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ABSTRACT 

Different aspects of Elastohydrodynamic Lubrication (EHL) are studied. For smooth 
surfaces, a novel approach which solves separately the inlet and outlet regions by using 
the fracture mechanics equations, is proposed to solve EHL line contacts for shape and 
pressure. For rough surfaces, the full EHL geometry is reduced to an infinitely long contact 
with known mean film thickness and pressure; so real-roughness steady state analyses are 
carried out by considering the separate Fourier components of roughness and pressures, 
transient analysis by applying general finite difference methods. The subsurface stresses 
under micro-EHL are also calculated and given in form of a probability rather than a 
specific value and location. 

Initially, full-geometry EHL line contacts of smooth surfaces are studied. The spike 
of pressures is assumed to be singular and the idea is to start with an original Hertzian 
pressure distribution, then the edges of this pressure are truncated and the effects calcu­
lated via linear fracture mechanics; after this, the removed pressures are replaced by the 
converged inlet and outlet pressures, previously obtained by iterating the Reynolds and 
fracture mechanics equations. 

It is found that the outlet pressures follow a modified logarithmic function and therefore 
the exit bump in the shape joins the parallel film zone with a finite value of slope, unlike 
the Greenwood extension of Grubin's theory. From a set of solutions, the behaviour of 
the pressure spike as a function of two dimensionless numbers is followed. Comparisons 
with results from full numerical solutions are shown, giving good agreement. The scheme 
is later extended to consider compressibility and the Roelands viscosity law. 

After reducing full EHL geometry, the effects of real and wavy roughness in micro­
EHL of Newtonian and Eyring fluids with or without compressibility are studied. Steady 
state analyses of real roughness show that only the high frequency components remain 
after deformation. By linearizing the Reynolds-Eyring equation an analytical solution is 
obtained and a criterion for the deformation of the roughness in EHL is given; from this, 
it is shown that the deformation is very much dependent on the ratio >.jh, obtaining little 
deformation for low values of it. 

Transient analyses of roughness in lubrication are also carried out considering the 
infinitely long contact. It is found that the transient pressure and film distributions are 
made of two parts: a) the well known steady state solution, plus b) a complementary 
function depending only on the modulation of film and pressures from the inlet. It is 
shown that the conclusions outlined for some authors (e.g. Venner and Lubrecht) about 
pressures travelling with the velocity of the roughness but shape with the average velocity 
of the lubricant, are only a particular case of a more general understanding. It is now 
believed that there is no a real physical damping in the transient shape. 
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NOTATION 

deformed roughness amplitude; half width of a Hertzian fiat (in Ch. 3 and 4) 
2>.j7r E' 
pressure Fourier coefficients 
half width of a Hertzian contact 
12ryu/ h 

r Dh2 /12rt 
logarithmic constant 
logarithmic dimensionless constant 
('y- ,8)/[(1 + ,8 Po)(1 +I Po)] 
Cfa 
1/(haCoPm) 
dimensionless constant, C1 = h* j(2T0 aL) 
dimensionless constant, eT= BC/(1 + CApm) 
dimensionless constant, c3 = ah* E' I L 
spike location 
Eyring correction factor 
(Mh)R- Mfl 

2 [ t-vr + t-vi ]-t 
Et E2 

Young's modulus, bodies 1 and 2 
non-linear term in the Reynolds equation; density function (in Ch. 7) 
vector of known values in the transient equations 
film thickness 
amplitude of a sinusoidal film thickness 
mean film thickness 
nominal film thickness, central region 
h(Pmax)P(Pmax)/ P(Po) 
dimensionless film thickness H = hjh; H = !~h (in Ch.3 and 4) 
integrals 
Greenwood and Johnson factors for sinusoidal roughness 
dimensionless constants (in Ch. 3 and 4) 
length of the analysed contact length; length of the outlet region (in Ch. 3) 
lengths of the outlet and inlet regions 
stress intensity factor; even number of points taken along x (in Ch. 5) 
stress intensity factor 
M/2 (inCh. 5) 
frequency number in the Fourier analysis 
pressure 
amplitude of the sinusoidal pressures 
Fourier component of pressures 
mean pressure; maximum Hertzian pressure (inCh. 3 and 4) 
maximum Hertzian pressure of a contact width 2a 
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dimensionless pressure P = ap; P = ;;,p = p~p (in Ch.3 and 4) 

dimensionless max. pressure of the equivalent dry contact case Ph = ~ 
dimensionless pressure used in the maps, P = O:Ph (in Ch.4) 
Q = Polb, Q = Pola 
Greenwood equivalent load 
mass flow 
reduced pressure 
radius of roller; square root term in the Reynolds-Eyring eq. (in Ch. 5) 
numerical error amplification factor per iteration (in Ch. 5); r = ph (in Ch. 8) 
slide-roll ratio; s = (u2 - ut)lu 
standard deviation of dimensionless stresses (in Ch. 7) 
standard deviation of dimensionless pressures (in Ch. 7) 
dimensionless velocity used in the maps, S = o:E'[(TJofl)I(E' R)J114 (in Ch.4) 
time 
dimensionless constants; tp = (hl2ro)1/;;, tv = (TJul(hro) 
dimensionless time, T = tulb 
surface velocities, body 1 and body 2 
mean velocity of the lubricant, u = (Ut + u2)12 
elastic displacements 
final shape 
dimensionless elastic displacements, V = v lh; V = (2RI a2 )v (in Ch. 3 and 4) 
load per unit of width 
dimensionless load, W = w I ap; (integral of pressures P) 
abscissa 
dimensionless abscissa, X = xI>..; X = xI a (in Ch. 3 and 4) 
initial roughness amplitude; depth below the surface (in Ch. 7); 
Roelands constant (in Ch. 2, 3, 4) 
viscosity-pressure coefficient 
density equation constant, (3 = 1.683 x 10-9 m2 IN 
lubricant viscosity 
viscosity at atmospheric pressure 
deformed roughness shift of phase angle; internal angle of the film crease 
density equation constant, 1 = 2.266 x 10-9 m2 IN 
wavelength of the roughness 
Poisson ratio 
lubricant density 
density at atmospheric pressure 

PI Po 
density at mean pressure 
normal stress 
shear stress 
Eyring stress of the lubricant 
stability constant, 0 :::; 8 :::; 1 (in Ch. 8) 
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CHAPTER ONE 

INTRODUCTION 

Lubrication has been part of human knowledge even since the early days. It is known that 

in almost all the ancients cultures, e.g. Egyptians, Romans, Greeks and Mayans, some 

sort of primitive lubrication procedures were used to facilitate daily mechanical activities 

such as milling, transporting and even the manufacture of weapons. But it was not until 

1886 when the actual physical and mathematical understanding of the phenomenon began 

with the work of 0. Reynolds, and in this way the science of hydrodynamic lubrication 

was born. 

By the beginning of this century engineers observed some odd behaviour in heavily 

loaded lubricated contacts such as gears, where hydrodynamics predicted extremely small 

film thicknesses and still those contacts seemed to work properly. In 1949 with the work 

attributed to Grubin, the reason turned out to be that the elastic deformation of the 

contacting bodies was of much bigger order than the film thickness and therefore it had 

to be taken into account in the calculations. So Elastohydrodynamic Lubrication (EHL) 

theory was initiated. 

1.1 Elastohydrodynamic Lubrication 

Elastohydrodynamic lubrication is a branch of hydrodynamic lubrication which deals with 

the interaction between the elastic deformation of the contacting moving elements and 

the fluid film formation between them. The placement of EHL within the conventional 

lubrication regimes is shown in Fig. 1.1, which has been taken from Shieh and Hamrock 

[72] 1991. 
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Figure 1.1: Placement of EHL within the lubrication regimes 
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INTRODUCTION 

Typical applications of EHL are gears, cams, bearings, etc, it applies to all situations 

where the stiffness of one or both of the involved surfaces is small compared to the pressure 

in the lubricant. 

In the application of EHL theory, several aspects play a major role and they have to 

be considered: 

a).- The geometry of the contacting bodies. 

In lubrication theory contacts are classified m two branches: conformal and non­

conformal contacts. 

Figure 1.2: Example of conformal contact 

Figure 1.3: Example of non-conformal contact 

The first ones involve a large proportion of the area of the bodies in contact, e.g. one 

concave and one convex surface, like journal bearings (Fig. 1.2). The second ones (non­

conformal) involve in the contact a very small part of their area, e.g. one convex surface 

in contact with a flat or with a convex surface (Fig. 1.3), such are the cases of gear teeth 

and most cams and followers. It also includes most ball bearing designs, since the radius 

of the balls is in general very small in comparison to the radius of the path where they 

3 



INTRODUCTION 

run. 

The contacts more likely to suffer elastic distortion are the non-conformal contacts. 

Since their contact area is small, the overall geometry of the bodies in general can be 

ignored from the elastic point of view. 

z 

Figure 1.4: Line contact situation 

z 

IL:. 
Figure 1.5: Point contact situation 

Non-conformal contacts are also classified according to the load distribution in the 

contact area into point and line contacts. 

In the case of line contacts the bodies are assumed to be infinitely long in one of 

the principal directions, so that in the unloaded dry contact situation the surfaces touch 

along a straight line and the case can be modelled using only two dimensions x and z (see 

Fig. 1.4), good examples of line contacts are most gear teeth. 

Point contacts are a more general situation and involve the three geometrical directions 
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x, y and z. A good example of point contacts are ball bearings, see Fig. 1.5. 

In elasticity theory, point and line contacts can be considered as situations where 

applied pressures act on a half-space: the geometry of the bodies is not involved directly 

in the calculation of the elastic deformation. 

b).- Roughness of the surfaces. 

In many EHL situations typical lubricant film thicknesses are of the same order as 

the roughness or surface distortions of the contacting bodies, so that it can no longer be 

assumed that the surfaces are smooth. The situation is even worse if there is sliding as 

well as rolling in the movement since the roughness of one surface is changing its position 

at every instant of time with respect to the roughness of the other surface. Only since the 

SO's has a new division of EHL been taking form: micro-Elastohydrodynamic Lubrication 

(micro-EHL ), which analyses the effects and behaviour of the surface roughness (including 

elastic deformation) in the lubrication process. 

c).- Lubricant properties. 

In EHL, as important as the elastic deformation of the bodies is the behaviour of the 

lubricant in the process; its rheology, viscosity and compressibility are basic properties 

which play a major role in lubrication. 

Lubricant rheology provides the relationship between the internal shear stress of the 

lubricant, its velocity distribution across the film thickness and its viscosity. In general 

a lubricant is said to be Newtonian if this relationship is linear and non-Newtonian if 

non-linear. 

The lubricant viscosity is one of the most important properties and it is essential 

practice in EHL calculations to consider its variation with pressure and in some cases 

with temperature. 

The high pressures involved in most of EHL situations make it difficult to neglect 

lubricant compressibility in the analysis. 

1.2 Development of EHL and Related Problems 

In 1886 0. Reynolds [66] derived the basic differential equation which relates the pressure 

in the lubricant film with its geometry and the velocities of the moving surfaces , now 

known as the 'Reynolds Equation'. This work marked the beginning of the theoretical 

understanding of the lubrication mechanism. 

5 
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Martin [54] 1916 found the solution of the Reynolds equation for the case of a rigid 

cylinder and a fiat surface, considering an isoviscous and incompressible lubricant. Using 

this geometrical model, Martin applied his results to the lubrication problem in gears. 

But the results predicted by his calculations gave very small film thicknesses compared 

with the known surface roughness. 

For the years to come the contradictions between theory and practice remained unre­

solved and successful operation of gears was attributed to many other reasons but not to 

a continuous lubricant film between the teeth. 

Meldahl [55] 1941 was one of the first to examine the elastic distortion of the surfaces 

interacting with the Reynolds equation. But without the help of computers in those days, 

the labour required was so great that he only produced one solution, suggesting that 

elasticity could play a major role in gear lubrication. 

