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Coupled cluster theory is a vital cornerstone of electronic structure theory and is being applied to
ever-larger systems. Stochastic approaches to quantum chemistry have grown in importance and offer
compelling advantages over traditional deterministic algorithms in terms of computational demands,
theoretical flexibility, or lower scaling with system size. We present a highly parallelizable algorithm of
the coupled cluster Monte Carlo method involving sampling of clusters of excitors over multiple time
steps. The behavior of the algorithm is investigated on the uniform electron gas and the water dimer at
coupled-cluster levels including up to quadruple excitations. We also describe two improvements to
the original sampling algorithm, full non-composite, and multi-spawn sampling. A stochastic approach
to coupled cluster results in an efficient and scalable implementation at arbitrary truncation levels in
the coupled cluster expansion. Published by AIP Publishing. https://doi.org/10.1063/1.5047420

I. INTRODUCTION

Coupled cluster (CC) methods1 are of crucial importance
in electronic structure and have been used to explore a vari-
ety of systems, including atoms and molecular systems,1–5

the uniform electron gas,6–14 and solids/other periodic sys-
tems.15–25 Coupled-cluster singles doubles and perturbative
triples [CCSD(T)],26 where single and double excitations are
included in the wavefunction ansatz and supplemented with
the perturbative treatment of triple excitations, is commonly
regarded as the “gold standard” of quantum chemistry and can
frequently achieve27 a chemical accuracy of 1 kcal/mol.

Despite these successes, coupled cluster is not without its
drawbacks. Coupled cluster is systematically improvable, at
least in principle, by increasing the excitation level included in
the CC wavefunction ansatz. Doing so makes the conventional
CC equations vastly more complicated and hence computa-
tional demanding. As a result, treating higher truncation levels
is possibly only in specialist codes.28 Conventional implemen-
tations of coupled cluster also rely heavily upon dense linear
algebra, which does not scale well with increasing numbers
of processors on parallel or heterogeneous computer architec-
tures although recent work in linear algebra and tensor libraries
are making impressive progress.29,30

One avenue for improving the computational efficiency
of coupled cluster is to exploit the nearsighted nature of elec-
tron correlation and use local approximations.31–34 Another
approach, of increasing use in quantum chemistry and the
broader electronic structure community, is to use stochas-
tic methods; these have proven to provide low-scaling algo-
rithms for electronic structure methods and typically exhibit
excellent scaling with increasing processor count.35–39 Local
and stochastic methods may also be easily combined via a

a)ajwt3@cam.ac.uk

localisation transformation of the mean-field single-particle
orbitals.40

The full configuration interaction quantum Monte Carlo
(FCIQMC) method41,42 has been a major development in
quantum chemistry. By sampling the action of the Hamilto-
nian, FCIQMC has been able to calculate exact properties for
quantum systems inaccessible to conventional diagonalisation
techniques.41,43–46 The computational advantage of FCIQMC
is largely through a representation of the FCI wavefunction
which is significantly more compact than the full wavefunc-
tion, though still scaling factorially with the size of the Hilbert
space sampled.

One of us (AJWT) subsequently used a similar approach
to formulate a Monte Carlo approach to coupled cluster
theory (CCMC),47 inheriting the benefits of more compact
storage and now scaling with the polynomial size of the trun-
cated CC space. The initiator approximation can substantially
improve the stochastic sampling of the wavefunction in both
FCIQMC42 and CCMC11 although the latter requires careful
extrapolation. The stochastic sampling of the coupled clus-
ter wavefunction can be further improved by sampling only
linked diagrams48 and non-uniform sampling of the coupled
cluster expansion,49 and improved sampling of the action of the
Hamiltonian.50 The utility of CCMC has been demonstrated
to calculate coupled cluster energies at up to the CCSDTQ56
level for molecular systems,47,49 for the uniform electron
gas,11,14 and also been used to automatically generate the P
subspace in the CC(P; Q) method.51 However, due to the non-
linearity of the coupled cluster equations, parallelization of
the CCMC algorithm is less straightforward than a parallel
FCIQMC implementation.52

We present a brief overview of the CCMC algorithm in
Sec. II, which provides context to the problem. In Sec. III, we
show that the CCMC algorithm can be efficiently parallelized
by introducing an additional level of Monte Carlo sampling
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by considering only a subset of terms in the coupled clus-
ter expansion per iteration. The accuracy and performance
of this algorithm is investigated using the uniform electron
gas and the water dimer. Section IV provides simple improve-
ments to the original CCMC algorithm to improve stability and
convergence of the CC wavefunction. We conclude in Sec. V.

