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ABSTRACT

2



Here, we examine baroclinic instability in the presence of vertical mixing in

an idealized setting. Specifically, we employ a simple model for vertical mix-

ing of momentum and buoyancy and expand the buoyancy and vorticity in a

series for small Rossby numbers. A flow in a state of subinertial mixed layer

(SML) balance (see Young (1994)) exhibits a normal mode linear instabil-

ity which is studied here using an analytical stability analysis and numerical

simulations. The most unstable modes grow by converting potential energy

associated with the basic state into kinetic energy of the growing perturba-

tions. However, unlike the inviscid Eady problem, the dominant energy bal-

ance is between the buoyancy flux and the energy dissipated by the modeled

vertical mixing. Vertical mixing reduces the growth rate of the most unstable

modes and changes their orientation with respect to the front. We test our

analytical predictions for the angle and growth rate of the most unstable mode

using numerical simulations and generally find good agreement. Although the

predicted scale of the most unstable mode only matches the simulations for

small Rossby numbers, the growth rate and angle agree for a broader range of

parameters. A stability analysis of a basic state in SML balance using the in-

viscid QG equations shows that the angle of the unstable modes is controlled

by the orientation of the SML flow, while the stratification associated with

an advection/diffusion balance controls the size of growing perturbations for

small Ekman numbers and large Rossby numbers. These results imply that

mixed layer baroclinic instability can be inhibited by small-scale turbulence

when the Ekman number is sufficiently large and might explain the lack of

submesoscale eddies in observations and numerical models of the ocean sur-

face mixed layer during summer.
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1. Introduction35

The ocean surface mixed layer plays a central role in the climate system by mediating transfers36

of heat, carbon, and other important tracers between the atmosphere and deep ocean and influ-37

encing the rate of primary production (Lorbacher et al. 2006; Sverdrup 1953). The mixed layer is38

subject to intense small-scale turbulence driven by a wide variety of processes including convec-39

tion, wind stress and breaking waves which lead to the nearly vertically uniform density field that40

characterizes the mixed layer (Shay and Gregg 1986; Kato and Phillips 1969; Thorpe 2005).41

The mixed layer also contains horizontal density gradients (e.g. Rudnick and Ferrari (1999)) in42

the form of fronts on a wide range of horizontal scales (e.g. Callies and Ferrari (2013)). The avail-43

able potential energy associated with the horizontal density gradients fuels mixed layer baroclinic44

instability (or MLI) (Boccaletti et al. 2007; Fox-Kemper et al. 2008) which generates submesoscale45

eddies while re-stratifying the mixed layer. Although MLI develops in a highly turbulent environ-46

ment, most previous attempts at a linear stability analysis of MLI have neglected the influence of47

small-scale turbulence. Our objective in this paper is to examine the influence of vertical mixing48

on baroclinic instability.49

Observations and numerical simulations have reported a strong seasonal cycle in submesoscale50

activity (Capet et al. 2008; Mensa et al. 2013; Sasaki et al. 2014; Callies et al. 2015; Thompson51

et al. 2016). Factors that could modulate submesoscale instabilities include the mixed layer depth,52

horizontal density gradients, and turbulent mixing (e.g. Boccaletti et al. (2007); Bachman and53

Taylor (2016); Callies and Ferrari (2018)). While the growth rate for MLI does not depend directly54

on the mixed layer depth (Stone 1966; Fox-Kemper et al. 2008), the potential energy available for55

release by MLI does (Callies et al. 2015). It remains unclear whether MLI is less energetic and56

more difficult to detect in the summer, or whether it is arrested entirely. Here, we will show that57
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vertical mixing can arrest baroclinic instability in the limit of small Rossby numbers and strong58

mixing. This result might help explain the lack of submesoscale activity in the summer.59

Recently Callies et al. (2016) used a two layer Quasi-Geostrophic (QG) model to explore how60

baroclinic mixed layer instability energizes submesoscale turbulence. Interestingly, their model61

results are consistent with available observations, despite using the QG limit of small Rossby62

number to describe structures with a Rossby number in the range of 0.1� 1. This suggests that63

QG dynamics may be useful to qualitatively describe submesoscale processes, although non-QG64

dynamics are still needed to describe phenomena such as ageostrophic instabilities (e.g. symmetric65

instability) and submesoscale frontogenesis (Shakespeare and Taylor 2013).66

Young (1994) introduced the sub-inertial mixed layer (SML) model using an asymptotic expan-67

sion in small Rossby number and a simple parameterization of turbulent mixing to consider the68

effect of horizontal salinity and temperature gradients on shear and stratification in the mixed layer.69

For a vertically-sheared flow in thermal wind balance, vertical mixing of momentum leads to an70

ageostrophic secondary circulation. The secondary circulation acts to restratify the mixed layer, a71

tendency which is balanced by vertical mixing to leading order. The vertically-sheared cross-front72

flow associated with the secondary circulation and vertical mixing of temperature work together73

to spread the front via shear dispersion (Young et al. 1982; Taylor 1953). Shear dispersion acting74

on fronts was examined in Ferrari and Young (1997) and Crowe and Taylor (2018) for different75

mixing parameterizations.76

Young and Chen (1995) used the SML model to study baroclinic instability associated with77

horizontal heat and salt gradients. For simplicity only cases of very strong and very weak mixing78

were considered, with the strong mixing corresponding to a ‘slab’ mixed layer model with no79

vertical variation and the weak mixing corresponding to a geostrophically balanced mixed layer.80

They speculated that the classical Eady model of baroclinic instability (Eady 1949; Vallis 2006)81
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should be recovered in the limit of weak mixing. However, it was not possible to make this82

connection explicitly since there is no background vertical stratification in the SML model and83

the Richardson number is large (and hence stratification is strong) in the limit of small Rossby84

numbers in the Eady model.85

Crowe and Taylor (2018) considered the evolution of an isolated front subject to a depth-86

dependent turbulent viscosity and diffusivity - a simple vertical mixing parameterization intended87

to represent the effects of small-scale turbulence. The leading order momentum balance was found88

to be the so-called ‘turbulent thermal wind’ (TTW) balance (Gula et al. 2014) between the Cori-89

olis acceleration, the horizontal pressure gradient, and vertical mixing, with the resulting velocity90

depending linearly on the horizontal buoyancy gradient. As in the SML model, vertically-sheared91

cross-front flow leads to a re-stratification of the mixed layer, while shear dispersion leads to92

spreading of the front.93

Here, we take a different approach and use the vertical mixing scheme introduced by Young94

(1994) to consider mixed layer instabilities in the presence of vertical mixing. Unlike Young95

and Chen (1995) we use a single scalar, buoyancy, which simplifies the analysis for arbitrary96

mixing intensity. We also include a background vertical stratification to allow direct comparison97

with the Eady instability and we add horizontal viscous terms to examine the high wavenumber98

cutoff. While similar to the SML model, our asymptotic approach differs in that the buoyancy99

and momentum mixing timescales are assumed to be the same order, which leads to a different100

parameter regime. The parameter regime we use is the same as that considered in Crowe and101

Taylor (2018), although here the turbulent mixing is represented by relaxation towards the local102

depth-averaged profile rather than diffusion.103

In §2 we describe the governing equations and the asymptotic limit and discuss the differences104

between our approach and the approach use by Young (1994); Young and Chen (1995). In §3 we105
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give the asymptotic solution to the governing equations in terms of the background buoyancy field,106

b0, and horizontal streamfunction, y0. The governing equations for b0 and y0 are given in §4 and107

the instabilities of these equations are considered analytically in §5 and numerically in §6. In §7108

we use a quasi-geostrophic model to examine a mechanism that can control the fastest growing109

mode. Finally in §8 we discuss our results and the limitations of our model.110

2. Governing Equations111

We start with the 3D non-hydrostatic Boussinesq equations and consider a fluid bounded from112

above and below by flat, rigid boundaries in a coordinate system rotating about the vertical (z) axis.113

We invoke a linear equation of state and let the buoyancy, b, denote departures from a background114

stratification with buoyancy frequency N. We non-dimensionalize the governing equations using115

the horizontal length scale L, vertical length scale H, buoyancy scale Db, horizontal velocity scale116

U = DbH/( f L), vertical velocity scale W = UH/L = DbH2/( f L2), pressure scale P = fUL =117

DbH, and timescale T = L/U = f L2/(HDb). This leads to the non-dimensional parameters defined118

in Table 1.119

We follow Young (1994) and parameterize vertical mixing by adding a forcing term to the RHS120

of the momentum and buoyancy equations which acts to relax the velocity and buoyancy to the121

local depth-average. The rates of relaxation for buoyancy and velocity are µb and µu, respectively.122

This parameterization is chosen largely for mathematical convenience though it is not conspicu-123

ously less realistic than an eddy diffusivity parameterization. A similar analysis could be carried124

out with the vertical relaxation scheme replaced with a vertical viscosity and diffusivity. Although125

this complicates the analysis, qualitatively similar results can be obtained (see Appendix C).126
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With the choices described above, the non-dimensional governing equations are (Charney 1973;127

Young 1994; Crowe and Taylor 2018):128

Ro
Du
Dt

� v =�∂ p
∂x

+a (u�u) , (1a)

Ro
Dv
Dt

+u =�∂ p
∂y

+a (v� v) , (1b)

Roe2 Dw
Dt

=�∂ p
∂ z

+b, (1c)

Ro
Db
Dt

+Buw =
a

Pra

�
b�b

�
, (1d)

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0, (1e)

where the material derivative is129

D
Dt

=
∂
∂ t

+u ·—, (2)

and130

f =
Z 1/2

�1/2
f dz (3)

denotes a depth average across the non-dimensional vertical domain z 2 [�1/2,1/2]. Note that we131

might expect the background stratification represented by Bu to be affected by vertical mixing. We132

instead assume that this stratification is maintained by a process that is not represented here and133

occurs on a different timescale to the mixing, such as symmetric instability or surface heating, so134

that the background stratification can be imposed as a constant. Note that a stable stratification will135

develop in response to mixing of momentum even if Bu = 0. Imposing an additional background136

stratification is mathematically convenient as it allows for a straightforward comparison with the137

Eady model in the limit of no vertical mixing.138

Our approach differs from Young (1994) where it was assumed that the ratio of the buoyancy139

mixing timescale to the advection timescale was small compared to one, but large compared to the140
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Rossby number, such that141

1/µb

T
=

RoPra
a

� Ro. (4)