But it was not until 1949 when in Russia the first successful theoretical analysis of 

the interaction of the Reynolds equation and elasticity was to be produced by Grubin 

[31] (however, some people attribute the work to Ertel, see Cameron [9]). Grubin divided 

the heavily loaded contact geometry in two regions: the inlet with low pressures; and 

a parallel film thickness region with a Hertzian pressure distribution on it. With these 

considerations he was able to examine the generation of pressures and film thickness in the 

contact; he applied Hertz theory for dry contacts (Hertz [38]) to calculate the pressures 

in the parallel film zone and the shape in the inlet (which was then substituted in the 

Reynolds equation to calculate the pressures). The analysis allowed for the effect of 

pressure upon viscosity. Grubin's results predicted film thicknesses of several orders of 

magnitude larger than the surface roughness and the lubrication in gears could finally be 

explained. 

Grubin also speculated about the distribution of pressure in the outlet and concluded 

that the pressures should present two maxima: the known maximum in the middle of 

the parallel film section and a second maximum near the end of it. Grubin's speculations 

were later confirmed by Petrusevich [63] 1951 who obtained numerical solutions of the 

combined Reynolds and elasticity equations which for the first time showed the outlet 

spike of pressures. 

After this, many other important theoretical and experimental contributions came out. 

In the theoretical ground, of great importance are the works of Dowson and Higginson 
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INTRODUCTION 

[20]1959 in obtaining reliable numerical solutions, the results and data collection of Blok 

[7] 1959 and the analytical extension of the Grubin's work by Greenwood [28] 1972 to 

account for the outlet zone. Equally important in the experimental field are the ear­

lier measurements of the film thickness reported by Crook [19] 1963 and by Gohar and 

Cameron [27]1963, and the pressure measurements of Hamilton and Moore [34]1971. 

Other important aspects were considered in the theoretical solutions. In 1962 Dowson, 

Higginson and Whitaker [22] first included the effects of the lubricant compressibility. 

Sternlicht, Lewis and Flynn [73] 1961 accounted for the temperature in highly loaded 

contacts by introducing the energy equation. Bell [5]1961 contributed with an important 

analysis of the effects of non-Newtonian behaviour of rolling surfaces. 

After the 70's decade with the arrival of powerful computers, the effort was addressed 

mainly to the development of robust and sophisticated numerical techniques to deal with 

the convergence difficulties and to include in the simulation more aspects of the physical 

reality. 

In general, the numerical techniques to solve the EHL problem are classified in two 

main groups: direct and inverse methods. 

Direct methods involve the solution of the Reynolds equation for pressures with known 

film thickness (it is the most natural way to do it) therefore, an iterative scheme between 

this equation and the elasticity equations has to be produced to satisfy both equations with 

a solution. Among these iterative schemes, it is possible to find: Gauss-Seidel relaxation 

approaches, e.g. Hamrock and Dowson [36] 1976, Chittenden et al. [13] 1985, Hamrock 

and Jacobson [37]1984. Newton-Raphson approaches,e.g. Okamura [61]1982, Sadeghi 

and Sui [70]1989, etc. 

The main problems with the direct approaches are their convergence difficulties in the 

high pressure zone. However, very recently multigrid techniques are helping to overcome 

the difficulties and with great success, e.g. Lubrecht [51]1987 and Venner [75]1991. 

Inverse methods involve the solution of the Reynolds equation for film thickness with 

known pressures. One of these approaches was used by Dowson and Higginson [20]1959 

to overcome the convergence difficulties. However, although the techniques are highly 

convergent in the high pressure zone, they do not work equally well with low pressures. 

Therefore Dowson and Higginson only used an inverse method in the Hertzian zone of the 

EHL contact and they applied a direct method in the inlet. 
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INTRODUCTION 

Nowadays, another important source of research in EHL is the role of surface roughness 

in lubrication. First, relatively simple averaging techniques appeared e.g. Christensen 

[16] 1971 , T~nder [60]1984 followed by the flow-factor method introduced by Patir and 

Cheng [62]1978. In neither of them was the effect of roughness deformation considered. 

However, Cheng made also one of the earliest analyses of an asperity passing through 

an EHL contact (Lee and Cheng [4 7]) and proved that it certainly did not pass through 

unchanged. 

Goglia, Cusano and Conry [25] 1984 produced one of the first complete numerical 

solutions of the micro-EHL problem for single asperities and wavy surfaces, their results 

suggested that in general the asperities are flattened by the elastic deformation, later on 

the same conclusions were obtained by Kweh et al. [48]1989, Lubrecht et al. [52]1988 

and Venner at al. [77]1991. Venner and ten Nape! [78]1992 go beyond this and are able 

to give numerical solutions of not only wavy surfaces but also real roughness, showing 

as well the flattening of the roughness. Greenwood and Johnson [30] 1992 published an 

analytical solution of the micro-EHL problem for sinusoidal transverse roughness in line 

contacts with interesting conclusions for Newtonian fluids. 

The latest studies in micro-EHL are addressed to the understanding of the kinematic 

behaviour of the roughness in the lubrication process; specially when sliding is involved, 

e.g. Chang et al. [10] 1989, Chang and Webster [11] 1992, Venner and Lubrecht [76] 

1992 and Lubrecht and Venner [53]1992. This thesis includes also a contribution on this 

aspect. 

Another area of interest is the investigation of the conditions which govern the flatten­

ing of the roughness. Chang and Webster [11] 1992, Sadeghi [69] 1991 have shown odd 

examples of rnicro-EHL contacts where the initial roughness is barely changed even with 

very high pressures, which seem to be in contradiction with previous results where the 

original roughness was always flattened. The present thesis also studies this aspect and a 

simple criterion to describe the flattening of the roughness as a function of its wavelength 

is presented. 

1.3 Structure of the Thesis 

Chapter 2 outlines the basic lubrication and elasticity theory which establish the basis to 

study the phenomenon of Elastohydrodynamic Lubrication. It starts by explaining the 
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derivation of the basic equations: Reynolds, elasticity and lubricant properties. 

In Chapter 3 a novel method to solve the outlet and central zones of an EHL line 

contact of smooth surfaces is presented, the scheme is based on a fracture mechanics ap­

proach developed by Greenwood and Johnson [29]1989 to replace pressures in truncated 

dry Hertzian contacts. The method follows the pattern set by Grubin and makes use of the 

similarity between the central zone of a heavily loaded EHL contact and a dry contact. 

It first considers an original Hertzian flat and pressures which are then truncated and 

replaced by imposing outlet EHL pressures (previously found by solving iteratively the 

Reynolds and fracture mechanics equations); after this, the internal stresses are added to 

modify the original Hertzian pressures. Incompressible outlet solutions are obtained and 

compared with the Greenwood's extension of the Grubin theory. Hall's ideas about the 

logarithmic nature of the outlet EHL pressures are also discussed. Finally it is shown that 

these pressures actually behave as a modified logarithmic function, which changes the tra­

ditional idea of a purely square root shape and inverse square root pressures surrounding 

the spike. 

In Chapter 4 the previous approach is extended to the inlet and the two are put 

together to build a complete EHL approach. Several examples are solved and compared 

with literature results; in general good agreement is found for film thickness and shape. 

The spike location is also investigated, however, disagreement among different authors 

is still found. Later the approach is modified to include compressible fluids and the 

Roelands law for viscosity. In the compressible solutions the characteristic behaviour is 

observed (the spike is shifted towards the outlet and the central film thickness is reduced). 

The effect of changing to the Roelands viscosity law is very small in film thickness and 

pressures. In this chapter also some collected results for the central film thickness, spike 

location and spike height are shown. Some thoughts about the behaviour of the spike 

singularity within the dimensionless pressure and velocity map are presented. 

In Chapter 5 the study of the behaviour of steady state rough surfaces is introduced. An 

analysis of wavy and real roughness is made for which an interesting approach is developed; 

the method isolates a small length of the EHL contact and assumes it to be infinitely 

long, then the Fourier components of the surface roughness can be calculated, and the 

simple analysis made by Greenwood and Johnson [30]1992 for sinusoidal roughness can be 

applied for real roughness. Solutions for Newtonian and Eyring fluids, with and without 
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compressibility, with sinusoidal and real roughness are shown demonstrating that in most 

of the cases the roughness after deformation is almost completely flattened especially the 

low frequency components. 

Chapter 6 shows an analysis of short wavelength wavy surfaces in EHL. Since with 

the scheme of Chapter 5 the solution of these cases becomes numerically unstable, it is 

necessary to develop different approaches. By linearising the Reynolds-Eyring equation 

an analytical expression for the deformed amplitude is obtained, from which an important 

criterion to determine the importance of the wavelength of the original roughness on the 

deformation is derived. It is shown that for short wavelengths the roughness is likely to 

persist even in extreme conditions of load. 

Chapter 7 introduces an analysis of subsurface stresses in micro-EHL again considering 

the length of the contact to be infinitely long. Basically the idea is to present the results 

for maximum stress and its location as a probability rather than a precise value, since the 

stresses are proved to be Gaussian variables. 

Chapter 8 brings to light a clearer understanding of the transient micro-EHL physical 

phenomenon. It describes a transient analysis in micro-EHL which is applicable to sliding­

rolling contacts. The idea of the infinitely long contact is retained, but a general implicit 

finite difference method is now used for the solution of the Reynolds equation. The 

complete transient solution of a micro-EHL contact is found to consist of two components: 

the moving steady state pressure and shape and a complementary function induced by the 

entrance of every surface ripple in the inlet. The scheme does not allow for the calculation 

of the final shape amplitude, since the inlet is not included in the geometry and therefore 

the amplitude of the excitation is unknown. However, several solutions for Newtonian 

and Eyring fluids are obtained and compared with results from the literature. 

Finally Chapter 9 describes the basic conclusions along the work and outlines the topics 

of future research in the area. 
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CHAPTER Two 

ELASTOHYDRODYNAMIC LUBRICATION 
THEORY 

In this chapter the mathematical background which governs the behaviour of an elasto­

hydrodynamically lubricated contact will be des.cribed. 

The problem of sustaining a lubricant film between two moving, elastically deformable 

surfaces is described in general by three equations: a) the Reynolds equation which ex­

plains the relationship between the lubricant flow and the building up of a distribution of 

pressure against the containing walls; b) the film thickness equation to relate the geom­

etry of the walls and the elastic deformation with the thickness of the lubricant film; c) 

finally the load balance equation which requires the integrated pressures to be equal to 

the applied load in order to sustain the equilibrium of the system. 

The equations are then solved by either numerical methods or approximated by an­

alytical schemes. The solution provides the pressure distribution and the film thickness 

variation along the contact region. From those results the minimum film thickness and 

maximum pressure are easily obtained, since in machine design these last are the most 

important parameters. 

In general, it is accepted that for an incompressible lubricant the maximum pressure 

and minimum film thickness in a EHL contact are a function of only two dimensionless 

quantities, the definition of which varies according to the author, but in general, one of 

them is a sort of dimensionless load and the other some kind of dimensionless velocity. 

Since the pressures involved in a EHL contact in general are very high, the compress­

ibility of the lubricant and the variation of viscosity with pressure become important and 

must be taken into account. Some experimental relationships of these parameters will be 
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also described. 

An important aspect of sliding EHL contacts is that the lubricant is subjected to large 

shear rates and pressures, so that its rheology is a major factor to be considered. Some 

important aspects of Newtonian and non-Newtonian lubricants will be seen herein. 

It is well known that the heat produced by the viscosity shear in EHL contacts changes 

the properties of the lubricant, especially its viscosity, however, in this analysis and 

throughout the thesis this will not be considered. 

2.1 The Reynolds Equation 

The differential equation governing the pressure distribution in a Newtonian lubricant film, 

was first obtained by Reynolds in 1886 from the more general Navier-Stokes equations 

by making the appropriate simplifications in the analysis; the same method described for 

example by Dowson and Higginson [21]. 

However, in this section the derivation of the Reynolds equation will be explained by 

following a rather simpler approach of balance of forces and mass, used for example by 

Cameron [8]. 

The following assumptions will be considered: 

1).- Body forces are neglected: There are no extra forces acting on the body (e.g. 

magnetic fields) 

2).- Pressure is constant across the lubricant film (z direction): Since the thickness is 

only one or two microns it is always true. 

3).- The radius of curvature of the surfaces is large compared with the film thickness: 

There is no need to consider the surface velocities as varying in direction. 

