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Abstract
One of the challenges for computer aided language learn-

ing (CALL) is providing high quality feedback to learners. An
obstacle to improving feedback is the lack of labelled training
data for tasks such as spoken ”grammatical” error detection and
correction, both of which provide important features that can
be used in downstream feedback systems One approach to ad-
dressing this lack of data is to convert the output of an auto-
matic speech recognition (ASR) system into a form that is closer
to text data, for which there is significantly more labelled data
available. Disfluency detection, locating regions of the speech
where for example false starts and repetitions occur, and subse-
quent removal of the associated words, helps to make speech
transcriptions more text-like. Additionally, ASR systems do
not usually generate sentence-like units, the output is simply
a sequence of words associated with the particular speech seg-
mentation used for coding. This motivates the need for auto-
mated systems for sentence segmentation. By combining these
approaches, advanced text processing techniques should per-
form significantly better on the output from spoken language
processing systems. Unfortunately there is not enough labelled
data available to train these systems on spoken learner English.
In this work disfluency detection and ”sentence” segmentation
systems trained on data from native speakers are applied to spo-
ken grammatical error detection and correction tasks for learn-
ers of English. Performance gains using these approaches are
shown on a free speaking test.

Index Terms: speech recognition, grammatical error detection,
computer-assisted language learning (CALL)

1. Introduction
Disfluencies are often present in spontaneous speech. A stan-
dard disfluency structure [1] comprises reparandum, interreg-
num and repair. For example:

I want a train [to Oxford︸ ︷︷ ︸
reparandum

uh I mean︸ ︷︷ ︸
interregnum

+ to Cambridge︸ ︷︷ ︸
repair

]

Removing the reparandum and interregnum parts recovers the
underlying fluent sentence.

Since they are usually trained on clean and fluent corpora,
the presence of disfluencies in speech degrades downstream nat-
ural language processing tasks [2]. Disfluency detection (DD),
followed by the removal of detected reparandum and interreg-
num components, is therefore an interesting option to make
speech transcriptions more text-like and consequently help im-
prove downstream systems. For this study, we are interested in
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applying DD to non-native spoken English for computer aided
language learning (CALL), to provide feedback on a learner’s
spoken language. In particular on the downstream tasks of
grammatical error detection (GED) and grammatical error cor-
rection (GEC) on free speaking and conversational tests.

Interregnum regions often consist of fixed phrases of filled
pauses and discourse markers (’um’,’you know’ etc), so are easy
to detect using rule-based methods [3]. Automatic DD there-
fore focuses on reparandum detection. Parsing-based meth-
ods [4, 5, 6] identify disfluency structures by learning the ”syn-
tactic structure” of spoken sentences. They are efficient, jointly
performing parsing and DD but training requires a large amount
of annotated tree-banks. These are not generally available, par-
ticularly for non-native speech which has a different disfluency
structure [7]. Alternatively, sequence labelling methods assign
fluent/disfluent tags to each word [8, 9]. This was the approach
adopted as it can be easily generalised across domains.

Since the text of free and conversational speech is unknown
at test time, automatic speech recognition (ASR) must be used
to transcribe the speech. Compared to native speakers, non-
native learners generate more disfluencies, which co-occur with
grammatical errors, and pronunciation errors making it hard to
recognise the speech accurately. In addition, ASR transcrip-
tions are not typically segmented into ”sentence-like” units so
need to be automatically segmented prior to DD. These aspects
further complicate the spoken language processing so providing
reliable feedback is challenging. Only labelled evaluation data
is currently available for GED and GEC on non-native speech.
Therefore, in this work the automatic segmentation and DD is
trained on native speech data, for which training data exists.
The use of ASR transcriptions is compared to the manual tran-
scriptions used in [9, 6]. For the feedback tasks, the speech
segmenter and DD are applied to the output of an ASR system
trained on non-native learner English and fed into non-native
spoken GED and GEC systems.

Our contributions in this paper are: 1) we propose an ad-
vanced sequence tagging-based disfluency detection method
with improved robustness, achieved by combining part-of-
speech based language models and pattern match features;
2) we evaluate the disfluency model against ASR, as well
as manual, transcriptions; 3) we present initial investigations
into applying disfluency detection to non-native English learner
speech. Performance gains are shown to be achieved in down-
stream grammatical error detection (GED) and grammatical er-
ror correction (GEC) tasks by performing automatic disfluency
detection and speech segmentation.