Since no assumptions are made about the size of a , this results in the requirement that Pra is142

large unless a is small. Motivated by simulations and experiments of turbulent mixing in weakly143

stratified flows, we instead assume that Pra = O(1) (e.g. Schumann and Gerz (1995); Venayag-144

amoorthy and Stretch (2010)). This choice of Pra allows us to consider the case where the mixing145

rates are similar for any value of a , although we are unable to solve the resulting equations to the146

same order in Ro as Young (1994).147

Before proceeding with the analysis, it is useful to relate our nondimensional parameters to148

physical quantities. We can relate the relaxation (mixing) rates, µu and µb, to a turbulent eddy149

turnover time by defining a characteristic turbulent velocity scale, u⇤, and a characteristic length150

scale, l. The parameterized mixing rates, µu and µb, then scale with151

µu,µb ⇠
u⇤
l
. (5)

Therefore, the ratio of the mixing rate to the Coriolis frequency is152

a ⇠ u⇤
l f

. (6)

For wind-driven turbulence, the friction velocity provides a characteristic velocity scale such153

that u⇤ =
p

tw/r0, where tw is the magnitude of the wind stress. In this case the turbulent length154

scale, l, characterizing the largest turbulent eddies would be the smaller of the mixed layer depth155

or the Ekman layer depth. On the other hand for convection an appropriate characteristic velocity156

scale is instead u⇤ = w⇤ = (B0l)1/3 where B0 is the surface buoyancy flux and l is the mixed layer157

(or convective layer) depth. Note that the relaxation ratio can be related to the Ekman number,158
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E = n/( f l2), by invoking a mixing length argument where the turbulent viscosity, n ⇠ u⇤l. Hence159

a ⇠ u⇤
l f

⇠ n
f l2 ⇠ E. (7)

We can estimate some of the important parameters including the aspect ratio, Rossby number,160

and relaxation ratio from reported observations of fronts. We have selected three examples using161

observations reported in Mahadevan et al. (2012); Thompson et al. (2016); Thomas et al. (2013)162

which correspond to weak, moderate, and strong horizontal density gradients, respectively. Note163

that the values chosen from Mahadevan et al. (2012) correspond to the north/south density gradient164

characterizing the North Atlantic as observed during the North Atlantic Bloom Experiment, rather165

than individual fronts. The estimated parameter values are given in Table 2. Note also that the166

values are roughly representative of the observations, but the structure of the fronts are complicated167

and cannot be fully represented with a simple set of parameters. Nevertheless, the relatively weak168

north/south density gradient observed during the North Atlantic Bloom experiment (Mahadevan169

et al. 2012) and simulated by Mahadevan et al. (2012) and Taylor (2016) and the fronts reported170

in Thompson et al. (2016) have relatively small Rossby numbers using our definition. As we will171

show using comparisons with numerical simulations, aspects of our asymptotic theory are valid at172

these Rossby numbers. In contrast, the Rossby number associated with the Gulf Stream front is173

quite large and outside of the range of validity of our asymptotic theory. We note that it is possible174

to have a = O(1) for both strong and weak fronts and the aspect ratio, e , is generally small for175

open ocean fronts.176

Note that our definition of Rossby number uses a length scale characteristic of the horizontal177

density gradient and not necessarily the resulting eddies. As a result, the Rossby number as defined178

here can be quite small in practice. If we instead define a Rossby number, Ros, using the length-179

scale of a baroclinic eddy, we have Ros =K Ro for nondimensional wavenumber K. In the analysis180
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that follows, we will show that K can be on the order of 100, and hence Ros = O(1) as typical of181

a submesoscale eddy. Therefore, even though the values of Ro used in our theory and simulations182

will be very small, our results are applicable to the formation of submesoscale structures where183

Ros ⇠ 1.184

3. Asymptotic Solution185

In this section we will solve Eqns. (1a-1e) using an asymptotic method valid for small Rossby186

numbers. We begin by assuming that the aspect ratio is small and expand all variables in powers187

of Ro, e.g. b = b0 +Rob1 +Ro2b2 + . . .. We impose no conditions on the relaxation rate, a , and188

allow it to appear at leading order. We also assume that the stratification is weak with Bu=O(Ro),189

hence we write Bu = RoN 2 where190

N 2 = N2H/Db, (8)

is the ratio of the vertical buoyancy difference (N2H) to the horizontal buoyancy difference (Db).191

Here, for the purposes of the asymptotic equations we will assume that N 2 = O(1), although the192

result will be valid if N 2 ⌧ 1. The time derivative is expanded into fast and slow timescales:193

∂
∂ t

! ∂
∂ t

+
1

Ro
∂

∂t
, (9)

for fast transient timescale, t = t/Ro. The fast timescale, t , represents the transient evolution194

from a general initial condition. In order to simplify the analysis we assume that all transients195

have decayed and hence neglect the t derivatives. For completeness, the full solution including196

the transients is given in Appendix A.197

a. Order 1 Equations198

We now consider separately the O(1) and O(Ro) terms in the governing equations. With the199

assumption that Bu = O(Ro), the only term in the buoyancy equation that contributes to O(1) is200

11



the parameterized vertical mixing term. Hence, the O(1) buoyancy balance is201

a
Pra

b00 = 0, (10)

where (·)0 denotes a departure from the local depth-average. Eq. 10 implies that b0 is independent202

of depth. This is consistent with the limit of strong mixing leading to a well-mixed layer as also203

found by Young (1994).204

Similarly, the leading order balance in the momentum equations is205

�v0 =�∂ p0

∂x
�au00, (11a)

u0 =�∂ p0

∂y
�av00, (11b)

0 =�∂ p0

∂ z
+b0, (11c)

0 =
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂ z
. (11d)

Eq. 11c can be integrated to give p0 = zb0 + p0, and the depth-averaged horizontal momentum206

equations and mass conservation equation reduce to geostrophic balance for the depth-averaged207

flow:208

�v0 =�∂ p0
∂x

, (12a)

u0 =�∂ p0
∂y

, (12b)

0 =
∂u0

∂x
+

∂v0

∂y
. (12c)

Subtracting the depth-averaged horizontal momentum equations from equations 11 gives evolution209

equations for the horizontal velocity perturbations and vertical velocity210

au00 � v00 =�z
∂b0

∂x
, (13a)

av00 +u00 =�z
∂b0

∂y
, (13b)

0 =
∂u00
∂x

+
∂v00
∂y

+
∂w0

∂ z
. (13c)
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Equations 13 can be combined to give211

u
0
H0 = g [�a —Hb0 +k⇥—Hb0]z, (14)

and212

w0 =
ag(4z2 �1)

8
—2

Hb0, (15)

where g = 1/(1+a2). From the depth-averaged mass conservation equation we can write uH0 =213

�—⇥ (y0k) for streamfunction y0. From equations 12a and 12b we note that p0 = y0. Hence214

uH0 =�—⇥ (y0k)+ g [�a —Hb0 +k⇥—Hb0]z. (16)

As noted in Young (1994), the horizontal velocity has a non-zero vertical shear at leading order,215

unlike the buoyancy which is well-mixed at leading order. In the case of a = 0, the equation for216

uH0 reduces to thermal wind balance. For nonzero a , vertical mixing acts to couple the cross-217

front and along-front flows, leading to a flow with a component in the direction of the buoyancy218

gradient. For a < 1 stronger mixing results in a stronger cross-front shear, while the cross-front219

shear weakens with stronger mixing for a > 1.220

b. Order Ro Equations221

We now consider the O(Ro) terms in the buoyancy conservation equation. The advection of b0222

by the leading order velocity contributes to O(Ro). Since b0 = b0(x,y, t), the O(Ro) buoyancy223

equation is224

∂b0

∂ t
+uH0 ·—Hb0 +N 2w0 =� a

Pra
b01. (17)

Subtracting the depth average gives225

a
Pra

b01 =�u
0
H0 ·—Hb0 �N 2w0

0, (18)
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which describes a balance between advection by the cross-front flow and vertical mixing. Hence226

the solution for b01 is227

b01 = Prag


z|—Hb0|2 �N 2 12z2 �1
24

—2
Hb0

�
. (19)

Solving for b1 requires the O(Ro2) buoyancy equation. Note that even with N = 0, there is a stable228

vertical stratification at this order, consistent with the finding from Tandon and Garrett (1994) that229

the vertical buoyancy gradient is proportional to the horizontal buoyancy gradient squared.230

4. Evolution of the Background Fields231

In order to determine the time dependence of the system on the slow timescale, t, we need232

to determine governing equations for the depth independent functions b0 and y0. These can be233

obtained by depth averaging the buoyancy and vertical vorticity equations. The vertical vorticity234

equation is235

Ro
✓

∂z
∂ t

+u ·—z �! ·—w
◆
+—H ·uH = a(z �z ), (20)

for vertical vorticity z = ! ·k, which can be depth-averaged to give236

∂z
∂ t

+—H · [uHz �!Hw] = 0, (21)

or using depth-averaged and perturbation quantities,237

∂z
∂ t

+—H · [uHz �!Hw+u0
Hz 0 �!0

Hw0] = 0. (22)

Similarly, the depth-averaged buoyancy equation is238

∂b
∂ t

+uH ·—Hb+—H · [u0
Hb0]+N 2w = 0. (23)

We now use the leading order solutions for the velocity and buoyancy fields (y0 and b0) to write239

the depth-averaged equations in terms of these fields.240

14



a. Buoyancy241

Substituting the expansions in Rossby number up to O(Ro) into Eq. 23 gives242

∂b0

∂ t
+uH0 ·—Hb0 +N 2w0 +Ro


∂b1

∂ t
+uH1 ·—Hb0 +uH0 ·—Hb1 +N 2w1 +—H · [u0

H0b01]
�
= 0.

(24)

Using the definition of y0, we can write uH0 ·—Hb0 = J(y0,b0), where J is the Jacobian operator:243

J( f ,g) =
∂ f
∂x

∂g
∂y

� ∂ f
∂y

∂g
∂x

. (25)

We can also write the flux term as244

u0
H0b01 =

Prag2

12
(�a—Hb0 +k⇥—Hb0)|—Hb0|2, (26)

and hence Eq. 24 can be written as245

∂b0

∂ t
+ J(y0,b0)+N 2w0 +Ro


∂b1

∂ t
+uH1 ·—Hb0 +uH0 ·—Hb1 +N 2w1

�

=
RoPrag2

12
—H ·

⇥
(a—Hb0 �k⇥—Hb0)|—Hb0|2

⇤
.

