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Magnetic resonance imaging (MRI) was applied as a non-invasive technique to characterize, for the 

first time, the structural and functional changes in the left and right ventricles following induction 

of diabetes in streptozotocin-treated rats. The effects of the angiotensin-converting enzyme 

inhibitor captopril upon such changes were also investigated. Finally, the MRI methods were also 

used to characterize the corresponding right ventricular changes in the spontaneously hypertensive 

rats (SHR), also for the first time. 

The MRI studies of the diabetic heart were performed on male Wistar rats subdivided into four 

groups, each containing four animals. Diabetes was induced in three groups by single 

intraperitoneal streptozotocin injections at the age of 7, 10 and 13 weeks respectively, leaving an 

untreated control group. A further group was maintained on captopril-containing drinking water 

immediately after the induction of diabetes at the age of 7 weeks. All animals were scanned at the 

age of 16 weeks, thus providing groups that had been diabetic for 9, 6, and 3 weeks respectively 

that were all age-matched to the single control group. The cine magnetic resonance imaging 

protocol imaged both ventricles at twelve time-points through the cardiac cycle covering systole 

and most of diastole. The subsequent quantitative analysis derived the anatomical and functional 

indices of left and right ventricular myocardial volume, end-diastolic volume (EDV), end-systolic 

volume (ESV), stroke volume (SV), and ejection fraction (EF). They also characterized the kinetics 

of left and right ventricular contraction and relaxation through the initial rates of left and right 

ventricular ejection and filling and by plotting such rates, dV/dt, through the studied twelve time

points through the cardiac cycle. 

The MRI measurements yielded consistent myocardial volumes in both ventricles through all 

twelve time-points and in all the five experimental groups. Furthermore, the myocardial densities of 

both ventricles deduced from the post-mortem weights and myocardial volumes as measured by 
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MRI closely agreed between groups and with previous reports. The subsequent analysis 

demonstrated significant relative left and right ventricular hypertrophy as reflected in the 

myocardial volume normalized to body weight, associated with diastolic and systolic functional 

abnormalities that developed between 3 and 6 weeks of diabetes. There was a further deterioration 

at 9 weeks. Such deteriorations were greatest between 3 and 6 weeks of diabetes in the left ventricle 

and between 6 and 9 weeks of diabetes in the right ventricle. Finally, captopril treatment 

commenced immediately after the induction of diabetes prevented the development of the relative 

hypertrophy in both ventricles and markedly relieved the diastolic and systolic abnormalities. 

MRI has been recently used to characterize the anatomical and physiological parameters describing 

the left ventricle in the SHR rats but has not been applied to the right ventricle. This, together with 

recent histological evidence of pulmonary hypertension in SHR rats prompted an MRI study of the 

right ventricle of the SHR rats. The experiments compared eight SHR and eight normotensive 

Wistar-Kyoto control rats (WKY). Each group of eight rats was subdivided into equal two-age 

matched categories of 8 and 12 weeks. As before, the right ventricle of all the experimental rats 

was imaged at twelve time-points through the cardiac cycle covering the whole of systole and most 

of diastole and the analysis derived the right ventricular myocardial volume, EDV, ESV, SV, and 

EF as well as right ventricular volume changes with time and dV/dt values. The analysis 

demonstrated for the first time hypertrophy of the right ventricles associated with diastolic and 

systolic dysfunction in the SHR rats. 

These studies thus use MRI for the first time successfully to demonstrate directly the development 

of cardiac changes in the left and right ventricles in an animal model of diabetes and right 

ventricular changes in an animal model of hypertension. 
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CHAPTERl 

INTRODUCTION 

1.1 Importance of diabetic cardiac disease 

Diabetes mellitus and systemic arterial hypertension are considered to be the commonest two 
chronic diseases seriously affecting the cardiovascular system worldwide and particularly in 
developed countries. Prolonged diabetes mellitus is associated with the development of 
premature and accelerated large vessel disease or diabetic macroangiopathy. Diabetics also 
show a higher incidence of microangiopathy or small vessel disease. Diabetics thus suffer an 
increased morbidity and mortality largely attributable to cardiovascular complications (Crall 
and Roberts, 1978; Kannel, 1985; Stehouwer et al., 1997). The latter may reflect a substantially 
increased incidence of coronary artery disease (Kannel and McGee, 1979). There is also a 
higher mortality following acute myocardial infarction that may result from a higher incidence 
of post-infarction congestive cardiac failure and cardiogenic shock (Kereiakes, 1985). This 
increased mortality may be exacerbated by poor glycaemic control (Oswald et al., 1984), 
diabetic ketoacidosis (Husband et al., 1985) and the increased incidence of the more extensive 
anterior myocardial infarction, which more seriously impairs ventricular function than 
infarctions elsewhere (Weitzman et al., 1982). Finally, the high fatty acid levels seen in 
diabetics with acute myocardial infarction might predispose to the development of post
infarction arrhythmias (Oliver et al., 1968). 

However, there is significant evidence that diabetes also affects the myocardium directly to 
result in a specific diabetic cardiomyopathy (Goodwin and Oakley, 1972; Rubler et al., 1972; 
Hamby et al., 1974). Thus, the Framingham study reported a higher incidence of congestive 
heart failure that could not be entirely accounted for by the high incidence of coronary 
atherosclerosis, hypertension, or cardiac autonomic neuropathy in diabetics (Kannel et al., 
1974). This has been variously attributed to intramural vessel abnormalities (Blumenthal, 1960; 
Ledet, 1968, 1976; Rubler et al., 1972; Hamby et al., 1974; Seneviratne, 1977; Sanderson et al., 
1978; Zoneraich et al., 1980), uncontrolled hyperglycaemia (Shapiro et al., 1980; Uusitupa et 
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al., 1983), changes in myocardial lipid metabolism (Paulson and Crass, 1980), changes m 

calcium handling (Ganguly et al., 1983; Dhalla et al., 1998) or a primary hypertrophy of the 

myocytes themselves (Rubler et al. , 1972; Fischer et al., 1979). In addition, extensive fibrosis 

might explain some of the functional abnormalities seen in diabetes (Rubler et al., 1972; Regan 

et al., 1981). Finally, growing evidence implicates angiotensin II in the pathogenesis of diabetic 

cardiomyopathy by its inducing myocardial interstitial fibrosis owing to fibroblast proliferation 

in the cardiac wall (Schorb et al., 1993). The latter may act through activation of an intracardiac 

renin-angiotensin system (Dostal et al. , 1992a, b) in diabetes leading to enhanced angiotensin II 

production (Rosen et al., 1995). 

It is necessary first to establish, characterize and understand the pathophysiology of diabetic 

cardiomyopathy before considering therapeutic regimes. Earlier animal studies included 

haemodynamic studies of alloxan-diabetic dogs (Regan et al. , 1974), studies of isolated perfused 

diabetic rat hearts (Miller, 1979) and of isolated papillary muscles from diabetic rats (Fein et al., 

1980, Warley et al. , 1995). However, data from intact organisms are primarily available from 

human studies. Thus, non-invasive human studies investigated systolic time intervals, 

echocardiographic measurements of left ventricular wall thickness and indicators of left 

ventricular diastolic and systolic function. There have also been radionuclide ventriculography 

examinations for left ventricular ejection function in diabetic patients. However, both these 

techniques reported conflicting results. 

1.2 Hypertensive cardiac disease 

Systemic hypertension is a major risk factor for coronary artery disease and heart failure 

(Kannel et al., 1972; Dustan et al. , 1974; Frohlich, 1991). However, most published studies of 

its cardiac complications have concerned anatomical, electrophysiological and kinetic changes 

in the left ventricular myocardium (Grossman, 1980; Frohlich et al., 1991). They have described 

a left ventricular hypertrophy that may reflect an adaptation to an elevated systemic vascular 

resistance (Grossman, 1980; Frohlich et aL, 1991). However, such hypertrophy is associated 

with an increased risk of ischaemic myocardial pathology and ventricular arrhythmias (Messerli 

et al., 1984; Frohlich, 1991). Aharinejad et al. (1996) reported that the spontaneously 

hypertensive rats (SHR) show histological features suggestive of a pulmonary hypertension. 

However, there has been no detailed investigation on the structural and functional properties of 

the right ventricle in SHR rats. 
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1.3 MRI as a cardiovascular investigative tool 

Magnetic resonance imaging offers a powerful non-invasive imaging technique offering a sub

millimeter resolution that has been widely accepted in clinical practice for both anatomical and 

physiological studies on living organs. These features make it an ideal technique for long-term 

chronic studies of diabetes and hypertension in intact living animals; it makes possible serial 

studies of the pathological changes in a single animal or a group of animals through extended 

periods. Magnetic resonance techniques specifically useful for cardiac imaging have rapidly 

developed over the past several years (Higgins, 1986; Stratemeier et al., 1986; Markiewicz et 

al., 1987; Sechtem et al., 1987; Semelka et al., 1990). MRI additionally offers excellent soft 

tissue contrast much superior to that obtained with conventional x-ray computed tomography. 

This enhanced contrast permits the acquisition of high quality cardiac images without the need 

for administering the contrast media demanded by conventional or cine x-ray computed 

tomography. In addition, dynamic or cme magnetic resonance . images usmg 

electrocardiographic gating enables data acquisition at equivalent time-points in the cardiac 

cycle over successive cardiac cycles. Thus changes in the dynamics of the cardiac cycle in both 

human and rat hearts can be characterized with good time resolution. All these features make 

MRI an attractive experimental and clinical tool for chronic cardiovascular physiology. 

1.4 Aims of the present study 

The present study adopted MRI methods to visualize structure and function in the entire heart in 

intact animal models of diabetes mellitus. The streptozotocin-induced diabetic (STZ-diabetic) 

rat modeled the long-term cardiac complications of diabetes (Warley et al., 1995; Rodrigues et 

al., 1997). The experiments that followed studied changes in the structure and function of the 

right ventricle in the spontaneously hypertensive rat (SHR) (Trippodo and Frohlich, 1981 ). Such 

animal models made it possible to follow the evaluation of chronic pathology over a 

manageable time scale. 

The present experiments thus introduced MRI to characterize the structural and functional 

changes in the left and right ventricles associated with experimental diabetic cardiomyopathy 

for the first time. It characterized left and right ventricular contraction and relaxation through 

the cardiac cycle in the normal as well as the diabetic heart and evaluated the therapeutic effects 

of the angiotensin-converting enzyme inhibitor captopril in ameliorating the structural and 

physiological abnormalities associated with diabetic cardiomyopathy. The present study 
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similarly examined right ventricular structural and physiological properties in the SHR, also for 
the first time. 

1.5 Organization of the present dissertation 

The chapters that follow in this thesis are organized as follows: 

Since MRI was the main research tool used in this work, Chapter 2 provides a brief description 
of the physical principles of MRI. 

Chapter 3 outlines past epidemiological studies of the cardiovascular complications of diabetes 
mellitus and emphasizes the importance of diabetes as a major source of cardiovascular risk. It 
points out that prolonged diabetes predisposes to development of premature and accelerated 
disease of large blood vessels or diabetic macroangiopathy, which presents as coronary artery 
disease, cerebrovascular disease or peripheral vascular disease. Such coronary artery disease 
contributes significantly to mortality in diabetes. It describes evidence that suggests that 
diabetes also directly leads to structural and functional abnormalities in the myocardium that 
may produce a pathological condition commonly termed diabetic cardiomyopathy or diabetes 
specific cardiac muscle disorder. The assessment of such cardiac changes in experimental 
diabetes is the primary interest of the present work. 

Chapter 4 accordingly outlines what is known about the pathology of cardiomyopathic changes 
in diabetes. It reviews the literature covering the associated pathological findings including 
vascular, metabolic, myocyte, and interstitial changes. This Chapter also outlines evidence for 
an involvement of angiotensin II in the pathogenesis of this condition. The latter prompted the 
inclusion of an MRI study of the therapeutic effect of captopril in the present study. 

Thereafter, Chapter 5 summanzes some of the experimental animal and human studies of 
cardiac function in diabetes. It also discusses the various techniques used so far to evaluate the 
structural and functional abnormalities of diabetic myocardium. However, no single technique 
could characterize all the indices describing myocardial structure and function in diabetes, and 
the studies performed so far have concentrated on the left ventricle and have almost completely 
omitted right ventricular changes in diabetes. Furthermore, independent investigators report 
conflicting results about the cardiac consequences of diabetic disease. 
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Chapter 6 then presents the materials and methods used in the MRI study of the diabetic heart 

and describes in detail use of the experimental animals, the induction of diabetes and the 

physiological monitoring of the animal before and during the imaging session. It goes on to 

describe the imaging hardware and the MRI pulse sequence used and the imaging sessions and 

the analysis of the acquired image data. 

The results of this MRI study of the diabetic heart are then presented and discussed in Chapters 

7-1 O. The internal consistency of the diabetic MRI data was corroborated in that the measured 

myocardial volumes in both ventricles were conserved through the cardiac cycle at all twelve 

time-points that were studied in the five experimental groups. Furthermore, the myocardial 

densities of both ventricles, calculated from the ratio of the post-mortem weight of each 

ventricle to the MRI-measured myocardial volume were consistent through all experimental 

groups and in agreement with previous reports. These Chapters further report: (a) significant 

relative left and right ventricular hypertrophy associated with diastolic and systolic functional 

abnormalities at 6 weeks, (b) a further deterioration in the hypertrophy and the diastolic and 

systolic dysfunctions of both ventricles between 6 and 9 weeks, ( c) a greater rate 

of progression of the hypertrophy and associated functional abnormalities between 3 and 6 

weeks in the left ventricle and between 6 and 9 weeks in the right ventricle, and ( d) that 

treatment with captopril immediately after the induction of diabetes prevents the development 

of the relative hypertrophy in both ventricles and markedly reduces the diastolic and systolic 

abnormalities. 

Chapter 11 of this thesis describes an MRI study of the right ventricle of the SHR rats. It starts 

with an introduction emphasizing the clinical importance of the cardiovascular complications of 

hypertension; in particular left ventricular hypertrophy. Yet, structural and functional changes in 

the right ventricle have not been studied in SHR rats using MRI and are therefore the object of 

the present study. It then presents the materials and methods used in this study, which were 

similar to those of the MRI study of the diabetic heart with specific modifications. Finally, it 

presents and discusses the results obtained. Interestingly, the SHR rats showed hypertrophy of 

their right ventricles and these were associated with diastolic and systolic dysfunction in the 

cardiac cycle. 

Chapter 12 sums up the experimental findings with concluding remarks. 

For the convenience of the reader, the tables of the results chapters were placed at the end of 

each respective chapter. 



2.1 Definition 

CHAPTER2 

MRI THEORY 

MRI stands for Magnetic Resonance Imaging. It is a non-invasive imaging technique using 
magnetic fields and non-ionizing radiofrequency of low energy to obtain high quality 
anatomical and functional images of different body organs with high soft tissue contrast. Unlike 
regular radiographic and computerized axial tomography (CAT) scans, MRI does not use x-rays 

or any other fonn of ionizing radiation and usually does not require administration of contrast 
media. MRI has been primarily used as a diagnostic clinical tool but it has now found 
application in fundamental anatomical and physiological studies. MRI is based on the 
phenomenon of nuclear magnetic resonance (NMR). The latter results from the enhanced 
absorption of radiofrequency energy by the nuclei of atoms when placed in an external static 
magnetic field and when such energy is close to a specific frequency, called the Larmor or 
resonance frequency (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and 
Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 
Initially, the technique was referred to as Nuclear Magnetic Resonance Imaging (NMRI). The 
"nuclear" part of the title was omitted about 15 years ago to avoid any suggestion that the 
measurement involves radioactive processes (Newhouse and Wiener, 1991; Brown and 
Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; 
Higgins et al., 1997). 

2.2 Physical principles of magnetic resonance imaging 

2.2.1 Nuclear magnetism 

Matter is composed of atoms. Atoms, principally, consist of three fundamental particles: 
protons, which bear a positive charge, neutrons, which have no charge, and electrons, which 
have a negative charge. The only exception is the hydrogen atom, which has a single proton in 
the nucleus and one orbiting electron (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 

10 
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English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 

1997). The nucleus of an atom consists of protons and neutrons while the electrons travel 

around the nucleus in orbitals. All the individual particles rotate around their axes; a property 

called spin (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, . 1995; 

Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). Classically, spin is 

the tendency to act like a spinning ball of charge. A nucleus may contain more than one proton 

or neutron, and so the spins of protons and neutrons add together. In some nuclei, they add to 

zero. In others, they add to a number other than zero. Nuclei in which the spins of protons and 

neutrons add to a number other than zero are said to have a net spin. Any nucleus with either an 

odd atomic number (number of protons) or an odd atomic weight (the sum of the number of 

protons and the number of neutrons) has a net spin. A nucleus that has a net spin also acts like a 

ball of spinning charge. Only nuclei that have a net spin are NMR sensitive when placed in a 

static magnetic field. The simplest nucleus that contains an odd number of protons is the 

hydrogen atom, which contains just one proton and no neutrons (Newhouse and Wiener, 1991; 

Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy

Roberts, 1996; Higgins et al., 1997). It is well known that the total body water accounts for 72% 

of the lean human body mass and hydrogen is a major constituent of water. Furthermore, 

hydrogen is also found in lipids and other organic compounds (English and Moore, 1995). 

Hydrogen is, therefore, considered to be the most abundant tissue element. Additionally, 

hydrogen has a relatively large gyromagnetic ratio (y) of 42.576 MHz r 1 (Edelman et al., 1996) 

giving a relatively large MRI signal (Edelman et al. , 1996). It is, therefore, particularly effective 

at producing the tissue magnetization that eventually results in the emission of a marked radio 

frequency signal contribution (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 

English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 

1997). At present, all clinical applications of MRI involve detection of contribution from the 

hydrogen nucleus. Other nuclei that exhibit a net spin and are of biological importance include: 
13C, 19F, 23Na, 31P, and 39K (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English 

and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

Theoretically, it is possible to perform NMR imaging with any of these nuclei, but this would be 

more difficult than imaging using hydrogen nuclei because of their more limited abundance and 

lower sensitivity for the MRI signal (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 

English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 

1997). 

The spinning motion of nuclei with a net spin generates a tiny magnetic field around them. This 

tiny magnetic field is called the magnetic moment (m). The spinning hydrogen proton can be 
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viewed as if it is a tiny bar magnet itself with a north and south poles (Figure 2.1) (Newhouse 
and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; 
Farr and Allisy-Roberts, 1996; Higgins et al., 1997). As the magnetic field is a vector quantity 
with both magnitude and direction, it is similarly possible to define a magnitude and orientation 
for the nuclear magnetic moment (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 
1997). 

s/ 
Nucleus Bar Magnet 

Figure 2.1 : The hydrogen proton, spinning around its axis, generates a magnetic moment and can be thought 
as a bar magnet with a north and south poles. 

It is the orientation of the nuclear spin vector and how it changes during the application of 
precisely timed pulses of radiofrequency (RF) energy in conjunction with magnetic field 
gradients that ultimately determine the features of the emitted MRI signal (Newhouse and 
Wiener, 1991 ; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr 
and Allisy-Roberts, 1996; Higgins et al., 1997). When the tissue is not subjected to an external 
magnetic field, the orientation or direction of the magnetic moments of the nuclei is random and 
varies randomly with time (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English 
and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 
Accordingly, a zero sum is the result of performing a vector addition of these magnetic 
moments; and hence, no net magnetization is observed in the tissue. 

However, if the tissue is placed in a strong static magnetic field B0, such as a magnetic 
resonance scanner, the field exerts a force on these randomly oriented nuclear magnetizations 
and forces some of them to align with it (Newhouse and Wiener, 1991; Brown and Semelka, 
1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins 
et al., 1997). The protons align themselves in either of two directions; "parallel (spin-up)", of 
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low energy or "anti-parallel (spin-down)", of high energy, to the applied magnetic field, with 
the majority being in the parallel direction. Thus, most of the protons cancel each other out in 
pairs (spin-up and spin-down), and it is the unpaired protons that produce the net magnetic 
vector (Mo) in the direction of the external main magnetic field (Bo). The result is that the tissue 
has now itself become a net magnet. This net magnetic vector is known as the longitudinal 
magnetization (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 
1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

The stronger the externally applied magnetic field, the greater the moment it will exert on the 
nuclear magnetizations and thus, the more protons would be aligned parallel to it and, 
accordingly the more the ultimate strength of the tissue's net longitudinal magnetization 
(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 
et al. , 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). In MR imaging, we use 
powerful magnets with strong magnetic fields in order to maximize MR signal available from 
the tissue. However, it is not the longitudinal magnetization but the transverse magnetization 
that we are measuring. 

The ultimate strength of the tissue's net longitudinal magnetization is thus related to the 
externally applied magnetic field strength to which the tissue is exposed. In addition, it is also 
related to the tissue's chemical and physical properties: these features reflect the tissue's 
magnetic susceptibility (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and 
Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). The 
tissue ' s magnetic susceptibility is defined as the degree to which the tissue is magnetized in 
response to magnetic fields to which it is being exposed (Newhouse and Wiener, 1991; Brown 
and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 
1996; Higgins et al., 1997). Different tissues in the same magnetic field exhibit different 
magnetic susceptibilities and accordingly, the ultimate strength of their net longitudinal 
magnetizations are different. 

2.2.2 Precession 

In addition to causing the protons to align with it, the static magnetic field causes them to 
"wobble" in a regular manner called precession (Newhouse and Wiener, 1991; Brown and 
Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; 
Higgins et al., 1997). As a result of precession, the direction of the magnetic moment of the 
spinning proton tilts and rotates around the direction of the magnetic field Bo with a fixed 
frequency, called the Larmor frequency (Figure 2.2). The precession movement of a spinning 
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proton is directly comparable to the movement of a spinning top, which spins around its axis 
until its speed slows, allowing gravity to cause it to precess about the direction of the earth's 
gravitational pull until it falls over (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al. , 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 
1997). 

Bo 

............ ···~······ ir···.-··· ... :· .. 

Figure 2.2: Diagrammatic representation of the precession of a hydrogen nucleus (a proton) around an 
externally applied main magnetic field (B0). The spinning proton precess about the direction of the static 
magnetic field, much like a spinning top that sweeps out a cone-shaped path around the direction of the 
gravitational field of the earth. 

The rate of precession of protons in a magnetic field is dependent on that particular element and 
is directly related to the strength of the externally applied magnetic field to which they are being 
exposed. The stronger the magnetic field the higher the precession frequency. The relationship 
can be expressed by equation (2.1 ), the Larmor equation: 

mo = y Bo (2.1) 

The term mo is the angular frequency (precessional or Larmor frequency) in megahertz (MHz), 
Bo is the magnetic field strength that the protons experience in tesla (T), and y is a constant for 
each nucleus called the gyromagnetic or magnetogyric ratio in MHz T 1 (Newhouse and Wiener, 
1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and 
Allisy-Roberts, 1996; Higgins et al., 1997). The larger the value of the gyromagnetic ratio, the 
larger is the energy difference between the low (parallel) and the high (anti-parallel) energy 
states for a given B0, and thus greater the net tissue magnetization is produced by a given 
magnetic field strength. 1H was found to have relatively higher gyromagnetic ratio ( 42.576 MHz 
T 1

) than other nuclei with net spin and this actually explains the high sensitivity for the MR 
signal from hydrogen nuclei. 
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As a result of precession and its tilting effect on the magnetic moment (m), the magnetic 

moment of a spinning proton splits into a longitudinal component (the m2 vector) that points in 
the direction of the externally applied magnetic field i.e. in the Z-direction, and a transverse 

component (the mxy vector), which rotates in the XY plane (Figure 2.3) (Newhouse and Wiener, 

1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and 

Allisy-Roberts, 1996; Higgins et al., 1997). 

The m2 vectors add up to a combined or net longitudinal magnetization vector (Mo) that points in 

the direction of the externally applied field (Bo) (Figure 2.4) (Newhouse and Wiener, 1991; 
Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy

Roberts, 1996; Higgins et al., 1997). Being in the same direction as B0, this net longitudinal 

magnetization (Mo) cannot be measured directly as Bo is much stronger than it. 

Bo .................... ...... ........ ..... 1· ..::.· .................... . 

Figure 2.3: Diagrammatic represei 1tion of the transverse and longitudinal components of the magnetic 

moment. When exposed to a strong magnetic field, the spinning protons precess around the axis of the applied 
magnetic field at its Larmor frequency and as a result of this precessional movement, their magnetic moments 
splits into longitudinal (m,) and transverse (mxy) components. 

Because of the inevitable inhomogeneities of the externally applied magnetic field and the 

destructive interference between the local tiny fields of each spinning proton and those of its 
neighbours, protons effectively precess independently and as a result only their m2 vectors point 

in one direction giving rise to a net longitudinal magnetization (Mo), whereas their m xy vectors 
would point in all directions and cancel each other out in pairs. Consequently, the net transverse 

magnetization Mxy would be zero (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 
1997). 
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Figure 2.4: Diagrammatic representation of the longitudinal magnetization. 

2.2.3 Resonance and radiofrequency 

16 

In order to acquire an MR signal, a pulse of radiofrequency (RF) current is passed through the 

radiofrequency coils that surround the patient. This RF pulse exchanges energy with the 
precessing protons and, as a result, some protons precessing in the low energy parallel direction 
are excited and acquire sufficient energy for them to change their precession direction to the 
high energy anti-parallel one (English and Moore, 1995; Farr and Allisy-Roberts, 1996). The 
more energy that is added to the system, the greater the number of protons that are excited to the 
high-energy direction. As a consequence, a greater number of the protons will cancel each other 
out in pairs and Mo will reduce, disappear, or even reverse, depending on the energy given to 
the protons which in tum depends on the length and strength of the RF pulse (Farr and Allisy
Roberts, 1996). Thus, the RF pulse will tilt the net longitudinal magnetization away from the 
main magnetic field by an angle known as the flip angle, which is proportional to the strength 
and the duration of the applied RF pulse (English and Moore, 1995). 

An important point relevant in this context is that the RF pulse not only excites protons to their 
high-energy direction but it also causes their precession to become synchronized and fall in 
phase (English and Moore, 1995; Farr and Allisy-Roberts, 1996). As a result, their mxy vectors 
will now point in one direction and add up together to produce a net transverse magnetic vector 
(Mxy), which rotates in the XY plane at the Larmor frequency (Figure 2.5) (Farr and Allisy
Roberts, 1996). It is this transverse magnetic vector that eventually gives rise to the measurable 
MR signal. 
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Figure 2.5: An RF pulse can be applied to produce any flip angle, depending on the duration and strength of 
the pulse. Following a 90° RF pulse net tissue magnetization is tilted 90° and is now in the transverse plane 
(Mxy). This net magnetization begins to precess around the longitudinal axis. 

2.2.3.1 Resonance 

The RF generator should be accurately tuned in such away that its frequency must very 

accurately match the Larmor (precessional/resonant) frequency of the precessing protons. In 
other words, the RF pulse should be in resonance with the precessing protons. Otherwise the Rf 
pulse will not exchange energy effectively with the precessing protons and this would adversely 
affect the emitted MR signal (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English 
and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

2.2.4 The magnetic resonance signal 
The rotation movement of the transverse magnetic vector (Mxy) in the XY plane induces an 
alternating (RF) voltage of a few microvolts in the antenna (RF coils) (Farr and Allisy-Roberts, 
1996). It is this alternating voltage that eventually gives rise to the MR signal. Thus, An RF 
amplifier (receiver) is then used to amplify the emitted MR signal. The amplified signal is then 
sampled and processed by a computer. It is then used to control the pixel grey level in the MR 
image. The stronger the signal being emitted from a voxel is, the brighter the pixel will be in the 
MR image. 

The vector Mo cannot produce an MRI signal as it falls in the direction of the main magnetic 
field. It is the net transverse magnetic vector (Mxy) that actually produces the signal. However as 
Mxy is produced by tipping M0, it is the strength of the Mo immediately before the application of 
the RF pulse that determines the strength of the emitted RF signal (Newhouse and Wiener, 

1991; Farr and Allisy-Roberts, 1996). 
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The ultimate strength of the emitted MR signal depends on the following factors: 

(1) The strength of the externally applied magnetic field (B0). The stronger the magnetic field to 
which the tissue is exposed, the greater the force it exerts on its contained protons and the 
greater the number of protons that would align parallel rather than anti-parallel to it; 
(2) The proton or spin density (PD, number of protons per cubic millimeter) of the voxel; 
(3) The gyromagnetic ratio of the nucleus; 

(4) The T1 (longitudinal or spin-lattice relaxation time); and 

(5) The T2 (transverse or spin-spin relaxation time). 

Finally, the MRI device uses methods of spatial-encoding in order to determine the exact 
location in the tissue from which each portion of the emitted radio frequency signal comes from. 
This is crucial in generating an MR image (Newhouse and Wiener, 1991; Brown and Semelka, 
1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins 
et al., 1997). 

2.2.4.1 Free induction decay (FID) 

Over the interval the RF pulse is applied the protons precess in phase and give a peak emitted 
MR signal. However, the RF pulse can only be applied for a brief time. Immediately after it is 
switched off, the precessing protons both return to their original low-energy direction and once 
again begin to precess independently and therefore lose phase coherence (Newhouse and 
Wiener 1991; Farr and Allisy-Roberts 1996, Edelman et al., 1996; Higgins et al., 1997). 
Consequently, Mo recovers while Mxy decreases or decays and accordingly, the strength of the 
MR signal decays, although its frequency remains the same (Figure 2.6). This MR signal is 
called the free induction decay and the decrease in strength occurs as a result of energy loss or 
relaxation (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; 
Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

90° 
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Figure 2.6: The free induction decay (FID) represents the signal amplitude induced into the receiver coil and 
the decay of that signal over time. A strong signal is acquired immediately after an RF pulse as a result of 
bringing all protons in phase. Over time, however, the protons dephase and signal is lost. 
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2.2.5 Relaxation 

2.2.5.1 Transverse, T2 or spin-spin relaxation 
As previously mentioned, the application of a 90° RF pulse with frequency that exactly matches 
the precessional frequency of the protons excites these protons and so the net longitudinal 
magnetization tilts away from the main field by 90°. In addition, the RF pulse forces the protons 
to precess coherently (English and Moore, 1995; Farr and Allisy-Roberts, 1996). As a result, the 
transverse component of their magnetic moments (the mxy vectors) will, on average, point in one 
direction and add up to a net transverse magnetic vector (Mxy), which rotates in the XY plane at 
the Larmor frequency. Consequently, the net magnetization becomes no longer longitudinal but 
transverse. Whilst the RF pulse is applied the protons precess in phase and their combined 
magnetic moments give the maximum signal. Once the RF pulse is turned off, the protons begin 
to precess independently with the rate of their precession depending on the strength of the 
effective magnetic field experienced by the individual protons. The reasons why the individual 
protons experience minute differences in the effective or local magnetic field are the inevitable 
small inhomogeneities in the external magnetic field even in modern magnets. Additionally, the 
magnetic moments of the individual protons interact with those of the nearby protons (English 
and Moore, 1995). As a result, the protons precess at different rates, some precessing faster and 
some slower, and the energy is exchanged among neighbouring spins, hence the name spin-spin 
relaxation (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; 
Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). Thus, the protons 
tend to dephase and their mxy vectors cancel each other out in pairs. The net transverse 
magnetization therefore decreases or decays, until there is eventually no longer any net 
transverse magnetization (Figure 2.7) (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 
1997). 

The signal induced by the transverse magnetization decreases with a time constant T 2 

(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 
et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997), which is the time constant the 
MRI signal takes to fall to 37% of its maximum value (Farr and Allisy-Roberts, 1996). Thus, 
after two T2 time constants, only 14% of the signal remain and after three T2 time constants, 
only 5% of the signal remain (Farr and Allisy-Roberts, 1996). 
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It is noteworthy that T2 is longer for liquids than for solids. Understandably, the MR signal 
decays more slowly in tissues with longer T2 values. 

Figure 2.7 : The diminution of the net tissue's transverse magnetization (Mxy) as a function of time (t). 
Immediately after the application of a 90° RF pulse, the spins have the same phase and produce the detectable 
MR signal. Once the RF pulse has been terminated, a phase angle (9) develops over time between the 
precessing protons and partial dephasing of the spins occurs and the signal decays. Eventually, complete 
dephasing of the signal occurs and the signal disappears. 

2.2.5.1.11'2* effect 

Even with modem magnet design, it is impossible to achieve complete homogeneity of the 
magnetic field. As a result of this inevitable inhomogeneity, protons lose phase coherence more 
quickly than it would if the field were completely homogeneous (Figure 2.8) (Newhouse and 
Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr 
and Allisy-Roberts, 1996; Higgins et al., 1997). The time taken for the loss of the transverse 
magnetization under these circumstances is known as the time constant T 2 *. The effect of T 2 * 
can be overcome by using a special pulse sequence when performing an MR scan. 

90° 180° 130' 

RF 

T2 decay 

Echo 

Figure 2.8 : Because of the inhomogeneity of the magnetic environment caused by the spatial variation of the 
external and the magnetic interactions among neighbouring spins, the net transverse magnetization decays 
much faster at a rate characterized by T2*. Ifa spin echo is used, signal is, then, lost at a rate characterized by 
Tz. 
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2.2.5.2 Longitudinal, T1 or spin-lattice relaxation 
rnunediately after the RF pulse is switched off, the excited protons begin to return, some earlier 
than others, from the high-energy anti-parallel or anti-aligned orientation to their original low 
energy aligned or parallel direction (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 
1997). This occurs as a result of T1 relaxation, which is also called spin-lattice relaxation as 
nuclear magnetic resonance was originally used to examine solids whose component particles 
took the form of a lattice and the spins lose energy to the lattice on their return to their original 
low energy position. 