2. Feedback Framework
A modular feedback framework is shown in Figure 1. It is
composed of an automatic speech recognition (ASR) module,
an automatic speech segmentation (SEG) module, a disfluency



Figure 1: Feedback pipeline

detection (DD) module as well as a downstream task-specific
CALL module. In practice, the SEG and DD modules, once
trained, can be universally applied regardless of the corpora or
the downstream task; the ASR module is often trained on cor-
pora from the target usage domain; and the downstream task-
specific system needs to be trained separately and can be eas-
ily adapted to work with the pipeline. This section mainly
discusses the SEG and DD modules; their performance is dis-
cussed in Section 3, and their impact on non-native CALL tasks
presented in Section 4.

2.1. Automatic speech segmentation

It is often found that performance of sequence tagging tasks
degrades with sentence length. By default, an ASR system pro-
duces transcriptions separated by conversational turns or maxi-
mum segment length. Each transcription might cover multiple
sentences. To prevent the DD performance from degrading in
the case of long runs of sentences in ASR transcriptions, auto-
matic segmentation in the form of a sentence boundary detector
is first applied. The segmenter aims to predict sentence-like
”speech” units (SUs) [10] within each conversational turn or re-
sponse. Here SU detection is modeled as a sequence labeling
task. Words immediately before a speech unit boundary (in-
cluding end-of-turn words) are labeled as SU; others are labeled
as non-SU. A bi-directional LSTM is adopted for this task.

Prosodic and lexical-based features were used to detect
SUs. Pause duration was calculated using time stamps from
force aligned ASR transcriptions. Prosodic information was ex-
tracted from audio files: for each word, f0 trajectories were
stylized by median-filtering followed by piecewise linearisa-
tion [11]. The complete set of features are listed in Table 1.
All numerical features were converted into categorical features
by running K-means clustering followed by nearest neighbour
grouping. For each feature, an additional null class is added to
handle start-of-turn, end-of-turn and unvoiced region.

1. Word
2. Pause duration before / after word
3. f0 slope mean/min/max normalized over the pitch range of
the local voiced region
4. log differences (division / subtraction) of f0 properties (mean
/ min / max / start / end) between neighbouring words
5. f0 slope difference between neighbouring words

Table 1: Speech unit detection features.

2.2. Disfluency detection

Here disfluency detection (DD) is modeled as a sequence la-
belling task i.e. each word token has to be labelled with a
disfluent/fluent tag. Begin-inside-outside (BIO) labels [8] are
used: BE (begin edit), IE (in edit), EE (end of edit), SE (single
word edit) or O (other). Complex disfluencies sometimes occur
in succession or contain nested structures [2]. Flattening the

nested structure of a repetition region helps to improve DD [4].
We further flatten the entire disfluency region by keeping only
the top-level reparandum, interregnum and repair e.g.:

Nested: [a req- + [[ a + a] + a] requirement]
Flattened: [a req- a a + a requirement]
Labels: BE IE IE EE O O

Following [9], a bi-directional LSTM is used as the clas-
sifier in this work. Features consist of word tokens, part of
speech (PoS) tags as well as N-gram based patterns. To improve
cross-domain robustness, we use PoS-based language models.
Character-level embedding has been shown to achieve gains in
sequence labeling tasks on text [12]. We extend its application
to speech transcriptions by concatenating character and word
level embeddings to provide a richer representation for each
word token.

DD is a binary task. All words labelled with *E (*E denotes
BE, IE, EE, SE) are considered as disfluent. The F1 score [8]
of detected disfluent words is used to measure performance.

3. Native Speaker Results
Following previous work [9, 6], the Switchboard Corpus [13]
is used for both automatic segmentation (SEG) and disfluency
detection (DD) training. Switchboard consists of telephone con-
versations of native English speakers, annotated with sentence
boundaries, part of speech (PoS) tags and disfluency structures.
For SEG and DD the corpus is divided into the standard DD
train/dev/test sets [3]. For ASR training, the Switchboard ASR
training set is used excluding the DD dev and test sets. We
removed punctuation and capitalisation from the transcriptions
prior to input to SEG as they are not generally generated by
ASR systems.

