MR was not possible and all that can be concluded is that

BMI and EB lie on the same pathway. Continued research is needed to definitively establish

the direction of causality. Whilst the existing evidence supports a role for EB in weight gain,

it is possible that the association is bidirectional or, as suggested by associations between

CR and BMI, varies by BMI.
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8.5 Conclusion

Together, the studies that comprise this thesis demonstrate diverse pathways underlying the

relationship between EB and obesity and suggest broad consistency between the role of EB

traits in infancy and adulthood. In adulthood, appetitive EB traits lie on the causal pathway

between genetics and obesity, partially mediating the effect of known genetic variants on

BMI. Conversely, restraint over eating modifies the impact of genetic susceptibility to obesity

on realised BMI. These findings isolate EE, UE and CR as targets for obesity prevention

with the potential to benefit those genetically predisposed to obesity. The cognitive nature

of CR may make this trait a particularly attractive target. Amongst infants, the results

indicate that appetitive EB traits are associated with both both milk intake and weight.

Further, their associations with these outcomes are modified by positive maternal attitudes

to following healthy infant feeding guidelines. Longitudinal research is needed. However,

this indicates that the effects of infant EB traits can be attenuated, and healthy consumption

and weight promoted, during a critical period of development through the targeting of

maternal attitudes to healthy feeding guidelines. The findings also support the utility of

GWAS studies in elucidating the relationships between behaviour and obesity. Novel insights

into the genetic determinants and biology of risk-taking propensity are described and 26

risk-associated genetic variants are identified. Together, these suggest shared biological

pathways with BMI as well as a positive, causal association with UE. GWAS also identified a

genetic basis for UE, which partially overlaps with that of BMI.

In sum, the pathways linking behaviour to obesity are complex and manifold. Future obesity

research should not be limited to the study of overtly obesogenic behavioural traits but

should reflect the diverse mechanisms through which behaviour and obesity are linked. This

includes investigating opportunities to reduce the impact of innate, or as yet unmodifiable,

determinants of weight through targeting the modifiable influences with which they interact.

Overall the studies contribute to a deeper understanding of the relationship between EB

and the aetiology of obesity, isolating specific behavioural traits as potential targets for

obesity prevention.

171





REFERENCES

[1] World Health Organization. The ICD-10 classification of mental and behavioural
disorders: Clinical descriptions and diagnostic guidelines. (World Health Organization,
Geneva, 1992).

[2] Gakidou, E. et al. Global, regional, and national comparative risk assessment of 84
behavioural, environmental and occupational, and metabolic risks or clusters of risks,
1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The
Lancet 390, 1345–1422 (2017).

[3] Abarca-Gómez, L. et al. Worldwide trends in body-mass index, underweight, over-
weight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based
measurement studies in 128·9 million children, adolescents, and adults. The Lancet
390, 2627–2642 (2017).

[4] Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in
children and adults during 1980–2013: a systematic analysis for the Global Burden of
Disease Study 2013. The Lancet 6736, 1–16 (2014).

[5] World Health Organisation. Global Database on Body Mass Index (2006). URL
http://apps.who.int/bmi/index.jsp.

[6] de Onis, M. et al. Development of a WHO growth reference for school-aged children
and adolescents. Bulletin of the World Health Organization 85, 660–667 (2007).

[7] Cole, T. J. Establishing a standard definition for child overweight and obesity world-
wide: international survey. BMJ 320, 1240–1240 (2000).

[8] Afshin, A. et al. Health Effects of Overweight and Obesity in 195 Countries over 25
Years. New England Journal of Medicine 377, 13–27 (2017).

[9] Bell, K. A. et al. Validity of Body Mass Index as a Measure of Adiposity in Infancy. The
Journal of Pediatrics 196, 168–174 (2018).

[10] de Onis, M. et al. The WHO Multicentre Growth Reference Study: planning, study
design, and methodology. Food and Nutrition Bulletin 25, S13–S14 (2004).

[11] Cole, T. J., Freeman, J. V. & Preece, M. A. Body mass index reference curves for the UK,
1990. Archives of Disease in Childhood 73, 25–9 (1995).

[12] Lim, S. S. et al. A comparative risk assessment of burden of disease and injury
attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A
systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380,
2224–2260 (2012).

173

http://apps.who.int/bmi/index.jsp


References

[13] NHS Digital. National Child Measurement Programme - England, 2016-17 - NHS Digi-
tal (2017). URL https://digital.nhs.uk/data-and-information/publications/statistical/
national-child-measurement-programme/2016-17-school-year.

[14] NHS Digital. Health Survey for England, 2016 - NHS Digital (2017).
URL https://digital.nhs.uk/data-and-information/publications/statistical/
health-survey-for-england/health-survey-for-england-2016#summary.

[15] NHS Digital. National Child Measurement Programme: England, 2014/15 school
year. Lifestyle Statistics Team, Health and Social Care Information Centre. Tech. Rep.
(2015). URL https://digital.nhs.uk/data-and-information/publications/statistical/
national-child-measurement-programme/2014-15-school-year.

[16] Foreman, K. J. et al. Forecasting life expectancy, years of life lost, and all-cause and
cause-specific mortality for 250 causes of death: reference and alternative scenarios
for 2016–40 for 195 countries and territories. The Lancet 392, 2052–2090 (2018).

[17] Kopelman, P. Health risks associated with overweight and obesity. Obesity Reviews 8,
13–17 (2007).

[18] Williams, E. P., Mesidor, M., Winters, K., Dubbert, P. M. & Wyatt, S. B. Overweight and
Obesity: Prevalence, Consequences, and Causes of a Growing Public Health Problem.
Current Obesity Reports 4, 363–370 (2015).

[19] van den Broek, N. et al. Causal associations between body mass index and mental
health: a Mendelian randomisation study. Journal of Epidemiology and Community
Health 72, 708–710 (2018).

[20] Profenno, L. A., Porsteinsson, A. P. & Faraone, S. V. Meta-Analysis of Alzheimer’s
Disease Risk with Obesity, Diabetes, and Related Disorders. Biological Psychiatry 67,
505–512 (2010).

[21] Tyrrell, J. et al. Using genetics to understand the causal influence of higher BMI on
depression. International Journal of Epidemiology 1–15 (2018).

[22] Luppino, F. S. et al. Overweight, Obesity, and Depression: A systematic review and
meta-analysis of longitudinal studies. Archives of General Psychiatry 67, 220–229
(2010).

[23] Aune, D. et al. BMI and all cause mortality: systematic review and non-linear dose-
response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3
million participants. BMJ 353, i2156 (2016).

[24] Flegal, K. M., Graubard, B. I., Williamson, D. F. & Gail, M. H. Cause-Specific Excess
Deaths Associated With Underweight , Overweight , and Obesity. JAMA 298, 2028–
2037 (2007).

[25] Kokkinos, P. et al. BMI-Mortality Paradox and Fitness in African American and Cau-
casian Men With Type 2 Diabetes. Diabetes Care 35, 1021–1027 (2012).

[26] Wang, Z., Dong, B., Hu, J., Adegbija, O. & Arnold, L. W. Exploring the non-linear
association between BMI and mortality in adults with and without diabetes: the US
National Health Interview Survey. Diabetic Medicine 33, 1691–1699 (2016).

[27] Campos, P., Saguy, A., Ernsberger, P., Oliver, E. & Gaesser, G. The epidemiology of
overweight and obesity: public health crisis or moral panic? International Journal of
Epidemiology 35, 55–60 (2006).

[28] Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal
inference in epidemiological studies. Human Molecular Genetics 23, R89–R98 (2014).

174

https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme/2016-17-school-year
https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme/2016-17-school-year
https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2016#summary
https://digital.nhs.uk/data-and-information/publications/statistical/health-survey-for-england/health-survey-for-england-2016#summary
https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme/2014-15-school-year
https://digital.nhs.uk/data-and-information/publications/statistical/national-child-measurement-programme/2014-15-school-year


REFERENCES

[29] Sun, Y.-Q. et al. Body mass index and all cause mortality in HUNT and UK Biobank
studies: linear and non-linear mendelian randomisation analyses. BMJ 364, l1042
(2019).

[30] Frayling, T. M. & Stoneman, C. E. Mendelian randomisation in type 2 diabetes and
coronary artery disease. Current Opinion in Genetics & Development 50, 111–120
(2018).

[31] Hung, C.-F. et al. Relationship between obesity and the risk of clinically significant
depression: Mendelian randomisation study. British Journal of Psychiatry 205, 24–28
(2014).

[32] Withrow, D. & Alter, D. a. The economic burden of obesity worldwide: A systematic
review of the direct costs of obesity. Obesity Reviews 12, 131–141 (2011).

[33] Kim, D. D. & Basu, A. Estimating the Medical Care Costs of Obesity in the United
States: Systematic Review, Meta-Analysis, and Empirical Analysis. Value in Health 19,
602–613 (2016).

[34] Lehnert, T., Sonntag, D., Konnopka, A., Riedel-Heller, S. & König, H.-H. Economic
costs of overweight and obesity. Best Practice & Research Clinical Endocrinology &
Metabolism 27, 105–115 (2013).

[35] Tyrrell, J. et al. Height, body mass index, and socioeconomic status: mendelian
randomisation study in UK Biobank. BMJ i582 (2016).

[36] Vandenbroeck, I., Goossens, J. & Clemens, M. Foresight: Tackling Obesities: Future
Choices-Obesity System Atlas. Tech. Rep. (2009). URL www.foresight.gov.uk.

[37] Blake-Lamb, T. L. et al. Interventions for Childhood Obesity in the First 1,000 Days A
Systematic Review. American Journal of Preventive Medicine 50, 780–789 (2016).

[38] Herman, C. P. & Polivy, J. Anxiety, Restraint, and Eating Behavior. Journal of Abnormal
Psychology 84, 666–672 (1975).

[39] Llewellyn, C. H., van Jaarsveld, C. H. M., Johnson, L., Carnell, S. & Wardle, J. Develop-
ment and factor structure of the Baby Eating Behaviour Questionnaire in the Gemini
birth cohort. Appetite 57, 388–396 (2011).

[40] Karlsson, J., Persson, L.-O., Sjöström, L. & Sullivan, M. Psychometric properties and
factor structure of the Three-Factor Eating Questionnaire (TFEQ) in obese men and
women. Results from the Swedish Obese Subjects (SOS) study. International Journal
of Obesity 24, 1715–1725 (2000).

[41] Ashcroft, J., Semmler, C., Carnell, S., van Jaarsveld, C. H. M. & Wardle, J. Continuity
and stability of eating behaviour traits in children. European Journal of Clinical
Nutrition 62, 985–990 (2008).

[42] Kochanska, G., Coy, K. C. & Murray, K. T. The Development of Self-Regulation in the
First Four Years of Life. Tech. Rep. 4 (2001).

[43] Carlson, S. M. et al. Cohort effects in children’s delay of gratification. Developmental
Psychology 54, 1395–1407 (2018).

[44] Kaplan, H. I. & Kaplan, H. S. The psychosomatic concept of obesity. Journal of
Nervous and Mental Disease 125, 181–201 (1957).

[45] van Strien, T. & Ouwens, M. a. Counterregulation in female obese emotional eaters:
Schachter, Goldman, and Gordon’s (1968) test of psychosomatic theory revisited.
Eating Behaviors 3, 329–340 (2003).

175

www.foresight.gov.uk


References

[46] Schachter, S., Goldman, R. & Gordon, A. Effects of fear, food deprivation, and obesity
on eating. Journal of Personality and Social Psychology 10, 91–97 (1968).

[47] Stunkard, A. J. & Messick, S. The three-factor eating questionnaire to measure dietary
restraint, disinhibition and hunger. Journal of Psychosomatic Research 29, 71–83
(1985).

[48] Herman, C. P. & Mack, D. Restrained and unrestrained eating1. Journal of Personality
43, 647–660 (1975).

[49] Ruderman, A. J. Dietary restraint: a theoretical and empirical review. Psychological
bulletin 99, 247–62 (1986).

[50] Fairburn, C. G. et al. Transdiagnostic Cognitive-Behavioral Therapy for Patients With
Eating Disorders: A Two-Site Trial With 60-Week Follow-Up. American Journal of
Psychiatry 166, 311–319 (2009).

[51] Lowe, M. R., Doshi, S. D., Katterman, S. N. & Feig, E. H. Dieting and restrained eating
as prospective predictors of weight gain. Frontiers in Psychology 4, 1–7 (2013).

[52] Guerrieri, R., Nederkoorn, C., Schrooten, M., Martijn, C. & Jansen, A. Inducing
impulsivity leads high and low restrained eaters into overeating, whereas current
dieters stick to their diet. Appetite 53, 93–100 (2009).

[53] Johnson, F., Pratt, M. & Wardle, J. Dietary restraint and self-regulation in eating
behavior. International Journal of Obesity 36, 665–674 (2012).

[54] Elfhag, K., Tholin, S. & Rasmussen, F. Consumption of fruit, vegetables, sweets
and soft drinks are associated with psychological dimensions of eating behaviour in
parents and their 12-year-old children. Public Health Nutrition 11, 914–923 (2008).

[55] Likert, R. A technique for the measurement of attitudes. Archives of Psychology 22,
1–55 (1932).

[56] Lowe, M. R. et al. The Power of Food Scale. A new measure of the psychological
influence of the food environment. Appetite 53, 114–118 (2009).

[57] Canetti, L., Berry, E. M. & Elizur, Y. Psychosocial predictors of weight loss and psy-
chological adjustment following bariatric surgery and a weight-loss program: The
mediating role of emotional eating. International Journal of Eating Disorders 42,
109–117 (2009).

[58] van Strien, T., Frijters, J. E. R., Bergers, G. P. A. & Defares, P. B. The Dutch Eating
Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external
eating behavior. International Journal of Eating Disorders 5, 295–315 (1986).

[59] Hunot, C. et al. Appetitive traits and relationships with BMI in adults: Development
of the Adult Eating Behaviour Questionnaire. Appetite 105, 356–363 (2016).

[60] Pudel, V., Metzdorff, M. & Oetting, M. Zur Persönlichkeit Adipöser in psychologischen
Tests unter Berücksichtigung latent Fettsüchtiger (1975).

[61] Bond, M., McDowell, A. & Wilkinson, J. The measurement of dietary restraint, disinhi-
bition and hunger: an examination of the factor structure of the Three Factor Eating
Questionnaire (TFEQ). International Journal of Obesity 25, 900–906 (2001).

[62] Westenhoefer, J., Broeckmann, P., Münch, A.-K. & Pudel, V. Cognitive Control of
Eating Behavior and the Disinhibition Effect. Appetite 23, 27–41 (1994).

176



REFERENCES

[63] Shearin, E. N., Russ, M. J., Hull, J. W., Clarkin, J. F. & Smith, G. P. Construct validity of the
three-factor eating questionnaire: Flexible and rigid control subscales. International
Journal of Eating Disorders 16, 187–198 (1994).

[64] Ricciardelli, L. A. & Williams, R. J. A two-factor model of dietary restraint. Journal of
Clinical Psychology 53, 123–131 (1997).

[65] Ganley, R. M. Emotional eating and how it relates to dietary restraint, disinhibition,
and perceived hunger. International Journal of Eating Disorders 7, 635–647 (1988).

[66] Tholin, S., Rasmussen, F., Tynelius, P. & Karlsson, J. Genetic and environmental
influences on eating behavior: the Swedish Young Male Twins Study. American
Journal of Clinical Nutrition 81, 564–9 (2005).

[67] Hyland, M. E., Irvine, S. H., Thacker, C., Dann, P. L. & Dennis, I. Psychometric analysis
of the Stunkard-Messick Eating Questionnaire (SMEQ) and Comparison with the
dutch Eating Behavior Questionnaire (DEBQ). Current Psychology 8, 228–233 (1989).

[68] Anglé, S. et al. Three factor eating questionnaire-R18 as a measure of cognitive
restraint, uncontrolled eating and emotional eating in a sample of young Finnish
females. International Journal of Behavioral Nutrition and Physical Activity 6, 41
(2009).

[69] Jáuregui-Lobera, I., García-Cruz, P., Carbonero-Carreño, R., Magallares, A. & Ruiz-
Prieto, I. Psychometric Properties of Spanish Version of the Three-Factor Eating
Questionnaire-R18 (Tfeq-Sp) and Its Relationship with Some Eating- and Body Image-
Related Variables. Nutrients 6, 5619–5635 (2014).

[70] Kavazidou, E. et al. Structure validity of the Three-Factor Eating Questionnaire-R18
in Greek population. Journal of Human Sport and Exercise 7, 218–226 (2012).

[71] Wardle, J. Eating style: a validation study of the Dutch Eating Behaviour Questionnaire
in normal subjects and women with eating disorders. Journal of Psychosomatic
Research 31, 161–9 (1987).

[72] Cebolla, A., Barrada, J., van Strien, T., Oliver, E. & Baños, R. Validation of the Dutch
Eating Behavior Questionnaire (DEBQ) in a sample of Spanish women. Appetite 73,
58–64 (2014).

[73] Bozan, N., Bas, M. & Asci, F. H. Psychometric properties of Turkish version of Dutch
Eating Behaviour Questionnaire (DEBQ). A preliminary results. Appetite 56, 564–566
(2011).