Thus, T1 relaxation is associated with recovery of the longitudinal net magnetization and its 
returns to its original state of Mo again in the direction of the main magnetic field. The net 
magnetization increases relatively slowly and does so exponentially with a time constant T1 

(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 
et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997) (Figure 2.9), which the time 
constant needed for 63 % of the excited protons to return to their original initial resting state. 
Thus, longitudinal magnetization is recovered 63%, 87%, and 95% after 1 T1, 2 Ti, 3 T1 

constants respectively. 

T 1 is dependent on the main magnetic field strength as well as chemical and physical properties 
of the environment in which the protons reside. Higher magnetic fields are associated with 
longer Tl times (Newhouse and Wiener, 1991; English and Moore, 1995; Farr and Allisy
Roberts, 1996). An important point relevant in this context is that the longitudinal 
magnetizations of tissues with shorter T 1 relaxation times recovers more quickly than those of 
tissues with longer T1 relaxation times. 

M, 

Figure 2.9: The recovery of the tissue ' s longitudinal magnetization (M,) as a function of time (t). 
Inunediately after excitation there is no longitudinal magnetization. When the stimulating RF pulse is turned 
off, the excited protons relax back to their resting state and the longitudinal magnetization recovers towards 
the maximal value (Mo) at a rate determined by the Ti relaxation time. 
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2.2.5.2 Longitudinal, T1 or spin-lattice relaxation 

Immediately after the RF pulse is switched off, the excited protons begin to return, some earlier 

than others, from the high-energy anti-parallel or anti-aligned orientation to their original low 

energy aligned or parallel direction (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 

English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 

1997). This occurs as a result of T1 relaxation, which is also called spin-lattice relaxation as 

nuclear magnetic resonance was originally used to examine solids whose component particles 

took the form of a lattice and the spins lose energy to the lattice on their return to their original 

low energy position. 

Thus, T1 relaxation is associated with recovery of the longitudinal net magnetization and its 

returns to its original state of Mo again in the direction of the main magnetic field. The net 

magnetization increases relatively slowly and does so exponentially with a time constant T1 

(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 

et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997) (Figure 2.9), which the time 

constant needed for 63 % of the excited protons to return to their original initial resting state. 

Thus, longitudinal magnetization is recovered 63%, 87%, and 95% after 1 T1, 2 T1, 3 T1 

constants respectively. 

T 1 is dependent on the main magnetic field strength as well as chemical and physical properties 

of the environment in which the protons reside. Higher magnetic fields are associated with 

longer Tl times (Newhouse and Wiener, 1991; English and Moore, 1995; Farr and Allisy

Roberts, 1996). An important point relevant in this context is that the longitudinal 

magnetizations of tissues with shorter T 1 relaxation times recovers more quickly than those of 

tissues with longer T 1 relaxation times. 

M, 

Figure 2.9: The recovery of the tissue's longitudinal magnetization (M,) as a function of time (t). 

Immediately after excitation there is no longitudinal magnetization. When the stimulating RF pulse is turned 

off, the excited protons relax back to their resting state and the longitudinal magnetization recovers towards 

the maximal value (Mo) at a rate determined by the T 1 relaxation time. 
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2.2.6 MRI hardware 
MRI experiments require the following basic components, each of which is considered in tum: 

1. The Main Magnet 

2. Shim Coils 

3. Gradient Coils 

4. RF (transmitter/receiver) Coils 

5. Computer 

2.2.6.1 The main magnet 

The main magnet is the basic component of an MRI scanner (Newhouse and Wiener, 1991; 
Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy
Roberts, 1996; Higgins et al., 1997). Magnets are of different designs and magnetic field 
strengths and are available in a variety of shapes and sizes (Brown and Semelka, 1995). 
Magnets used for clinical imaging have magnetic field strengths somewhere between 0.6 to 2.0 
Tesla (T), where 1 T = 10,000 G (Gauss). Their magnetic field has to be very homogeneous so 
as to minimize the loss of phase coherence shown by proton precession following application of 
the RF pulse. This homogeneity of the magnetic field can be improved by shimming. There are 
three types of main magnet: 

(a) Permanent magnets: As the name suggests, permanent magnets are always magnetic. They 
are made of special rare earth alloys that have the capacity for retaining strong magnetic fields. 
Their major advantage is that they do not use any energy to generate the magnetic field. 
However, these magnets have limited field strengths of 0.2 to 0.3 T, which is their main 
disadvantage. Other disadvantages are their thermal instability as they are susceptible to 
changes in the ambient temperature, and their heavy weight (English and Moore, 1995; Farr and 
Allisy-Roberts, 1996). 

(b) Resistive magnets: These magnets use electrical energy to generate their magnetic fields and 
are therefore also called electromagnets. In a resistive magnet, an electrical current is passed 
through a loop of wire and generates a magnetic field that persists as long as there is a flowing 
current. The main disadvantage of resistive magnets is that their magnetic field strengths are 
limited to less than 0.4 T because of their high power consumption and resistive heating. With 
very high field strengths, resistive magnets generate large quantities of heat that must be 
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dissipated. The main advantages of the resistive magnets are that they are the cheapest and 
smallest, weighing some 2 tons (English and Moore, 1995; Farr and Allisy-Roberts, 1996). 

(c) Super-conducting magnets: At present, super-conducting magnets are the ones most widely 
used in MR machines with fields strengths more than 0.5 T. As resistive magnets, they also 
make use of electricity to generate their magnetic fields, but resistive heating is no more a 
problem as these magnets contain a special current. ·carrying conductor cooled down to super
conducting temperature of -269° C. Cooling markedly reduces the resistance to the flow of 
electric current and at this particularly very low temperature the current conducting material 
practically loses all its resistance to electric current flow. So once an electrical current is 
established, it continues to flow and generates a constant magnetic field with high field strength 
and excellent homogeneity while using virtually no power. This is the main advantage of super
conducting magnets. The main disadvantages of the super-conducting magnets are their high 
costs, and the need for helium and nitrogen for cooling (English and Moore, 1995; Farr and 
Allisy-Roberts, 1996). 

2.2. 6.2 Shim coils 

It is extremely important to ensure that the externally applied magnetic field, i.e. the principal 
field of the magnet, is as homogeneous as possible. In practice, this can be achieved by 
shimming, which is of two types: 

( a) Active Shimming, in which direct current is passed through ten to twelve current-carrying 
shim coils placed within the bore of the main magnet. As each of these receives its own current, 
it generates its own magnetic field that is added to the main magnetic field, making it more 
homogeneous (English and Moore, 1995; Farr and Allisy-Roberts, 1996). 

(b) Passive Shimming, in which homogeneity of the static magnetic field is improved by the 
placement of iron plates inside and/or outside the magnet bore in a standard configuration 
(English and Moore, 1995; Farr and Allisy-Roberts, 1996). 

2.2. 6.3 Gradient coils 

Specific gradient coils are used to produce deliberate linear variations in the main magnetic 
field, i.e. changes in magnetic field with distance. Usually three pairs of gradient coils, one for 
each orthogonal direction (X, Y and Z directions) are used. In order to acquire a magnetic 
resonance image, direct current is passed through these three sets of coils and gradients are 
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switched on and off in a precisely timed manner according to the pulse sequence used. This is of 

particular importance as not only will it enable slice selection but it will also enable spatial 

encoding in the image to determine the exact location in the body from which each portion of 

the emitted radio frequency signal originates (Newhouse and Wiener, 1991; Brown and 

Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; 

Higgins et al., 1997). 

As a result of the application of these magnetic field gradients, each different point along the X, 

Y and Z directions experiences a slightly different magnetic field from other points and since 

the rate of precession of the protons is directly related to the magnetic field strength in which 

they are placed, protons at different points along the gradient will therefore precess at different 

frequencies depending on their sites (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 

English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 

1997). 

2.2.6.4 RF (transmitter/receiver) coils 

RF coils are effectively the antenna of the MRI system; they are responsible for transmitting the 

RF signal to the patient and/or receiving the emitted MR signal. Thus, RF coils can either be 

receive only, in which case the body-coil is used as a transmitter; or both transmit and receive 

(transceiver) . In order to exchange energy effectively with the precessing protons, the RF coils 

must be accurately tuned to the resonant frequency of the protons. 

2.2.6.5 Computer 

All components of the hardware with the exception of the main magnet are under the control of 

a highly sophisticated computer system made of a pulse control module, image processor and 

systems manager (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 

1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

2.2. 7 Image generation 

2.2. 7.1 Cartesian co-ordinate system 

MRI is superior to any other imaging technique in that it does not employ any form of ionizing 

radiation and, in addition, several images can be obtained simultaneously in a number of planes, 

at any angle without the need for moving the patient or experimental specimen (Newhouse and 

Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr 
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and Allisy-Roberts, 1996; Higgins et al., 1997). It is possible to define these planes by using the 
conventional three-dimensional Cartesian coordinate system. By convention, the Z-axis runs 
along the long axis of the MRI magnet. The X-axis is horizontal and goes from side to side 
where as the Y-axis is vertical. The X and Y-axes define the trans-axial plane. On the other 
hand, the coronal and the sagittal planes are defined by the Zand X-axes and the Y and Z-axes 
respectively. 

2.2. 7.2 Slice selective excitation and the slice-selecting gradient 
In order to image a particular slice in a patient, a one-dimensional linear magnetic field gradient 
called a slice-selecting gradient is deliberately applied in the direction perpendicular to the plane 
of the slice to be imaged. This slice-selecting gradient (Figure 2.10) is switched on during the 
period that the RF pulse is transmitted (Newhouse and Wiener, 1991; Brown and Semelka, 
1995; English and Moore, 1995; Edelman et al. , 1996; Farr and Allisy-Roberts, 1996; Higgins 
et al., 1997). The application of this magnetic field gradient is of particular importance as it 
allows selective excitation of protons in a particular plane through the patient. As gradient fields 
can be superimposed on the main magnetic field in any direction by simply activating the 
appropriate gradient coils, images can be obtained simultaneously in a number of planes, at any 
angle without the need for moving the patient. 

A transverse slice can be obtained by applying an RF pulse with the slice-selecting magnetic 
field gradient in the Z-direction. With a slice-selecting gradient applied in the Y-direction a 
coronal slice is obtained whereas when it is applied in the X-direction a sagittal slice is selected. 

The application of the slice-selecting gradient causes protons at different sites along its axis to 
precess at different precessional frequencies according to the effective magnetic field strengths 
to which they are exposed. The protons in the selected slice will precess with a narrow range of 
frequencies. In order for the RF pulse to excite these protons and to exchange energy with them, 
the RF transmitter should be accurately tuned to generate an RF pulse that contains a small 
range of frequencies (a narrow band width) that essentially match the range of frequencies of 
the protons in the selected slice i.e. the RF pulse and the protons in the selected slice should be 
in resonance (Newhouse and Wiener, 1991 ; Brown and Semelka, 1995; English and Moore, 
1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). This ensures 
that only protons in the selected slice will be excited and only those protons will flip and 
eventually produce an MR signal. 
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Figure 2.10: Diagrammatic representation of the slice-selecting gradient (G,). The slice-selecting gradient is 
applied with the RF pulse to excite the protons from a single slice selectively. 

2.2. 7.3 Frequency-encoding, read-out or X-axis gradient 
After slice selection, in order to generate an MRI image for that selected slice and to determine 
which voxel each portion of the emitted RF signal comes from, two other magnetic field 
gradients are applied, the frequency-encoding and the phase-encoding gradients. These two 
gradients are applied across the edges of the selected slice perpendicular to one another. 

The frequency-encoding gradient is activated during the time that an MRI signal echo is being 
received and hence it is also called the read-out gradient (Figure 2.11 ). The application of the 
frequency-encoding gradient is very important for spatial-encoding as it identifies lines or 
columns of pixels within the selected slice (Newhouse and Wiener, 1991; Brown and Semelka, 
1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins 
et al., 1997). 

With a transverse slice, the frequency-encoding gradient is usually applied in the X-direction 
during the detection or acquisition of the MR signal. This produces a magnetic field gradient 
from side to side, in the X-direction. Accordingly, protons in each different column of voxels 
along the X-direction will effectively experience different magnetic field strengths from other 
columns but protons within each particular column of voxels will experience the same magnetic 
field strength, and emit MR signals of the same frequency (Figure 2.12) (Newhouse and 
Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr 
and Allisy-Roberts, 1996; Higgins et al., 1997). 
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Figme 2.11: Diagrammatic representation of the frequency-encoding gradient (read-out gradient) (Gr), G$ is 
the phase-encoding gradient described in section 2.3.7.4. 

Figme 2.12: Diagram represents columns of transversal magnetic vectors, each precessing with different 
frequencies. As a result of the application of the frequency-encoding gradient dming the detection of the MRI 
signal, spatial position along the X-axis is encoded into the frequency content of the signal. 

2.2. 7.4 Phase-encoding or Y-axis gradient 
The frequency-encoding gradient performs spatial-encoding in only one axis of the imaged slice 
and this, understandably, will not be sufficient to generate an MRI image. This necessitates the 
application of another magnetic field gradient across the selected slice plane in the direction 
perpendicular to the frequency-encoding gradient. This magnetic field gradient is referred to as 
the phase-encoding gradient and is switched on in the time between slice excitation and signal 
collection (Figure 2.13), i.e. after the excitation of the slice but before the frequency-encoded 
readout (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; 
Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 
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With a transverse slice with the frequency-encoding gradient applied in the X-direction, the 
phase-encoding gradient is applied in the Y-direction. This produces a magnetic field gradient 
from the front to the back of the patient, in the Y-direction across the other edge of the selected 
slice. The result is that protons would precess at different frequencies in the Y-direction during 
the application of the phase-encoding gradient. Consequently, the protons will accumulate a net 
phase shift at the end of the phase-encoded pulse. Immediately after the phase-encoding 
gradient is turned off the protons begin once again to precess according to the magnetic field 
strength to which they are exposed. The application of the phase-encoding gradient is repeated a 
number of times, with the strength of the gradient increased a little each time (Newhouse and 
Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr 
and Allisy-Roberts, 1996; Higgins et al., 1997). In this case, the result of the subsequent 
application of the frequency-encoding gradient during the acquisition of the MR signal is that 
protons in the different columns of voxels along the X-direction will precess at different 
frequencies. However, protons in each particular column will effectively precess at the same 
frequency but at different phases. This is particularly important is order to achieve spatial
encoding for all the constituent voxels of the selected slice. 

The total acquisition time is directly related to number of the phase-encoding steps. Other 
factors that determine the total acquisition time include the repeat time (TR) and the number of 
signal averages (NSA) (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and 
Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 
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Figure 2.13: Diagrammatic representation of the phase-encoding gradient (G~). The phase-encoding gradient is 
applied many times during imaging depending on image matrix. Different phase-encoding steps use different 
gradient amplitude. 
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2.2. 7.5 Fourier transformation 
With the application of the phase encoding and frequency encoding gradients, the MR signal 
emitted by the constituent voxels of the selected slice is actually a multitude of spectrum of 
phases as well as frequencies. This complex MR signal is sampled and analyzed by a computer 
using a mathematical process called Fourier transform (FT). This is of crucial importance in 
spatial-encoding in order to determine the exact location in the body from which each portion of 
the emitted radio frequency signal comes from. The FT is, therefore, applied to each frequency
encoded line of data (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and 
Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

2.2.8 MRI pulse sequences 

2.2.8.1 Spin echo (SE) sequence 
The spin echo pulse sequence is the most commonly used pulse sequence. As previously 
mentioned (2.3.5.1.1), because of the inevitable inhomogeneity of both the external magnetic 
field and the deliberately applied magnetic field gradients, the protons lose phase coherence 
more quickly than would be the case if these magnetic fields were completely homogeneous 
(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 
et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). As a result of that, the MR or 
"free induction decay" (FID) signal decays very quickly with the time constant T2* and cannot 
be measured in practice. It is possible to compensate for the inhomogeneity of the static 
magnetic field and thus to overcome the effect of T2* by using a spin echo (SE) pulse sequence 
when performing an MR scan. However, SE will not eliminate the effect of the inhomogeneity 
of the internal magnetic environment of the protons that causes the T2 effect i.e. decay of the 
signal with the time constant T 2. 

In the SE pulse sequence (Figure 2.14), each 90° pulse is followed by a 180° pulse after a time 
(t) seconds. The idea of using the 180° pulse is to rephase the protons, therefore it is often called 
the rephasing or refocusing pulse (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 
1997). As a result, Mxy and the MR signal re-grow. After a further and equal time (t) seconds, 
Mxy and the MR signal will be at their peak as it is after this time that the protons would be once 
again completely in phase coherence. The time interval between the application of the 90° RF 
pulse and complete rephasing of the protons in the SE pulse sequence is known as the echo time 
or TE, which is equal to 2 t. The time between consecutive 90° pulses is the repeat time (TR). As 
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the SE pulse sequence does not eliminate the T 2 effect, the protons fall out of phase again, and 
Mxy and the MR signal decay with the time constant T2. 
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Figure 2.14: Diagrammatic representation of one cycle of the SE pulse sequence. After a 90°-excitation RF 
pulse, a 180° rephasing pulse is applied after a time t. A spin echo occurs at TE, which is equal to 2 t. 

2.2.8.1.1 Tissue contrast and weighted images 

In the SE pulse sequence, it is possible to obtain spin-echo MR images that are T 1-weighted, T2-

weighted or proton density-weighted by manipulating the TR and TE (Newhouse and Wiener, 
1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and 
Allisy-Roberts, 1996; Higgins et al., 1997). This is simply because the different tissues of the 
body have different proton densities and T I and T 2 relaxation times. A short TR is one that is 
about as short as the shortest T 1 in which we are interested. A long TR is approximately three 
times as long as a short TR. In practice, a TR of less than 500 ms is considered to be short and a 
TR of more than 1500 ms to be long. A short TE is one that is as short as possible and a long TE 
is about 3 times as long. A TE of less than 30 ms is considered to be short and a TE greater than 
80 ms is considered to be long in a clinical setting. 

A fairly short TR produces maximum contrast between tissues of different T 1• A fairly short TE 
(30 ms) is also used in order to minimize the effect of T2 on contrast. In general, the shorter is 
Ti, the stronger the signal and the brighter the pixel will be in the image (Newhouse and 
Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr 
and Allisy-Robe1is, 1996; Higgins et al., 1997). 

In contrast, a fairly long TE produces maximum contrast between tissues of different T 2. 

However, TE must not be so long that the signal is so small as to be obscured by background 
noise. A fairly long TR is also used in order to minimize the effect of T 1 on contrast. In general, 
the longer is T 2, the stronger the signal and the brighter the pixel will appear in the image 

I 
I 
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(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 
et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al. , 1997). 

Finally, a fairly long TR and a TE as short as possible produce maximum contrast between 
tissues of different poroton densities. This practically eliminates the effects of T 1 and T 2 and 
image contrast is then principally due to differences in the proton densities of the tissues. In 
general, the greater the proton density, the stronger the signal and the brighter the pixel will 
appear in the image (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and 
Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

2.2.8.2 Inversion recovery (IR) sequence 
The IR pulse sequence is a very useful way of accentuating T 1-weighting. In this sequence, an 
initial 180° RF pulse is used (Newhouse and Wiener, 1991; Brown and Semelka, 1995; English 
and Moore, 1995; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). This rotates the net 
tissue's longitudinal magnetization away from the main magnetic field by an angle of 180° i.e. 
Mo is reversed. Immediately after the 180 ° RF pulse is switched off the excited protons begin to 
lose energy to the surrounding and return from the high-energy state to the low-energy state as a 
result of the T1 effect. Mo will then recover and reverse its direction (Farr and Allisy-Roberts, 
1996). After a variable time called time to inversion (TI), a 90° RF pulse is applied (Figure 
2.15). This causes the available Mo to rotate away from the main field by 90 ° degrees and as a 
result, the net magnetization will be transverse (Mxy). When the 90° RF pulse is over, the Mxy 
vector so produced continues for a while to rotate in the transverse XY plane, producing an MR 
signal that will decay because of the T2 effect. To generate an echo signal, a second 180° pulse 
is then used. 

In the IR pulse sequence, the signal obtained depends on the strength of the longitudinal 
magnetization immediately before the application of the 90° pulse, which in tum is dependent 
on T1• So the result is a TI-weighted image (Newhouse and Wiener, 1991; Brown and Semelka, 
1995; English and Moore, 1995; Farr and Allisy-Roberts, 199; Higgins et al., 1997). 
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Figure 2.15: Diagrammatic representation of one cycle of the IR pulse sequence. A 180° RF pulse is used to 
invert M0. Soon after the 180° is terminated, M0 recovers with a time constant T 1. After TI, a 90° RF pulse is 
applied to rotate the available Mz 90°, thus converting it into transverse magnetization. A 180° refocusing pulse 
is then used. In IR sequence, TE is the time interval between the application of the 90° RF pulse and the 
acquisition of the MR signal. 

2.2.8.3 Short-TI inversion recovery (STIR) sequence for fat suppression 
This pulse sequence is particularly useful for fat suppression (Farr and Allisy-Roberts, 1996). 

The initial 180 ° pulse is followed after a short interval by a 90 ° pulse. The 180 ° pulse 

temporarily reverses the net magnetic vector Mo of both fat and water protons. When this RF 
pulse is over, the excited protons begin to lose energy to the surroundings and return from the 
high-energy state to their original low energy state and Mo recovers. Because of the shorter T 1 

of fat the Mo recovers more quickly in fat than in water. After about 120 ms approximately half 
the protons in fat would have reverted to the parallel position, and accordingly its Mo = 0 (Farr 
and Allisy-Roberts, 1996). In contrast, after this particular time, few of the protons in water 
would have reverted to the parallel orientation. Thus, after that particular time, water will still 

have some inverted M0. The application of a 90° pulse at this instant, understandably, produces 

a signal from water and other tissues but none from fat. 

2.3.8.4 Gradient (recalled) echo sequence (GRE) 
In GRE, 90° RF pulses are not usually used, rather RF pulses that cause "flip angles" smaller 
than 90° are used (Figure 2.16) (Newhouse and Wiener, 1991; Brown and Semelka, 1995; 
English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 

1997). With flip angles smaller than 90°, the longitudinal magnetization is not totally abolished. 
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Accordingly, there will be always a substantial amount of longitudinal magnetization left, that 
can be "tilted" by the next pulse. Further, a magnetic field gradient rather than a 180° RF pulse 
is used to refocus the dephasing protons. This is switched on for a very short time. Then it is 
switched off, and after a short time turned back on with the same strength, but in opposite 
direction. With GRE, the TR' s are thus shortened making imaging faster. 

In the GRE, increasing the flip angle leads to an increase in the amount of longitudinal 
magnetization that must recover an as recovery of longitudinal magnetization is T1-dependent, 
increasing the flip angle thus increases any differences that might be due to tissues having 
different T 1 values. Lowering the flip angle has opposite effects. It, therefore, follows that the 
flip angle controls the degree ofT1 contrast in gradient echo pulse sequences. 
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Figure 2.16: Diagrammatic representation of one cycle of the GRE pulse sequence. For standard gradient echo 
sequences, a single RF pulse with a reduced flip angle is used. The idea is to obtain transverse magnetization 
and to maintain a substantial amount ofM2 at the same time to be tilted by the next pulse. 

2.2.9 Characteristics of the magnetic resonance image 

2.2.9.1 Signal to noise ratio (SIN ratio) 
The SIN ratio is a measure of how grainy the MRI image appears. The greater the noise the 
smaller the MR signal appears and the more grainy the image will be. Noise has a deleterious 
effect on the quality of the MRI image as it reduces and obscures contrasts between tissues 
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(Newhouse and Wiener, 1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman 

et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

In nearly all clinical scanners, most of the noise results from the presence of the patient. The so 

called white noise actually results from currents having a wide range of radiofrequencies 

induced in the receiver coils by the thermal motion of the hydrogen atoms in the tissues being 

imaged. Noise may also be due to machine factors. 

The SIN ratio can be improved by either increasing the signal or reducing the noise or both. 

The signal can be increased by: 

(a) Increasing voxel size by increasing the field of view or slice thickness; 

(b) Decreasing TE; 

( c) Increasing TR; 

( d) Increasing the flip angle; or 

(e) Using a machine with higher field strength (Farr and Allisy-Roberts, 1996). 

The noise can be decreased by: 

(a) Increasing the number of averages (the number of excitations, NEX); or 

(b) Reducing the bandwidth of the receiver so that it picks up less of the spectrum of the 

noise frequencies (Farr and Allisy Roberts, 1996). 

2.2.9.2 Resolution 

Spatial resolution is a measure of how "sharp" the MRI image looks (Newhouse and Wiener, 

1991; Brown and Semelka, 1995; English and Moore, 1995; Edelman et al. , 1996; Farr and 

Allisy-Roberts, 1996; Higgins et al., 1997). Low resolution is indicated by either fuzzy edges or 

a pixelly appearance to the image. 

In MRI, spatial resolution is usually defined by the following equation: 

Pixel= Field of views (FOV)/matrix (2.2) 

2.2.9.3 Time 

The acquisition time for a conventional SE or Gradient echo sequence is, understandably, the 

product of the TR, phase-encoding steps, and number of averages (TR X phase steps X NEX) 
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(Newhouse and Wiener, 1991 ; Brown and Semelka, 1995; English and Moore, 1995; Edelman 

et al., 1996; Farr and Allisy-Roberts, 1996; Higgins et al., 1997). 

2.2.9.4 Relaxation effects 

Tl and T2 relaxation rates affect the SIN ratio in an MRI image. Increasing the TR up to about 

3-5 Tl times improves SIN ratio, as the longitudinal magnetization would have time to recover. 

On the other hand increasing the TE decreases the SIN ratio secondary to T 2 effects in SE 

sequences, and T2* effects in gradient echo sequences (Newhouse and Wiener, 1991; Brown 

and Semelka, 1995; English and Moore, 1995; Edelman et al., 1996; Farr and Allisy-Roberts, 

1996; Higgins et al., 1997). 



CHAPTER3 

CARDIOVASCULAR CONSEQUENCES OF 

DIABETES MELLITUS 

3.1 Introduction 

Diabetes mellitus represents a heterogeneous group of chronic metabolic disorders of high 
prevalence all over the world. It is characterized by a persistent inappropriate hyperglycaemia, 
in which the blood glucose level is persistently elevated above the normal range. Diabetes 
occurs as a result of either an absolute deficiency of secreted insulin (Type I or insulin
dependent diabetes mellitus; IDDM) or a relative insulin deficiency and an insulin resistance 
(Type II or non-insulin-dependent diabetes mellitus; NIDDM) (Weir, et al 1981). In addition to 
the persistent hyperglycaemia, diabetes is also associated with a wide range of metabolic 
abnormalities. These range from the acute development of ketoacidosis when there is a severe 
lack of insulin, to longer-term alterations of lipid and protein turnover. Diabetes mellitus is thus 
considered to be a multi-component hereditary disease involving all aspects of intermediary 
metabolism including carbohydrates, proteins, and fats . Nevertheless, a clinical diagnosis of 
diabetes is based upon demonstration of a persistent hyperglycaemia. 

Prolonged diabetes mellitus is associated with many systemic complications that remain its 
major cause of morbidity and mortality despite modem advances in management. This 
constellation of abnormalities involving various organs is thought to accumulate through the 
years of diabetic life and culminate in the late diabetic syndrome. 

3.2 Diabetic vascular disease 

Epidemiological studies demonstrate that diabetes mellitus is an important risk factor 
predisposing to the development of premature and accelerated disorder of large blood vessels, a 
condition known as macrovascular disease. Several reports have confirmed that diabetes is 
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associated with a substantial increase in the susceptibility to coronary artery disease (Crall and 
Roberts, 1978; Jarrett 1979; Kannel, 1985). 

Although a great deal of information is available about diabetes mellitus and its complications, 
there is some disagreement about the precise nature of the large vessel disease in diabetes. Some 
investigators have suggested that atherosclerosis simply is the predominant large vessel 
disturbance seen among patients with diabetes (Schwartz et al., 1992). Heickendorff et al. 
(1994) have more recently suggested that the macrovascular disease seen in diabetic patients is 
not simply synonymous with atherosclerosis. They suggest that a specific diabetic 
macroangiopathy coexists with the atherosclerosis itself even if enhanced atherosclerosis and its 
sequelae might remain the main cause for clinically manifest macrovascular disease among 
diabetic patients. 

Nevertheless, it is noteworthy that diabetes is associated with marked quantitative increase in 
the extent of atherosclerosis. The Framingham study demonstrates a substantially increased 
susceptibility in diabetic patients to atherosclerotic disease of the heart, legs, and brain (Kannel 
and McGee, 1979). Diabetics were found to have a twofold to threefold increased risk of 
clinical atherosclerotic disease. Moreover, macroangiopathy tends to become clinically obvious 
at an earlier age. Of particular interest is that the excess risk of experiencing clinical 
atherosclerotic disease and dying from a coronary heart disease event is substantially greater in 
diabetic women (Jarett, 1977; Kannel and McGee, 1979). This contrasts with the fact that male 
sex is one of the best-documented and most consistent risk factors for coronary atherosclerosis. 

There is also the important question as to whether patients with IDDM and NIDDM differ in 
their predisposition to macrovascular disease. Unfortunately, most studies do not always 
distinguish IDDM from NIDDM. Nevertheless, it is worthy noting that variations in 
susceptibility to macrovascular disease with diabetes mellitus may have a genetic basis and may 
reflect differences in the nature of the underlying metabolic disturbances. In addition, the 
increased prevalence of vascular disease with diabetes is strongly reinforced by many additional 
risk factors . A number of these; namely obesity, hypertension, hyperlipidaemia, and cigarette 
smoking have become well established to be related to the incidence of clinical vascular disease 
in epidemiological studies. Many of the modem views of these risk factors stem from the 
Framingham heart study (Kannel and McGee, 1979). An eventual understanding of the 
pathogenesis of diabetic macrovascular disease would greatly help in providing the correct basis 
for improving its prevention and management. 
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Diabetes mellitus is also known to be associated with an increased incidence of small vessel 
disease (microangiopathy) seen as retinopathy, nephropathy and neuropathy. The end results of 
diabetic retinopathy and nephropathy are blindness and renal failure (Stehouwer et al., 1997). 

One very important observation is the fact that the extent of microangiopathy in both IDDM and 
NIDM appears to be primarily related to the severity and duration of hyperglycemia and that 
meticulous glycaemic control markedly reduces its progression (Hanseen et al., 1986). In 
contrast, there is relatively little information concerning the relationship between effectiveness 
of diabetic control and the extent and progression of macrovascular disease. Lemp et al. (1987), 
in their retrospective study exploring the relation between the severity of diabetes and the risk of 
significant coronary artery disease, found that patients treated with insulin had the highest risk 
of coronary artery disease followed by patients treated by oral hypoglycaemic drugs and lastly 
patients treated with diet alone. Thus, severity of diabetes was an important predictor of 
coronary artery disease. In contrast, no correlation was found between the age at onset or 
duration of diabetes and the risk of significant coronary artery disease. 

3.3 Diabetic cardiac disease 

Ischaemic heart disease as consequence of coronary artery atherosclerosis is by far the most 
important cardiac complication of diabetes. Diabetes mellitus appears to increase the risk of 
ischaemic heart disease independently of the usual cardiovascular risk factors for coronary 
artery disease (Kannel, 1985). However, diabetes also leads to myocardial dysfunction and 
cardiac autonomic neuropathy. Diabetes has also been associated with the existence of a 
specific heart disease, termed diabetic cardiomyopathy (Goodwin and Oakley, 1972; Rubler 
et al., 1972; Hamby et al., 1974; Kannel et al., 1974). 

Most of the information we have concerning the prevalence and severity of coronary artery 
disease in patients with diabetes mellitus come from the Framingham heart study, which was a 
large population study initiated in 1948 and involved a cohort of 5209 diabetic men and women 
from the Tecumseh and Framingham communities in the US.A. The patients involved in this 
study were aged 30-62 years at the initial examination and were followed up biennially for 
cardiovascular events, which were related to prior evidence of diabetes (Kannel and McGee, 
1979). The Framingham study identified macrovascular disease as the chief cause of morbidity 
and mortality among diabetics. Such diabetics; in particular females, showed increased 
incidences of cardiovascular diseases and greater risk of congestive heart failure and 
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cardiovascular disease death (Kannel and McGee, 1979). Furthermore, this higher risk was 
independent of the usual risk factors for coronary heart disease (Kannel, 1985). 

However, several reports (Rubler et al., 1972) have reported that cardiomegaly and congestive 
heart failure can occur in diabetics with normal coronary arteries. Such abnormalities have been 
attributed to a diabetic cardiomyopathy (Rubler et al., 1972; Hamby et al., 1974) that has been 
also termed a "diabetic specific cardiac muscle disorder" (Goodwin and Oakley, 1972). 

Finally, diabetes impairs function in both peripheral and autonomic nerves leading to several 
clinical manifestations, collectively referred to as diabetic neuropathy. This may occur in as 
many as 40 % of diabetic patients (Ewing and Clarke, 1986). There is increasing evidence that 
the risk for cardiovascular autonomic neuropathy is associated with the HLA-DR3/4 genotype 
in insulin-dependent diabetes mellitus. There thus may exist a genetic predisposition (Barzilay 
et al., 1992). Furthermore, symptomatic autonomic neuropathy, although uncommon, is more 
frequent in IDDM as opposed to NIDDM (Neil et al., 1989). 

3.3.1 Ischaemic heart disease in diabetic patients 
It is well recognized that the major cause of myocardial infarction is occlusive thrombosis on an 
atheromatous plaque in a coronary artery. As already mentioned, the incidence of coronary 
artery disease and the risk of dying from a coronary artery disease event is greater in diabetics 
when compared with age matched non-diabetics (Jarrett, 1977; Kannel and McGee, 1979). 
Patients with coronary artery disease associated with diabetes also have been reported to have a 
higher incidence of silent ischaemia when compared with non-diabetic patients (Nesto et al., 
1988). This incidence probably is even higher among diabetic patients with accompanying 
peripheral vascular disease (Nesto et al., 1990). Thus, angina is not a reliable index of 
myocardial ischaemia in diabetic patients with coronary artery disease (Nesto et al., 1988). 
Diabetics may also suffer a higher incidence of silent myocardial infarction (Margolis et al., 
1973). However, both these observations contrast with other findings of no increase in the 
incidence of silent myocardial infarctions in patients with diabetes mellitus (Smith et al., 1983). 
The reasons for these differences are unclear and require resolution. 