II. COUPLED CLUSTER MONTE CARLO

The algorithms used to sample the FCI and coupled cluster
wavefunctions have been previously detailed11,41,47,49,53 and as
such we summarise the key features relevant to this work here.

The coupled cluster wavefunction ansatz can be expressed
as |Ψ〉 = NeT̂ |DHF〉, where ��DHF

〉
is the Hartree–Fock deter-

minant, N controls the (intermediate) normalisation, and the
cluster operator T̂ is

T̂ =
∑
i,a

ta
i ĉa

i +
∑
i<j
a<b

tab
ij ĉab

ij + · · · , (1)

where {ta · · ·
i · · · } is the set of amplitudes and ĉa · · ·

i · · · is an excitor
comprising of a string of creation and annihilation operators.
For convenience, we use ĉi and ti, such that ĉi��DHF

〉
produces

|Di〉 (up to a sign, as discussed later) and ti is the corresponding
amplitude, and rescale the amplitudes with an additional factor,
tHF, such that

|Ψ〉 = tHFeT̂/tHF |DHF〉. (2)

Within this wavefunction ansatz, the coefficient of a given
determinant, t̃j =

〈
Dj

���Ψ
〉
, contains contributions from all sets

of excitors which can be combined to produce that determinant.
As with FCIQMC, CCMC applies an approximate linear

propagator, 1 − δτ(Ĥ − S), where δτ is the time step and S is
an adjustable parameter to control proportionality, and which
has the same eigenspectrum as e−δτĤ for sufficiently small
δτ.53 Applying this to ��Ψ

〉
and cancelling quadratic and higher-

order terms11,47 result in a form reminiscent of the propagation
equation for FCIQMC,41

ti(τ + δτ) = ti(τ) − δτ
∑

j

(Hij − Sδij)t̃j(τ). (3)

The similarity-transformed Hamiltonian can also be used in
the projection the coupled cluster wavefunction,48 and the
approaches presented here equally apply to that formulation.
The amplitudes are stochastically sampled by representing
them using either particles with integer41,47 or real (as opposed
to integer) weights,44,54 which has been shown to reduce the
stochastic error within FCIQMC and readily applies to CCMC.

In FCIQMC, the particles on each occupied determinant
are explicitly evolved; in CCMC, this would require one to
first evaluate all possible t̃j, which is computationally painful.
Instead, we exploit the fact that Monte Carlo is a power-
ful tool for sampling high dimensional spaces and, in addi-
tion to stochastically sampling the action of the Hamiltonian,
also sample the wavefunction ansatz. The algorithm used to
sample the cluster expansion has been shown to have a sig-
nificant impact on computational and statistical efficiency;49

here we consider only the simplest approach. The cluster size,
s = [0, l + 2], is selected according to an exponential distribu-
tion, i.e., psize(s) = 2−(s+1), where l is the highest order term

in the cluster expansion.55 The cluster is then generated by
selecting s excitors from the current distribution, each with
probability |ti |/(N total − tHF), where N total is the total current
population. A cluster containing the same excitor more than
once is discarded. Alternative approaches for sampling the
cluster expansion are discussed in Sec. IV.

The dynamics for evolving the particles on a cluster are
essentially identical to those in FCIQMC.41 A simulation starts
with a number of particles of unit weight on the Hartree–Fock
determinant. The particles are then evolved by sampling the
action of the Hamiltonian on each particle, allowing new par-
ticles to be created (“spawned”), and the particle to die (due
to the sign of the Hamiltonian operator). At the end of each
iteration, particles on the same excitor with opposite signs are
removed (“annihilated”) from the simulation, which aids the
sign problem53 and is a statistically exact process. Note that
for clusters of size 2 and higher, the death step amounts to cre-
ating a particle of opposite sign on the corresponding excitor.
Events which create particles on excitors which are not within
the desired truncation level of the cluster operator are simply
discarded in our current CCMC implementation.

Anti-commutation relationships in strings of creation and
annihilation operators must be handled with care. A given exci-
tor is required to be unique and hence an arbitrary excitor
{ĉab· · ·e

ij · · ·l } must satisfy i < j < · · · < l and a < b < · · · < e.

