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SUMMARY

Bilaterally symmetricmotor patterns—those inwhich
left-right pairs of muscles contract synchronously
and with equal amplitude (such as breathing, smil-
ing, whisking, and locomotion)—are widespread
throughout the animal kingdom. Yet, surprisingly
little is known about the underlying neural circuits.
We performed a thermogenetic screen to identify
neurons required for bilaterally symmetric locomo-
tion in Drosophila larvae and identified the evolu-
tionarily conserved Even-skipped+ interneurons
(Eve/Evx). Activation or ablation of Eve+ interneurons
disrupted bilaterally symmetric muscle contraction
amplitude, without affecting the timing of motor
output. Eve+ interneurons are not rhythmically active
and thus function independently of the locomotor
CPG. GCaMP6 calcium imaging of Eve+ interneurons
in freely moving larvae showed left-right asymmetric
activation that correlated with larval behavior. TEM
reconstruction of Eve+ interneuron inputs and out-
puts showed that the Eve+ interneurons are at the
core of a sensorimotor circuit capable of detecting
and modifying body wall muscle contraction.

INTRODUCTION

Bilaterally symmetric motor patterns—those in which muscle

contractions on the left and right sides of the body occur

synchronously and with equal amplitude—are widespread

throughout the animal kingdom. They regulate respiration,

speech, smiling, whisking, flight, and various locomotor gaits.

Surgical manipulations in both vertebrates and invertebrates

have shown that contralaterally projecting commissural inter-

neurons are required for bilaterally symmetric motor output,
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demonstrating that symmetric motor output is not merely a

default state (Dubayle and Viala, 1996; Jahan-Parwar and Fred-

man, 1980; Lanuza et al., 2004; Murchison et al., 1993; von der

Porten et al., 1982). In the mouse, genetic deletion of the

Dbx1+ transcription factor from V0 interneurons disrupted left-

right synchronous motor output during respiration and caused

perinatal lethality (Bouvier et al., 2010). Loss of the dbx1 locus

affected both ventral Evx1+ interneurons and dorsal Evx1� inter-

neurons, whereas a more specific loss of just the dorsal Dbx1+

interneurons had no effect on breathing. Taken together, these

data implicate Evx1+ interneurons in regulating respiratory motor

rhythms (Bouvier et al., 2010). However, this interpretation is

clouded by the observation that Evx1 knockout mice appear to

breathe normally, despite any detectable Evx1 or Evx2 protein

in V0 interneurons (Moran-Rivard et al., 2001). These findings

demonstrate how little we understand about the molecules and

neural circuitry underlying bilaterally symmetric motor output,

despite its broad and essential functions.

Drosophila larval crawling is a genetically tractable model sys-

tem for investigating the molecular and neuronal underpinnings

of symmetric motor output. Larval crawling is a simple, robust

motor behavior that involves waves of rhythmic, bilaterally sym-

metric body wall muscle contractions (Heckscher et al., 2012).

The segmented larva has �30 bilateral body wall muscles per

segment and a similar number of motor neurons, and their role

during larval locomotion has been characterized (Berni et al.,

2012; Crisp et al., 2008, 2011; Dixit et al., 2008; Heckscher

et al., 2012; Hughes and Thomas, 2007; Lahiri et al., 2011; Pulver

and Griffith, 2010; Schaefer et al., 2010). In contrast, there are

�270 bilateral interneurons per segment (Heckscher et al.,

2014; Rickert et al., 2011), and their role in locomotion is almost

completely unknown (Kohsaka et al., 2014). Recently, we identi-

fied several hundred Gal4 lines that express in a sparse pattern

of neurons in the late embryonic CNS and determined their

expression pattern at single neuron resolution for 75 of these

lines (Heckscher et al., 2014; Manning et al., 2012). We used

this collection of sparsely expressed Gal4 lines to express

the warmth-activated TRPA1 cation channel and screen for
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Figure 1. Activation of EL Interneurons Causes Larval Crawling Defects

(A) Eve/Evx1+ interneurons have commissural ascending axons in flies, fish, and mouse (midline, black arrowheads and anterior, up in all figures unless noted).

(B) EL-gal4 (green) is consistently in nine ELs (arrow) and stochastically in few Eve-negative non-ELs (arrowhead) (Eve protein, magenta) (colocalization with

EL-gal4, white) (midline, dashed). The scale bar represents 10 mm (genotype: EL-gal4 / UAS-nls-GFP).

(C) Activation of ELs reduces larval crawling speed and induces C-bends. The frames are shown at 0.5 s intervals. The scale bar represents 150 mm (genotype:

UAS-dTRPA1/+; EL-gal4(III)/EL-gal4(III)) (Control: 23�C, TRPA1 off and EL activated: 28�C, TRPA1 on).

(D) TRPA1 activation of ELs results in larval C-bends with laterally displaced head and tail; genotype as in (C). See Movies S1 and S2. The scale bar represents

40 mm. The average and SEM are shown (**p < 0.05 and t test).

(E) Chrimson activation of ELs results in larval C-bends with laterally displaced head and tail (genotype: UAS-Chrimson.mVenus/+; EL-gal4(III)/+)

(Control: larvae raised on food without ATR and EL activated: raised on food with ATR). See Movies S3 and S4. The average and SEM are shown (**p < 0.05

and t test).
locomotor defects in newly hatched larvae. We identified a small

pool of interneurons (‘‘ELs’’) that express the evolutionarily

conserved transcription factor Even-skipped (Eve; Evx1/2 in

mammals) that are required to maintain bilaterally symmetric

motor output.

Eve/Evx+ interneurons are found in the nerve cord of almost

all bilateral animals examined to date, including annelids, chor-

dates, insects, fish, birds, and mammals, as well as a proposed

common ancestor between invertebrates and vertebrates, Platy-
nereis dumerilii (Avaron et al., 2003; Copf et al., 2003; Denes

et al., 2007; Ferrier et al., 2001; Holland, 2013; Ikuta et al.,

2004; Moran-Rivard et al., 2001; Sordino et al., 1996; Takatori

et al., 2008; Thaëron et al., 2000). In all cases where the

morphology of Eve/Evx+ interneurons has been examined, they

have contralateral ascending projections, such as the zebrafish

CoSA and mouse V0v interneurons (Figure 1A) (Moran-Rivard

et al., 2001; Suster et al., 2009). In flies, Eve is expressed in

segmentally reiterated subsets of interneurons and motor
Neuron 88, 314–329, October 21, 2015 ª2015 Elsevier Inc. 315



neurons, but not in the brain (Figure S1) (Frasch et al., 1987). The

Eve/Evx transcription factor is well known to specify neuronal

identity and regulate axon pathfinding in fly andwormmotor neu-

rons as well as in mammalian interneurons (Broihier and Skeath,

2002; Doe et al., 1988; Esmaeili et al., 2002; Fujioka et al., 2003;

Landgraf et al., 1999; Moran-Rivard et al., 2001; Zarin et al.,

2014). However, despite years of intense study, the behavioral

role of the Eve/Evx+ interneurons remains poorly defined. Our re-

sults show that the Eve+ interneurons are part of a sensorimotor

circuit that maintains left-right symmetry of muscle contraction

amplitude in Drosophila larvae.