[74] Nagl, M., Hilbert, A., de Zwaan, M., Braehler, E. & Kersting, A. The German Version of
the Dutch Eating Behavior Questionnaire: Psychometric Properties, Measurement
Invariance, and Population-Based Norms. PLOS ONE 11, e0162510 (2016).

[75] Dutton, E. & Dovey, T. M. Validation of the Dutch Eating Behaviour Questionnaire
(DEBQ) among Maltese women. Appetite 107, 9–14 (2016).

[76] Eddy, K. T. et al. Diagnostic classification of eating disorders in children and adoles-
cents: how does DSM-IV-TR compare to empirically-derived categories? Journal of
the American Academy of Child and Adolescent Psychiatry 49, 277–87 (2010).

[77] Wardle, J., Guthrie, C. A., Sanderson, S. & Rapoport, L. Development of the Children’s
Eating Behaviour Questionnaire. Journal of Child Psychology and Psychiatry 42,
963–970 (2001).

[78] Bryant, E. J. et al. Development and validation of the Child Three-Factor Eating
Questionnaire (CTFEQr17). Public Health Nutrition 21, 2558–2567 (2018).

177



References

[79] Mallan, K. M., Daniels, L. A. & de Jersey, S. J. Confirmatory factor analysis of the Baby
Eating Behaviour Questionnaire and associations with infant weight, gender and
feeding mode in an Australian sample. Appetite 82, 43–9 (2014).

[80] Gordis, L. Epidemiology (Elsevier Saunders, Philadelphia, USA, 2014), fifth edn.

[81] Choi, B. C., Pak, A. W. & Cdc, F. A Catalog of Biases in Questionnaires. Preventing
Chronic Disease: Public health research, practice and policy 2, 1–13 (2005).

[82] Robinson, E., Hardman, C. A., Halford, J. C. & Jones, A. Eating under observation:
a systematic review and meta-analysis of the effect that heightened awareness of
observation has on laboratory measured energy intake. The American Journal of
Clinical Nutrition 102, 324–337 (2015).

[83] Robinson, E., Bevelander, K. E., Field, M. & Jones, A. Methodological and reporting
quality in laboratory studies of human eating behavior. Appetite 125, 486–491 (2018).

[84] Brewis, A., SturtzSreetharan, C. & Wutich, A. Obesity stigma as a globalizing health
challenge. Globalization and Health 14, 14–20 (2018).

[85] Stice, E., Palmrose, C. A. & Burger, K. S. Elevated BMI and Male Sex Are Associated
with Greater Underreporting of Caloric Intake as Assessed by Doubly Labeled Water.
The Journal of Nutrition 145, 2412–2418 (2015).

[86] Robinson, E., Kersbergen, I., Brunstrom, J. M. & Field, M. I’m watching you. Awareness
that food consumption is being monitored is a demand characteristic in eating-
behaviour experiments. Appetite 83, 19–25 (2014).

[87] Robinson, E., Proctor, M., Oldham, M. & Masic, U. The effect of heightened awareness
of observation on consumption of a multi-item laboratory test meal in females.
Physiology & Behavior 163, 129–135 (2016).

[88] Cappelleri, J. C. et al. Psychometric analysis of the Three-Factor Eating Questionnaire-
R21: results from a large diverse sample of obese and non-obese participants. Inter-
national Journal of Obesity 33, 611–620 (2009).

[89] De Lauzon, B. et al. The Three-Factor Eating Questionnaire-R18 is able to distinguish
among different eating patterns in a general population. Nutritional Epidemiology
134, 2372–2380 (2004).

[90] Jáuregui-Lobera, I., García-Cruz, P., Carbonero-Carreño, R., Magallares, A. & Ruiz-
Prieto, I. Psychometric Properties of Spanish Version of the Three-Factor Eating
Questionnaire-R18 (Tfeq-Sp) and Its Relationship with Some Eating- and Body Image-
Related Variables. Nutrients 6, 5619–5635 (2014).

[91] Mostafavi, S.-A. et al. The Reliability and Validity of the Persian Version of Three-
Factor Eating Questionnaire-R18 (TFEQ-R18) in Overweight and Obese Females.
Iranian Journal of Psychiatry 12, 100–108 (2017).

[92] Banna, J., Panizza, C., Boushey, C., Delp, E. & Lim, E. Association between Cognitive
Restraint, Uncontrolled Eating, Emotional Eating and BMI and the Amount of Food
Wasted in Early Adolescent Girls. Nutrients 10, 1279–1289 (2018).

[93] Bongers, P. & Jansen, A. Emotional Eating Is Not What You Think It Is and Emotional
Eating Scales Do Not Measure What You Think They Measure. Frontiers in Psychology
7, 1–11 (2016).

[94] Sazonov, E. et al. Automatic Detection of Swallowing Events by Acoustical Means for
Applications of Monitoring of Ingestive Behavior. IEEE Transactions on Biomedical
Engineering 57, 626–633 (2010).

178



REFERENCES

[95] Farooq, M., Fontana, J. M. & Sazonov, E. A novel approach for food intake detection
using electroglottography. Physiological Measurement 35, 739–751 (2014).

[96] Domoff, S. E., Miller, A. L., Kaciroti, N. & Lumeng, J. C. Validation of the Children’s Eat-
ing Behaviour Questionnaire in a low-income preschool-aged sample in the United
States. Appetite 95, 415–20 (2015).

[97] Passos, D. R. d., Gigante, D. P., Maciel, F. V. & Matijasevich, A. Children’s eating
behaviour: comparison between normal and overweight children from a school in
Pelotas, Rio Grande do Sul, Brazil (Comportamento alimentar infantil: comparação
entre crianças sem e com excesso de peso em uma escola do município de Pelotas.
Revista Paulista de Pediatria 33, 42–49 (2015).

[98] Sánchez, U., Weisstaub, G., Santos, J., Corvalán, C. & Uauy, R. GOCS cohort: children’s
eating behavior scores and BMI. European Journal of Clinical Nutrition 70, 925–928
(2016).

[99] Santos, J. L. et al. Association between eating behavior scores and obesity in Chilean
children. Nutrition Journal 10, 108 (2011).

[100] Viana, V. et al. Children’s Eating Behaviour Questionnaire: associations with BMI in
Portuguese children. British Journal of Nutrition 100, 445–450 (2008).

[101] Webber, L., Hill, C., Saxton, J., Van Jaarsveld, C. H. M. & Wardle, J. Eating behaviour
and weight in children. International Journal of Obesity 33, 21–28 (2009).

[102] Carnell, S. & Wardle, J. Appetite and adiposity in children: Evidence for a behavioral
susceptibility theory of obesity. American Journal of Clinical Nutrition 88, 22–29
(2008).

[103] Shepard, D. N. & Chandler-Laney, P. C. Prospective associations of eating behaviors
with weight gain in infants. Obesity 23, 1881–1885 (2015).

[104] Llewellyn, C. H., Jaarsveld, C. H. V., Johnson, L., Carnell, S. & Wardle, J. Nature and
nurture in infant appetite: analysis of the Gemini twin birth cohort. The American
Journal of Clinical Nutrition 91, 1172–1179 (2010).

[105] Parkinson, K. N., Drewett, R. F., Le Couteur, A. S. & Adamson, A. J. Do maternal ratings
of appetite in infants predict later Child Eating Behaviour Questionnaire scores and
body mass index? Appetite 54, 186–190 (2010).

[106] Dohle, S., Hartmann, C. & Keller, C. Physical activity as a moderator of the association
between emotional eating and BMI: Evidence from the Swiss Food Panel. Psychology
& Health 29, 1062–1080 (2014).

[107] Elfhag, K. & Linné, Y. Gender Differences in Associations of Eating Pathology between
Mothers and Their Adolescent Offspring. Obesity Research 13, 1070–1076 (2005).

[108] Péneau, S., Ménard, E., Méjean, C., Bellisle, F. & Hercberg, S. Sex and dieting modify
the association between emotional eating and weight status. The American Journal of
Clinical Nutrition 97, 1307–1313 (2013).

[109] Konttinen, H., Männistö, S., Sarlio-Lähteenkorva, S., Silventoinen, K. & Haukkala,
A. Emotional eating, depressive symptoms and self-reported food consumption. A
population-based study. Appetite 54, 473–479 (2010).

[110] Jaakkola, J., Hakala, P., Isolauri, E., Poussa, T. & Laitinen, K. Eating behavior influences
diet, weight, and central obesity in women after pregnancy. Nutrition 29, 1209–1213
(2013).

179



References

[111] Gallant, A. et al. The Three-Factor Eating Questionnaire and BMI in adolescents:
results from the Québec Family Study. British Journal of Nutrition 104, 1074–1079
(2010).

[112] Cornelis, M. C. et al. Obesity susceptibility loci and uncontrolled eating, emotional
eating and cognitive restraint behaviors in men and women. Obesity 22, E135–E141
(2014).

[113] Geliebter, A. & Aversa, A. Emotional eating in overweight, normal weight, and under-
weight individuals. Eating Behaviors 3, 341–347 (2003).

[114] Loffler, A. et al. Eating behaviour in the general population: An analysis of the factor
structure of the German version of the three-factor-eating-questionnaire (TFEQ) and
its association with the body mass index. PLoS ONE 10, 1–11 (2015).

[115] Keskitalo, K. et al. Genetic and environmental contributions to food use patterns of
young adult twins. Physiology & Behavior 93, 235–242 (2008).

[116] Pothos, E. M., Tapper, K. & Calitri, R. Cognitive and behavioral correlates of BMI
among male and female undergraduate students. Appetite 52, 797–800 (2009).

[117] Nguyen-Rodriguez, S. T., Chou, C.-P., Unger, J. B. & Spruijt-Metz, D. BMI as a mod-
erator of perceived stress and emotional eating in adolescents. Eating Behaviors 9,
238–246 (2008).

[118] Wardle, J. et al. Eating style and eating behaviour in adolescents. Appetite 18, 167–83
(1992).

[119] Snoek, H., Van Strien, T., Janssens, J. & Engels, R. Emotional, external, restrained
eating and overweight in Dutch adolescents. Scandinavian Journal of Psychology 48,
23–32 (2007).

[120] Koenders, P. G. & van Strien, T. Emotional Eating, Rather Than Lifestyle Behavior,
Drives Weight Gain in a Prospective Study in 1562 Employees. Journal of Occupational
and Environmental Medicine 53, 1287–1293 (2011).

[121] van Strien, T., Peter Herman, C. & Verheijden, M. W. Eating style, overeating and
weight gain. A prospective 2-year follow-up study in a representative Dutch sample.
Appetite 59, 782–789 (2012).

[122] Frayn, M. & Knäuper, B. Emotional Eating and Weight in Adults: A Review. Current
Psychology 37, 924–933 (2018).

[123] Konttinen, H., van Strien, T., Männistö, S., Jousilahti, P. & Haukkala, A. Depression,
emotional eating and long-term weight changes: a population-based prospective
study. International Journal of Behavioral Nutrition and Physical Activity 16, 28
(2019).

[124] Keskitalo, K. et al. The Three-Factor Eating Questionnaire, body mass index, and
responses to sweet and salty fatty foods: a twin study of genetic and environmental
associations. American Journal of Clinical Nutrition 88, 263–71 (2008).

[125] Dykes, J., Brunner, E. J., Martikainen, P. T. & Wardle, J. Socioeconomic gradient in
body size and obesity among women: the role of dietary restraint, disinhibition and
hunger in the Whitehall II study. International Journal of Obesity 28, 262–268 (2004).

[126] French, S. A., Mitchell, N. R., Finlayson, G., Blundell, J. E. & Jeffery, R. W. Questionnaire
and laboratory measures of eating behavior. Associations with energy intake and BMI
in a community sample of working adults. Appetite 72, 50–58 (2014).

180



REFERENCES

[127] Chaput, J.-P. et al. Risk Factors for Adult Overweight and Obesity in the Quebec Family
Study: Have We Been Barking Up the Wrong Tree? Obesity 17, 1964–1970 (2009).

[128] Hays, N. P. et al. Eating behavior correlates of adult weight gain and obesity in healthy
women aged 55-65 y. American Journal of Clinical Nutrition 75, 476–83 (2002).

[129] Finlayson, G., Cecil, J., Higgs, S., Hill, A. & Hetherington, M. Susceptibility to weight
gain. Eating behaviour traits and physical activity as predictors of weight gain during
the first year of university. Appetite 58, 1091–1098 (2012).

[130] Burton, P., J. Smit, H. & J. Lightowler, H. The influence of restrained and external
eating patterns on overeating. Appetite 49, 191–197 (2007).

[131] De Lauzon-Guillain, B. et al. Is restrained eating a risk factor for weight gain in a
general population? American Journal of Clinical Nutrition 83, 132–138 (2006).

[132] Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A. & Horstmann, A. Body
weight status, eating behavior, sensitivity to reward/punishment, and gender: rela-
tionships and interdependencies. Frontiers in Psychology 5, 1073 (2014).

[133] Snoek, H. M., Engels, R. C., van Strien, T. & Otten, R. Emotional, external and re-
strained eating behaviour and BMI trajectories in adolescence. Appetite 67, 81–87
(2013).

[134] van Strien, T. & Koenders, P. G. Effects of Emotional Eating and Short Sleep Duration
on Weight Gain in Female Employees. Journal of Occupational and Environmental
Medicine 56, 659–666 (2014).

[135] Forrester-Knauss, C., Perren, S. & Alsaker, F. D. Does body mass index in childhood
predict restraint eating in early adolescence? Appetite 59, 921–926 (2012).

[136] Chavance, M. et al. Latent variables and structural equation models for longitudinal
relationships: an illustration in nutritional epidemiology. BMC Medical Research
Methodology 10, 37 (2010).

[137] Snoek, H. M., van Strien, T., Janssens, J. M. a. M. & Engels, R. C. M. E. Restrained eating
and BMI: A longitudinal study among adolescents. Health Psychology 27, 753–759
(2008).

[138] Konttinen, H. et al. Genetic predisposition to obesity, restrained eating and changes in
body weight: a population-based prospective study. International Journal of Obesity
42, 858–865 (2018).

[139] Llewellyn, C. H., Van Jaarsveld, C. H. M., Plomin, R., Fisher, A. & Wardle, J. Inherited
behavioral susceptibility to adiposity in infancy: A multivariate genetic analysis of
appetite and weight in the Gemini birth cohort. American Journal of Clinical Nutrition
95, 633–639 (2012).

[140] Shloim, N., Rudolf, M., Feltbower, R. & Hetherington, M. Adjusting to motherhood.
The importance of BMI in predicting maternal well-being, eating behaviour and
feeding practice within a cross cultural setting. Appetite 81, 261–268 (2014).

[141] van Jaarsveld, C. H., Llewellyn, C. H., Johnson, L. & Wardle, J. Prospective associations
between appetitive traits and weight gain in infancy. The American Journal of Clinical
Nutrition 94, 1562–1567 (2011).

[142] van Jaarsveld, C. M., Boniface, D., Llewellyn, C. H. & Wardle, J. Appetite and growth: A
longitudinal sibling analysis. JAMA Pediatrics 168, 345–350 (2014).

181



References

[143] Quah, P. L. et al. Prospective associations of appetitive traits at 3 and 12 months of
age with body mass index and weight gain in the first 2 years of life. BMC Pediatrics
15, 153–163 (2015).

[144] Ester, W. A. et al. Fetal size and eating behaviour in childhood: A prospective cohort
study. International Journal of Epidemiology 48, 124–133 (2019).

[145] DiSantis, K. I., Collins, B. N., Fisher, J. O. & Davey, A. Do infants fed directly from the
breast have improved appetite regulation and slower growth during early childhood
compared with infants fed from a bottle? International Journal of Behavioral Nutrition
and Physical Activity 8, 89 (2011).

[146] van Deutekom, A., Chinapaw, M., Vrijkotte, T. & Gemke, R. The association of birth
weight and postnatal growth with energy intake and eating behavior at 5 years of age
– a birth cohort study. International Journal of Behavioral Nutrition and Physical
Activity 13, 15 (2016).

[147] Steinsbekk, S. & Wichstrøm, L. Predictors of Change in BMI From the Age of 4 to 8.
Journal of Pediatric Psychology 40, 1056–1064 (2015).

[148] Shunk, J. A. & Birch, L. L. Girls at risk for overweight at age 5 are at risk for dietary
restraint, disinhibited overeating, weight concerns, and greater weight gain from 5 to
9 years. Journal of the American Dietetic Association 104, 1120–1126 (2004).

[149] Locke, A., Kahali, B., Berndt, S., Justice, A. & Pers, T. Genetic studies of body mass
index yield new insights for obesity biology. Nature 518, 197–206 (2015).

[150] Farooqi, I. S. & O’Rahilly, S. Monogenic Obesity in Humans. Annual Review of
Medicine 56, 443–458 (2005).

[151] Wardle, J. et al. Obesity associated genetic variation in FTO is associated with di-
minished satiety. Journal of Clinical Endocrinology and Metabolism 93, 3640–3643
(2008).

[152] Velders, F. P. et al. FTO at rs9939609, Food Responsiveness, Emotional Control and
Symptoms of ADHD in Preschool Children. PLoS ONE 7, e49131 (2012).

[153] Wardle, J., Llewellyn, C., Sanderson, S. & Plomin, R. The FTO gene and measured food
intake in children. International Journal of Obesity 33, 42–45 (2009).