A separate PoS tagger was trained on Switchboard. This
tagger adopts a bidirectional LSTM framework1. Rule-based
predictions were made for filler marks. Other DD features are
automatically generated given word tokens and PoS tags. Word
embeddings were initialised using Google’s 300 dimensional
word2vec embeddings [14]. Other input mappings were ran-
domly initialised. All embeddings were updated through net-
work back propagation. The LSTM hidden layer size was set
to be 50 and a standard softmax layer was used to make predic-
tions.

3.1. Evaluation on manual transcription

Following previous work [9], the standard Switchboard test set
was used and partial words were included for evaluation. Our
model achieved an F1 score of 87.6 on manual transcriptions.
This is a 1.7 absolute gain compared to 85.9 obtained in [9].
Preliminary experiments showed this was due to the PoS-based
language model features.

Ensemble methods are often used to obtain better predic-
tive performance [15]. We generated an ensemble by creating
models for each fold in a 10-fold cross validation. Performance
was evaluated against the held out test set, by averaging the
predicted probabilities over the 10 models. Ensemble learning
boosted the performance to 88.6 on the manual transcriptions.
The gains, however, when using ASR transcripts were reduced
to only 0.4 so for simplicity ensembles weren’t used for the ex-
periments below.

1https://github.com/marekrei/sequence-labeler



Transcription Segment F1

REF utt 87.6
turn 82.0

ASR
utt 75.9

auto 72.1
turn 70.8

Table 2: Disfluency detection performance on Switchboard test
set with manual (REF) and ASR transcription using a single
sequence labeling model on utterance, turn-level and automatic
segmented data.

3.2. Evaluation on ASR transcription

In practice, manual transcriptions are not always available and
DD must be run on transcriptions produced by an ASR system.
Thus, in this work, the model is also evaluated against ASR
transcriptions of the Switchboard test set. The ASR system used
has a factorized time-delay neural network (TDNN-F) acoustic
model [16], with a 4-gram language model trained on the Fisher
Corpus [17] and the Switchboard Corpus. The word error rate
(WER) on the DD test set is 15.6%.

To obtain reference disfluency labels for the ASR output,
the manual and ASR transcriptions were aligned. Alignment
was based on the Damerau-Levenshtein algorithm2. We mod-
ified the alignment as follows: token transportation was dis-
abled; token deletion cost = 3, insertion cost = 3 and substitution
cost = 4+∆. ∆ ∈ [0, 1] is calculated using character-level Lev-
enshtein distance to improve token matching. After alignment,
disfluency labels were mapped to the ASR transcriptions along
with sentence breaks. ASR insertions were excluded when eval-
uating F1 score.

By default, ASR transcriptions are separated by conver-
sational turns. Table 2 shows that the F1 score is reduced
from 87.6 to 70.8 on the manual utterance-level and ASR turn-
level transcriptions, respectively. When evaluated against ideal
utterance-level ASR transcriptions, F1 improved to 75.9. Effec-
tive sentence-like segmentation is therefore needed to improve
performance on ASR transcriptions.

By combining the SEG module with an ASR system, it is
possible to run DD in a fully automated manner: an ASR sys-
tem produces transcriptions from audio files; transcriptions are
automatically segmented using both prosodic and lexical infor-
mation; disfluency regions can then be predicted on utterance-
level ASR transcriptions. Our system yields a final F1 score of
72.1 on auto-segmented ASR transcriptions of the Switchboard
test set, better than 70.8 F1 achieved on turn-based segmenta-
tion (Table 2).

4. Spoken Grammatical Error Systems
The previous sections have described the development of
sentence-like segmentation and disfluency detection for native
speakers of English. However, the main aim of this work to ex-
amine how these approaches can be used to improve the perfor-
mance of feedback systems for learners of English. One form of
useful feedback to learners is when they are making grammati-
cal errors. In this section two tasks, grammatical error detection
(GED) and grammatical error correction (GEC), are described,
and the forms of system used to address these tasks presented.