Defining ĉi (ĉ†i ) to annihilate (create) an electron in the ith
spin-orbital, an excitor and a determinant can be expressed as

ĉab· · ·e
ij · · ·l = ĉ†aĉ†b · · · ĉ

†
e ĉl · · · ĉj ĉi, (4)

|Di〉 = |i1i2i3 · · · iN〉 = ĉ†i1 ĉ†i2 ĉ†i3 · · · ĉ
†

iN
|0〉, (5)

where ��0
〉

is the vacuum state and i1 < i2 < · · · < iN . Therefore,
when collapsing a cluster, ĉiĉj · · · ĉk, to a single excitor, ĉl ,
a negative sign must be included as required by anticommu-
tativity in order for the operators in the cluster to match the
order in the single excitor. Similarly when an excitor is applied
to the Hartree–Fock determinant, the resultant set of creation
operators must be permuted in order to achieve the required
ordering,

sD(i) = 〈Di |ĉi |DHF〉. (6)

The sign from collapsing a cluster is conveniently absorbed
into the amplitude of the cluster, and the sign from converting
to/from a determinant in the spawning step, such that the sign
of the spawned particle, is determined by−sgn

(
HijsD(i)sD(j)

)
.

The energy shift, S, is not known a priori. In keeping with
other QMC methods,41,56 S is updated to keep the population
stable. In a simulation, S is initially held constant (typically
at the Hartree–Fock energy) to allow the population to grow
and is only adjusted once the population has reached a desired
value. It is important to take the non-linear wavefunction ansatz
into account during the constant-shift phase in order to ensure
correct normalisation.48

The energy at a given time can, as with FCIQMC, be
evaluated with a projected estimator. Again, it is simpler to
sample the wavefunction using the same set of clusters, {ĉj},
chosen above,
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Eproj. = t−1
HF

∑
{ĉj }

〈DHF |Ĥ |Dj〉
tjsD(j)

pcluster(j)
. (7)

A. Computational methods

All CCMC calculations are performed using a develop-
ment version of HANDE. Most one- and two-body molec-
ular integrals were obtained from restricted Hartree–Fock
calculations performed in Psi4,57 except for the study of
three water molecules at large distances from each other
where the integrals were obtained with PySCF58 and localised
with a Boys method59 by PySCF. Floating-point weights
were used to improve stochastic efficiency. Input files and
raw data are available under a Creative Commons license
at https://doi.org/10.17863/CAM.30359. Estimates of the
stochastic error in CCMC simulations were obtained via a
reblocking analysis.60 QMC energies when quoted as a value
with errorbar were verified to be unaffected by a popula-
tion control bias by comparison to those obtained using a
reweighting analysis.56,61

All data were analyzed using numpy,62 pandas,63 and
pyblock,64 and plots were produced using matplotlib65 and
seaborn.66 Some QMC calculations have been restarted from
calculations run with different settings.

III. PARALLELISATION

Using distributed computer architectures is advantageous
both in terms of reducing the runtime of a calculation and in
being able to treat larger systems due to the corresponding
increase in available memory. The memory usage on a given
processor of a QMC calculation in Slater determinant space is
proportional to the number of states stored on that processor,
whilst the computational workload is a function of both the
number of states and the total population on the processor.52

Ideally both would be evenly balanced across all processors,
whilst the annihilation step requires all particles on the same
determinant to be placed on the same processor. The size of the
Hilbert space precludes a lookup table, and simply dividing the
Hilbert space into chunks and assigning chunk(s) to a processor
yields poor load balancing as the distribution of “important”
states tends to be highly irregular in many chemical systems.
Booth et al.52 proposed a deterministic mapping of a deter-
minant to a processor, p(��D

〉
), in a time- and space-efficient

manner,

p(|D〉) = hash(|D〉) mod Np, (8)

where Np is the number of processors and hash is a function
which maps an arbitrary amount of data (here a representation
of a determinant) to an integer over a fixed range. Crucially a
good hash function returns different values for similar inputs,
and hence determinants which are close in excitation space are
mapped to different processors.67

CCMC introduces the additional complication that the
cluster expansion must be sampled. One option, which we
exploit, is to use a shared-memory paradigm (implemented
in HANDE using OpenMP), where the cluster selection and
evolution are distributed over threads. Distributing the set
of states over multiple nodes,68 as performed in FCIQMC,
is not helpful as either each spawning event would involve

communication between nodes in order to randomly generate
clusters. Instead, we again exploit Monte Carlo sampling: a
node only samples the subset of clusters that can be formed
from the excitors residing on that node. Crucially, the subset
of clusters changes such that all clusters have an equal chance
of being selected within a few time steps.