4).- There is no slip at the boundary: The velocity of the oil layer at the boundaries is 

the same as the velocity of the boundary itself. 

The following assumptions are included for simplification, they are not necessarily 

always true. 

5).- The lubricant is Newtonian: The stress on it is proportional to the rate of shear. 

Modifications to the final Reynolds equation will be shown below when this assumption 

is removed in non-Newtonian fluids. 

6) .- Laminar flow: In EHL no turbulent flow arises since the film thickness is always 
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small. 

7).- Fluid inertia is neglected: Even when the Reynolds number is 1000 the pressures 

are only modified in a very small proportion, e.g. Cameron [8]. 

8).- The lubricant viscosity is constant across the film (z direction): This would not 

be true if the generated heat were taken into account. 

2.1.1 Equilibrium of Forces on a Lubricant Element 

Consider a lubricant element passing through a channel of moving boundaries as shown 

in Fig. 2.1 
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Figure 2.1: Equilibrium of an element showing forces in x direction 

By making L:Fx = 0 and L:Fy = 0 it is possible to obtain: 

!2:!= - PE. 
i:Jz -ox 

OTzy _ fZE. 
{)z - ay 

with Tzx representing the shear stress acting along x. 

For a Newtonian fluid the relation between shear and velocity is given by: 

T - n&u. 
zx - 'I {)z 

OUy 
Tzy = 'TJ {)z 

(2.1) 

(2.2) 

where 'f) is the lubricant viscosity (constant along z), and Ux , uy are the velocities of the 

lubricant element in x and y directions. 
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The substitution of equations 2.2 into equations 2.1 leads to: 

.Q_ ['11 ~] - 2£. 
fJz 'I fJz - fJx 

(2.3) 
.Q_[ ~]- ~ 
fJz 'fJ fJz - fly 

2.1.2 Velocity Distribution 

Equations 2.3 can be integrated twice respect to z with the substitution of the following 

boundary conditions, to find the velocity distribution of the lubricant in both directions 

x and y at any point of z. 

Boundary conditions: 

leading to: 

when z = h, then u., = u2 

when z = 0, then u., = u1 

when z = h, then Uy = v2 

when z = 0, then Uy = v1 

Uy = l77 ~(z2 - zh) + X(v2- VI)+ VI 

2.1.3 Mass Continuity 

(2.4) 

Consider a column of compressible lubricant of height h and base dx, dy as shown in Fig. 

2.2. By performing a balance of mass in the column it is easy to obtain: 

8my om., ~( h) = 0 ay + ax +at P (2.5) 

where the term gt (ph) has been obtained by replacing the difference of the boundary 

velocities in z direction ( w2 and w1) by the change of the column height with time. 

The mass flows can be obtained by integrating the velocities: 

mx = p Jl; Uxdz = -~[~] + ( U2 + ui)[~] 
(2.6) 
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w,dx dy 

( 
&my 

my + eydy)dx 

h 

I 

mydx dy ... )- - - - __ _ 

... -- ~ 
dx 

Figure 2.2: Continuity of flow in a column of lubricant 

2.1.4 The Full Reynolds Equation 

Substituting equations 2.6 into equation 2.5 it is possible to obtain the full Reynolds 

equation for a compressible Newtonian fluid: 

(2.7) 

where u and v are the average velocities of the surfaces in x and y direction and are 

defined by: 

2.1.5 Infinitely Long Bearing 

In some cases it is possible to treat bearings as infinitely long in the y direction, for 

example, most gears. Then the variation of pressures in the y direction becomes negligible. 

And the flow in the same direction too. For those cases the Reynolds equation becomes 

one-dimensional and equation 2.7 can be reduced to: 

(2.8) 
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2.1.6 No Squeeze Film Term 

The term 8~;) in equation 2.8 represents the movement of the boundaries in z direction 

and it is called the squeeze term. This term can be taken as zero in the cases when the 

external load is stationary in time and the boundary surfaces are smooth (no roughness 

involved) or if only one of the surfaces is rough but has zero velocity, such that the bearing 

runs in a steady state condition. For such cases the Reynolds equation 2.8 becomes: 

(2.9) 

which can be integrated with respect to x and the integration constant taken in a conve­

nient form using boundary condition such as ph= p*h* when*= 0; obtaining: 

dp - 12- h- h*(p* I p) 
dx- Urt h3 (2.10) 

Equation 2.10 is one of the most used forms of the Reynolds equation for Newtonian 

compressible lubricants in hydrodynamics. 

2.1.7 Non-Newtonian Lubricants 

There is no yet a clear agreement on what should be the rheological model for a non­

Newtonian lubricant relating shear stress with velocity. Fig. 2.3 shows a comparison of 

the behaviour of several rheological models (taken from Rong-Tsong and Hamrock [50] 

1990). 

However, it is known that the Eyring model suggested by Eyring [24] 1936 and later 

used by Johnson and Tevaarwerk [43] 1977 agrees well with experimental results and is 

mathematically simpler than some others. The rheological Eyring model reads: 

. du T0 • h( T) i=-=-sm -
dz 'T/ T 0 

(2.11) 

where T 0 is the Eyring stress of the lubricant which varies slightly with pressure but is 

normally taken as constant. T is the shear stress in the lubricant Txz or Tyz. 
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Figure 2.3: Rheological models, where T0 = Tt/3 for the Eyring 
model ('fief= Tjt). Taken from Rong-Tsong and Hamrock. 

By using equation 2.11 instead of equations 2.2 in the deduction of the Reynolds 

equation and following the procedure already described, it is possible to obtain the so­

called Reynolds-Eyring equation, which according to Conry et al. [17] 1987 is: 

(2.12) 

where: 

and: 

Uz- U1 h dp 
8 = -=---=u=--.:. ' tP = 2T

0 
dx ' 

s is known as the slide-roll ratio. 

In equation 2.12 it is easy to see that when T0 --+ oo then D --+ 1 (Newtonian fluid) 

and the equation becomes the Reynolds equation 2.8. 

For steady state, equation 2.12 can be written as: 

dp = 12ury [h- h*(p* 1 p)] 
dx D h3 

(2.13) 
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2.2 Viscosity-Pressure Relationships 

The increase of the lubricant viscosity with pressure is a very important aspect in the 

lubrication of heavily loaded contacts and it must be considered in the calculations. 

In general, there are two very well known relationships between lubricant viscosity and 

pressure: the Barus' law (Barus [4] 1893) and the Roelands's equation (Roelands [68] 

1966). 

a).- Barus Law: 

The relation between pressure and viscosity is given by the simple exponential equation: 

(2.14) 

where 'f/o is the viscosity at gauge pressure p = 0 and a is an experimental constant 

depending on the lubricant and called the pressure-viscosity coefficient with units Pa-1 . 

It is said (e.g. Gohar [26]) that equation 2.14 becomes inaccurate above 0.5 GP a 

since it predicts much bigger viscosities than those observed experimentally. However, 

the equation is still adequate when solving the Reynolds equation for film thickness, since 

either way the term P~
3 

in equation 2.8 is very small; using equation 2.14 to calculate 

tractions gives incorrect answers. 

b).- Roelands Equation: 

A recent more realistic equation is: 

TJ(p) = TJ 0 exp { [9.67 + lnryo][(l + :i,Y -1]} (2.15) 

Where z is the pressure viscosity index, which is a feature of the lubricant (typically 

0.5 :':: z :':: 0. 7), and p~ is a constant p~ = 1.98 x 108 Pa. 

For low pressures equation 2.15 reduces to : 

TJ = TJ 0 exp(a*p) 

where: a* = ;~ [9.67 +In 'f/o] 

2.3 The Density-Pressure Equation 

In EHL contacts generally the compressibility of the lubricant becomes important due to 

the high pressures involved , therefore in most of the cases it has to be considered in the 
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calculations of the film thickness. The following relationship suggested by Dowson and 

Higginson [21] is used throughout the thesis: 

_ p(p) 1 + lP 
p =----;;: = 1 +f3p (2.16) 

Where p = density ratio, p(p) = density of the lubricant as function of pressure, Po = 
density of the lubricant at ambient pressure, 1 = 2.266 x 10-9 Pa, (3 = 1.683 x 10-9 Pa. 

Equation 2.16 limits the compressibility of the lubricant to approximately 30 percent. 

2.4 The Lubricant Film Geometry Equation 

Throughout this work the interest is focused only on non-conformalline contacts, e.g. gear 

teeth, cams, roller bearings, etc. Therefore the film geometry equation will be deduced 

only for such cases. 

2.4.1 Rigid Cylinders 

In non-conformal contacts the area of contact is very small in comparison with the di­

mensions of the bodies, this facilitates an important simplification of the geometry: the 

contacting surface of a cylinder (or indeed any non-conformal surface) can be approxi­

mated to a mathematically simpler curve, a parabola, see Fig. 2.4. 

R 

I 
I 

I 
I 

Figure 2.4: Approximation of the contact geometry by a parabola 

Therefore the film thickness equation for a rigid cylinder against a flat surface can be 

written as: 

(2.17) 
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2.4.2 Equivalent Cylinders 

The contact between two cylinders can adequately be reduced, from the mathematical 

point of view, to the simpler geometry of an equivalent cylinder and a flat surface, as 

shown in Fig. 2.5. 

From equation 2.17: 

and for the equivalent cylinder: 

The separation of the bodies at any given x will be equal if: 

1 1 1 
-=-+­
R R1 R2 

for instance the equivalent cylinder has a radius: 

u' I 

Figure 2.5: Equivalent cylinders 

2.4.3 Elastic Deformation 

(2.18) 

If equation 2.17 has to be used with elastically deformable bodies, then the elastic dis­

placements have to be added. 
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q 

z 

Figure 2.6: Line load on an elastic half-space 

In non-conformalline contacts, the geometry of the body can be neglected in the elastic 

analysis and the contact can be treated as an elastic half-space with an assembly of line 

loads on its surface. Fig. 2.6 shows a half-space loaded with a line load on its surface. 

Following Johnson [41] under plane strain conditions (no deformation in y direction) 

the elastic displacements v(x) in z direction are given by: 

v(x) = (2.19) 

where: q = load per unit width, X 0 = distance where v = 0, E = Young's modulus, v = 
Poisson's ratio. 

The displacements produced by a distributed load p(x) are obtained by integrating 

equation 2.19 

v(x) = 
2(1 - v2

) ;+oo x - x' 
In I I p(x')dx' + c 

7r E -oo X 0 

(2.20) 

therefore the combined elastic deformation of upper and lower bodies is: 

( ) 2 { (1 -vi) (1 - v~)} j+oo I I x- x'l ( ')d , + v x = -- E + E n p x x c 
7r 1 2 -oo Xo 

(2.21) 

and the film thickness geometry would be: 

(2.22) 

with v(x) given by equation 2.21. 
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From equation 2.22 the 'plane strain' modulus E' is written: 

2 (1 - vl) (1 - v?) 
E' = E1 + Ez (2.23) 

2.5 The Force Balance Equation 

The entire external load pushing together the contacting surfaces has to be equal to the 

integral of the pressures in the film over the contact width. This condition guarantees the 

balance of forces. For line contacts it can be written as: 

j+oo 
-oo p(x)dx = w (2.24) 

where w is the external load per unit of width. 
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CHAPTER THREE 

TRUNCATED HERTZIAN CONTACTS AND ITS 
APPLICATION TO EHL LINE CONTACTS. 
CENTRAL AND EXIT SOLUTION 

Numerical solutions of heavily loaded EHL contacts have always been a challenge for 

computational techniques due to the difficulties to reach convergence. 

Since the first robust numerical EHL solutions given by Dowson and Higginson [20], 

the search for more stable techniques to deal with even more complex models has not 

ended. Many approaches have been used: direct, inverse and variational methods, and 

recently multigrid techniques have been introduced to accelerate convergence. 

However, the first successful EHL solution was not only numerical: in 1949 A.N. Grubin 

[31] suggested an important idealization of the contact geometry by considering the central 

zone having parallel film thickness, the value of which could be calculated by solving only 

the Reynolds equation at the inlet. The central zone was assumed to behave like a dry 

contact problem, so that in this zone no solution of the Reynolds equation was required 

since the pressures could be calculated by simple Hertzian theory. However, the Grubin 

approach by itself is not capable of predicting either film shape or pressures at the outlet 

of the contact. 