RESULTS

The EL Interneurons Maintain Left-Right Symmetric
Larval Locomotion
To identify the interneurons required for larval locomotion, we

used a collection of Gal4 lines that sparsely label neurons in

the late embryonic CNS (Heckscher et al., 2014; Manning

et al., 2012) to express the warmth-activated cation channel

TRPA1 (Pulver et al., 2009) and screened for defects in larval

locomotion. We screened newly hatched larvae for locomotor

defects following activation of TRPA1 (28�C) that were reversed

following inactivation of TRPA1 (23�C). Here, we focus on the

evolutionarily conserved Eve+ lateral (EL) interneurons that are

specifically targeted by the EL-gal4 line (Figure 1B) (Fujioka

et al., 1999).

Wild-type first instar larvae crawl with a linear posture at both

23�C and 28�C (data not shown), as do larvae expressing TRPA1

in the ELs at 23�C (Figure 1C, top, and Movie S1; Table S1). In

contrast, raising the temperature to 28�C to induce TRPA1

stimulation of the ELs resulted in slower crawling and abnormal

left-right asymmetric body posture, which we call ‘‘C-bends’’

(Figures 1C and 1D andMovie S2; Table S1). Similarly, Chrimson

optogenetic stimulation of ELs resulted in pronounced C-bends

(Figure 1E and Movies S3 and S4). C-bends are different from

normal larval turning because they can occur in posterior seg-

ments, whereas larval turning is performed by anterior segments

(Berni, 2015; Lahiri et al., 2011). We conclude that bilateral

activation of EL interneurons is sufficient to disrupt left-right

symmetric body posture.

We tested next whether the ELs were required for left-right

symmetric locomotion. We used EL-gal4 to express the pro-

apoptotic Hid/Reaper proteins, which typically removed all but

1–2 ELs per hemisegment (Figure 2A). Similar to EL activation,

ablation of the ELs led to slow crawling speeds and ‘‘wavy’’

body posture, including C-bends (Figures 2B–2E and Movie

S5). Because ablation removes statistically similar numbers of

ELs from the left and right sides of the nerve cord (Figure 2A),

and because C-bends can occur in both directions within the

same animal (Figure 2C), we conclude that bilateral ablation

leads to a randomized left-right asymmetric body posture.

Although EL interneurons are present only in the nerve cord,

the EL-gal4 line is stochastically expressed in a few cells in the

brain (Figure S1). To test whether ablation of these neurons

caused locomotor defects, we used tsh-gal80 (Clyne and Mie-

senböck, 2008) to inhibit EL-gal4 in the nerve cord, but not in

the brain. We found that ablation of the EL-gal4 neurons in only
316 Neuron 88, 314–329, October 21, 2015 ª2015 Elsevier Inc.
the brain had no defects in locomotion (Figure 2E). We conclude

that the Eve+ ELs within the nerve cord are required for bilaterally

symmetric crawling in Drosophila larvae, and that the normal

function of EL interneurons is to maintain left-right symmetric

muscle contractions during linear locomotion.

EL Interneurons Maintain Left-Right Symmetric Muscle
Contraction Amplitude without Affecting Contraction
Timing
To determine how the EL interneurons regulate motor output, we

quantified muscle contraction timing in wild-type, EL ablated,

and EL activated larvae. We found that all genotypes showed

left-right synchronous muscle contractions (Figures 3A–3C; Ta-

ble S2). The lack of effect on muscle contraction timing suggests

that the ELs are not part of the central pattern generator (CPG),

addressed in more detail below. We conclude that EL interneu-

rons are not required for left-right synchronous timing of muscle

contraction.

We next measured left-right muscle resting length and

maximum contraction amplitude. Control larvae showed bilateral

symmetry in resting muscle length and maximum contraction

amplitude (Figure 3A and Movie S6; Table S2). In contrast, both

EL ablated and EL activated larvae showed significant left-right

differences in resting muscle length and maximum muscle

contraction amplitude during forward locomotion (Figures 3B

and 3C and Movies S7 and S8; Table S2). The resting muscle

phenotype is consistent with our observations that EL disruption

can create left-right asymmetry in larvae at rest (data not shown).

We conclude that the EL interneurons are required formaintaining

bilaterally symmetric muscle contraction amplitude, both at rest

and during active muscle contraction.

Calcium Imaging Reveals Functional Interactions
among EL Interneurons
To better understand the neural circuit containing the EL inter-

neurons, we asked if the ELs could be part of the CPG for loco-

motion. We performed calcium imaging in the isolated CNS,

which lacks all sensory input, and asked if ELs showed locomo-

tion-like patterns of activity. As a positive control, we confirmed

that motor neurons show locomotion-like posterior to anterior

waves of activity (Figure S2 and Movie S9) as has been previ-

ously reported (Pulver and Griffith, 2010; Schaefer et al., 2010).

In contrast, the ELs showed only spontaneous activity in individ-

ual neurons (Figure S2 and Movie S10). We conclude that the EL

interneurons are neither part of the locomotor CPG, nor receive

input from the locomotor CPG.

Next, to understand how TRPA1-induced stimulation of EL in-

terneurons could lead to a behavioral phenotype, we asked how

the EL interneurons themselves responded to bilateral activa-

tion. We used TRPA1 to chronically stimulate EL interneurons,

similar to our behavioral experiments, and monitored EL activity

using the calcium sensor GCaMP6m. Imaging was done in

the isolated CNS to reduce movement artifacts and eliminate

sensory input (Figure 4A). We observed three types of response.