[154] Cecil, J. E., Tavendale, R., Watt, P., Hetherington, M. M. & Palmer, C. N. An Obesity-
Associated FTO Gene Variant and Increased Energy Intake in Children. New England
Journal of Medicine 359, 2558–2566 (2008).

[155] Speakman, J. R., Rance, K. A. & Johnstone, A. M. Polymorphisms of the FTO Gene Are
Associated With Variation in Energy Intake, but not Energy Expenditure. Obesity 16,
1961–1965 (2008).

[156] Micali, N., Field, A. E., Treasure, J. L. & Evans, D. M. Are obesity risk genes associated
with binge eating in adolescence? Obesity 23, 1729–1736 (2015).

[157] Vega, J. A. et al. Melanocortin-4 Receptor Gene Variation Is Associated with Eating
Behavior in Chilean Adults. Annals of Nutrition and Metabolism 68, 35–41 (2016).

[158] Horstmann, A. et al. Common Genetic Variation near MC4R Has a Sex-Specific Impact
on Human Brain Structure and Eating Behavior. PLoS ONE 8, e74362 (2013).

[159] Bouchard, L. et al. Neuromedin β: A strong candidate gene linking eating behaviors
and susceptibility to obesity. American Journal of Clinical Nutrition 80, 1478–1486
(2004).

182



REFERENCES

[160] Carr, K. A. et al. Two functional serotonin polymorphisms moderate the effect of food
reinforcement on BMI. Behavioral Neuroscience 127, 387–399 (2013).

[161] Konttinen, H. et al. Appetitive traits as behavioural pathways in genetic susceptibility
to obesity: a population-based cross-sectional study. Scientific Reports 5, 14726
(2015).

[162] Lauzon-Guillain, B. et al. Association between genetic obesity susceptibility and
mother-reported eating behaviour in children up to 5 years. Pediatric Obesity 14,
e12496 (2019).

[163] Llewellyn, C. H., Trzaskowski, M., van Jaarsveld, C. H. M., Plomin, R. & Wardle, J.
Satiety Mechanisms in Genetic Risk of Obesity. JAMA Pediatrics 168, 338 (2014).

[164] Steinsbekk, S., Belsky, D., Guzey, I. C., Wardle, J. & Wichstrøm, L. Polygenic Risk,
Appetite Traits, and Weight Gain in Middle Childhood. JAMA Pediatrics 170, e154472
(2016).

[165] Woo Baidal, J. A. et al. Risk Factors for Childhood Obesity in the First 1,000 Days: A
Systematic Review. American Journal of Preventive Medicine 50, 761–779 (2016).

[166] Zheng, M. et al. Rapid weight gain during infancy and subsequent adiposity: a
systematic review and meta-analysis of evidence. Obesity Reviews 19, 321–332 (2018).

[167] Ong, K. K. Early Determinants of Obesity. Endocr Dev. Basel, Karger 19, 53–61 (2010).

[168] Goran, M. I. & Sothern, M. Handbook of pediatric obesity : etiology, pathophysiology,
and prevention (CRC/Taylor & Francis Group, 2006).

[169] Sokol, R. L., Qin, B. & Poti, J. M. Parenting styles and body mass index: a systematic
review of prospective studies among children. Obesity Reviews 18, 281–292 (2017).

[170] Maccoby, E. & Martin, J. Socialization in the context of the family: Parent-child
interaction. In Hetherington, E. & Mussen, P. (eds.) Handbook of Child Psychology:
Formerly Carmichael’s Manual of Child Psychology. Socialization, Personality, and
Social Development (Wiley, New York, 1983).

[171] Scaglioni, S. et al. Factors Influencing Children’s Eating Behaviours. Nutrients 10, 706
(2018).

[172] Disantis, K., Hodges, E., Johnson, S. & Fisher, J. The role of responsive feeding in
overweight during infancy and toddlerhood: a systematic review. International
Journal of Obesity 35, 480–492 (2011).

[173] Daniels, L. A., Mallan, K. M., Nicholson, J. M., Battistutta, D. & Magarey, A. Outcomes
of an Early Feeding Practices Intervention to Prevent Childhood Obesity. Pediatrics
132, e109–e118 (2013).

[174] Hurley, K. M., Cross, M. B. & Hughes, S. O. A Systematic Review of Responsive Feeding
and Child Obesity in High-Income Countries. The Journal of Nutrition 141, 495–501
(2011).

[175] Faith, M. S., Scanlon, K. S., Birch, L. L., Francis, L. A. & Sherry, B. Parent-Child Feeding
Strategies and Their Relationships to Child Eating and Weight Status. Obesity Research
12, 1711–1722 (2004).

[176] Bergmeier, H., Skouteris, H. & Hetherington, M. Systematic research review of ob-
servational approaches used to evaluate mother-child mealtime interactions during
preschool years. The American Journal of Clinical Nutrition 101, 7–15 (2015).

183



References

[177] Johnson, C. M. et al. Observed parent-child feeding dynamics in relation to child
body mass index and adiposity. Pediatric Obesity 13, 222–231 (2018).

[178] Webber, L., Cooke, L., Hill, C. & Wardle, J. Child adiposity and maternal feeding
practices: a longitudinal analysis. The American Journal of Clinical Nutrition 92,
1423–1428 (2010).

[179] Fildes, A., van Jaarsveld, C. H., Llewellyn, C., Wardle, J. & Fisher, A. Parental control
over feeding in infancy. Influence of infant weight, appetite and feeding method.
Appetite 91, 101–106 (2015).

[180] Taylor, R. W. et al. Effect of a Baby-Led Approach to Complementary Feeding on
Infant Growth and Overweight. JAMA Pediatrics 9, 233–243 (2017).

[181] Rogers, S. L. & Blissett, J. Breastfeeding duration and its relation to weight gain, eating
behaviours and positive maternal feeding practices in infancy. Appetite 108, 399–406
(2017).

[182] Daniels, L. A. et al. An Early Feeding Practices Intervention for Obesity Prevention.
Pediatrics 136, e40–e49 (2015).

[183] Savage, J. S., Birch, L. L., Marini, M., Anzman-Frasca, S. & Paul, I. M. Effect of the
INSIGHT Responsive Parenting Intervention on Rapid Infant Weight Gain and Over-
weight Status at Age 1 Year. JAMA Pediatrics 170, 742 (2016).

[184] Paul, I. M. et al. Effect of a Responsive Parenting Educational Intervention on Child-
hood Weight Outcomes at 3 Years of Age. JAMA 320, 461 (2018).

[185] Vainik, U., García-García, I. & Dagher, A. Uncontrolled eating: a unifying heritable
trait linked with obesity, overeating, personality and the brain. European Journal of
Neuroscience (2019).

[186] Neale, B. M., Mazzeo, S. E. & Bulik, C. M. A Twin Study of Dietary Restraint, Disin-
hibition and Hunger: An Examination of the Eating Inventory (Three Factor Eating
Questionnaire). Twin Research 6, 471–478 (2003).

[187] de Castro, J. M. & Lilenfeld, L. R. Influence of heredity on dietary restraint, disinhibi-
tion, and perceived hunger in humans. Nutrition 21, 446–455 (2005).

[188] J. Elder, S. et al. Genetic and Environmental Influences on Eating Behavior - A Study
of Twin Pairs Reared Apart or Reared Together. The Open Nutrition Journal 6, 59–70
(2012).

[189] Schur, E. & Carnell, S. What Twin Studies Tell Us About Brain Responses to Food Cues.
Current Obesity Reports 6, 371–379 (2017).

[190] Song, Y. M., Lee, K., Sung, J. & Yang, Y. J. Changes in eating behaviors and body weight
in Koreans: The Healthy Twin Study. Nutrition 29, 66–70 (2013).

[191] Llewellyn, C. H., Van Jaarsveld, C. H. M., Boniface, D., Carnell, S. & Wardle, J. Eating
rate is a heritable phenotype related to weight in children. American Journal of
Clinical Nutrition 88, 1560–1566 (2008).

[192] Fisher, J. O. et al. Heritability of Hyperphagic Eating Behavior and Appetite-Related
Hormones among Hispanic Children. Obesity 15, 1484–1495 (2007).

[193] Herle, M., Fildes, A., Steinsbekk, S., Rijsdijk, F. & Llewellyn, C. H. Emotional over- and
under-eating in early childhood are learned not inherited. Scientific Reports 7, 9092
(2017).

184



REFERENCES

[194] Herle, M., Fildes, A. & Llewellyn, C. H. Emotional eating is learned not inherited in
children, regardless of obesity risk. Pediatric Obesity 13, 628–631 (2018).

[195] Valette, M. et al. Eating behaviour in obese patients with melanocortin-4 receptor
mutations: a literature review. International Journal of Obesity 37, 1027–1035 (2013).

[196] Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation.
The American Journal of Human Genetics 101, 5–22 (2017).

[197] Cornelis, M. C. et al. A genome-wide investigation of food addiction. Obesity 24,
1336–1341 (2016).

[198] Ziauddeen, H., Farooqi, I. S. & Fletcher, P. C. Obesity and the brain: how convincing is
the addiction model? Nature Reviews Neuroscience 13, 279–286 (2012).

[199] Gordon, E., Ariel-Donges, A., Bauman, V. & Merlo, L. What Is the Evidence for “Food
Addiction?” A Systematic Review. Nutrients 10, 477 (2018).

[200] Duncan, L. et al. Significant Locus and Metabolic Genetic Correlations Revealed in
Genome-Wide Association Study of Anorexia Nervosa. American Journal of Psychiatry
174, 850–858 (2017).

[201] Fairburn, C. G. Cognitive behavior therapy and eating disorders (The Guilford Press,
New York, 2008).

[202] American Psychiatric Association. Diagnostic and statistical manual of mental disor-
ders : DSM-5. (Washington, DC, 2013), 5th edn.

[203] Koritzky, G., Yechiam, E., Bukay, I. & Milman, U. Obesity and risk taking. A male
phenomenon. Appetite 59, 289–297 (2012).

[204] Gerlach, G., Herpertz, S. & Loeber, S. Personality traits and obesity: a systematic
review. Obesity Reviews 16, 32–63 (2015).

[205] Gorka, S. M., Liu, H., Klein, D., Daughters, S. B. & Shankman, S. A. Is risk-taking
propensity a familial vulnerability factor for alcohol use? An examination in two
independent samples. Journal of Psychiatric Research 68, 54–60 (2015).

[206] MacPherson, L., Magidson, J. F., Reynolds, E. K., Kahler, C. W. & Lejuez, C. W. Changes
in Sensation Seeking and Risk-Taking Propensity Predict Increases in Alcohol Use
Among Early Adolescents. Alcoholism: Clinical and Experimental Research 34, 1400–
1408 (2010).

[207] Mobbs, O., Crépin, C., Thiéry, C. & Van der Linden, M. Obesity and the four facets of
impulsivity. Patient Education and Counseling 79, 372–377 (2010).

[208] Herman, A. M., Critchley, H. D. & Duka, T. Risk-Taking and Impulsivity: The Role of
Mood States and Interoception. Frontiers in Psychology 9, 1625 (2018).

[209] Zuckerman, M. Sensation seeking and risky behavior. (American Psychological Associ-
ation, Washington, 2007).

[210] Stanford, M. S., Greve, K. W., Boudreaux, J. K., Mathias, C. W. & L. Brumbelow, J.
Impulsiveness and risk-taking behavior: comparison of high-school and college
students using the Barratt Impulsiveness Scale. Personality and Individual Differences
21, 1073–1075 (1996).

[211] Hoyle, R. H., Fejfar, M. C. & Miller, J. D. Personality and Sexual Risk Taking: A Quanti-
tative Review. Journal of Personality 68, 1203–1231 (2000).

185



References

[212] Bechara, A., Damasio, A. R., Damasio, H. & Anderson, S. W. Insensitivity to future
consequences following damage to human prefrontal cortex. Cognition 50, 7–15
(1994).

[213] Lejuez, C. W. et al. Evaluation of a behavioral measure of risk taking: The Balloon
Analogue Risk Task (BART). Journal of Experimental Psychology: Applied 8, 75–84
(2002).

[214] Upton, D. J., Bishara, A. J., Ahn, W.-Y. & Stout, J. C. Propensity for risk taking and trait
impulsivity in the Iowa Gambling Task. Personality and Individual Differences 50,
492–495 (2011).

[215] Dohmen, T. et al. Individual risk attitudes: Measurement, determinants and be-
havioural consequences. Journal of the European Economic Association 9, 522–550
(2011).

[216] Szrek, H., Chao, L.-W., Ramlagan, S. & Peltzer, K. Predicting (un)healthy behavior: A
comparison of risk-taking propensity measures. Judgment and Decision Making 7,
716–727 (2012).

[217] Weber, E. U., Blais, A.-R. & Betz, N. E. A domain-specific risk-attitude scale: measuring
risk perceptions and risk behaviors. Journal of Behavioral Decision Making 15, 263–
290 (2002).

[218] Zuckerman, M., Kolin, E. A., Price, L. & Zoob, I. Development of a sensation-seeking
scale. Journal of Consulting Psychology 28, 477–482 (1964).

[219] Gorka, S. M., Liu, H., Klein, D., Daughters, S. B. & Shankman, S. A. Is risk-taking
propensity a familial vulnerability factor for alcohol use? An examination in two
independent samples. Journal of Psychiatric Research 68, 54–60 (2015).

[220] Brailovskaia, J., Schillack, H., Assion, H.-J., Horn, H. & Margraf, J. Risk-taking propen-
sity and (un)healthy behavior in Germany. Drug and Alcohol Dependence 192, 324–
328 (2018).

[221] Kovács, I., Richman, M. J., Janka, Z., Maraz, A. & Andó, B. Decision making mea-
sured by the Iowa Gambling Task in alcohol use disorder and gambling disorder: a
systematic review and meta-analysis. Drug and Alcohol Dependence 181, 152–161
(2017).

[222] Ratcliff, M. B., Jenkins, T. M., Reiter-Purtill, J., Noll, J. G. & Zeller, M. H. Risk-Taking
Behaviors of Adolescents With Extreme Obesity: Normative or Not? Pediatrics 127
(2011).

[223] Rotge, J.-Y., Poitou, C., Fossati, P., Aron-Wisnewsky, J. & Oppert, J.-M. Decision-
making in obesity without eating disorders: a systematic review and meta-analysis of
Iowa gambling task performances. Obesity Reviews 18, 936–942 (2017).

[224] Brogan, A., Hevey, D. & Pignatti, R. Anorexia, bulimia, and obesity: Shared deci-
sion making deficits on the Iowa Gambling Task (IGT). Journal of the International
Neuropsychological Society 16, 711–715 (2010).

[225] Dassen, F. C. M., Houben, K., Allom, V. & Jansen, A. Self-regulation and obesity: the
role of executive function and delay discounting in the prediction of weight loss.
Journal of Behavioral Medicine 41, 806–818 (2018).

[226] Hughes, C. Executive Function. In Neural Circuit Development and Function in the
Brain, 429–445 (Elsevier, 2013).

186



REFERENCES

[227] Yang, Y., Shields, G. S., Guo, C. & Liu, Y. Executive function performance in obesity and
overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral
Reviews 84, 225–244 (2018).

[228] McCrae, R. & Costa, P. Personality in adulthood: A five-factor theory perspective (The
Guilford Press, New York, 2003), second edn.

[229] French, S. A., Epstein, L. H., Jeffery, R. W., Blundell, J. E. & Wardle, J. Eating behavior
dimensions. Associations with energy intake and body weight. A review. Appetite 59,
541–549 (2012).

[230] Elfhag, K. & Morey, L. C. Personality traits and eating behavior in the obese: Poor
self-control in emotional and external eating but personality assets in restrained
eating. Eating Behaviors 9, 285–293 (2008).

[231] Sutin, A. R., Ferrucci, L., Zonderman, A. B. & Terracciano, A. Personality and obesity
across the adult life span. Journal of Personality and Social Psychology 101, 579–592
(2011).

[232] Heaven, P. C., Mulligan, K., Merrilees, R., Woods, T. & Fairooz, Y. Neuroticism and con-
scientiousness as predictors of emotional, external, and restrained eating behaviors.
International Journal of Eating Disorders 30, 161–166 (2001).

[233] Meule, A. & Kübler, A. Double trouble. Trait food craving and impulsivity interactively
predict food-cue affected behavioral inhibition. Appetite 79, 174–182 (2014).

[234] Loeber, S., Grosshans, M., Herpertz, S., Kiefer, F. & Herpertz, S. C. Hunger modulates
behavioral disinhibition and attention allocation to food-associated cues in normal-
weight controls. Appetite 71, 32–39 (2013).

[235] Bénard, M. et al. Impulsivity is associated with food intake, snacking, and eating
disorders in a general population. The American Journal of Clinical Nutrition 109,
117–126 (2019).

[236] Meule, A. Impulsivity and overeating: a closer look at the subscales of the Barratt
Impulsiveness Scale. Frontiers in Psychology 4, 177 (2013).

[237] Lyke, J. A. & Spinella, M. Associations among aspects of impulsivity and eating factors
in a nonclinical sample. International Journal of Eating Disorders 36, 229–233 (2004).