In addition to the increased risk of myocardial infarction, patients with diabetes mellitus show a 
higher mortality following such acute myocardial infarction (Kereiakes, 1985). Explanations for 
this increased mortality are currently incomplete. The incidence of congestive heart failure and 
cardiogenic shock is higher among patients with diabetes following myocardial infarction 
(Kereiakes, 1985). Larger infarcts have been reported among patients with diabetes (Rennert et 
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al., 1985). In contrast, Jaffe et al. (1984) reported a smaller infarct size among diabetics who 

nevertheless had an increased incidence of congestive heart failure post-infarction. Orlander et 

al. (1994) also reported no difference in infarct size between diabetic and non-diabetic Mexican

American and non-Hispanic whites. Weitzman et al. (1982) reported an increased incidence of 

anterior myocardial infarction among patients with diabetes and observed that the combination 

of diabetes and anterior myocardial infarction predicts the highest mortality rate. Anterior wall 

myocardial infarction frequently involves more heart muscle and affects ventricular function 

more adversely than infarctions in other areas of the heart. 

Hyperglycaemia has also been thought to contribute to the increased mortality. Poor glycaemic 

control may correlate with increased mortality (Oswald et al., 1984). In contrast, good 

glycaemic control with intravenous infusion of insulin during the period immediately following 

myocardial infarction has been associated with decreased mortality (Clark et al., 1985). Finally, 

diabetic ketoacidosis frequently occurs in association with acute myocardial infarction. This 

serious situation has been associated with markedly increased mortality (Husband et al., 1985). 

The increased mortality in diabetic patients following myocardial infarction has also been 

attributed to the high fatty acid levels seen in diabetics with acute myocardial infarction, 

possibly associated with post-infarction arrhythmias (Oliver et al., 1968). 

3.3.2 Diabetic cardiomyopathy 

It was suggested in the early 1970s that diabetes is associated with a specific cardiomyopathy. 

The Framingham study reported that the higher incidence of congestive cardiac failure in 

diabetics could not be accounted for by their high incidence of coronary atherosclerosis, 

hypertension, or cardiac autonomic neuropathy (Kannel et al., 1974). Hamby et al. (1974) came 

to a similar conclusion and noted that the heart muscle can be independently involved in 

diabetic patients without large coronary artery involvement. A range of independent reports 

have supported this suggestion and reported that diabetics show abnormalities of left ventricular 

function despite the absence of obvious clinical heart disease (Ahmed et al., 1975; Sanderson et 

al., 1978). Furthermore, the significantly increased incidence of congestive heart failure and the 

greater mortality and morbidity among diabetics following acute myocardial infarction may be 

related to cardiac dysfunction associated with diabetic cardiomyopathy (Stone et al., 1989; Bell, 
1995). 



CHAPTER4 

THE PATHOLOGY OF DIABETIC 

CARDIOMYOPATHY 

The term cardiomyopathy implies any structural or functional abnormality of the ventricular 
myocardium. However, practically, all cardiac diseases can affect myocardial structure and 
function. Accordingly, the term cardiomyopathy is limited to conditions that primarily affect the 
myocardium as opposed to changes that are secondary to narrowing of extramural coronary 
arteries, systemic hypertension, anatomical valvular heart disease or congenital abnormalities of 
the heart and vessels. 

The suggestion of a specific diabetic cardiomyopathy as a separate pathological entity 
independent of coronary artery disease has prompted a large number of clinical and 
experimental studies to explore for possible underlying pathological processes. However, the 
pathogenesis and functional significance of diabetic cardiomyopathy and the factors that cause 
the associated deterioration of cardiac performance resulting in clinical heart failure are still 
obscure (Airaksinen et al., 1984a, b). Diabetic patients show a spectrum of left ventricular 
abnormalities ranging from normal through incoordinate or delayed relaxation, to heart failure. 
However, whether they result from a single common aetiology or from a range of differing 
disorders is unknown (Shapiro et al., 1981a, b; Shapiro, 1982). 

Furthermore, there is relatively little information as to whether the severity and duration of 
diabetes influence the development of left ventricular dysfunction and chronic heart failure or 
whether hypoglycaemic therapy influences progression. Sanderson et al. (1978), D'Eila et al. 
(1979), Fein et al. (1980), Friedman et al. (1982), and Vered et al. (1984) did not detect an 
association between myocardial dysfunction and the duration of diabetes even though the latter 
does influence the progression of the microvascular complications. In contrast, Shapiro et al. 
(1981 b) reported that the abnormalities in left ventricular function they observed among 
diabetic patients were related to the severity and duration of diabetes with a higher prevalence 
where there were severe microvascular complications. Furthermore, Shapiro et al. (1981a) 
reported a higher tendency to have more abnormal left ventricular function among diabetic 
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patients requiring insulin when compared with patients taking oral hypoglycaemic drugs or 
treated with diet alone. 

4.1 Vascular abnormalities 

4.1.1 Microangiopathy 
Diabetics, especially those with severe microvascular complications, have small vessel 
involvement of the coronary microcirculation analogous to those of retina and kidney (Ledet, 
1968, 1976). Three forms of microvascular disease of the myocardium are recognized in 
diabetes mellitus: intramural artery abnormalities, capillary basal laminar thickening, and 
arteriolar and capillary microaneurysms. 

4.1.1.1 Intramural artery abnormalities 
Blumenthal et al. (1960) reported endothelial cell proliferation and deposition of colloid fibrils 
and periodic acid-Schiff-positive (PAS-positive) material in the walls of medium-sized 
myocardial blood vessels of two thirds of hearts from diabetic patients but in less than one third 
of hearts from non-diabetic patients. Crall and Roberts ( 1978) observed similar histological 
changes in the diabetic heart. 

Ledet (1968, 197 6) also found periodic acid-Schiff-positive (PAS-positive) material in the 
smallest intramural coronary arteries of diabetics. Rubler et al. (1972) reported four diabetic 
patients, who presented with congestive heart failure of unknown cause with associated 
glomerulosclerosis. They found small-vessel disease in one case characterized by thickening of 
the wall and narrowing of the lumen caused by sub-endothelial thickening as a result of 
deposition of a periodic acid-Schiff-positive (PAS-positive) material in the sub-endothelial 
layers. There was also hypertrophy of the tunica media. Hamby et al. (1974) in their series of 
73 patients with the idiopathic form of primary myocardial disease found that 16 were diabetic. 
Three of these came to necropsy and all had small-vessel changes in the myocardium 
characterized by proliferation of endothelial lining cells. There was also myocardial 
hypertrophy and interstitial fibrosis . Additionally, Zoneraich et al. (1980) found abnormalities 
in small coronary arteries (20-150 µm in diameter) in 36 of 50 diabetic patients in the form of 
endothelial proliferation, sub-endothelial fibrosis, and deposits of hyaline in the intima. They 
also reported atheromatous thickening in these arteries. It is noteworthy, however, that Rubler et 
al. (1972) and Hamby et al. (1974) reported absence of major coronary artery disease. At 
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necropsy, Seneviratne (1977) also found that some of the intramural coronary arteries showed 
narrowing of their lumina due to focal deposition of mucopolysaccharide material in the sub
endothelial layers in one diabetic patient who died after bronchopneumonia one and half years 
after the initial study. 

The above-mentioned studies thus suggest that the specific diabetic cardiomyopathy might be 
caused by the micoangiopathy seen in the myocardium in diabetes rather than the metabolic 
defect. The clinical echocardiographic study of Sanderson et al. ( 1978) also supports the 
microvascular disease theory. Most of the examined patients had evidence of small-vessel 
disease in their retinae. 

4.1.1.2 Capillary basal laminar thickening 
The thickening of capillary basement-membrane associated with diabetic retinopathy and 
nephropathy is well-documented (Williamson and Kilo, 1976). One quantitative light 
microscopy study of diabetic hearts reported that diabetic microangiopathy in the heart was 
limited to arterioles ( defined as vessels with a tunica media containing at least two cell layers) 
and that the myocardial capillaries were spared and their walls were not thickened or more PAS
positive in diabetics, in striking contrast to other organs (Ledet, 1976). However, Williamson 
and Kilo (1976) reported that structural alterations affected most, if not all, of the capillaries of 
the diabetic. 

In a detailed study of capillaries in skeletal muscle il(im diabetic and non-diabetic subjects, it 
has been suggested that the basal laminar thickening actually consists of successive layers or 
lamellae of the basal lamina concentrically arranged around capillaries. This gives the 
appearance of laminations that might reflect remnants of repeatedly degenerating and 
regenerating capillary components (Vracko and Beditt, 1970). In contrast, Fischer et al. (1979) 
observed that endothelial cells or pericytes did not show such degenerative changes and that the 
myocardial capillary wall thickening was only rarely multi-lamellar in nature. However, Fischer 
et al. (1979) reported a significant increase in the thickness of capillary basal lamina in biopsied 
myocardial tissue obtained from overt diabetics. However, the average thickness of basal 
laminae in myocardial capillaries was narrower than that reported in capillaries within skeletal 
muscles. 
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4.1.1.3 Arteriolar and capillary microaneurysms 
Typical diabetic capillary microaneurysms have been reported in organs such as the eye and 
kidney, which together with thickening of the capillary basement membrane are the hallmarks 
of diabetic microangiopathy. In addition, a post-mortem injection study of 6 diabetic patients 
and 8 non-diabetic subjects revealed typical saccular and fusiform microaneurysms involving 
the arterioles and capillary limbs in the hearts of 3 diabetic patients and in none of the controls 
(Factor et al., 1980). These microaneurysms were similar to those observed in the retinal vessels 
of diabetic patients. The saccular aneurysms appeared as nodular expansions with irregular 
surfaces, usually along one side of the vessel wall away from a branch point. Their diameter 
was frequently two to three times that of the vessel from which they arose. 

4.2 Metabolic, myocyte and interstitial changes 

There has been considerable interest over recent years in the myocardial cellular changes as 
well as the mechanisms producing the possible abnormalities in myocardial contraction and 
relaxation in diabetes. Recent evidence has suggested changes in myocardial cell function. 
Factor et al. (1981) in their study of four groups of rats with either no disease (control), 
streptozotocin-induced diabetes mellitus, renovascular hypertension, or a combination of 
diabetes and hypertension reported that diabetes mellitus alone produced no morphologic light 
microscopic changes in the myocardium of diabetic rats. In contrast, the diabetic-hypertensive 
rats had relative cardiac hypertrophy and significantly increased interstitial fibrosis when 
compared with the other three groups. Furthermore, although the hypertensive rats showed less 
myocardial damage than the diabetic-hypertensive rats, they had significantly more perivascular 
fibrosis and vascular sclerosis than the diabetic-hypertensive animals, despite similar systolic 
blood pressure levels during life. 

It is possible that diabetes is associated with alterations in myocardial cells themselves and that 
this in tum contributes to cardiac dysfunction in untreated diabetics. A number of factors may 
contribute to the primary myocardial changes in diabetes. First, some evidence suggests that 
associated metabolic changes may play a part. Several prospective studies have reported 
frequent abnormalities of left ventricular function in diabetics with uncontrolled 
hyperglycaemia, which improved with restoration of metabolic control (Shapiro et al., 1980; 
Uusitupa et al., 1983). 
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Shapiro et al. (1981a) have also reported more abnormalities of left ventricular function in 
patients, who at the time of the investigation required insulin than in those taking oral 
hypoglycaemic agents or treated with diet alone. 

Weir et al. ( 1981) treated Wistar rats with streptozotocin at 2 days of age resulting in a diabetic 
model that developed chronic hyperglycaemia at about 6 weeks of age. The diabetic state was 
not sever and therefore did not require insulin treatment and in this respect resembled human 
non-insulin-dependent diabetes mellitus. Schaffer et al. (1985) injected Wistar rats with 
streptozotocin at 3 days of age. These rats developed marked glucose intolerance by 6 weeks of 
age as determined by intraperitoneal glucose tolerance test (2 g/kg). However, the rats had 
fasting and non-fasting blood glucose levels at or near normal. These rats also developed a 
cardiomyopathy that resembled the condition in human non-insulin-dependent diabetes mellitus. 
This condition was progressive and involved both contractile and metabolic functions. 

Changes in myocardial fatty acid metabolism leading to triglyceride accumulation in the 
myocardium may also be involved in the pathogenesis of diabetic cardiomyopathy (Paulson and 
Crass, 1980). 

Secondly, Fischer et al. (1979) reported that the most frequently observed morphological 
abnormalities in biopsied myocardial tissue obtained from over diabetics were myocardial cell 
hypertrophy and varying degrees of interstitial fibrosis. Other studies have also demonstrated 
hypertrophy of the myocardium (Rubler et al., 1972). 

Thirdly, diabetes is associated with abnormalities in calcium transport processes in ventricular 
myocytes. The cardiac sarcoplasmic reticulum is the source of activating calcium in the heart 
(Solaro and Briggs, 1974). Alteration in its function could also affect mechanical relaxation 
(Dhalla et al., 1998). The cardiac sarcoplasmic reticular ATP-dependent calcium transport (Ca2

+ 

pump) was significantly depressed in streptozotocin-induced diabetic rats (Ganguly et al., 
1983). 

Ganguly et al. ( 1983) also reported depressed Ca2
+ -stimulated ATPase activities of cardiac 

myofibrils. They went on to demonstrate that the defect in sarcoplasmic reticular calcium 
transport develops gradually through the disease process. Thus, depressed sarcoplasmic reticular 
ATP-dependent calcium uptake was not evident despite highly elevated blood glucose levels for 
up to 28 days after streptozotocin injection. These changes were reversed by insulin treatment. 
Thus, Ganguly et al. (1983) provided evidence that the depression in sarcoplasmic reticular 
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calcium accumulation might result from insulin deficiency and its associated chronic metabolic 

changes. Insulin replacement therapy has similarly been observed to restore papillary muscle 

contractile performance to normal during chronic diabetes (Fein et al., 1981). 

Fourthly, the diffusion distance of oxygen to myocardial mitochondria in streptozotocin-induced 

diabetic rats with a 40-50 day diabetes was significantly increased when compared to control 

rats, thereby reducing the oxygen supply to the underlying mitochondria. This could lead to 

myocardial functional abnormalities (Warley et al., 1995). 

Finally, the myocardial interstitium may also alter in diabetes. Warley et al. (1995) reported a 

threefold increase in extracellular components of the left ventricle of streptozotocin-induced 

diabetic rats. This often takes the form of interstitial fibrosis (Rubler, 1972; Regan et al., 1981 ). 

4.3 Role of angiotensin II 

Angiotensin II has been reported to induce cardiac growth responses in isolated adult rat hearts 

(Schunkert et al., 1995). Angiotensin II also induces proliferation of fibroblasts isolated from 

the rat heart (Schorb et al., 1993). It has thus been suggested that angiotensin II is responsible 

for the increased myocardial and blood vessel :fibrosis observed in some forms of cardiac 

hypertrophy and cardiomyopathy through an intracardiac renin-angiotensin system (Dostal et 

al., 1992a, b ). Rosen et al. (1995) recently reported that the renin-angiotensin system is 

activated in diabetes leading to an enhanced production of angiotensin II. Therefore, angiotensin 

II may well cause the myocardial interstitial :fibrosis that in tum leads to the increase in 

myocardial stiffness in diabetics. 

The beneficial effects of angiotensin-converting enzyme inhibitors in the treatment of 

hypertension and congestive heart failure is well known (Cohn and Levine, 1982). Angiotensin

converting enzyme inhibitors have also been shown to induce regression of left ventricular mass 

in essential hypertension (Dunn et al., 1984). Finally, streptozotocin-diabetic rats have been 

found to have increased levels of angiotensin converting enzyme (ACE) in their left ventricular 

tissue and a decrease in left ventricular developed pressure. These changes were prevented by 

treatment with the angiotensin converting enzyme inhibitor enalapril (Goyal et al., 1998). It was 

the latter findings that prompted the inclusion of MRI examination of the effect of captopril in 

the present study. 
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CHAPTERS 

PHYSIOLOGICAL STUDIES OF CARDIAC 

FUNCTION IN DIABETES 

Impaired left ventricular function has frequently been detected in diabetics without clinical heart 
disease (Shapiro et al., 1980, 198 la, b; Shapiro, 1982). Thus, diabetic cardiomyopathy may well 
pass through an asymptomatic phase when left ventricular function is nevertheless impaired. 
Cardiac function in diabetes has been evaluated both in humans and animals by several 
techniques. 

5.1 Experimental animal studies 

A number of measurements of cardiac performance have been made in experimental animal 
models of diabetes. Haemodynamic studies of dogs made mildly diabetic for 11 months with 
alloxan suggested an increased diastolic stiffness ofleft ventricular muscle (Regan et al., 1974). 
Two methods were used to characterize left ventricular function. First, angiotensin infusion 
produced moderate elevations in aortic diastolic pressure, thus, resulting in a moderate increase 
in afterload. This led to a significant rise in end-diastolic and stroke volumes in normal control 
dogs. In contrast, there was no increase in end-diastolic volume in diabetic dogs. Secondly, the 
dogs were infused with normal saline via a catheter in the left ventricle. This produced a 
significantly higher rise in end-diastolic pressure in the diabetic dogs, which was twice that in 
the control dogs. These abnormalities might have resulted from altered wall compliance or 
impaired ventricular relaxation. 

Studies of isolated perfused hearts from diabetic rats demonstrated decreased peak systolic 
pressures (Miller, 1979). There have also been a number of studies of isolated papillary 
ventricular muscles from diabetic rats. Fein et al. (1980) reported a delayed onset and a slower 
rate of relaxation characterized by a prolonged time for peak developed tension to fall to 50% 
during isometric relaxation. The velocity of shortening was also depressed at all loads during 
isotonic contraction. Warley et al. (1995) have also reported significant increase in time to 75% 
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relaxation, which indicates prolonged relaxation. In addition, the time to peak tension was also 
significantly increased and the sensitivity to increased concentrations of calcium and adrenaline 
in the bathing medium was reduced in the isolated muscles (Warley et al., 1995). 

5.2 Human studies 

Many clinical studies have detected frequent abnormalities ofleft ventricular function that could 
be attributed to a pre-clinical cardiomyopathy in diabetic patients without clinically obvious 
heart disease. Thus, subtle abnormalities may exist in the course of diabetes in persons 
previously considered free of chronic cardiac complications. Some of the clinical studies 
performed were non-invasive and used systolic time intervals and echocardiography to detect 
the early abnormalities in left ventricular function. Invasive studies by the use of 
ventriculography were also performed to detect these abnormalities. 

5.2.1 Systolic time intervals 
Systolic time intervals allow timing of particular events that occur during the cardiac cycle and 
relate them to the mechanical state of the left ventricle. Systolic left ventricular function and 
abnormalities, thus, can be assessed by measurements of the systolic time intervals although 
these time intervals do not identify the cause. Such abnormalities have even been demonstrated 
in diabetics without clinically obvious heart disease. 

The calculation of the systolic time intervals involves external carotid pulse recording from 
carotid arterial pulsations in the neck, phonocardiography and electrocardiograhy (ECG) (Katz, 
1992). The upstroke of the carotid pulse correlates with the beginning of left ventricular systole. 
In contrast, the dicrotic notch coincides with the closure of the aortic valve at the end of proto
diastole. The ECG defines the onset of electrical systole in the left ventricle since the initial 
deflection of the QRS complex is produced by left ventricular depolarization. Mechanical 
systole in the left ventricle begins shortly before closure of the mitral valve and thus is marked 
by the first heart sound (S 1) in phonocardiography. Phonocardiography can also identify the end 
of proto-diastole, which is marked by the second heart sound (S2). 

The Q-S2 time is one of the commonly used systolic time intervals. It is measured from the 
beginning of ventricular depolarization as detected by the electrocardiographic QRS complex to 
the end of proto-diastole marked by the high frequency vibration of S2 in phonocardiography. 
Thus, it represents the total duration taken by electromechanical systole (plus proto-diastole). 
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This systolic time interval can be further subdivided into three phases: the Q-S1 interval 
measured from the beginning of the QRS complex in the ECG to the beginning of S1 in 
phonocardiography, the isovolumic contraction time measured from S1 to onset of the rise in 
aortic pressure, and left ventricular ejection time (L VET) measured from the onset of carotid 
upstroke to the dicrotic notch. Thus, Q-S 1 is physiologically correlated to the time interval 
between electrical excitation and the onset of contraction, while the isovolumic contraction time 
and the L VET represent the rate of pressure generation within the ventricles and the time 
required for total ejection (plus proto-diastole) respectively. 

Left ventricular pre-ejection period (PEP) is another systolic time interval in common use. It is 
correlated physiologically to the isovolumic contraction time plus the Q-S1 interval and thus can 
be measured by subtracting the L VET from the Q-S2. 

Reduced myocardial contractility prolongs the PEP and shortens the L VET. Thus, the 
PEP/L VET ratio is increased in patients with left ventricular systolic dysfunction due to reduced 
myocardial contractility. 

Seneviratne (1977) assessed left ventricular function by measuring systolic time intervals in 28 
insulin-requiring diabetic patients with (n = 14 patients) and without (n = 14 patients) 
significant microangiopathy. Significant microangiopathy was diagnosed through the existence 
of either a proteinuria over 3 g/24 h or of proliferative retinopathy. The PEP/L VET ratio 
increased significantly in the fourteen diabetics with significant microangiopathy (all were 
women), indicating impaired left ventricular function. In contrast, the fourteen patients with 
uncomplicated diabetes had normal left ventricular function using this criterion. The strict 
selection of patients free of angina and previous myocardial infarction and with normal 
electrocardiograms and chest radiographs excluded coronary heart disease as a cause of the 
increase in PEP/L VET in the diabetics with microangiopathy. Seneviratne (1977) accordingly 
attributed these abnormalities to a specific diabetic cardiomyopathy due to microangiopathy 
rather than the metabolic defect. 

Shapiro et al. ( 1980) demonstrated frequent abnormalities of left ventricular function as 
reflected in the systolic time intervals and echocardiography in 69 matum onset diabetics 
without clinically obvious heart disefise before and during standard hypoglycaemic treatment. 
The PEP/L VET findings during the first two months of treatment identified two groups of 
patients. The first group had a normal or slightly raised ratio, which fell with treatment. In the 
second group, the ratio was significantly higher and did not alter even after four months of 
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treatment. The persistently high PEP/L VET ratio in the latter group suggested significant left 
ventricular dysfunction. Shapiro et al. (1981a, b) and Uusitupa et al. (1985) have also reported 
abnormal systolic time intervals among patients with diabetes suggesting that left ventricular 
function may become impaired early in the clinical course of diabetes. 

Cellina et al. (1983) also reported a more prolonged PEP and a shorter LVET and consequently 
a higher PEP/L VET ratio among patients with gestational diabetes and also among pregnant 
women with clinical diabetes. These abnormalities were detected at the third trimester of 
pregnancy. Interestingly, these abnormal systolic time intervals returned to normal 5 weeks after 
delivery in patients with gestational diabetes but remained abnormal in patients with clinical 
diabetes. A good correlation was also found between the abnormal systolic time intervals seen 
in diabetics and the levels of glycosylated haemoglobin. This shows the importance of 
glycaemic control in diabetic cardiac dysfunction (Jermendy et al., 1984). 

5.2.2 Echocardiography 
Sanderson et al. (1978) studied 23 young diabetic patients of whom 19 had retinopathy. All 
patients had normal blood pressures, were in sinus rhythm, had normal chest radiographs and 
their electrocardiograms showed no evidence of clinically obvious heart disease. The close time 
relation between mitral valve movement and wall movement was lost in fourteen patients with 
opening of the mitral valve delayed in eight of these fourteen patients. Thus, these patients 
showed an abnormally prolonged left ventricular isovolumetric relaxation time reflecting 
abnormalities of diastolic function that may reflect sub-clinical heart disease. Other 
echocardiographic studies have also reported abnormally prolonged left ventricular 
isovolumetric relaxation times among diabetics (Shapiro et al., 1980, 1981a, b; Shapiro, 1982; 
Airaksinen et al., 1984a). Thus, diastolic abnormalities of left ventricular function may well 
occur in diabetes. 

Shapiro ( 1982) studied left ventricular diastolic function in 142 diabetic patients free from 
clinically obvious heart disease, hypertension and conditions known to influence left ventricular 
function and derived the following measurements from simultaneous echocardiography and 
phonocardiography: 

(1) End-diastolic posterior wall thickness (cm) and peak rate of change of posterior wall 
thickness in early diastole (emfs). 

I 
11\1 It 

I 
~ 

I 

,I 



Q!APTER 5 PHYSIOLOGICAL STUDIES OF CARDIAC FUNCTION IN DIABETES 51 

(2) The duration over which the posterior wall showed rapid thinning (ms). This is 
arbitrarily defined as time taken for the posterior wall to stretch from its maximum 
thickness to 20% of that peak value. 

(3) The peak rate of increase in left ventricular dimension during early diastole (cm/s). 
( 4) The duration over which the left ventricular dimension showed rapid increase in 

early diastole, arbitrarily defined as the time taken for the peak rate of increase in 
left ventricular dimension to become 20% of its value (ms) 

(5) The time interval (ms) form the left ventricular minimal dimension to the onset of 
mitral valve opening (measured at cusp separation) and from the first low frequency 
vibrations of the second heart sound (A2) to mitral valve opening (isovolumetric 
relaxation time) . 

(6) The change in left ventricular dimension during isovolumetric relaxation, expressed 
as percentage of total dimension change during the cardiac cycle. 

All the diabetic patients in this study had a normal wall thickness. The diastolic parameters of 
left ventricular function were normal in the 12 young patients who had no diabetic 
complications. The remaining diabetic patients showed a significantly delayed mitral valve 
opening relative to time at which the left ventricular dimension was at its minimum dimension 
and this could be attributed to a prolonged isovolumetric relaxation. The patients with severe 
complications showed significant abnormalities in their peak rates and duration of posterior wall 
thinning. Thus, the primary myocardial abnormality in diabetes is a prolonged duration and 
reduced rate of posterior wall thinning combined with impaired left ventricular relaxation. 

Friedman et al. (1982) studied 33 children with IDDM (only one of them had retinopathy and 
none had proteinuria, hypertension or clinical evidence of neuropathy). Computerized methods 
were used to derive velocities of left ventricular circumferential fibre and minor axis shortening 
from echocardiographic data. Left ventricular volumes were also computed and ejection 
fractions were calculated from these data. Many of the diabetic children showed abnormal 
myocardial performance. Patients and control subjects showed indistinguishable left ventricular 
end-diastolic volumes. In contrast, the diabetics had larger left ventricular end-systolic volumes, 
lower left ventricular ejection fractions and minor axis shortening, and higher ratios of left 
ventricular end-systolic dimension to left ventricular systolic wall thickness (L VESD/L VSWT). 
Since the diabetics had normal left ventricular wall thicknesses, their increased 
L VESD/L VSWT could not be related to differences in wall thickness. The mean velocity of 
circumferential fiber shortening was less in diabetics than in the normal children. The increased 
end-systolic dimension reflecting incomplete emptying of the ventricle during systole together 
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with the decreased ejection fraction indicate a myocardial dysfunction that may reflect 
subclinical cardiomyopathy early in the disease, that precedes the appearance of small vessel 
abnormalities. Lababidi and Goldstein (1983) also reported a decrease in myocardial 
contractility in diabetic children. Additionally, they detected interventricular septa! hypertrophy 
in their adolescent population. 

However, there are a number of conflicting reports arising from echocardiography concerning 
cardiac dimensions and function in diabetes. First, one group of studies reported normal or 
modest dilatation of the left ventricle (Shapiro et al., 1981a; Friedman et al., 1982; Fisher et al., 
1989). In contrast, Airaksinen et al. (1984a, 1987) reported a reduction in left ventricular size 
among diabetics. Secondly, whereas some reported an increase in left ventricular thickness in 
diabetics (Airaksinen et al., 1984a, 1987), Friedman et al. (1982), Shapiro et al. (1981a), and 
Fisher et al. (1989) reported no changes in the thickness of the posterior wall of the left 
ventricle. Thirdly, whereas several echocardiographic studies reported a depressed left 
ventricular function with advanced diabetic complications as described above (Shapiro et al., 
1981a, b, Uusitupa et al., 1985), other investigators have reported a normal left ventricular 
systolic function (Airaksinen et al., 1984b; Fisher et al., 1989). Surprisingly, Thuesen et al. 
(1988) reported an enhanced systolic function in insulin-dependent patients developing 
microvascular complications. 

5.2.3 Radionuclide ventriculography 
D'Elia et al. (1979) studied fifteen juvenile onset diabetics with severe nephropathy who were 
free of significant coronary artery disease using cardiac catheterization, coronary angiography 
and ventriculography. Their myocardial function fell into three groups. Four patients showed a 
cardiomyopathy with a diffusely abnormal ventriculography, reduced ejection fraction, and 
elevated left ventricular end-diastolic pressure. Four patients showed an elevated left ventricular 
end-diastolic pressure as the sole abnormality. The remaining seven showed normal myocardial 
function. 

Other investigators, also using radionuclide ventriculography, have reported normal resting left 
ventricular ejection fractions with an abnormal response to dynamic exercise (Vered et al., 
1984; Fisher et al., 1985, 1986; Arvan et al., 1988). In contrast, Zola et al. (1986) reported 
significant reductions in mean left ventricular ejection fractions in diabetics with cardiac 
autonomic neuropathy at rest as well as after maximal exercise. 
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5.2.4 Cardiac magnetic resonance imaging 
It is thus clear that a range of techniques can be used to identify and quantify cardiac changes in 
diabetes. However, until recently no single non-invasive technique has been able to characterize 
all the structural and the functional-dependent features of the myocardium in diabetic 
cardiomyopathy. 

Until recently, magnetic resonance imaging (MRI) was not a feasible physiological tool for 
studying cardiac function because of its inherently long imaging times and motion artefacts 
associated with contraction of the heart. Recent innovations in magnetic resonance system 
hardware and pulse sequences have overcome these limitations and allowed rapid imaging to 
offer exceptional opportunities to obtain reliable cardiac images amenable to quantitative 
measurements of anatomical and functional characteristics of the heart (Herfkens et al., 1983; 
Crooks et al., 1984; Higgins, 1986). In addition, cine magnetic resonance of the heart offers a 
sensitive approach to detecting blood in the chambers of the heart and has been reported to 
measure accurately left ventricular volumes and to detect dysfunctional myocardium using spin 
or gradient echo sequences (Higgins, 1986). Both techniques have also proved useful for 
accurate measurement of right and left ventricular volumes and for qualitative and quantitative 
evaluation of right and left ventricular anatomy and function (Higgins, 1986; Stratemeier et al., 
1986; Markiewicz et al., 1987; Sechtem et al., 1987; Semelka et al., 1990). 

Many of the MRI-derived anatomical and functional parameters of the left ventricle have been 
validated by many investigators (Stratemeier et al., 1986; Sechtem et al., 1987; Semelka et al., 
1990). 

Additionally, MRI can provide complete anatomical reconstruction of both ventricles and 
characterize changes through the cardiac cycle. Finally the non-invasive nature of the MRI 
allows serial experimental animal studies to be performed. 

It would therefore appear that MRI offers an excellent method for assessing qualitative and 
quantitative bi ventricular morphology and function in diabetes. Yet, no such MRI studies have 
been performed on diabetic patients or diabetic animals aiming at characterizing the 
morphological and functional alterations of the left and right ventricles associated with diabetic 
cardiomyopathy. Furthermore, most if not all of the studies done so far on diabetic patients or 
diabetic animals using other techniques to identify and quantify cardiac changes in diabetes 
have concentrated on evaluating the morphology and function of the left ventricle only. 
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CHAPTER6 

MATERIALS AND METHODS 

6.1 Experimental animals 

All animal procedures used protocols approved by the Home Office, UK, and were in 
accordance with the Animal Procedures Act (1986). The experiments studied a total of 20 male 
fully conditioned, healthy, and pathogen-free Wistar rats (6-week old), obtained from Harlan, 
UK. These were reared in the animal facilities of the Central Biomedical Service of the 
University of Cambridge under standard housing conditions and fed a normal animal chow with 
water ad libitum. The animals were divided at random into 5 groups. Diabetes was induced in 
animals in 4 of the groups ( each n = 4) with a single intraperitoneal injection of streptozotocin 
(STZ 65 mg/kg body weight, Sigma-Aldrich Co., Poole, Dorset, UK) as described below. The 
fifth group (n = 4) was kept as a control group. Two groups of the test animal were made 
diabetic at the age of 7 weeks and the other 2 groups were made diabetic at the ages of 10 and 
13 weeks respectively. 

All the animals, including the 4 in the control group, were scanned at the age of 16 weeks. The 
experimentally induced diabetic state accordingly was maintained for a duration of 3 weeks 
before scanning in the group made diabetic at the age of 13 weeks and for 6 weeks and 9 weeks 
for the groups made diabetic at the ages of 10 weeks and 7 weeks respectively. For the purpose 
of simplicity, these groups will be referred to as the 3-, 6-, and 9-week diabetic groups 
respectively. Since diabetes was induced at the age of 7 weeks in 2 experimental groups, this 
work, thus, involved two 9-week diabetic groups. For one of these 2 groups, chosen at random, 
immediately after induction of diabetes, commercially available captopril (Sigma-Aldrich Co ., 
Poole, Dorset, UK) was added to the drinking water of that group at a concentration of 2 g/1. 
The rats of this experimental group were kept on captopril-containing drinking water till they 
were scanned at the age 16 weeks. Since the rats in the control group were imaged at the same 
age of 16 weeks as the rats in the 4 diabetic groups were scanned, this would serve as an age 
and sex matched control for all the 4 diabetic groups. The 4 different diabetic groups 
accordingly provided controlled diabetic groups in which the disease state had developed for 3 
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different durations. They thus provided an indication of the time course of the appearance and 
development of the possible effects of diabetes on the structural and functional parameters of 
the left and right ventricles. Furthermore, the 9-week captopril-treated diabetic group was used 
to evaluate the beneficial therapeutic effects of captopril in the prevention of the anatomical and 
the pathophysiological changes in the cardiac cycle produced by diabetic cardiomyopathy. 