Most commonly, the EL interneurons were strongly activated

on one side of the CNS and weakly activated on the other

side; at stimulus offset the response reliably switched sides

(Figures 4A–4C, group 1, n = 10, and Movie S11). This left-right



Figure 2. Ablation of EL Interneurons Causes Larval Crawling Defects

(A) L1 CNS stained for Eve protein, with the focal plane showing a subset of Eve+ motor neurons (pseudocolored magenta) and the lateral cluster of Eve+

EL interneurons (pseudocolored green). The EL ablation reduces EL number from �10 to 1.63 ± 0.21 (left) and 1.54 ± 0.19 (right). The left-right difference is

not significant (t test and n = 4 larvae). The scale bar represents 10 mm. (Control genotype:UAS-reaper, UAS-hid / Y and EL ablated genotype:UAS-reaper, UAS-

hid / Y;;EL-gal4/+).

(B–D) Ablation of ELs decreases larval crawling speed and induces C-bends. The genotypes are as in (A).

(B and C) Frames are shown at 0.5 s intervals. The scale bar represents 150 mm.

(D) The scale bar represents 40 mm. The average and SEM are shown (**p < 0.05 and t test). See Movie S5.

(E) EL-gal4+ brain neurons are not required for normal locomotion, genotypes from left: (1) y w; (2) UAS-reaper, UAS-hid / Y; (3) EL-gal4 (III)/+; (4) UAS-reaper,

UAS-hid /Y;;EL-gal4 /+; (5) tsh-Gal80/+; EL-gal4 /+; and (6) UAS-reaper, UAS-hid /Y; tsh-Gal80/+; EL-gal4 /+ (in this genotype only EL-gal4+ neurons in the brain

are ablated).

(B, D, and E) Average and SEM shown (**p < 0.05 and t test).
asymmetric response to presumably bilaterally symmetric

TRPA1 activation suggests that left-right EL interneurons exhibit

functional interactions. Less commonly, we observed bilater-

ally symmetrical activity that was low during stimulation and

increased at stimulus offset (Figures 4B and 4C, group 2,

n = 6) or EL activity mirroring TRPA1 activity (Figures 4B and

4C, group 3, n = 6), the response expected if the ELs had no

functional interactions. For all groups, once the pattern of EL ac-

tivity was established, it remained constant for the duration of the
chronic TRPA1 stimulation interval; this is in contrast to EL activ-

ity within intact larvae (see next section). We conclude that there

can be functional interactions between left-right EL interneurons.

Calcium Imaging of EL Activity within Intact Freely
Moving Larvae Provide Functional Evidence that the EL
Interneurons Are Part of a Sensorimotor Circuit
We wanted to understand how EL interneurons respond to stim-

ulation in vivo, and whether EL response is correlated with larval
Neuron 88, 314–329, October 21, 2015 ª2015 Elsevier Inc. 317



Figure 3. Ablation or Activation of EL

Interneurons Results in Failure to Maintain

Symmetrical Left-Right Muscle Length

without Affecting Left-Right Timing in L1

Larvae

(A–C) Control (A), EL ablated (B), and EL activated

(C) larvae quantified for resting muscle length,

contraction amplitude, and contraction timing.

The left image shows the muscle marker

MHC:GFP. The center image shows the sche-

matic of raw data. The right image shows a plot of

A5 muscle length on the left (blue) or right (red)

over two cycles of relaxation and contraction. The

scale bar represents 100 mm. The genotypes are

(A and B)UAS-dTRPA1, MHC:GFP/ UAS-dTRPA1

(A; control at 23�C and n = 8) or (B; activated

at 30�C and n = 6). (C) UAS-reaper, UAS-hid/+;

MHC:GFP/+; EL-gal4 /+ (n = 9). See Figure S1 and

Movies S6, S7, and S8.
behavior. We expressed both TRPA1 and GCaMP6 in ELs,

induced chronic TRPA1 activation, and imaged EL activity in

intact, freely crawling larvae. We observed epochs of left-right

asymmetric EL activity in every case (n = 5) (Figure 5A). Interest-

ingly, EL interneurons could undergo repeated left-right switches

in activity despite chronic TRPA1 activation; in contrast, similar

experiments using isolated CNS preparations never showed

left-right switching (Figure 4). We propose that left-right activity

switching within the intact larvae is due to sensory input.

Next, we askedwhether left-right asymmetrical EL interneuron

activity is correlated with a specific larval behavior. We repeated

the experiment above using a low-power objective to measure

the calcium signal within left and right ELs, while simultaneously

monitoring body position using intrinsic autofluorescence of the

larvae. We focused our analysis on epochs where EL activation

switched from high on one side to high on the other. We selected

the ten epochs showing the largest switches in left-right EL

activity (without attention to the behavioral data) and aligned

the traces to the moment EL activity switched sides (Figures
318 Neuron 88, 314–329, October 21, 2015 ª2015 Elsevier Inc.
5B–5D and Movie S12). We found that a

switch in EL activity was correlated with

body bending on the side contralateral

to the side with high EL activity (100%,

n = 3 larvae, ten switches; Figure 5E).

The strong correlation between EL activ-

ity and subsequent contralateral motor

activity (inferred from body bending) is

consistent with EL interneuron activation

of contralateral motor neurons.

Identification of Individual EL
Interneurons by Light and Electron
Microscopy
Our behavioral and functional imaging

data support the hypothesis that EL inter-

neurons are part of a sensorimotor circuit

that regulates muscle contraction ampli-

tude. To characterize the network context
in which the ELs operate, we identified their pre and post-syn-

aptic partners using transmission electron microscopy (TEM)

reconstructions. We analyzed multiple hemisegments of two

different first instar larvae: one a full CNS reconstruction from a

6 hr old larva, and the other a 1.5 segment reconstruction of

A2/A3 segments from a 12–24 hr old larva (Ohyama et al.,

2015). Because TEM reconstruction of neural circuits is labo-

rious, we identified a smaller subset of functionally important

ELs using the split Gal4 approach (Luan et al., 2006). The

R11F02-gal4 line is expressed in a subset of ELs plus other neu-

rons (Heckscher et al., 2014), so we generated R11F02-gal4AD

and EL-gal4DBD lines and crossed them together to label only

the R11F02+ EL+ coexpressing neurons (hereafter called 11F02

X ELs). This restricted labeling to just five ELs per hemisegment

(Figure 6A). Activation of these five neurons produced a pheno-

type similar to that seenwhen activating all ELswith EL-gal4 (Fig-

ures 6B and 6C and Movies S13 and S14). We conclude that the

11F02X ELs are a functionally relevant subset of the full EL inter-

neuron population.