(27)

The limit considered by Young (1994) uses Pra = P/
p

Ro with P = O(1). For Ro ⌧ 1 this246

corresponds to momentum relaxation that is much faster than the buoyancy relaxation. With this247

choice, and in the absence of background stratification (N2 = 0), the buoyancy evolution equation248

to order O(
p

Ro) can be written249

∂b0

∂ t
+ J(y0,b0) =

p
RoPg2

12
—H ·

⇥
(a—Hb0 �k⇥—Hb0)|—Hb0|2

⇤
. (28)

This result was obtained by Young (1994). The first term in brackets on the right hand side of Eq.250

28 is a down-gradient buoyancy flux. The second term is a ‘skew’ flux directed perpendicular to251

the buoyancy gradient. The role of the skew flux will be discussed in more detail in §4c.252

Here, we take a different approach from Young (1994) and assume that Pra = O(1) while re-253

taining a non-zero background stratification. The O(1) terms in Eq. 27 are then254

∂b0

∂ t
+ J(y0,b0) =

agN 2

12
—2

Hb0, (29)
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where we have used w0 = �ag
�
—2

Hb0
�
/12. With this form for w0, vertical advection acting on255

the background stratification (N 2w0 in Eq. 27) acts like horizontal diffusion on the leading order256

buoyancy.257

Crowe and Taylor (2018, 2019) studied the evolution of a front in turbulent thermal wind bal-258

ance. A simple form of this problem can be obtained by considering a two-dimensional front with259

no y dependence and N 2 = 0. With these assumptions, Eq. 27 reduces to260

∂b0

∂ t
=

RoPrag2a
12

∂
∂x

✓
∂b0

∂x

◆3
, (30)

as b1 and uH1 can be assumed to be zero by symmetry. This equation describes frontal spreading261

on the timescale T = Ro t and can be solved with a similarity solution as in Crowe and Taylor262

(2018).263

b. Vorticity264

We can formulate a closed system of two equations for the leading order buoyancy, b0, and265

the leading order streamfunction, y0, using conservation of vorticity. The leading order vorticity266

equation is267

∂z 0
∂ t

+—H · [uH0z 0 �!H0w0 +u0
H0z 0

0 �!0
H0w0

0] = 0, (31)

where each term can now be written in terms of b0 and y0. The leading order vertical vorticity is268

z0 =
∂v0

∂x
� ∂u0

∂y
= —2

Hy0 + g z—2
Hb0. (32)

Since b0 is independent of z, and since z is anti-symmetric about the mid-plane (z = 0), the final269

term does not contribute to the depth-average, which leaves z 0 = —2
Hy0. Advection of vorticity270

by the depth-averaged horizontal velocity can be written as271

—H · [uH0z 0] = —H · [uH0—2
Hy0] = J(y0,—2

Hy0). (33)
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The horizontal vorticity is given by272

!H0 =

0

B@
∂w0
∂y � ∂v0

∂ z

∂u0
∂ z � ∂w0

∂x

1

CA , (34)

and its depth-average is273

!H0 =

0

B@
∂w0
∂y �Dv0

Du0 � ∂w0
∂x

1

CA , (35)

where Du0 and Dv0 are the change in horizontal velocity between the top and bottom boundaries.274

The second flux term is275

—H · [!H0w0] = —H ·

2

64
1
2

0

B@
∂w2

0
∂y

�∂w2
0

∂x

1

CA+

0

B@
�Dv0 w0

Du0 w0

1

CA

3

75= —H ·

0

B@
�Dv0 w0

Du0 w0

1

CA , (36)

or276

—H · [!H0w0] =
ag2

12
—H ·

⇥
(—Hb0 +a k⇥—Hb0)—2

Hb0
⇤
. (37)

using the leading order velocities. The last two flux terms involving departures from the mean277

vorticity are278

—H · [u0
H0z 0

0] =� g2

12
—H ·

⇥
(a—Hb0 �k⇥—Hb0)—2

Hb0
⇤
, (38)

and279

—H · [!0
H0w0

0] = —H ·

0

B@
1
2

∂
∂y [w

02
0 ]�

∂v00
∂ z w0

0

�1
2

∂
∂x [w

02
0 ]+

∂u00
∂ z w0

0

1

CA= —H ·

0

B@
�∂v00

∂ z w0
0

∂u00
∂ z w0

0

1

CA= 0, (39)

since u00 and v00 are linear in z and w0 = 0. The terms in w02
0 can be written as a curl and hence are280

divergence free.281

Combining these results, the vertical vorticity equation can be written282

∂—2
Hy0

∂ t
+ J(y0,—2

Hy0) =
g2

12
—H ·

⇥�
2a—Hb0 +(a2�1)k⇥—Hb0

�
—2

Hb0
⇤
. (40)
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The left hand side of Eq. 40 corresponds to advection of vertical vorticity. The first term in brackets283

on the right hand side corresponds to a cross-front vorticity flux, and the second term in brackets284

corresponds to an along-front skew flux.285

c. The Skew Flux Term286

As mentioned earlier, a skew flux term appears in the evolution equation for b0 (the second287

term on the right hand side of Eq. 27). This term, Jb = �k⇥—Hb0|—Hb0|2, represents a flux of288

buoyancy perpendicular to the buoyancy gradient. As noted above, a skew flux also appears in the289

vertical vorticity equation (Eq. 40) which we will denote Jv = (k⇥—Hb0)—2
Hb0.290

The divergence of the skew flux terms in the buoyancy and vorticity equations can be re-291

expressed in terms of advection operators. First, note that the divergence of the skew flux terms292

can be written as293

—H ·Jb =�—H ·
⇥
k⇥—Hb0|—Hb0|2

⇤
=�—Hb0 ·

⇥
�k⇥—H |—Hb0|2

⇤
, (41)

and294

—H ·Jv = —H ·
⇥
(k⇥—Hb0)—2

Hb0
⇤
=�—Hb0 ·

⇥
(k⇥—H)—2

Hb0
⇤
. (42)

Therefore, the terms in brackets can be written in the form of advection operators with velocities295

ub =�k⇥—H |—Hb0|2 = —H ⇥
⇥
|—Hb0|2k

⇤
, (43)

and296

uv = (k⇥—H)—2
Hb0 = —H ⇥

⇥
�—2

Hb0k
⇤
. (44)

Therefore ub and uv can be written in terms of streamfunctions, cb = �|—Hb0|2 and cv = —2
Hb0.297

In the buoyancy equation the skew flux term can be combined with the existing advection term,298

J(y0,b0). From the form of the streamfunction, cb, we see that the effect of the skew flux term,299
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Jb, is to advect buoyancy along the contours of |—Hb0|2 = const. Equations 27 and 40 can then be300

written301

∂b0

∂ t
+ J

 
y0 �

p
RoPg2

12
|—Hb0|2,b0

!
=

RoPraag2

12
—H ·

⇥
—Hb0|—Hb0|2

⇤
+O(Ro), (45)

and302

∂—2
Hy0

∂ t
+ J(y0,—2

Hy0)+
(a2�1)g2

12
J(—2

Hb0,b0) =
2ag2

12
—H ·

⇥
—Hb0—2

Hb0
⇤
. (46)

Note that using Equation 45 with Pra = P/
p

Ro corresponds to the Young (1994) case. In the303

Pra = O(1) limit that we consider, only the vorticity skew flux term, Jv, enters the equations at304

leading order and the advection of buoyancy by the buoyancy skew flux term, Jb, is small.305

d. Horizontal Diffusion306

The system described by Eqns. 1a-1e parameterizes vertical mixing by relaxing the velocity and307

buoyancy fields towards their local depth average, but the equations do not include any parameteri-308

zation for horizontal mixing by small-scale turbulence. As will be shown below, the most unstable309

mode in this system has an infinite horizontal wavenumber or, equivalently, a vanishingly small310

wavelength. Fortunately, it is relatively straightforward to include a parameterization of horizontal311

mixing using horizontal Laplacian viscous and diffusive terms with viscosity n and diffusivity k .312

The addition of these terms shifts the most unstable mode to a finite wavenumber. Note that this313

Laplacian scheme differs from the relaxation parameterization used to represent vertical mixing314

and is used for mathematical convenience. Appendix C describes a model with Laplacian mixing315

schemes in the horizontal and vertical directions.316

With the addition of parameterized horizontal mixing, the terms e2E—4
Hy0 and e2E/PrE—2

Hb0317

appear on the right hand sides of the depth-averaged vorticity and buoyancy equations, respec-318

tively, where recall that e = H/L is the aspect ratio, E = n/( f H2) is the Ekman number and319
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PrE = n/k is the Prandtl number. In most applications e << 1 and these terms will be small.320

However, for very small Ro these terms might contribute significantly. Writing E = e2E/Ro, the321

resulting equations are322

∂b0

∂ t
+ J(y0,b0) =


agN 2

12
+

E
PrE

�
—2

Hb0, (47)

and323

∂—2
Hy0

∂ t
+ J(y0,—2

Hy0)�E—4
Hy0 =

g2

12
—H ·

⇥�
2a—Hb0 +(a2�1)k⇥—Hb0

�
—2

Hb0
⇤
, (48)

which are asymptotically valid if e2E = O(Ro). For convenience, we will write the combined324

buoyancy diffusivity appearing in Eq. 47 as325

D =


agN 2

12
+

E
PrE

�
. (49)

We note that these equations can be obtained from Young (1994) in the limit of fast buoyancy326

mixing (1/µb ⌧ L/U). However this result would only strictly be valid for small a based on the327

analysis in Young (1994) due to the use of different asymptotic limits, while here no constraints328

have been placed on the size of a .329

5. Instabilities of the Depth-Averaged Equations330

Equations 47 and 48 are a closed system of equations for the leading order buoyancy and vortic-331

ity. In this section, we will analyze the stability of these equations to small amplitude disturbances.332

For simplicity, we will consider perturbations about a basic state where buoyancy is a linear func-333

tion of x, i.e. b0 = Bx for a constant B, and where the vertical vorticity is zero. Introducing normal334

mode perturbations of the form exp[i(kx+ ly)+st], the total buoyancy and vorticity can be written335

using an eigenmode decomposition,336

(b0,y0) = (dAexp[i(kx+ ly)+st]+Bx,dC exp[i(kx+ ly)+st]) , (50)
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for wavevector (k, l), growth rate s and small parameter d . The vector (A,C) is the eigenvector of337

the resulting linear system.338

To leading order in d , the linearized buoyancy and vorticity equations can be written339

sA� ilBC =�(k2 + l2)DA, (51)

and340

�s(k2 + l2)C =
g2

12
⇥
�2aik(k2 + l2)� (a2�1)il(k2 + l2)