[238] Hou, R. et al. External eating, impulsivity and attentional bias to food cues. Appetite
56, 424–427 (2011).

[239] Agranat-Meged, A. et al. Attention deficit hyperactivity disorder in obese
melanocortin-4-receptor (MC4R) deficient subjects: A newly described expression
of MC4R deficiency. American Journal of Medical Genetics Part B: Neuropsychiatric
Genetics 147B, 1547–1553 (2008).

[240] Anokhin, A. P., Golosheykin, S., Grant, J. & Heath, A. C. Heritability of Risk-Taking
in Adolescence: A Longitudinal Twin Study. Twin Research and Human Genetics 12,
366–371 (2009).

[241] Miles, D. R. et al. A twin study on sensation seeking, risk taking behavior and mari-
juana use. Drug and Alcohol Dependence 62, 57–68 (2001).

[242] Strawbridge, R. J. et al. Genome-wide analysis of self-reported risk-taking behaviour
and cross-disorder genetic correlations in the UK Biobank cohort. Translational
Psychiatry 8, 39 (2018).

187



References

[243] Boutwell, B. et al. Replication and characterization of CADM2 and MSRA genes on
human behavior. Heliyon 3, e00349 (2017).

[244] Smith, E., Hay, P., Campbell, L. & Trollor, J. N. A review of the association between
obesity and cognitive function across the lifespan: implications for novel approaches
to prevention and treatment. Obesity Reviews 12, 740–755 (2011).

[245] Short, M. A. & Weber, N. Sleep duration and risk-taking in adolescents: A systematic
review and meta-analysis. Sleep Medicine Reviews 41, 185–196 (2018).

[246] Fatima, Y., Doi, S. A. R. & Mamun, A. A. Sleep quality and obesity in young subjects: a
meta-analysis. Obesity Reviews 17, 1154–1166 (2016).

[247] Rolfe, E. D. L. et al. Association between birth weight and visceral fat in adults.
American Journal of Clinical Nutrition 92, 347–352 (2010).

[248] Howie, B. N., Donnelly, P. & Marchini, J. A Flexible and Accurate Genotype Imputation
Method for the Next Generation of Genome-Wide Association Studies. PLoS Genetics
5, e1000529 (2009).

[249] Durbin, R. M. et al. A map of human genome variation from population-scale se-
quencing. Nature 467, 1061–1073 (2010).

[250] Ollier, W., Sprosen, T. & Peakman, T. UK Biobank: from concept to reality. Pharma-
cogenomics 6, 639–646 (2005).

[251] UK Biobank. UK Biobank: Protocol for a large-scale prospective epidemiological
resource. Tech. Rep. (2007). URL http://www.ukbiobank.ac.uk/wp-content/uploads/
2011/11/UK-Biobank-Protocol.pdf.

[252] Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes of a
Wide Range of Complex Diseases of Middle and Old Age. PLOS Medicine 12, e1001779
(2015).

[253] Allen, N. et al. UK Biobank: Current status and what it means for epidemiology.
Health Policy and Technology 1, 123–126 (2012).

[254] UK Biobank. UK Biobank Anthropometry: Version 1.0. Tech. Rep. (2014). URL
http://www.ukbiobank.ac.uk/.

[255] Wain, L. V. et al. Novel insights into the genetics of smoking behaviour, lung function,
and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study
in UK Biobank. The Lancet Respiratory Medicine 3, 769–781 (2015).

[256] Bycroft, C. et al. Genome-wide genetic data on ˜500,000 UK Biobank participants.
bioRxiv (2017).

[257] Lakshman, R. et al. Effectiveness of a behavioural intervention to prevent excessive
weight gain during infancy (The Baby Milk Trial): study protocol for a randomised
controlled trial. Trials 16, 442 (2015).

[258] Public Health England. Official Statistics: Breastfeeding prevalence at 6-8 weeks after
birth (Experimental Statistics). 2016/17 annual data. (November 2017 release). (2017).

[259] Lakshman, R. et al. Randomised controlled trial of a theory-based behavioural in-
tervention to reduce formula milk intake. Archives of Disease in Childhood 103,
2018–314784 (2018).

[260] Clifton, E. A. D. et al. Associations between body mass index-related genetic variants
and adult body composition: The Fenland cohort study. International Journal of
Obesity 41, 613–619 (2017).

188

http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UK-Biobank-Protocol.pdf
http://www.ukbiobank.ac.uk/


REFERENCES

[261] Bouchard, C. BMI, fat mass, abdominal adiposity and visceral fat: where is the ‘beef’?
International Journal of Obesity 31, 1552–1553 (2007).

[262] Shah, N. R. & Braverman, E. R. Measuring adiposity in patients: The utility of body
mass index (BMI), percent body fat, and leptin. PLoS ONE 7, e33308 (2012).

[263] Lear, S. A., Humphries, K. H., Kohli, S. & Birmingham, C. L. The Use of BMI and Waist
Circumference as Surrogates of Body Fat Differs by Ethnicity**. Obesity 15, 2817–2824
(2007).

[264] Fawzy, T. et al. Association between Body Mass Index and Bone Mineral Density in
Patients Referred for Dual-Energy X-Ray Absorptiometry Scan in Ajman, UAE. Journal
of Osteoporosis 2011, 1–4 (2011).

[265] Ho-Pham, L. T., Nguyen, U. D. T. & Nguyen, T. V. Association Between Lean Mass, Fat
Mass, and Bone Mineral Density: A Meta-analysis. The Journal of Clinical Endocrinol-
ogy & Metabolism 99, 30–38 (2014).

[266] Langenberg, C. et al. Long-Term Risk of Incident Type 2 Diabetes and Measures of
Overall and Regional Obesity: The EPIC-InterAct Case-Cohort Study. PLoS Medicine
9, e1001230 (2012).

[267] Despres, J.-P. Body Fat Distribution and Risk of Cardiovascular Disease: An Update.
Circulation 126, 1301–1313 (2012).

[268] Petursson, H., Sigurdsson, J. A., Bengtsson, C., Nilsen, T. I. L. & Getz, L. Body Configu-
ration as a Predictor of Mortality: Comparison of Five Anthropometric Measures in a
12 Year Follow-Up of the Norwegian HUNT 2 Study. PLoS ONE 6, e26621 (2011).

[269] Adab, P., Pallan, M. & Whincup, P. H. Is BMI the best measure of obesity? BMJ k1274
(2018).

[270] Jitnarin, N., Poston, W. S., Haddock, C. K., Jahnke, S. A. & Day, R. S. Accuracy of Body
Mass Index-defined Obesity Status in US Firefighters. Safety and Health at Work 5,
161–164 (2014).

[271] Frayon, S. et al. Relationship of body fat and body mass index in young Pacific
Islanders: a cross-sectional study in European, Melanesian and Polynesian groups.
Pediatric Obesity 13, 357–364 (2018).

[272] Nevill, A. M. et al. Adjusting athletes’ body mass index to better reflect adiposity in
epidemiological research. Journal of Sports Sciences 28, 1009–1016 (2010).

[273] Rush, E. C., Freitas, I. & Plank, L. D. Body size, body composition and fat distribution:
comparative analysis of European, Maori, Pacific Island and Asian Indian adults.
British Journal of Nutrition 102, 632 (2009).

[274] Blundell, J. E., Dulloo, A. G., Salvador, J. & Frühbeck, G. Beyond BMI - Phenotyping
the Obesities. Obesity Facts 7, 322–328 (2014).

[275] Romero-Corral, A. et al. Accuracy of body mass index in diagnosing obesity in the
adult general population. International Journal of Obesity 32, 959–966 (2008).

[276] Ryo, M. et al. Fat Accumulation and Obesity-related Cardiovascular Risk Factors in
Middle-aged Japanese Men and Women. Internal Medicine 53, 299–305 (2014).

[277] Britton, K. A. et al. Body Fat Distribution, Incident Cardiovascular Disease, Cancer,
and All-Cause Mortality. Journal of the American College of Cardiology 62, 921–925
(2013).

189



References

[278] Lee, J. J., Beretvas, S. N. & Freeland-Graves, J. H. Abdominal Adiposity Distribution
in Diabetic/Prediabetic and Nondiabetic Populations: A Meta-Analysis. Journal of
Obesity 2014, 1–20 (2014).

[279] Feng, R. How much do we know about the heritability of BMI? The American Journal
of Clinical Nutrition 104, 243–244 (2016).

[280] Livshits, G., Malkin, I., Moayyeri, A., Spector, T. D. & Hammond, C. J. Association of
FTO gene variants with body composition in UK twins. Annals of Human Genetics 76,
333–341 (2012).

[281] Liu, G. et al. Common Variants Near Melanocortin 4 Receptor Are Associated with
General and Visceral Adiposity in European- and African-American Youth. The Jour-
nal of Pediatrics 156, 598–605 (2010).

[282] Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal
influence on body weight regulation. Nature Genetics 41, 25–34 (2009).

[283] Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci
associated with body mass index. Nature Genetics 42, 937–948 (2010).

[284] Badsi, M. N. et al. Combined effect of established BMI loci on obesity-related traits in
an Algerian population sample. BMC Genetics 15, 128 (2014).

[285] Goumidi, L., Cottel, D., Dallongeville, J., Amouyel, P. & Meirhaeghe, A. Effects of
established BMI-associated loci on obesity-related traits in a French representative
population sample. BMC Genetics 15, 62 (2014).

[286] Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat
distribution. Nature 518, 187–196 (2015).

[287] Fox, C. S. et al. Genome-wide association for abdominal subcutaneous and visceral
adipose reveals a novel locus for visceral fat in women. PLoS Genetics 8 (2012).

[288] Sung, Y. J. et al. Genome-wide association studies suggest sex-specific loci associated
with abdominal and visceral fat. International Journal of Obesity 40, 662–674 (2016).

[289] Kilpeläinen, T. O. et al. Genetic variation near IRS1 associates with reduced adiposity
and an impaired metabolic profile. Nature Genetics 43, 753–760 (2011).

[290] Lu, Y. et al. New loci for body fat percentage reveal link between adiposity and
cardiometabolic disease risk. Nature Communications 7, 10495 (2016).

[291] Schorr, M. et al. Sex differences in body composition and association with car-
diometabolic risk. Biology of Sex Differences 9, 28 (2018).

[292] Sung, Y.-A., Oh, J.-Y. & Lee, H. Comparison of the Body Adiposity Index to Body Mass
Index in Korean Women. Yonsei Medical Journal 55, 1028 (2014).

[293] Flegal, K. M. et al. Comparisons of percentage body fat , body mass index , waist
circumference , and waist-stature ratio in adults. The American Journal of Clinical
Nutrition 89, 500–508 (2009).

[294] Zhu, J. et al. Associations of Genetic Risk Score with Obesity and Related Traits and
the Modifying Effect of Physical Activity in a Chinese Han Population. PLoS ONE 9,
e91442 (2014).

[295] Zillikens, M. C. et al. Large meta-analysis of genome-wide association studies identi-
fies five loci for lean body mass. Nature Communications 8, 80 (2017).

190



REFERENCES

[296] Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458,
894–898 (2009).

[297] Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new child-
hood obesity loci. Nature Genetics 44, 526–531 (2012).

[298] Elks, C. E. et al. Associations between genetic obesity susceptibility and early postnatal
fat and lean mass. JAMA Pediatrics 168, 1122–1130 (2014).

[299] Winkler, T. W. et al. The influence of age and sex on genetic associations with adult
body size and shape: A large-scale genome-wide interaction study. PLOS Genetics 11,
e1005378 (2015).

[300] Murphy, R. A. et al. Candidate Gene Association Study of BMI-related loci, weight,
and adiposity in old age. The Journals of Gerontology Series A: Biological Sciences and
Medical Sciences 68, 661–666 (2013).

[301] De Lauzon-Guillain, B. et al. Mediation and modification of genetic susceptibility to
obesity by eating behaviors. American Journal of Clinical Nutrition 106, 996–1004
(2017).

[302] Carnell, S., Benson, L. & Wardle, J. Eating behaviours in obesity. In Akabas, S.,
Lederman, S. A. & Moore, B. J. (eds.) Textbook of Obesity: Biological, Psychological and
Cultural Influences (John Wiley & Sons Ltd, Oxford, 2012).

[303] Stice, E., Yokum, S., Bohon, C., Marti, N. & Smolen, A. Reward circuitry responsivity to
food predicts future increases in body mass: Moderating effects of DRD2 and DRD4.
NeuroImage 50, 1618–1625 (2010).

[304] Heude, B. et al. Cohort Profile: The EDEN mother-child cohort on the prenatal and
early postnatal determinants of child health and development. International Journal
of Epidemiology 45, 353–363 (2016).

[305] Tavakol, M. & Dennick, R. Making sense of Cronbach’s alpha. International Journal of
Medical Education 2, 53–55 (2011).

[306] MacKinnon, D. P., Warsi, G. & Dwyer, J. H. A Simulation Study of Mediated Effect
Measures. Multivariate Behavioral Research 30, 41–62 (1995).

[307] Sobel, M. Asymptotic intervals for indirect effect in structural equations models. In:
Leinhart S, ed. Sociological methodology. In Leinhart, S. (ed.) Sociological Methodol-
ogy, 290–312 (Jossey-Bass, San Francisco, 1982).

[308] Ditlevsen, S., Christensen, U., Lynch, J., Damsgaard, M. T. & Keiding, N. The mediation
proportion: a structural equation approach for estimating the proportion of exposure
effect on outcome explained by an intermediate variable. Epidemiology (Cambridge,
Mass.) 16, 114–20 (2005).

[309] Kirkwood, B. R. & Sterne, J. A. C. Medical Statistics (Blackwell Science Ltd, Mas-
sachusetts, USA, 2004), second edn.

[310] Corraini, P., Olsen, M., Pedersen, L., Dekkers, O. & Vandenbroucke, J. Effect modi-
fication, interaction and mediation: an overview of theoretical insights for clinical
investigators. Clinical Epidemiology Volume 9, 331–338 (2017).

[311] Jacob, R. et al. The role of eating behavior traits in mediating genetic susceptibility to
obesity. The American Journal of Clinical Nutrition 108, 445–452 (2018).

[312] Lowe, M. R. & Levine, A. S. Eating Motives and the Controversy over Dieting: Eating
Less Than Needed versus Less Than Wanted. Obesity Research 13, 797–806 (2005).

191



References

[313] Bellisle, F. et al. The Eating Inventory and Body Adiposity from Leanness to Massive
Obesity: a Study of 2509 Adults. Obesity Research 12, 2023–2030 (2004).

[314] Rochat, P. Five levels of self-awareness as they unfold early in life. Consciousness and
Cognition 12, 717–731 (2003).

[315] Farrow, C. & Blissett, J. Stability and continuity of parentally reported child eating
behaviours and feeding practices from 2 to 5 years of age. Appetite 58, 151–156 (2012).

[316] Powell, F., Farrow, C., Meyer, C. & Haycraft, E. The Stability and Continuity of Mater-
nally Reported and Observed Child Eating Behaviours and Feeding Practices across
Early Childhood. International Journal of Environmental Research and Public Health
15, 1017 (2018).

[317] Brown, A. & Lee, M. Breastfeeding during the first year promotes satiety responsive-
ness in children aged 18-24 months. Pediatric Obesity 7, 382–390 (2012).

[318] Rodgers, R. F. et al. Maternal feeding practices predict weight gain and obesogenic
eating behaviors in young children: a prospective study. International Journal of
Behavioral Nutrition and Physical Activity 10, 24 (2013).

[319] Mallan, K. M., Sullivan, S. E., de Jersey, S. J. & Daniels, L. A. The relationship between
maternal feeding beliefs and practices and perceptions of infant eating behaviours at
4 months. Appetite 105, 1–7 (2016).

[320] Clark, H. R., Goyder, E., Bissell, P., Blank, L. & Peters, J. How do parents’ child-feeding
behaviours influence child weight? Implications for childhood obesity policy. Journal
of Public Health 29, 132–141 (2007).

[321] Lakshman, R. et al. A theory-based behavioural intervention to reduce formula-milk
intake and prevent excessive weight gain during infancy (The Baby Milk Trial): a
randomised controlled trial. The Lancet 390, S56 (2017).

[322] Lakshman, R., Clifton, E. A. & Ong, K. K. Baby-Led Weaning—Safe and Effective but
Not Preventive of Obesity. JAMA Pediatrics 171, 832 (2017).

[323] Lakshman, R. R. et al. Development of a questionnaire to assess maternal attitudes
towards infant growth and milk feeding practices. International Journal of Behavioral
Nutrition and Physical Activity 8, 35 (2011).

[324] McAlister, A., Perry, C. & Parcel, G. How individuals, environments, and health
behavoir interact: Social cognitive theory. In Glanz, K., Rimer, B. & Viswanath, K.
(eds.) Health behaviour and health education: Theory, research, and practice, chap.
Chapter 8, 169–188 (Jossey-Bass, San Franciso, 2008), 4th edn.

[325] Ajzen, I. The theory of planned behavior. Organizational Behavior and Human
Decision Processes 50, 179–211 (1991).

[326] Gollwitzer, P. M. & Sheeran, P. Implementation Intentions and Goal Achievement: A
Meta-analysis of Effects and Processes. In Advances in Experimental Social Psychology,
vol. 38, 69–119 (Academic Press, 2006).