The ages at induction of diabetes used in this study were selected on the basis of previous 
findings with the STZ-diabetic rat model (Rodrigues et al., 1997). In all the animals, body 
weight was monitored every 3 days and blood glucose every 2 weeks using a glucometer. 

6.2 Induction of diabetes 

The experiments thus used the widely used experimental model of STZ-induced diabetes 
(Warley et al., 1995). The rats in each of the 4 experimental groups made diabetic were first 
anaesthetized using 1-2 % halothane (Sigma-Aldrich Co. Poole, Dorset, UK) in oxygen (British 
Oxygen Gas, UK); their blood glucose levels were then measured using a blood glucometer. 
This was followed by a single intraperitoneal injection of streptozotocin (STZ 65 mg/kg body 
weight; Sigma-Aldrich Co. Poole, Dorset, UK) dissolved in 0.1 ml citrate buffer (Sigma
Aldrich Co. Poole, Dorset, UK), pH 4.5. The control rats received sham injections of the citrate 
buffer when they were 7 weeks old. STZ at a moderate dose of 55 - 65 mg/kg body weight is 
known to produce a stable diabetes of modest severity that would nevertheless eventually lead 
to structural and functional myocardial abnormalities in Wistar rats (Warley et al., 1995; 
Rodrigues et al. , 1997). Hyperglycaemia (blood glucose level>13 mmol/1) ensued 48 h post
STZ. Blood glucose levels measured 2 weeks after injection always exceeded 13 mmol/1. 

Figure 6.1 (next page): Diagrammatic representation of the experimental design. 
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6.3 Physiological monitoring 

Prior to each imaging session, rats were anaesthetized using 1-2 % halothane (Sigma-Aldrich Co. Poole, Dorset, UK) in oxygen (British Oxygen Gas, UK). Their systolic blood pressures were then measured using a non-invasive rat-tail blood pressure monitor (Harvard Apparatus, Edenbridge, Kent, UK). Tables 7.1 and 7.2 summarizes such systolic blood pressure values for the 5 study groups. This measurement was repeated soon after MRI to confirm that the systolic blood pressure remained stable within reasonable physiological limits. 

Shielded subcutaneous electrodes were used for electrocardiographic (ECG) recording and display using a Tektronix 2225 oscilloscope (Tektronix, Harpenden, Herts). These signals enabled imaging acquisition to be synchronized or gated to the QRS complex of the electrocardiogram (ECG). The ECG signals also enabled a continuous monitoring of the heart rate throughout the imaging sessions. 

Following establishment of stable ECG trigger signal (Figure 6.2), the anaesthetized animal was then placed in a specially designed home-built half sine-spaced birdcage radiofrequency probe. 

p 

QRS (R wave trigger point) QRS 
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Figure 6.2: Diagrammatic representation of the ECG waves displayed during cardiac imaging in the rat. With an average heart rate of 300 beats Min- 1
, the duration of the cardiac cycle represented by the R-R interval is 200 ms. End-diastole coincides with the R wave of the electrocardiographic QRS complex representing ventricular depolarization. Signal was acquired at twelve time-points through the cardiac cycle with a delay of 

8, 21 , 34, 47, 60, 73, 86, 99,112,125,138, and 151 ms after the trigger, taken from the R wave of the ECG, thus covering the whole systole and most of diastole. P and T represent atrial depolarization and ventricular 
repolarization waves respectively. 
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6.4 Radiofrequency (RF) probe 

Figure 6.3: An assembly containing a half sine spaced birdcage radiofrequency (RF) probe. This 

assembly was built at the Herchel Smith Laboratory for Medicinal Chemistry, Cambridge University, and was 

designed to fit inside a gradient set of an internal diameter of 11 cm. It was contained within a cylindrical 

plastic holder (CP) and included the RF probe unit, which is made up of an RF probe (BC), which was 

approximately half cylindrical in shape with open ends, an RF shield (SH) consisting of a cylinder of copper 

gauze surrounding and sliding over the birdcage, a tuning capacitor (TC), and a coaxial cable (CC) to carry the 

RF. This assembly also included the ECG leads (EL), attachment plugs for the ECG leads (EN) and a unit to 

anchor anaesthetic delivery tubes near the nose of the animal (AN). The ruler in the foreground is 30 cm long. 

The home-built radiofrequency probe was approximately half cylindrical in shape, of 4.5 cm 

internal diameter and with both ends open (Figure 6.3). It was designed to fit inside the bore of 

a gradient set of 11cm internal diameter. It incorporated delivery tube assemblies that delivered 

the anaesthetic gases and additionally provided secure attachments for the ECG leads. It 

therefore provided a self-contained assembly for the physiological monitoring of the animal 

lying in the half cylinder that was inserted into the magnet bore for magnetic resonance 

imaging. 



CHAPTER 6 MATERIALS AND METHODS 59 

6.5 Magnetic resonance imaging 

6.5.1 Imaging hardware and pulse sequence 
All the experiments were performed in a 2 Tesla Oxford instrument superconducting magnet 

with a horizontal internal bore of 31 cm. A home built gradient set of 11cm internal diameter 

designed to fit in the 31cm bore of the 2-Tesla horizontal magnet was used for imaging. The 

radio frequency coil was a home built half sine-spaced birdcage probe of internal diameter of 4.5 

cm as described above. 

The imaging sessions acquired ECG triggered images. They characterized both left and right 

ventricular anatomy through systole and diastole. For this purpose, they typically used 12 

imaging slices that were taken perpendicular to the principal cardiac axis and extended through 

the entire length of the 2 ventricles from the base of the heart to its apex (Figure 6.4) . Each 

image slice was imaged at typically 12 time-points covering the entire systole and most the 

diastole. Successful imaging was achieved despite the high intrinsic heart rates in rats, which 

reached about 350 beats/ruin. 

Images were obtained usmg a gated cine protocol by synchronizing imaging to set times 

following the electrocardiographic QRS complex and repeating the acquisition at the same slice 

position with the same phase encoding at different times, through the cardiac cycle. Each slice 

was imaged at typically 12 times through the cardiac cycle as mentioned above. The effective 

repeat time (TR) was approximately 13 ms. A short echo-time (TE) of 4.3 ms was used in this 

study. 

The field of view used was typically 4.0-5.0 cm depending on the size of the animal. The image 

matrix used was 128X128 pixels, thus giving a nominal pixel resolution of 390-313 µm. Slice 

thickness was typically 1.37-1.75 mm. Two signal averages for each image were used in most 

of the imaging sessions. 
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Figure 6.4: Gradient echo pulse sequence (A), diagrammatic representation of the right and left ventricles of the rat heart (B). Typically 12 transverse image slices taken perpendicular to the principal cardiac axis were acquired contiguously covering both ventricles. Each transverse cardiac slice was typically imaged at 12 time-points through the cardiac cycle using a gated cine protocol. The pulse sequence was thus applied 12 times during each particular cardiac cycle. Full data set with MR images at the 12 time-points was obtained from each particular slice before imaging other slices. Thus, the effective repeat time (TR) was 13 ms. Echo time TE=4.3 ms. L V and RV indicate left and right ventricles respectively. 



CHAPTER 6 MATERIALS AND METHODS 
61 

6.5.2 Consistent image slice positioning 
A repeatable and consistent image slice positioning protocol ensured that the 12 imaged 
transverse cardiac slices of the heart of each experimental rat were perpendicular to the 
principal cardiac axis that joins the cardiac apex and the aortic valve. The rat lying prone in the 
radiofrequency probe was first positioned horizontally in the bore of the magnetic resonance 
imaging gradient set with its craniocaudal axis along the main magnetic field axis of the 
superconducting magnet. Its thoracic cavity was then imaged using a set of typically 9 sagittal 
planes. The sagittal image, which offered the clearest representation of the heart, was then used 
as a pilot image to derive transverse coronal multi-slice images. Finally, the transverse-coronal 
image with the clearest representation of the heart was used as a pilot image to position a 
definitive set of typically 12 imaging planes (transverse cardiac slices or sections) with their 
geometrical planes perpendicular to the principal cardiac axis and covering the whole left and 
right ventricles. The selected 12 slices covered the entire length of both ventricles. Epicardial 
and endocardial borders of both ventricles in all the selected slices at all the 12 time-points 
derived form the resulting magnetic resonance images could be used for accurate and consistent 
quantitative analysis that was comparable between different animals became possible. 

6.5.3 Temporal synchronisation of image acquisition 
The first image of each of the 12 transverse cardiac sections was typically acquired 8 ms after 
the trigger pulse from the R wave of the ECG. The effective repeat time (TR) in the gated cine 
protocol used in the present study was typically 13 ms as mentioned above. The next image of 
the selected sections accordingly was obtained at typically 21 and the third at typically 34 ms 
after the trigger pulse from the R wave of the ECG and so on. However, it should be noted that 
the actual repeat time was 26 ms as image acquisition was gated from every alternate heart beat 
rather than imaging every cardiac cycle. 

As each transverse cardiac section was imaged at 12 time-points during the cardiac cycle, the 
pulse sequence used was typically repeated 12 times during each cardiac cycle with the same 
phase encoding. Giving that the image matrix used was 128X128 pixels, to acquire complete 
magnetic resonance images for one transverse cardiac section at the selected 12 time-points, 128 
cardiac cycles would be required with the strength of the phase encoding gradient increased 
with each consecutive cardiac cycle. However, since each image was derived from two signal 
averaged acquisitions and image acquisition was gated from every alternate heart beat rather 
than imaging every cardiac cycle, a total of 128X2X2 cardiac cycles were required to image any 
particular transverse cardiac section at the 12 time-points required. It, thus, follows that in order 
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to obtain a complete data sets for all the transverse cardiac sections with complete coverage of 
the heart and at the different 12 time-points through the cardiac cycle, a total number of 
12X128X2X2 cardiac cycles, with the pulse sequence repeated 12 times during each alternate 
cardiac cycle, were required. 

6.5.4 Image processing 
For quantitative analysis, image data were transferred from the MRI console by means of in
house hardware and software to remote UNIX workstations. The borders of both ventricles in 
each transverse image slice were interactively defined using in-house software based on 
CaMReS libraries (CaMReS, Dr N J Herrod, University of Cambridge). This used the 
blood/myocardial wall contrast for defining the endocardial borders and the myocardial 
wall/thoracic cavity contrast for drawing the epicardial borders. The pixel numbers enclosed 
within each border were then converted into units of mm2 using the field of view (FOV). The 
epicardial and endocardial borders of both ventricles were independently drawn 4 times for all 
the images of the 12 selected slices. This analysis was performed for images obtained from all 
12 time-points through the cardiac cycle for each of the selected 12 transverse cardiac sections. 
Left and right ventricular epicardial and endocardial volumes were then calculated. The mean of 
each of the calculated 4 volumes, was then taken to represent the empirical volume. Myocardial 
volumes of both ventricles were also derived at each of the studied 12 time-points by 
subtracting the endocardial volume from the corresponding epicardial volume. The resulting 
intra-observer variability was very small as evidenced by the very small standard errors of the 
mean volumes calculated. 

The left ventricles in the images were circularly symmetrical in transverse sections from all the 
rats (Figures 8.1-8.5). Accordingly the geometrical analysis treated the interventricular septum 
as part of the left ventricle in agreement with earlier protocols (Crowley et al., 1997; Wise et al. , 
1998). In contrast, the right ventricle was defined as the crescent-shaped cardiac chamber with 
its myocardial wall meeting the left ventricular myocardial wall close to the diameter of the left 
ventricle (Figure 6.5). 
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Figure 6.5 (next page): A Typical Transverse cardiac MRI section. A typical transverse cardiac 
MRI section obtained from the heart of a 3-week diabetic male Wistar rat weighing 330 g and aged 
16 weeks with the outlines of both left and right ventricles drawn (A) and without drawn outlines 
(B) . The heart rate was continuously monitored throughout the imaging session giving an intrinsic 
heart rate of 304±4 beats min-1

• The section was taken perpendicular to the principal cardiac axis. 
The time indicated in the upper left-hand comer of the image corresponds to the delay after the 
trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. 
LV endo- and RV endo- indicate left and right ventricular endocardial outlines respectively, whereas 
LV epi- and RV epi- indicate left and right ventricular epicardial outlines respectively. Slice 
thickness was 1.44 mm. Field of view (FOV) was 4.5 cm and with an image matrix of 128X128 
pixels, the nominal in-plane resolution was approximately 351.6 µm pixer'. The effective repeat
time (TR) was approximately 13 ms. The left ventricle shows circularly symmetry in transverse 
sections at all time-points through the cardiac cycle. Thus, the interventricular septum was 
considered as part of the left ventricle for subsequent geometrical analysis. Jn contrast, the right 
ventricle was defined as the crescent-shaped cardiac chamber with its wall meeting the left 
ventricular wall close to the diameter of the left ventricle. 
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6.6 Post-mortem examination 

For post-mortem examination and weighing of the left and right ventricular muscles, the 
animals were sacrificed after the magnetic resonance imaging using an overdose of euthetal 
(Schedule One method, Animal Scientific Procedures Act 1986) and their hearts were removed 
and placed in 3.7% phosphate buffered formaldehyde (BDH laboratory supplies, Poole, UK) for 
approximately 15 minutes, after which the hearts were removed from the fixative and blotted 
dry. The 2 atria were then removed and rings of the myocardium of both ventricles of 1-2 mm 
thick were cut perpendicular to the long axis of the heart. The right and left ventricular muscles 
were then separated from each other and weighed, then fixed in 3. 7% phosphate buffered 
formaldehyde for an additional 24-48 hours. 

6. 7 Statistical analyses 

Results are presented as means ± standard error of the means (SEM). As already mentioned 
( 4.1 ), the main objectives of this study were: ( 1) to characterize left and right ventricular 
anatomical and functional myocardial changes associated with experimental diabetes, (2) to find 
out whether the duration of diabetes has an effect on these changes, and finally (3) to evaluate 
the therapeutic effects of captopril on ameliorating these abnormalities. Thus, statistical 
evaluation was first performed with the one-way analysis of variance (One-Way ANOVA) in 
comparison of the control group and the three untreated diabetic groups (the 3-, 6- and 9-week 
diabetic groups). This was followed by another One-Way ANOVA involving the control group 
and the two 9-week diabetic groups (the untreated group and the captopril-treated one). When 
there was a statistically significant difference, pair-wise multiple comparison procedures were 
performed using Tukey's Honestly Significant Difference (HSD) test. Differences were 
considered significant at p<0.05. The statistical significance of differences in the structural and 
functional parameters between the left and right ventricles in each of the five experimental 
groups was determined by the t-test and differences were considered significant at p<0.05. 
Pearson correlation coefficient (r) was used to test for correlations between measured or 
calculated quantities. 



CHAPTER 7 
BASIC PHYSIOLOGICAL PARAMETERS IN 

CONTROL AND DIABETIC ANIMALS 

Tables 7 .1-7.4 compare basic physiological parameters of control and diabetic animals 3-, 6-
and 9-weeks following streptozotocin administration as well as the corresponding parameters in 
the 9-week captopril-treated diabetic animals. In addition to blood glucose concentrations, they 
summarize body weight, heart rate, systolic blood pressure as well as some baseline cardiac 
characteristics. The latter included both absolute left and right ventricular and total cardiac 
weight and the same values normalized to body weight. The findings were comparable with 
earlier studies of the diabetic heart (Maeda et al., 1995; Hicks et al., 1998). 

' 
7.1 Changes in blood glucose level 

Tables 7.1 and 7.2 show that STZ-treatment produces a significant (five to six-fold) elevation in 
blood glucose compared to findings in control group confirming a successful induction of 
experimental diabetes mellitus. Furthermore, the STZ and captopril-treated group also showed 
similarly elevated blood glucose levels. It is also noticed that once induced, blood glucose levels 
remained elevated at stable levels throughout the experimental period. 

7 .2 Effects on systolic blood pressure and heart rate 

Tables 7.1 and 7 .2 demonstrate that the 6- and the 9-week but not the 3-week diabetic rats 
showed reduced heart rates and systolic blood pressures compared with the control animals, in 
agreement with previous studies (Maeda et al., 1995; Hicks et al., 1998). However, systolic 
blood pressure was not significantly reduced in the 6-week diabetic group compared with the 
control group. In contrast, the systolic blood pressures and the heart rates of the captopril
treated 9-week diabetic group were comparable with those of the control group and were 
accordingly significantly higher than corresponding values in the 9-week untreated diabetic 
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group. Table 7.1 also shows that the differences in the heart rate and systolic blood pressure 
between the 6- and the 9-week untreated groups were insignificant. 

7 .3 Effect on body weight 

Tables 7.1 and 7.2 show lower weights in all diabetic animals including those treated with 
captopril compared with normal animals. Differences in the body weight were significant 
between the control group and the 6-week (p<0.05), the 9-week untreated (p<0.05), and the 9-
week captopril-treated (p<0.05) diabetic groups. The body weights of the 3-week diabetic group 
were similar to those of the normal group (p>0.05). Furthermore, body weight fell significantly 
between 6 and 9 weeks of diabetes (p<0.05). These findings corresponded to a 4.6% reduction 
in body weight between the control group and the 3-week diabetic group, 15.7% between 3 
weeks to 6 weeks, and 16.8% between 6 to 9 weeks. 

7.4 Effects on absolute and normalized heart weight 

The absolute heart weights of all the diabetic rats were decreased in comparison with those of 
the normal rats. However, in the absence of captopril treatment diabetic rats showed higher 
heart weights when these were normalized to the corresponding body weight, thus confirming 
earlier studies (Hicks et al., 1998). This relative hypertrophy was significant in the 6- week 
(p<0.05) and the 9-week (p<0.05) but not the 3-week diabetic group (p>0.05) relative to the 
control group; there was a significant progression of this hypertrophy between 6 and 9 weeks 
but the greatest change took place between 3 to 6 weeks (11.4%) rather than 6 to 9 weeks 
(9.5%). In contrast, no such relative cardiac hypertrophy in captopril-treated rats even at 9 
weeks. 

7.5 Effects on absolute and normalized left and right ventricular 
weights 

Tables 7 .1 and 7 .2 also demonstrates in all the diabetic animals a reduced left and right 
ventricular weights compared to the normal animals. However, this corresponded to a relative 
hypertrophy when normalized to body weight in both left and right ventricles in the rats not 
treated with captopril. 
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It was not possible to calculate the mean percentage change in the absolute and normalized left 
and right ventricular weights following the different experimental periods as the study was not a 
serial one, involving a single experimental group examined serially following the different 
experimental periods, but rather it involved different experimental groups. Thus, the mean 
values of the absolute and normalized left and right ventricular weights in Tables 7 .1 and 7 .2 
were used to calculate the percentage increase(+) or decrease(-) in these parameters following 3 
and 6 weeks of diabetes without captopril treatment and following 9 weeks of diabetes without 
as well as with captopril treatment (Table 7.3). Thus, the mean value of each parameter of the 
control group was used as a reference value for calculating the percentage increase or decrease 
in the parameter following the different periods of experimental diabetes. Table 7.3, thus, 
shows, first, whether the changes occurred in these parameters over 3 weeks of diabetes were 
statistically significant and compares these changes with those occurred over 6 and 9 weeks of 
diabetes with and without captopril treatment. Secondly, it compares the changes occurred over 
6 weeks of diabetes with those occurred over 9 weeks of diabetes with and without treatment. 
Finally, it demonstrates the effects of captopril treatment in ameliorating the abnormalities 
caused by diabetes by comparing the changes following 9 weeks of diabetes without captopril 
treatment with those following 9 weeks of diabetes without captopril treatment. The statistical 
significance of differences in the changes in each parameter following the different 
experimental periods is indicated by the same p-values obtained from Tukey's Honestly 
Significance Difference test while performing pair-wise multiple comparisons (Tables 7.1 and 
7.2). The increase in normalized left ventricular weights thus was not significant at 3 weeks 
(2.1%) but became marked at 6 weeks (15.3%) and significantly more marked at 9 weeks 
(24.9%) greater than control respectively. In the absence of captopril treatment, the normalized 
right ventricular weights also increased 3.3%, 10%, and 25.0% over 3, 6, and 9 weeks of 
diabetes respectively when compared with the control group, with the differences at 6 and 9 but 
not 3 weeks of diabetes being significant against the control and the increase between 6 and 9 
weeks also being significant. 

In contrast, the normalized left ventricular weight actually decreased by 0.5% in the 9-week 
diabetic rats treated with captopril. Similarly, their normalized right ventricular weights were 
not significantly different from those of the control. 

Table 7.4 completes this analysis by comparing the fractional deteriorations in the ventricular 
weights through each period of experimental diabetes. The mean value of each weight 
parameter was used to calculate its percentage increase(+) or decrease (-) respectively between 
0 and 3, 3 and 6, and 6 and 9 weeks of diabetes without captopril treatment. The mean value of 
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each parameter of the control group was used to calculate its percentage increase or decrease 
between O and 3 weeks of diabetes without captopril treatment. The statistical significance of 
the deterioration in each parameter is indicated by the same p-value obtained when comparing 
the data obtained from the 3-week group with the data obtained from the control group, while 
performing pair-wise multiple comparisons using Tukey's Honestly Significance Difference test 
(Tables 7.1 and 7.2). Similarly, the p-values shown for each parameter between 3 and 6 and 
between 6 and 9 weeks of diabetes without captopril treatment are those obtained when 
comparing the data obtained from the 6-week group with the data obtained from the 3-week 
group and when comparing the data obtained from the 9-week group with the data obtained 
from the 6-week group respectively, also while performing pair-wise multiple comparisons 
using Tukey's Honestly Significance Difference test (Tables 7.1 and 7.2). The percentage 
increase in such normalized weights in the left ventricles were 2.1 %, 13% and 8.3% between 0 
and 3, 3 and 6 and 6 and 9 weeks respectively and the corresponding increases in normalized 
right ventricular weights were 3.3%, 6.5% and 13.6% respectively. Thus, the left ventricles 
showed the greatest changes between 3-6 weeks and the right ventricles the greatest changes 
later (6-9 weeks) in the condition. 

'; 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One-Way ANOVA (n = 4) (n =4) (n = 4) diabetic 
F P-value (all levels) (n =4) Body weight (g) 351.3±9.7c,d 335 ± 8.4 c,d 282.5 ± 6.6 a, b, d 235 ± 8.4 a,b,c 40.095 <0.001 Blood glucose (mM) 5.2 ± 0.2 b,c,d 29.8 ± 1.5 3 

30.3 ± 1.8 3 

30.9±1.4 3 
88.323 <0.001 Systolic BP (mmHg) 143.8 ± 6.3 d 137.5 ± 7.2 d 112.5 ± 7.2 93.8 ± 12 a,b 7.455 0.004 Heart rate (beat/min) 322±9c,d 318±7c,d 280 ± 7 a,b 280 ± 6 a,b 9.593 0.002 Heart weight (g) 0.87 ± 0.01 d 0.85 ± 0.02 d 0.8 ± 0.03 0.73 ± 0.03 a,b 6.546 0.007 Heart weight/body weight(%) 0.249 ± 0.003 c, d 0.255 ± 0.001 c, d 0.284 ± 0.003 3

' b, d 0.311 ± 0.003 a,b,c 99.176 <0.001 Left ventricular weight (g) 0.663 ± 0.01 d 0.645 ± 0.01 d 0.615 ± 0.02 0.555 ± 0.03 a, b 5.632 0.012 Left ventricular weight/body weight (%) 0.189 ± 0.002 c,d 0.193 ± 0.001 c,d 0.218 ± 0.003 a,b,d 0.236 ± 0.003 a, b, C 74.031 <0.001 Right ventricular weight (g) 0.21 ± 0.004 d 0.208 ± 0.005 d 0.188 ± 0.006 0.176 ± 0.006 a, b 8.894 0.002 Right ventricular weight/body weight (%) 0.06 ± 0.001 c,d 0.062 ± 0.001 c,d 0.066 ± 0.001 a,b,d 0.075 ± 0.0004 a,b,c 46.890 <0.001 
Table 7 .1: General non-MRI derived features of the control and the three untreated diabetic groups. All values expressed as mean ± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three 
untreated diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically 
significant. 

a Significantly different from the control group. h Significantly different from the 3-week diabetic group. c Significantly different from the 6-week diabetic group. d Significantly different from the 9-week untreated diabetic group. 

~ 
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Parameter 
Control 9-week untreated 9-week captopril-treated One-Way ANOVA (n = 4) diabetic diabetic 

(n = 4) F P-value (all levels) (n =4) Body weight (g) 351.3 ± 9.7 +,§ 235 ± 8.4 * 247.5 ± 15.5 * 30.317 <0.001 Blood glucose (mM) 5.2 ± 0.2 +,§ 30.9 ± 1.4 * 29.4 ± 1.2 * 185.699 <0.001 Systolic BP (mmHg) 143.8 ± 6.3 + 93 .8±12*'§ 137.5 ± 7.5 + 9.334 0.006 Heart rate (beat/min) 322 ± 9 + 280 ± 6 * 311 ± 10 6.653 0.017 Heart weight (g) 0.87 ± 0.01 +,§ 0.73 ± 0.03 *' § 0.61 ± 0.03 *'+ 22.437 <0.001 Heart weight/body weight (%) 0.249 ± 0.003 + 0.311 ± 0.003 *' § 0.247 ± 0.01 + 38.431 <0.001 Left ventricular weight (g) 0.663 ± 0.01 +,§ 0.555 ± 0.03 *' § 0.463 ± 0.02 *' + 20.206 <0.001 Left ventricular weight/body weight(%) 0.189 ± 0.002 + 0.236 ± 0.003 *' § 0.188 ± 0.009 + 24.403 <0.001 Right ventricular weight (g) 0.21 ± 0.004 +,§ 0.176 ± 0.006 *'§ 0.148 ± 0.008 *'+ 22.822 <0.001 Right ventricular weight/body weight (%) 0.06 ± 0.001 + 0.075 ± 0.0004 *'§ 0.06 ± 0.0005 + 104.350 <0.001 

Table 7.2: General non-MRI derived features of the control and the two 9-week diabetic groups. All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the two 9-
week diabetic groups followed by Tukey' s Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 
*Significantly different from the control group. 
+ Significantly different from the 9-week untreated diabetic group. 
§ Significantly different from the 9-week captopril-treated diabetic group. 
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Parameter Change following Change following Change following Change following 3 weeks of diabetes 6 weeks of diabetes 9 weeks of diabetes 9 weeks of diabetes without captopril treatment without captopril treatment without captopril treatment with captopril treatment L V weight (g) -2.7% d -7.2% -16.3% a,b,~ -30.2% a, d 
RV weight (g) -LO% a -10.5% -16.2% a, b, § -29.5% a, d 
L V weight/ body weight (%) +2.1% c,d +15 .3% a,b,d +24.9% a, Ii, c, § -0.5% d RV weight/ body weight (%) +3.3% c,d +10.0% a,b, d +25 .0% a,b,c, § 0.0% 

Table 7 .3: The effect of the duration of diabetes on left and right ventricular weights and its modification by captopril treatment. 

L V weight: left ventricular weight and RV weight: right ventricular weight respectively. 

The(-) and the(+) signs indicate a decrease and an increase in absolute and normalized left and right ventricular weights with diabetes respectively. 

The symbols a, b, c, d, and§ repeat the results obtained from Tukey's Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 7.1 and 7.2. 
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Parameter Between O and 3 weeks of diabetes Between 3 and 6 weeks of diabetes Between 6 and 9 weeks of diabetes 

L V weight (g) -2.7% -4.7% -9.8% 
RV weight (g) -1.0% -9.6% -6.4% 
L V weight/ body weight % +2.1% +13.0% +8.3% C 

RV weight/ body weight% +3.3% +6.5% + 13.6% C 

Table 7.4: Fractional deterioration in left and right ventricular weights through the experimentally induced diabetic state without captopril treatment. 

LV weight: left ventricular weight and RV weight: right ventricular weight respectively. 

The(-) and the(+) signs indicate a decrease and an increase in absolute and normalized left and right ventricular weights with diabetes respectively. 

The symbols a, b, and c repeat the results obtained from Tukey's Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 7.1 and 7.2. They only indicate that the deterioration was significant. 



CHAPTERS 
CHANGES IN MYOCARDIAL ANATOMY IN 

EXPERIMENTAL DIABETES 

8.1 Transverse MRI cardiac sections 

The MRI sessions obtained complete sets of transverse MRI cardiac sections in order to characterize and compare the dynamic changes occurring in both ventricles through the cardiac cycle between the 4 experimental diabetic groups, including the 9-week captopril-treated group and control group. In addition to being used for qualitative analysis of ventricular geometry and measuring left and right ventricular myocardial volumes, the sets of transverse sections were also used to derive endocardial, epicardial, and myocardial volume curves for both ventricles. These made it further possible to reconstruct the kinetics of both left and right ventricular contraction and relaxation. These data provided the basis for further quantitative descriptions of these events in terms of the left and right ventricular systolic and diastolic dV/dt through the cardiac cycle. 

Figures 8.1-8.5 display typical transverse cardiac sections through intact beating hearts in the control and the 3-, 6-, 9-week untreated, and the 9-week captopril-treated diabetic rats respectively. Images of twelve transverse contiguous slices of the same thickness perpendicular to the principal cardiac axis were typically obtained from the heart of each animal studied. All sections were positioned perpendicular to the principal cardiac axis and taken together fully covered the two ventricles from their apices to their outlets. This made it possible to reconstruct their geometry for subsequent quantitative analysis. In order to characterize temporally both systolic and diastolic events, each slice in tum was typically imaged at twelve time-points during the cardiac cycle. 

The cine imaging protocol provided high quality anatomical images in all the experimental groups and proved particularly useful in demonstrating blood as a bright intensity within the 
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cardiac chambers. This achieved a clear demarcation of myocardium from blood and therefore 
accurately defined the endocardial borders of both ventricles. This facilitated reliable 
quantitative estimation of the end-diastolic and end-systolic volumes. 

The left ventricles of the hearts of all the experimental rats resembled that of the human heart in 
the consistent circular symmetry of their epicardial and endocardial borders in transverse 
sections throughout the cardiac cycle. This feature made it convenient to regard the inter
ventricular septum as part of the left ventricle in quantitative measurements of left and right 
ventricular anatomy. Similarly, normal and diabetic right ventricles resembled the right 
ventricle of the human heart in their crescent-shaped transverse section and thinner walls. These 
similarities with the human heart would expedite use of the rat heart as a disease model for MRI 
studies. 

The frames in Figures 8.1-8.5 are separated in time by 13 ms, the TR in the imaging protocol 
used; thus provided a sufficiently close temporal resolution of left and right ventricular geometry 
for identification of both end-diastole and end-systole points in the cardiac cycle. The first 
frames in Figures 8.1-8.5 showed images acquired typically 8 ms after the trigger pulse from the 
R-wave of the ECG and demonstrated fully dilated ventricles at end-diastole. The succeeding 
frames in Figures 8.1, 8.2, and 8.5, obtained from a typical normal, a typical 3-week diabetic 
and a typical 9-week captopril-treated diabetic rats respectively then follow a prompt 
development of systole in which both the left and right ventricular walls thickened and their 
cavities contracted. End-systole corresponding to the minimum cross section in both ventricular 
cavities was reached synchronously at about 100 ms after the trigger pulse in the control, the 3-
week diabetic and the 9-week captopril treated groups. This was followed by a rapid diastolic 
refilling of both the left and right ventricular cavities accompanied by a relative thinning of the 
ventricular walls. In contrast, in the 6- and 9-week diabetic rats, which were not treated with 
captopril, the first few frames showing early systole indicated a significant lag in the myocardial 
thickening and contraction process until approximately 34 ms after the trigger pulse from the R
wave of the ECG. End-systole was not reached until approximately 112 ms after the trigger 
pulse. These changes suggest significant changes in left and right ventricular systolic function in 
these 2 groups of rats. Both the left and right ventricles of the 6- and 9-week diabetic rats also 
showed a retarded diastolic refilling. 
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Figure 8.1: Typical transverse sections obtained from the heart of a normal control rat. A series of typical transverse MR sections obtained from the 
heart of a typical normal 16 weeks old male Wistar rat weighing 340 g. The heart rate was continuously monitored throughout the imaging session giving an 

intrinsic heart rate was 315 ± 4 beats min·1
• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at typically twelve time 

points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond to the delay after the trigger, taken 
from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two signals obtained at corresponding points 
in the cardiac cycle following the R wave. LV and RV indicate left and right ventricles respectively and C and W indicate chest cavity and chest wall 
respectively. Slice thickness was 1.50 mm. Field of view (POV) was 5 cm and with an image matrix of 128 pixel square, the nominal in-plane resolution was 

approximately 390.6 µm pixel"1
• The effective repeat-time (TR) was approximately 13 ms. 
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Figure 8.2: Typical transverse sections obtained from the heart of a 3-week diabetic rat. A series of typical transverse MR sections obtained from the 

heart of a typical 3-week diabetic male Wistar rat weighing 330 g and aged 16 weeks. The heart rate was continuously monitored throughout the imaging 

session giving an intrinsic heart rate was 307 ± 4 beats min-1
• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at 

typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond to the delay 

after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two signals obtained 

at corresponding points in the cardiac cycle following the R wave. L V and RV indicate left and right ventricles respectively and C and W indicate chest cavity 

and chest wall respectively. Slice thickness was 1.44 mm. Field of view (FOV) was 4.5 cm and with an image matrix of 128 pixel square, the nominal in

plane resolution was approximately 351.6 µm pixer1
• The effective repeat-time (TR) was approximately 13 ms. 
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Figure 8.3: Typical transverse sections obtained from the heart of a 6-week diabetic rat. A series of typical transverse MR sections obtained from the 
heart of a typical 6-week diabetic old male Wistar rat weighing 275 g and aged 16 weeks. The heart rate was continuously monitored throughout the imaging 
session giving an intrinsic heart rate was 300 ± 6 beats min-1

• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at 
typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand corner of each panel and correspond to the delay 
after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two signals obtained 
at corresponding points in the cardiac cycle following the R wave. LV and RV indicate left and right ventricles respectively and C and W indicate chest cavity 
and chest wall respectively. Slice thickness was 1.44 mm. Field of view (FOY) was 4.5 cm and with an image matrix of 128 pixel square, the nominal in
plane resolution was approximately 351.6 µm pixer1

• The effective-repeat time (TR) was approximately 13 ms. 