⇤
BA+(k2 + l2)2EC, (52)

or in the form of a single matrix equation,341

0

B@
s +(k2 + l2)D �lB

g2

12
⇥
2ak+(a2 �1)l

⇤
B s +(k2 + l2)E

1

CA

0

B@
A

iC

1

CA= 0. (53)

For this equation to be valid for some non-zero vector (A, iC), the determinant of this matrix must342

vanish. Therefore343

[s +(k2 + l2)D][s +(k2 + l2)E ]+ g2B2

12
⇥
2akl +(a2 �1)l2⇤= 0. (54)

The solution to this equation for the growth rate, s , is344

s±=�D+E
2

(k2 + l2)±

s
D�E

2

�2
(k2 + l2)2 �B2 [2akl +(a2 �1)l2], (55)

where B2 = g2B2/12 is a re-scaled buoyancy gradient and the parameters345

D =
a g Bu
12Ro

+
E

PrE
, E =

e2E
Ro

, (56)

can be written in terms of the non-dimensional numbers defined in Table 1. The growth rate has a346

maximum at a finite wavevector (k, l). Note that in the case where D = E (e.g. with N 2 = 0 and347

PrE = 1), the growth rate simplifies to348

s± =�E(k2 + l2)±B
q

� [2akl +(a2 �1)l2]. (57)
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To find the maximum growth rate in the more general case, it is useful to define a rotated wavevec-349

tor, l
0 = Ra l, where l = (k, l) and the rotation matrix,350

Ra =
1p

1+a2

0

B@
1 a

�a 1

1

CA , (58)

is orthogonal with determinant 1 corresponding to a rotation by q = �arctana . The growth rate351

in rotated coordinates becomes352

s± =�D+E
2

(k02 + l02)±

s
D�E

2

�2
(k02 + l02)2 +B2 [l02 �a2k02]. (59)

For a fixed wavelength, the growth rate in Eq. 59 is maximum for (k0, l0) = (0,±K), corresponding353

to waves aligned at an angle of arctana to the down-front (y) direction. We note that the fastest354

growing modes therefore have a wavevector aligned with the horizontal velocity at the top and355

bottom boundaries. The same is true for the the classical Eady instability where the wavenumber356

of the fastest growing modes is in the down-front direction (Eady 1949; Vallis 2006), but here357

the cross-front flow changes the orientation of the growing modes with respect to the front. The358

maximum growth rate over all directions as a function of the wavenumber is therefore359

smax(K) =�D+E
2

K2 +

s
D�E

2

�2
K4 +B2K2. (60)

Maximizing over K, the most unstable mode has a growth rate360

max
K

[smax] =
B2

(
p
D+

p
E)2

, (61)

which reduces to maxK[smax] = B2/(4D) in the case D = E . Therefore the most unstable361

wavenumber, Kmax satisfies362

K2
max =

�2DE+
p

DE(D+E)2

DE(D�E)2 B2, (62)

which reduces to363

K2
max =

B2

4D2 , (63)
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in the case D = E .364

As noted above, the horizontal viscous/diffusion terms are necessary to produce a finite365

wavenumber maximum since K2
max ! • as E ! 0. Therefore, the system without horizontal366

viscosity and diffusion appears to produce an ‘ultraviolet catastrophe’. However, the maximum367

growth rate in this case does remain bounded since smax asymptotes to B2/D for large K2.368

The case of D = 0 and E 6= 0 corresponds to no stratification and an infinite Prandtl number. By369

symmetry in E and D this case is the same as the E = 0 case though with different eigenvectors.370

When both E and D are zero, corresponding to no stratification and no horizontal diffusion, we371

have372

smax(K) = BK, (64)

so the growth rate is unbounded and waves with infinite wavenumber will grow infinitely quickly.373

The case of a = 0 corresponds to the small wavenumber (long wave) limit of the classical Eady374

problem, where the growth rate is375

sEady =
Bl
µ

h⇣
coth

µ
2
� µ

2

⌘⇣µ
2
� tanh

µ
2

⌘i1/2
, (65)

for scaled wavenumber µ2 = Bu l2 (Vallis 2006). Since we consider Bu = O(Ro), the relevant376

limit is the small µ limit in which case sEady reduces to377

sEady ⇠
Blp
12

= BK, (66)

consistent with Eq. 64. Note that this result is independent of the background buoyancy gradient378

represented by Bu. This result is also consistent with the small K limit of ageostrophic baroclinic379

instability considered by Stone (1966).380

As noted earlier, the direction of the most unstable modes described by Eq. 59 corresponds to381

k0 = 0. In non-rotated coordinates this corresponds to k =�al, where k is the wavenumber in the382

cross-front direction and l is the wavenumber in the along-front direction. In contrast, the most383
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unstable modes in the inviscid Eady problem have k = 0 and hence correspond to the limit of384

a ! 0.385

Instead, the modes perpendicular to the most unstable modes have l = ak in non-rotated coordi-386

nates. For these modes, the coefficient multiplying B2 inside the square root in Eq. 59 is negative.387

If E = D, s± is purely imaginary for these modes, corresponding to traveling waves with a con-388

stant amplitude. Note, however, that the neglected higher order terms could add a real part to389

this growth rate and hence cause these perturbations to grow, while adding horizontal friction and390

diffusion will cause them to slowly decay with faster decay at higher wavenumbers.391

Figure 1 shows the real and imaginary parts of s± in the case of no horizontal friction and392

diffusion or background stratification (D = E = 0). Only the s+ branch produces growing modes393

with the fastest growth occurring for large K along the line k =�al. Figure 2 shows the real and394

imaginary parts of s± with E = D = 2.5⇥ 10�3, corresponding to large horizontal friction and395

diffusivity or small Rossby number. A maximum in the growth rate can be seen on the plot of396

Re[s+] for Kmax = 92.4 along the line k =�al.397

We anticipate that the ‘ultraviolet catastrophe’ in the system without horizontal mixing will be398

cured by finite Rossby number effects. Equations 45 and 46 contain terms that are O(Ro) which399

were neglected in equations 47 and 48. These terms involve an extra power of the horizontal400

wavenumber magnitude, K, compared to the leading order terms. Therefore, the neglect of these401

terms is asymptotically valid when K ⌧ O(1/Ro). For sufficiently large K the neglected O(Ro)402

terms will become important and modify the growth rate, possibly resulting in a maximum growth403

rate at a lower wavenumber than predicted in Eq. 62 when the Rossby number is not infinitesimally404

small. This will be discussed further in §7.405
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6. Numerical Simulations406

To test the theory described above, we have conducted a series of fully nonlinear numerical sim-407

ulations using the code DIABLO. The code solves the incompressible non-hydrostatic Boussinesq408

equations. Time stepping is performed with a combination of explicit third-order Runge-Kutta and409

implicit Crank Nicolson schemes while finite differences are used for derivatives in the vertical di-410

rection and discrete Fourier transforms, using the pseudo-spectral method for non-linear terms, are411

used for derivatives in the horizontal direction (Taylor 2008).412

The simulations solve the non-dimensional equations where x, y, and z are normalized by the413

size of the computational domain such that the non-dimensional domain size is Lx = Ly = Lz = 1.414

The boundary conditions in the vertical direction are no stress, no buoyancy flux and no vertical415

velocity on the top and bottom surfaces. Periodic boundary conditions are applied to the velocity416

in both horizontal directions (see below for buoyancy).417

For numerical stability, viscous terms of the form418

D(u,v) = E
✓

∂ 2

∂ z2 + e2—2
H

◆
(u,v), (67)

419

Dw = e2E
✓

∂ 2

∂ z2 + e2—2
H

◆
w, (68)

and420

Db =
E

PrE

✓
∂ 2

∂ z2 + e2—2
H

◆
b, (69)

are added to the horizontal momentum, vertical momentum and buoyancy equations respectively.421

The simulations use a small Ekman number, E, and a small aspect ratio, e , such that the dominant422

vertical mixing process is the relaxation to the depth-average. The simulations are initialized with423

the solution given in Appendix B with vertical diffusion and relaxation. For the small Ekman424

numbers considered here this solution exhibits thin boundary layers where vertical diffusion is425

important. Outside of these boundary layers, the velocity and buoyancy fields correspond to the426
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solution given in §3. The initial velocity field is set to the leading order solution while the initial427

buoyancy field is prescribed to be a linear horizontal background gradient plus the resulting O(Ro)428

correction.429

Periodic boundary conditions are inconsistent with the initial conditions for buoyancy which430

have a constant horizontal buoyancy gradient. To overcome this, we decompose the total buoyancy431

into a background term with a constant buoyancy gradient and departures from this gradient, i.e.432

b = Bx+bp, (70)

where B is constant. This form is inserted into the buoyancy equation, and periodic boundary433

conditions are applied to bp. This has the effect of fixing the change in buoyancy across the434

domain in the x direction. A similar approach has been used in a number of previous studies (e.g.435

Taylor and Ferrari (2011); Taylor (2016)).436

Small amplitude normal mode perturbations are then added the buoyancy and streamfunction of437

the form438

b00 =R
"

Â
(k,l)

Akl exp[i(kx+ ly+fkl)]

#
, (71)

and439

y 0
0 =R

"

Â
(k,l)

Ckl exp[i(kx+ ly+fkl)]

#
, (72)

where fkl is a random phase, R[ f ] denotes the real part of f and (k, l)= 2p(nk,nl) for nk,l = 1,2, . . .440

and n2
k +n2

l < N2
max describing a disc in phase space of radius 2pNmax.441

Note that the leading order depth-dependent velocity depends on b0 and hence the velocity442

perturbation can be found from b00, while perturbations to the depth-independent velocity are in-443

troduced through y 0
0. Similarly, the leading order depth-dependent buoyancy, b1, depends on b0444

and therefore perturbations to b1 are introduced through b00. In the simulations, we set the ampli-445

tudes |Akl|= |Ckl|= 10�12 which ensure an interval of linear perturbation growth, while the phase446

26



difference between Akl and Ckl is randomized. We use a background buoyancy gradient of B = 2447

such that b =±1 at x =±0.5.448

There are several non-dimensional parameters in the system described here. For simplicity, the449

numerical simulations are conducted for fixed Burger number, Prandtl number, aspect ratio, and450

Ekman numbers, with Bu = 0, Pra = PrE = 1, e = 0.05 and E = 10�4. The Rossby number,451