[327] Bandura, A. Social Cognitive Theory. In van Lange, P. A. M., Kruglanski, A. W. &
Higgins, E. T. (eds.) Handbook of theories of social psychology, chap. 17, 349–373
(SAGE, London, 2012).

[328] Lennox, A. et al. Diet and Nutrition Suvery of Infants and Young Children, 2011:
A survey carried out on behalf of the Department of Health and Food Stan-
dards Agency Diet and Nutrition Survey of Infants and Young Children. (2011).
URL https://www.gov.uk/government/uploads/system/uploads/attachment_data/
file/139572/DNSIYC_UK_report_ALL_chapters_DH_V10.0.pdf.

192

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/139572/DNSIYC_UK_report_ALL_chapters_DH_V10.0.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/139572/DNSIYC_UK_report_ALL_chapters_DH_V10.0.pdf


REFERENCES

[329] SACN (Scientific Advisory Committee on Nutrition). Feeding in the First Year
of Life. Tech. Rep. (2018). URL https://www.gov.uk/government/publications/
sacn-report-on-feeding-in-the-first-year-of-life.

[330] Dewey, K. G., Heinig, M. J., Nommsen, L. A., Peerson, J. M. & Lönnerdal, B. Growth
of breast-fed and formula-fed infants from 0 to 18 months: the DARLING Study.
Pediatrics 89, 1035–41 (1992).

[331] Arenz, S., Rückerl, R., Koletzko, B. & von Kries, R. Breast-feeding and childhood
obesity—a systematic review. International Journal of Obesity 28, 1247–1256 (2004).

[332] Li, R., Scanlon, K. S., May, A., Rose, C. & Birch, L. Bottle-Feeding Practices During Early
Infancy and Eating Behaviors at 6 Years of Age. PEDIATRICS 134, S70–S77 (2014).

[333] Black, M. M. & Hurley, K. M. Responsive feeding: Strategies to promote healthy
mealtime interactions. In Black, R. E., Makrides, M. & Ong, K. K. (eds.) Complementary
Feeding: Building the Foundations for a Healthy Life, 153–165 (Karger, 2017).

[334] Corbett, S. & Drewett, R. To what extent is failure to thrive in infancy associated
with poorer cognitive development? A review and meta-analysis. Journal of Child
Psychology and Psychiatry 45, 641–654 (2004).

[335] Nützenadel, W. Failure to Thrive in Childhood. Deutsches Aerzteblatt Online 108,
642–9 (2011).

[336] Black, M. M., Dubowitz, H., Krishnakumar, A. & Starr, R. H. Early Intervention and
Recovery Among Children With Failure to Thrive: Follow-up at Age 8. PEDIATRICS
120, 59–69 (2007).

[337] McGowan, L., Croker, H., Wardle, J. & Cooke, L. J. Environmental and individual
determinants of core and non-core food and drink intake in preschool-aged children
in the United Kingdom. European Journal of Clinical Nutrition 66, 322–328 (2012).

[338] Victora, C. G. et al. Breastfeeding in the 21st century: epidemiology, mechanisms,
and lifelong effect. The Lancet 387, 475–490 (2016).

[339] Clifton, E. A. D. et al. Genome–wide association study for risk taking propensity
indicates shared pathways with body mass index. Communications Biology 1, 36
(2018).

[340] Josef, A. K. et al. Stability and change in risk-taking propensity across the adult life
span. Journal of Personality and Social Psychology 111, 430–450 (2016).

[341] Bloom, E. L., Matsko, S. V. & Cimino, C. R. The relationship between cigarette smoking
and impulsivity: A review of personality, behavioral, and neurobiological assessment.
Addiction Research & Theory 22, 386–397 (2014).

[342] Henry, K. L., Slater, M. D. & Oetting, E. R. Alcohol use in early adolescence: the effect
of changes in risk taking, perceived harm and friends’ alcohol use. Journal of Studies
on Alcohol 66, 275–283 (2005).

[343] Schag, K. et al. Impulsivity-focused group intervention to reduce binge eating
episodes in patients with binge eating disorder: study protocol of the randomised
controlled IMPULS trial. BMJ Open 5, e009445 (2015).

[344] Day, F. R. et al. Physical and neurobehavioral determinants of reproductive onset and
success. Nature Genetics 48, 617–623 (2016).

193

https://www.gov.uk/government/publications/sacn-report-on-feeding-in-the-first-year-of-life
https://www.gov.uk/government/publications/sacn-report-on-feeding-in-the-first-year-of-life


References

[345] Mulligan, A. A. et al. A new tool for converting food frequency questionnaire data into
nutrient and food group values: FETA research methods and availability. BMJ Open 4,
e004503 (2014).

[346] Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power
in large cohorts. Nature Genetics 47, 284–290 (2015).

[347] Jenks, R. J. Attitudes, Perceptions, and Risk-Taking Behaviors of Smokers, Ex-Smokers,
and Nonsmokers. The Journal of Social Psychology 132, 569–575 (1992).

[348] Ert, E., Yechiam, E. & Arshavsky, O. Smokers’ Decision Making: More than Mere Risk
Taking. PLoS ONE 8, e68064 (2013).

[349] Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nature Genetics
45, 580–585 (2013).

[350] Finucane, H. et al. Heritability enrichment of specifically expressed genes identifies
disease-relevant tissues and cell types. bioRxiv 103069 (2017).

[351] Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and
traits. Nature Genetics 47, 1236–1241 (2015).

[352] Burgess, S., Butterworth, A., Malarstig, A. & Thompson, S. G. Use of Mendelian
randomisation to assess potential benefit of clinical intervention. BMJ 345, e7325–
e7325 (2012).

[353] Davey Smith, G. & Ebrahim, S. Mendelian randomization: can genetic epidemiology
contribute to understanding environmental determinants of disease? International
Journal of Epidemiology 32, 1–22 (2003).

[354] Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent Estimation in
Mendelian Randomization with Some Invalid Instruments Using a Weighted Median
Estimator. Genetic epidemiology 40, 304–14 (2016).

[355] Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid
instruments: effect estimation and bias detection through Egger regression. Interna-
tional Journal of Epidemiology 44, 512–525 (2015).

[356] Zheng, J. et al. Recent Developments in Mendelian Randomization Studies. Current
epidemiology reports 4, 330–345 (2017).

[357] Okbay, A. et al. Genome-wide association study identifies 74 loci associated with
educational attainment. Nature 533, 539–542 (2016).

[358] Davies, G. et al. Genome-wide association study of cognitive functions and edu-
cational attainment in UK Biobank (N=112 151). Molecular Psychiatry 21, 758–767
(2016).

[359] Clarke, T. K. et al. Genome-wide association study of alcohol consumption and
genetic overlap with other health-related traits in UK Biobank (N=112 117). Molecular
psychiatry 22, 1376–1384 (2017).

[360] Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human repro-
ductive behavior. Nature Genetics 48, 1462–1472 (2016).

[361] Anney, R. et al. Meta-analysis of GWAS of over 16,000 individuals with autism spec-
trum disorder highlights a novel locus at 10q24.32 and a significant overlap with
schizophrenia. Molecular Autism 8, 21 (2017).

194



REFERENCES

[362] Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic loci.
Nature 511, 421–427 (2014).

[363] Schultz, J. M. et al. Allelic hierarchy of CDH23 mutations causing non-syndromic
deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes. Journal
of Medical Genetics 48, 767–775 (2011).

[364] Arnoldi, A. et al. Clinical phenotype variability in patients with hereditary spastic
paraplegia type 5 associated with CYP7B1 mutations. Clinical Genetics 81, 150–157
(2012).

[365] Muenke, M. et al. Mutations in the homeodomain of the human SIX3 gene cause
holoprosencephaly. Nature Genetics 22, 196–198 (1999).

[366] MacDermot, K. D. et al. Identification of FOXP2 Truncation as a Novel Cause of
Developmental Speech and Language Deficits. The American Journal of Human
Genetics 76, 1074–1080 (2005).

[367] Ragge, N. K. et al. SOX2 anophthalmia syndrome. American Journal of Medical
Genetics Part A 135A, 1–7 (2005).

[368] Otto, E. A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the
cause of a retinal-renal ciliopathy. Nature Genetics 42, 840–850 (2010).

[369] Pischedda, F., Szczurkowska, J., Daniela Cirnaru, M., Cancedda, L. & Piccoli, G. The
role of NEGR1 in cortical development via NCAM-FGFR2 signaling. SpringerPlus 4,
P38 (2015).

[370] Nguyen, T. The Review for Olfactory Receptor Genes. TTU Review 1 (2016).

[371] Lui, J. H. et al. Radial glia require PDGFD-PDGFRβ signalling in human but not
mouse neocortex. Nature 515, 264–8 (2014).

[372] de Wit, H. Impulsivity as a determinant and consequence of drug use: a review of
underlying processes. Addiction Biology 14, 22–31 (2009).

[373] Qu, Y., Galvan, A., Fuligni, A. J., Lieberman, M. D. & Telzer, E. H. Longitudinal Changes
in Prefrontal Cortex Activation Underlie Declines in Adolescent Risk Taking. Journal
of Neuroscience 35, 11308–11314 (2015).

[374] Bach, D. R. et al. Human Hippocampus Arbitrates Approach-Avoidance Conflict.
Current Biology 24, 541–547 (2014).

[375] Shenhav, A., Botvinick, M. M. & Cohen, J. D. The Expected Value of Control: An
Integrative Theory of Anterior Cingulate Cortex Function. Neuron 79, 217–240 (2013).

[376] Gross, C. T. & Canteras, N. S. The many paths to fear. Nature Reviews Neuroscience
13, 651–658 (2012).

[377] Lockshin, M. D. Sex differences in autoimmune disease. Lupus 15, 753–756 (2006).

[378] Jones, K. A. & Thomsen, C. The role of the innate immune system in psychiatric
disorders. Molecular and Cellular Neuroscience 53, 52–62 (2013).

[379] Segerstrom, S. C. Personality and the immune system: Models, methods, and mecha-
nisms. Annals of Behavioral Medicine 22, 180–190 (2000).

[380] Thamotharan, S., Lange, K., Zale, E. L., Huffhines, L. & Fields, S. The role of impulsivity
in pediatric obesity and weight status: A meta-analytic review. Clinical Psychology
Review 33, 253–262 (2013).

195



References

[381] Llewellyn, D. J., Sanchez, X., Asghar, A. & Jones, G. Self-efficacy, risk taking and
performance in rock climbing. Personality and Individual Differences 45, 75–81
(2008).

[382] Merritt, C. J. & Tharp, I. J. Personality, self-efficacy and risk-taking in parkour (free-
running). Psychology of Sport and Exercise 14, 608–611 (2013).

[383] Sanchez-Roige, S. et al. Genome-wide association studies of impulsive personality
traits (BIS-11 and UPPSP) and drug Experimentation in up to 22,861 adult research
participants Short Title: GWAS of UPPSP, BIS and Drug Experimentation. bioRxiv
(2018).

[384] Galvan, A., Hare, T., Voss, H., Glover, G. & Casey, B. Risk-taking and the adolescent
brain: who is at risk? Developmental Science 10, F8–F14 (2007).

[385] Herle, M., Fildes, A., Rijsdijk, F., Steinsbekk, S. & Llewellyn, C. The Home Environment
Shapes Emotional Eating. Child Development 89, 1423–1434 (2018).

[386] Kaprio, J., Pulkkinen, L. & Rose, R. J. Genetic and Environmental Factors in Health-
related Behaviors: Studies on Finnish Twins and Twin Families. Twin Research 5,
366–371 (2002).

[387] Kaprio, J. The Finnish Twin Cohort Study: An Update. Twin Research and Human
Genetics 16, 157–162 (2013).

[388] Colditz, G. A. & Hankinson, S. E. The Nurses’ Health Study: lifestyle and health among
women. Nature Reviews Cancer 5, 388–396 (2005).

[389] Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-
analyses. Nature 9, 1192–1212 (2014).

[390] Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

[391] Sanchez-Roige, S. et al. Genome-wide association studies of impulsive personality
traits (BIS-11 and UPPSP) and drug experimentation in up to 22,861 adult research
participants identify loci in the CACNA1I and CADM2 genes. The Journal of Neuro-
science 2662–18 (2019).

[392] Lo, M.-T. et al. Genome-wide analyses for personality traits identify six genomic loci
and show correlations with psychiatric disorders. Nature Genetics 49, 152–156 (2017).

[393] Bergen, S. E., Gardner, C. O. & Kendler, K. S. Age-Related Changes in Heritability of
Behavioral Phenotypes Over Adolescence and Young Adulthood: A Meta-Analysis.
Twin Research and Human Genetics 10, 423–433 (2007).

[394] Lowe, M. R. Dieting: proxy or cause of future weight gain? Obesity Reviews 16, 19–24
(2015).

[395] Palascha, A., van Kleef, E. & van Trijp, H. C. How does thinking in Black and White
terms relate to eating behavior and weight regain? Journal of Health Psychology 20,
638–648 (2015).

[396] Leitch, M. A., Morgan, M. J. & Yeomans, M. R. Different subtypes of impulsivity
differentiate uncontrolled eating and dietary restraint. Appetite 69, 54–63 (2013).

[397] Vainik, U., Neseliler, S., Konstabel, K., Fellows, L. K. & Dagher, A. Eating traits ques-
tionnaires as a continuum of a single concept. Uncontrolled eating. Appetite 90,
229–239 (2015).

196



REFERENCES

[398] Urbanek, J. K., Metzgar, C. J., Hsiao, P. Y., Piehowski, K. E. & Nickols-Richardson, S. M.
Increase in cognitive eating restraint predicts weight loss and change in other anthro-
pometric measurements in overweight/obese premenopausal women. Appetite 87,
244–250 (2015).

[399] Steinsbekk, S., Llewellyn, C. H., Fildes, A. & Wichstrøm, L. Body composition impacts
appetite regulation in middle childhood. A prospective study of Norwegian commu-
nity children. International Journal of Behavioral Nutrition and Physical Activity 14,
70 (2017).

[400] Porta, M. A Dictionary of Epidemiology (Oxford University Press, New York, 2014), 6th
edn.

[401] Froom, P., Melamed, S., Kristal-Boneh, E., Benbassat, J. & Ribak, J. Healthy volunteer
effect in industrial workers. Journal of clinical epidemiology 52, 731–5 (1999).

[402] Fry, A. et al. Comparison of Sociodemographic and Health-Related Characteristics of
UK Biobank Participants With Those of the General Population. American Journal of
Epidemiology 186, 1026–1034 (2017).

[403] Office of National Statistics. UK Census 2011.

[404] Hart, C. N., Raynor, H. A., Jelalian, E. & Drotar, D. The association of maternal food
intake and infants’ and toddlers’ food intake. Child: Care, Health and Development
36, 396–403 (2010).

[405] Bedri, A., Verlekar, A., Thomaz, E., Avva, V. & Starner, T. A wearable system for
detecting eating activities with proximity sensors in the outer ear. In Proceedings of
the 2015 ACM International Symposium on Wearable Computers - ISWC ’15, 91–92
(ACM Press, New York, New York, USA, 2015).

[406] Thomas, J., Dourish, C. & Higgs, S. Effects of awareness that food intake is being
measured by a universal eating monitor on the consumption of a pasta lunch and a
cookie snack in healthy female volunteers. Appetite 92, 247–251 (2015).

[407] Bland, J. M. & Altman, D. G. Statistics notes: Multiple significance tests: the Bonferroni
method. BMJ 310, 170–170 (1995).

[408] Fadista, J., Manning, A. K., Florez, J. C. & Groop, L. The (in)famous GWAS P-value
threshold revisited and updated for low-frequency variants. European Journal of
Human Genetics 24, 1202–1205 (2016).

[409] Palmer, C. & Pe’er, I. Statistical correction of the Winner’s Curse explains replication
variability in quantitative trait genome-wide association studies. PLOS Genetics 13,
e1006916 (2017).

[410] Sheehan, N. a., Didelez, V., Burton, P. R. & Tobin, M. D. Mendelian randomisation and
causal inference in observational epidemiology. PLoS Medicine 5, 1205–1210 (2008).