Figure 4. Calcium Imaging Reveals Functional Interactions between Left-Right EL Interneurons

The isolated L1 CNS preparations expressing GCaMP6m and TRPA1 in the ELs. In this experiment, TRPA1 activity cycles from ‘‘off’’ (23�C) to ‘‘on’’ (28�C) and
back off (23�C), with the TRPA1 on interval at least 1 min long. There are three classes of response to this experiment (groups 1–3).

(A) The left image shows a schematic of preparation andGCaMP6m/TRPA1 expression in ELs. The right image shows an example from group 1 (Movie S11). Note

that both sides start at similar levels, but the left side is more active during the chronic TRPA1 on interval, and the right side becomes more active after TRPA1

stimulus offset. The scale bar represents 25 mm.

(B) Representative individual plots of GCaMP6m fluorescence (DF/F) for group 1–group 3.

(legend continued on next page)
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To determine the unique morphology of the five 11F02 X
EL interneurons, which is a prerequisite for finding the matching

neuron in the TEM reconstructions, we used multicolor flip-out

(MCFO) (Nern et al., 2015). We found that two ELs had contralat-

eral projections ascending to the brain (A08c and A08s) and

three had contralateral projections that remained local (A08e1–

A08e3) (Figure 6D). Both projection and local 11F02 X ELs

can be distinguished from each other based on their unique

3D pattern of neural arbors (Figure 6D; Table S3). We conclude

that each 11F02X EL interneuron has a distinctive morphology,

allowing us to identify the morphologically identical interneurons

within the TEM reconstructions.

To identify individual 11F02 X EL interneurons using TEM,

we used their shared and distinct features to identify and cate-

gorize the neurons (see Experimental Procedures). We use the

term ‘‘reconstructed’’ to indicate tracing of all neuronal pro-

cesses and the term ‘‘annotate’’ for identifying pre and post-

synaptic partners. We reconstructed and annotated all five

11F02 X ELs in the younger ‘‘Larva 1’’ TEM volume, which in-

cludes the entire CNS (Figures 6E–6I) and the three local

11F02 X ELs in the older ‘‘Larva 2’’ TEM volume, which con-

tains only segment A3 (Figure S3). For each 11F02 X EL inter-

neuron, we observed a stereotyped morphology in multiple

segments (Figure 6H), in left and right hemisegments (Figure 6I),

and in multiple larvae (Figure S3). No other adjacent neurons in

the TEM volumes shared common features with the 11F02 X
ELs and matched the MCFO morphology. We conclude that

we have identified the 11F02 X EL interneurons in the TEM

reconstructions.

The EL Interneurons Receive Direct Proprioceptor Input
and Generate Direct Motor Neuron Output
Our first goal was to determine whether the 11F02 X EL inter-

neurons had direct sensory input or direct motor output within

the TEM volumes. We benefited from prior annotation of many

sensory and motor neurons (Ohyama et al., 2015), but we also

reconstructed additional sensory and motor neurons to ensure

that each sensory neuron class was represented (chordotonal,

external sensory, and proprioceptors) and each motor neuron

class was represented (dorsal-, ventral-, and lateral-projecting

motor neurons) (Kohsaka et al., 2012; Singhania and Grueber,

2014). We discovered that multiple proprioceptive sensory

neurons—but few or no external sensory or chordotonal neu-

rons—formed direct presynaptic contacts with both local and

projection EL interneurons (Figures 7A and 7B). The proprio-

ceptors always formed their presynaptic contacts on ipsilat-

eral arbors of the local EL interneurons; that is, left body

wall proprioceptors synapse with EL interneurons whose cell

bodies are on the left side of the CNS (Figures 7A and 7C).

We found that the proprioceptor-EL contacts were highly

specific and reproducible across sides of the CNS, multiple

segments, and multiple larvae (Figures 7A, S3, and S4). For
(C) Data from (B) replotted as average plots with SE (genotype: UAS-dTRPA1/UA

(D and E) Controls for isolated CNS preparation experiments.

(D) Preparations expressing GCaMP6m and TRPA1 in ELs held at baseline temp

(E) Preparations expressing only GCaMP6m in ELs with temperature shifts as in
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example, the ventral bipolar dendrite (vbd) proprioceptor al-

ways formed presynaptic contacts with the A08e3 arbor, but

not the intermingled A08e1 or A08e2 arbors, and the number

of vbd contacts was always greater on the A08e3 lateral arbor

and fewer on its medial arbor (Figures 7A, 7C, and 7D). The

functional significance of different proprioceptors targeting

different ELs remains to be determined (see Discussion);

however, the specificity and reproducibility of synapse posi-

tions and numbers confirm the accuracy of our reconstruc-

tion and annotations. The function of proprioceptive neurons

in Drosophila larvae has not been tested, but proprioceptive

neurons monitor muscle length in many insects (Simon and

Trimmer, 2009; Tamarkin and Levine, 1996), and thus we pro-

pose that the proprioceptor-EL connectivity we observe is

used to convey body wall muscle contraction amplitude infor-

mation to the EL interneurons.

Next, we determined whether EL interneurons formed pre-

synaptic contacts with motor neuron dendrites. We found

that the ELs formed direct presynaptic contacts to dorsal-pro-

jecting motor neurons RP2, U1, and U2, but not to ventral- or

lateral-projecting motor neurons (Figures 7A, 7C, and 7E).

The EL interneurons always formed their presynaptic contacts

on the contralateral motor neurons; that is, EL interneurons

on the left side of the CNS formed presynaptic contacts with

motor neurons projecting to the right body wall (Figures 7A

and 7C). Thus, if the ELs were to provide excitatory drive to

their target motor neurons, it would explain why EL activation

correlates with contralateral motor neuron output within intact

crawling larvae (see above). Consistent with this hypothesis,

we found that ELs are cholinergic (Figure S5), and therefore

could provide excitatory drive to motor neurons, similar to

previously described cholinergic excitatory premotor neurons

(Baines et al., 2001; Pym et al., 2006). Consistent with this

conclusion, bilateral Chrimson stimulation of ELs resulted in

motor neuron activation (Figure 7F). We conclude that local

ELs are functionally presynaptic to contralaterally projecting

motor neurons.

Jaam Interneurons: A Link between Proprioceptive
Neurons and EL Interneurons
The proprioceptor-EL-motor neuron anatomical circuit

described above is unlikely to be functioning in isolation.

Thus, we searched for additional neurons that had a similar

or greater number of presynaptic contacts with the ELs

compared to proprioceptors (see Experimental Procedures).

We discovered two interneurons with 8–18 presynaptic con-

tacts per EL interneuron, called Jaam1 and Jaam3 (Figure 8A).