Ro, and relaxation ratio, a , are varied over the set of values Ro 2 {10�4,10�3,10�2,10�1} and452

a 2 {0,0.2,0.4,0.6,0.8,1}. Each simulation is run until growing modes develop and transition to453

a nonlinear state.454

a. Description455

First, we compare the linear instabilities captured by the numerical simulations with the pre-456

dictions from the theory outlined above. We find that for sufficiently small Rossby numbers, the457

predicted angles of the instability and growth rates closely match the analytical predictions. This458

is perhaps not surprising since the theory is developed in the limit of asymptotically small Rossby459

number. However, by comparing the simulations and theory, we can quantify how large the Rossby460

number can be before the analytical theory breaks down.461

Figure 3 illustrates the development and nonlinear breakdown of the unstable modes from a462

simulation with Ro = 10�3 and a = 0.4. Here, the depth-averaged buoyancy field is plotted,463

where the background buoyancy gradient, B, has been removed. For reference, the unperturbed464

basic state is b = Bx, which would have vertical buoyancy contours in this figure. At a relatively465

early time (t = 0.314, upper right panel), growing perturbations develop with a distinctive angle466

with respect to the buoyancy gradient. Note that the fastest growing modes occur on a larger scale467

compared to the initial perturbations, suggesting a scale-selective process. By t = 0.384 (lower468

left panel) the flow transitions to a nonlinear regime and the growing perturbations roll up into469
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coherent vortices. These vortices then merge resulting in an energy cascade to larger scales (see470

lower right panel).471

Figure 4 shows two simulations with different values of a during the period when the perturba-472

tions are linear and the growth is exponential. The theoretical prediction for the direction of the473

fastest growing modes, k = �al, is plotted as a black dashed line. As predicted, the wave crests474

of the most unstable modes are nearly perpendicular to the predicted wavenumber vector.475

Figure 5 shows the buoyancy perturbation from four simulations with different values of the476

Rossby number. In all cases, a = 0.4, and hence the predicted angle of the most unstable modes477

is the same. The wavelength of the most unstable modes changes with Ro, but interestingly the478

dependence is not monotonic. For the range of Ro tested, the shortest waves are observed for479

Ro = 10�3. For Ro = 10�4 � 10�2 the direction of the wavevector is independent of Ro and480

closely matches the theoretical prediction.481

In the case with the largest Rossby number, Ro = 0.1, the fastest growing mode does not fit482

in the domain, and instead a quantized mode with (k, l) = (0,2p) appears. There also appear to483

be growing perturbations at an angle nearly perpendicular to the analytical prediction of k =�al.484

These modes might be an indication of symmetric instability modified by vertical mixing, although485

this is not captured by our theory and we do not focus on it here.486

b. Energetics487

To describe the dynamics of the unstable modes, it is useful to diagnose the perturbation energy488

budgets. To start, we define the horizontal domain average to be489

h f i=
Z 0.5

�0.5

Z 0.5

�0.5
f dxdy, (73)
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and let f̃ = f �h f i denote the departure from the horizontal average. The nondimensional energy490

equation can be derived from the governing equations and written in conservative form as491

Ro
∂K
∂ t

+— · [(RoK+ p)u]�bw =�a
�
uu0+ vv0

�
, (74)

for kinetic energy density492

K =
1
2
�
u2 + v2 + e2w2� , (75)

assuming that the diffusive terms are small. We now consider the perturbation kinetic energy,493

e =
1
2
⌦
ũ2 + ṽ2 + e2w̃2↵ , (76)

and using Eq. 74 and the horizontally averaged governing equations, the perturbation energy bud-494

get can be written495

Ro

2

664
∂e
∂ t

+ hwi∂e
∂ z

+ hũw̃i∂ hui
∂ z

+ hṽw̃i∂ hvi
∂ z| {z }

S

+
1
2

∂
∂ z
⌦
[ũ2 + ṽ2 + e2w̃2]w̃

↵

| {z }
T

3

775=

� ∂
∂ z

hp̃w̃i
| {z }

P

+hb̃w̃i|{z}
B

�a
⌦
ũ0ũ+ ṽ0ṽ

↵
| {z }

R

.

(77)

The terms in Eq. 77 can be interpreted as S: production of perturbation kinetic energy by the mean496

shear, T : turbulent transport, P: pressure transport, B: buoyancy flux, and R: dissipation by the497

parameterized vertical mixing. From mass conservation ∂ hwi/∂ z = 0 and hence hwi= const. and498

using the vertical boundary conditions we have that hwi = 0. We can now vertically average Eq.499

77 to remove the transport terms. The resulting equation for the domain averaged perturbation500

kinetic energy is501

Ro
∂e
∂ t

= S+F +R. (78)

The depth-averaged dissipation associated with the vertical relaxation term is given by502

R=�a
h
hũ02i+ hṽ02i

i
=�a

h
hũ2i+ hṽ2i�

D
ũ2
E
�
D

ṽ2
Ei

, (79)
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which is negative by the Cauchy-Schwarz inequality. We now calculate the four terms in Eq. 78503

using our numerical data and consider the energy balance in order to determine the energy source504

and mechanism for the instability.505

Figure 6 shows the four terms in Eq. 78 for four different values of (Ro,a). Clear regions of506

exponential growth (with constant slope on the semi-log plot) develop in each case. When a = 0,507

corresponding to the classical Eady model, we can see that the dominant energy balance is between508

the time rate of change in kinetic energy and the buoyancy flux, representing the transformation509

of perturbation potential energy into perturbation kinetic energy and indicative of baroclinic in-510

stability. For nonzero a , the dominant balance is between the buoyancy flux and the dissipation511

associated with the vertical relaxation term, with the residual corresponding to the time rate of512

change of kinetic energy. Therefore, in the presence of vertical mixing, the instability is driven513

by a transfer of potential energy from the buoyancy field consistent with baroclinic instability,514

although most of the energy extracted from the potential energy reservoir is dissipated through515

the vertical mixing (relaxation) term. We note that the balance between F and R is closer for516

smaller Ro which is consistent with the asymptotic theory. Once the instability reaches the non-517

linear phase, the neglected viscous dissipation term becomes significant due to the appearance of518

small scale vortices.519

c. Growth Rate520

In this section, we diagnose the growth rate of the unstable perturbations from the numerical521

simulations and compare these with the prediction from the analytical theory. We define the growth522

rate of perturbations captured in the numerical simulations by523

sN =
1
2e

de
dt

. (80)
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This can then be compared with the theoretical growth rate, s , given by the eigenmode decompo-524

sition in Eq. 50. We now define savg(t1, t2) to be the average of sN in the time interval [t1, t2] and525

srms(t1, t2) to be the RMS deviation from this average. Specifically,526

savg(t1, t2) =
1

t2 � t1

Z t2

t1
sN(t)dt, (81)

and527

srms(t1, t1) =


1
t2 � t1

Z t2

t1
[sN(t)�savg(t1, t2)]2 dt

�1/2
. (82)

We define the interval of exponential growth to be the largest time interval in which the ratio of528

srms to savg is below a specified tolerance, i.e. srms/savg < d . The value of the growth rate is then529

taken to be savg within the region of exponential growth. We use a tolerance of d = 0.01 and do530

not define a growth rate if the region of exponential growth is small or sN is strongly oscillatory.531

We also use 2D discrete Fourier transforms to determine the wavevector of the fastest growing532

modes in each simulation.533

As an illustration of this procedure, Figure 7 shows sN diagnosed from four simulations with534

different values of Ro and a . For large Ro, large oscillations in sN prevent us from accurately535

diagnosing the growth rate for a > 0.6. Figure 8 shows the growth rate and wavenumber of the536

fastest growing modes diagnosed in this way for each simulation. We exclude results for large Ro537

and a where we are unable to accurately diagnose the growth rate. For Ro = 0.1 the dominant538

mode is (k, l) = (0,2p) which is likely not the fastest growing mode due to the restrictions of the539

domain size. For small Rossby number, the wavenumber of the fastest growing mode depends540

on a while for Ro � 10�3 it is independent of a . This is an indication that there are different541

processes controlling the most unstable modes for small and large Ro.542

Figure 9 shows the 2D Fourier transform of the depth-averaged buoyancy perturbation for sev-543

eral values of Ro and a . When viscous effects are included the wavenumber associated with the544
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most unstable mode is given by 63 and can be written as545

Kmax =
RoBp

48(1+a2)e2E
, (83)

by taking PrE = 1 and Bu = 0. The dependence of Kmax on a matches the simulations for546

Ro = 10�4 (see Figure 8). The circles on Figure 9 have radius given by Eq. 83 and we can see547

that the numerical results match the predictions of fastest growing wavenumber for Ro = 10�4.548

However, for larger Ro the fastest growing wavenumber is significantly smaller than the theoret-549

ical prediction. It appears that there is a second, a independent effect which controls the fastest550

growing modes and is not captured by the theory. This will be examined further in §7. Note from551

Eq. 83 that Kmax depends on the aspect ratio, e , when viscous effects set the scale of the most552

unstable mode. However, as seen in Figure 8, the scale of the most unstable mode for Ro > 10�3
553

appears to be independent of viscosity (and independent of the aspect ratio).554

Along the direction k = �al, the growth rate is given by Eq. 60. For Bu = 0 and PrE = 1, the555

growth rate of the most unstable mode given in Eq. 60 can be written556

smax =
BKp

12(1+a2)
� e2EK2

Ro
. (84)

Figure 10 shows a comparison between the growth rates predicted by Eq. 84 (left panel) and557

the growth rates diagnosed from the numerical simulations (right panel) where the wavenumber558

corresponding to the most unstable mode as diagnosed in the numerical simulations is used to set K559

in Eq. 84. There is very good agreement between the growth rates from the theory and simulations560

across a wide range of Rossby numbers and relaxation ratios. Interestingly, the growth rates match561

reasonably well even in cases where the most unstable wavenumber in the theory (Eq. 83) doesn’t562

match the most unstable wavenumber diagnosed in the simulations (e.g. the cases in the bottom563

panels of Figure 9).564
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7. QG analysis of a stratified basic state565