197





APPENDIX A

SUPPLEMENTARY TABLES

A.1 Chapter 3

Table A.1 Self-reported ethnicity of the Fenland study participants (n=9242)

Self-reported ethnicity Count
Percent

(%)

White British 8,526 92.3

Other white 534 5.8

White Irish 77 0.8

Indian 30 0.3

White and Asian 20 0.2

Mixed race other 19 0.2

Any Asian 14 0.2

Any other 7 0.1

Pakistani 4 <0.1

White and black Caribbean 4 <0.1

African 3 <0.1

White and black African 3 <0.1

Bangladeshi 1 <0.1

Any Black 0 0

Caribbean 0 0

Chinese 0 0
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Table A.2 Sensitivity analysis amongst men using a sex-specific BMI-GRS

Sex-combined score Male-specific only

Beta (SE)a p-value Beta (SE)a p-value % change in Beta

Weight 0.91 (0.10) 2.24E-21* 0.90 (0.10) 2.24E-20* -1.4

WC 0.91 (0.09) 9.62E-22* 0.89 (0.10) 1.98E-20* -2.1

HC 0.91 (0.10) 4.08E-21* 0.91 (0.10) 9.28E-21* 0.3

WHR 0.61 (0.09) 5.33E-11* 0.58 (0.09) 7.79E-10* -5.2

Height -0.02 (0.10) 0.85 -0.04 (0.10) 0.65 –

BF% 0.74 (0.09) 9.09E-15* 0.73 (0.10) 2.90E-14* -0.8

Total fat 0.90 (0.09) 3.75E-21* 0.89 (0.10) 3.02E-20* -1.2

Trunk fat 0.88 (0.09) 1.28E-20* 0.87 (0.10) 1.31E-19* -1.5

Android fat 0.87 (0.09) 3.23E-20* 0.85 (0.10) 4.63E-19* -2.0

Gynoid fat 0.87 (0.10) 1.84E-19* 0.86 (0.10) 9.47E-19* -0.8

Legs fat 0.80 (0.10) 7.20E-17* 0.80 (0.10) 2.76E-16* -0.8

SAT 0.98 (0.10) 2.23E-24* 0.97 (0.10) 1.58E-23* -0.7

VAT 0.62 (0.09) 1.85E-11* 0.60 (0.09) 1.14E-10* -2.9

VAT/SAT 0.06 (0.09) 0.54 0.04 (0.09) 0.66 –

Total lean 0.68 (0.10) 1.91E-12* 0.67 (0.10) 7.09E-12* -1.5

Trunk lean 0.65 (0.10) 1.57E-11* 0.65 (0.10) 2.36E-11* 0.3

Android lean 0.63 (0.10) 4.30E-11* 0.63 (0.10) 1.15E-10* -1.1

Gynoid lean 0.59 (0.10) 6.85E-10* 0.58 (0.10) 2.14E-09* -1.8

Append. lean 0.65 (0.10) 9.63E-12* 0.63 (0.10) 7.07E-11* -3.2

Total bone 0.39 (0.10) 5.69E-05* 0.36 (0.10) 2.11E-04* -6.9

Trunk bone 0.48 (0.10) 6.04E-07* 0.46 (0.10) 2.11E-06* -3.8

Android bone 0.29 (0.10) 2.74E-03 0.30 (0.10) 2.25E-03 –

Gynoid bone 0.32 (0.10) 9.66E-04* 0.30 (0.10) 2.11E-03 -5.7

Legs bone 0.36 (0.10) 1.60E-04* 0.33 (0.10) 7.26E-04* -9.4

Standard error (SE); waist circumference (WC); hip circumference (HC), waist-to-hip ratio (WHR); body

fat percentage (BF%); subcutaneous adipose tissue (SAT); visceral adipose tissue (VAT); Appendicular

(Append.)
a Effect estimates (Beta) are the age-adjusted SD change in the body composition variable per unit

increase in the BMI-GRS from the age-adjusted linear regression of the BMI-GRS on body composition

z-score. The BMI-GRS used in the sex-combined score analysis weights the SNPs included in the score

by their European-only, sex-combined effect estimates from Locke et al. [149]. The BMI-GRS used in

the male-specific analysis weights the SNPs included in the score by their European-only, male-only

effect estimates from Locke et al. [149]

– Not applicable
∗p < 1.03×10−3
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Table A.3 Sensitivity analysis amongst women using a sex-specific BMI-GRS

Sex-combined score Female-specific only

Beta (SE)a p-value Beta (SE)a p-value % change in Beta

Weight 1.01 (0.10) 9.93E-24* 1.01 (0.10) 1.82E-24* -0.3

WC 0.89 (0.10) 6.23E-19* 0.88 (0.10) 2.2E-19* -0.7

HC 0.96 (0.10) 1.63E-21* 0.95 (0.10) 3.2E-22* -0.2

WHR 0.41 (0.10) 4.24E-05* 0.40 (0.10) 4.14E-05* -1.8

Height 0.10 (0.10) 0.31 0.09 (0.10) 0.36 –

BF% 0.80 (0.10) 4.14E-16* 0.80 (0.10) 8.09E-17* 0.4

Total fat 0.96 (0.10) 6.12E-22* 0.96 (0.10) 8.00E-23* 0.2

Trunk fat 0.93 (0.10) 1.00E-20* 0.93 (0.10) 1.86E-21* -0.1

Android fat 0.92 (0.10) 2.47E-20* 0.92 (0.10) 5.47E-21* -0.3

Gynoid fat 0.90 (0.10) 3.74E-19* 0.90 (0.10) 7.89E-20* -0.1

Legs fat 0.89 (0.10) 8.58E-19* 0.90 (0.10) 1.01E-19* 0.7

SAT 0.92 (0.10) 3.66E-19* 0.91 (0.10) 1.49E-19* -0.8

VAT 0.70 (0.10) 2.16E-12* 0.69 (0.10) 1.61E-12* -1.3

VAT/SAT 0.28 (0.10) 4.29E-03 0.28 (0.10) 3.77E-03 –

Total lean 0.85 (0.10) 2.66E-17* 0.83 (0.10) 2.04E-17* -1.6

Trunk lean 0.75 (0.10) 7.25E-14* 0.74 (0.10) 6.85E-14* -1.8

Android lean 0.77 (0.10) 2.49E-14* 0.74 (0.10) 5.80E-14* -3.3

Gynoid lean 0.81 (0.10) 2.99E-16* 0.80 (0.10) 3.43E-16* -2.1

Append. lean 0.88 (0.10) 1.14E-18* 0.87 (0.10) 7.24E-19* -1.3

Total bone 0.45 (0.10) 3.96E-06* 0.44 (0.10) 4.32E-06* -2.3

Trunk bone 0.60 (0.10) 1.41E-09* 0.58 (0.10) 1.95E-09* -2.8

Android bone 0.42 (0.10) 2.83E-05* 0.41 (0.10) 3.03E-05* -2.3

Gynoid bone 0.56 (0.10) 2.20E-08* 0.55 (0.10) 2.02E-08* -1.7

Legs bone 0.51 (0.10) 3.44E-07* 0.50 (0.10) 2.77E-07* -1.2

Standard error (SE); waist circumference (WC); hip circumference (HC), waist-to-hip ratio (WHR);

body fat percentage (BF%); subcutaneous adipose tissue (SAT); visceral adipose tissue (VAT); Ap-

pendicular (Append.)
a Effect estimates (Beta) are the age-adjusted SD change in the body composition variable per

unit increase in the BMI-GRS from the age-adjusted linear regression of the BMI-GRS on body

composition z-score. The BMI-GRS used in the sex-combined score analysis weights the SNPs

included in the score by their European-only, sex-combined effect estimates from Locke et al. [149].

The BMI-GRS used in the male-specific analysis weights the SNPs included in the score by their

European-only, female-only effect estimates from Locke et al. [149]

– Not applicable
∗p < 1.03×10−3
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Table A.4 Sensitivity analysis amongst men reporting white ethnicity

Whole cohort White only

Beta (SE)a p-value Beta (SE)a p-value % change in Beta

Weight 0.91 (0.10) 2.24E-21* 0.93 (0.10) 1.10E-20* 2.2

WC 0.91 (0.09) 9.62E-22* 0.92 (0.10) 7.62E-21* 1.1

HC 0.91 (0.10) 4.08E-21* 0.93 (0.10) 8.59E-21* 2.3

WHR 0.61 (0.09) 5.33E-11* 0.60 (0.10) 1.92E-10* -1.0

Height -0.02 (0.10) 0.85 -0.05 (0.10) 0.60 –

BF% 0.74 (0.09) 9.09E-15* 0.78 (0.10) 2.57E-15* 6.3

Total fat 0.90 (0.09) 3.75E-21* 0.94 (0.10) 3.17E-21* 4.4

Trunk fat 0.88 (0.09) 1.28E-20* 0.93 (0.10) 9.14E-21* 4.9

Android fat 0.87 (0.09) 3.23E-20* 0.92 (0.10) 1.37E-20* 5.4

Gynoid fat 0.87 (0.10) 1.84E-19* 0.91 (0.10) 9.77E-20* 4.7

Legs fat 0.80 (0.10) 7.20E-17* 0.83 (0.10) 4.85E-17* 3.7

SAT 0.98 (0.10) 2.23E-24* 1.01 (0.10) 2.83E-24* 3.8

VAT 0.62 (0.09) 1.85E-11* 0.66 (0.10) 5.78E-12* 7.1

VAT/SAT 0.06 (0.09) 0.54 0.09 (0.10) 0.37 –

Total lean 0.68 (0.10) 1.91E-12* 0.66 (0.10) 2.44E-11* -1.8

Trunk lean 0.65 (0.10) 1.57E-11* 0.65 (0.10) 8.24E-11* -0.4

Android lean 0.63 (0.10) 4.30E-11* 0.62 (0.10) 4.42E-10* -2.1

Gynoid lean 0.59 (0.10) 6.85E-10* 0.58 (0.10) 3.71E-09* -0.9

Append. lean 0.65 (0.10) 9.63E-12* 0.63 (0.10) 1.52E-10* -2.6

Total bone 0.39 (0.10) 5.69E-05* 0.35 (0.10) 4.60E-04* -9.7

Trunk bone 0.48 (0.10) 6.04E-07* 0.46 (0.10) 3.86E-06* -3.5

Android bone 0.29 (0.10) 2.74E-03 0.27 (0.10) 8.03E-03 –

Gynoid bone 0.32 (0.10) 9.66E-04* 0.29 (0.10) 4.24E-03 -10.1

Legs bone 0.36 (0.10) 1.60E-04* 0.33 (0.10) 9.09E-04* -8.9

Standard error (SE); waist circumference (WC); hip circumference (HC), waist-to-hip ratio (WHR); body

fat percentage (BF%); subcutaneous adipose tissue (SAT); visceral adipose tissue (VAT); Appendicular

(Append.)
a Effect estimates (Beta) are the age-adjusted SD change in the body composition variable per unit

increase in the BMI-GRS from the age-adjusted linear regression of the BMI-GRS on body composition

z-score. In both analyses, the BMI-GRS is weighted using the European-only effect estimates from

Locke et al. [149]. However, the white-only analysis includes only men who reported their ethnicity as

white

– Not applicable
∗p < 1.03×10−3
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Table A.5 Sensitivity analysis amongst women reporting white ethnicity

Whole cohort White only

Beta (SE)a p-value Beta (SE)a p-value % change in Beta

Weight 1.01 (0.10) 9.93E-24* 1.04 (0.10) 7.58E-24* 3.2

WC 0.89 (0.10) 6.23E-19* 0.92 (0.10) 3.74E-19* 3.5

HC 0.96 (0.10) 1.63E-21* 0.98 (0.10) 2.18E-21* 2.3

WHR 0.41 (0.10) 4.24E-05* 0.44 (0.10) 2.00E-05* 7.2

Height 0.10 (0.10) 0.31 0.13 (0.10) 0.19 –

BF% 0.80 (0.10) 4.14E-16* 0.80 (0.10) 2.65E15* -0.1

Total fat 0.96 (0.10) 6.12E-22* 0.98 (0.10) 1.53E-21* 2.0

Trunk fat 0.93 (0.10) 1.00E-20* 0.95 (0.10) 2.07E-20* 2.3

Android fat 0.92 (0.10) 2.47E-20* 0.94 (0.10) 4.2E-20* 2.5

Gynoid fat 0.90 (0.10) 3.74E-19* 0.91 (0.10) 1.99E-18* 0.9

Legs fat 0.89 (0.10) 8.58E-19* 0.90 (0.10) 2.59E-18* 1.3

SAT 0.92 (0.10) 3.66E-19* 0.94 (0.11) 4.63E-19* 2.7

VAT 0.70 (0.10) 2.16E-12* 0.70 (0.10) 9.07E-12* 0.3

VAT/SAT 0.28 (0.10) 4.29E-03 0.28 (0.10) 0.01 –

Total lean 0.85 (0.10) 2.66E-17* 0.89 (0.10) 3.37E-18* 5.3

Trunk lean 0.75 (0.10) 7.25E-14* 0.79 (0.10) 2.01E-14* 4.5

Android lean 0.77 (0.10) 2.49E-14* 0.79 (0.10) 1.75E-14* 2.8

Gynoid lean 0.81 (0.10) 2.99E-16* 0.84 (0.10) 1.28E-16* 3.8

Append. lean 0.88 (0.10) 1.14E-18* 0.93 (0.10) 1.04E-19* 5.6

Total bone 0.45 (0.10) 3.96E-06* 0.49 (0.10) 1.36E-06* 7.5

Trunk bone 0.60 (0.10) 1.41E-09* 0.61 (0.10) 1.52E-09* 2.7

Android bone 0.42 (0.10) 2.83E-05* 0.43 (0.10) 2.94E-05* 2.9

Gynoid bone 0.56 (0.10) 2.20E-08* 0.59 (0.10) 1.27E-08* 4.6

Legs bone 0.51 (0.10) 3.44E-07* 0.55 (0.10) 8.62E-08* 7.9

Standard error (SE); waist circumference (WC); hip circumference (HC), waist-to-hip ratio (WHR);

body fat percentage (BF%); subcutaneous adipose tissue (SAT); visceral adipose tissue (VAT); Ap-

pendicular (Append.)
a Effect estimates (Beta) are the age-adjusted SD change in the body composition variable per unit

increase in the BMI-GRS from the age-adjusted linear regression of the BMI-GRS on body composi-

tion z-score. In both analyses, the BMI-GRS is weighted using the European-only effect estimates

from Locke et al. [149]. However, the white-only analysis includes only women who reported their

ethnicity as white

– Not applicable
∗p < 1.03×10−3
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A.1 Chapter 3

Table A.9 Individual SNP to EB associations in the Fenland cohort

EE UE CR

SNP Nearest gene Beta p-val. Beta p-val. Beta p-val.

rs1000940 RABEP1 0.05 0.03 0.03 0.17 0.04 0.15

rs10132280 STXBP6 -0.05 0.04 -0.05 0.05 -0.03 0.30

rs1016287 FLJ30838 0.03 0.24 0.03 0.27 -0.01 0.58

rs10182181 ADCY3 0.06 0.02 0.04 0.10 0.04 0.06

rs10733682 LMX1B -0.02 0.35 0.00 0.91 -0.01 0.65

rs10938397 GNPDA2 0.01 0.58 0.01 0.75 0.00 0.87

rs10968576 LINGO2 0.01 0.65 0.04 0.09 -0.01 0.67

rs11030104 BDNF -0.04 0.14 -0.04 0.21 0.03 0.33

rs11057405 CLIP1 -0.06 0.11 -0.03 0.38 -0.04 0.32

rs11126666 KCNK3 0.01 0.67 0.00 0.99 0.01 0.74

rs11165643 PTBP2 0.05 0.02 0.08 0.00 0.00 0.87

rs11191560 NT5C2 0.00 1.00 -0.01 0.90 -0.01 0.76

rs11583200 ELAVL4 0.03 0.18 0.02 0.43 0.02 0.45

rs1167827 HIP1 -0.01 0.65 0.01 0.58 -0.01 0.82

rs11688816 EHBP1 -0.01 0.75 0.00 0.97 0.02 0.37

rs11727676 HHIP 0.02 0.61 0.01 0.86 0.07 0.07

rs11847697 PRKD1 0.03 0.60 0.06 0.32 0.02 0.70

rs12286929 CADM1 0.01 0.66 0.00 0.92 -0.01 0.59

rs12401738 FUBP1 0.03 0.26 0.04 0.11 0.00 0.87

rs12429545 OLFM4 -0.02 0.64 -0.01 0.73 -0.04 0.30

rs12446632 GPRC5B 0.01 0.86 -0.02 0.49 -0.01 0.79

rs12566985 FPGT-TNNI3K 0.01 0.55 -0.01 0.63 0.04 0.06

rs12885454 PRKD1 0.00 0.91 -0.03 0.22 0.01 0.57

rs12940622 RPTOR 0.00 0.86 0.02 0.4 0.00 0.99

rs13021737 TMEM18 0.02 0.57 0.03 0.41 0.03 0.38

rs13078960 CADM2 0.06 0.05 0.09 0.00 0.01 0.73

rs13107325 SLC39A8 0.03 0.52 -0.02 0.63 0.02 0.59

rs13191362 PARK2 -0.03 0.32 0.01 0.74 -0.03 0.37

rs13201877 IFNGR1 -0.03 0.46 0.00 0.91 -0.05 0.12

rs1441264 MIR548A2 -0.03 0.20 0.00 0.93 0.00 0.84

rs1460676 FIGN 0.03 0.27 0.04 0.26 0.07 0.03

rs1516725 ETV5 0.01 0.79 0.01 0.68 0.03 0.37

rs1528435 UBE2E3 0.00 0.86 -0.01 0.77 0.02 0.51

rs1558902 FTO 0.02 0.49 0.03 0.26 0.03 0.19

rs16851483 RASA2 -0.07 0.13 -0.04 0.40 0.08 0.06

rs16907751 ZBTB10 -0.02 0.69 -0.03 0.51 0.03 0.48
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EE UE CR

SNP Nearest gene Beta p-val. Beta p-val. Beta p-val.