In the 60's the importance of the outlet in providing the minimum film thickness had 

been understood due to the theoretical works of Petrusevich [63] 1951, Blok [7] 1959, 

Dowson and Higginson [20] 1959 and the measurements of Crook [19]. And now more 

convincingly by using optical EHL. 

In 1972 Greenwood [28] extended the Grubin's theory by simply moving the flat region 

upstream, which produces an exit constriction in the shape and a pressure spike similar 
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to that exhibited by numerical solutions: approximations for the minimum film thickness 

then became possible. 

The Greenwood's pressure distribution and shape may be considered analogous to 

the obtained from a partial indentation problem, e.g. Fig. 3.1; despite the fact that 

Greenwood did not use this idea to develop his work. However, the concept was first 

mentioned by Grubin himself and much later practically used by Christensen [15], 1979 

and Prakash and Christensen [64), 1981. 

p(x) 

Figure 3.1: Partial indentation geometry 

One of the major source of numerical difficulties in full EHL solutions is the large 

gradients of pressure surrounding the spike, the heavier the contact is the larger the 

pressure gradients are and the more difficult the numerical solution becomes. The main 

simplicity of the Grubin and Greenwood idealizations is that the solution of the Reynolds 

equation at the spike location is avoided. However, the main drawback is that both 

treatments neglect the inlet and outlet pressures as a cause of elastic deformations. The 

Grubin analysis does not account for the pressure spike at all and in the case of the 

Greenwood's extension the pressure spike is always one-sided, lying on the side of the flat 

region, so if the spike moves upstream the proportion of neglected pressures increases. 

Therefore Greenwood's treatment should only be used for contacts where the spike is 

close to the exit. 

Clearly the next refinement of the Grubin and Greenwood analyses should be the 

generation of the inlet and outlet pressures by solving simultaneously the Reynolds and 

elasticity equations. 
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In this chapter an EHL analysis for Newtonian incompressible fluids which involves only 

the elastic deformation and pressures in the central and outlet zones is described. The 

work is based on a novel theoretical background developed by Greenwood and Johnson [29] 

1989 which uses linear fracture mechanics theory to study the deformation and pressure 

distribution of truncated Hertzian dry contacts. 

It will be shown that the outlet pressures can be closely described by a modified loga­

rithmic function determined completely by two constants. As a consequence of this, the 

outlet shape joins the parallel film zone with an angle different from that (90°) predicted 

by the Greenwood scheme. 

The described theory will be extended in Chapter 4 to produce a complete EHL solution 

method which includes the inlet. 

3.1 Truncated Hertzian Contacts and Fracture Mechanics 

Heavily loaded contacts in EHL have pressure distributions very similar to dry contact 

Hertzian pressures, these pressures are related to the nearly parallel film thickness also 

common in EHL. In the inlet and outlet the film ceases to be parallel and the pressures 

from being Hertzian. However, it looks reasonable to think of an analytical approach 

to generate EHL pressures which first considers a full Hertzian pressure distribution and 

then chops its edges off to replace them with the proper inlet and outlet EHL pressures 

while suitably modifying the central pressures. 

Greenwood and Johnson [29] 1989 have solved the problem of replacing part of a 

Hertzian pressure distribution while maintaining a Hertzian flat over the remainder by 

using linear fracture mechanics theory. 

Line of 

=re\H-J+~ 
~ 

Figure 3.2: Geometrical similarity between a Hertzian contact 
and a crack 
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(a).- Original Hertzian pressure distribution 
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(b).- Effect of the removed pressures 

(c).- Modified pressure distribution 

I 
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I 

(d).- Effect of the imposed pressures 

Pb(x)- O'r(x) + O';(x) 

(e).- Final pressure distribution 

Figure 3.3: Replacement stresses scheme 
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It is well known that the only restriction for the application of elastic fracture mechanics 

equations is that in the cracked body the displacements on the line beyond the crack tip 

should be zero. So by considering the geometry of a dry Hertzian contact it is possible 

to see that after the initial Hertzian deformation has taken place, any external traction 

applied outside the contact (e.g. Fig. 3.2) would not produce displacements along the 

contact line, therefore the geometries are identical. So there is no reason which inhibits 

the use of elastic fracture mechanics theory to calculate the displacements and internal 

stresses due to external tractions in a Hertzian contact. 

An EHL contact can be better represented by a doubly cracked body with tractions 

on both cracks, but for simplicity at the moment consider only tractions on the right 

hand side crack, representing the outlet region of the contact. Considering Fig. 3.3 it 

is possible to obtain a Hertzian flat by taking the original Hertzian pressure distribution 

(Pb); then a portion of these pressures is removed (Pr ). Using fracture mechanics the 

effects on the remaining pressures can be calculated from the internal stresses ( ar) and 

a modified Hertzian pressures are obtained (Pb - ar ). After this, an external pressure 

distribution (p;) can be imposed; again via internal stresses from fracture mechanics (a;) 

the effect on the modified Hertzian pressures can be calculated and added to obtain the 

final pressure distribution (Pb - ar +a;). The deformation is also obtained from fracture 

mechanics theory. 

In EHL contacts, this concept can be applied to obtain pressure distributions and 

shapes from an original Hertzian flat. 

3.2 Fracture Mechanics Theory 

In a double cracked body with coplanar cracks and pressure distribution applied on one 

of them (x1 >a), i.e. Fig. 3.4, along the line y = 0 and for -a< x <a, Greenwood and 

Johnson [29] found the internal stresses following the method introduced by Westergaard 

[81]1939, as: 

( ) 1 (;g+ x Loo ( )Vx1 - a dx1 
a X =- -- p X 1 

7r a - X x1=a Xt + a Xt - X 
(3.1) 

since p(x1 ) -> 0 as x1 -> oo, a finite length L can be chosen for the integration. When 

x -> a, equation 3.1 tends to: 
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(3.2) 

where M is a stress intensity factor, related to the more usual K1 by: K1 = M V4aJr (e.g. 

Barenblatt [3]1962 and Schapery [71]1975). 

Y: 
' ' 
: O"(x) l 

------r-----------H-i--1-- --
, 

~------------~xi 

Figure 3.4: Double cracked body 

(3.3) 

Now, following Greenwood and Johnson [29]1989 it is possible to rewrite equation 3.1 

in its separate singular and non-singular terms: 

where the first term of the RHS of equation 3.4 represents the square-root singular part 

and the second one is either finite or at most a weaker singularity. 

Substituting equation 3.3 into the first term of the RHS of equation 3.4: 

)a2- x21L p(xl) o-(x) =M - dx1 
7r "';" (x1- x)jxi- a2 

(3.5) 

Greenwood and Johnson have also shown that: 
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- ~ [ {L p'(x1) arctan 
7r Jx1=a 

x1 +a a- x 
-=-~ -- dx1 - p(L) arctan 
x1 - a a +x 

L+aa-x] ----
L-aa+x 

where p'(x1 ) is the pressure gradient. And as x-+ a, then by series: 

and M is defined by equation 3.3 and: 

2 [ 1L 1 ~1 +a ~+a] M1 =-- p(x!) . dxr+p(L) -L-
1r x1=a X1 -a -a 

where M 1 is also an stress intensity factor. 

(3.6) 

(3.7) 

(3.8) 

In order to obtain the slopes of the elastic displacements for the region a < x < L corre­

sponding to the pressures of equation 3.1, Greenwood and Johnson followed Westergaard's 

method to obtain: 

E' EJv = }:_Jx +a {L p(x!) ~ dx1 

2 EJx 1r x- a J,,=• V~ x1 - x 
(3.9) 

or alternatively separating out the singular term: 

E' EJv =M Jx +a + !:_Jxz- a2 {L p(xr) dx! 
2 EJx x- a 1r lx,=a (x1 - x))xi- a2 

(3.10) 

Either equation 3.9 or 3.10 can be integrated to obtain the elastic displacements. 

3.3 Single Truncation 

In this section the original Hertzian pressure distribution will be modified according to 

the ideas above described. Firstly the right hand side pressures will be removed and 

then replaced by the outlet EHL pressures, as shown in Fig. 3.6. From now on the 

term 'pressures' will be used for tractions applied beyond the Hertzian :flat, and the term 

'internal stresses' for tractions within the Hertzian :flat -a ::; x ::; a, this convention 

is adopted for clarity and in accordance with fracture mechanics applications, though 

obviously in the EHL contact both are hydrodynamic pressures in the lubricant film. 
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3.3.1 Convention of Signs 

At this point it is convenient to introduce the convention of signs used in the derivation 

of the equations. 

a).- Compressive pressures applied: 

A compressive pressure distribution ( -p) applied on the right hand side of the crack 

tip will produce tensile internal stresses (+er), see Fig. 3.5. 

+<J (x) t ti: 
~ t t t I 11: -------------------

q q !!}! 
Figure 3.5: Convention of signs for compressive pressures 

b).- Tensile pressures applied: 

On the contrary, a tensile pressure distribution ( +p) applied on the right hand side of 

the crack tip will produce compressive internal stresses (-er). 

3.3.2 The Removed Pressures 

For a Hertzian flat extending from x1 = -a to x1 = 2b- a (i.e. Fig. 3.6) it is well known 

that the Hertzian pressures with the origin at the centre of the flat are given by: 

(3.11) 

with: Po = maximum value. 

In order to remove the Hertzian pressures for a < x1 < 2b- a a positive equal pressure 

distribution must be imposed. Substituting equation 3.11 into 3.3 and integrating from 

a to 2b - a the stress intensity factor due to the removed Hertzian pressures is: 

lvh=Q(a-c) (3.12) 

where: Q = p0 jb. According to Fig. 3.6: 2a = b+ c, therefore: 
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Q 
Mh = -(b- c) 

2 
(3.13) 

The effect of removing this portion of pressures on the remaining Hertzian internal 

stresses (-a< x < a) can be calculated by equation 3.5 which becomes: 

and with Pb ( x1 ) given by equation 3 .11. 

p (x) 
b 

L 
1 imposed ; r pressures PR (x) 

removed 
pressures P (x) 

r 

Figure 3.6: Replacement of pressures in a singly truncated Hertzian contact 

The final modified internal stresses (-a< x < a) are given by: 

O"t(x) = -pb(x)- O"r(x) = -QJ(x + a)(2b- a- x)- O"r(x) 

Solving the integral of equation 3.14 one obtains: 

(3.14) 

(3.15) 

(3.16) 

note that O"r(x) becomes oo as x--> a. O"t(x) is the pressure distribution found by Green­

wood [28] by a different method and taken by him as the final pressures; however, here 

they will be modified to include the effect of the pressures applied on the outlet. 
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3.3.3 Hall's Thoughts About the Pressures Surrounding the Spike 

Before introducing the imposed EHL outlet pressure distribution it is convenient to 

describe some important thoughts about its nature. 

Kostreva (46]1984, and later on Hall (32] 1989 have given arguments to suggest that 

the spike of pressures behaves as a logarithmic singularity, this concept is important in 

order to understand the nature of the outlet pressures in EHL. 

Hall suggested that the exit bump of an EHL contact shape can be represented as shown 

in Fig. 3.7, where it can be seen that the bump joins the parallel film (h*) smoothly with 

an angle r/>. Three transition points can be identified at x;, x. and x:; which for severe 

conditions of load: xd" -t x; and h( x;) -t h( xd") -+ h*. 
h 

' 
' 

' 
-------- \·-J-----· 

' ' "' I I I 'j' 

' ' ' 

Figure 3.7: Hall's representation of the exit bump for an EHL contact shape 

Integrating the Reynolds equation 3.30 between the limits x:; and x (x > x:;): 

1 [ + l 1" h- h* -- e-ap(x) - e-ap(x,) = 121]
0
U dx 

a x=xt h3 

and by approximating the integrand by its Taylor series in the region near x;)", one obtains: 

_!:_ [e-ap(x) _ e-ap(x!)] f';; (x _ x+)2 6!]oU [dh (x+)] 
a • (h•)3 dx s 

Observe that p( x;)") is of the same order but larger than the pressure in the middle of 

the parallel zone Po· Besides, p(xd") > p(x); and for typical values: e-<>Po f';; 0, so it is 
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possible to neglect the term e-<>p(xi) and the equation is reduced to: 

p(x) ~ ( -2/a) ln(x- x:;) +constant (3.17) 

Similarly, on the left hand side of the spike: 

p(x) ~ (-2/a)ln(x; -x) +constant (3.18) 

Notice that equations 3.17 and 3.18 show singularities in both sides of the spike, at 

x = x+ and x = x-. • • 
The first conclusion obtained by Hall from this analysis is that the pressure distribution 

is closely logarithmic and singular on both sides of the spike. This conclusion has certain 

elastic implications: according to Hall, by using integral transform methods for frictionless 

indentation problems, it can be shown that: · 

!lh'E' 
p(x)~ 

4
7r lnlx-x.l 

where: 

!lh' = dh( +)- dh( -) dx x, dx x, 

But see Section 3.5.4 to check the coefficient of the RHS of equation 3.19. 