The numerical simulations described above indicate that the wavenumber of the most unstable566

mode is set by a process other than viscosity for the larger values of Ro. In this section we567

use the quasi-geostrophic (QG) equations to examine the stability of a depth-dependent basic568

state associated with vertical mixing of momentum and buoyancy. Specifically the velocity and569

buoyancy of the basic state will be given by Eqns. 16 and 19. Importantly, here the stratification of570

the basic state is non-zero and is the result of a balance between cross-front advection and vertical571

mixing. Since the stratification in Eq. 19 appears at O(Ro), it did not appear in the basic state572

analyzed in §5. Here, we also assume that departures from the basic state are not directly affected573

by vertical or horizontal mixing. This allows us to isolate the influence of vertical mixing on the574

background flow from its influence on the growing perturbations.575

The total velocity and buoyancy fields can be written as576

(u,v,w,b) =
�
U + û,V + v̂, ŵ,Bx+N2z+ b̂

�
, (85)

where capital letters denote the basic state and ·̂ denotes a perturbation to the basic state. The577

nondimensional QG equation can be written578


∂ 2

∂x2 +
∂ 2

∂y2 +
1

Ro
∂
∂ z

✓
1

N2
∂
∂ z

◆�
ŷ = 0, (86)

where the streamfunction satisfies û=�∂ŷ/∂y and v̂= ∂ŷ/∂x. Applying the boundary condition579

w = 0 at z =±1/2 to the buoyancy equation gives580


∂ 2

∂ t∂ z
+U

∂ 2

∂x∂ z
+V

∂ 2

∂y∂ z
�B

∂
∂y

�
ŷ = 0, (87)

where the nondimensional buoyancy perturbation is b̂ = ∂ŷ/∂ z using the QG approximation.581

From Eqns. 16 and 19 we now write582

(U,V,N2) =
�
�agBz, gBz, RoPragB2� , (88)
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and note that N2 describes the stratification that results from the balance between cross-front ad-583

vection and vertical mixing. Eq. 86 has solutions of the form584

ŷ = [Asinhkz+C coshkz]eikx+ily+st , (89)

for k =
p

RoN2(k2 + l2) and following Vallis (2006) we Eq. 87 to determine a linear system for585

(A,C). The requirement that the determinant of this system vanishes determines the growth rate,586

which can be written587

s2 =
B2

k2

h
g(l �ak)

k
2
� l tanh

k
2

ih
l coth

k
2
� g(l �ak)

k
2

i
. (90)

We note that this result reduces to the classical Eady result (Eady 1949) for a = 0. Working in our588

rotated coordinate system (k0, l0), we can show that s is maximal for k =�al where589

s2 =
gB2

RoN2

hk
2
� tanh

k
2

ih
coth

k
2
� k

2

i
. (91)

Therefore, following Eady (1949) and Vallis (2006), we have maximum growth rate590

smax =
0.31Bp

Ro(1+a2)N
, (92)

for most unstable wavenumber591

Kmax =
1.6p
RoN

. (93)

Using N2 from Eq. 88 this result becomes592

smax =
0.31

Ro
p

Pra
, (94)

and593

Kmax =
1.6

p
1+a2

Ro
p

Pra B
. (95)

Therefore the most unstable mode is set by the interaction of edge waves, moderated by the strat-594

ification that develops in response to vertical mixing of momentum. Since this stratification is an595
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O(Ro) term in the buoyancy equation, it does not appear in the leading order evolution equations596

for b0 or y0 (equations 47 and 48), and hence its influence on the unstable modes is not captured597

by our asymptotic model.598

The QG predictions for smax and Kmax are shown in Figure 11 as functions of a and Ro. Com-599

paring these results with Figure 8 we find that they provide reasonably accurate predictions for the600

growth rate and wavenumber for Ro > 10�3 where the scale is not set by horizontal diffusion and601

the wavenumber of the most unstable mode decreases with increasing Ro. However, the growth602

rate from the QG analysis (Eq. 94) is less accurate than the prediction from the asymptotic theory603

(Eq. 84) when compared with the numerical simulations. For example, the growth rate in Eq. 94604

is independent of a , while the prediction in 84 and the growth rate diagnosed from the simula-605

tions decrease with increasing a . This suggests that vertical mixing acts to damp the perturbations606

and reduces their growth rate. Nevertheless, the estimate from Eq. 94 still provides a reasonable607

approximation to the growth rate.608

We expect the mixing-induced stratification to limit the size of the most unstable modes when it609

would give a smaller value of Kmax than horizontal diffusion. Using Eq. 83, this occurs when610

RoBp
48(1+a2)e2E

>
1.6

p
1+a2

Ro
p

Pra B
. (96)

Therefore the mixing-induced stratification will be important when611

Ro >
3.3(1+a2)3/4 e E1/2

Pr1/4
a B

. (97)

For the parameters used in our numerical simulations (specifically e = 0.05 and E = 10�4), this612

condition is satisfied for Ro& 10�3, consistent with our observations that the fastest growing mode613

is not set by horizontal diffusion for this parameter range. We note that using a turbulent Ekman614

number scaling of E ⇠ u⇤/ f H for turbulent velocity u⇤ and mixed layer depth H can give values615

of E on the order of 10�2 �1. Therefore in a highly turbulent mixed layer, a diffusive cutoff may616
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be possible for Rossby numbers up to about Ro ⇠ 0.1. Mathematically, this can help us explain617

the apparent inaccuracy of our original prediction for the fastest growing mode. Since a very small618

value of e2E was used in our simulations, the horizontal mixing terms were smaller than any terms619

describing the O(Ro) stratification, N2, even for small values of Ro. Our theory assumes that these620

horizontal mixing terms are dominant and hence we have discrepancies for much smaller values of621

Ro than might be anticipated. If we were to instead use a much larger value of E for our numerical622

simulations, representative of a turbulent Ekman number, we would find agreement over a much623

wider range of Ro as described by Eq. 97. It is also worth re-emphasizing that the lengthscale624

used to define Ro is the horizontal domain size in the simulations. Since the most unstable mode625

is typically much smaller than the domain size (see Fig. 3), the scale-dependent Rossby number626

associated with the size of the most unstable mode will be much larger than Ro.627

The angle of the most unstable mode from the QG analysis agrees with the theory in §5 and628

the simulations. Therefore, we can conclude that the orientation of the most unstable modes are629

primarily set by the background flow and is not strongly influenced by the effects of vertical mixing630

acting directly on the perturbations.631

For small K the growth rate from the QG analysis (Eq. 90) becomes632

s ⇠ BKp
12(1+a2)Bu

, (98)

for Bu = RoN2. This does not have the same a dependence as Eq. 64, although we note that both633

expressions reduce to the classical Eady case for a = 0. This discrepancy is likely because the QG634

approach does not consider the action of vertical mixing on the perturbations.635

The analysis of the instability using the QG equations also provides insight into the relative ac-636

curacy of growth rate from the analytical theory. In the absence of horizontal mixing, the analytical637

theory predicted that the growth rate is a linearly proportional to the horizontal wavenumber (see638
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Eq. 64). As shown in Eq. 98, the growth rate in the QG analysis also increases linearly with K for639

small values of K, while stratification decouples the Eady edge waves and suppresses the growth640

rate for large K. However, the maximum growth rate in the QG analysis is relatively close to the641

value that would be obtained by using the wavenumber of the fastest growing mode in Eq. 98,642

which has the same form as the theory in §5. We expect that the true growth rate for the problem643

admits both a viscous cutoff and a decoupled edge wave cutoff and reduces to the analytical result644

for small K. If the maximum growth rate in the case of decoupled edge waves is close to the linear,645

small K region (as is the case in the QG model) then the analytical theory would well describe the646

growth rate even though it does not capture the cutoff mechanism. This may explain why our647

growth rate predictions in Figure 10 closely match the numerical simulations.648

Note that the Richardson number of this system can be shown to be Ri = Pra hence it would be649

more accurate to use the ageostrophic analysis of Stone (1966). This analysis can be performed650

using the background state in Eq. 88, although it is much more complicated than the QG analysis.651

Including non-QG effects reduces the growth rate of the most unstable mode (smax) by a factor of652

p
1+Ri and it somewhat reduces the wavenumber of the most unstable mode (Kmax). Importantly,653

the dependence of smax and Kmax on Ro and a are unchanged by the inclusion of non-QG effects,654

and hence we use the QG equations here for simplicity.655

Recall from figure 3 that modes with l = ak appeared in the simulation with Ro = 0.1 which656

were perpendicular to the anticipated most unstable mode. Setting l = ak in the QG analysis gives657

s2 =�B2l2

k2 . (99)

These modes are stable and correspond to travelling waves. Therefore, the perpendicular modes658

observed in Figure 5 do not appear to arise through QG dynamics, and are likely associated with659

finite Ro effects which we have not considered here.660
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Finally, we note that a similar QG analysis could be carried out for the TTW system with vertical661

mixing parameterized using a Laplacian viscosity and diffusivity, as described in Appendix C.662

However, in this case Eq. 86 would have to be solved numerically since N2 depends on z.663

8. Conclusions and Discussion664

Here, we examined baroclinic instability in the presence of vertical mixing, where mixing is665

parameterized using a simple relaxation towards the local depth average. A theory was developed666

which is valid in the limit of small Rossby number, but arbitrary mixing rates. In the limit of no667

mixing we recover the long wave limit of baroclinic instability in the Eady model. Vertical mixing668

reduces the growth rate and tilts the unstable modes such that they are aligned with the horizontal669

velocity, with the angle determined by the relaxation timescale.670

In the absence of horizontal mixing and a turbulent Prandtl number of 1, the growth rate associ-671

ated with the fastest growing modes (from Eq. 61 with B = 1) is672

s =
Ro

a (1+a2)Bu
, (100)

where s is nondimensionalised by 1/T = HM2/( f L), H is the mixed layer depth, L is a char-673

acteristic horizontal length scale, M2 is the horizontal buoyancy gradient, and f is the Coriolis674

parameter. The nondimensional parameters in Eq. 100 are the Rossby number, Ro = M2H/( f 2L),675

the Burger number, Bu = N2H2/( f 2L2), where N is the buoyancy frequency associated with a sta-676

ble background stratification, and the mixing ratio, a = µ/ f , where µ is the vertical mixing rate.677

Note that the horizontal length scale, L, characterizes the width of the front and not necessarily678

the size of the unstable modes. Indeed, Figure 8 shows that the non-dimensional wavenumber of679

the most unstable modes is K >> 1 and therefore the scale-dependent Rossby number associated680

with the growing perturbations will be significantly larger than Ro.681
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The theoretical growth rate in Eq. 100 decreases with decreasing Ro (e.g. for weak horizon-682

tal buoyancy gradients) and decreases with increasing vertical mixing rate. In the absence of a683

background stratification (Bu = 0) the growth rate is unbounded. However, when a horizontal684