2https://github.com/chrisjbryant

4.1. Grammatical Error Detection

Grammatical error detection (GED) systems aim to label each
word as either grammatically correct or incorrect e.g.

the cat seated on mat
c c i c i

The GED system [18] used for this work is a strong deep
learning-based bidirectional LSTM framework trained on the
written Cambridge Learner Corpus (CLC) [19]. Grammatical
errors were annotated following the guideline described in [20].
Words that are labeled as both grammatical errors and disflu-
encies are treated as grammatical errors if not removed through
disfluency removal. GED uses a sequence labelling model [21].
For an input word sequence, a reference label (1:incorrect;
0:correct) is given to each word. The probability distribution
over the two labels is the target to be predicted. The training
objective function is the log-likelihood of the predicted label
summing over all sentences and all words in each sentence. The
correct and incorrect classes were unbalanced, therefore F0.5

score was used as the evaluation metric.

4.2. Grammatical Error Correction

Grammatical error correction (GEC) systems predict a cor-
rected sequence of words e.g.

the cat seated on mat
the cat sat on the mat

The GEC system used here is a standard encoder-decoder based
neural machine translation system [22]. The encoder network
uses bidirectional LSTM to obtain the best context at each time
point; the decoder network uses uni-directional LSTM com-
bined with context vectors which are obtained through dot-
product attention mechanism. Dropout and scheduled sampling
are used during training. Beam search is used at the inference
stage. For this paper, a single set of annotations was used for
each corpus as the reference correction. To evaluate the system
performance, an M2 scorer [23] was used to compare the pre-
dicted sequences with the reference corrections; and F0.5 scores
were computed over the correct and incorrect edits.

5. Non-Native Speaker Results
5.1. Corpora

Two learner corpora were used to evaluate the impact of the
post-processing of both manual transcribed learner speech, and
the output from an ASR system, on GED and GEC. The first
corpus is publicly available the NICT Japanese Learner English
(NICT-JLE), but does not have any audio available. The second
corpus, BULATS, is made available by Cambridge Assessment
English and enables the evaluation of the complete pipeline in-
cluding ASR.

The NICT-JLE Corpus [24] is a set of interview tests con-
ducted with 167 Japanese learners of English, with speaking
skills at grades A1-B2 on the CEFR scale [25]. The corpus is
annotated with manual transcriptions and associated meta-data
including grammatical errors. Tokens marked with a repetition
(R) or self-correct (SC) meta-data tag are mapped to the BIO
disfluency tags. NICT-JLE does not provide audio data, thus
analyses are restricted to manual transcriptions.

BULATS Corpus [26] is derived from a free speaking busi-
ness English test consisting of prompted responses of up to 1
minute. It consists of 225 English learners from 6 L1s and



Corpus Trans. SEG DD (F1) GED GEC

NICT-JLE REF —
none 37.2±0.42 34.3±0.43

auto (79.8) 43.9±0.20 53.1±0.19

man 49.3±0.20 66.0±0.13

BULATS

REF
none 39.1±0.76 35.2±0.15

— auto (64.0) 41.8±0.69 42.4±0.29

man 42.4±0.80 39.8±0.13

ASR

none 23.2±0.96 34.0±0.20

none auto (41.6) 23.6±0.95 36.7±0.26

man 23.9±0.88 36.8±0.20

auto auto (42.6) 24.9±0.26 31.1±0.34

none 24.6±0.48 26.3±0.42

man auto (44.6) 24.9±0.44 31.7±0.43

man 25.1±0.38 31.3±0.35

Table 3: Disfluency detection (DD), Grammatical error de-
tection (GED) & Grammatical error correction (GEC) perfor-
mance on non-native data.

equally distributed across all speaking CEFR grades. The data
is carefully transcribed and annotated with grammatical errors
and meta-data [20], from which disfluency regions can be de-
rived. The reparandum parts of repetition (RE) and false start
(FS) tagged tokens are annotated as disfluencies.

Figure 2: Precision-recall curves of GED on NICT-JLE manual
transcriptions.