====---,..--- -" -~~-=-~-- ~ 



CHAPTERS CHANGESIKMITK'ARDIAL ANATOMY IN EXPERIMENTAL D/4llEIES.. 1!l 

Figure 8.4: Typical transverse sections obtained from the heart of a 9-week diabetic rat. A series of typical transverse MR sections obtained from the 

heart of a typical 9-week diabetic old male Wistar rat weighing 230 g and aged 16 weeks. The heart rate was continuously monitored throughout the imaging 

session giving an intrinsic heart rate was 290 ± 4 beats min·1
• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at 

typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond to the delay 

after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two signals obtained 

at corresponding points in the cardiac cycle following the R wave. LV and RV indicate left and right ventricles respectively and C and W indicate chest cavity 

and chest wall respectively. Slice thickness was 1.44 mm. Field of view (FOV) was 4.5 cm and with an image matrix of 128 pixel square, the nominal in

plane resolution was approximately 351.6 µm pixel"1
• The effective-repeat time (TR) was approximately 13 ms. 
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Figure 8.5: Typical transverse sections obtained from the heart of a captopril-treated 9-week diabetic rat. A series of typical transverse MR sections 
obtained from the heart of a typical captopril-treated 9-week diabetic male Wistar rat weighing 245 g and aged 16 weeks. The heart rate was continuously 
monitored throughout the imaging session giving an intrinsic heart rate was 300 ± 4 beats min·1

• The sections were taken perpendicular to the principal cardiac 
axis at one spatial slice at typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and 
correspond to the delay after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average 
of two signals obtained at corresponding points in the cardiac cycle following the R wave. L V and RV indicate left and right ventricles respectively and C and 
W indicate chest cavity and chest wall respectively. Slice thickness was 1.44 mm. Field of view (FOV) was 4.5 cm and with an image matrix of 128 pixel 
square, the nominal in-plane resolution was approximately 351.6 µm pixer1

• The effective-repeat time (TR) was approximately 13 ms. 
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8.2 Ventricular myocardial volumes measured by MRI 

Myocardial volumes of both ventricles of the five experimental groups, both diabetic and 

control, were obtained from the corresponding transverse cardiac MRI sections. To assess the 

internal consistency of such MRI-based measurements, both the left and right ventricular 

myocardial volumes during systole were compared with the corresponding volumes during 

diastole for all the experimental rats. Finally, the left and right ventricular myocardial volumes 

of all the five experimental groups were compared with their corresponding left and right 

ventricular myocardial masses obtained at post-mortem. The derived left and right ventricular 

myocardial densities were then compared with previous reports. 

Tables 8.1-8.4 demonstrate that the use of MRI to derive absolute and normalized myocardial 

volumes gave results that agreed with the post-mortem determinations (Tables 7.1-7.4). 

Table 8.3 uses the mean value of the absolute and normalized left and right ventricular 

myocardial volumes in Tables 8.1 and 8.2 to calculate the percentage increase (+) or decrease H 
in these parameters following 3 and 6 weeks of diabetes without captopril treatment and 

following 9 weeks of diabetes both without and with captopril treatment. The mean value of 

each parameter of the control group was used as a reference value for calculating its percentage 

increase or decrease. Thus, Table 8.3 shows whether the changes occurred in these parameters 

following the different periods of experimental diabetes were significant and compares the 

effect of the different experimental periods on these parameters. It also confirms the beneficial 

therapeutic effects of captopril in ameliorating the abnormalities caused by diabetes. The 

statistical significance of differences in the changes in each parameter following the different 

periods of experimental diabetes is indicated by the same p-values obtained from Tukey's 

Honestly Significance Difference test while performing pair-wise multiple comparisons (Tables 

8.1 and 8.2). 

Tables 8.1-8.3, thus, show that the absolute left ventricular myocardial volumes measured by 

MRI showed relatively little change at 3 weeks (a reduction of 2.4% when compared with the 

control group), but progressive decreases of 7.8% at 6 weeks and 17.6% and 31.3% at 9 weeks 

of diabetes without and with captopril treatment respectively compared with the control group. 

Significant differences were only observed between the control group and both the 9-week 

untreated (p<0.05) and the 9-week captopril-treated (p<0.05) diabetic groups respectively. In 

addition, the 9-week captopril-treated diabetic rats had significantly lower left ventricular 

myocardial volumes than the 9-week untreated diabetic rats (p<0.05). 
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Tables 8.1-8.3 also show that both the 9-week diabetic groups, the untreated group and the one treated with captopril, but not the 3-week or the 6-week diabetic groups had significantly smaller absolute right ventricular myocardial volumes compared with the normal group. 

Tables 8.1 and 8.2 also summarize left and right ventricular myocardial volumes of the five experimental groups normalized to their corresponding body weights. Consistent with the postmortem findings, these values increased in the 6- and the 9-week untreated groups but not the 3-week, or the 9-week captopril-treated group. 

Thus, without captopril treatment, the normalized left ventricular myocardial volume increased by 2.2%, 14.5% and 23.1% over 3, 6 and 9 weeks of diabetes respectively over the control group (Table 8.3). The corresponding right ventricular values were 1. 7%, 10.3% and 24.1 % respectively. In both the left and right ventricles, there was a significant increase in the normalized myocardial volume even between 6 and 9 weeks. In contrast, the normalized right ventricular myocardial volumes increased by only 1. 7% and the normalized left ventricular myocardial volumes decreased by 2.2% with captopril treatment (Table 8.3). 

Table 8.4 completes this analysis by summarizing the fractional deteriorations in left and right ventricular myocardial volumes through each of the experimental periods. As before, the mean value of each myocardial volume parameter was used to calculate its percentage increase(+) or decrease (-) respectively between O and 3, 3 and 6, and -6 and 9 weeks of diabetes without captopril treatment. The mean value of each parameter of the control group was used to calculate its percentage increase or decrease between O and 3 weeks of diabetes without captopril treatment. The statistical significance of the deterioration in each parameter between 3 and 6 weeks of diabetes without captopril treatment is indicated by the same p-value obtained when comparing the data obtained from the 6-week group with the data obtained from the 3-week diabetic group, while performing pair-wise multiple comparisons using Tukey's Honestly Significance Difference test (Tables 8.1 and 8.2). Similarly, the p-values shown for each parameter between 6 and 9 weeks of diabetes without captopril treatment are those obtained when comparing the data obtained from the 9-week group with the data obtained from the 6-week diabetic group also while applying Tukey's Honestly Significance Difference test for performing pair-wise multiple comparisons. Thus, Table 8.4 shows that without captopril treatment, any changes in the left and the right ventricular myocardial volumes that occurred over 3 weeks of diabetes were insignificant, whereas there were significant changes between 3 and 6 and between 6 and 9 weeks of diabetes. However, there were relatively larger changes in normalized left ventricular myocardial volumes between 3 and 6 weeks (12.1 %) than between 6 
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and 9 weeks (7.5%). In the case of the right ventricle, larger changes took place between 6 and 9 
weeks (12.5%) than between 3 and 6 weeks (8.5%). 

8.3 Conservation of left and right ventricular myocardial 
volumes throughout the cardiac cycle 

Figure 8.6 plots MRI-measured left and right ventricular myocardial volumes obtained from the 
transverse cardiac magnetic resonance sections during systole and diastole from all the 
experimental rats and demonstrates that both left and the right ventricular myocardial volumes 
were conserved throughout the cardiac cycle. 

8.4 Left and right ventricular myocardial densities 

Figure 8.7 plots left and right ventricular myocardial volumes determined by MRI against the 
corresponding directly determined left and right ventricular masses of the five experimental 
groups measured at post-mortem. It shows that the MRI-measured left and right ventricular 
myocardial volumes (µ1) and the directly determined respective left and right ventricular muscle 
masses (mg) were almost equal in each of the five experimental groups. Furthermore, all the 
four diabetic groups had left and right ventricular myocardial densities almost equal to those of 
the control group. Thus, the left and right ventricular myocardial densities were almost equal in 
the five experimental groups with an average ventricular myocardial density of 1.02 ± 0.02 mg 
µl -l and 1.03 ± 0.02 mg µl - l for the left and right ventricles respectively, in agreement with 
previous reports (Wise et al., 1998). 
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Figure 8.6 (next page): Conservation of left and right ventricular myocardial volumes 
throughout the cardiac cycle. A, a comparative plot of the MRI-determined left ventricular 
(L V) myocardial volume during systole and diastole. The left ventricular myocardial volume at 
the 12 time points during the cardiac cycle for each rat. The left ventricular myocardial volume 
measured by MRI during systole, for each individual rat, was taken from the average value from 
all the time-points sampled during systole. Similarly the left ventricular myocardial volume 
measured by MRI during diastole, for each individual rat, was taken from the average value 
from all the time-points sampled during diastole in the cardiac cycle. These are the volumes 
correlated here. As displayed, there was a close correlation between the systolic and diastolic 
left ventricular myocardial volumes (r = 0.91). B, a comparative plot of the MRI-determined 
right ventricular (RV) myocardial volume during systole and diastole. The right ventricular 
myocardial volume at the 12 time points during the cardiac cycle for each rat. The right 

ventricular myocardial volume measured by MRI during systole, for each individual rat, was 
taken from the average value from all the time-points sampled during systole. Similarly the right 
ventricular myocardial volume measured by MRI during diastole, for each individual rat, was 
taken from the average value from all the time-points sampled during diastole in the cardiac 
cycle. These are the volumes correlated here. As displayed, there was a close correlation 
between the systolic and diastolic right ventricular myocardial volumes (r = 0.90). 
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Figure 8.7 (next page): Left and right ventricular muscle volumes. A, a comparative plot of 

the MRJ-determined left ventricular (L V) myocardial volumes (µl) against the corresponding 

directly determined left ventricular masses (mg) of the experimental groups measured at post

mortem. As displayed, the mean left ventricular myocardial volume measured my MRJ (µI) was 

almost equal to the corresponding left ventricular mass (mg) measured directly at post-mortem 

in the control as well as in the four diabetic groups, giving left ventricular myocardial densities 

of 1.01 ± 0.004, 1.01 ± 0.002, 1.02 ± 0.005, 1.03 ± 0.01, 1.03 ± 0.03 mg µ1- 1 for the control, the 

3-week, the 6-week, the 9-week untreated, and the 9-week captopril-treated diabetic groups 

respectively. B, a comparative plot of the MRJ-determined right ventricular (RV) myocardial 

volumes (µI) against the corresponding directly determined right ventricular masses (mg) of the 

experimental groups measured at post-mortem. As displayed, the mean right ventricular 

myocardial volume measured ·my MRI (µ1) was almost equal to the corresponding right 

ventricular mass (mg) measured directly at post-mortem in the control as well as the four 

diabetic groups, giving right ventricular myocardial densities of 1.03±0.01, 1.04 ± 0.02, 1.03 ± 

0.01, 1.05 ± 0.02, and 1.01 ± 0.02 mg µ1- 1 for the control, the 3-week, the 6-week, the 9-week 

untreated diabetic, and the 9-week captopril-treated diabetic groups respectively. C, a 

comparative plot of left ventricular myocardial density against the corresponding right 

ventricular myocardial density of the five experimental groups. As displayed, the average left 

ventricular density was almost equal to the corresponding right ventricular density in each 

experimental group with the difference being insignificant. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One-Way ANOVA 
(n =4) (n = 4) (n = 4) diabetic 

(n = 4) 
F P-value (all levels) 

Left ventricular myocardial volume 653.5 ± 10.3 d 637.5 ± 3.9 d 602.5 ± 23 .9 538.8 ± 20.8 a, b 7.942 0.003 

(LVMV) (µ1) 

Right ventricular myocardial volume 205 ± 5.4 d 198.8 ± 4.3 d 181.3 ± 5.5 169 ± 8.2 a, b 7.426 0.005 

(RVMV) (µl) 

L VMV / body weight (µ1/ g) 1.86 ± 0.03 c,d 1.9±0.01 c,d 2.13 ± 0.04 a, b, d 2.29 ± 0.01 a, b, c 68.378 <0.001 

RVMV/ body weight (µ1/g) 0.58±0.01 c,d 0.59 ± 0.01 d 0.64 ± 0.01 a, d 0.72 ± 0.01 a,b, c 27 .927 <0.001 

Table 8.1: MRI-measured left and right ventricular myocardial volumes of the control and the three untreated diabetic groups. The left and right ventricular 
myocardial volume measured by MRI, for each rat, was taken form the average value from all the time-points sampled throughout the cardiac cycle. The body weight
normalized left and right ventricular myocardial volumes of the experimental rats were calculated using the corresponding body weight of the anaesthetised rat. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three 
untreated diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p <0.05 was considered statistically 
significant. 

a Significantly different from the control group. b Significantly different from the 3-week diabetic group. 

c Significantly different from the 6-week diabetic group. d Significantly different from the 9-week untreated diabetic group. 

. ~------
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Parameter Control 9-week untreated 9-week captopril-treated One-Way ANOVA 
(n = 4) diabetic diabetic 

(n == 4) (n = 4) F P-value (all levels) 

Left ventricular myocardial volume 653.5 ± 10.3 +, § 538.8 ± 20.8 *' § 448.8 ± 20.1 *' + 33.509 <0.001 
(LVMV) (µ1) 

Right ventricular myocardial volume 205 ± 5.4 +,§ 169±8.2* 147 ± 11.9 * 10.822 0.004 
(RVMV) (µI) 

LVMV/ body weight (µ1/g) 1.86 ± 0.03 + 2.29±0.01 *'§ 1.82 ± 0.05 + 53.537 <0.001 

RVMV/ body weight (µl/g) 0.58 ± 0.01 + 0.72±0.01 *'§ 0.59 ± 0.01 + 39.381 <0.001 

Table 8.2: MRI-measured left and right ventricular myocardial volumes of the control and the two 9-week diabetic groups. The left and right ventricular myocardial volume measured by MRI, for each rat, was taken form the average value from all the time-points sampled throughout the cardiac cycle. The body weight-normalized left and right ventricular myocardial volumes of the experimental rats were calculated using the corresponding body weight of the anaesthetised rat. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the two 9-week diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. 
+ Significantly different from the 9-week untreated diabetic group. 
§ Significantly different from the 9-week captopril-treated diabetic group. 

- ~~- ~~:------ --- ·---=,._..=-: --~ 
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Parameter Change following Change following Change following Change following 

3 weeks of diabetes 6 weeks of diabetes 9 weeks of diabetes 9 weeks of diabetes with 

without captopril treatment without captopril treatment without captopril treatment captopril treatment 

LVMV (µl) -2.4% d -7.8% -17.6% 3
' b, § -31.3% a, d 

RVMV (µl) -3.0% d -11.6% -17.6% 3
' ll -28.3% 3 

L VMV / body weight (µ1/ g) +2.2% c, d +14.5% a,li, d +23 .1% a,b, c, § -2.2% ii 

R VMV / body weight (µ1/ g) +1.7% d +10.3% a,d +24.1 % a, b, c, § 1.7% d 

Table 8.3: The effect of the duration of diabetes on left and right ventricular myocardial volumes and its modification by captopril treatment. 

LVMV: left ventricular myocardial volume and RVMV: right ventricular myocardial volume respectively. 

The(-) and the(+) signs indicate a decrease and an increase in absolute and normalized left and right ventricular myocardial volumes with diabetes respectively. 

The symbols a, b, c, d, and §repeat the results obtained from Tukey's Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 8.1 and 
8.2. 
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Parameter Between O and 3 weeks of diabetes Between 3 and 6 weeks of diabetes Between 6 and 9 weeks of diabetes 

LVMV (µl) -2.4% -5.5% -10.6% 

RVMV (µl) -3.0% -8.8% -6.8% 

LVMV/ body weight (µ1 /g) +2.2% +12.1% b +7.5% C 

RVMV/ body weight (µ1/g) +1.7% +8.5% +12.5% C 

Table 8.4: Fractional deterioration in left and right ventricular myocardial volumes through the experimentally induced diabetic state without captopril treatment. 

LVMV: left ventricular myocardial volume and RVMV: right ventricular myocardial volume respectively. 

The(-) and the(+) signs indicate a decrease and an increase in absolute and normalized left and right ventricular myocardial volumes with diabetes respectively. 

The symbols a, b, and c repeat the results obtained from Tukey's Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 8.1 and 8.2. 
They only indicate that the deterioration was significant. 



CHAPTER9 

CHANGES IN THE CARDIAC CYCLE 

OF THE LEFT AND RIGHT VENTRICLES 

IN EXPERIMENTAL DIABETES 

9.1 Ventricular volume curves 

Closely sampled MRI data of the kind showed in Figures 8.1-8.5 made it possible to reconstruct 

the volume changes through the cardiac cycle of both the left and right ventricles in all the 5 

experimental groups. Figures 9 .1 and 9 .2 plot the mean endocardial (circles), epicardial 

(squares), and myocardial volume curves (triangles) of the left and right ventricles respectively 

of the normal (A), the 3-week (B), the 6-week (C), the 9-week untreated diabetic (D), and the 

9-week captopril-treated diabetic (E) groups respectively. Twelve imaging sections were taken 

perpendicular to the principal cardiac axis as mentioned above (Chapters 6 and 8), each at 

twelve time-points during the cardiac cycle to provide full coverage of the heart of each 

experimental rat during systole and diastole. The transverse cardiac MRI sections were then 

analyzed to generate MRI-dependent volumes versus time curves. For each section, the 

epicardial and endocardial borders of the left and right ventricular chambers were traced 4 times 

at all the 12 studied time-points through the cardiac cycle using an in-house software. The total 

epicardial and endocardial left and the corresponding right ventricular volumes were then 

determined at the 12 studied time-points on the basis of the traced areas and thickness of the 12 

constituent slices. The calculated volumes were then plotted against time after the 

electrocardiographic R wave. The volumes shown in Figures 9 .1 and 9 .2 are the average left and 

right ventricular epicardial, endocardial and myocardial volumes obtained from the five 

experimental groups at the studied 12 time-points in the cardiac cycle. The standard errors of 

the means of the volumes at the 12 studied time-points in the cardiac cycle were small in the 

five experimental groups and are not seen in the curves because of the size of the symbols. The 

ascending and descending limbs of the endo- and epicardial volume curves represent diastole 

and systole respectively. 
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Following the R-wave trigger, both the left and right endocardial volumes fell rapidly in the 
hearts of the normal, the 3-week and the 9-week captopril-treated diabetic rats (Figures 9.lA, B, 
E and 9.2A, B, E). Left and right ventricular contraction was most rapid early in systole and 
decreased in rate as systole progressed with end-systole being reached synchronously in both 
ventricles approximately 99 ms after the trigger pulse. In contrast, left and right ventricular 
endocardial volume curves of the 6- and the 9-week untreated diabetic rats (Figures 9.lC, D and 
9.2C, and D) showed a much smaller initial rate of decline and reached their minimum volume 
approximately 112 ms after the R-wave trigger. Such systolic changes were followed by a more 
rapid diastolic filling of both left and right ventricles in the control, the 3-week, and the 9-week 
captopril-treated diabetic groups than in the 6-week and the 9-week untreated diabetic groups. 

9.2 Functional ventricular volumes and ejection fractions 

The preliminary analysis described in Chapter 7 suggested that diabetic rats show a relative left 
and right ventricular hypertrophy that is prevented by captopril treatment. This was confirmed 
by the MRI studies (Chapter 8), which went on to follow the detailed changes in the epicardial 
and endocardial volumes through the cardiac cycle. This provided the basis for the detailed 
analysis of.diastolic and systolic volumes and ejection fractions of both left and right ventricles 
of the experimental groups presented below. Thus, the maximum values of the endocardial 
volume curves (Figures 9 .1 and 9 .2) at the end of ventricular diastolic filling and prior to 
systole, when the ventricles were fully dilated with blood, provided an estimate of the end
diastolic volume (EDV) in the particular ventricle. The minimum values in such endocardial 
volume curves represented the corresponding end-systolic volumes (ESV's) and the 
corresponding stroke volumes (SV's) were calculated by subtracting the EDV from the 
corresponding ESV. 

Tables 9.1-9.4 summarize absolute values of these parameters for the left and right ventricles 
respectively. Tables 9.5-9.8 normalize these values to body weight. 
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Figure 9.1: Epicardial (squares), 

endocardial 

myocardial 

(circles), 

(triangles) 

and 

left 

ventricular (L V) volume curves. 

Epicardial, endocardial and 

myocardial left ventricular (L V) 

volume curves obtained from the 

transverse MRI images of the control 

group (A), the 3-week diabetic group 

(B), the 6-week diabetic group (C), 

the 9-week untreated diabetic group 

(D), and the 9-week captopril-treated 

diabetic group (E). All the 

experimental animals were male 

Wistar rats aged 16 weeks at the time 

of scannmg. The average body 

weight of the control group (n = 4) 

was 351.3 ± 9.7 g and those of the 

four diabetic groups were 335 ± 8.4, 

282.5 ± 6.6, 235 ± 8.4, and 247.5 ± 

15.5 g for the 3-week (n = 4), 6-week 

(n = 4), 9-week untreated (n = 4), 

and the 9-week captopril-treated (n = 

4) diabetic groups respectively. The 

heart rate was continuously 

monitored throughout the imaging 

session giving average intrinsic heart 

rates of 322 ± 9 beats min-1 for the 

control rats and 318 ± 7, 280 ± 7, 

280 ± 6, and 311 ± 10 beats min-1 for 

the 3-week, 6-week, 9-week 

untreated, and the 9-week captopril

treated diabetic groups respectively. 
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Figure 9.1: Epicardial (squares), 

endocardial (circles), and 

myocardial (triangles) left 

ventricular (L V) volume curves. 

Epicardial, endocardial and 

myocardial left ventricular (L V) 

volume curves obtained from the 

transverse MRI images of the control 

group (A), the 3-week diabetic group 

(B), the 6-week diabetic group (C), 

the 9-week untreated diabetic group 

(D), and the 9-week captopril-treated 

diabetic group (E). All the 

experimental animals were male 

Wistar rats aged 16 weeks at the time 

of scannmg. The average body 

weight of the control group (n = 4) 

was 351.3 ± 9.7 g and those of the 

four diabetic groups were 335 ± 8.4, 

282.5 ± 6.6, 235 ± 8.4, and 247.5 ± 

15.5 g for the 3-week (n = 4), 6-week 

(n = 4), 9-week untreated (n = 4), 

and the 9-week captopril-treated (n = 

4) diabetic groups respectively. The 

heart rate was continuously 

monitored throughout the imaging 

session giving average intrinsic heart 

rates of 322 ± 9 beats min-1 for the 

control rats and 318 ± 7, 280 ± 7, 

280 ± 6, and 311 ± 10 beats min-1 for 

the 3-week, 6-week, 9-week 

untreated, and the 9-week captopril

treated diabetic groups respectively. 
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Figure 9.2: Epicardial (squares), 

endocardial 

myocardial 

(circles), 

(triangles) 

and 

right 

ventricular (RV) volume curves. 

Epicardial, endocardial and 

myocardial right ventricular (RV) 

volume curves obtained from the 

transverse MRI images of the control 

group (A), the 3-week diabetic group 

(B), the 6-week diabetic group (C), 

the 9-week untreated diabetic group 

(D), and the 9-week captopril-treated 

diabetic group (E). Other 

experimental details are summarized 

in legend to Figure 9.1. 
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Tables 9 .9-9 .10 summarize the statistical analysis of the left and right ventricular ejection 

fractions (EF's) and their absolute and normalized end-diastolic volumes (EDV's), end-systolic 

volumes (ESV' s) and stroke volumes (SV's). They use the mean values of these parameters in 

Tables 9.1-9.8 to calculate the percentage increase (+) or decrease (-) in these parameters 

following 3 and 6 weeks of diabetes without captopril treatment and following 9 weeks of 

diabetes without as well as with captopril treatment. As before, the mean value of each 

parameter of the control group was used as a reference value for calculating its percentage 

increase or decrease. The statistical significance of differences in the changes in each parameter 

following the different periods of experimental diabetes is indicated by the same p-values 

obtained from Tukey's Honestly Significance Difference test while performing pair-wise 

multiple comparisons (Tables 9.1-9.8). Tables 9.11 and 9.12 extract these as trends at different 

stages of the experimental disease process. Thus, they summarize the fractional deterioration in 

the ventricular volumes and ejection fractions through each experimental period. The mean 

value of each volume parameter was used to calculate its percentage increase(+) or decrease(-) 

respectively between O and 3, 3 and 6, and 6 and 9 weeks of diabetes without captopril 

treatment. The mean values of each parameter of the control and the 3-week diabetic groups 

were used to calculate its percentage increase or decrease between O and 3 weeks of diabetes 

without captopril treatment. The levels of significance shown for each parameter between 3 and 

6 weeks of diabetes without captopril treatment are the same p-values obtained when comparing 

the data obtained from the 6-week with the data obtained from the 3-week diabetic group while 

performing pair-wise multiple comparisons using Tukey's Honestly Significance Difference 

test. Similarly, the levels of significance shown for each parameter between 6 and 9 weeks of 

diabetes without captopril treatment are the same p -values obtained when comparing the data 

obtained from the 9-week with the data obtained from the 6-week diabetic group also while 

using Tukey' s Honestly Significance Difference test for performing pair-wise multiple 

comparisons. 

9.2.1 Ventricular end-diastolic volumes (EDV's) 

Tables 9.1-9.4 indicate that the induction of diabetes produced a progressive decrease in both 

the left and right ventricular EDV's. Thus, differences between the control and the diabetic rats 

for both the left and right ventricular EDV's were significant at 6 and 9 weeks with or without 

captopril treatment but not at 3 weeks, with deteriorations continuing between 6 and 9 weeks. 

However, the 9-week captopril-treated showed significantly higher left and right ventricular 

EDV's values than the corresponding untreated diabetic group. 
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Tables 9.9 shows that the left ventricular EDV's decreased by 6.6% over 3 weeks of diabetes 
and by 27.6% and 42.1 % over 6 and 9 weeks of diabetes respectively without captopril 
treatment compared with the control rats. On the other hand, rats treated with captopril showed 
a 29.9% reduction in their left ventricular EDV's when compared with the control group. 
Similarly, right ventricular EDV' s decreased by 5.9%, 23.5%, and 42.3% over the same time 
periods without captopril treatment whereas captopril treatment left a decrease in right 
ventricular EDV's of 31.7% (Table 9.10). Thus, captopril treatment reduced the fall in left and 
right ventricular EDV's during experimental diabetes. 

Tables 9.11 and 9.12 extract the fractional deteriorations in left and right ventricular EDV's 
between time-points through the diabetic state without captopril treatment. They indicate that, 
without captopril treatment, diabetes progressively reduced EDV's with the left ventricle 
showing the greatest deterioration between 3 and 6 weeks and the right ventricle deteriorating 
most between 6 to 9 weeks. Thus, left ventricular EDV' s decreased by 6.6% at 3 weeks, by 
22.5% between 3 and 6 weeks and by 20. l % between 6 and 9 weeks of diabetes respectively. 
The corresponding decreases in right ventricular EDV's were 5.9%, 18.7% and 24.6% 
respectively. 

Normalization of the EDV's to their corresponding body weights gave similar results (Tables 
9.5-9.8). There were insignificant decreases in normalized left (2.1 %) and right (1.5%) EDV's 
at 3 weeks and normalized right (5.2%) EDV's at 6 weeks compared to the normal rats, but 
significant decreases in normalized left (10.6%) EDV's at 6 weeks and normalized left (13.5%) 
and right ( 14.1 % ) EDV' s at 9 weeks without captopril treatment with significant differences 
even between 6 and 9 weeks (Tables 9.9 and 9.10). In addition, normalized left and right EDV's 
of the 9-week captopril-treated group were similar to those of the control and significantly 
higher than those of the 9-week untreated group (Tables 9.6 and 9.8). The reductions in their 
normalized left and right ventricular EDV's were only 0.7% and 3.7% respectively when 
compared with the control group; these were significantly lower than the reductions observed at 
9 weeks of diabetes without treatment with captopril (Tables 9.9 and 9.10). 

Tables 9 .11 and 9 .12 show the fractional deterioration in the normalized left and right 
ventricular EDV's throughout the diabetic state without captopril treatment. They demonstrated 
that without treatment with captopril, the absolute and normalized left and the absolute but not 
the normalized right ventricular EDV's deteriorated significantly between 3 and 6, and 6 and 9 
weeks of diabetes, but not between O and 3 weeks. The deterioration in left ventricular volumes 
was greatest between 3 and 6 weeks of diabetes; while that in the right ventricles was maximal 
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between 6 and 9 weeks of diabetes. Thus, nonnalized left ventricular EDV's decreased by 2.1 %, 
8.7% and 3.2% between Oto 3, 3 to 6 and 6 to 9 weeks of diabetes in the absence of captopril 
treatment respectively. The corresponding values for the right ventricle were 1.5%, 3.8% and 
9.4% respectively. 

9.2.2 Ventricular end-systolic volumes (ESV's) 
Tables 9 .1-9 .4 demonstrate that the control and the diabetic rats, which were not treated with 
captopril, had comparable left as well as right ventricular ESV's. However, the 9-week 
captopril-treated group had significantly lower left and right ventricular ESV's. However, the 
left and right ventricular ESV's normalized to their corresponding body weights (Tables 9.5-
9.8) progressively increased with the duration of diabetes. Although no significant changes were 
observed at 3 weeks, there were significant increases at 6 and 9 weeks with demonstrable 
changes even between 6 and 9 weeks diabetes without captopril treatment. Thus, Tables 9.9 and 
9.10 indicate increases in the normalized left ventricular ESV's of 6.0%, 28.0%, and 42% and in 
the corresponding normalized right ventricular ESV's of 4.1 %, 26.5%, and 40.8% over the 
control group respectively. In contrast, the captopril-treated group showed insignificant 
increases in normalized left (8%) and right (2%) ventricular ESV' s values over those of the 
control group. 

9.2.3 Ventricular stroke volumes (SV's) 
Tables 9 .1-9 .4 show that left and right ventricular SV' s significantly decreased at 6 and at 9 
weeks of diabetes both without and with captopril treatment and also at 3 weeks, with 
significant changes between both 3 and 6 and 6 and 9 weeks. Thus, Tables 9 .9 and 9 .10 show 
that the left ventricular SV's decreased by 10.7%, 44.1%, and 62.4% and the corresponding 
right ventricular SV's decreased by 8.9%, 37.6%, and 63.1% at 3, 6, and 9 weeks of diabetes 
respectively compared with the control group in the absence of captopril treatment. However, 
captopril treatment increased the left and right ventricular SV' s significantly over those of the 
corresponding 9-week untreated diabetic group. Thus, left and right ventricular SV's in rats 
treated with captopril were decreased by 32.7% and by 33.4% compared with the control group 
respectively. 

Tables 9.11 and 9.12 summarize the fractional deterioration in left and right ventricular SV's 
between times in the diabetic state without captopril treatment. The left ventricular SV' s fell by 
10.7%, 37.4%, and 32.7% between O and 3, 3 and 6, and 6 and 9 weeks of diabetes respectively. 
The corresponding changes in the right ventricle were decreases of 8.9%, 31.5% and 41.0% 
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respectively. Thus, the left ventricles showed the greatest deterioration in their SV's between 3 

and 6 weeks of diabetes, whereas the deterioration in right ventricular SV' s was greatest 

between 6 and 9 weeks of diabetes. 

When normalized to body weight (Tables 9.5-9.8), the left and right ventricular SV's values 

were significantly decreased at 6 and 9 but not at 3 weeks of diabetes without captopril 

treatment with significant changes again even between 6 and 9 weeks. Thus, Tables 9 .9 and 

9.10 show decreases in normalized left ventricular SV' s of 6.6%, 30.8%, and 44.0% and 

decreases in right ventricular SV's of 4.7%, 22.4%, and 44.7% at 3, 6, and 9 weeks of diabetes 

respectively compared with the control group. Furthermore, values in the 9-week captopril

treated diabetic group were only slightly lower than those of the control group and were 

significantly higher than those of the corresponding untreated group. Thus, normalized left and 

right ventricular SV's in captopril-treated rats decreased by only 4.4% and 5.9% respectively. 

Tables 9.11 and 9.12 show the fractional deterioration in the normalized left and right 

ventricular SV's through successive time-points in the diabetic state without captopril treatment. 

The normalized left ventricular SV's decreased by 6.6%, 25.9% and 19% between 0-3, 3- 6, and 

6-9 weeks of diabetes respectively. The corresponding values for the right ventricle were 

decreases of 4.7%, 18.5% and 28.8%. Both corresponded to significant decreases between 3-6, 

and 6-9 but not 0-3 weeks of diabetes. The normalized left ventricular SV's deteriorated 

maximally between 3 and 6 weeks whereas the right ventricles deteriorated maximally between 

6 and 9 weeks of diabetes. 