By comparing equations 3.17 and 3.18 with equation 3.19 it seems that: 

finally: 

!lh' = -811" 
E'a 

<P = arctan[ !lh'] 

(3.19) 

(3.20) 

(3.21) 

The second conclusion obtained by Hall is that the internal angle of the film crease <P 

is not a right angle any more, contrary to the earlier finding by Greenwood. 

In this thesis, once the theoretical background is explained, a contribution on the 

analysis of the exit shape and pressures will be described in Sections 3.5.2, 3.5.3 and 

3.5.4. Also some thoughts about the behaviour of the pressure spike will be given in 

Chapter 4 (Section 4.5). 

3.3.4 The Imposed Pressures 

Once the Reynolds and elasticity equations have been solved for the outlet, a pressure 

distribution (nearly logarithmic and imposed on the right hand side) PR(x1) for a < x1 ::; L 
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is obtained. These pressures partially replace the portion previously removed. The effects 

of these imposed pressures are given again by equation 3.5 which becomes: 

O';(x) = MRJa + x _ va2
- x2 [L PR( xi) dx1 

a- x 1l' lx,=a (x1 _ x)Jx~ _ az 
(3.22) 

where MR is the corresponding intensity factor M for the pressures PR, and is given by 

equation 3.3 with pn(xi) for p(x1 ). 

3.3.5 The Final Internal Stress Distribution 

The final internal stress distribution for -a::; x <a is given by: a'J(x) = O't(x) + O';(x), 

it is to say: 

{!!;+ x ,Ja2- x21L PR(x1 ) dx1 O'J(x) = -Qva2 - x2- (Mh- MR) --- (3.23) 
a-x 11' x•=•(x,-x)vxr-a2 

Note that if Mh = MR, the square root singular term of O'J(x) vanishes giving a stress 

distribution with only a weaker singularity in the integrand due to the nearly logarithmic 

pressures PR( x1 ). 

At this point of the theory it will be convenient to remove the square root singularity, 

so the condition lvh = MR will be adopted and equation 3.23 becomes: 

( ) - Qv 2 z ,Jaz- xzlL PR( xi) dx, O'J X -- a -X -
1l' x,=a (x1 - x)Jxi- a2 

(3.24) 

3.3.6 The Final Shape 

According to the basic condition for applying fracture mechanics to this problem: there 

are no displacements along the contact line (-a ::; x < a) due to the imposed pressures, 

therefore the only displacements to be calculated are the precise ones occurring on the 

external zone where the pressures are applied: a < x ::; L. The deformation slopes 

resulting after replacing the pressures are given according to equation 3.10 and the above 

procedure by: 

E' ov _ (,. ,,. ){!!;+ x 1 ,j 2 21L PR(x,) dx, 
---- lv"R -lv"h -- +- x -a 
2 ox x-a 1l' x·=•(x,-x)vxr-a2 

(3.25) 
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provided Mh = MR, this is: 

E' 8v = ~.J x 2 _ a2 {L PR( x1) dx1 

2 8x 1r lx,=a (x1 -x);.jx~ -a2 
(3.26) 

Once equation 3.25 is integrated the elastic displacements v can be obtained and in 
order to calculate the final deformed shape Vf> the original Hertzian shape vh(x) has to 
be added: 

VJ(x) = v(x) + vh(x) (3.27) 

Under the condition Mh = MR one can take the initial shape as Hertzian.: 

(3.28) 

for a < x ::; oo. 

Notice that if in equation 3.25 only the square root singular term is integrated from 
a to x, the corresponding elastic displacements Vs are: 

(3.29) 

which is the basic function obtained by Greenwood [28] 1972 to describe the outlet dis­
placements in his extension to the Grubin theory. In his solution the exit bump joined 
the flat forming a 90° angle as expected from a square root singular pressure distribution. 

3.4 Outlet Integration of the Reynolds Equation 

Consider a Newtonian incompressible lubricant, from Chapter 2, the Reynolds equation 
IS: 

dp = 12fi1) (h- h*) 
dx h3 (3.30) 

Using the substitution attributed to Grubin [31]1949 but earlier used by Muskat and 
Evinger [58] 1940: 

1 
p = --ln(1- aq) 

a (3.31) 
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where q is the so-called reduced pressure; a is the pressure-viscosity index of the lubricant 

according to the Barns's law (e.g. Section 2.2). 

The final displacements are: 

VJ(x) = h(x)- h* (3.32) 

therefore substituting equations 3.31 and 3.32 into equation 3.30 the Reynolds equation 

can be reduced to: 

dq _ 
12

_ . vJ(x) 
-- U'T/o 
dx [h•+v1(x)]3 

(3.33) 

where the coefficient 12iirto is a constant. 

The boundary conditions of equation 3.33 for the outlet can be calculated by firstly 

considering that at x = a, PR = oo (pressure spike) so that from equation 3.31: 

q(a) = 1/a. Integrating equation 3.33: 

q(x) = q(a) -12iirtal(x) 

therefore: 

1 
q(x) =- -12iirtol(x) 

a 
(3.34) 

where: 

I( ) 1x VJ(x) d 
X = x=o [h• + vt(x)j3 X 

(3.35) 

Secondly, at x = L (end of the outlet) PR= 0, so q(L) = 0, hence from equation 3.34: 

1 
q(L) = 0 =- -12rtaiil(L) 

a 

where: 

I(L) = 1L VJ(x) dx 
x=a [h• + VJ(x)J3 

(3.36) 

thus: 

36 



TRUNCATED HERTZIAN CONTACTS AND ITS APPLICATION TO EHL LINE 
CONTACTS. CENTRAL AND EXIT SOLUTION 

1 
12?]0 ftl(L) = -

a 
(3.37) 

Substituting equation 3.34 into equation 3.31 and then substituting equation 3.37 

into the result it is possible to obtain: 

1 [I(x)] 
p(x) =-a ln I(L) (3.38) 

Equations 3.35, 3.36 and 3.38 give the outlet pressure distribution which satisfies 

the Reynolds equation 3.30 and its boundary conditions. 

3.4.1 Non-Dimensionalisation 

Consider the following definitions: 

X= xja, V(X) = 2R
2 

v(x), P = 4ER p = pfp:, M= Mfp: 
a a 1 

where p; is the maximum Hertzian pressure corresponding to a dry contact of length 2a 

and it is only a convenient constant, since the fracture mechanics equations are simpler 

in terms of a. The non-dimensional forms for the elastic equations 3.12, 3.24, 3.26 

and 3.28 are: 

Mh = 1- cja (3.39) 

(3.40) 

(3.41) 

(3.42) 

For the hydrodynamic equations consider the definitions already made and now include 

the following ones: 
' 4R I * H = 2Rh 
q = aE'q = q Pa> a2 
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aE'a E'a4 

/(1 = 4R = ap:, J( = -~,..--
192R37]0ii 

Therefore equations 3.38, 3.35, 3.36 and 3.37 become: 

l x V1(X) 
I(X) = [H V ( )]3 dX X=1 • + f X 

[Lfa Vj(X) 
I(Lfa) = Jx=1 [H• + VJ(X)j3 dX 

3.4.2 Outlet Computational Procedure 

a).- Suggest an initial logarithmic pressure distribution (as implied by Hall): 

P = Bln(x - 1) 
L-1 

for 1 <X:::; Lfa. Enter the values of: K1 , H*. 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

b).- Solve equation 3.41 to obtain the· slopes for the elastic displacements. Then integrate 

them to obtain the displacements V(X). 

c).- Add the Hertzian shape from equation 3.42 to obtain the final shape V1(X). 

d).- Integrate the Reynolds equation 3.43 to calculate the new pressures P(X). Solve 

equation 3.46 to find the corresponding J(. 

e).- Go back to (b) until convergence in pressures and shape is reached. 

f).- At this point the central region stresses can be calculated with equation 3.40. 

The integrals of the final pressure and slope equations can be solved numerically by 

following the schemes given in Appendix A. 

Note that at this point in the process there is no way to calculate the central film 

thickness, the procedure requires it as an input parameter. 
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3.5 Outlet Solutions 

3.5.1 Comparison with Greenwood's Scheme 

In order to investigate the behaviour of the present scheme, it is easier to start by isolating 

and solving the EHL outlet region. Then comparisons of results with the Greenwood's 

scheme are possible. An interesting comparison is obtained by matching in both theories 

the values of the integral I(L) and the central film thickness h*. Since the only difference 

between the two schemes is the inclusion of the outlet pressures by the present theory, 

then the minimum film thickness calculated with the present scheme is expected to be 

larger than its Greenwood equivalent, and therefore the outlet length in the present theory 

must be larger. 

The exit shape according to Greenwood [28] is obtained by considering only the elastic 

effect of the central region pressures and it is given in dimensionless form by: 

(3.47) 

where: J1 = 1 - cf a. 

Greenwood defined the total load (which excludes the inlet) as: 

Q - 'IWJ. { 
" }1/2 

9 - 8CY.TJ0 uR2 

and it is related to the dimensionless constants K and K 1 by: 

(3.48) 

The integral I(L) for the present scheme, in dimensionless form, is given by equa­

tion 3.45, and it is related to the variables K 1 and K by equation 3.46, from which: 

I(Lfa) = K/ K1 

and substituting into equation 3.48, this leads to: 

(3.49) 

which relates the Greenwood's parameters Q9 and J1 with I(L/a). Note that J1 = 1Vrh 

since both are equal to 1 - c/ a. 
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central+outlet 
Example K1 K H* L/a Bf K/K1 w 

1 6.900 67.328 0.050 1.082 -0.257 9.758 1.757 
2 5.580 19.650 0.100 1.127 -0.317 3.521 1.857 
3 4.100 4.014 0.250 1.228 -0.432 0.979 2.096 
4 3.250 1.251 0.500 1.358 -0.546 0.385 2.410 
5 2.600 0.357 1.000 1.544 -0.682 0.137 2.878 
6 1.900 0.076 2.500 1.973 -0.936 0.040 4.038 

with B f defined in Section 3.5.2 

Table 3.1: Present theory parameters 

Present Theory 
Example 61r3l(Lja) Ho hmin/h* MR H c/bh 

1 1815.300 0.100 0.766 0.059 0.089 0.890 
2 655.128 0.200 0.776 0.091 0.169 0.836 
3 182.124 0.500 0.780 0.165 0.375 0.723 
4 71.596 1.000 0.790 0.261 0.652 0.597 
5 25.570 2.000 0.790 Q.400 1.091 0.443 
6 7.471 5.000 0.791 0.731 1.945 0.168 

Greenwood's Theory 
Example 61r3 l(Lja) Ho hmin/h* f.l H c/bh 

1 1714.630 0.100 0.751 0.022 0.096 0.957 
2 668.390 0.200 0.753 0.035 0.187 0.933 
3 190.166 0.500 0.765 0.064 0.443 0.881 
4 72.675 1.000 0.758 0.100 0.833 0.821 
5 27.462 2.000 0.763 0.157 1.521 0.735 
6 7.443 5.000 0.769 0.284 3.190 0.572 

Table 3.2: Outlet results comparisons 

The dimensionless central film thickness used by Greenwood is defined as: 

4Rh* 
Ho=-­a2 

which also can be written as: Ho= 2H* (3.50) 

another dimensionless film thickness given by Greenwood as a function of an equivalent 

dry contact Hertzian width is: 
4Rh* 

H=b2 
h 

40 



TRUNCATED HERTZIAN CONTACTS AND ITS APPLICATION TO EHL LINE 
CONTACTS. CENTRAL AND EXIT SOLUTION 

And bh represents the half width of the equivalent Hertzian contact with the same total 

load (excluding the inlet and outlet) as the EHL contact under consideration. 