Laplacian viscosity and diffusivity is included to parameterize horizontal mixing, the growth rate685

is bounded and equal to686

s =
Ro

12(1+a2)2
hp

e2E+
q

e2E+ a Bu
12(1+a2)

i2 , (101)

where E = n/( f H2) is the Ekman number, n is the horizontal viscosity (equal to the diffusivity687

since the Prandtl number is assumed to be 1) and H is the mixed layer depth.688

The theory developed here is valid for asymptotically small Rossby numbers (although the ver-689

tical mixing rate can be large). To test the range of validity of the theory, we conducted a series690

of numerical simulations. The growth rate and wavenumbers predicted by the theory match those691

diagnosed from the simulations very closely for small Rossby numbers. The predicted growth692

rate matches the simulations for Rossby numbers up to O(0.1). However for Ro > O(10�3), the693

most unstable modes in the simulations are significantly larger than those predicted from the the-694

ory. This implies that in this range of Ro, the neglected higher order terms become important and695

provide a scale selecting mechanism.696

To investigate this further, we used the quasi-geostrophic (QG) equations to analyze the stability697

of a depth-dependent basic state. Here the density of the basic state was set through a balance698

between cross-front advection and vertical mixing. Since the stratification that results from this699

balance appears at O(Ro) it was not included in the theory described earlier. We also neglected700

the direct influence of vertical mixing on the perturbations when applying the QG equations. Re-701

sults from the QG analysis show that the horizontal orientation of the fastest growing modes is702

largely inherited from the orientation of the background flow. The QG analysis also shows that the703
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stratification that develops from the cross-front flow can decouple the Eady edge waves, thereby704

providing a high wavenumber cutoff. Although this effect was not included in the theory presented705

in §5, the growth rate predicted from our theory agrees well with the growth rate diagnosed from706

the numerical simulations, even in parts of parameter space where the most unstable wavenumber707

is not set by a viscous cutoff.708

Motivated by this, we can combine the predicted growth rate from our theory with the high709

wavenumber cutoff from the QG analysis. To put the results in the context of typical ocean con-710

ditions, it is useful to normalize the growth rate by f and write it as a function of |—b|/ f 2, which711

has the effect of eliminating the dependence of the growth rate on the aspect ratio. In the case712

with Bu = 0, PrE = 1, and a non-dimensional horizontal buoyancy gradient B = 1, the growth rate713

given in Eq. 84 can be written714

s
f
=

KRop
12(1+a2)

� f 4

|—b|2 EK2Ro2. (102)

When the size of the most unstable mode is limited by horizontal mixing,715

KRo =
|—b|2p

48 f 4(1+a2)E
, (103)

and when it is limited by the influence of mixing-induced stratification on the interaction between716

Eady edge waves,717

KRo = 1.6
p

1+a2. (104)

When vertical and horizontal mixing are described using the same characteristic turbulent velocity718

u⇤ and length scale, l, we have a ⇠ E ⇠ u⇤/( f l) (see Eq. 7).719

Figure 12 shows the growth rate prediction from Eq. 102 with E = a , and KRo set by the720

minimum of Eqns. 103 and 104. The dashed line separates regions where the most unstable mode721

is controlled by horizontal mixing through Eq. 103 (the region below the line) and mixing-induced722

stratification through Eq. 104 (the region above the line). The symbols show typical parameters723
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corresponding to winter and summer conditions based on the observations reported in Thompson724

et al. (2016). In the winter when submesoscale activity was clearly observed, the size of the most725

unstable mode is limited by mixing-induced stratification and the growth rate from Eq. 102 is close726

to the inviscid prediction from Stone (1966). However, for parameters more typical of conditions727

during summer, Figure 12 suggests that mixing associated with small-scale turbulence can limit728

the size and dramatically reduce the growth rate of the unstable modes. This result might help729

explain the apparent absence of submesoscale activity in the summer months.730

For the inviscid Eady problem (here with a = 0), the dominant source of energy for the growing731

baroclinic modes is the buoyancy flux. Here, we find that for relatively large mixing rates, the732

dominant energy balance is between the buoyancy flux and the dissipation associated with ver-733

tical mixing, with the small residual corresponding to the kinetic energy growth. Therefore the734

instability is driven by a transfer of potential energy to the growing perturbations, consistent with735

baroclinic instability, although now most of the energy is dissipated by vertical mixing, which acts736

to reduce the growth rate of the unstable modes.737

For larger values of a and Ro, the numerical simulations show evidence of small scale modes738

with l = ak that are perpendicular to the predicted direction. These might be associated with the739

skew flux term in the leading order buoyancy equation (Eq. 27) which cannot be neglected for large740

Ro and acts to destabilize modes with l = ak. The energy budget suggests that these modes have741

a different energy source involving both the buoyancy flux and the shear production. These modes742

have not been studied in detail here since our theory is not valid for this range of parameters.743

As noted above, the growth rate of the most unstable mode predicted from our theory matches the744

numerical simulations up to a Rossby number of about 0.1. This range includes many open ocean745

fronts. For example, based on a year-long timeseries from the OSMOSIS campaign, Thompson746

et al. (2016) found that the strongest fronts observed had |—b|⇠ 10�7s�2. For mixed layer depths747
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in the range 20�200m and a horizontal scale between 20km, this corresponds to a Rossby number748

ranging from 0.01� 0.1. Stronger and/or sharper fronts such as the Gulf Stream (Thomas et al.749

2013) are likely to be strongly influenced by the relatively large Rossby numbers characterizing750

these fronts, and our results might not be applicable.751

The turbulent thermal wind (TTW) model considered in Wenegrat and McPhaden (2016);752

McWilliams (2016); Crowe and Taylor (2018) used a large turbulent Ekman number instead of753

relaxation to represent mixed layer turbulence. As shown in Appendix C, the TTW model is also754

susceptible to the instability described here, and we expect that any turbulence parametrization in755

which the leading order velocity is linear in the buoyancy gradient will exhibit the same instability.756

We have approached the stability problem by seeking analytical solutions to the asymptotic757

equations which are valid for small Rossby numbers. Another approach would be to solve the758

linearized equations numerically, without making any assumptions about the size of the Rossby759

number. This could be viewed as an extension to Stone (1970) and Stamper and Taylor (2017) with760

the addition of vertical mixing. This would permit non-geostrophic processes such as symmetric761

instability which are not included in the limit of small Ro.762

Here, we have assumed that the relaxation ratio, a is constant which effectively prescribes the763

vertical mixing rate. This allows us to isolate and study the influence of vertical mixing on mixed764

layer instabilities, but the assumption of constant a does not allow the instabilities to modify the765

vertical mixing rate. Previous studies (e.g. Taylor and Ferrari 2011; Taylor 2016) have found that766

the stable stratification induced by baroclinic and symmetric instability significantly reduces the767

rate of vertical mixing. We speculate that a reduction in a would enhance the growth rate of the768

unstable modes, providing a positive feedback mechanism. This hypothesis could be tested in769

future work.770
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APPENDIX A775

Transient Solution776

In §3 we calculated the asymptotic solution for u0, b0 and b01 for the long time evolution. Here we777

include the transient evolution on the timescale t for an initial flow with arbitrary vertical structure778

(e.g. thermal wind flow). Again the leading order buoyancy is assumed to be depth independent but779

we allow the buoyancy deviation, b01, to have arbitrary initial vertical structure. This setup allows780

us to initialize the flow in thermal wind balance with a depth independent buoyancy, the transient781

evolution causes the front to slump over and the velocity to develop a cross-front component.782

a. Order 1 Equations783

The leading order buoyancy balance is784

∂b0

∂t
+

a
Pra

b00 = 0, (A1)

so we take solution with b0 to be depth independent and hence independent of t , therefore b0 =785

b0(x,y, t).786
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The leading order velocity balance is given by787

∂u0

∂t
� v0 =�∂ p0

∂x
�au00, (A2a)

∂v0

∂t
+u0 =�∂ p0

∂y
�av00, (A2b)

0 =�∂ p0

∂ z
+b0, (A2c)

∂u0

∂x
+

∂v0

∂y
+

∂w0

∂ z
= 0, (A2d)

hence the pressure can be written as788

p0 = zb0 + p0, (A3)

and the horizontal momentum equations and mass conservation equation can be depth averaged to789

give790

∂u0

∂t
� v0 =�∂ p0

∂x
, (A4a)

∂v0

∂t
+u0 =�∂ p0

∂y
, (A4b)

∂u0

∂x
+

∂v0

∂y
= 0. (A4c)

Subtracting the depth-averaged horizontal momentum equations from equations A2 gives evolu-791

tion equations for the horizontal velocity perturbations and vertical velocity792


∂

∂t
+a

�
u00 � v00 =�z

∂b0

∂x
, (A5a)


∂

∂t
+a

�
v00 +u00 =�z

∂b0

∂y
, (A5b)

∂u00
∂x

+
∂v00
∂y

+
∂w0

∂ z
= 0. (A5c)

Equations A5 can be solved to get793

u
0
H0 = A1(z,t)—Hb0 +A2(z,t)k⇥—Hb0, (A6)
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and794

w0 = A3(z,t)—2
Hb0. (A7)

where795

A1 =
�az

1+a2 +


A0

1(z)+
az

1+a2

�
e�at cost +


A0

2(z)�
z

1+a2

�
e�at sint, (A8a)

A2 =
z

1+a2 +


A0

2(z)�
z

1+a2

�
e�at cost �


A0

1(z)+
az

1+a2

�
e�at sint, (A8b)

A3 =
a(z2 � 1

4)

2(1+a2)
� e�at cost

Z z

�1/2
A0

1(z
0)+

az0

1+a2 dz0 � e�at sint
Z z

�1/2
A0

2(z
0)� z0

1+a2 dz0,

(A8c)

where (A0
1,A

0
2) describes the initial horizontal flow. Once the transients have decayed the balanced796

solutions are797

u
0
H0 = g [�a —Hb0 +k⇥—Hb0]z, (A9)

and798

w0 =
ag(4z2 �1)

8
—2

Hb0, (A10)

for g = 1/(1+a2). From the depth-averaged mass conservation equation we can write799

uH0 =�—⇥ (y0k), (A11)

for streamfunction y0 = p0. Hence800

uH0 =�—⇥ (y0k)+A1(z,t)—Hb0 +A2(z,t)k⇥—Hb0. (A12)

b. Order Ro Equations801

The O(Ro) buoyancy equation is802

∂b1

∂t
+

∂b0

∂ t
+uH0 ·—Hb0 +N 2w0 =� a

Pra
b01, (A13)
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and subtracting the depth average gives803


∂

∂t
+

a
Pra

�
b01 =�u

0
H0 ·—Hb0 �N 2w0

0. (A14)