9.2.4 Ventricular ejection fractions (EF's) 

The ejection fractions of the left and right ventricles expressed as the ratio between the left or 

right ventricular SV' s and the corresponding EDV' s. Tables 9 .1-9 .4 show that 6 weeks or 9 

weeks of diabetes without captopril treatment significantly reduced both the left and the right 

ventricular EF's compared with the control rats. The 9-week diabetic group showed 

significantly lower EF ' s than those of the 6-week diabetic group. Thus, the left ventricular EF's 

decreased by 4.5%, 22.8%, and 35.2%, and the corresponding right ventricular EF's decreased 

by 3.3%, 18.5%, and 36.5% over 3, 6, and 9 weeks of diabetes respectively compared with the 

control group (Tables 9.9 and 9.10). These corresponded to fractional deteriorations (Tables 

9.11 and 9.12) in left ventricular EF's of 4.5%, 19.2%, and 16.1% between 0-3, 3-6, and 6-9 

weeks of diabetes respectively with right ventricular values of 3 .3 %, 15. 7% and 22.1 % 

respectively. This corresponds to significant reductions in the left and right ventricular EF's 

between 3-6 and between 6-9 weeks of diabetes but not between O and 3 weeks of diabetes. 
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Furthermore, the deterioration in the left ventricular EF' s was greatest between 3 and 6 weeks 
of diabetes, while the right ventricles showed the greatest deterioration in their EF' s between 6 
and 9 weeks of diabetes. However, both the 3-week and the 9-week captopril-treated diabetic 
groups showed no significant changes. Furthermore, the left and right ventricular EF's of the 9-
week captopril-treated group were significantly higher than those of the corresponding untreated 
group. Thus, the left and right ventricular EF' s values then only decreased by 4.0% and 2.7% 
respectively in the 9-week captopril-treated group. 

9.3 Ventricular SV's versus their EDV's 

Figure 9.3A correlates the MRI-measured left ventricular SV's and EDV's of all the five 
experimental groups. Similarly, Figure 9.3B plots the MRI-measured right ventricular SV' s of 
the five experimental groups against their corresponding right ventricular EDV's. It was not 
possible to vary the EDV within individual rats owing to the inherently non-invasive nature of 
the MRI investigations.' Nevertheless, the plots obtained show: (i) a progressive change in 
EDV' s with the development of diabetes, in both the left and right ventricles, (ii) the plots 
appearing to fall upon two approximately linear functions, one formed by data obtained by 0 
and 3 weeks of diabetes, and the other by 6- and 9-week diabetic rats. This is consistent with the 
findings here that significant cardiac changes were obvious at 6 and 9 weeks but not at 3 weeks 
and are consistent not only with changes in diastole, but also alterations in systolic function with 
the disease, (iii) thus, the 6-week and the 9-week untreated diabetic groups had left and right 
ventricular systolic abnormalities, which were not directly caused by their diastolic 
abnormalities, and (iv) the data points in captopril-treated group fell significantly above these 
suggested by both the 6- and 9-week groups and were close to the function suggested by the 0-
and 3-week diabetic rats. Hence these abnormalities were at least partly prevented by captopril 
treatment. 

9.4 Matching of left and right ventricular volumes and EF's 

Figure 9.4 demonstrates that (i) there was a close matching of left and right ventricular EDV's, 
ESV's, SV's, and EF's in the normal rat heart, and (ii) this matching appeared to persist 
throughout the diabetic disease process although, as previously mentioned, the left ventricle had 
its greatest changes between 3 and 6 weeks, while the right ventricular changes were greatest 
between 6 and 9 weeks of diabetes. 
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Figure 9.3: Left ventricular (LV) end-diastolic volume (EDV) versus stroke volume (SV) 

and right ventricular (RV) end-diastolic volume (EDV) versus stroke volume (SV). A, a 

comparative plot between the MRI-measured left ventricular stroke volumes (SV' s) and end

diastolic volumes (EDV's) of the five experimental groups. B, a comparative plot between the 

MRI-measured right ventricular stroke volumes (SV's) and end-diastolic volumes (EDV's) of 

the five experimental groups. The 6- and 9-week untreated diabetic groups had impairment in 

left and right ventricular diastolic functions as well as impairment in left and right ventricular 

systolic functions. 
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Figure 9.4 (next page): Left ventricular (LV) and right ventricular (RV) MRI-derived volumes and ejection fraction (EF). A, a comparative plot of the MRI

measured left ventricular (LV) and right ventricular (RV) end-diastolic volumes (EDV's) of the five experimental groups. As displayed the MRI-measured left 

ventricular and the corresponding right ventricular EDV's were almost equal in each of the five experimental groups with the differences being insignificant. This 

signifies a close matching of the MRI-measured left and right ventricular EDV's of the control as well as the diabetic rats. B, a comparative plot of the MRI-measured 

left ventricular and right ventricular end-systolic volumes (ESV's) of the five experimental groups. As displayed the MRI-measured left ventricular and the 

corresponding right ventricular ESV's were almost equal in each of the five experimental groups with the differences being insignificant. This signifies a close 

matching of the MRI-measured left and right ventricular ESV's of the control as well as the diabetic rats. This plot also shows that the control and the three untreated 

diabetic groups had comparable Left as well as right ventricular ESV's despite the markedly smaller EDV's of the 6- and 9-week diabetic groups. C, a comparative 

plot of the MRI-measured left ventricular and right ventricular stroke volumes (SV's) of the five experimental groups. As displayed the MRI-measured left 

ventricular and the corresponding right ventricular SV's were almost equal in each of the five experimental groups with the differences being insignificant. This 

signifies a close matching of the MRI-measured left and right ventricular SV's of the control as well as the diabetic rats. D, a comparative plot of the MRI-measured 

left ventricular and right ventricular ejection fractions (EF's) of the five experimental groups. As displayed the MRI-measured left ventricular and the corresponding 

right ventricular EF 's were almost equal in each of the five experimental groups with the differences being insignificant. This signifies a close matching of the MRI

measured left and right ventricular EF's of the control as well as the diabetic rats. The left ventricular ejection fraction of each rat was calculated using the formula: 

Left ventricular ejection fraction = (left ventricular . stroke volume /left ventricular end-diastolic volume) x 100. Similarly, the right ventricular ejection fraction of 

each rat was calculated by a similar formula: Right ventricular ejection fraction= (right ventricular stroke volume /right ventricular end-diastolic volume) x 100. 



"'"S' /NMYQQIRD(1[,=4 
~ 

Figure 9.4 (next page): Left ventricular (LV) and right ventricular (RV) MRI-derived volumes and ejection fraction (EF). A, a comparative plot of the MRI
measured left ventricular (LV) and right ventricular (RV) end-diastolic volumes (EDV's) of the five experimental groups. As displayed the MRI-measured left 
ventricular and the corresponding right ventricular EDV's were almost equal in each of the five experimental groups with the differences being insignificant. This 
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ventricular and the corresponding right ventricular SV's were almost equal in each of the five experimental groups with the differences being insignificant. This 
signifies a close matching of the MRI-measured left and right ventricular SV's of the control as well as the diabetic rats. D, a comparative plot of the MRI-measured 
left ventricular and right ventricular ejection fractions (EF's) of the five experimental groups. As displayed the MRI-measured left ventricular and the corresponding 
right ventricular EF's were almost equal in each of the five experimental groups with the differences being insignificant. This signifies a close matching of the MRI
measured left and right ventricular EF' s of the control as well as the diabetic rats. The left ventricular ejection fraction of each rat was calculated using the formula: 
Left ventricular ejection fraction = (left ventricular stroke volume /left ventricular end-diastolic volume) x 100. Similarly, the right ventricular ejection fraction of 
each rat was cakulated by a similar formula: Right ventricular ejection fraction= (right ventricular stroke volume /right ventricular end-diastolic volume) x 100. 
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9.5 Systolic and diastolic indices 

Tables 9.13-9.16 summarize values for two indices, for systolic contraction and diastolic 

relaxation. These are the systolic and the diastolic time periods required for the left and right 

ventricles of the five experimental groups to pump 25% of their SV' s and to be filled with 25% 

of their diastolic filling volumes (DFV's) respectively. These tables also summarize the rates of 

left and right ventricular ejection and filling during early systole and early diastole respectively. 

Since end-diastole was considered to be represented by images typically acquired 8 ms after the 

R wave trigger in almost all the experimental rats, the exact time taken by the ventricles to eject 

25% of their SV' s were calculated by subtracting 8 ms from the time after the R wave trigger 

taken by the ventricles to eject 25% of their SV's. The ventricles of the normal, the 3-week 

diabetic and the captopril-treated 9-week diabetic rats reached their end-systole approximately 

99 ms and those of the 6- and 9-week diabetic rats approximately 112 ms after the R wave 

trigger. Accordingly, the exact time taken by the ventricles of the normal, the 3-week and the 

captopril-treated 9-week diabetic rats to be filled with 25% of their DFV's were calculated by 

subtracting 99 ms and those of the ventricles of the 6-and 9-week diabetic rats were calculated 

by subtracting 112 ms from the time after the R wave trigger taken by their ventricles to be 

filled by 25% of .their DFV's. The rates of ejection during early systole were calculated by 

dividing the 25% SV of each ventricle by the exact time taken by that particular ventricle to 

eject 25% of its SV. Similarly the rates of filling during early diastole were calculated by 

dividing the 25% DFV of each ventricle by the exact time taken by that ventricle to get filled by 

its 25% DFV. As the average diastolic filling volume (DFV) is normally equal to the average 

SV, the 25% DFV was consistently taken to be equal to the 25% SV. Accordingly, the 3-, 6-, 9-

week untreated and the 9-week captopril-treated diabetic groups, all had significantly smaller 

left and right ventricular SV' s, had smaller 25% SV' s and 25% DFV' s values compared with 

the control group. These values were also significantly different between the 6- and 9-week 

untreated diabetic groups. In contrast, the 9-week captopril-treated diabetic group had 

significantly higher left and right ventricular 25% SV's and 25% DFV's than those of the 

corresponding untreated group. 

Despite these diminished values of left and right ventricular 25% SV' s of the 6- and 9-week 

diabetic groups, times required for both their left and their right ventricles to eject 25% of their 

respective SV' s were much longer than those of the left and right ventricles of the control 

group. In contrast, corresponding values in captopril-treated rats were close to those of normal. 

These findings similarly indicate that 6 and 9 weeks of untreated diabetes sharply reduce the 
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initial rate of systolic ejection. In contrast, although the captopril-treated diabetic group showed 
significantly slower values than those of the control group, they were improved over the rates of 
the corresponding untreated group. 

The rates ofleft and right ventricular filling during early diastole in the 6- and 9-week untreated 
diabetic groups were similarly much slower than those of the control group. The 9-week 
captopril-treated diabetic group also showed slower rates of early diastolic filling when 
compared with the control group, which were, however, significantly faster than the rates of the 
corresponding 9-week untreated diabetic group. 

9.6 Rate of left and right ventricular volume changes, dV/dt's 

Figure 9.5 plots the instantaneous rates of change of left (filled bars) and right (clear bars) 
ventricular endocardial volumes, dV/dt's, for each experimental group derived from comparing 
endocardial volumes at successive time-points obtained over the cardiac cycle. Values of 
dV/dt's are represented as negative during systole, while left and right ventricular volumes are 
decreasing with time and the diastolic dV/dt's values are represented as positive owing to filling 
of the left and right ventricles. 

The left and right ventricles showed synchronized patterns and comparable values of volume 
change through both systole and diastole in the normal and the 3-week diabetic rats (Figure 
9.5A & 9.5B). Systolic dV/dt was greatest in early part of systole and diastolic dV/dt greatest 
early in diastole; in both cases values then subsequently declined. 

The left ventricles of the 9-week captopril-treated group also showed similar dV/dt's to those of 
their corresponding right ventricles through both systole and diastole (Figure 9.SE). The 
qualitative temporal patterns of volume change in both left and right ventricles of the 9-week 
captopril-treated group were similar to those of the control and the 3-week groups; contraction 
began early in systole and relaxation began early in diastole with both events synchronized in 
the left and right ventricles. However, the systolic and diastolic left and right ventricular dV/dt's 
were quantitatively smaller than those of the control group, though better than those of the 6-
and 9-week untreated diabetic groups (see below). 

Left and right ventricles of the 6- and 9-week untreated diabetic groups both showed contrasting 
systolic and diastolic patterns to those of the control, 3- and 9-week captopril-treated diabetic 
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groups (Figure 9.5C and 9.5D). Thus, dV/dt was relatively small early in systole, and only 

gradually increased in magnitude into the middle part of systole before declining. The initial 

values of both the left and right ventricular systolic dV/dt's were thus smaller than those shown 

by the normal, the 3-, and the 9-week captopril-treated diabetic groups. However, from mid

systole, the dV/dt's values of the 6- and 9-week untreated diabetic groups were similar to the 

corresponding rates calculated for the control, the 3- and the 9-week captopril treated groups. 

The diastolic left and right ventricular dV/dt's were also significantly compromised in the 6-

and 9-week untreated diabetic group. 

Both left and right ventricular dV/dt's of the 6-week and 9-week untreated diabetic groups also 

showed similar patterns throughout the cardiac cycle. Thus, left and right ventricular values 

were closely matched through all time-points in all the 5 experimental groups. Both ventricles 

reached both their limits of end-systole and end-diastolic refilling at approximately the same 

time during the cardiac cycle. The former typically took place at about 99 ms after the R-wave 

trigger in the control, the 3- and the 9-week captopril-treated groups and at approximately 112 

ms in the 6- and the 9-week untreated diabetic groups. 

I 
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Figure 9.5: Left and right 

ventricular dV/dt. Block diagram 

displaying left (filled bars) and right 

(clear bars) ventricular volume 

changes with respect to time during 

the 12 studied time points through 

the cardiac cycle obtained from the 

normal control group (A), the 3-week 

diabetic group (B), the 6-week 

diabetic group (C), the 9-week 

untreated diabetic group (D), and the 

9-week captopril-treated diabetic 

group (E) (see legend to Fig. R.7). 

Data points derived from obtaining 

the slopes between adjacent points in 

the left ventricular (L V) and right 

ventricular (RV) volume curves 

obtained from individual groups 

themselves summarized m Figures 

R.7, 8 respectively. Each bar 

represents the average dV/dt ± SEM 

between 2 consecutive time points 

through the cardiac cycle. Negative 

dV/dt's represent contraction of the 

cardiac walls during systole and 

positive dV /dt's represent their 

relaxation. The bar 1 represents 

dV/dt between the 1 stand 2°d studied 

time points during the cardiac cycle 

with the first point timed typically 8 

ms after the trigger pulse from the 

electrocardiographic R wave and 21 

ms for the second point. Points 2 to 

11 represent dV/dts between volume 

points successively obtained 21, 34, 

47,60, 73,86,99, 112,125, 138,and 

151 ms following the R wave. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One-Way ANOVA 
(n = 4) (n = 4) (n = 4) diabetic 

(n = 4) 
F P-value (all levels) 

End-diastolic volume (EDV) (µl) 493.8 ± 12.1 c,d 461 ± 11.6 c,d 357.5 ± 11.1 a,b,d 285.8 ± 10.1 a,b,c 71.874 <0.001 

End-systolic volume (ESV) (µl) 176.3 ± 10.3 177.5 ± 4.8 180 ± 7.4 166.3 ± 5.2 0.697 0.572 

Stroke volume (SY) (µl) 317.5 ± 4.8 b,c,d 283.5 ± 7.6 a,c,d 177.5±4.3a,b,d 119.5 ± 7.5 a, b,c 215.864 <0.001 

Ejection fraction (EF) % 64.4 ± 1.3 c, d 61.5 ± 0.5 c,d 49.7 ± 0.7 a,b,d 41.7 ± 1.6 a,b,c 87.424 <0.001 

Table 9.1: Absolute (non-normalized) MRI-derived diastolic and systolic volumes and ejection fractions (EF) of the left ventricles of the control and the three untreated diabetic groups. 

All values expressed as mean ± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three untreated diabetic groups followed by Tukey' s Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

a Significantly different from the control group. 

b Significantly different from the 3-week diabetic group. 

c Significantly different from the 6-week diabetic group. 

d Significantly different from the 9-week untreated diabetic group. 

=c=-;~-~ ~-~=; ~ 
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Parameter Control 9-week untreated 9-week captopril-treated (One-Way ANOVA) 
(n = 4) diabetic diabetic 

(n =4) (n = 4) 
F P-value (all levels) 

End-diastolic volume (EDV) (µl) 493.8 ± 12.1 +, § 285.8 ± 10.1 *'§ 346.3 ± 19.5 *' + 54.478 <0.001 

End-systolic volume (ESV) (µl) 176.3 ± 10.3 § 166.3 ± 5.2 132.5 ± 9.7 * 6.975 0.015 

Stroke volume (SV) (µ1) 317.5±4.8+,§ 119.5 ± 7.5 *' § 213 .8 ± 10.1 *' + 162.217 <0.001 

Ejection fraction (EF) % 64.4 ± 1.3 + 41.7 ± 1.6 *'§ 61.8 ± 0.8 + 92.086 <0.001 

Table 9.2: Absolute (non-normalized) MRI-derived diastolic and systolic volumes and ejection fractions (EF) of the left ventricles of the control and the two 9-week diabetic groups. 

All values expressed as mean ± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOV A) was used in comparison of the control and the two 9-week diabetic groups followed by Tukey' s Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. 

+ Significantly different from the 9-week untreated diabetic group. 

§ Significantly different from the 9-week captopril-treated diabetic group. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One-Way ANOVA (n =4) (n =4) (n = 4) diabetic 
F P-value (all levels) (n = 4) 

End-diastolic volume (EDV) (µl) 472.3 ± 10.3 c,d 444.3 ± 11.1 c, d 361.3 ± 5.5 3
' b, d 272.5 ± 11.1 a, b, C 84.743 <0.001 

End-systolic volume (ESV) (µl) 173.8 ± 12 172.5 ± 4.8 175 ± 6.5 162.5 ± 3.2 0.599 0.628 

Stroke volume (SV) (µl) 298.5 ± 2.5 b, c, d 271.8 ± 6.4 a,c,d 186.3±3.1 a,b,d 110 ± 8.4 a,b,c 230.043 <0.001 
Ejection fraction (EF) % 63.3± l.8c,d 61.2 ± 0.2 c,d 51.6 ± 1.2 a, b, d 40.2 ± 1.6 a, b, C 61.845 <0.001 

Table 9.3 : Absolute (non-normalized) MRI-derived diastolic and systolic volumes and ejection fractions (EF) of the right ventricles of the control and the three untreated diabetic groups. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three 
untreated diabetic groups followed by Tukey' s Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically 
significant. 

a Significantly different from the control group. 
b Significantly different from the 3-week diabetic group. 
c Significantly different from the 6-week diabetic group. 
d Significantly different from the 9-week untreated diabetic group. 
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Parameter Control 9-week untreated 9-week captopril-treated (One-Way ANOVA) 
(n = 4) diabetic diabetic 

(n = 4) (n =4) 
F P-value (all levels) 

End-diastolic volume (EDV) (µl) 472.3 ± 10.3 +,§ 272.5 ± 11.1 *' § 322.5 ± 15.1 *'+ 70.967 <0.001 

End-systolic volume (ESV) (µ1) 173.8 ± 12§ 162.5 ± 3.2 § 123.8 ± 5.5 *'+ 11.195 0.004 

Stroke volume (SV) (µl) 298.5 ± 2.5 +, § 110±8.4*' § 198.8 ± 10.5 *' + 142.560 <0.001 

Ejection fraction (EF) % 63.3 ± 1.8 + 40.2 ± 1.6 *• § 61.6 ± 0.8 + 77.120 <0.001 

Table 9.4: Absolute (non-normalized) MRI-derived diastolic and systolic volumes and ejection fractions (EF) of the right ventricles of the control and the two 9-week diabetic groups. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOV A) was used in comparison of the control and the two 9-week diabetic groups followed by Tukey' s Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. 

+ Significantly different from the 9-week untreated diabetic group. 

§ Significantly different from the 9-week captopril-treated diabetic group. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One Way ANOV A 
(n = 4) (n = 4) (n = 4) diabetic 

(n = 4) F P-value (all levels) 
End-diastolic volume (EDV)/ 1.41 ± 0.01 c,d 1.38 ± 0.003 c, d 1.26 ± 0.02 a, b,d 1.22 ± 0.01 a,b,c 61.840 <0.001 Body weight (µ1/g) 

End-systolic volume (ESV)/ 0.5 ± 0.02 c, d 0.53 ± 0.01 c, d 0.64 ± 0.01 a, b, d 0.71 ± 0.02 a,b,c 46.637 <0.001 Body weight (µ1/g) 

Stroke volume (SV)/ 0.91 ± 0.02 c, d 0.85 ± 0.01 c, d 0.63 ± 0.01 a, b,d 0.51 ± 0.02 a,b, c 110.884 <0.001 Body weight (µl /g) 

Table 9.5: The MRI-derived diastolic and systolic volumes of the left ventricles of the control and the three untreated diabetic groups normali:zed with respect to their corresponding body weights. The body weight-normalized diastolic and systolic volumes of the left ventricles of the experimental rats were calculated using their corresponding body weights determined while they were under anaesthesia. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three untreated diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

• Significantly different from the control group. 
b Significantly different from the 3-week diabetic group. 

c Significantly different from the 6-week diabetic group. 
d Significantly different from the 9-week untreated diabetic group. 
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Parameter 

End-diastolic volume (EDV)/ 

Body weight (µIlg) 

End-systolic volume (ESV)/ 

Body weight (µl/g) 

Stroke volume (SV)/ 

Body weight (µ1 /g) 

Control 

(n = 4) 

1.41 ± 0.01 + 

0.5 ± 0.02 + 

0.91 ± 0.02 + 

9-week untreated diabetic 

(n = 4) 

1.22 ± 0.01 *'§ 

0.71 ± 0.02 * •§ 

0.51 ± 0.02 *'§ 

9-week captopril-treated 

diabetic 

(n=4) 

1.4 ± 0.06 + 

0.54 ± 0.02 + 

0.87 ± 0.04 + 

One-Way ANOVA 

F P- value (All levels) 

10.299 0.005 

34.443 <0.001 

57.328 <0.001 

Table 9.6: The MRI-derived diastolic and systolic volumes of the left ventricles of the control and the two 9-week diabetic groups normalized with respect to their 
corresponding body weights. The body weight-normalized diastolic and systolic volumes of the left ventricles of the experimental rats were calculated using their 
corresponding body weights determined while they were under anaesthesia. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the two 9-
week diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. 

+ Significantly different from the 9-week untreated diabetic group. 

§ Significantly different from the 9-week captopril-treated diabetic group. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One Way ANOV A 
(n = 4) (n = 4) (n = 4) diabetic 

(n =4) 
F P-value (all levels) 

End-diastolic volume (EDV)/ 1.35 ± 0.01 d 1.33 ± 0.01 d 1.28 ± 0.02 d 1.16 ± 0.02 a,b,c 25.164 <0.001 
Body weight (µ1/g) 

End-systolic volume (ESV)/ 0.49± 0.02 c, d 0.51 ± 0.01 c,d 0.62± 0.01 a,b,d 0.69± 0.01 a,b,c 50.291 <0.001 
Body weight (µ1/g) 

Stroke volume (SV)/ 0.85 ± 0.03 c,d 0.81 ± 0.003 c,d 0.66 ± 0.02 a,b,d 0.47 ± 0.03 a,b,c 56.998 <0.001 
Body weight (µ1/g) 

Table 9.7: The MRI-derived diastolic and systolic volumes of the right ventricles of the control and the three untreated diabetic groups normalized with respect to their corresponding body weights. The body weight-normalized diastolic and systolic volumes of the right ventricles of the experimental rats were calculated using their corresponding body weights determined while they were under anaesthesia. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three untreated diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

a Significantly different from the control group. 
h Significantly different from the 3-week diabetic group. 
c Significantly different from the 6-week diabetic group. 
d Significantly different from the 9-week untreated diabetic group. 
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Parameter 

End-diastolic volume (EDV)/ 

Body weight (µ1 /g) 

End-systolic volume (ESV)/ 

Body weight (µ1/g) 

Stroke volume (SV)/ 

Body weight (µ1/g) 

Control 

(n = 4) 

1.35 ± 0.01 + 

0.49± 0.02 + 

0.85 ± 0.03 + 

9-week untreated diabetic 

(n =4) 

1.16 ± 0.02 *'§ 

0.69 ± 0.01 *' § 

0.47 ± 0.03 *' § 

9-week captopril-treated 

diabetic 

(n=4) 

1.3 ± 0.02 + 

0.50 ± 0.01 + 

0.80 ± 0.01 + 

One-Way ANOV A 

F P- value (All levels) 

27.281 <0.001 

49.590 <0.001 

74.114 <0.001 

Table 9.8: The MRI-derived diastolic and systolic volumes of the right ventricles of the control and the two 9-week diabetic groups normalized with respect to their corresponding body weights. The body weight-normalized diastolic and systolic volumes of the right ventricles of the experimental rats were calculated using their corresponding body weights determined while they were under anaesthesia. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the two 9-week diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. 

+ Significantly different from the 9-week untreated diabetic group. 
§ Significantly different from the 9-week captopril-treated diabetic group. 
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Parameter Change occurred over Change.occurred over Change occurred over Change occurred over 

3 weeks of diabetes 6 weeks of diabetes 9 weeks of diabetes 9 weeks of diabetes with 
without captopril treatment without captopril treatment without captopril treatment captopril treatment 

Absolute L V EDV (µl ) -6.6% c,d -27.6% a, b, d -42.1 % a, 6, d -29.9% a, d 

Normalized L V EDV (µ1/g) -2.1% c, il -10.6% a,6,il -13.5% a, 6,c, § -0.7% d 

Absolute L V ESV (µl ) +0.7% +2.1% -5.7% -24.8% a 

Normalized L V ESV (µ1 /g) +6.0% c, il +28.0% a,6,il +42 .0% a,b,c, § +8 .0% d 

Absolute L V SV (µl ) -10.7% a, c,<1 -44.1% a,1>, <1 -62.4% a, I>, c, § -32.7% a, 

Normalized L V SV (µ1/g) -6.6% c, -30.8% a, I>, <1 -44.0% a, I>, c, 9 -4.4% 

LV ejection fraction(%) -4.5% c,il -22.8% a, 6,il -35 .2% a, b, c, § -4% d 

Table 9.9: The effect of the duration of diabetes on left ventricular (LV) diastolic and systolic volumes and ejection fractions and its modification by captopril 
treatment. LV EDV: left ventricular end-diastolic volume, LV ESV: left ventricular end-systolic volume, and LV SV: left ventricular stroke volume respectively. 

The (-) and the (+) signs indicate a decrease and an increase in absolute and normalized left ventricular diastolic and systolic volumes and ejection fraction with diabetes 
respectively. 

The symbols a, b, c, d, and § repeat the results obtained from Tukey' s Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 9 .1, 
9.2, 9.5 and 9.6. 

~ 
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Parameter Change occurred over Change occurred over Change occurred over Change occurred over 
3 weeks of diabetes 6 weeks of diabetes 9 weeks of diabetes 9 weeks of diabetes with 

without captopril treatment without captopril treatment without captopril treatment captopril treatment 

Absolute RV EDV (µl ) -5.9% c, d -23.5% a,b,d -42.3% a, 6, d -31.7% a, d 

Normalized RV EDV (µ1/g) -1.5% -5.2% -14.1% a, ,c, 9 -3 .7% 

Absolute RV ESV (µl) +0.7% +0.7% -6.5% · -28.8% a, 

Normalized RV ESV (µ1/g) +4.1% c, il +26.5% a, 6, il +40.8% a, Ii, C, ~ +2.0% a 

Absolute RV SV (µl) _8_9% a,c, il -37.6% a, 6, a -63 .1 % a, 6, c, § -33.4% a, 

Normalized RV SV (µ1/g) -4.7% c, il -22.4% a, 6, a -44. 7% a, 6, c, § -5.9%a 

RV ejection fraction% -3.3% c, il -18.5% a,6,d -36.5% a, b, c, 9 -2.7% 

Table 9.10: The effect of the duration of diabetes on right ventricular (RV) diastolic and systolic volumes and ejection fraction and its modification by captopril 
treatment. RV EDV: right ventricular end-diastolic volume, RV ESV: right ventricular end-systolic volume, and RV SV: right ventricular stroke volume respectively. 

The (-) and the ( +) signs indicate a decrease and an increase in absolute and normalized right ventricular diastolic and systolic volumes and ejection fraction with diabetes 
respectively. Tables 9.3, 9.4, 9.7 and 9.8. 

The symbols a, b, c, d, and § repeat the results obtained from Tukey's Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 9.3, 
9.4, 9.7 and 9.8. 
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Parameter Between O and 3 weeks of diabetes Between 3 and 6 weeks of diabetes Between 6 and 9 weeks of diabetes 

Absolute L V EDV (µl ) -6.6% -22.5% b -20.1 % c 

Normalized L V EDV (µIlg) -2 .1% -8.7% -3.2% C 

Absolute L V ESV (µl ) +0.7% +1.4% -7.6% 

Normalized L V ESV (µ1/g) +6.0% +20.8% +10.9% C 

Absolute L V SV (µl ) -10.7% a -37.4% b -32.7% C 

Normalized L V SV (µ1/g) -6.6% -25.9% b -19.0% C 

LV ejection fraction% -4.5% -19.2% -16.1% C 

Table 9.11: Fractional deterioration in left ventricular (LV) diastolic and systolic volumes and ejection fraction through the experimentally induced diabetic state without captopril treatment. LV EDV: left ventricular end-diastolic volume, LV ESV: left ventricular end-systolic volume, and LV SY: left ventricular stroke volume respectively. 

The (-) and the (+) signs indicate a decrease and an increase in absolute and normalized left ventricular diastolic and systolic volumes and ejection fraction with diabetes respectively. 

The symbols a, b, and c repeat the results obtained from Tukey's Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 9.1 and 9.5. They only indicate that the deterioration was significant. 
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Parameter Between O and 3 weeks of diabetes Between 3 and 6 weeks of diabetes Between 6 and 9 weeks of diabetes 

Absolute RV EDV (µl) -5.9% -18.7% b -24.6% C 

Normalized RV EDV (µ1/g) -1.5% -3.8% -9.4% C 

Absolute RV ESV (µl ) -0.7% +1.4% -7.1% 
Normalized RV ESV (µ1/g) +4.1% +21.6% +11.3% C 

Absolute RV SV (µl) -8.9% 3 

-31.5% -41.0% C 

Normalized RV SV (µ1/g) -4.7% -18.5% -28.8% C 

RV ejection fraction% -3.3% -15.7% -22.1% C 

Table 9.12: Fractional deterioration in right ventricular (RV) diastolic and systolic volumes and ejection fraction through the experimentally induced diabetic state without captopril treatment. RV EDV: right ventricular end-diastolic volume, RV ESV: right ventricular end-systolic volume, and RV SV: right ventricular stroke volume respectively. 

The(-) and the(+) signs indicate a decrease and an increase in absolute and normalized right ventricular diastolic and systolic volumes and ejection fraction with diabetes respectively. 