Concretely, Eq. (8) is extended to periodically change the
processor of a given excitor,

o(|D〉, iτ) = (hash(|D〉) + iτ) � νmove, (9)

p(|D〉, iτ) = hash(|D〉 ⊕ o(|D〉, iτ)) mod Np, (10)

where iτ is the iteration index at time τ (i.e., τ/δτ), 2νmove is a
constant termed the “move frequency” and is discussed below,
a � b represents the right-shift bit operation on a, where the
bits in a are moved to the right and the b least significant
bits are removed, and ⊕ is the exclusive or bit operation. The
offset function, o(��D

〉
, iτ), discards the lower νmove bits and

hence changes value every 2νmove iterations, where the itera-
tion at which it first changes is determined by the value of
hash(��D

〉
). Hence the processor index of an excitor can change

every 2νmove iterations. Given a good hash function, p returns
an even distribution of values in the range [0, Np) and all
clusters can still be sampled over a number of iterations. The
probability of selecting a cluster of size s is scaled by N−s

p to
account for the probability of each excitor in the cluster being
on the same processor. Excitors are efficiently redistributed at
the same time as newly created particles are communicated to
the appropriate node.

A. Parallelization scaling

The scaling of the parallelization algorithm is demon-
strated on the water dimer in Fig. 1. All calculations were
run with a different number of MPI processes divided into 12
OpenMP threads giving a total number of cores used. They
were all restarted from a calculation that was run on 384 cores
(32 MPI processes × 12 OpenMP threads) and used the same
parameters. The speed-up was then evaluated as the ratio of
time taken per iteration when using 384 cores over the cur-
rent number of cores. Up to about 500 cores, the “strong

FIG. 1. Scaling of hybrid MPI + OpenMP CCSDT calculations on the water
dimer using a jun-cc-pVDZ basis set performed using even selection.49 12
OpenMP threads were used per MPI process. Timings were taken from an
equilibrated calculation on 384 cores restarted on different numbers of cores.
Error bars are only visible for 1152 cores.

https://doi.org/10.17863/CAM.30359


204103-4 Spencer et al. J. Chem. Phys. 149, 204103 (2018)

scaling” is approximately ideal. After 1000 cores, over 90%
of ideal scaling is still achieved. The calculations used about
1.5 × 107 excips and had about 8 × 106 occupied
states/excitors. The scaling depends upon the effect of load-
balancing and the ratio of calculation to communication time,
both of which reduce efficiency as the number of occupied
excitors per core decreases. For calculations with over 104

excitors per core, we find no loss of computational efficiency
upon parallelization. As system size increases, the number of
excitors grows polymonially, so in this “weak scaling” regime,
the algorithm displays perfect parallelization, over 1000 cores
can be employed for sufficient calculation size.

B. Parallelization bias

The parallel CCMC algorithm can produce a biased esti-
mate of the energy as not all excitors can form clusters with all

available exitors in the spawn step, and so a subspace is sam-
pled each iteration. If the number of MPI processes is 1, then
the complete CC space is sampled each iteration and there is
no bias. Conversely if more than one MPI process is employed
and νmove =∞, then Eq. (10) reduces to Eq. (8) and clearly the
CC wavefunction cannot be sampled as excitors are fixed on
specific MPI processes and hence clusters involving excitors
on different processes can never be sampled. Whilst the dom-
inant factor controlling the accessible subspace of clusters per
iteration is the number of MPI processes, the time step, δτ,
and (log of the) move frequency, νmove, are also important, as
decreasing either amounts to increasing the available subspace
per unit of imaginary time.