When N 2 = 0 the general solution is given by804

b01 = A4(z,t)|—Hb0|2, (A15)

where805

A4 =
Praz

1+a2 +

2

64A0
4(z)�

Praz
1+a2 +

h
A0

1(z)+
az

1+a2

i
a
⇣

1� 1
Pra

⌘
+
h
A0

2(z)�
z

1+a2

i

1+a2
⇣

1� 1
Pra

⌘2

3

75e�
a

Pra t

+

2

64

h
A0

1(z)+
az

1+a2

i⇣
sint �a

⇣
1� 1

Pra

⌘
cost

⌘
�
h
A0

2(z)�
z

1+a2

i⇣
cost +a

⇣
1� 1

Pra

⌘
sint

⌘

1+a2
⇣

1� 1
Pra

⌘2

3

75e�at ,

(A16)

for initial vertical structure described by A0
4(z). The general steady state solution is given by806

b01 = Prag


z|—Hb0|2 �N 2 12z2 �1
24

—2
Hb0

�
, (A17)

and calculating b1 requires the O(Ro2) buoyancy equation.807

APPENDIX B808

Analytic Solution with Relaxation and Diffusion809

If we include vertical diffusion in the leading order velocity balance by taking E = O(1), we can810

obtain the solution811

u
0
H0 =�

p
E [B1—Hb0 +B2 k⇥—Hb0] , (B1)

where812

B1 = az/(1+a2)+ iC1 sinh[
p

a + iz ]� iC2 sinh[
p

a � iz ], (B2a)

B2 =�z/(1+a2)+C1 sinh[
p

a + iz ]+C2 sinh[
p

a � iz ], (B2b)
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and813

z = z/
p

E. (B3)

Using boundary conditions of no vertical shear on the top and bottom surfaces gives that814

2

664
i
p

a + icosh
q

a+i
4E

�
�i

p
a � icosh

q
a�i
4E

�

p
a + icosh

q
a+i
4E

� p
a � icosh

q
a�i
4E

�

3

775

2

64
C1

C2

3

75=
1

1+a2

2

64
�a

1

3
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which can be inverted to obtain solution815
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for816

za± =

r
a ± i
4E

=
p

a ± iz0, (B6)

and
p
⇤ denoting the principle value of the square root with branch cut taken along the line z 2817

�IR+
0 . The leading order vertical velocity can be obtained by integrating the mass conservation818

equation as before which gives solution819

w0 =E


a2 �1
(a2 +1)2+

a(z 2�z 2
0 )
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+

iC1p
a + i

cosh[
p

a + iz ]� iC2p
a � i

cosh[
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a � iz ]
�

—2
Hb0, (B7)

for z0 = 1/2
p

E.820

We can now use this leading order solution for the velocity to calculate the O(Ro) solution for821

the buoyancy perturbation, the governing equation is822

u
0
H0 ·—Hb0 =

E
Pr

∂ 2b01
∂ z2 � a

Pr
b01, (B8)

hence823


∂ 2

∂z 2 �a
�

b01 =�
p

EPrB1 |—Hb0|2, (B9)

which has solution824

b01 =�
p

EPrB2 |—Hb0|2. (B10)
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For small E this solution reduces to the solution given above in the region away from the bound-825

aries. We use this solution to initialize the numerical simulations so that the initial state matches826

the no stress boundary conditions and hence will not produce inertial waves while adjusting to a827

balanced state.828

APPENDIX C829

Instability in the viscous TTW model830

In this section, we analyze the stability of the the Turbulent Thermal Wind (TTW) model used831

in Crowe and Taylor (2018) where vertical mixing is parameterized by a Laplacian viscosity and832

diffusivity. We also include a background streamfunction, y0. The Steady state solution is833

uH =�—⇥ (y0k)�
p

E
�
K00

0 —Hb0 +K0k⇥—Hb0
�
+O(Ro), (C1)

834

w = EK0
0—2

Hb0 +O(Ro), (C2)

and835

b = b0 �RoPr
p

EK0|—Hb0|2 +O(Ro2), (C3)

where K0 and its derivatives are given in Crowe and Taylor (2018). Note that this model does not836

include a stratification so Bu= 0 and we are using an order 1 Ekman number to describe the effects837

of turbulence. Here we have used a constant vertical turbulent viscosity and diffusivity profile, this838

is just for convenience and the resulting equations will be similar for arbitrary vertical profiles.839

Using the depth-averaged buoyancy and vorticity equations, equations 23 and 40, and includ-840

ing horizontal diffusion we can write the governing equations for the background buoyancy and841

streamfunction as842

∂b0

∂ t
+ J(y0,b0) =

e2E
RoPr

—2
Hb0, (C4)
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and843

∂—2
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∂ t
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2K02
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K002

0 �K2
0

i
k⇥—Hb0

⌘
—2

Hb0

i
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(C5)

Note that the right hand side of Eq. C4 can be related to the diabatic PV flux (Thomas 2005;844

Wenegrat et al. 2018). These equations are of the same form as the governing equations for the845

relaxation model considered above hence we expect instabilities with the corresponding growth846

rate847

s± =� e2E
2Ro


1+

1
Pr

�
(k2 + l2)±

s
1
Pr

�1
�2 e4E2

4Ro2 (k
2 + l2)2 �EB2

h
2K02

0 kl +(K002
0 �K2

0 )l2
i
,

(C6)

for frontal gradient B and horizontal wavevector (k, l). In the case Pr = 1 this simplifies to848

s± =�e2E
Ro

(k2 + l2)±
r

�EB2
h
2K02

0 kl +(K002
0 �K2

0 )l2
i
. (C7)

The last term in square brackets in equations C6 and C7 is a symmetric quadratic form so can be849

diagonalized by an orthogonal transformation. Therefore the fastest growing modes for a given850

wavenumber will be tilted with angle dependent only on a function of the Ekman number. The851

fastest growing mode for a given wavenumber, K =
p

k2 + l2, is852

s± =� e2E
2Ro


1+

1
Pr

�
K2 +

s
1
Pr

�1
�2 e4E2

4Ro2 K4 +lEB2K2, (C8)

for eigenvalue853
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with angle854

q = arctan
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from the down-front direction.855

In the case Pr = 1 the maximum growth rate reduces to856

smax =
p

lEBK � e2EK2

Ro
, (C11)

which is the analogous result to Eq. 84 and has fastest growing mode857

Kmax =

p
l BRo

2e2
p

E
, (C12)

with corresponding growth rate858

s(Kmax) =
lB2Ro

4e2 . (C13)

Figure C1 shows the formation of baroclinic instability for a = 0, E = 0.1 and Ro = 0.01. We859

can see that the evolution and structure of the instability is similar to the case of the relaxation860

parametrisation with modes tilted by the angled TTW flow.861
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Parameter Symbol Definition

Rossby Number Ro eDb/ f 2L

Relaxation Ratio a µu/ f

Prandtl Number (a) Pra µu/µb

Aspect Ratio e H/L

Burger Number Bu N2H2/ f 2L2

TABLE 1: Definitions of the dimensionless parameters and their values for buoyancy difference,
Db, Coriolis parameter, f , background stratification, N2, horizontal lengthscale, L, vertical length-
scale, H, and momentum and buoyancy relaxation rates, µu and µb.
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Mahadevan et al. Thompson et al. Thompson et al. Thomas et al.

Parameter Symbol (N. Atl., spring) (N. Atl., summer) (N. Atl., winter) (Gulf Stream, winter)

Mixed layer depth H (m) 300 20 200 100

Coriolis parameter f (s�1) 1.3⇥10�4 1.1⇥10�4 1.1⇥10�4 9.0⇥10�5

Horiz. buoyancy grad. |—b|(s�2) 7⇥10�9 10�8 10�7 10�7

Horizontal scale L(km) 300 5 15 10

Turbulent velocity u⇤ (m s�1) 10�2 10�2 2⇥10�2 2⇥10�2

Aspect ratio e 10�3 4⇥10�3 10�2 10�2

Rossby number Ro = |—b|
f 2 e 10�3 4⇥10�3 0.1 0.5

Relaxation ratio a = u⇤
f H 0.3 5 1 1

TABLE 2: Estimates of physical scales and nondimensional parameters for three open ocean fronts
as estimated based on observations reported in Mahadevan et al. (2012); Thompson et al. (2016);
Thomas et al. (2013).
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FIG. 1: Real and imaginary parts of the growth rate s±, predicted from the theory for E =D = 0
and B2 = 0.213 corresponding to a = 0.5 and B = 2. The black lines are k = �al and the white
lines are l = ak. Note that the top and bottom rows have different color bars.
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FIG. 2: The real and imaginary parts of the growth rate, s±, predicted from the theory for E =
D= 2.5⇥10�3 and B2 = 0.213 corresponding to a = 0.5 and B = 2. The black lines are k =�al
and the white lines are l = ak. Note that the top and bottom rows have different color bars.
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FIG. 3: Depth-averaged buoyancy perturbation, b(x,y)�Bx from a nonlinear numerical simulation
with Ro = 10�3 and a = 0.4 at several times as indicated. The formation of the linear instability
and the transition to nonlinear instability can be seen.
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FIG. 4: Depth-averaged buoyancy perturbation, b(x,y)�Bx from numerical simulations with a =
0.4 and a = 1. In both cases Ro = 10�3 and the fields are shown at time t = 0.314. The black
lines show the predicted wavevector direction, k =�al, which should be perpendicular to lines of
constant phase.
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FIG. 5: Depth-averaged buoyancy perturbation, b(x,y)�Bx for a = 0.4 and several Rossby num-
bers during the phase of linear perturbation growth in several numerical simulations. For Ro = 0.1
growing modes appear which are perpendicular to those predicted by the analytical theory, indi-
cating a breakdown of the theory due to the relatively large Rossby number.
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FIG. 11: Wavenumber and growth rate of the most unstable mode from the QG analysis (Eqs. 94
and 95) as functions of Ro and a .
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FIG. 12: Predicted growth rate of the most unstable modes from Eq. 102 where the wavenumber
is set by the smaller of Eq. 103 and 104. The dashed line separates regions where the wavenumber
is set by Eq. 103 (below the line) from regions where the wavenumber is set by Eq. 104 (above
the line). The symbols indicate typical parameters from the OSMOSIS survey as reported in
Thompson et al. (2016) in the winter and summer (see Table 2 for values).
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Fig. C1: The formation of baroclinic instability for E = 0.1 and Ro = 0.01. We plot b0(x,y,z =
0)�Bx as a function of cross-front coordinate x and along-front coordinate y.
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