rs16951275 MAP2K5 -0.01 0.75 -0.03 0.28 -0.01 0.69

rs17001654 SCARB2 0.03 0.42 0.04 0.29 0.05 0.17

rs17024393 GNAT2 0.03 0.72 -0.03 0.66 0.05 0.54

rs17094222 HIF1AN -0.03 0.23 0.01 0.7 0.02 0.51

rs17203016 CREB1 -0.01 0.73 0.05 0.1 -0.02 0.47

rs17405819 HNF4G 0.01 0.74 0.00 0.88 0.04 0.14

rs17724992 PGPEP1 -0.03 0.32 0.00 0.97 -0.02 0.47

rs1808579 C18orf8 0.00 0.93 -0.03 0.14 0.00 0.99

rs1928295 TLR4 -0.01 0.53 0.00 0.92 0.01 0.78

rs2033732 RALYL 0.01 0.78 0.01 0.66 0.09 0.00

rs205262 C6orf106 -0.03 0.25 -0.04 0.14 0 0.99

rs2075650 TOMM40 -0.01 0.83 0.05 0.16 -0.12 0.00

rs2080454 CBLN1 -0.01 0.70 0.01 0.56 0.01 0.71

rs2112347 POC5 -0.03 0.23 0.01 0.75 -0.02 0.37

rs2121279 LRP1B 0.04 0.27 -0.02 0.57 -0.02 0.50

rs2176040 LOC646736 -0.01 0.67 -0.01 0.60 0 0.85

rs2176598 HSD17B12 -0.03 0.33 0.01 0.63 0.04 0.12

rs2207139 TFAP2B 0.03 0.31 0.03 0.38 -0.02 0.47

rs2245368 PMS2L11 0.02 0.60 0.06 0.05 0.05 0.11

rs2287019 QPCTL 0.02 0.56 0.05 0.12 0.08 0.01

rs2365389 FHIT 0.01 0.69 0.03 0.18 0.01 0.75

rs2650492 SBK1 -0.01 0.82 0.01 0.78 -0.01 0.61

rs2820292 NAV1 0.01 0.80 0.03 0.27 0.01 0.76

rs2836754 ETS2 0.01 0.67 0.03 0.21 -0.03 0.20

rs29941 KCTD15 0.00 0.92 0.00 0.92 0.03 0.29

rs3101336 NEGR1 0.02 0.47 0.03 0.28 0.00 0.86

rs3736485 DMXL2 0.01 0.60 0.00 0.92 0.00 0.9

rs3810291 ZC3H4 0.06 0.02 0.04 0.08 0.02 0.53

rs3817334 MTCH2 0.03 0.21 -0.01 0.81 0.00 0.88

rs3849570 GBE1 -0.05 0.04 -0.02 0.49 0.03 0.22

rs3888190 ATP2A1 -0.01 0.75 0.01 0.79 -0.03 0.24

rs4256980 TRIM66 0.02 0.30 0.02 0.36 0.00 0.94

rs4740619 C9orf93 -0.05 0.03 -0.04 0.09 0.01 0.54

rs4787491 INO80E 0.00 0.95 -0.03 0.19 0.01 0.56

rs492400 USP37 0.01 0.63 -0.02 0.32 0.01 0.60

rs543874 SEC16B 0.08 0.01 0.11 0.00 -0.01 0.69

rs6091540 ZFP64 0.01 0.76 0.00 0.87 -0.02 0.49

rs6465468 ASB4 0.01 0.58 0.02 0.48 -0.01 0.83
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EE UE CR

SNP Nearest gene Beta p-val. Beta p-val. Beta p-val.

rs6477694 EPB41L4B -0.02 0.42 -0.01 0.57 0.00 0.93

rs6567160 MC4R 0.01 0.85 0.00 0.98 0.03 0.27

rs657452 AGBL4 0.06 0.02 0.04 0.13 0.01 0.83

rs6804842 RARB 0.05 0.05 0.06 0.01 0.00 0.86

rs7138803 BCDIN3D 0.03 0.15 0.03 0.24 -0.03 0.29

rs7141420 NRXN3 0.01 0.83 -0.01 0.74 -0.02 0.40

rs7164727 LOC100287559 0.02 0.41 0.02 0.43 0.00 0.90

rs7239883 LOC284260 0.00 0.93 0.02 0.40 -0.01 0.73

rs7243357 GRP -0.04 0.23 0.01 0.67 0.04 0.21

rs758747 NLRC3 0.05 0.07 0.02 0.36 -0.01 0.67

rs7599312 ERBB4 0.02 0.54 0.00 0.95 -0.02 0.44

rs7715256 GALNT10 0.00 0.87 0.02 0.37 -0.02 0.29

rs7899106 GRID1 -0.09 0.07 -0.12 0.03 0.04 0.46

rs7903146 TCF7L2 0.01 0.65 0.03 0.23 0.00 0.91

rs9374842 LOC285762 -0.02 0.55 -0.05 0.08 -0.02 0.36

rs9400239 FOXO3 0.05 0.06 0.03 0.21 0.03 0.28

rs9540493 MIR548X2 -0.02 0.48 -0.04 0.09 -0.01 0.78

rs9581854 MTIF3 -0.03 0.27 0.00 0.98 -0.01 0.78

rs9641123 CALCR 0.04 0.10 0.04 0.14 0.04 0.14

rs977747 TAL1 0.02 0.30 0.04 0.11 0.07 0.00

rs9914578 SMG6 0.01 0.71 -0.03 0.29 -0.01 0.65

rs9925964 KAT8 -0.03 0.17 -0.06 0.01 -0.01 0.58

The table comprises each of the 96 SNPs used to construct the Fenland BMI-GRS and EB. Effect estimates (Beta)

and p-values are taken from the sex and age adjusted regressions of each SNP on the specified EB trait
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Table A.10 Individual SNP to EB associations in the EDEN cohort

EE UE CR

SNP Nearest gene Beta p-val. Beta p-val. Beta p-val.

rs10146997 NRXN3 0.03 0.50 0.03 0.45 0.02 0.64

rs10838738 MTCH2 0.08 0.01 0.06 0.06 -0.01 0.69

rs10913469 SEC16B -0.01 0.72 -0.01 0.78 0.03 0.40

rs11847697 PRKD1 0.00 0.96 -0.04 0.57 0.06 0.35

rs12016871 MTIF3 -0.04 0.36 -0.01 0.84 -0.01 0.82

rs13107325 SLC39A8 -0.15 0.01 -0.16 0.00 0.05 0.40

rs1514175 TNNI3K -0.05 0.14 -0.06 0.05 0.00 0.95

rs1555543 PTBP2 -0.01 0.81 0.00 0.97 0.05 0.13

rs17782313 MC4R 0.03 0.39 0.04 0.28 0.00 0.95

rs206936 NUDT3 -0.07 0.05 -0.09 0.01 -0.01 0.87

rs2112347 FLJ35779 0.01 0.82 0.01 0.81 0.02 0.48

rs2241423 MAP2K5 0.07 0.06 0.00 0.92 0.05 0.18

rs2287019 QPCTL -0.06 0.16 -0.01 0.74 0.03 0.40

rs2568958 NEGR1 0.00 1.00 0.02 0.52 0.04 0.23

rs2890652 LRP1B -0.01 0.87 0.04 0.40 0.04 0.30

rs3810291 TMEM160 0.06 0.04 0.04 0.26 0.02 0.51

rs4836133 ZNF608 -0.02 0.46 -0.04 0.15 0.04 0.21

rs4929949 RPL27A -0.01 0.80 0.00 0.89 -0.02 0.58

rs6548238 TMEM18 0.02 0.65 0.02 0.66 0.06 0.12

rs713586 RBJ/POMC 0.02 0.47 -0.01 0.79 0.00 0.93

rs7138803 BCDIN3D 0.06 0.08 0.04 0.26 -0.01 0.81

rs7640855 CADM2 0.05 0.17 0.03 0.48 0.02 0.68

rs7647305 TRA2B 0.05 0.20 0.06 0.10 0.10 0.01

rs887912 FANCL 0.04 0.25 0.01 0.85 -0.01 0.77

rs925946 BDNF 0.03 0.37 0.05 0.11 0.08 0.02

rs987237 TFAP2B -0.01 0.80 -0.03 0.47 0.04 0.36

rs9941349 FTO 0.08 0.01 0.08 0.01 0.02 0.48

The table comprises the 27 SNPs used to construct the EDEN BMI-GRS. Effect estimates

(Beta) and p-values are taken from the sex and age adjusted regressions of each SNP on

the specified EB trait
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Supplementary tables

A.3 Chapter 5

Table A.12 The maternal attitude questionnaire items loadings onto the identified factor

Questionnaire item Factor 1 Uniqueness

Optimal growth 0.74 0.45

Good about yourself 0.64 0.59

Best for baby 0.77 0.40

Baby will stay hungry 0.57 0.67

Baby will wake at night 0.48 0.77

Confident with crying 0.51 0.74

Confident without friends 0.57 0.67

Difficult without family -0.08 0.99

Difficult to follow 0.5584 0.69

Intend to follow guidelines 0.79 0.38

Try to follow guidelines 0.69 0.53
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A.3 Chapter 5

Table A.15 The association between infant food responsiveness and infant milk intake
within tertiles of the MAS

Tertiles of MAS
Beta (95% CI)

(ml/day) p-value

Lowest tertile 66.8 (17.8, 115.8) 0.01
Middle tertile 24.1 (-12.5, 60.7) 0.20
Highest tertile 36.0 (-4.0, 76.1) 0.08

Maternal attitudes score (MAS); Food responsiveness
(FR)
Effect estimates and p-values are from the regression:
Milk intake ∼ infant food responsiveness + infant sex +
infant age. Effect estimates are: change in infant milk
intake (ml/day) per unit increase FR
Tertiles are tertiles of the maternal attitudes score

Table A.16 The association between infant satiety responsiveness and infant weight SDS
within tertiles of the maternal attitudes score

Tertiles of MAS
Beta (95% CI)

(SDs of weight) p-value

Lowest tertile -0.28 (-0.47, -0.10) 0.003
Middle tertile -0.20 (-0.35, -0.04) 0.01
Highest tertile -0.02 (-0.19, 0.14) 0.77

Maternal attitudes score (MAS); Satiety responsiveness
(SR)
Effect estimates and p-values are from the regression:
Weight SDS ∼ infant satiety responsiveness + infant
sex + infant age. Effect estimates are: change in infant
weight SDS (SDs) per unit increase SR
Tertiles are tertiles of the maternal attitudes score
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Supplementary tables

Table A.17 The associations between the MAS and infant EB traits with infant milk intake
and weight SDS

Infant weight SDS a Infant milk intake b

Beta (95% CI)
(ml/day) p-value

Beta (95% CI)
(SDs of infant weight) p-value

Infant eating behaviour

Food responsiveness 41.0 (16.6, 65.4) 0.001 0.26 (0.16, 0.36) <0.001

Satiety responsiveness -43.2 (-67.1, -19.2) <0.001 -0.19 (-0.29, -0.09) <0.001

Maternal attitudes score -71.9 (-100.7, -43.0) <0.001 -0.12 (-0.24, -0.01) 0.04

Effect estimates and p-values are from the regression: [infant weight SDS OR infant milk intake] ∼ [infant EB OR

MAS] + infant age + infant sex + maternal BMI + maternal age + maternal education + maternal ethnic group
a Effect estimates are SD change in infant weight SDS per 1 point increase in infant EB or the MAS
b Effect estimates are change in infant milk intake (ml/day) per 1 point increase in infant EB or the MAS
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A.4 Chapter 6

Table A.19 Association between the top 10 principal components and odds of risk-taking
propensity

Odds ratio 95% CI p-value

PC1 1.008 (1.005, 1.011) <0.001

PC2 0.995 (0.992, 0.998) 0.002

PC3 1.004 (1.000, 1.008) 0.036

PC4 0.99 (0.988, 0.992) <0.001

PC5 1.012 (1.010, 1.013) <0.001

PC6 1.004 (1.001, 1.008) 0.013

PC7 0.995 (0.992, 0.998) <0.001

PC8 1.009 (1.006, 1.012) <0.001

PC9 0.998 (0.996, 0.999) 0.004

PC10 1.003 (1.000, 1.006) 0.037

Principal component (PC); Confidence interval (CI)

Odds ratios, 95% CIs and p-values are from the logistic

regression of each of the PCs on the odds of risk-taking,

adjusted for age and sex
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A.4 Chapter 6

Table A.20 Look up of genome-wide significant SNPs for risk-taking in UK Biobank for Ever
smoking

SNP Chr Base pair Effect allele Other allele Effect allele frequency Info. SE p-value

rs6762267 3 85513115 C A 0.381262 0.998347 0.001051 3.40E-19

rs727644 7 114109349 G A 0.595406 0.992547 0.001045 1.90E-01

rs62519827 8 65481947 T C 0.887242 1 0.001616 4.60E-01

rs9841382 3 181408124 C T 0.144996 0.992706 0.001453 4.70E-05

rs58560561 1 243537729 G T 0.651824 0.985229 0.001078 9.40E-01

rs992493 4 106180264 T C 0.188643 0.99873 0.001307 1.80E-04

rs6923811 6 27289776 T C 0.678951 1 0.001097 9.90E-05

rs7817124 8 81404008 C G 0.239069 0.997976 0.001199 5.60E-02

rs4801000 18 53456943 G A 0.33539 0.997479 0.001083 3.40E-02

rs4653015 1 33776431 T C 0.26086 0.994959 0.001164 2.50E-02

rs12476923 2 145830053 A C 0.336033 0.999171 0.001078 5.20E-01

rs283914 3 17330649 T C 0.531356 0.997244 0.001024 6.20E-02

rs4233093 1 73446245 A G 0.516179 0.997724 0.001022 7.60E-07

rs7829912 8 33479228 T C 0.555727 0.991336 0.001031 6.00E-02

rs3117340 6 29210596 G T 0.622344 0.999729 0.001055 8.50E-07

rs1381287 14 98597552 T C 0.456905 0.986444 0.001032 9.80E-07

rs28520003 22 46411969 G A 0.68587 1 0.001102 1.60E-07

rs12115650 9 126367705 G A 0.725133 0.986183 0.001151 1.10E-01

rs11226319 11 104221573 A G 0.160313 0.994423 0.001394 2.50E-01

rs1358391 7 115111838 G T 0.505524 0.986954 0.001027 8.80E-07

rs12617392 2 27336827 C A 0.558239 0.992674 0.00103 7.00E-01

rs542883 2 45143382 C G 0.559253 0.995628 0.001029 1.20E-14

rs10823791 10 73338334 T A 0.398774 0.997238 0.001045 1.30E-01

rs34905321 6 109131107 T C 0.567814 0.995805 0.001033 1.90E-01

rs891124 16 71440756 T C 0.710131 0.988667 0.001132 1.20E-03

rs35914833 14 94182383 C T 0.684169 0.978438 0.001111 3.80E-01

Single nucleotide polymorphism (SNP); Chromosome (Chr); Standard error (SE)

Info. refers to the imputation information value

Grey shading indicates nominal statistical significance in association with the ever smoking phenotype (p<0.05)
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APPENDIX B

SUPPLEMENTARY FIGURES

B.1 Chapter 4

Figure B.1 The association between EB and BMI in the EDEN cohort. The graphs plot the
scaled eating behaviour scores (0-100) on the x-axis against BMI (kg/m2) on the y-axis. The
association amongst women is shown in blue and the association amongst men is shown in
red. The combined cohort is shown in black. The dotted lines mark the 95% CIs. Cognitive
restraint (CR); Uncontrolled eating (UE); Emotional eating (EE).
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Supplementary figures

B.2 Chapter 6

Figure B.2 Leave-one-out analysis. The figure plots the effect estimates and 95% confi-
dence intervals from a series of inverse weighted variance (IVW) Mendelian randomisation
analyses on the y-axis against the SNP removed from each analysis on the x-axis. A compar-
ison of the effect estimates for the 4 SNPs that reached genome-wide significance for BMI
(rs6762267, rs35914833, rs891124 and rs7817124) with the mean of the effect estimates from
the sample with that SNP removed, showed a significant difference (p<0.05).
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B.2 Chapter 6

Figure B.3 Random effects inverse variance weighted MR analysis of risk-taking to BMI.
This analysis combined the effect estimates ascertained when treating each of the genome-
wide significant SNPs for risk-taking (displayed on the y-axis) as an individual instrument.
Points indicate effect estimates, bars indicate 95% CIs.