To demonstrate these effects, we have evaluated the cor-
relation between the locations of excitors on a trial system of
3813 determinants. The probability that a single excitor is on

FIG. 2. Analysis of the co-distribution of excitors for different Np and νmove for a UEG system of 14 e in 186 spin-orbitals, consisting of 3813 excitors. p(��Di
〉
,

��Dj
〉
, T ) denotes the probability that excitors on ��Di

〉
and ��Dj

〉
were on the same processor, averaging over all iterations up to T. (a) For νmove = 4, (left) the mean

probability of two excitors sharing the same processor (rescaled by 1/Np
−1 such that the exactly correct value is unity); and (right) the standard deviation of

the same probability (rescaled by Np

√
T

Np−1 to show the scaling behavior). The different lines correspond to different numbers of processors, Np, given in the

legend. (b) For Np = 32, (left) the mean probability of two excitors sharing the same processor (rescaled by 1/Np
−1 such that the exactly correct value is unity);

and (right) the standard deviation of the same probability (rescaled by Np

√
T

2νmove to show the scaling behavior). The different lines correspond to different
move frequencies, νmove, given in the legend.
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a specific processor may be regarded as a random event with
probability 1

Np
, and the long-time distribution of such events

is expected therefore to follow a binomial distribution with
this probability, giving an unbiased mean of 1

Np
and a variance

which therefore scales with
Np−1

N2
p

. Similarly, a move frequency

of νmove moves an excitor’s processor every 2νmove iterations
so decreases the variance by a factor of 2νmove . Both of these
scaling effects translate directly to the correlated probability
of two excitor locations. Figure 2 shows no notable bias in the
time-averaged mean probability of two excitors coinciding and
a standard deviation following the above scaling relationships.
Any bias present due to the instantaneous probability distri-
bution of excitors can therefore be reduced by decreasing Np

and νmove.
As a test system to see a bias, we consider the three-

dimensional uniform electron gas (3D UEG),69–71 which con-
veniently allows for an easily adjustable Hilbert space and
degree of correlation. Specifically, we calculate the CCSDT
energy of the 14-e 3D UEG with 66 plane-wave spin-orbitals
at rs = 0.5a0 and rs = 5a0, for which parallelization unbiased
results using solely OpenMP parallelization are available.14

The full non-composite cluster selection algorithm (Sec. IV B)
was used to aid convergence. A discrepancy with a magnitude
of 0.01 eV/electron is similar in magnitude to chemical accu-
racy14,35,72 and represents an upper bound on any bias, which
would preferably be negligible. Note that this is far from a
production-level calculation: the CISDT Hilbert space for this
system contains only 22 969 determinants.

Figure 3(a) shows the dependence of the bias in the
CCSDT projected energy as a function of the number of MPI
processes for the UEG. The bias increases with the number
of MPI processes and is larger for rs = 5a0 than rs = 0.5a0.
At 240 MPI processes, each MPI process has fewer than 100
excitors (assuming perfect load balancing) and so the sub-
space spanned by each MPI process at any given time step
is very small. The degree of correlation is also important:
17% of excips are on the reference for rs = 0.5a0 com-
pared to just 2% for rs = 5a0. As such, the relative impor-
tance of products of clusters increases with correlation. We
have also performed a hybrid MPI-OpenMP calculation for
rs = 5a0 using 20 MPI processes with 12 OpenMP threads
per process for rs = 5a0 which agrees within error bars to
the expected result and to the corresponding 20 MPI process
calculation.

The bias can be reduced by decreasing the imaginary time
a given subspace is sampled. Figures 3(b) and 3(c) show reduc-
ing the time step and move frequency, respectively, reduces the
bias in the CCSDT energy using 240 MPI processes for the
3D 14-e UEG system. The bias remains smaller for the smaller
values of rs value with otherwise identical parameters.

We wish to emphasise this is a contrived setup to show
that it is possible to obtain biased results in extreme parameter
ranges.

Even ignoring computational and parallel efficiency, the
small number of excitors per processor results in poor sampling
of the cluster expansion and results in a biased sampling of the
coupled cluster wavefunction. We typically set the number of
MPI processes such that each process contains at least O(105)

FIG. 3. The effects of the number of MPI processes, δτ, νmove on the devi-
ation of the CCSDT projected energy from the unbiased value14 for the 14-e
3D UEG with 66 spin-orbitals. An accuracy of±0.01 eV/electron corresponds
to 5 mEh here as we have 14 electrons. This is outside of the range shown.
A horizontal line at zero error is shown to guide the eye. (a) The bias in the
CCSDT energy as a function of the number of cores using νmove = 5 and
δτ = 0.001. The MPI-OpenMP calculation used 12 OpenMP threads per MPI
process. (b) The bias in the CCSDT energy as a function of δτ using 240 MPI
processes and νmove = 5. (c) The bias in the CCSDT energy as a function of
νmove using 240 MPI processes and δτ = 0.001.

excitors.73 In addition to improved parallel efficiency, hybrid
MPI-OpenMP parallelization greatly helps with this issue. As a
demonstration of non-trivial calculations, we consider a larger
UEG system and the water dimer.