5.2. Results

GED and GEC were performed with three different pre-
processing approaches: original transcriptions (none); tran-
scriptions with automatic disfluency detection and removal
(auto); transcriptions with manual disfluency removal (man).
Segmentation is applied to ASR transcriptions. For GED, to
offset the impact of false positives in automatic DD, the denom-
inator for the recall rates was adjusted to be the total number of
grammatical errors before disfluency removal. For GEC, no ad-
justment was made to F0.5 since the reference correction stays
the same regardless of DD (a false positive in DD does not lead
to biased evaluation). An ensemble of five models was trained
for GED and GEC respectively using different initialisations.
Table 3 shows the mean and variance of their performance.

The first block of table 3 shows that DD on NICT-JLE man-
ual transcriptions scored at 79.8. This is a drop compared to
the native speaker Switchboard F1 score (87.6). This result
is expected as non-native disfluency patterns vary from native
speech [7]. NICT-JLE has a grammatical error rate (GER) of
12.2%. Grammatical errors might also account for the drop
in DD performance. GED F0.5 gained 12.1 by manually re-

moving disfluencies, and running automatic disfluency removal
achieved a 6.7 absolute gain. The precision-recall curve in Fig-
ure 2 shows a clear performance improvement introduced by
both auto and manual disfluency removal. The NICT-JLE cor-
pus does not provide audio information. To extend the investi-
gation to transcriptions generated by an ASR system, the BU-
LATS corpus was used.

The second block of table 3 compares DD and GED per-
formance on manual and ASR transcriptions of the BULATS
corpus. ASR transcriptions were produced using a joint stacked
hybrid DNN and LSTM system [27] with an overall WER of
25.6%. BULATS has more disfluent speech (long prompt-
response vs short conversational turns) and greater L1 variety,
which lead to a higher GER of 15.6%. DD performance is
worse on BULATS than on NICT-JLE, which might be due to
the higher GER. For ASR transcriptions, DD performance is
much worse on BULATS than on Switchboard, which is a com-
bined result of domain shift from native to non-native as well as
the higher WER on BULATS. As is observed for Switchboard,
DD is significantly disrupted by ASR errors, resulting in a drop
from 64.0 (manual) to 42.6 (ASR) F1. GED performance on
ASR transcriptions shows a slightly smaller, but similar, drop.
It is worth noting that ASR systems generally favour correct
over incorrect grammar, therefore grammatical errors might get
corrected through the ASR process, leading to inherent false
negatives. Automatic disfluency removal improved GED F0.5

performance from the baseline of 23.2 to 23.6 and 39.1 to 41.8
on ASR and manual transcriptions, respectively. Fully auto-
mated SEG and DD further yields a GED F0.5 score of 24.9,
reaching a level that is comparable to manual processing.

The last column in table 3 shows the GEC performance.
When manual transcriptions are available, DD consistently im-
proves GEC F0.5 from 34.3 to 53.1 and 35.2 to 42.4 for NICT-
JLE and BULATS respectively. When evaluated on BULATS
ASR transcriptions, both DD and GEC show performance drop
from manual transcriptions. Applying automatic and manual
segmentation helps to improve DD performance from 41.6 to
42.6 and 44.6 respectively. However, GEC performance is sig-
nificantly degraded by speech segmentation - GEC F0.5 drops
from 34.0 to 26.3 after manual segmentation without disfluency
detection process. This result might be accounted for by the na-
ture of the GEC task - shorter utterance entails more restricted
context, which limits the context space that can be explored
throughout the decoding process, and consequently less correc-
tions can be made. Nevertheless, it is worth noting that when
the segmentation condition is kept the same (SEG=none), DD
is still able to boost GEC F0.5 from 34.0 to 36.8.

6. Conclusions
Feedback is an essential part of spoken CALL systems. This
paper examines one particular form of feedback, spoken gram-
matical errors, effectively identifying where the learner is con-
structing a response in a form that a native speaker would not
use. Developing these systems is hindered by a lack of anno-
tated data. This paper examines addressing this problem by
converting the output from an ASR system into a form which
is similar to written text. This enables the use of annotated writ-
ten text data for detecting spoken errors. Disfluency detection
and speech segmentation systems are described based on native
speaker data. These systems are then shown to improve the per-
formance of spoken grammatical error detection and correction
systems on speech data from learners of English.
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