223



Supplementary figures

B.3 Chapter 7

Figure B.4 Miami plot of the GWAS for emotional eating. The plot illustrates the results
of the GWAS amongst 11,809 white European participants from the Fenland, FinnTwin,
NHS and HPFS cohorts, stratified by sex. Each dot represents a genetic variant. The results
for women (n=7382) and men (n=4427) are displayed on the top and bottom, respectively.
Chromosomal position (x-axis) is plotted against the negative log-transformed p-values
for each SNP for women (y-axis) and the positive log-transformed p-values for each SNP
(y-axis) for men. The red dotted line indicates the threshold for statistical significance
(p<5×10−8).
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B.3 Chapter 7

Figure B.5 Miami plot of the GWAS for uncontrolled eating. The plot illustrates the results
of the GWAS amongst 11,827 white European participants from the Fenland, FinnTwin,
NHS and HPFS cohorts, stratified by sex. Each dot represents a genetic variant. The results
for women (n=7397) and men (n=4430) are displayed on the top and bottom, respectively.
Chromosomal position (x-axis) is plotted against the negative log-transformed p-values
for each SNP for women (y-axis) and the positive log-transformed p-values for each SNP
(y-axis) for men. The red dotted line indicating the threshold for statistical significance
(p<5×10−8) is not visible on this plot as no variants approach this threshold.
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Supplementary figures

Figure B.6 Miami plot of the GWAS for cognitive restraint. The plot illustrates the results
of the GWAS amongst 11,843 white European participants from the Fenland, FinnTwin,
NHS and HPFS cohorts, stratified by sex. Each dot represents a genetic variant. The results
for women (n=7408) and men (n=4435) are displayed on the top and bottom, respectively.
Chromosomal position (x-axis) is plotted against the negative log-transformed p-values
for each SNP for women (y-axis) and the positive log-transformed p-values for each SNP
(y-axis) for men. The red dotted line indicating the threshold for statistical significance
(p<5×10−8) is not visible on this plot as no variants approach this threshold.
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(a) Emotional eating (b) Uncontrolled eating

(c) Cognitive restraint

Figure B.7 Dosage plots showing the results of the MR analyses of risk-taking to EB. Each
dot represents one of the 26 risk-associated SNPs, 95% CIs are represented by black lines.
The effect of each SNP on risk-taking (x-axis) is plotted against its effect on EB (y-axis). The
coloured lines represent the MR results. Red represents the IVW MR, blue represents the
MR Egger, green represents the weighted median MR and orange represents the penalised
weight median MR. The results of all MR analyses are displayed on each plot. However,
where results overlap, some lines are not visible.
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C.1 Chapter 1

The Three Factor Eating Questionnaire - Revised 18 item

The Three Factor Eating Questionnaire - Revised 18 item

(TFEQ-R18)

Karlsson, J., Persson, L. O., Sjostrom, L. Sullivan, M. (2000) Psychometric properties and factor structure of the

Three-Factor Eating Questionnaire (TFEQ) in obese men and women. Results from the Swedish Obese Subjects

(SOS) study. Int. J. Obes. Relat. Metab. Disord. 24:1715–1725

Please read each statement and select from the multiple choice options the answer that indicates the fre-

quency with which you find yourself feeling or experiencing what is being described in the statements be-

low.

1. When I smell a delicious food, I find it very difficult to keep from eating, even if I have just finished a meal.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

2. I deliberately take small helpings as a means of controlling my weight.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

3. When I feel anxious, I find myself eating.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

4. Sometimes when I start eating, I just can’t seem to stop.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

5. Being with someone who is eating often makes me hungry enough to eat also.
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Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

6. When I feel blue, I often overeat.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

7. When I see a real delicacy, I often get so hungry that I have to eat right away.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

8. I get so hungry that my stomach often seems like a bottomless pit.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

9. I am always hungry so it is hard for me to stop eating before I finish the food on my plate.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

10. When I feel lonely, I console myself by eating.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

11. I consciously hold back at meals in order not to weight gain.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

12. I do not eat some foods because they make me fat.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

13. I am always hungry enough to eat at any time.

Definitely true (4)/ mostly true (3)/ mostly false (2)/ definitely false (1)

14. How often do you feel hungry?

Only at meal times (1)/ sometimes between meals (2)/ often between meals (3)/ almost always (4)

15. How frequently do you avoid “stocking up” on tempting foods?

Almost never (1)/ seldom (2)/ moderately likely (3)/ almost always (4)

16. How likely are you to consciously eat less than you want?

Unlikely (1)/ slightly likely (2)/ moderately likely (3)/ very likely (4)

17. Do you go on eating binges though you are not hungry?

Never (1)/ rarely (2)/ sometimes (3)/ at least once a week (4)

18. On a scale of 1 to 8, where 1 means no restraint in eating (eating whatever you want, whenever you want it )

and 8 means total restraint (constantly limiting food intake and never “giving in”), what number would you give

yourself?∗

∗For item 18, responses of 1 & 2 are coded 1; 3 & 4 are coded 2; 5 & 6 are coded 3; and 7 & 8 are coded 4.

Emotional eating (EE) is measured by items 3, 6 & 10; Uncontrolled eating (UE) is measured by items 1, 4, 5, 7, 8,

9, 13, 14 & 17; Cognitive restraint (CR) is measured by items 2, 11, 12, 15, 16 & 18.
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The Baby Eating Behaviour Questionnaire (BEBQ)

The Baby Eating Behaviour Questionnaire (BEBQ) - retrospective

version

Llewellyn, CH., van Jaarsveld, CHM., Johnson, L., Carnell, S. Wardle, J. (2011) Development and factor structure

of the Baby Eating Behaviour Questionnaire in the Gemini birth cohort. Appetite. 57:388–396

These questions are about your baby’s appetite over his/her first few months of life. We are specifically

interested in the period during which your baby was fed milk only, i.e. no solid foods or pre-prepared baby

food yet.

How would you describe your baby’s feeding style at a typical daytime feed?

1. My baby seemed contented while feeding.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

2. My baby frequently wanted more milk than I provided.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

3. My baby loved milk.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

4. My baby had a big appetite.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

5. My baby finished feeding quickly∗.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

6. My baby became distressed while feeding∗.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

7. My baby got full up easily.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

8. If allowed to, my baby would take too much milk.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

9. My baby took more than 30 minutes to finish feeding.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

10. My baby got full before taking all the milk I think he/she should have.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)
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11. My baby fed slowly.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

12. Even when my baby had just eaten well he/she was happy to feed again if offered.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

13. My baby found it difficult to manage a complete feed.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

14. My baby was always demanding a feed.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

15. My baby sucked more and more slowly during the course of a feed.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

16. If given the chance, my baby would always be feeding.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

17. My baby enjoyed feeding time.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

18. My baby could easily take a feed within 30 minutes of the last one.

Never (1)/ Rarely (2) / Sometimes (3)/ Often (4)/ Always (5)

∗ Items 5 and 6 need to be reversed for scoring.

Food responsiveness (FR) is measured by items 2, 8, 12, 14, 16 & 18; Satiety responsiveness (SR) is measured by

items 7, 10 & 13; Enjoyment of food (EF) is measured by items 1, 3, 6 & 17; Slowness in eating (SiE) is measured

by items 5, 9, 11 & 15; General appetite (GA) is measured by item 4.
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Maternal beliefs about following recommendations to reduce formula-milk feed

quantities

Maternal beliefs about following recommendations to reduce

formula-milk feed quantities

Lakshman, RR., Landsbaugh, JR., Schiff, A., Hardeman, W., Ong, KK. Griffin, SJ. (2011) Development of a

questionnaire to assess maternal attitudes towards infant growth and milk feeding practices. International

Journal of Behavioural Nutrition and Physical Activity. 8:35

1. If I follow the new feeding recommendation, my baby’s growth will be optimal.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

2. If I follow the new feeding recommendation, I will feel good about myself.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

3. If I follow the new feeding recommendation, I will feel I do the best for my baby.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

4. If I follow the new feeding recommendation, my baby will remain hungry∗.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

5. If I follow the new feeding recommendation, my baby will wake up frequently at night∗.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

6. I am confident that I can follow the new feeding recommendation even if my baby cries between feeds.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

7. I am confident that I can follow the new feeding recommendation even if my friends do not follow the same

recommendation.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

8. It would be difficult for me to follow the new feeding recommendation if my partner and family do not

support me∗.
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Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

9. It would be difficult for me to follow the new feeding recommendation∗.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

10. I intend to follow the new feeding recommendation.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

11. I will try to follow the new feeding recommendation.

Strongly disagree (1)/ Somewhat disagree (2)/ Neither agree nor disagree (3)/ Somewhat agree (4)/ Strongly agree

(5)

∗ Reverse coded items.

Outcome expectancy (OE) is measured by items 1, 2, 3, 4 & 5; Self-efficacy (SE) is measured by items 6, 7, 8 & 9;

Intention (I) is measured by items 10 & 11.
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Eating behaviour GWAS analysis plan

Eating behaviour GWAS analysis plan

Distributed 01.02.2017

If you have any queries please contact Emma Clifton (emma.clifton@mrc-epid.cam.ac.uk).

No genome-wide gene discovery studies have been conducted for human eating behaviour (EB). The aim of this

project is to detect novel genetic signals by conducting a GWAS of the 3 subscales of EB measured by the three

factor eating questionnaire (TFEQ). Both the revised 18-item version (TFEQ-R18) and revised 21-item version

(TFEQ-R21) of the TFEQ are appropriate for this analysis. Both questionnaires are comprised of 3 subscales:

uncontrolled eating, emotional eating and cognitive restraint. Each subscale measures a different aspect of EB.

Uncontrolled eating refers to a tendency to overeat with loss of control over consumption, emotional eating

describes a tendency to overeat in response to dysphoric emotional states and cognitive restraint refers to the

intention to exert restrictive control over eating with the goal of influencing body shape or weight.

1 Phenotypes

We ask that you analyse the following 3 subscales:

1. Emotional eating

2. Uncontrolled eating

3. Cognitive restraint

These will be analysed in men and women separately, for a total of 6 final results files (assuming studies have

both men and women).

1.1 Scaling the phenotypes

This study proposes to use data from both the 18-item (TFEQ-R18) and 21-item (TFEQ-R21) version of the

TFEQ. Compared to the TFEQ-R18, the TFEQ-R21 has 3 additional items in the emotional eating scale. As such,

we need to standardize between the phenotypes. Further, in order that the scores for each of the 3 EB subscales

are scaled from 0 to 100, the following equation should be used for each participant in your study and for each

of the subscales:

Phenotype = [((raw score–lowest possible raw score)/possible raw score range)∗100]

The following definitions apply:

• Raw score. The mean of the items for the eating behaviour subscale for each participant is taken (Score

mean) and multiplied by the total number of items on the subscale. This step accounts for any missing

data.

• Lowest possible raw score. The lowest possible score a participant could receive for the subscale. As

each item on the subscales is scored from 1 to 4, if there are 3 items on the scale, the lowest possible raw

score would be 3.

235



Supplementary information

• Possible raw score range. The highest possible raw score (the number of items on the scale∗4) for the

eating behaviour subscale minus the lowest possible raw score for the eating behaviour subscale.

This translates to the subscales as follows:

Emotional eating EE raw score = EE mean*3 [((EE raw score – 3)/9)*100]

Uncontrolled eating UE raw score = UE mean*9 [((UE raw score – 9)/27)*100]

Cognitive restraint CR raw score = CR mean*6 [((CR raw score – 6)/18)*100

1.2 Exclusion criteria

Please exclude participants who fulfil the following criteria, if this information is available in your study:

• Clinically diagnosed eating disorder

2 Imputation

We request that all studies are imputed to the most up-to-date imputation panel. The following websites

provide detailed instructions for the two alternative algorithms for imputation:

Minimac:

http://genome.sph.umich.edu/wiki/Minimac:_1000_Genomes _Imputation _Cookbook

IMPUTE2:

http://genome.sph.umich.edu/wiki/IMPUTE2:_1000_Genomes _Imputation _Cookbook

3 Quality control

Below are some standard quality control suggestions. Please let us know if substantially different proce-

dures have been applied in your study.

3.1 SNP QC criteria

Pre-imputation

We assume that the following pre-imputation procedures have been applied to directly genotyped SNPs that

have been used for imputation. Please state if otherwise.

• HWE (advised P>10E-06)

• SNP call rate (advised >95%)

• MAF (advised > 0.1%)

Post-imputation

We assume that the following post-imputation procedures have been applied in your study. Please state if

otherwise.

• Imputed data is filtered on imputation quality only. Variants with imputation quality score <0.3 have

been excluded.

• Mono-morphic SNPs have been excluded (these are likely to have missing values for Beta and standard

errors (SEs) in results files).
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• SNPs are not reported twice. Directly genotyped SNPs have been kept as they were genotyped and have

not been substituted with imputed values.

• P-values and SE estimates have not been corrected for GC. This correction will be performed during the

meta-analysis.

3.2 Sample level QC

We assume that your sample-level QC procedures are similar to those listed below. Please state if otherwise.

• Samples missing >5% genotypes have been excluded.

• Population clustering has been performed and used to identify and exclude samples demonstrating

outlying ethnic ancestry.

• Samples exhibiting a high inbreeding coefficient or a heterozygote rate far from the median (indicating

possible contamination) based on the distribution observed in the data have been identified and

excluded.

• Samples showing gonosomal abnormalities have been excluded.

• Sex-mismatched samples have been excluded.

• Duplicate pairs have been identified. If not identical twins in cohorts with a twin design, one sample

(the sample with less missing data) has been kept from duplicate pairs.

• Samples with unexpectedly high proportion IBD sharing have been excluded.

• Unexpected relatives, with consideration of family structure, based on high quality variants have been

excluded.

• Indels have been retained for analysis alongside biallelic SNPs.

Known relatedness: Some of the contributing cohorts use family-based recruitment. In these cases, please

take any usual steps to account for relatedness within the sample.

In all models: Assume additive genetic effect. Please do not impute missing phenotypes or omit true outliers

(i.e. those which correspond to a real observation). Do not apply genomic correction to results, or filter results

based on imputation quality; we can do so centrally.

4 Association Analyses

Conduct 6 separate genome-wide association studies: an analysis for each of the 3 EBs in each sex. Adjust for

age and study specific covariates.

Separately, in each sex:

Emotional eating ∼ Age, Study specific covariates

Uncontrolled eating ∼ Age, Study specific covariates

Cognitive restraint ∼ Age, Study specific covariates

Study specific covariates: Apply your normal approach to account for population structure (e.g. inclusion of

genomic PCs or relationship matrix), take any usual steps to account for relatedness in your study and adjust

for relevant study-specific covariates (e.g. study site if a multi-center study), as appropriate.
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5 Results

5.1 Format

Results for each EB should be returned as a separate tab-delimited text file including both typed and im-

puted variants, one variant per line (multiple lines may be required for multi-allelic variants). For each variant,

please return the variables listed in the table. The first line should contain the variables names as a header.

Denote missing data using a full-stop/period (“.”).

Variable Description Format

snp _id Unique SNP ID as rs number rsID

chr Chromosome number Integer

pos Position on NCBI build 37 Integer

strand We request SNPs to be aligned to the forward (+) strand + or -

effect _allele Allele to which the Beta estimate refers String (see below)

other _allele Alternative allele String (see below)

eaf Observed allele frequency for the effect _allele in the study cohort Numeric

HWE _pval Exact test Hardy-Weinberg equilibrium p-value (directly typed SNPs only) Numeric

indel Label “I” for insertion; “D” for deletion I or D

Beta Effect estimate for the effect _allele; 5 decimal places Numeric

SE Standard error of Beta; ≥ 5deci mal pl aces Numeric

pval p-value for Beta Numeric

callrate Genotyping call rate after exclusions Numeric

n _total Total sample with available phenotype and genotype for SNP Integer

imputed 1/0 coding: 1=imputed SNP; 0=directly typed SNP 0 or 1

used _for _imp 1/0 coding: 1=used for imputation; 0=not used for imputation 0 or 1

oevar _imp

Imputation quality (observed divided by expected variance for
imputed allele dosage).
Report r2hat for minimac and proper _info for IMPUTE2 Numeric

imputation _prog

Indicate which program was used for imputation.
1=Minimac; 2=IMPUTE2; 3=OTHER
(if other please describe in the GoogleDoc (Section 5.1).
If directly genotyped, code as missing (“.”) 1, 2 or 3

Effect allele/Other allele: Please report the effect _allele as the allele referred to by the beta estimates and

effect allele frequency. In the case of indels, please use the I/D coding, where I represents the longer of the two

possible alleles, and D the shorter of the two.

5.2 File submission

The submitted data should be formatted as gzipped, tab-delimited text files.

File names should follow the rules for the file name as below:

PANEL _COHORTNAME _Eating _behaviour _SEX _DATE _INITIALS.txt

PANEL: Imputation panel (1000G or HRC)

COHORTNAME: Cohort name (e.g. FENLAND)

Eating _behaviour: Emotional or Uncontrolled or Restraint

Sex: Men or Women
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Date: Analysis date (DDMonthYYYY)

Initials: Initials of person uploading the file

For example, for emotional eating amongst men and women in Fenland:

HRC _Fenland _Emotional _Men _09Feb2017 _EC.txt

HRC _Fenland _Emotional _Women _09Feb2017 _EC.txt

5.3 Data upload

An SFTP site hosted by the MRC Epidemiology Unit is provided for return of results.

Host: [LINK]

Username:

Password:

Unix and MacOS X: Use sftp or scp at the terminal.

Windows: We suggest using FileZilla (http://sourceforge.net/projects/filezilla). Connect your client to the host.

5.4 Google doc

Please provide the following information in the GoogleDoc via the link provided below:

[LINK PROVIDED]

Enter the following information for men and women on separate rows of the table:

General

The name of your cohort

The country of data collection

A brief description of your study

Named individuals with contact details, including: analysts and PIs

Acknowledgements for your study, including funding sources

Genotypes

The forms of genotyping QC conducted

The version of SNP Chip used

The imputation panel used

The imputation programme used

Analysis (participants included in the GWAS analysis only)

GWAS sample size

Mean age (standard deviation) and age range

Mean BMI (standard deviation) BMI and range

Mean eating behaviour scores (standard deviation) and range (these figures should refer to the scaled

sub-scale scores. The scores should appear on a scale of 0-100 following use of the formula specified in

Section 1.1).
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