The CISDTQ Hilbert space size of the 14-e UEG in a basis
of 358 spin-orbitals is 2.6(1) × 108. Using 96 MPI processes
(pure MPI parallelisation) gave an estimate of the CCSDTQ
correlation energy at rs = 1a0 to be −0.518 75(7) Eh; using 8
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MPI processes each with 12 OpenMP threads (i.e., the same
total resources) gave an estimate of −0.518 66(7) Eh. A previ-
ous study exploiting only OpenMP parallelization found the
correlation energy to be −0.518 56(7) Eh.14 The hybrid calcu-
lation agrees with the previous result within 2 standard errors
(individual standard errors added in quadrature), whereas the
pure MPI calculation is close but does not agree within 2 stan-
dard errors. However, while the Hilbert space is of the order
of 3 × 108, the number of occupied excitors relevant to the
calculation is only about 7 × 106–8 × 106. This means that in
the pure MPI case, significantly less than 105 excitors are on
the same MPI process. We have used even selection49 for this
CCSDTQ calculation.

The CCSDT energy of the H2O dimer at its CCSDTQ
optimized geometry obtained by Lane74 in the jun-cc-pVDZ
basis set75 is compared to deterministic results calculated using
MRCC28,76 in Table I. The CCMC calculation employed the
heat bath excitation generator77 with slight modifications50

and was run on 32 MPI processes each using 12 OpenMP
threads. The water dimer in the jun-cc-pVDZ basis has a
Hilbert space of 1.16 × 107 at the CCSDT level. The stochas-
tic wavefunction contained ≈7.9 × 106 excitors, resulting in
≈5.3 × 104 excitors per MPI process, assuming perfect load
balancing. Both CCSDT results agree well with each other.
The CCMC CCSDT result is resolvably different from the
coupled-cluster single double (CCSD) and CCSDTQ energy
within error bars, and no bias is visible.

To demonstrate the capabilities and indicate the future
possibilities of parallelized CCMC, we have also studied a
system of three water molecules separated at a large dis-
tance at the CCSDTQ level in a cc-pVDZ basis.78 Using
three molecules that are—for all practical purposes—infinitely
separated has the advantage that the total energy can be cal-
culated by other means, as three times the energy of a single
water molecule at CCSDTQ. This calculation from individ-
ual molecules is necessary as the deterministic calculation has
proven too computationally expensive to be performed in a
reasonable time.79

The calculation was restarted from a CCSDT QMC cal-
culation and run with 400 MPI processes using 12 OpenMP
threads each for part of the calculation that we are analyzing.
Even selection49 and the heat bath uniform singles77 excitation
generator80 have been used. In the CCMC calculation, the pro-
jected energy oscillates in the range −0.6507 to −0.6524 Eh.
The true correlation energy, as found by using MRCC28 scal-
ing up from one molecule, is −0.6515Eh which is included

TABLE I. Total energy Etot. and the correlation energy Ecorr. of the H2O
dimer in the jun-cc-pVDZ basis set using Hartree–Fock, deterministic coupled
cluster from CCSD to CCSDTQ and CCSDT with CCMC using 32 MPI
processes threaded into 12 OpenMP threads each. Even selection49 has been
used. The units are hartrees.

Method Etot.
/
Eh Ecorr.

/
Eh

Hartree–Fock �152.080 419 5 0
CCSD deterministic �152.515 827 2 �0.435 407 682
CCSDT deterministic �152.524 119 2 �0.443 699 666
CCSDT QMC 12 × 32 cores �0.44 369(7)
CCSDTQ deterministic �152.525 116 4 �0.444 696 884

at around the middle of our range. The CCSDT correlation
energy, found by the same method, is −0.6501Eh, which is
outside of the quoted range for CCSDTQ with CCMC. To
give more than merely a range or to give a smaller, more cer-
tain, range, the calculation would have to be run for longer.
However, the intent of this study is not to find a known CCS-
DTQ value but to act as a demonstration that (parallelized)
CCMC can give coupled cluster energies that are not feasible
with deterministic coupled cluster codes. Current develop-
ments of CCMC will enable more precise large calculations in
the future.