The symbols a, b, and c repeat the results obtained from Tukey' s Honestly Significant Difference test while performing pair wise-multiple comparisons in Tables 9.3 and 9.7. They only indicate that the deterioration was significant. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One-Way ANOVA 
(n =4) (n = 4) (n = 4) diabetic 

(n =4) 
F P- value ( all levels) 

25 % SV and DFV (µI) 79.4 ± 1.2 b,c,d 70.9 ± 1.9 a,c,d 42.9 ± 0.9 a,b,d 28.6 ± 1.5 a,b,c 278.586 <0.001 

Time for 25 % SY (ms) 22.0 ± 0.8 c,d 21.8 ± 1.6 c,d 42.3 ± 2.7 a,b 45.3 ± 0.9 a,b 55.904 <0.001 
after the R wave trigger 

Time for 25 % DFY (ms) 110.3 ± 0.5 c,d 110.3 ± 0.6 c,d 124.8 ± 1.1 a, b 123.8 ± 1.0 a, b 89.829 <0.001 
after the R wave trigger 

Time for 25 % SY (ms) 14.0 ± 0.8 c,d 13.8 ± 1.6 c,d 34.3 ± 2.7 a, b 37.3±0.9a,b 55.904 <0.001 

Time for 25 % DFY (ms) 11.3 ± 0.5 11.3 ± 0.6 12.8 ± 1.1 11.8 ± 1.0 0.686 0.578 

Rate of ejection during early systole (µI/ms) 5.7 ± 0.3 c,d 5.3 ± 0.5 c,d 1.3 ± 0.1 a, b 0.8 ± 0.03 a, b 70.314 <0.001 

Rate of filling during early diastole (µI/ms) 7.1 ± 0.4 c,d 6.4 ± 0.5 c,d 3.4 ± 0.3 a,b 2.5 ± 0.2 a,b 36.768 <0.001 

Table 9 .13: Indices for the kinetics of left ventricular contraction and relaxation of the control and the three untreated diabetic groups. 
All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three 
untreated diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically 
significant. 

a Significantly different from the control group. b Significantly different from the 3-week diabetic group. 
c Significantly different from the 6-week diabetic group. d Significantly different from the 9-week untreated diabetic group. 
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Parameter Control 9-week untreated 9-week captopril- One-Way ANOVA 
(n = 4) diabetic treated diabetic 

(n =' 4) (n = 4) 
F P- value (all levels) 

25 % SV and DFV (µl) 79.4 ± 1.2 +, § 28.6 ± 1.5 *' § 53.44 ± 2.5 *'+ 335.859 <0.001 

Time for 25 % SV (ms) 22.0 ± 0.8 + 45.3 ± 0.9 *' § 22.9 ± 0.9 + 265.515 <0.001 
after the R wave trigger 

Time for 25 % DFV (ms) 110.3±0.5+ 123.8 ± 1.0 *·§ 111.9±0.7+ 92.557 <0.001 
after the R wave trigger 

Time for 25 % SV (ms) 14.0 ± 0.8 + 37.3 ± 0.9 *'§ 14.9 ± 0.9 + 265.515 <0.001 

Time for 25 % DFV (ms) 11.3 ± 0.5 11.8 ± 1.0 12.9 ± 0.7 3.510 0.075 

Rate of ejection during early systole (µI/ms) 5.7±0.3+,§ 0.8 ± 0.03 *' § 3.7 ± 0.3 *'+ 137.280 <0.001 

Rate of filling during early diastole (µI/ms) 7.1±0.4+,§ 2.5 ± 0.2 *'§ 4.2 ± 0.1 *' + 72.144 <0.001 

Table 9 .14: Indices for the kinetics of left ventricular contraction and relaxation for the control and the two 9-week diabetic groups. 
All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the two 9-week diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. + Significantly different from the 9-week untreated diabetic group. § Significantly different from the 9-week captopril-treated diabetic group. 
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Parameter Control 3-week diabetic 6-week diabetic 9-week untreated One-Way ANOVA 
(n = 4) (n =4) (n = 4) diabetic 

(n = 4) 
F P- value (all levels) 

25 % SV and DFV (µI) 74.6 ± 0.6 b,c,d 67.9 ± 1.6 a,c,d 44.6 ± 0.8 3
' b, d 26.2 ± 2.1 a, b, C 250.450 <0.001 

Time for 25 % SV (ms) 22.0 ± 0.4 c, d 22.0 ± 1.0 c, d 42.8 ± 2.5 a, b 48.3 ± 0.8 3
' b 93.108 <0.001 

after the R wave trigger 

Time for 25 % DFV (ms) 109.5 ± 0.6 c,d 109.3 ± 0.5 c,d 123 .5 ± 0.9 a,b 123.5 ± 1.0 a,b 115.054 <0.001 
after the R wave trigger 

Time for 25 % SV (ms) 14.0 ± 0.4 c, d 14.0 ± 1.0 c, d 34.8 ± 2.5 3
' b 40.3 ± 0.8 3

' b 93.108 <0.001 

Time for 25 % DFV (ms) 10.5 ± 0.6 10.3 ± 0.5 11.5 ± 0.9 11.5 ± 1.0 0.748 0.544 

Rate of ejection during early systole (µI/ms) 5.3 ± 0.2 c, d 4.9 ± 0.3 c, d 1.3 ± 0.1 a, b 0.6 ± 0.05 a, b 206.045 <0.001 

Rate of filling during early diastole (µI/ms) 7.2 ± 0.4 c,d 6.7 ± 0.5 c,d 3.9 ± 0.2 a,b 2.4 ± 0.3 a,b 36.746 <0.001 

Table 9 .15: Indices for the kinetics of right ventricular contraction and relaxation of the control and the three untreated diabetic groups. 
All values expressed as mean ± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the three untreated diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

a Significantly different from the control group. b Significantly different from the 3-week diabetic group. 
c Significantly different from the 6-week diabetic group. d Significantly different from the 9-week untreated diabetic group. 
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Parameter Control 9-week untreated 9-week captopril- One-Way ANOVA 

(n = 4) diabetic treated diabetic 

(n = 4) (n = 4) 
F P- value (all levels) 

25 % SV and DFV (µI) 74.6 ± 0.6 +, § 26.2 ± 2.1 *'§ 49.7 ± 2.6 *'+ 189.201 <0.001 

Time for 25 % SV (ms) 22.0 ± 0.4 + 48.3 ± 0.8 *' § 23.8 ± 1.0 + 565.171 <0.001 

after the R wave trigger 

Time for 25 % DFV (ms) 109.5 ± 0.6 + 123.5 ± 1.0 *' § 110.9 ± 0.6 + 111.667 <0.001 

after the R wave trigger 

Time for 25 % SV (ms) 14.0 ± 0.4 + 40.3 ± 0.8 *• § 15.8 ± 1.0 + 565.171 <0.001 

Time for 25 % DFV (ms) 10.5 ± 0.6 11.5 ± 1.0 11.9 ± 0.6 2.053 0.184 

Rate of ejection during early systole (µ1/ms) 5.3 ± 0.2 +,§ 0.6 ± 0.05 *' § 3.2 ± 0.2 *'+ 152.757 <0.001 

Rate of filling during early diastole (µI/ms) 7.2 ± 0.4 +,§ 2.4 ± 0.3 *'§ 4.2 ± 0.4 *'+ 54.726 <0.001 

Table 9 .16: Indices for the kinetics of right ventricular contraction and relaxation for the control and the two 9-week diabetic groups. 

All values expressed as mean± standard error of the mean (SEM). One-way analysis of variance (One-Way ANOVA) was used in comparison of the control and the two 9-
week diabetic groups followed by Tukey's Honestly Significant Difference test for pair-wise multiple comparisons. A value of p<0.05 was considered statistically significant. 

*Significantly different from the control group. + Significantly different from the 9-week untreated diabetic group. § Significantly different from the 9-week captopril-treated 
diabetic group. 



CHAPTERlO 

DISCUSSION 

10.1 Diabetic cardiac disease 

Diabetes is associated with substantially increased susceptibility to coronary artery disease 

(Crall and Roberts, 1978; Jarret, 1979; Kannel, 1985). Diabetes may also lead to a diabetic 

cardiomyopathy (Hamby et al., 1974; Kannel, 1974; Ahmed et al., 1975; Sanderson et al., 1978; 

Shapiro et al., 1980, 1981a, b, 1982). It thus increases the incidence of congestive cardiac 

failure to an extent that could not be fully accounted for by the higher incidence of coronary 

atherosclerosis, hypertension, or cardiac autonomic neuropathy in such patients (Kannel et al., 

1974). The pathophysiology of a possible diabetic cardiomyopathy and its associated 

haemodynamic abnormalities have accordingly attracted increasing interest. Animal studies 

using conventional physiological techniques have suggested that diabetic cardiomyopathy may 

exist as a distinct pathological entity. Thus, intact diabetic dogs showed abnormalities in left 

ventricular diastolic compliance (Regan et al., 1974). Isolated perfused hearts of diabetic rats 

similarly demonstrated decreased peak systolic pressures (Miller, 1979), Isolated papillary 

ventricular muscles obtained from diabetic rat hearts show a delayed onset and reduced rate of 

relaxation (Fein et al., 1980), increased time to peak tension and reduced sensitivity to 

increasing concentrations of calcium and adrenaline in the bathing medium (Warley et al., 

1995). However, no non-invasive quantitative characterizations or analyses of the structural and 

functional myocardial changes have been made in intact diabetic animals, even though these 

potentially provide useful experimental models for diabetic cardiomyopathy. 

10.2 Cardiac MRI 

However, there have been rapid recent developments in the application of system hardware and 

pulse sequences for non-invasive cardiac magnetic resonance imaging (MRI). These have made 

MRI highly applicable for chronic physiological studies of animal models of common human 

cardiac pathology. MRI has already proven useful for accurate and high-resolution 
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10.1 Diabetic cardiac disease 

Diabetes is associated with substantially increased susceptibility to coronary artery disease 
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failure to an extent that could not be fully accounted for by the higher incidence of coronary 
atherosclerosis, hypertension, or cardiac autonomic neuropathy in such patients (Kannel et al., 
197 4 ). The pathophysiology of a possible diabetic cardiomyopathy and its associated 
haemodynamic abnormalities have accordingly attracted increasing interest. Animal studies 
using conventional physiological techniques have suggested that diabetic cardiomyopathy may 
exist as a distinct pathological entity. Thus, intact diabetic dogs showed abnormalities in left 
ventricular diastolic compliance (Regan et al., 1974). Isolated perfused hearts of diabetic rats 
similarly demonstrated decreased peak systolic pressures (Miller, 1979), Isolated papillary 
ventricular muscles obtained from diabetic rat hearts show a delayed onset and reduced rate of 
relaxation (Fein et al., 1980), increased time to peak tension and reduced sensitivity to 
increasing concentrations of calcium and adrenaline in the bathing medium (Warley et al., 
1995). However, no non-invasive quantitative characterizations or analyses of the structural and 
functional myocardial changes have been made in intact diabetic animals, even though these 
potentially provide useful experimental models for diabetic cardiomyopathy. 

10.2 Cardiac MRI 

However, there have been rapid recent developments in the application of system hardware and 
pulse sequences for non-invasive cardiac magnetic resonance imaging (MRI). These have made 
MRI highly applicable for chronic physiological studies of animal models of common human 
cardiac pathology. MRI has already proven useful for accurate and high-resolution 
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measurements of the major anatomical and functional clinical parameters of human cardiac 
performance (Stratemeier et al., 1986; Markiewicz et al., 1987; Sechtem et al., 1987; Semelka et 
al., 1990). There additionally has been recent interest in cine-MRI because of its excellent 
contrast between blood within the cardiac chambers and the myocardium that in tum would 
clearly demarcate the heart cavities. (Higgins, 1986; Sechtem et al., 1987; Semelka et al., 1990). 
The resulting cardiac images would be highly amenable to quantitative assessment of 
anatomical and functional characteristics. However, there are no published physiological MRI 
studies of the diabetic heart whether in human or in experimental animals. Yet such studies 
could both assess the important contribution made by impaired left ventricular function in the 
increased human morbidity and mortality from diabetic cardiomyopathy (Kannel, 1974) and 
follow chronic changes in both left and right ventricles in experimental systems. Physiological 
studies using such an approach could also lead to the application of similar MRI methods in 
clinical practice with their advantages in soft tissue contrast and avoidance of ionizing radiation. 

The present MRI experiments detected and characterized the cardiac structural and functional 
abnormalities in both ventricles following experimental induction of diabetes in the laboratory 
rat for the first time. They also quantitatively analyzed the kinetic changes in left and right 
ventricular contraction and relaxation through the cardiac cycle and so established the presence 
of changes -in the cardiac cycle produced by diabetic cardiomyopathy and characterized them in 
details. Finally, the experiments investigated the beneficial effects of captopril, an angiotensin
converting enzyme inhibitor in relieving such changes. 

10.3 The streptozotocin-diabetic rat 

Experimental animal systems offer particular advantages for following the chronic pathological 
changes when these are used as models for human disease, particularly when used in 
conjunction with non-invasive imaging techniques as opposed to standard mvas1ve 
physiological measurements. In the present study, the point of induction of the disease in the 
streptozotocin-diabetic rat was clearly defined. The relevant pathology developed over weeks 
permitting chronic study over a manageable time scale. In any case, detailed pathological 
studies may not be possible in humans in the presence of clinical treatment and in any case 
human studies may not permit histological comparisons. The high resolution and sensitivity to 
anatomical and functional change now available to MRI permits early detection of pathology 
even in the relatively small laboratory rat and such changes can then be followed over time. 
Furthermore, use of MRI would reduce the number of animals required in physiological studies; 
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serial repeated studies of a given animal would decrease biological variance. Finally, the non

invasive imaging techniques themselves that emerge from such work would potentially be 

applicable for subsequent human studies. 

10.4 Summary of the experimental approach 

Since MRI measures all the major cardiac parameters accurately and non-invasively, the study 

involved relatively few animals. In addition, the experimental design incorporated diabetic, 

control and captopril-treated groups. The 20 male Wistar rats (6-week old) reared under 

standard conditions in animal facilities were randomly divided into five groups ( each n = 4). 

Diabetes was induced at the age of 7 weeks in two groups and at 10 and 13 weeks respectively 

in two more experimental groups. The fifth group (n = 4) was kept as a control. All the animals, 

including the four in the control group were then consistently scanned at the age of 16 weeks. 

The diabetic state thus existed for 3, 6 and 9 weeks respectively before scanning in the groups 

made diabetic at the ages of 13, 10 and 7 weeks respectively. The untreated control rats were 

imaged at the same age of 16 weeks as the rats in the four diabetic groups and accordingly 

provided age and sex matched controls for all the four diabetic groups. Finally, the rats of one of 

the groups made diabetic at the age of 7 weeks (n = 4) were treated with captopril at a 

concentration of2 g/1 in the drinking water from immediately after the induction of diabetes. 

The experimental studies acquired high-resolution MR images that provided a complete 

anatomical reconstruction of the intact rat heart at all imaged points through the cardiac cycle. 

Twelve transverse contiguous slices of the same slice thickness that fully covered each heart, all 

positioned perpendicular to the principal cardiac axis with each slice obtained at 12 time-points 

during the cardiac cycle followed both systolic and diastolic events. The animals were sacrificed 

after imaging and MRI and post-mortem results were then compared. The subsequent image 

processing provided epicardial, endocardial and myocardial volumes of both ventricles through 

the cardiac cycle included their end-diastolic and end-systolic volumes. 

The study thus clarified the following questions. First, it characterized the changes in the major 

structural and functional parameters of the left and right ventricles of the diabetic and normal 

rats and validated some of these against post-mortem evidence. Secondly, the physiological and 

quantitative analysis derived the kinetics of left and right ventricular contraction and relaxation 

from the MRI data. Thirdly, the experimental group of the diabetic rats treated with the 

angiotensin-converting enzyme inhibitor captopril provided an evaluation of the therapeutic 
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benefits of this class of drugs in relieving left and right ventricular abnormalities associated with 

diabetes. 

10.5 Cardiac parameters investigated 

The image analysis procedures provided detailed information on changes in ventricular 

myocardial volume, end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume 

(SV), and ejection fraction (EF), and the therapeutic effects of captopril on such experimental 

diabetic cardiomyopathy for the first time. They covered both the right and the left ventricles; 

few studies of any kind have been made on right ventricular structure and function whether in 

human or in experimental models of such systemic disease. The resulting MRI measurements of 

left and right ventricular parameters were expressed both as absolute values, and normalized to 

the corresponding body weights to facilitate comparison with earlier studies (Maeda et al., 1995; 

Hicks et al., 1998). 

Major ventricular diastolic and systolic function volumes, ejection fractions, kinetics of 

contraction and relaxation and myocardial volumes of both ventricles significantly altered at 6 

weeks in diabetic rats not treated with captopril, in agreement with previous reports (Rodrigues 

et al., 1997). Furthermore, further deterioration took place between 6 and 9 weeks of diabetes. 

10.6 Ventricular 

cardiomyopathy 

hypertrophy in experimental diabetic 

Both the measured left and right ventricular myocardial volumes were closely similar at end

systole and end-diastole in all five experimental groups. This expected conservation of both left 

and right ventricular myocardial volumes confirms consistency of determinations of the 

myocardial borders in each transverse MRI section and their reconstruction into myocardial 

volumes. In addition, the MRI measurements closely correlated with the myocardial masses 

measured post-mortem to give consistent values of myocardial densities that closely agreed with 

earlier studies at least in normal rats (Wise et al., 1998). 

The myocardial volume determinations demonstrated a significant relative left and right 

ventricular hypertrophy relative to the corresponding body weights after both 6 weeks and 9 

weeks of diabetes. This agrees with earlier pathological reports of myocardial hypertrophy and 
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interstitial fibrosis in diabetic hearts (Rubler et al., 1972; Fischer et al., 1979). They also agree 

with human echocardiographic findings of an increased left ventricular posterior wall and 

interventricular septal thicknesses in diabetics (Airaksinen et al., 1984a, 1987). There are, 

however, no corresponding echocardiographic reports concerning the right ventricle in diabetes. 

The left ventricular hypertrophy developed markedly between 3 and 6 weeks of diabetes; this 

was followed by a smaller percentage increase between 6 and 9 weeks. In contrast, the greatest 

right ventricular hypertrophy occurred between 6 and 9 weeks of diabetes rather than between 3 

and 6 weeks. These observed disparities might reflect the lower right-sided afterload. In 

contrast, the 9-week captopril-treated diabetic rats showed no such ventricular hypertrophy, 

suggesting a therapeutic effect of captopril upon the development of experimental diabetic 

cardiomyopathy. 

10. 7 Ventricular diastolic dysfunction in experimental diabetes 

10.7.1 Diastolic volumes 

Left and right ventricular end-diastolic volumes fell substantially over 6- and 9 weeks of 

diabetes compared with control rats. Furthermore, the greatest alterations took place between 3 

and 6 weeks for the left ventricle and between 6 and 9 weeks for the right ventricle. Captopril 

reduced such changes in the 9-week diabetic group. These findings resolve some discrepancies 

in the echocardiographic literature that variously report reductions (Airaksinen et al., 1984a, 

1987), or normal or modest increases in left ventricular size in diabetics (Shapiro et al., 198 la; 

Friedman et al., 1982; Fisher et al., 1989). Finally, there are no available existing reports 

whatsoever concerning right ventricular volumes for comparison. 

10.7.2 Rates of diastolic filling 

The ascending limbs of left and right ventricular endocardial volume curves derived from MRI 

and their corresponding initial rates of change, dV/dt, provided indications of diastolic function 

in the rapid filling phase of the cardiac cycle, which starts with opening of the atrio-ventricular 

valves. This rapid phase was followed by the slow filling phase in both ventricles. Both left and 

right ventricles of the 6- and 9-week diabetic rats showed reduced rates of early diastolic filling 

compared with the normal controls suggesting significant impairment in diastolic function. 

These results agree with echocardiographic findings of left ventricular diastolic dysfunction 

indicated by a prolonged isometric relaxation phase in diabetic patients (Sanderson et al., 1978; 

Shapiro et al., 1980, 1981a; b; Shapiro 1982; Airaksinen et al., 1984a). 
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A number of changes in cellular calcium handling have been implicated in the left ventricular 

diastolic dysfunction in diabetic patients. Several studies have reported reductions in 

sarcoplasmic reticular calcium re-uptake (Ganguly et al., 1983; Dhalla et al., 1998). Other 

investigators have, however, attributed diastolic dysfunction in diabetes to the collagen 

accumulation in the myocardial interstitium (Regan et al., 1981). 

10.8 Ventricular systolic dysfunction in experimental diabetes 

Diabetes impaired systolic function in both ventricles. Thus, there were marked changes in left 

and right end-systolic volumes, stroke volumes, and ejection fractions in the 6- and 9-week 

diabetic groups. In addition, the time course of the descending limbs of endocardial volume 

curves revealed markedly altered systolic dV/dt curves in the 6- and 9-week diabetic groups. 

The latter findings make it unlikely that the systolic changes solely result from altered diastolic 

volumes. The present results partially resolve apparent differences in earlier echocardiographic 

findings, which variously reported either depressed (Shapiro et al., 1981a, b, Uusitupa et al., 

1985), normal systolic function (Airaksinen et al., 1984b; Fisher et al., 1989), or enhanced left 

ventricular systolic function in insulin-dependent patients developing microvascular 

complications (Thuesen et al., 1988). 

Similar discrepancies occur between reports using radionuclide ventriculography. While Zola et 

al. (1986) reported significant reductions in left ventricular ejection fractions both at rest and 

with maximal exercise among diabetics with cardiac autonomic neuropathy, other investigators 

reported normal resting left ventricular ejection fractions with abnormal response only after 

exercise in diabetics (Vered et al., 1984; Fisher et al., 1985, 1986; Arvan et al., 1988). 

It is unlikely that the alterations in systolic function reported here simply reflect altered diastolic 

volumes. Thus, the descending limbs of both left and right ventricular endocardial volumes and 

their systolic dV/dt's suggested marked kinetic changes in ventricular contraction. They 

suggested relatively rapid left end right ventricular systolic ejection in the normal, the 3-week, 

and the 9-week captopril-treated diabetic rats followed by slower volume decreases and dV/dt 

values continuing into late systole. In contrast, the 6- and 9-week diabetic rats not treated with 

captopril showed only small and gradual volume changes during early systole suggesting that 

both left and right ventricular systolic function was impaired. These observations resolve 

differing reports of similarly abnormal (Ahmed et al., 1975; Seneviratne, 1977; Shapiro et al., 
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1980, 1981a, b; Cellina et al., 1983; Jermendy et al., 1984; Uusitupa et al., 1985), or normal 

(Airaksinen et al., 1984b) systolic time intervals in diabetic patients. 

10.9 Correspondence between changes in left and right ventricles 

in normal and diabetic hearts 

The transverse cardiac MRI sections showed that both right and left ventricles reached end

diastole and end-systole at approximately the same time in the cardiac cycle in the control as 

well as in all diabetic groups. The left and right ventricular endocardial volume curves and their 

corresponding dV/dt plots similarly demonstrated very similar systolic and diastolic volume 

changes over time through the cardiac cycle of both ventricles in all rats studied. A similar 

correspondence between the right and left ventricles applied to the ventricular end-diastolic 

volumes, end-systolic volumes, stroke volumes, and ejection fractions. These observations 

suggest that the mechanisms that match the performance of the right and left ventricles persisted 

despite diabetes. 

10.10 Conclusions 

The present work has thus successfully introduced magnetic resonance imaging to detect, 

quantify and follow up pathophysiological changes in both the left and right ventricles in 

experimental STZ-diabetes over time. Cine-MRI offered a non-invasive imaging technique that 

provided excellent soft tissue contrast and high quality anatomical images. Such an approach 

made it possible to characterize quantitatively the major parameters of myocardial volume, end

diastolic volume, end-systolic volume, stroke volume, and ejection fraction that characterize left 

and right ventricular function. These findings may be used to derive the cardiac output of both 

ventricles in vivo and determine how these altered through the disease process. Secondly the 

plots of endocardial volumes made it possible to determine the time courses of left and the right 

ventricular contraction and relaxation in detail. Thirdly, the findings could be used to reconcile 

apparently conflicting earlier findings that used other methods of measurements. Fourthly, the 

MRI procedures developed in rats would have potential application for the development of 

cardiac MRI in monitoring and detecting and studying human diabetic cardiac disease. Fifthly, 

the present approach was used to evaluate the effects of the angiotensin-converting enzyme 

inhibitor captopril in preventing the cardiac abnormalities associated with experimental 

cardiomyopathy. The combination of the present imaging with possible therapeutic agents may 
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be useful for future exploration of other interventions. Thus, there emerge significant 

justification for future development and application ·of cine cardiac magnetic resonance imaging 

in diabetic patients. 

Cine cardiac magnetic resonance imaging was successfully applied to detect and characterize 

left and right ventricular anatomical and functional changes associated with diabetic 

cardiomyopathy in the STZ-diabetic rat, a widely used animal model for human diabetes. The 

MRI myocardial volume results gave consistent values through the cardiac cycle that agree with 

post-mortem findings. Other MRI results obtained from this experimental model concerning the 

effect of diabetes on the left ventricular systolic and diastolic functional volumes, ejection 

fraction, and kinetics of contraction and relaxation agree with the findings of a large number of 

conventional physiological studies of cardiac function in diabetic patients, thus confirming the 

validity of the STZ-diabetic rat model in studying diabetic cardiomyopathy. This also supports 

its use to study the therapeutic effects of captopril in diabetic cardiomyopathy. It is also 

noteworthy that clinical results appear to disagree with each other. The findings of the present 

work at least partly resolve these differences or at least suggest methods by which it might be 

possible to do so. 

The timing of the MRI studies, at O (control), 3, 6, and 9 weeks respectively made it possible to 

identify the periods during which changes began and were most marked, i'n each of the 

ventricles. Firstly, they indicated significant relative left and right ventricular hypertrophy and 

functional abnormalities at 6 and weeks of diabetes in the absence of captopril treatment. The 

greatest change in left ventricular hypertrophy and systolic and diastolic parameters took place 

between 3 and 6 weeks. In contrast, the right ventricle showed the most marked changes 

between 6 and 9 weeks of diabetes. Finally, our results demonstrate that captopril both 

markedly reduced the left and right ventricular hypertrophy and improved left and right 

ventricular systolic and diastolic functions; such findings imply that the latter functional 

abnormalities might be the consequence of hypertrophy. 

In conclusion, these results demonstrate significant anatomical and functional cardiac changes 

in experimental diabetes and demonstrate the utility of MRI as a physiological tool for the 

investigation of cardiac changes in other systemic diseases. 

----· 
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10.11 Possible future studies 

This study thus explores a number of important pathophysiological aspects resulting from 

diabetic cardiomyopathy for the first time. It could additionally form the basis for further work 

that may both complement the present detailed findings as well as taking the analysis to a more 

sophisticated level. Thus further studies may follow the development of the cardiac changes at 

closer time intervals than the 3, 6 and 9 weeks described here, but use serial studies in 

individual rats. The latter would preserve the advantage of using MRI as an approach that 

requires relatively few animals. This may also facilitate explorations of the changes associated 

with the diabetic state over longer durations than those used here. The experimental approach 

used here may also be developed for use in screening studies although this might entail the 

development of more automated analyses for the more rapid and also more objective extraction 

of quantitative data from the images. Finally, the present MRI techniques might be combined 

with the more traditional physiological measurements that they complement, such as those that 

follow aortic flow, and aortic and right atrial pressures. This might enable the introduction of 

more sophisticated measures of cardiac performance, such as the cardiac hydraulic power .output 

(Tan, 1986). Furthermore, the capacity of MRI to measure both ventricular volume changes and 

their rates at several time-points through systole offers the possibility of further developments of 

such a clinical approach, as well as a rigorous method for the assessment of cardiac function in 

diabetic patients. 
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MRI ANALYSIS OF RIGHT VENTRICULAR 

FUNCTION IN NORMAL AND SPONTANEOUSLY 

HYPERTENSIVE RATS (SHR) 

11.1 Introduction 

Systemic hypertension refers to a persistent and abnormal increase of blood pressure in the 
systemic arteries. It most frequently reflects an arteriolar constriction (Frohlich, 1983), which in 
tum increases the total systemic resistance to blood flow. 

Inadequately treated hypertension is associated with increased cardiovascular morbidity and 
mortality, in particular an increased incidence of ischaemic heart disease and heart failure 
(Kannel et al., 1972; Frohlich, 1991). Left ventricular hypertrophy resulting from sustained 
pressure over-load is considered to be one of the most important cardiac complications of 
systemic hypertension. The resulting increase in functional demands on the left ventricular 
myocytes stimulates them to increase in size (Frohlich, 1983, 1991), reflecting a physiological 
adaptive mechanism that would perhaps postpone the development of left ventricular failure 
(Grossman, 1980; Frohlich, 1991). 

However such hypertrophy is associated with increased cardiovascular morbidity and mortality 
independent of the height of arterial pressure (Frohlich, 1991) including unifocal and multifocal 
premature ventricular electrocardiographic complexes as well as higher-grade ventricular 
ectopic activity such as coupled premature ventricular complexes (Messerli et al., 1984). 
Accordingly a major goal in the management of hypertension is the prevention or reversal of 
myocardial hypertrophy. 

Hypertrophy also results in a decreased left ventricular compliance that impairs its diastolic 
function (Frohlich, 1991 ). Moreover, the hypertrophy increases the diffusion distance for 
oxygen and other nutrients delivered form capillaries to tissues. Finally, chronic systemic 
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hypertension predisposes to atherosclerosis (Dustan et al. , 1974). All these changes predispose 

the hypertrophied myocardium to ischaemic injury. 

Neither radiography nor electrocardiography effectively detect minor changes in left ventricular 

mass and echocardiography has been a frequent investigative tool for the assessment and follow 

up of left ventricular structure and function in hypertensive patients with left ventricular 

hypertrophy (Savage et al., 1979). The latter has been assessed through measurements of inter

ventricular septa! and posterior wall thickness. Echocardiography has thus proven to be a 

valuable technique in cardiac anatomical and haemodynamic evaluations in the majority of 

patients with hypertension (Savage et al. , 1979). However, assessment of left ventricular 

hypertrophy could be inaccurate with 2-dimensional measurements when hypertrophy is 

asymmetric and the ventricle is deformed. Furthermore, adjacent lung tissue and limited cardiac 

windows may make it difficult to image certain myocardial regions. Finally, the resulting 

images may not be of sufficient echogenicity to allow an accurate definition of the endocardial 

and epicardial borders throughout the left ventricle in a substantial proportion of patients. 

Magnetic resonance imaging offers particular advantages as an imaging technique in its non

invasive nature and avoidance of ionizing radiation. Moreover, images can be obtained in any 

anatomical plane and can then be reconstructed for a complete three-dimensional analysis. 

There has seen rapid progress and development and application of MRI techniques to the 

cardiovascular system. This has resulted in a marked improvement of the accuracy in 

measurements of cardiac parameters such as left and right ventricular stroke volumes, ejection 

fractions and left and right ventricular myocardial volumes (Stratemeier et al., 1986; 

Markiewicz et al., 1987; Sechtem et al., 1987; Semelka et al., 1990; Wise et al., 1998). 

Recently, such techniques have been extended from human to animal physiological studies in 

the quantitative evaluation of myocardial volume in left ventricles of spontaneously 

hypertensive rats (SHR) (Wise et al., 1998). These demonstrated and quantitatively 

characterized a hypertrophy and a parallel reduction in left ventricular ejection fraction. 

The SHR rats show some histological features of hypertensive changes in the pulmonary system 

(Aharinejad et al., 1996). The present study investigates right ventricular structure and function 

in the spontaneously hypertensive rats (SHR) using MRI. This involves the development of 

magnetic resonance (MR) imaging and quantitative techniques for characterization of dynamic 

and functional changes in the right ventricle in the hypertensive and normal rat heart. 
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11.2 Materials and methods 

11.2.1 The experimental rats 

Magnetic resonance imaging studies were performed on a total of 16 male rats ranging in 

weight from 203 g to 334 g. Four male 8-week old spontaneously hypertensive (SHR) were 

examined and compared with four age and sex-matched normotensive Wistar Kyoto rats 

(WKY). Similarly, four male 12-week old SHR were examined and compared with four age and 

sex-matched normotensive control WKY. This made it possible to obtain some indication both 

of the onset of pathological changes in young adult rats and of their progression as the rats 

become older. 

11.2.2 Magnetic resonance imaging 

The principles used in these experiments were essentially the same as those mentioned in 

Chapter 6. However, in order more directly to assess the right ventricular myocardial volume 

the studies employed a multi-slice gradient-echo pulse sequence known to give significant 

myocardial signal that would contrast with low signal intensity from the thoracic cavity. The 

effective echo-time (TE) used in this study was 4.3 ms, which was essentially the same as that 

used in the cine imaging protocol. The repeat time for each slice was, however, different from 

that used in the cine imaging protocol, being approximately 200 ms in this study. Nevertheless, 

a similar gating protocol triggered image acquisition with every alternate heartbeat rather than 

every cardiac cycle giving an effective repeat-time (TR) of approximately 400 ms was adopted. 

An interleaved multi-slice gradient-echo pulse sequence employed a cyclical multi-slice 

approach to image acquisition. Thus over one cardiac cycle, signal from one image is acquired 

from each of twelve selected slices with such images rotating through each of the different 12 

time-points during the cardiac cycle (Crooks et al., 1984). Thus having acquired one full image 

for each of the 12 transverse cardiac slices, the multi-slice excitation order was rotated 

cyclically in order to obtain 12 magnetic resonance images at the 12 chosen time-points of the 

cardiac cycle for each of the 12 selected slices. 

Since two signal average protocols were used with an image matrix of 128X128 pixels, a total 

number of 2X2X128X12 cardiac cycles were required to obtain images for the 12 selected 

slices at the 12 studied time-points through the cardiac cycle. Given that the average heart rate 

of the rats during the image sessions was approximately 300 beats min-1
, the average R-R 

interval representing the duration of the cardiac cycle was, therefore, 200 ms and the total 

imaging time was approximately 22 minutes. The heart rate of the rats was continuously 
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monitored throughout the imaging sessions and typically showed little variation during the 

acquisition of each complete image data set. 

11.2.3 Statistical analyses 

Results are presented as means ± standard error of the means (SEM). The statistical significance 

of differences in the structural and functional parameters in the 8- and 12-week WKY and SHR 

groups due to the effect of hypertension and age and the interaction between hypertension and 

age was evaluated by the two-way analysis of variance (Two-Way ANOVA). Differences were 

considered significant at p<.05. When the interaction between hypertension and age on a 

particular parameter was not significant, the analysis was rerun eliminating the interaction term 

from the model. Correlations between measured or calculated quantities were quantified by 

Pearson coefficient denoted by (r). 

11.3 Results 

11.3.1 General characteristics of the experimental rats 

Table 11.1 demonstrates that both the WKY and SHR groups showed an increase in the body 

weight between 8 and 12 week of age. Table 11.1 also indicates significantly higher systolic 

blood pressures in the SHR rats compared with the normal WKY groups. Whereas the two 

normal groups had comparable systolic blood pressures, the SHR groups showed an increase in 

blood pressure with age. Table 11.1 also shows that the SHR groups had slower heart rates than 

the WKY groups. 

11.3.2 Magnetic resonance cardiac images in transverse section 

The main purpose of this study was to study the pathological structural and functional changes 

that might occur in the right ventricle in the SHR. Accordingly, results related to the right 

ventricular structural and functional parameters of the four experimental groups studied will be 

dealt with and analyzed in detail. 

Figures 11.2-11.5 show typical transverse cardiac MRI sections taken perpendicular to the 

principal cardiac axis through the beating heart of representative animals from the four study 

groups over 12 studied time-points through the cardiac cycle. The images provide a qualitative 

indication of the dynamic changes in both ventricles through the cardiac cycle. 
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Figure 11.1: Gradient echo pulse sequence (A), diagrammatic representation of the right and left 

ventricles of the rat heart. Typically 12 transverse image slices taken perpendicular to the principal cardiac 

axis were acquired contiguously covering both ventricles. Each transverse cardiac slice was typically imaged 

at 12 time-points through the cardiac cycle using an interleaved multi-slice acquisition protocol. Thus, the 

pulse sequence was applied 12 times during each particular cardiac cycle, exciting first the ;th slice then the (i + 

2t slice, giving a repeat time (TR) for each slice of the same order as the R-R interval of the animal (200 ms). 