Jaam2 had morphology similar to Jaam1/Jaam3, but con-

nected to the ELs via Jaam1 (Figures 8A, inset, and S5).

Over 7% of all Jaam1/Jaam3 presynaptic contacts were on

the ELs, similar to the combined number of dorsal and ventral

proprioceptor neuron inputs to the ELs (Figure 8B, top).
S-GCaMP6m; EL-gal4 /EL-gal4).

erature (23�C) (genotype: UAS-dTRPA1/UAS-GCaMP6m; EL-gal4 /EL-gal4.

(B) and (C) (genotype: UAS-GCaMP6m/UAS-GCaMP6m; EL-gal4 /EL-gal4).



Figure 5. EL Interneuron Activity Is Correlated with Contralateral Muscle Contractions within Freely Crawling Larvae

All data are from intact larvae during forward locomotion with chronic TRPA1 activation of EL interneurons.

(A) The top left image shows a schematic of intact larval preparation and GCaMP6m/TRPA1 expression in EL interneurons. The top right image shows a left-right

(L-R) asymmetric GCaMP6m fluorescence in EL interneurons taken from indicated times during plot below (gray arrows). The bottom image shows an intact L1

larvae expressing GCaMP6m and TRPA1 in EL interneurons that were held at 32�C and mean fluorescence intensity was measured in left (blue) and right (red)

EL interneurons. Note the blue line is interrupted when fluorescent intensity dropped to levels indistinguishable from background fluorescence (genotype:

UAS-dTRPA1 / UAS-GCaMP6m; EL-gal4 / EL-gal4).

(B–D) Representative single larva data from Movie S12.

(B) The larva was moving forward, so frames were manually aligned. The top row shows EL GCaMP6m fluorescence (left, L and right, R), and the bottom row

shows body angle (arrows). The scale bar represents 50 mm.

(C) Plot of left and right EL fluorescence intensity over the time interval shown in (B).

(D) Plot of fluorescence index (bright side fluorescence, dim side fluorescence / total fluorescence) and body angle for the same time interval shown in (B). The

genotype is as in (A).

(E) Averages from ten epochs of left-right EL activity switching in three larvae, aligned to the time of switching (t = 0). The EL activity (green) is correlated with

contralateral body bending (orange). The average and SD are shown. The genotype is as in (A).
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Figure 6. Identification of Individual EL

Interneurons by Light and Electron Micro-

scopy

(A–C) Activation of a subset of ELs is sufficient to

cause C-bends.

(A) 11F02 X EL-gal4 driving membrane-bound

GFP (green) costained for Eve protein (magenta)

(anterior up). The scale bar represents 20 mm.

(B and C) Chrimson optogenetic activation of

11F02 X ELs results in larval C-bends. The

average and SEM are shown (**p < 0.05 and t test)

(genotype: UAS-Chrimson.mVenus/EL-gal4AD;

R11F02-gal4DBD/+). (Control: larvae raised without

ATR and 11F02 X EL activated: raised with ATR).

The scale bar represents 100 mm. See Movies S13

and S14.

(D) Individual 11F02 X ELs detected using MCFO.

The two projection interneurons (A08c and A08s)

and three local interneurons (A08e1–e3) all have

contralateral projections (anterior, up and midline,

arrowhead). The scale bar represents 5 mm.

(E–H) Individual 11F02 X ELs reconstructed from

serial section TEM volume of the younger Larva 1

except where noted (anterior up and midline

arrowhead).

(E) Individual 11F02 X ELs are shown below their

cognate neurons from MCFO analysis.

(F) A08e1-3 local ELs from the older Larva 2 vol-

ume. The upper left image shows a schematic of

the posterior/cross section view, with landmark

Fasciclin II bundles shown in gray.

(G) All 11F02 X ELs reconstructed in segment

A1 and A2; A1L neurons colored yellow. Note the

clustered soma and common proximal axon

fascicle in the image.

(H) Segmentally homologous neurons are highly

similar (A08e3 shown in A1, A2, and A3 left hemi-

segments).

(I) Bilaterally homologous 11F02 X ELs are more

similar to each other than to other ELs (lines

show the shortest total path for indicated neurons)

(y axis: ratio of input-output/input+output synapse

number and x axis: neurite branch length) (total

neurite length, principle branch in nm).
Interestingly, over 30% of the Jaam1–3 neurons inputs were

from the dorsal and ventral proprioceptors (Figure 8B, bottom).

Thus, the Jaam neurons provide a link from proprioceptors

to EL interneurons. Similar to proprioceptor-EL connectivity,

Jaam neurons formed highly specific contacts with their input

and output neurons. For example, the dorsal bipolar dendrite

(dbd) proprioceptive neuron provides input to Jaam1, but

not Jaam2/Jaam3, and the Jaam1 neuron provides input

to the A08e2, but not A08e1/3, despite their intermingled
322 Neuron 88, 314–329, October 21, 2015 ª2015 Elsevier Inc.
arbors (Figures 8A and 8C). In addi-

tion, there was specific, reproducible

ipsilateral and contralateral connectivity

between Jaam1–3 neurons (Figure 8A,

inset). Although the functional role of

the Jaam neurons in presenting proprio-

ceptive activity to the EL interneurons is

currently unknown, it is clear that the
Jaam interneurons provide an anatomical link between propri-

oceptors and EL interneurons.

Saaghi Interneurons: A Link between EL Interneurons
and Motor Neurons
We showed above that local EL interneurons formed direct

presynaptic contacts with motor neurons. However, the number

of synapses between ELs and motor neurons was relatively few

(range: 1–7) and were reliably detected with only 3–4 motor



Figure 7. Local EL Interneurons Have Monosynaptic Proprioceptive Inputs and Monosynaptic Motor Outputs

An anatomical reconstruction of the sensory-EL-motor neuron pathway in A3 of the older Larva 2.

(A) Summary of the pathway showing the indicated number of synapses between proprioceptive sensory neurons (purple), local ELs (A08e1-A08e3; black), and

motor neurons (green). For clarity, the connectivity between local ELs is shown separately (inset). The neurons with unilateral connections were excluded.

(B) Proprioceptive neurons are the sensory class with the most presynaptic contacts on ELs.

(C) The vbd-A08e3-RP2 pathway is bilaterally symmetric at the level of arbor morphology, synapse number, and synapse location. The top image shows the A3

left vbd has two zones of presynaptic contacts with A08e3, which forms synapses with the ventral-most region of the RP2 motor neuron dendritic arbor. The

bottom image shows the A3 right vbd-A08e3-RP2 pathway has the similar location and number of synaptic contacts (posterior view, dorsal up and midline,

dashed line).