Now, using Hertz theory it can be proved (Section 4.3.3) that: 

where W is the dimensionless total load (in this case excluding only the inlet) and it is 

calculated by integrating the pressures pjp~, soW= wjap~; therefore H, for the present 

scheme, can be written as: 
1l' H* 

H=-, 
2W 

The spike location corresponding to the Greenwood scheme is given by: 

c 1- !L 

bh - y1 + 2fL 

(3.51) 

(3.52) 

in the present theory, from equation 

also Section 4.3.3) it gives: 

3.39: c/a = 1- Nh and changing from a to bh (see 

c 1-MR 
-

bh j2W/1l' 
(3.53) 

Table 3.1 gives the parameters of several solutions obtained with the present theory 

which are compared with the Greenwood's results in Table 3.2. It is possible to see that 

in general the two theories agree better for large values of l(L/a) where the effect from 

the outlet pressures is small. 

The shapes corresponding to examples 2, 4 and 6 are shown in Fig. 3.8, Fig. 3.9 and 

Fig. 3.10; where the depth of the exit bump from the present scheme, is always smaller 

(larger hmin) than that predicted by the Greenwood's scheme; for accurate values compare 

the columns hmin/ h* in table 3.2. Note that under these circumstances and with equal 

I(L/a) and Ho the length of the outlet zone L in the present theory, is expected to be 

always larger than the Greenwood's value; and according to the figures it is indeed larger. 

The corresponding outlet pressure distributions for the shapes are shown in Fig. 3.11. 

Table 3.2 also shows that the spike location by the Greenwood's scheme gives always 

larger values than the present theory; the reason is because the load for the present theory 

includes also the outlet pressures. It also can be seen that the disagreement on c/bh is 

worse for large values of L; when the difference in load is larger. 
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Figure 3.11: Exit pressures, present theory 

3.5.2 The Outlet Pressure Distribution 

Several investigations have been addressed towards the nature of the pressure spike in EHL 

contacts and there are major analytical attempts to relate the outlet pressures to a known 

mathematical function. Both Kostreva [46] 1984 and Hall [32] 1989 have shown that the 

pressures closely behave as a logarithmic singularity in the region neighbouring the spike. 

According to the analysis of Hall (i.e. Section 3.3.3), this logarithmic singularity results 

in the slopes of the final shape at the beginning of the exit bump becoming finite with a 

known value, unlike Greenwood's theory which predicts infinite slopes at that point, see 

Fig. 3.12. 

By looking at Figs. 3.8 to 3.10 it is possible to see that the shapes obtained by the 

present theory look more similar to the Hall's prediction than the Greenwood one. 

Then, performing a simple curve fitting analysis it was found that the outlet pressures 

are very well described by the function: 

p = B [L - x ]ln( x - a ) 
L-a L-a 

(3.54) 

or in dimensionless form: 

[
Lia-X] X-1 

P=Bf Lla-1 ln(Lia-1) (3.55) 

where B 1 = B I p~ and L I a are the two constants which fully define the outlet pressure 
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distribution. In a converged solution their values can be calculated by choosing two values 

of X and solving equation 3.55. 

Greenwood's shape 
(square root sing. for P) 

/ 
/ 

/ 
/ 

/ 

Hall's shape 

(log. sing. for P) 

/ 
/ 

Figure 3.12: The exit shape bump according to two theories 

Using the values of Table 3.1 the pressures of the same three examples of Fig. 3.11 

have been compared with the approximation of equation 3.55 in Figs. 3.13 to 3.15, 

the agreement is always good. The same comparison was carried out with many other 

solutions giving always good agreement. 
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Figure 3.13: Outlet pressures comparison, example 2 
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Figure 3.14: Outlet pressures comparison, example 4 
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Figure 3.15: Outlet pressures comparison, example 6 

3.5.3 Relation Bf- K 1 

Assuming that near to the beginning of the outlet, the displacements V1 vary linearly 

along X (i.e. Fig. 3.16) hence, the displacements are given by: 

V1(X) = -(tanqi)(X -1) (3.56) 
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with: 

1--~x 

Figure 3.16: Linear shape variation at the beginning of the exit bump 

tan qS = Vj 
X -1 

substituting equation 3.56 into the dimensionless Reynolds equation: 

dq _ !._ Vt 
dX K (H• + V1 )3 

and applying the boundary conditions of Section 3.4 then: 

, = _1 _ tanqS [(X -1) 2
] 

q Kr K(H•) 3 2 

according to equation 3.31 the relationship of P and q is given by: 

substituting equation 3.57, and solving: 

Kr tan qS 
K 1P = -2ln(X -1) -ln[2K(H•) 3 ] 

Notice that the approximated pressures (equation 3.55) as X --+ 1 behave as: 

P ~ B1ln(X -1)- B1ln(Lja-1) 

(3.57) 

(3.58) 

(3.59) 

multiplying equation 3.59 by K 1 and comparing the result with equation 3.58 it is easy 

to find that: 

(3.60) 
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( I 1)_2 Kr tan 4> 
L a- , 2IKI(H*)3 (3.61) 

3.5.4 Analytical Expression for the Shape Slope and its Limiting Value 

If the length of the contact is not very small, the outlet region can be elastically 

independent from the inlet, so the slopes of the elastic displacements are given by equa­

tion 3.25 and with Mh = Mn it is: 

El fJv = ,jx2- a2 {L Pn(xi) dxr 
2 fJx 1r lx,=a (x1 _ x)Jxt- a2 

(3.62) 

substituting the approximated outlet pressures equation 3.54: 

V y X a L-a L-a d 
El[) . 1 2 _ 2

1
L BL-x, ln(x,-a) 

---= . Xr 
2 fJx 7r x,=a (xr- x)Jxr- a2 

(3.63) 

writing: c; = x- a, L1 =L-a, t = J(x 1 - a)j(c;) and l = JL'/(x- a), equation 3.63 

becomes: 

E 1 fJv 2B 
1 --

8 
= -L VE + 2a [2L1 Ir + L ln(c/ L1)I2 - 2c;fs- dn(c/ L1)I4 ] (3.64) 

2 X 7r 1 

where: 

I -11 lnt d 1- t 
t=o (t2 -1)vct2 + 2a 

(3.65) 

lz= 11 dt 

t=o (t2- 1)vct2 + 2a 
(3.66) 

11 t 2 ln t 
Is= dt 

t=o (t2 -1)vct2 + 2a 
(3.67) 

(3.68) 

In the solutions of the integrals I 1 and Is it is possible to approximate by series: 

1 1 

v2a + ct2 , ffa[1 + (ct2)/4a] 
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for c:---> 0. So the solution can be proved to be: 

(3.69) 

h _ 1 ln lly2a + ~ - y2a + c:/21 
- 2v2a + c: 11v"2;c=a=+~c:--:+-v"~;';"2a=+~c:'f.i'l2 (3.70) 

(3.71) 

14 = ~ [ln(lye + vc:/2 + 2a) -ln 5aj + 12 (3. 72) 

With: 

11 ln t 1r2 1 
Io = ~1 dt = -

8 
+ f(m)-

4
- f(m2

) 
t=O t - (3. 73) 

_ V _ (l.jc:/(4a))3 (l.jc:/(4a))5 
_ (l.jc:/(4a))1 

Ip-1 c:/(4a) 32 + 52 72 + .... (3.74) 

1!'2 oo k(-z)k 
f(z) = -lnzln(1- z) +-- 2J-1) -

2
-

6 k=l k 
(3.75) 

for 1 2:: z 2:: 0. 

The dimensionless form of equations 3.64 to 3. 75 are given by the same relations but 

substituting L' by L/a -1; c: by X- 1; l by .jLt'Jc-1
; m by 1/1; B by B1 and a by 1. 

The limiting value of equation 3.64 as x---> a (c:---> 0) is given by: 

and: 

. E' av 2B [ 2L' . ] hm(-
2 

-;;-) = -L 5a ;;;-::(hmlo) 
x-t-a ux 1r ' V 2a e:-+0 

1. I 1 2 lffi 0 = -1f' 
e-+0 4 

since the Hertzian displacements for the outlet (i.e. equation 3.28) have zero slopes at 

x =a, then: 

(3.76) 
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and in dimensionless form: 

(3. 77) 

By using the approximation of equation 3.60: B = B!P~ ~ -2/ a, and therefore: 

Finally the angle rjJ of Fig. 3. 7 is: 

-41!' 
rjJ = arctan -­

aE' 

(3. 78) 

(3.79) 

which is exactly a half of the value obtained by Hall in Section 3.3.3. Despite the 

disagreement in shapes, the pressures agree very well; equation 3.54 for x ~ a becomes 

a pure logarithmic function, and from equation 3.60, in dimensional form: B = -2/a 

which is the same value predicted by Hall for the coefficient of his logarithmic pressure 

(equations 3.17 and 3.18). Besides all this, in an earlier article, Hall and Savage [33] 

1988 solve a rigid punch example (example 2) with contact length 2a which for x ~ a 

exhibit pressures: 

p~Blnlxl 

and with: 
E' 

B = -tanr/J 
211' 

for B = -2/a one obtains: tanr/J = -411'/aE' which is the result predicted by the present 

theory. So it is now believed that the coefficient of the RHS of Hall's equation 3.19 must 

indeed be: 

Numerical example: 

t:>.h' E' 
211' 

Consider the following outlet solution: 

B1 = -0.385 
Lfa = 1.177 
H* = 0.200 

hmin/ h* = 0.864 
](1 = 4.5 
]( = 1.367 
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Example ]{ H* Kt Bf I<tB! I tan </>I L/a L/a eq. 3.61 
1 0.002 19.546 1.0 -1.879 -1.879 5.904 4.111 3.073 
2 0.079 2.279 2.0 -0.918 -1.836 2.883 1.880 1.568 
3 54.314 0.068 6.0 -0.312 -1.872 0.980 1.110 1.077 
4 117.863 0.043 7.0 -0.267 -1.873 0.839 1.081 1.057 
5 529.486 0.019 9.0 -0.212 -1.904 0.665 1.050 1.036 
6 895.880 0.014 10.0 -0.190 -1.902 0.597 1.041 1.029 
7 1439.289 0.011 11.0 -0.173 -1.905 0.544 1.034 1.024 

Table 3.3: Outlet solutions, testing equations 3.60 and 3.61 

Fig. 3.17 shows the converged pressure distribution, Fig. 3.18 shows the comparison 

between the converged slopes and the result from the analytical solution (i.e. equa­

tion 3.64 and equations 3.69 to 3.75), finally Fig. 3.19 shows the corresponding final 

shapes (including the Hertzian displacements ). 

Fig. 3.17 shows the good agreement for the elastic slopes between the two methods. 

The curves slightly diverge for high values of X due to the increment of error in the 

approximation by series used in the solution of the integrals It and ! 3 , however, the 

difference is still small and this is in general typical for any other solution. Equation 3. 77 

also agrees well with the numerically calculated limit. 

Now a set of outlet solutions is shown in Table 3.3 where equations 3.60 and 3.61 are 

tested, for which it has been taken tan</> r::::: B J7r: 

It can be seen that the values given by equation 3.60 are more or less similar to 

the ones obtained from the numerical solution (I<tBf r::::: -2). The results for Lja from 

equation 3.61 are not so close to the numerical solution but at least they follow the same 

pattern. And for an initial guess the solution is good enough if the value of ]{ is known. 
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Figure 3.17: Converged outlet pressures 
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Figure 3.18: Comparison of numerical and analytical slopes 
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Figure 3.19: Comparison of numerical and analytical final shapes 

51 



TRUNCATED HERTZIAN CONTACTS AND ITS APPLICATION TO EHL LINE 
CONTACTS. CENTRAL AND EXIT SOLUTION 

3.6 Conclusions 

A novel approach for the solution of the outlet and central regions of heavily loaded 

EHL line contacts problems has been described. The method is based on the Modified 

Hertzian Contacts theory developed by Greenwood and Johnson which applies linear 

fracture mechanics to :find pressures and deformations in dry Hertzian contacts. 