IV. IMPROVED STOCHASTIC SAMPLING

The efficiency of a stochastic coupled cluster calcula-
tion is highly dependent upon the algorithm used to sample
the various steps within the algorithm. The original imple-
mentation used a simple and easy-to-implement algorithm for
selecting clusters from which to spawn. This has proved to
be increasingly inefficient as system size increases. Scott and
Thom have shown that an “even-selection” algorithm which
selects clusters with probabilities more closely correspond-
ing to their amplitude dramatically increases the stability of
calculations.49 In this section, we describe some alternative
approaches we have explored to improve the stochastic sam-
pling81 and first consider what metric we may use to measure
this.

A. Shoulder heights

The stability of a stochastic coupled cluster calculation
can be determined by whether its population has overcome a
plateau or shoulder in its dynamics,53 where the rate of total
particle growth (with imaginary time) slows or stops for some
time while the correct wavefunction is evolved. A plateau is
commonly visible in FCIQMC calculations whereas CCMC
calculations typically only contain a shoulder in the total pop-
ulation growth. After this point, a calculation emerges with
a stable growth rate of both the total and reference particle
populations. These factors are conveniently described on a
shoulder plot,11 which show a maximum in the ratio of total
and reference populations at the shoulder. The population at
the shoulder is indicative of the relative difficulty of a calcula-
tion and is affected by the parameters used to run it, and a best
estimate is given with a low initial reference population and
small time step; using larger time steps causes the shoulder
population to increase. As the population on the reference also
dictates the normalization of the calculation, too low an initial
population leads to unstable calculations which do not experi-
ence a shoulder and merely “blow up.” Examples of shoulder
plots are given in Fig. 4.

In a stochastic coupled cluster calculation, the number of
particles spawned at any step is directly proportional to the
time step, and after a certain threshold, larger time steps will
give a higher shoulder population. To therefore determine the
effects of any algorithmic changes, we have used the parame-
ters which give the lowest estimate of the shoulder, namely, a
very small time step, and reducing the initial population, fol-
lowing a study in Ref. 49 which compared selection algorithms
with appropriate time steps and initial populations.
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FIG. 4. Shoulder plots for frozen-core CCSD on benzene in a 6-31G basis
using the original (dashed) and full non-composite (solid) algorithm. The
initial population can be read from the intercept with the abscissa. (top)
The arrows indicate the best estimate of the shoulder, showing that a full
non-composite calculation has lower shoulder (5.6 × 105) than the original
algorithm (1.6 × 106). (bottom) Multispawn, using Athresh = 1, lowering the
shoulder to 1.5× 105, showing stability for many fewer initial particles. Calcu-
lations used a time step of 5× 10−4 and the renormalized excitation generators.
rCH = 1.084 Å and rCC = 1.397 Å exploiting D2h symmetry.

B. Non-composite clusters

We first look at reducing the noise due to stochastic sam-
pling of the cluster expansion. The total number of cluster
selections to be made has previously been chosen to equal
the total amplitude of excips, in analogy with FCIQMC,
where each discrete psip individually undergoes spawning
and death events. In stochastic coupled cluster, clusters built
up from single excips as well as multiple excips (known as
composite clusters) are sampled, so the single-excip (non-
composite) clusters have fewer samples taken than the total
number of excips. The sampling of (rather than explicit iter-
ation through) the non-composite clusters proves to be an
additional source of stochastic noise. We therefore introduce
a modification to the algorithm, full non-composite sampling,
which explicitly iterates through the list of excips, perform-
ing spawning and death events on these individually. It is
still necessary to sample the composite clusters, and these are
sampled with the same number of samples as total excips.
The effect of this sampling change is to reduce the num-
ber of particles at the shoulder, as shown in Fig. 4, and so
calculations require fewer excips to be stable. Even though
the computational effort increases since we are doing twice
as many cluster selections, the number of minimum excips
required is reduced by more than a factor of two when
using the full non-composite cluster algorithm as shown by

the shoulder positions in the top part of Fig. 4. Figure 2
in Ref. 49 shows that at higher time steps, the memory cost
as a function of number of attempts per unit imaginary time is
lower when using the full non-composite algorithm compared
to the original algorithm.