(D and E) Examples of synapse morphology in the TEM reconstruction for vbd-A08e3 (left) and A08e3-RP2 (right). Note the presynaptic vesicle accumulation and

electron density at the synapse. The synapses were identified as in Ohyama et al. (2015).

(F) Stimulation of ELs with Chrimson activates dorsal motor neurons. A 488 nm laser illuminated the neuropil, which simultaneously activated Chrimson in ELs

(red) and allowed for the visualization of GCaMP6m fluorescence in CQ2-labeled dorsal motor neurons (green). Each line shows the GCaMP6m signal in a

different isolated brain preparation. The horizontal lines show baseline fluorescence. The response is significantly different between EL activation and controls

(p < 0.05 and chi-square). The top, middle, and bottom data sets are: (top) the indicated genotype + ATR (n = 11); (middle) the indicated genotype without ATR

(n = 6); and (bottom) the indicated genotype without UAS-Chrimson and +ATR (n = 7).
neurons of the�30 per segment. We therefore searched for neu-

rons that had a comparable number of EL presynaptic contacts

(see Experimental Procedures). We discovered two interneurons
with a range of 2–9 EL presynaptic contacts, which we call Saa-

ghi neurons 1 and 3 (SA1 and SA3; Figures 9A and S6). SA1/SA3

received 10% of all EL presynaptic contacts, far greater than the
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Figure 8. EL Interneurons Have Disynaptic Proprioceptive Inputs
Disynaptic input from proprioceptors to local ELs via the Jaam neurons. The data are from Larva 1, segment A1.

(A) Disynaptic connectivity from proprioceptive sensory neurons (purple) to Jaams (magenta) to local ELs (gray); monosynaptic proprioceptor-EL connectivity

shown with light gray lines. For clarity, the connectivity between Jaams is shown separately (inset). The neurons with unilateral connections were excluded.

(B) The top image shows that Jaam1 and 3 neurons provide major inputs into the local EL interneurons (A08e1–e3). The bottom image shows that proprioceptive

neurons provide major inputs into the Jaam1–3 neurons. For both the top and bottom, the left graph shows % of total inputs (includes neurons that have not yet

been fully reconstructed) and the right graph shows % of known inputs (only fully reconstructed and annotated neurons).

(C) Synaptic specificity: Jaam1 (darkmagenta) and Jaam3 (light magenta) reproducibly target distinct, stereotyped regions of the different EL interneuronal arbors

(light gray, A08e1 and dark gray, A08e2), as seen in the inset (right) (posterior view, dorsal up and midline, dashed line).
number of EL presynaptic contacts to dorsal-projecting motor

neurons (Figure 9B, top). In contrast to the EL interneurons,

which had outputs to only the dorsal-projecting motor neurons,

the SA1/SA3 neurons had outputs to all classes of motor neu-

rons (Figure 9A). For example, SA1 formed over 33–37 presyn-

aptic contacts with dorsal-projecting motor neurons, 15–33 to

ventral-projecting motor neurons, and 2–8 to lateral-projecting

motor neurons (Figure 9A). Moreover, the SA1/SA3 neurons allo-

cated 20% of their total presynaptic contacts to motor neurons

(Figure 9B, bottom). Thus, the SA1/SA3 premotor neurons pro-

vide a link from EL interneurons to all classes of motor neurons.
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Interestingly, the disynaptic EL-SA-motor neuron pathway con-

nects the ELs with ipsilateral motor neurons (Figure 9A, black

lines), whereas the monosynaptic EL-motor neuron pathway

connects ELs to contralateral motor neurons (Figure 9A, gray

lines). These two pathways could generate synergistic output if

the SA neurons are inhibitory (see Discussion).

In contrast to the specificity of proprioceptor-EL connectivity,

the EL-SA-motor neuron connectivity is distributed; each EL

interneuron synapseswith both SA neurons, and each SA neuron

synapses with all motor neuron classes (Figure 9C). This shows

that the EL interneurons have the potential to regulate the activity



Figure 9. EL Interneurons Have Disynaptic Motor Neuron Outputs

Anatomical circuit reconstruction of EL-SA-motor neuron pathway from Larva 1 segment A1 reveals the 11F02XELs have disynapticmotor neuron output via the

SA interneurons.

(A) Synaptic connections between local ELs (gray), premotor SAs (cyan), and motor neurons (green). The monosynaptic EL-MN connectivity is shown with light

gray lines. Only the bilateral connections between specific neurons (ELs and SAs) or motor neuron groups (dorsal, ventral, and lateral) are shown. The number of

motor neurons in each class is shown in parentheses.

(B) The top image shows the major output of the 11F02 X ELs are the SAs. The bottom image shows the major output of the SAs are motor neurons.

(C) The three local ELs A08e1–e3 (from light to dark gray) project to a common region of the SA1 dendritic arbor; (C’) enlargement of boxed region in (C) (posterior

view, dorsal up and midline, dashed line).
of all body wall muscles and suggests that different mecha-

nisms of circuit formation may be used by proprioceptor-

Jaam-ELs and by EL-SA-motor neurons. Although the role of

the SA1/SA3 neurons in translating EL activity into motor output

is currently unknown, our data show EL interneurons are posi-

tioned at the heart of an anatomical sensorimotor circuit that is

well suited for detecting and modifying body wall muscle

contraction and body posture.

DISCUSSION

Drosophila Larvae: A Model System for Investigating
Left-Right Symmetric Motor Output
Bilaterally symmetric motor patterns—those with muscle

contractions on the left and right sides of the body occurring syn-
chronously and with equal amplitude—have broad and essential

functions. Despite the nearly ubiquitous use of bilaterally sym-

metricmotor patterns throughout the animal kingdom, we under-

stand surprisingly little about the relevant neural circuitry. Here,

we identify an anatomical sensorimotor circuit containing an

evolutionarily conserved population of Eve/Evx+ interneurons

that is required to maintain left-right symmetric muscle contrac-

tion amplitude both during active muscle contraction and at rest.

To our knowledge, these interneurons are the first known to

regulate bilaterally symmetric muscle contraction amplitude. In

mouse, Sim1+ V3 interneurons have a related function during

alternating gait (Zhang et al., 2008). In the future, it will be inter-

esting to directly examine muscle contraction amplitude in

‘‘V3 defective’’ mice to determine whether this class of inter-

neuron is responsible for balancing amplitude of left-right muscle
Neuron 88, 314–329, October 21, 2015 ª2015 Elsevier Inc. 325



contraction during alternating motor patterns. Similarly, it will be

interesting to determine the role of Drosophila Single-minded

(Sim)+ interneurons during left-right symmetric motor output.