The scheme solves iteratively the Reynolds and fracture mechanics equations for the 

outlet pressures and shape. With these pressures and once again applying fracture me­

chanics, it is possible to calculate the central zone pressures assuming that this region 

behaves like a dry contact problem with a known central film thickness. 

With the present scheme and cancelling out the square root singular terms in the elastic 

equations by equating the stress intensity factors, converged outlet solutions have been 

obtained from which the following conclusions can be observed: 

a).- The outlet pressure distribution is accurately described by the function: 

p = B [L- x]ln (~) 
a L-a L-a 

where: B and L are the only two constants which fully define the outlet pressures: 

B ~ -2/a but L unknown a priori. 

b).- As a consequence of (a) the exit bump joins the parallel :film shape with an internal 

angle of the film crease: 

-21rB -41r 
1/J = arctan( E ) ~ arctan( -E ) 

I Ci I 

Which is a different result from the one predicted by the Greenwood scheme where the 

square root central pressures make 1/J = 90°. The result is a half of the value predicted by 

Hall's second conclusion. However, Hall in an earlier article solves a rigid punch contact 

with also logarithmic pressures near x = a and finds an slope for the shape at that .point 

with the same result as the one given by the present theory. 

c).- Outlet solutions calculated with the present scheme show a more deformed exit 

bump (giving higher hmin) compared with the Greenwood scheme for equal values of 

I(L/a) and H* and resulting in larger outlet lengths L. This is due to the Greenwood 

assumption of no outlet pressures. 
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CHAPTER FOUR 

TRUNCATED HERTZIAN CONTACTS AND ITS 
APPLICATION TO EHL LINE CONTACTS. THE 
FULL SOLUTION 

Herein the concepts explained in Chapter 3 are used and extended to develop a complete 

schemefor the solution of the entire EHL geometry and are applied in practical cases. Full 

EHL solutions are compared with other authors' results; compressibility and the Roelands 

viscosity law are included in the analysis. Three different maps of collected solutions are 

also presented showing several authors' results for: central film thickness, location of the 

spike and the spike height as function of two dimensionless parameters, P and S. 

It is shown that a heavily loaded EHL contact can be separated for its solution in 

three parts: inlet, central (parallel film zone) and outlet. The replacement stresses theory 

described in Chapter 3 is now extended to include the elastic interactions outlet-inlet, 

continuity requirements and smooth join condition for the inlet-central pressures are also 

considered. In the outlet of the full EHL solution the square root singular term of the elas­

ticity equations in the RH side of the contact is no longer completely removed ( Mh # Mn) 

and the elastic consequences of this are also analysed. The inlet and outlet are solved 

for pressure and shape, then they are joined to the central region, including their corre­

sponding effects on internal stresses, via fracture mechanics. The analysis still assumes 

the pressure spike to be singular but its strength will depend on the load and velocity 

parameters. Only Newtonian lubricants are considered. 

In Chapter 3 it was found that for the special case of Mh = Mn the outlet pressure 

distribution behaves as a logarithmic function determined by two constants: the coefficient 

B 1 and the length L1 both approximately related to the given parameters ]( and H*. Here 
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it is found that this relationship still describes accurately the outlet pressures even when 

Mh # Mn. However, the relationship is not so accurate for Roelands viscosity law cases. 

In general, the final shape given by the present analysis is a combination of two pressure 

components related to the central region pressures: a square root singular term with 

coefficient Mh - Mn and a logarithmic term related to the outlet pressures. Therefore the 

right hand side of the pressure spike will be closer to a square root singularity for large 

values of Mh - Mn. 

The pressures and shapes obtained with the present scheme in general agree with 

reported solutions, however, for cases when the spike is located near the centre of the 

contact, the inaccuracy of the scheme increases and the spike location slightly diverges 

from reported results. This increase of error is due to the contradiction of the requirements 

between elasticity and hydrodynamics on the inlet-central pressures join, resulting in the 

removal of part of the inlet pressures to satisfy the continuity and smooth join conditions 

of elasticity. The analysis can be applied confidently for values of P > 7 and S > 2. 

4.1 General Double Truncation 

Following Greenwood and Johnson [29] 1989, the double truncation of a Hertzian 

contact to obtain a shorter Hertzian flat can be done easily by assuming an original flat 

from -e to +e (e.g. Fig. 4.1) the centre of which is on the line of the centres of the 

rollers, and from which the abscissa x, is measured. The double truncation is made at 

the points x, = -b and x, = +c producing in this way the new flat of total length 2a 

with its centre located at a distance d from the centre of the rollers and the abscissa x is 

measured from here. Therefore the outlet truncation (right hand side) starts at the point 

x =a with outlet pressures PR imposed and the inlet truncation (left hand side) starts at 

the end of the flat x = -a with imposed inlet pressures PL· 

Then from Fig. 4.1: d +a = b and a - d = c, thus: 

d=b-a ( 4.1) 

b+c=2a (4.2) 
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so that: 

b- c = 2d 

Xr =X- d 

L 
' 
~ 

x2 x 1 

'original' 
pressures 

Figure 4.1: Hertzian flat generated from double truncation 

(4.3) 

( 4.4) 

Now following equation 3.16 the final internal stress distribution after the outlet and 

inlet pressures have been removed is: 

(4.5) 

where (Mh)R and (Mh)L are the stress intensity factors M due to the removed right and 

left Hertzian portions of pressures. 

From now on a convention for the stress intensity factors will be adopted: superscript 

denotes the location of the stress intensity factor and subscript denotes the cause of it 

(e.g. PR or PL)· 

With the first truncation on the right, at Xr = c according to equation 3.13 the 

corresponding stress intensity factor is: 

the second truncation on the left, at Xr = -b the corresponding stress intensity factor is: 
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therefore: 

(4.6) 

Combining equation 4.6 with equation 4.1: 

(4.7) 

and also: 

(4.8) 

a).- Adding pressures on the right according to equation 3.7 gives internal stresses 

which near x f::J a are: 

O'Ji(x) f::J MffVa + x- PR( a)+ (Ml)JiVa- x 
a-x a+x 

(4.9) 

But near x f::J -a, these stresses are: 

( 4.10) 

b).- Adding pressures on the left gives internal stresses which near x f::J -a are: 

L L~ L~ O'L(x) f::j MLV~- PL(-a) + (Ml)LV~ ( 4.11) 

But near x f::J a, these stresses are: 

( 4.12) 

Therefore the total distribution of stresses after the replacement of pressures in the 

inlet and outlet when x f::J a is: 

O'J(x-> a)= O't(x) + O'Ji(x) + O'f(x) ( 4.13) 

And the total distribution of stresses when x f::J -a is: 

O'J(x-> -a)= O't(x) + O'f:(x) + O'~(x) (4.14) 

it is to say: 
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(4.15) 

4.1.1 Continuity Conditions 

In EHL only the inlet requires continuity conditions of pressure and smooth join, since 

at the outlet the 'spike' of infinite pressures is located. The conditions are obtained by 

analysing equation 4.15. 

a).- Inlet finite pressures: This condition requires to remove all the square root singular 

terms in the internal stresses for x ~ -a, therefore from equation 4.15 it is necessary 

that: 

Therefore equation 4.15 is reduced to: 

CT(x--> -a)= -QVa2 - x2 - PL( -a)+ (Mdf,v-x- a 
x-a 

b).- Inlet-central smooth join of pressures: It requires equal derivatives at x ~ -a 

d d 
-CTJ(x--> -a)= -pL(x--> -a) 
dx dx 

Now, for x ~ -a, xis negative and: 

and the term: 

Fa=X = fa+i = 
V~ v-;;:=; 
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Finally: 

- PL( -a) (4.18) 

Notice that for: Ja -lxl = 0 then io'!(x--+ -a)i = IPL(-a)i 

To have an inlet-central smooth join of pressures requires equal derivatives at x "" -a, 

and from equation 4.18 it implies: 

( 4.19) 

Therefore it is possible to write: 

which leads to: 

( 4.20) 

( 4.21) 

Finally after removing the singularities for the inlet, the final internal stress distribution 

for -a::; x ::; a can be written (see equation 3.23) as: 

( 4.22) 
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4.1.2 Deflections 

Applying pressures on both cracks the slopes of the elastic deflections on the outlet region 

are obtained by using equation 3.25: 

+M£Jx- a+ !:.y'x2- a21L' PL(x2) dx2 
x +a 1r x,;a (x2 - x))x~ _ a2 

Where for simplicity x 1 is measured positive from the centre of the flat (x = 0) up to 

the outlet length L1 and x2 positive from x = 0 to L2, however, x is unchanged, see Fig. 

4.1. 

Adding the effect of the removed Hertzian pressures in both sides: 

+!:_v'x2 _ a2 [1£' PR(xl) dx1 _ {L' PL(x2) dx2 ] 
7r x,;a (x1 - x))xr- a2 Jx,;a (x2 + x))x~- a2 

but in order to avoid an inlet pressure spike, it was said in equation 4.16 that: Mf: - (Mh)L = 0, 

so: 

1; 2 2 [1£' PR(xl) dx1 1L' pL(x2) dx2 ] + -vx -a -
7r x,;a (xl- x))xr- a2 x,;a (x2 + x))x~- a2 

( 4.23) 

For the inlet, a changes to -a, x to -x and L1 to L2 so, the elastic deflection slopes 

are: 

E' ('Jv)L = -DMJ-x- a 
2 8x -X +a 

+-vx2 -a -1. 1 2 [1£' PL(x2) dx1 1L' PR(xl) dx1 ] 
7r x,;a (x2 + x))x~- a2 x,;a (x1 - x))xr- a2 

( 4.24) 

Note that in the inlet the numerical value of x is always negative therefore in equa­

tion 4.24 the terms -x become in reality lxl. 
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After equations 4.23 and 4.24 are solved, the slopes are integrated to find the elastic 

displacements (i.e. Section 3.3.6). The constant term of equation 3.28: a2 /2R, can be 

written following Hertz theory as: 2a2Q/E'. For the inlet, the constant Q = p:fa can be 

arranged to satisfy the smooth join requirement of equation 4.20 for which: 

Finally it is important to point out that the integrals involved in the solution of pres­

sures, stress intensity factors and slopes are solved numerically with different methods; 

all of them are discussed in Appendix A. 

4.1.3 Non-Dimensionalisation 

Consider the following definitions: 

X=xja, V(X)=~~v(x), P= :;,p=p;p, P'=p:p' 

• • 7r • • R 
& = p;O', M= Mjp;, Mt = -

2 
Mt, !lM = (Mh)R- MR = DMjp; p; 

where p: is the maximum Hertzian pressure corresponding to a dry contact of length 2a. 

The non-dimensional forms for the elasticity equations 4.22, 4.23 and 4.24 are: 

UJ(X) = ,/1- X 2 + (Mt)fV~ ~~ + !lMV~ ~ ~ 
+ ~vl _ x 2 J,L!/a PR(Xt) dX1 

7r X,=l(Xt-X))Xi-1 
( 4.25) 

( 4.26) 

( 4.27) 
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With the stress intensity factors given by: 

( 4.28) 

( 4.29) 

' R lL,ja I J X1- 1 (M1)L =- PL(Xr) X 
1 

dX, 
X;-1 1 + ( 4.30) 

( 4.31) 

( 4.32) 

Finally from equation 4.20: 

( 4.33) 

and from equation 4.21: 
( 4.34) 

The Hertzian shapes from equation 3.28 and for the inlet also by substituting equa­

tion 4.21 they are: 

for the outlet: 

for the inlet: 

Vh(X) = g(lw·rh)L- ~(Mh)R }{ X(X2
- 1]112 -ln(X + (X2

- 1)112J} ( 4.35) 

4.2 Inlet Integration of the Reynolds Equation 

The inlet integration is very similar to the one carried out for the outlet (e.g. Section 3.4), 

but with the difference that in the inlet the pressures will always be considered finite. 