However, the effective repeat time (TR) for each slice was 400 ms since image acquisition was gated from 

every alternate heart beat rather than imaging every cardiac cycle. Echo time TE = 4.3 ms. LV and RV 

indicate left and right ventricles respectively. 
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Figure 11.2: Typical transverse sections obtained from the heart of a typical normal 8-week WKY rat. A series of typical transverse MR sections obtained from the heart of a typical normal 8 weeks old male WKY rat weighing 210 g. The heart rate was continuously monitored throughout the imaging session giving an intrinsic heart rate of 285 ± 2 beats min·1
• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond to the delay after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two signals obtained at corresponding points in the cardiac cycle following the R wave. LV and RV indicate left and right ventricles respectively and C and W indicate chest cavity and chest wall respectively. Slice thickness was 1.37 mm. Field of view (FOV) was 5 cm and with an image matrix of 128 pixel square, the nominal in-plane resolution was approximately 390.6 µm pixer1

. The effective repeat time (TR) was approximately 400 ms. 
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Figure 11.3: Typical transverse sections obtained from the heart of a typical normal 12-week WKY rat. A series of typical transverse MR sections 

obtained from the heart of a typical normal 12 weeks old male WKY rat weighing 273 g. The heart rate was continuously monitored throughout the 

imaging session giving an intrinsic heart rate of 298 ± 4 beats min-1
• The sections were taken perpendicular to the principal cardiac axis at one spatial 

slice at typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond 

to the delay after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of 

two signals obtained at corresponding points in the cardiac cycle following the R wave. L V and RV indicate left and right ventricles respectively and C 

and W indicate chest cavity and chest wall respectively. Slice thickness was 1.37 mm. Field of view (FOV) was 4.5 cm and with an image matrix of 

128 pixel square, the nominal in-plane resolution was approximately 351.6 µm pixer1
• The effective repeat time (TR) was approximately 400 ms. 
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Figure 11.4: Typical transverse sections obtained from the heart of a typical 8-week SHR rat. A series of typical transverse MR sections obtained 

from the heart of a typical 8 weeks old male SHR rat weighing 241 g. The heart rate was continuously monitored throughout the imaging session giving 

an intrinsic heart rate of 293 ± 3 beats min·1
• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at typically twelve 

time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond to the delay after the 

trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two signals obtained at 

corresponding points in the cardiac cycle following the R wave. LV and RV indicate left and right ventricles respectively and C and W indicate chest 

cavity and chest wall respectively. Slice thickness was 1.37 mm. Field of view (POV) was 5 cm and with an image matrix of 128 pixel square, the 

nominal in-plane resolution was approximately 390.6 µm pixel"1
• The effective repeat tiine (TR) was approximately 400 ms. 
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Figure 11.5: Typical transverse sections obtained from the heart of a typical 12-week SHR rat. A series of typical transverse MR sections 

obtained from the heart of a typical 12 weeks old male SHR rat weighing 319 g. The heart rate was continuously monitored throughout the imaging 

session giving an intrinsic heart rate of 287 ± 7 beats min-1
• The sections were taken perpendicular to the principal cardiac axis at one spatial slice at 

typically twelve time points during the cardiac cycle. These time points are indicated in the upper left-hand comer of each panel and correspond to the 

delay after the trigger, taken from the R-wave of the electrocardiogram (ECG), at which the signal was acquired. Each image is the average of two 

signals obtained at corresponding points in the cardiac cycle following the R wave. LV and RV indicate left and right ventricles respectively and C and 

W indicate chest cavity and chest wall respectively. Slice thickness was 1.37 mm. Field of view (FOV) was 5 cm and with an image matrix of 128 

pixel square, the nominal in-plane resolution was approximately 390.6 µm pixel"1
• The effective repeat time (TR) was approximately 400 ms. 
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The right ventricles in both normal and the hypertensive groups appeared thinner than the left 

ventricle and were crescentic in cross section in contrast to the circular symmetry of the 

epicardial and endocardial borders of the left ventricle at all points through the cardiac cycle. 

The myocardium of both ventricles could be clearly distinguished from the surrounding 

anatomical structures in the thoracic cavity. As already mentioned, this study applied a multi

slice imaging protocol, which ensured that significant signal was obtained from the 

myocardium. Such an approach ensured a clear definition of the epicardial border, which was 

important for measurements of myocardial volume from the magnetic resonance images. The 

images that were acquired 8 ms after the electrocardiographic R wave trigger typically 

demonstrated fully dilated right and left ventricles in both normal and hypertensive rats. The 

subsequent frames then demonstrate right ventricular systole with a thickening of the ventricular 

wall in all the four study groups. The systolic patterns in the right ventricles of the two SHR 

groups thus appeared to be similar to those of the two normal WKY groups. All the 

experimental groups reached end-systole at similar times, at approximately 100 ms following 

the triggering electrocardiographic R-wave. This was followed by diastolic refilling of both 

ventricles in all four groups. The right ventricles in all four groups also demonstrated similar 

diastolic patterns with early diastolic filling being more marked than at times late in diastole. 

However, the right ventricles of the two SHR groups showed a slower diastolic refilling 

compared with the right ventricles of the two normal WKY groups. 

11.3.3 Epicardial, endocardial, and myocardial volume curves 

Figures 11.6A-11.6D summarize the results of a quantification of the dynamic changes shown 

by the right ventricles through complete cardiac cycles of all the four experimental groups. It 

plots changes in right ventricular endocardial, epicardial, and myocardial volumes as derived 

from measurements from the transverse cardiac magnetic resonance sections with time. Figures 

1 l.6A-l l.6D display the respective curves obtained from the 8-week WKY, the 12-week WKY, 

the 8-week SHR, and the 12-week SHR groups respectively. 

Both epicardial and endocardial borders of right ventricular chambers were traced 4 times for 

each slice using in-house software. Right ventricular epicardial, endocardial and myocardial 

volumes were then derived by combining data individually obtained for all twelve imaging 

sections that were taken perpendicular to the principal cardiac axis, and reconstructed for each 

of the twelve time-points that were studied during the cardiac cycle. The sections thus provided 

full coverage of the heart of each experimental rat during both systole and diastole. In all cases, 

the error bars defining the standard errors of the means of the volumes were smaller than the 
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sizes of the symbols. In the plots the ascending and descending limbs of the endo- and 

epicardial volume curves represent diastole and systole respectively. 

Figures 11.6A-11.6D demonstrate a prompt onset of right ventricular contraction in the four 

experimental groups following the electrocardiographic R wave. Furthermore, contraction was 

more rapid, early in systole and slowed down towards end-systole, which was reached 

approximately 100 ms after the electrocardiographic R-wave trigger in all the four experimental 

groups. Diastole similarly began with a more marked right ventricular filling in early as opposed 

to late diastole in all the rats. However, the SHR showed a slower refilling rate during diastole 

confirming impressions derived from the transverse cardiac magnetic resonance images. 

11.3.4 Myocardial volume 

The right ventricular myocardial volumes of all the rats studied were calculated by subtracting 

their endocardial volumes from their corresponding epicardial volumes at all the 12 examined 

time-points through the cardiac cycle. Figure 11. 7 confirms that such an approach consistently 

demonstrated constant volumes throughout systole and diastole. Table 11.1 reveals that right 

ventricular myocardial volumes increased between 8 and 12-weeks in both the WKY groups 

and SHR groups. In addition, SHR groups showed higher volumes than the WKY groups. Such 

findings were confirmed even when the right ventricular myocardial volumes were normalized 

to the corresponding body weights. Figure 11.8 also shows that the 2 SHR groups had higher 

right ventricular myocardial volumes than the 2 WKY groups for a given body weight. 

11.3.5 Functional ventricular volumes 

Table 11.1, similarly shows that right ventricular EDV increased between 8 and 12 weeks in 

both WKY and SHR groups. Furthermore, the SHR groups had larger right ventricular EDV's 

than the WKY groups. 

Table I I.I similarly shows that right ventricular end-systolic luminal volumes (ESV's) 

increased in both WKY and SHR rats between 8 and 12 weeks. However, the ESV's were 

consistently higher in the two SHR groups when compared with their age-matched WKY 

groups. Taken together, the EDV and ESV findings indicate significantly reduced right 

ventricular ejection fractions (EF's) in the two SHR groups compared with their age-matched 

WKY groups. 

: I 

! 11 

ii 



CHAPTER I I MRI ANALYSIS OF RIGHT VENTRICULA R FUNCTION IN NIORMAL AND SHR RATS 144 

Figure 11.6 (next page): Epicardial (squares), endocardial (circles), and myocardial (triangles) right ventricular (RV) volume curves. Epicardial, 

endocardial and myocardial right ventricular (RV) volume curves obtained from the transverse MRI images of the normal 8-week WKY group (A), the 

normal 12-week WKY group (B), the 8-week SHR group (C), and the 12-week SHR group. The average body weight of the two normal groups was 214 ± 9 

g and 284 ± 13g for the 8-week WKY (n = 4) and the 12-week WKY (n = 4) groups, respectively, and the average body weight of the two hypertensive 

groups was 246 ± 9 and 307 ± 13 g for the 8-week SHR (n = 4) and the 12-week SHR (n = 4), respectively. The heart rate was continuously monitored 

throughout the imaging session and the average intrinsic heart rates were 326 ± 19 and 319 ± 13 beats min"1 for the normal 8-week WKY and the normal 12-

week WKY group, respectively and those of the two hypertensive groups were 296 ± 3 and 292 ± 12 beats min·1 for the 8-week SHR and the 12-week SHR, 

respectively. 
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Figure 11.7: Right ventricular muscle volumes. A comparative plot of the MRI-determined 

right ventricular (RV) myocardial volume during systole and diastole (r = 0.95). The right 

ventricular myocardial volume at the 12 time points during the cardiac cycle for each rat. The 

right ventricular myocardial volume measured by MRI during systole, for each individual rat, 

was taken from the average value from all the time-points sampled during systole and similarly 

the right ventricular myocardial volume measured by MRI during diastole for each individual 

rat, was taken from the average value from all the time-points sampled during diastole in the 

cardiac cycle. These are the volumes correlated here. As displayed, there was a close correlation 

between the systolic and diastolic right ventricular myocardial volumes. 
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Figure 11.8: Right ventricular (RV) myocardial volume versus body weight. Correlation of 

right ventricular (RV) myocardial volume determined by MRI and body weight of the combined 

age groups of WKY and SHR. An intercept through the origin is assumed. The average 

RVMV/BW ratios were 0.65 ± 0.03 and 0.84 ± 0.05 µl i 1 for combined age groups of WKY 

and SHR respectively. 

11.3.6 Indices for the kinetics of ventricular contraction and relaxation 

Table 11.2 summarizes a range of two indices describing the kinetics of right ventricular 

contraction and relaxation. Thus, Table 11.2 summarizes the systolic and the diastolic time 

periods required for the right ventricles of the four experimental groups to pump 25% of their 

SV's and to be filled with 25% of their diastolic filling volumes (DFV's). 

Since images typically acquired 8 ms after the R wave trigger showed fully dilated ventricles in 

all the experimental rats, the ventricles were considered to be at their end-diastole 

approximately 8 ms following the electrocardiogram R wave trigger. Thus, the time taken by 

the ventricles to eject 25% of their SV's was calculated by subtracting 8 ms from the time after 

the R wave trigger taken by the ventricles to eject 25% of their SV's. In a similar way, since the 

ventricles were found to reach their end-systole at approximately 99 ms, the exact time periods 
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taken by the ventricles to be filled with 25% of their DFV's were calculated by subtracting 99 

ms from the time after the R wave trigger taken by the ventricles to be filled by 25% of their 

DFV's. Finally, an estimate for the rates of ejection during early systole and filling during early 

diastole was obtained by dividing the 25% SV by the exact time taken by the each ventricle to 

eject 25% of its SV or to be filled with 25% of its DFV respectively. 

Table 11.2 confirms the presence of right ventricular systolic and diastolic abnormalities in the 

SHR rats. Thus both the 25% systolic ejection and the 25% diastolic filling times were 

increased in the SHR compared with WKY rats. These corresponded to reduced rates of initial 

systolic contraction and diastolic filling. 

11.3.7 dV/dt through the cardiac cycle 

To obtain further insights into right ventricular dynamics through the cardiac cycle in the four 

study groups, the right ventricular volume changes with respect to time (dV/dt) through systole 

and diastole were calculated for all the experimental rats using their time-related endocardial 

volume curves. The gradients of the 11 lines joining the studied twelve time-points were 

calculated using the MRI-derived endocardial volume curves and were taken to represent the 

right ventricular dV/dt throughout the cardiac cycle. Figure 11.9 displays the right ventricular 

dV/dt of the four experimental groups. 

Although the MRI-derived time-related volume curves of the 8-week and 12-week SHR 

appeared to have similar shapes to those of the normal rats, careful inspection of Figure 11.9 

reveals that right ventricles of the two SHR groups had significantly smaller volume changes 

with respect to time especially during early systole and early diastole when compared with the 

systolic and diastolic dV/dt of the 2 normal WKY groups. 
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Figure 11.9: Right ventricular dV/dt. Block diagram displaying right ventricular (RV) volume 

changes with respect to time during the 12 studied time points through the cardiac cycle 

obtained from obtained the normal 8-week WKY group, the normal 12-week WKY group, the 

8-week SHR group, and the 12-week SHR group (see legend to Figure 11.6). Data points 

derived from obtaining the slopes between adjacent points in the right ventricular (RV) volume 

curves obtained from individual groups themselves summarized in Figure 11.6. Each bar 

represents the average dV/dt ± SEM between 2 consecutive time points through the cardiac 

cycle. Negative dV /dt' s represent contraction of the cardiac walls during systole and positive 

dV/dt' s represent their relaxation. The bar 1 represents dV/dt between the !81 and 2°d studied 

time points during the cardiac cycle with the first point timed typically 8 ms after the trigger 

pulse from the electrocardiographic R wave and 21 ms for the second point. Points 2 to 11 

represent dV/dts between volume points successively obtained 21, 34, 47, 60, 73, 86, 99, 112, 

125, 138, and 151 ms following the R wave. 
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11.4 Discussion and conclusions 

This report describes the first investigation of changes in right ventricular structure and function 

in an animal system for systemic hypertension using MRI. 

Magnetic resonance imaging provides an effective and non-invasive physiological tool to study 

ventricular function and myocardial volume in the right ventricle in both normal and 

spontaneously hypertensive rats. The latter provide the most extensively used laboratory animal 

models for essential hype11ension. In particular, the systemic hypertension developing in the 

SHR strain appears to be similar in several aspects to the essential hypertension in humans 

(Trippodo and Frohlich, 1981 ). Previous studies have used MRI primarily for anatomical 

cardiac imaging but it has more recently become an established and invaluable physiological 

tool for the assessment of the dynamic and functional changes that occur in the heart throughout 

the cardiac cycle (Wise et al., 1998). In the present study, MRI provided consistent 

measurements of right ventricular myocardial and cavity volumes. This led to a quantitative 

evaluation of right ventricular myocardial volume and the corresponding changes in 

contractility and relaxation throughout the cardiac cycle. 

The application of MRI to the quantitative evaluations of right ventricular structure and function 

made it possible to detect subtle morphological and physiological changes of the right ventricle 

of the hypertensive rats for the first time and should lead to its application as an investigative 

tool for evaluating similar right ventricular alterations in patients with hypertensive heart 

disease. 

We report for the first time a significant right ventricular hypertrophy in SHR rats as reflected in 

increases in right ventricular myocardial volumes whether expressed as absolute values, or 

normalized to the corresponding body weights when these were compared with their sex and 

age matched WKY groups. 

The SHR rats additionally showed right ventricular systolic abnormalities as evidenced by their 

higher right ventricular ESV's and their lower right ventricular EF's when compared with their 

age matched WKY rats. Furthermore, right ventricular systolic abnormalities in the SHR rats 

were also confirmed by the longer time periods required by their right ventricles to pump 25% 

of their SV's and the abnormally slower rate of early systolic pumping when compared with 

their age matched WKY rats. 



CHAPTER 11 MRI STUDY OF RIGHT VENTRICULAR FUNCTION IN NORMAL AND SHR RATS 151 

The two SHR groups also showed right ventricular diastolic abnormalities indicated by the 

longer time periods required by their right ventricles to be filled with 25 % of their DFV' s and 

the much slower rate of early diastolic filling. 

Further work may examine the pathogenesis of the right ventricular hypertrophy in SHR rats 

particularly since the pulmonary circulation pressure would be expected to be significantly 

lower than the one in the systemic circulation. However, Aharinejad et al. (1996) reported 

histological evidence that SHR rats develop pulmonary hypertension. If this is so, it may be 

reasonable to suggest that the right ventricle hypertrophies in response to the elevated 

pulmonary pressure. 
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Parameter WKY SHR Two-Way ANOVA 

8-week (n = 4) 12-week (n = 4) 8-week (n = 4) 12-week (n = 4) P-value for the P-value for the P-value for the 

effect of age effect of HS interaction 

(SH * age) 
Body weight (BW) (g) 214 ± 9 284 ± 13 246 ± 9 307 ± 13 0.004 0.755 0.044 

RV myocardial volume by MRI 146.8 ± 10.2 176.5 ± 10.3 220 ± 7.1 239.5 ± 16.0 0.044 <0.001 NS 
(RVMV) (µ1) 

RVMV/BW (µ1 g- 1
) 0.68 ± 0.02 0.62 ± 0.02 0.90 ± 0.06 0.78 ± 0.05 0.032 <0.001 NS 

End-diastolic volume (µl) 315.0 ± 6.5 445.0 ± 24.0 402.3 ± 15.7 476.3 ± 16.0 <0.001 0.006 NS 

End-systolic volume (µ1) 104.8 ± 12.0 181 ± 17.7 209 ± 8.3 236.3 ± 7.5 0.002 <0.001 NS 

Ejection fraction 0.67 ± 0.03 0.60 ± 0.02 0.48 ± 0.03 0.50 ± 0.01 0.384 <0.001 NS 

Systolic blood pressure (mmHg) 151 ± 4 150 ± 2 177 ± 10 216 ± 7 0.012 <0.001 0.009 

Heart rate (beats min-1
) 326 ± 19 319±13 296 ± 3 292 ± 12 0.680 0.041 NS 

Table 11.1: General features and major cardiac parameters for the 8- and 12-week WKY and SHR groups. Data are presented for each age group separately. The right 
ventricular (RV) myocardial volume measured by MRI, for each individual rat, was taken from the average value from all the time-points sampled in the cardiac cycle. The 
functional right ventricular parameters were established from the transverse cardiac sections. 

All values expressed as mean± standard error of the mean (SEM). Two-way analysis of variance (ANOVA) was used in comparison of the 8- and 12-week WKY and the 
SHR groups. A value of p <0.05 was considered statistically significant. SH represents spontaneous hypertension and NS represents not significant. When the interaction 
between SH and age was not significant, the analysis was rerun eliminating the interaction term from the model. 
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Parameter WKY SHR Two-Way ANOVA 

8-week (n = 4) 12-week (n = 4) 8-week (n = 4) 12-week (n = 4) P-value for the P-value for the P-value for the 

effect of age effect of HS interaction 

(SH * age) 

25 % SV and DFV (µl) 52.6 ± 1.8 66.0 ± 1.7 48.3 ± 4.3 60.0 ± 2.6 0.001 0.088 NS 

Time for 25 % SV (ms) 20.6 ± 1 22.1 ± 0.8 22.6 ± 0.7 24.7 ± 0.3 0.026 0.007 NS 

after the R wave trigger 

Time for 25 % DFV (ms) 108.3 ± 0.7 109.9 ± 0.8 111.9 ± 0.8 114.7 ± 0.8 0.014 <0.001 NS 

after the R wave trigger 

Time for 25 % SV (ms) 12.6 ± 1 14.1 ± 0.8 14.6 ± 0.7 16.7 ± 0.3 0.026 0.007 NS 

Time for 25 % DFV (ms) 9.3 ± 0.7 10.9 ± 0.8 12.9 ±0.8 15.7 ± 0.8 0.014 <0.001 NS 

Rate of ejection during early 4.3 ± 0.39 4.8 ± 0.38 3.3 ± 0.32 3.6±0.18 0.252 0.006 NS 

systole (µVms) 

Rate of filling during early 5.8 ± 0.47 6.2 ± 0.52 3.7±0.10 3.8±0.16 0.491 <0.001 NS 

diastole (µI/ms) 

Table 11.2: Indices for the kinetics of right ventricular contraction and relaxation. Data are presented for each age group separately. 

All values expressed as mean± standard error of the mean (SEM). Two-way analysis of variance (ANOVA) was used in comparison of the 8- and 12-week WKY and the 
SHR groups. A value of p<0.05 was considered statistically significant. 

SH represents spontaneous hypertension and NS represents not significant. When the interaction between SH and age was not significant, the analysis was rerun eliminating 
the interaction term from the model. 



CHAPTER12 

RECAPITULATION 

12.1 Experimental designs and cardiac MRI 

The experiments described in the previous chapters introduced MRI to characterize structural 

and functional changes in the left and right ventricles associated with diabetic cardiomyopathy 

for the first time. They followed left and right ventricular contraction and relaxation through the 

cardiac cycle in normal as well as diabetic hearts and evaluated the therapeutic effects of the 

angiotensin-converting enzyme inhibitor captopril upon the structural and physiological 

abnormalities associated with diabetic cardiomyopathy. The final experiments completed earlier · 

studies by characterizing structural and physiological properties in the right ventricle of 

spontaneously hypertensive rats (SHR). 

The studies reflect an increasing interest in the use of animal models to evaluate cardiac 

pathology in diabetes mellitus and hypertension. Thus, the streptozotocin-induced diabetic 

(STZ-diabetic) rat is frequently used to study the long-term cardiac complications of diabetes 

(Warley et al. , 1995). Similarly, the spontaneously hypertensive rats (SHR) is now a well

accepted model for the study of the long-term cardiac complications of hypertension (Trippodo 

and Frohlich, 1981). Animal models make it possible to follow chronic pathology over 

manageable time scales particularly when combined with the use of non-invasive techniques in 

the intact animal as opposed to the sole use of more invasive physiological measurements. 

Magnetic resonance imaging offers image information to sub-millimetre resolution and has been 

widely accepted as a clinical investigative technique that can also provide information about 

biolog1cal structure as well as function. Recent developments in magnetic resonance techniques 

for cardiac imaging have made MRI a feasible and an attractive tool for cardiovascular 

physiology. (Stratemeier et al., 1986; Markiewicz et al., 1987; Sechtem et al., 1987; Semelka et 

al., 1990). In particular, MRI offers a high degree of soft tissue contrast attributable to the large 

differences in the Tl and T2 relaxation times of myocardium, epicardial fat and blood resulting 

in large differences in signal intensity. This permits successive acquisition of high quality 
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images without the need for administering contrast media required in conventional or cine x-ray 

computed tomography. These features made MRI a potentially valuable tool for examining both 

early and late cardiac physiological changes in diabetic and hypertensive rats. In addition, 

dynamic or cine magnetic resonance imaging with electrocardiographic gating ensures that data 

is acquired at similar time-points in the cardiac cycle over many successive cardiac cycles. This 

provides the basis for characterizing dynamic changes in the human and rat hearts with good 

time resolution. Thus, the MRI techniques applied to the animal models may prove useful for 

human MRI studies. 

The MRI studies of the diabetic heart studied a total of twenty male Wistar rats randomly 

subdivided into five equal groups in which experimental diabetes was induced in four by a 

single streptozotocin (STZ) injection (Warley et al., 1995; Rodrigues et al., 1997). The diabetes 

was induced at the age of 7 weeks in two groups and at 10 and 13 weeks in the remaining two 

groups leaving the fifth as a control. The animals of one of the experimental groups with 

diabetes induced at the age of 7 weeks were maintained on captopril-containing drinking water 

at a concentration of 2 g/1 immediately after the induction of diabetes. As all animals were 

scanned at the age of 16 weeks, the experimental protocol effectively examined the effects of 9, 

6 and 3 weeks of diabetes against a single control group. The magnetic resonance imaging 

studies provided images of both ventricles at twelve time-points through the cardiac cycle 

covering systole and most of diastole. The analysis provided a full range of anatomical and 

functional indices, namely myocardial volume, end-diastolic volume (EDV), end-systolic 

volume (ESV), stroke volume (SV), and ejection fraction (EF) of both ventricles. They also 

characterized the kinetics of left and right ventricular contraction and relaxation. Further, the 

changes in the derived left and right ventricular volumes with time (dV/dt) were plotted at the 

studied twelve time-points through the cardiac cycle. The myocardial volumes, functional 

indices and kinetics of the left ventricles were compared with those of the corresponding right 

ventricles in each experimental group in addition to the comparisons of values for the four 

diabetic groups with those of the control group. The present studies validated the left and right 

ventricular myocardial volumes as derived from MRI by comparing these with the 

corresponding values obtained by conventional gravimetric measurements. Accordingly, all 

animals were sacrificed immediately after scanning and their hearts were removed and put in 

3. 7% phosphate buffered formaldehyde. The right and left ventricular muscles were then 

separated from each other and weighed. 

MRI provided self-consistent data sets in agreement with post-mortem results. Thus, the derived 

myocardial volumes of both ventricles was conserved through all the twelve time-points 
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through the cardiac cycle in both test and control groups. Furthermore, myocardial densities 

calculated by dividing the post-mortem weight of either ventricle by such myocardial volumes 

agreed through all experimental groups and with previous reports. The MRI studies 

demonstrated significant relative left and right ventricular hypertrophy associated with diastolic 

and systolic functional abnormalities developed between 3 and 6 weeks of diabetes and 

deteriorated further between 6 and 9 weeks. The hypertrophy and the associated functional 

deterioration deteriorated most markedly between 3 and 6 in the left ventricle but between 6 and 

9 weeks in the right ventricle. Finally, captopril treatment immediately after the induction of 

diabetes prevented the development of the relative hypertrophy in both ventricles and markedly 

relieved the diastolic and systolic abnormalities. 

MRI was also used to study and characterize the anatomical and physiological parameters of the 

left ventricle of the SHR rats (Wise et al., 1998). The SHR rats show some histological features 

of pulmonary hypertension (Aharinejad et al., 1996). However, there has been no detailed MRI 

study of the physiological changes in the right ventricle of the SHR rats. The present MRI study 

characterized the changes in structural and functional properties including the kinetics of 

contraction and relaxation of the right ventricle through the cardiac cycle. The experiments 

involved 8 SHR and 8 normotensive control Wistar-Kyoto rats (WKY) subdivided into two age 

matched 8 and 12 weeks old groups. The right ventricles were imaged at twelve time-points 

through the cardiac cycle. Right ventricular myocardial volume, EDV, ESV, SV, and EF were 

the derived from the image data. Right ventricular volume changes with time and the dV/dt at 

each time-point were also calculated. The MRI results demonstrated a hypertrophy in the right 

ventricles of SHR rats and these are associated with diastolic and systolic dysfunction. 

12.2 Importance of the cardiac complications of diabetes and 

hypertension 

The increased morbidity and mortality among diabetics largely reflects its cardiovascular 

complications (Crall and Roberts, 1978; Kannel, 1985). The Framingham study reported a 

substantial increase in the incidence of coronary artery disease in diabetics compared with non

diabetic controls (Kannel and McGee, 1979). Diabetics also show a higher mortality following 

acute myocardial infarction. This may reflect the higher incidence of congestive cardiac failure 

and cardiogenic shock following such infarction (Kereiakes, 1985). In addition, poor glycaemic 

control (Oswald et al., 1984), diabetic ketoacidosis (Husband et al. , 1985), high fatty acid levels 

that might predispose to the development of post-infarction arrhythmias (Oliver et al., 1968), 
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and the increased incidence of anterior myocardial infarction (Weitzman et al., 1982), which 

involves more heart muscle and therefore more seriously impairs ventricular function may all 

contribute to the higher mortality after acute myocardial infarction in diabetics. 

Diabetes also appears to be associated with myocardial changes leading to a pathological 

condition termed diabetic cardiomyopathy (Goodwin and Oakley, 1972; Rubler et al., 1972; 

Hamby et al., 1974). The Framingham study reported a higher incidence of congestive heart 

failure in diabetics that could not be completely accounted for by the high incidence of coronary 

atherosclerosis, hypertension, or cardiac autonomic neuropathy (Kannel et al., 1974). 

The cause of diabetic cardiomyopathy has been the subject of considerable discussion. The 

vascular theory implicates small vessel abnormalities of the coronary microcirculation 

(Blumenthal, 1960; Ledet, 1968, 1976; Rubler et al., 1972; Hamby et al., 1974; Seneviratne, 

1977; Sanderson et al., 1978; Zoneraich et al., 1980). Thus, endothelial cell proliferation, sub

endothelial fibrosis, deposition of periodic acid-Schiff-positive (PAS-positive) material, 

narrowing of vessel lumens, and thickening vessel walls are common pathological changes seen 

in the small intramural vessels of diabetics. Capillary basal laminar thickening was also reported 

in diabetics (Vracko and Benditt, 1970; Williamson and Kilo, 1976; Fischer et al., 1979). 

Furthermore, diabetic myocardium shows arteriolar and capillary microaneurysms (Factor et al., 

1980). Cardiac dysfunction in diabetes has also been attributed to abnormalities of the cardiac 

fibres themselves, which might arise from uncontrolled hyperglycaemia (Shapiro et al., 1980, 

1981a; Uusitupa et al., 1983), changes in myocardial fatty acid metabolism leading to 

triglyceride accumulation in the myocardium (Paulson and Crass, 1980), changes in calcium 

handling (Ganguly et al., 1983; Dhalla et al., 1998), or finally a primary hypertrophy of the 

myocytes themselves (Rubler et al., 1972; Fischer et al.,1979). 

Extensive fibrosis due collagen accumulation has also been reported in diabetic hearts; this 

could explain some of the functional cardiac abnormalities seen in diabetes (Rubler et al., 1972; 

Regan, 1981). 

A growmg body of evidence implicates angiotensin II in the pathogenesis of diabetic 

cardiomyopathy by inducing myocardial interstitial fibrosis caused by proliferation of 

fibroblasts in the wall of the heart (Schorb et al., 1993), possibly through an intracardiac renin

angiotensin system (Dostal et al., 1992a, b ), which is activated in diabetes leading to an 

enhanced production of angiotensin II (Rosen et al., 1995). It was also reported that 

streptozotocin diabetic rats have higher levels of angiotensin converting enzyme (ACE) in their 
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left ventricular tissue and a decrease in left ventricular function, which was prevented by 

treatment with the angiotensin converting enzyme inhibitor enalapril (Goyal et al., 1998). 

Such possible changes in cardiac function in diabetes have been studied in both animal and 

human systems. However, thus far no single technique has characterized all the anatomical and 

functional indices of the myocardium in diabetes particularly in the intact heart. Furthermore, 

studies performed so far focused on the left ventricle and there are no detailed reports 

concerning the right ventricle in diabetes. Finally, independent investigators report conflicting 

results. Experimental animal studies included haemodynamic studies of dogs made mildly 

diabetic for 11 months with alloxan, which revealed abnormally high left ventricular wall 

stiffness and end-diastolic pressures (Regan et al., 1974). Isolated perfused hearts from diabetic 

rats demonstrated decreased peak systolic pressures (Miller, 1979). Isolated papillary 

ventricular muscles from diabetic rats showed a delayed onset and a slower rate of relaxation, 

depressed shortening velocity (Fein et al., 1980), increased time to peak tension and decreased 

sensitivity to increased concentrations of calcium and adrenaline (Warley et al., 1995). 

Studies in humans involving both invasive and non-mvas1ve techniques have revealed 

contradictory results. There have been reports of both normal (Airaksinen et al., 1984b), and 

also abnormal systolic time intervals (Ahmed et al., 1975; Seneviratne, 1977; Shapiro et al., 

1980, 1981a, b; Cellina et al., 1983; Jermendy et al., 1984; Uusitupa et al., 1985) among 

diabetics. Echocardiographic studies have variously described reduced (Airaksinen et al., 1984a, 

1987), or normal or modest increases (Shapiro et al., 1981a; Friedman et al., 1982; Fisher et al., 

1989) in left ventricular size in diabetics. Reported changes in the dynamics of cardiac cycle 

have included a prolonged isometric relaxation phase (Sanderson et al., 1978; Shapiro et al., 

1980, 1981a; b; Shapiro 1982; Airaksinen et al., 1984a). Other reports have variously described 

a depressed (Shapiro et al., 1981a, b, Uusitupa et al., 1985), normal (Airaksinen et al., 1984b; 

Fisher et al., 1989), or even enhanced systolic function in insulin-dependent patients developing 

microvascular complications (Thuesen et al., 1988). 

Radionuclide ventriculography studies have variously reported abnormal (Zola et al., 1986) or 

normal resting ejection fraction (Vered et al., 1984; Fisher et al., 1985, 1986; Arvan et al., 

1988). 

Systemic hypertension is a well-known major risk factor for coronary artery disease and heart 

failure (Kannel et al., 1972; Dustan et al., 1974; Frohlich, 1991). Most of the extensive literature 

on the cardiac complications of systemic hypertension have considered the anatomical, 
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electrical and kinetic properties of the left ventricular myocardium (Grossman, 1980; Frohlich, 

1991). Thus, left ventricular hypertrophy follows the pressure overload of an elevated systemic 

vascular resistance (Frohlich, 1983, 1991) and may be viewed as an adaptive physiological 

process. However, left ventricular hypertrophy increases the risk of ischaemic myocardial 

injury, myocardial infarction and ventricular arrhythmias (Messerli et al., 1984; Frohlich, 1991). 

Aharinejad et al. (1996) reported that the SHR rats develop pulmonary hypertension. However, 

there has been little investigation on the structural and functional properties of the right 

ventricle in spontaneously hypertensive rats (SHR). 
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