EL Interneurons Are Part of a Sensorimotor Circuit
We show that EL interneurons act in a sensorimotor circuit

independent of the CPG that generates locomotion. First, in

the absence of sensory input, ELs do not show locomotion-like

patterns of activity (Figure S2). Second, EL perturbation does

not alter left-right timing of muscle contraction (Figure 3). Third,

EL perturbation alters muscle contraction amplitude during loco-

motion and at rest (Figure 3).

Our data suggest that EL interneurons receive sensory input

that is primarily proprioceptive. Because proprioceptive neurons

can detect muscle length and movement (Simon and Trimmer,

2009; Tamarkin and Levine, 1996), they are well suited to convey

muscle amplitude information to the ELs. Closer inspection of

the proprioceptor to EL connectivity generates interesting hy-

potheses. First, proprioceptors are presynaptic to bothprojection

and local EL interneurons; the former may send body posture in-

formation to the brain, while the latter may act locally to maintain

left-right symmetric muscle length in each segment. Second, the

Jaam interneurons are well positioned to process sensory infor-

mation (e.g., from dorsal or ventral regions of the body wall) prior

to transmitting information to theELs.Althoughwecurrently know

little about Jaam neurotransmitter expression or function, their

position in the circuit raises the question of whether EL interneu-

rons show state-dependent responses to proprioceptive inputs.

Our data demonstrate that EL interneurons are presynaptic to

motor neurons and can modify motor output. EL perturbation re-

sults in slow crawling and asymmetric left-right muscle contrac-

tion amplitude, while optogenetic stimulation of ELs induces

motor neuron activity. The majority of ELs are cholinergic and

likely excitatory, they provide direct input to contralateral motor

neurons, and motor neurons are glutamatergic and excitatory

(Kohsaka et al., 2012). Thus, EL activity on one side of the body

should result in increased contralateral motor neuron activity

and contralateral muscle contraction. This may be reinforced by

the disynaptic (EL-SA-MN) pathway, in which EL activity would

prevent ipsilateral motor neuron activity if the SA neurons were

inhibitory. This model awaits future characterization of SA neuro-

transmitter expression and function. We propose the hypothesis

that ipsilateral muscle relaxation (via the EL-SA-MN pathway)

and contralateral muscle contraction (via the direct EL-MN

pathway) are used for dynamic adjustment of body posture.

How Do EL Interneurons Maintain Left-Right Symmetric
Muscle Contraction Amplitude?
Left-right differences in muscle contraction amplitude inevi-

tably arise due to stochastic external (environmental) or inter-

nal (CNS/muscle) asymmetries. Without proper compensation,

these perturbations would result in mismatchedmuscle contrac-

tion amplitude on left-right sides of the body. We hypothesize

that sensory input generates a representation of body wall

curvature that is delivered to the EL interneurons. Left-right inter-

actions among ELs would allow them to compare left versus the

right sides of the body, followed by EL stimulation of motor

output to restore left-right symmetric muscle length.
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How does EL interneuron ablation and activation generate

the same phenotype? We favor a model in which ELs are part

of a ‘‘perturbation-compensation’’ circuit. A larva that experi-

ences an asymmetrical perturbation from an external or internal

source would generate left-right mismatched muscle contrac-

tion amplitudes in the absence of any compensation. We pro-

pose that the EL circuit detects and compensates for these

asymmetries. When the ELs are absent or constitutively active,

they lose the ability to perform the left-right comparison and

the asymmetries persist. In this way, two ‘‘opposite’’ manipula-

tions yield the ‘‘same’’ phenotype.
A Conserved Function of Eve/Evx+ Interneurons in
Neuronal Circuitry and Behavior?
There is deep conservation of genetic programs that specify

neuronal fate. This is particularly true for the Eve/Evx+ interneu-

rons, which have been found in all bilateral animals examined

to date except C. elegans. Annelids, chordates, insects, fish,

birds, and mammals—as well as the presumed last common

ancestor between invertebrates and vertebrates, Platynereis du-

merilii —all contain Eve/Evx+ interneurons (Avaron et al., 2003;

Copf et al., 2003; Denes et al., 2007; Ferrier et al., 2001; Fujioka

et al., 2003; Holland, 2013; Ikuta et al., 2004; Landgraf et al.,

1999; Moran-Rivard et al., 2001; Sordino et al., 1996; Suster

et al., 2009; Takatori et al., 2008; Thaëron et al., 2000). Evx+ neu-

rons inmicearecommissural, excitatory, anddirectly contactmo-

tor neurons (Lanuza et al., 2004; Moran-Rivard et al., 2001); here,

we show that fly Eve+ interneurons are commissural, likely excit-

atory, anddirectly contactmotor neurons. A hypothesis to explain

the remarkable parallels between Eve/Evx+ interneurons is that

the last common ancestor between vertebrates and invertebrates

was segmented and motile; and thus the genetic programs used

to create locomotor circuitry may be evolutionarily ancient.

We have shown that the Drosophila Eve+ lateral interneurons

are required to maintain left-right symmetrical motor output in

the larva. Do Evx+ interneurons have a similar function in other

organisms? Genetic removal of Evx1+ interneurons in mice did

not reveal any specific function in either gross motor patterns

or in the timing of left-right alternating motor neuronal activity

as assayed by nerve root recordings (Lanuza et al., 2004;

Moran-Rivard et al., 2001). Subsequently, a broader genetic

manipulation which reduced the number of Evx1+ interneurons

to 25% of wild-type levels, as well as ablating a large, but un-

specified number of Evx1� neurons, resulted in a hind limb hop-

ping phenotype during fast locomotion (Talpalar et al., 2013).

This study raised the possibility that Evx1+ interneurons regulate

locomotion in mice. In our study, we show that highly specific

ablation or activation of Eve+ lateral interneurons disrupts larval

crawling. It will be interesting to determine whether Evx1+ inter-

neurons regulate bilaterally symmetric or alternating gait in other

organisms, as well as whether Eve+ interneurons regulate alter-

nating gait or symmetric flight in adult flies.
EXPERIMENTAL PROCEDURES

Fly Genetics

For a complete list of fly stocks see Supplemental Information. For EL-AD

and CQ2-lexA, molecular constructs and transgenic flies were generated



using standard methods as previously described (Pfeiffer et al., 2008,

2010).