C. Multiple spawning events

The small time step regime reduces the plateau height
because at sufficiently small time step all spawning attempts
produce no more than one particle—there are no “blooms,”
in which a single (rare) spawning event creates a large num-
ber of new particles on the same excitor. Such rare events
are undesirable both because of the inefficient exploration of
the space (especially if the spawned particles do not have
the same sign as the ground-state wavefunction) and the
impact on population control. Unfortunately the computa-
tional efficiency of using such small time steps is low, as
the majority of spawning attempts produce no particles at all.
Once a cluster has been selected and collapsed to produce
determinant j, the number of spawned particles depends on
the amplitude of this cluster from which they are spawned.
As this is selected stochastically, the amplitude is unbiased
by dividing by the probability of cluster selection to give
an effective amplitude, A(j). The probability of spawning
a particle from this cluster to determinant i is then given
by

pspawn(i ← j) = δτ
|A(j)Hij |

pgen(i|j)
. (11)

It is therefore possible to use the amplitude A(j) to decide on
the number of spawning attempts from that cluster. A larger
number of attempts to spawn will proportionately increase
pgen(i��j), the probability that spawning onto i is attempted from
the excips on j, and consequently decrease the spawning prob-
ability, reducing any blooms. The choice of when to change
the number of spawning attempts should depend on A(j), as
merely keeping it at a constant, say n, would have a similar
effect as using a time step δτ/n and not account for the impact
of rare events from clusters with large amplitudes. We have
chosen to introduce a threshold Athresh, such that the number
of attempts is given by

nattempts = max

(
1,

⌊
A(j)

Athresh

⌋)
. (12)

The effect of these multiple spawning changes is shown in the
lower panel of Fig. 4, and in combination with the full non-
composite sampling, shows a significant reduction in shoulder
heights and a corresponding decrease in memory requirements
for calculations. We finish with a note of caution when such
sampling is used in combination with large-scale paralleliza-
tion. If the cluster sampling is such that there are occasional
amplitudes significantly larger in magnitude than Athresh, a cor-
respondingly large number of spawning attempts are made. In
some calculations, nattempts can be occasionally of the order of
106. Should such events be unevenly distributed over proces-
sors, it can lead to a significant load-imbalance and reduction
of parallel efficiency. In practice, we have only seen this effect
when the number of excitors per process is under 105. In gen-
eral, such effects are averted by the use of even selection49

which ensures ��A(j)�� takes an approximately a constant value
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for all clusters. Even selection was used for the scaling plot in
Fig. 1.

V. DISCUSSION

Overall we have shown that, despite the non-linearity of
the coupled cluster ansatz, by introducing a stochastic algo-
rithm, it is possible to perform massively parallel calculations
at arbitrary orders of coupled cluster theory with great par-
allel efficiency and approximately ideal strong scaling up to
500 cores. Our parallelization scheme exploits the stochastic
nature of the algorithm to sample combinations of excitors
averaged over multiple cycles, and we have shown that the
bias introduced can be made minimal (provided the number
of MPI processes and other parameters are chosen sensibly),
well below the intrinsic accuracy of the calculations them-
selves. Furthermore, the bias can be systematically reduced,
and so confidence can be had in its magnitude and as sys-
tems studied become larger, the parallelization bias becomes
smaller.

We contrast our parallelization scheme to that of the
Cyclops tensor framework,30 which requires explicit knowl-
edge of the sparsity within the tensors of excitor amplitudes and
performs deterministic CCSD and CCSDT calculations. While
such a scheme produces numerically precise results, it can-
not easily take advantage of the natural sparsity of amplitudes
within excitation space so requires significantly more storage
for amplitudes. While the polynomial scaling of the number
of amplitudes with the system size allows a good weak scaling
behavior, the requirement to communicate all of these results
in relatively poor strong scaling behavior. Efforts are under-
way82 to redesign deterministic algorithms using a dataflow
paradigm; however, these require significant manual reorgan-
isations of the code which appears infeasible for higher levels
of coupled cluster theory.

We have also shown that the stochastic sampling can be
improved using the full non-composite or the multi-spawn
additions. The later even selection sampling49 was inspired
by and was built on top of the full non-composite algorithm
and when using multiple MPI processes is more efficient than
multi-spawn sampling which was a first step on the way to
improving shoulder heights.

We close by noting that the approach described here is not
restricted to just coupled cluster; rather the idea of sampling
both the action of the Hamiltonian and the wavefunction ansatz
is applicable to many other methods in quantum chemistry.
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17F. R. Manby, D. Alfè, and M. J. Gillan, Phys. Chem. Chem. Phys. 8, 5178
(2006).
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