Embryo Immunostaining

We used standard methods to stain Drosophila embryos and larvae (Manning

et al., 2012). For a list of primary antibodies see Supplemental Information.

Secondary antibodies were from Invitrogen/Molecular Probes and were

used according to manufacturer’s instructions. Images were acquired on a

Zeiss 700 or 710 confocal microscope with a 403 objective. Images were

cropped in ImageJ (NIH) and assembled in Illustrator and Photoshop (Adobe).

Larval Behavior

We recorded behavior in newly hatched larvae (0–4 hr old), except Chrimson

experiments were done in late first instar to second larvae.

Brightfield Whole Larval Recordings

Behavior arenas were made of 6% agar in grape or apple juice, 2 mm thick.

Behavior was recorded at 23�C, unless otherwise noted. The temperature

was measured using an Omega HH508 thermometer and controlled with a

custom-built thermoelectric controller and peltier device. The arenas were

placed under a Leica S8APO dissecting microscope and a red light (700 nm,

Metaphase Technologies) illuminated a single larva. The microscope was

equippedwith aScion 1394Camera, usingScion VisiCapture software. Images

were acquired at either 4Hzor 7.5Hz.All larvaewere fed yeast paste lacking all-

trans-retinal (ATR) except where noted. Also see Supplemental Information.

Fluorescent Whole Larval Recordings, Muscle Kinematics

Behavior arenas were placed on sapphire slides. Larva were allowed to cross

the field of view then the stage was manually moved to keep the larvae in view,

resulting in several recordings per larva. Images were acquired at 10 Hz with a

103 objective on a McBain spinning disc confocal microscope equipped with

a Hamamatsu EM-CCD camera, and Volocity software (PerkinElmer). For im-

age analysis see Supplemental Information.

Calcium Imaging

For Figure 4, a freshly dissected CNS from a newly hatched larva was placed

directly on sapphire slides in HL3.1 saline. Note there were fine manual adjust-

ments for small changes in focalplaneupontemperatureshift. ForFigure5 intact

larval recordings, see ‘‘Fluorescentwhole larval recordings,muscle kinematics’’

section above. The relationship between the EL calcium signal and body posi-

tion was complex, so we focused our analysis on epochs where EL activation

switched from high on one side to high on the other. For Figure 7C, a freshly

dissectedCNS fromanewly hatched larvawasplacedona slide inHL3.1 saline.

A region of interest encompassing the nerve cord neuropil, with motor neuron

dendrites in focus, was illuminated with 488 nm light at 10% laser power to

simultaneously activate Chrimson and monitor GCaMP6m fluorescence. For

Figure S2, we used the protocol as described above, except we used Baines’

saline (Marley and Baines, 2011) and maintained a constant temperature be-

tween 26�C–28�C. Temperature was controlled as described above. Imaging

was done with a 403 objective on the McBain spinning disc, as described

above. For details of image analysis see Supplemental Information.

MCFO to Label and Name Single EL Interneurons

We used publishedmethods to label single EL interneurons in first instar larvae

(Nern et al., 2015). The stock MCFO-3 was crossed to EL-gal4 (Supplemental

Information). The progeny first instar larvae were dissected, stained for the

MCFO epitopes and Eve protein, and imaged on a Zeiss 700 or 710 confocal

microscope. Segments containing single MCFO+ Eve+ neurons were analyzed

in dorsal view and posterior view, which allowed each neuron to be classified

as one of the five 11F02X ELs. The name of each 11F02X EL interneuronwas

chosen to match its name in the third instar abdominal CNS. Jaam is Persian

for ‘‘wineglass’’ (reflecting the strong association with sensory input) and saa-

ghi (SA neurons) is Persian for ‘‘one who brings a gift’’ (reflecting their role in

presenting information to the motor neurons).

Reconstructing Single EL Interneurons and Determining Their

Synaptic Partners within the Serial Section TEM Volumes

We used two larval reconstructions: one a full CNS reconstruction from a 6 hr

old first instar larva, and the other a 1.5 segment reconstruction of A2/A3 seg-
ments from a 12–24 hr old first instar larva (Ohyama et al., 2015). We recon-

structed neurons in CATMAID using a Google Chrome browser as previously

described (Ohyama et al., 2015). To identify single EL interneurons within

theTEMvolume,weused the following features observed in theMCFO ‘‘ground

truth’’ data set: (1) All 11F02X ELs share a common ventro-anterior cell body

position; (2) all 11F02 X ELs share a common proximal axon fascicle; (3) all

11F02 X ELs have contralateral projections; and (4) each 11F02 X ELs has

a characteristic morphology when viewed dorsally and posteriorly (Table S3).

Using these criteria, we reconstructed neurons with ventro-anterior soma until

we found one that matched the morphology of an individual 11F02X EL inter-

neuron; we then reconstructed adjacent neurons projecting in a common

proximal axon fascicle to ‘‘enrich’’ for the remaining 11F02 X ELs. Note, only

bilaterally symmetric connections are shown in Figures 7, 8, and 9.

To identify direct sensory inputs and motor outputs, we relied on previously

reconstructed sensory and motor neurons, supplemented by reconstruction

of under-represented classes such as lateral projecting motor neurons

and proprioceptive sensory neurons. To identify interneurons with direct pre-

synaptic connections to EL interneurons, we reconstructed neurites that con-

tacted clusters of post-synaptic sites on EL arbors. If a reconstructed neuron

accumulated several (3+) presynaptic contacts with an EL interneuron, we

continued reconstruction. In this way, we could rapidly focus on the neurons

with the greatest number of presynaptic contacts with an EL interneuron.

Similar methods were used to identify neurons post-synaptic to each EL

interneuron.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, three tables, and 14 movies and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2015.09.009.
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Clyne, J.D., and Miesenböck, G. (2008). Sex-specific control and tuning of the

pattern generator for courtship song in Drosophila. Cell 133, 354–363.

Copf, T., Rabet, N., Celniker, S.E., and Averof, M. (2003). Posterior patterning

genes and the identification of a unique body region in the brine shrimp Artemia

franciscana. Development 130, 5915–5927.

Crisp, S., Evers, J.F., Fiala, A., and Bate, M. (2008). The development of motor

coordination in Drosophila embryos. Development 135, 3707–3717.

Crisp, S.J., Evers, J.F., and Bate, M. (2011). Endogenous patterns of activity

are required for the maturation of a motor network. J. Neurosci. 31, 10445–

10450.
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