Hence the boundary condition for x = -a is that the pressures reach a maximum finite 

value, say p( -a)= Pi· Therefore from equation 3.31, the reduced pressures become: 
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( 4.36) 

and equation 3.34 is now written as: 
q(x) = qf -12U1)0 I(x) ( 4.37) 

Now at x = L2 (beginning of the inlet) p(L2 ) = 0, and q(L2) = 0, hence from equa­

tion 4.37: 
( 4.38) 

substituting equations 4.37 and 4.38 into 3.31 leads to: 

p(x)=-~ln{l+aq1 [~~;) -1]} ( 4.39) 

where I(x) and I(L2 ) are defined just like in the outlet but now integrating inlet pressures 

from -a to L 2 • 

Notice in equation 4.39 that the maximum value that qf can take is 1/a. 

4.2.1 Non-Dimensionalisation 

Following the outlet procedure of Section 3.4.1, equation 4.39 becomes: 

( 4.40) 

where: 

( 4.41) 

( 4.42) 

equation 4.38 becomes: 

( 4.43) 

finally equation 4.36 is written as: 

( 4.44) 
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4.2.2 Inlet Computational Procedure 

In the computational sequence for the inlet the constant P1 has to be fixed in advance 

and the new pressures are given by equation 4.40. Then to start the process it is easier 

to guess an initial shape rather than an initial pressure distribution, since for the inlet 

the shape is known to behave approximately as: V1(X) = c1X 312 (e.g. Crook [18]1963) 

where c1 is a given constant. So the inlet procedure is: 

a).- Suggest an initial guess for the shape: V1 = c1X 312 . Enter the values of: ](1 , H*, 

6.M and Pi> then calculate fiJ from equation 4.44. 

b).- Solve equation 4.40 for the new pressures P(X). 

c).- Calculate the value of (MJ)f from equation 4.29, then use equation 4.34 to calculate 

(M1hk 
d).- Solve equation 4.27 to find the slopes. Integrate the slopes to find the elastic dis­

placements V(X). 

e).- To calculate the final shape V1(X) add the proper Hertzian displacements from equa­

tion 4.35. 

f).- Return to (b) until convergence for pressures and shape is reached. 

4.3 The Central Region and the Full EHL Solution 

Two inlet and outlet pressure distributions and shapes will be part of the same EHL 

contact only if their variables: K, K1 and H* are equal. If it is the case, the central 

pressure distribution and shape are completely defined; and by integration of pressures it 

is possible to calculate the total load per unit of with w. 

So far, it has been shown how to obtain independently inlet and outlet pressure distri­

butions and shapes. However, according to the elasticity equations, the inlet and outlet 

deformations are dependent one from the other, so an iterative scheme which relates both 

solutions has to be defined. 

4.3.1 Computational Scheme for the Global Solution 

Start from the outlet with the already given values for K1 , H*, and 6.M, assume no inlet 

pressures. The procedure given in Section 3.4.2 then is followed to obtain the first outlet 

solution from which the factors (M1 )~ (equation 4.31), Mfi (equation 4.28) and (iih)R 
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(equation 4.32) are calculated and the constant !{ is obtained. 

Then the inlet is solved following the procedure of Section 4.2.2 and using the same 

outlet constants K1 and H*. Here a value of qf is required, it has to be chosen in order 

that the inlet constant K equals the outlet value. The factors (M1)f and (Mlh)L are 

calculated, and the smooth join of pressures can be satisfied. 

After this, the first outlet-inlet cycle has been performed and the process is started 

again until converged solutions in pressures and shape are obtained in both sides of the 

contact. Then the value of (M1h)L from equation 4.33 is compared with the one of 

equation 4.34 if there is a substantial difference, the values of the initial parameters K 1 , 

H* and D.M need to be changed and the whole process is started again. 

Finally the final central pressure distribution (internal stresses o"J(X)) can be calcu­

lated by using equation 4.25 and the pressures and shape from the inlet and outlet can 

now be put together with a parallel film thickness of value equal to H*. The complete 

procedure is shown in Fig. 4.2 

4.3.2 The Inlet-Central Pressures Join 

In Section 4.1.1 the conditions to obtain a smooth inlet-central pressures join were de­

scribed. These conditions are related only to the elastic requirements. However, hydro­

dynamics have also to be satisfied. 

Consider the inlet pressure distribution equation 4.39; then calculating by differenti­

ation the pressure gradient one obtains: 

p(x) = 
I(L2)[h• + VJ(x))3[1- aqJ] 

( 4.45) 

At the end of the inlet (x =-a) it is required that h = h* and therefore VJ( -a)= 0, 

and equation 4.45 gives: p'( -a) = 0. It is to say that the inlet pressure distribution ends 

always with zero gradients. 
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Figure 4.2: Complete scheme for the EHL solution 
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Note that to have a smooth join of pressures between the inlet and the central region, 

one would be forced to match the pressures at the first maximum value in the central 

region (at x = 0), where the gradient of the final internal stresses is also zero. However, 

there would be cases (when the spike is located near the centre of the contact) in which 

the central stresses would not exhibit such a point. Therefore it is more convenient to 

join the pressures before the centre line (x = 0); and with a non-zero pressure gradient. 

' :Pq 
P. ' I -,- O"c 

' ' ' ' ' ' 
X; X 

' 
I 
'-X 

PRESSURES SHAPE 

Figure 4.3: Inlet-central region join 

In order to achieve this, a smooth join of pressures is obtained by finding the points 

where both the inlet ( x;) and the central ( xc) pressure distributions have the same value 

for pressures and gradients, then arbitrarily the excess of the inlet pressures is simply 

removed, see Fig. 4.3. This of course, is equivalent to choosing, at the pressures join, a 

slightly larger film thickness (h1 ) than h* which strictly means a non-parallel film in the 

central region, however, since the elasticity continuity conditions are always satisfied, the 

removed portion of the inlet pressures is small and h1 f:::: h *. 

4.3.3 Change of Axis 

So far, the equations have been represented as functions of the abscissa x which is 

measured from the centre of the parallel zone, this is certainly convenient since the inlet 

ends at x = -a so the outlet begins at x = a and the equations are simpler. However, in 

practical cases it is more convenient to refer the location of the spike and other important 

points from the centre of the rollers (e.g. Fig. 4.1) and the convenient abscissa is Xr· This 
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variable and x are related by equation 4.4: 

Xr =X- d 

Substituting equation 4.1 it is possible to write: 

where from equation 4.7 bja is: 

which in dimensionless form is: 

b 
Xr=x-a(--1) 

a 

dividing equation 4.46 by a, the dimensionless form is obtained: 

where: Xr = Xr/a. 

b 
Xr =X--+ 1 

a 

Finally the location of the spike is given by equation 4.8: 

c 1 
- = 1 + -Q[(Mh)L- (Mh)R] 
a a 

which in dimensionless form is: 

where c is measured from the centre of the rollers, see Fig. 4.1. 

( 4.46) 

( 4.47) 

( 4.48) 

One must remember that the variable a (i.e. Section 4.1) represents half the length of 

the obtained Hertzian flat. One must also realize that neither the pressure distribution 

of width 2a nor the one of width b + e, necessarily contain the total EHL load w, see Fig. 

4.4. 

However, in common practice the abscissa and spike location are often non-dimensionalised 

as a function of the half contact length (bh) of the equivalent dry Hertzian contact with 

the same total load and with a maximum pressure Ph· 
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... --w-- .... w I 

----·~ '...!: \ 
' I 
: I 
' \ 

' ' ' ' ' 

Figure 4.4: EHL pressures compared· with the associate 
Hertzian distributions 

Therefore, from Hertzian theory: 

thus: 

also from Hertzian theory: 

therefore: 

N on-dimensionalizing: 

b = v8Rw. 
h 7r E' ' 

bh= ~ 
a VW: 

Ph • W • Wa 11' 
ph = -, w = -, w. = - = -

p; ap; ap; 2 

then substituting into equation 4.50: 

68 

( 4.49) 

( 4.50) 



TRUNCATED HERTZIAN CONTACTS AND ITS APPLICATION TO EHL LINE 
CONTACTS. THE FULL SOLUTION 

therefore equation 4.49 becomes: 

Finally, from equation 4.49 the new abscissa is: 

and the spike location becomes: 

Xr 1 [ b ] -=-X--+1 
bh Ph a 

4.4 Complete Solutions for Incompressible Lubricant 

(4.51) 

( 4.52) 

( 4.53) 

( 4.54) 

In this section, comparisons for complete solutions following the computational scheme of 

Fig. 4.2 with the results from other authors are shown. The first comparison is made with 

the examples 2 and 3 of Dowson and Higginson [21] 1977. The corresponding pressures 

and film thickness are shown in Figs. 4.5 and 4.6. The parameters of which are defined 

as: 
W = __:::__ = 4WKf. G = E'· U _ 7J0 u _ 4 Kf 

E' R G2 ' a ' - E' R - 3 K G4 

H _!!__8HKf. p _ p _K1 P 
D - R - Q2 ' D - E' - G 

The pressures and shapes from the present theory are shown in Figs. 4.7 and 4.8. And 

the corresponding parameters are given in Tables 4.1, 4.2 and 4.3. Table 4.2 gives the 

stress intensity factors involved in the calculation, notice that (M1h)L has two values: the 

so-called numerical, which is given by equation 4.34 with (1YJI)f: and (1~11 )~ calculated 

numerically; and the other, given by equation 4.33. In a converged solution they must 

be equal (or nearly equal) in order to satisfy the inlet smooth join condition. 
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Figure 4.5: Dowson and Higginson pressures for: W 
3 x 10-5 , G = 5000, V=O, 1) U = 10-13 , 2) u = 10-12 , 

3) U = 10-11 , 4) u = 10-10 , 5) u = 10-9 
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Figure 4.6: Dowson and Higginson shapes for: W = 3 x 10-5 , 

G = 5000, U=O, 1) U = 10-13 , 2) U = 10-12 , 3) U = 10-11 , 

4) u = 10-10 , 5) u = 10-9 

The pressures and film thickness distributions agree more or less well with the Dowson 

and Higginson solutions. The spike location obtained with the present theory is slightly 

shifted to the right hand side of the contact (i.e. Table 4.3). 
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Figure 4.7: Present scheme pressures, examples 2 and 3 
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Figure 4.8: Present scheme shapes, examples 2 and 3 

Differences in this parameter are common amongst authors, most of the times the 

reason is related to the numerical technique used or to the refinement of the mesh (e.g. 

Greenwood [28] 1972, Johnson [40] 1970), see also Section 4.5. However, specially for 

example 3, where the difference is about 11 %, the reason also could be that in the present 

theory the removed portion of inlet pressures begins to be important. 

The second comparison is made with three examples taken from Bissett and Glander 
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[6]1988 where the accuracy on the spike location and height is claimed to be very good. 

Their pressure and film thickness are defined as: 

p p 
PB =-=-; 

Ph Ph 
H 2Rh H 

B = bx =ph 

The pressures and film distributions from the reference are shown in Figs. 4.9, 4.10 

and 4.11. The corresponding pressures and shapes calculated with the present scheme are 

shown in Figs. 4.12 and 4.13 and further data are given in Tables 4.1 and 4.2. Notice that 

example C has been compared with the solution of example 2 of Dowson and Higginson, 

the input data are not very different. Bissett and Glander in their article clearly show finite 

pressure spikes (i.e. Section 4.5); whilst in the present scheme the spikes are considered 

infinite, however, it is believed this difference makes no effect in the comparison. 

Once again, the agreement in pressures and ·film thickness is good, but the values for 

the spike location from the present theory (e.g. Table 4.3) are slightly higher than the 

predictions by Bissett and Glander. In the worst of the cases, example A, the difference 

between the two results is about 35 %. However, Bissett and Glander report that for the 

same example Lubrecht [51] gives a value 30% lower and Okamura [61] gives a value 33 % 

larger. 

The central film thickness (e.g. Table 4.3) for example B agrees very well with the 

reference result. For example A the difference is about 10% smaller in the present theory. 

For example C the difference is only 6.5 %. 
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Figure 4.9: Bissett and Glander pressure and shape, example 
A, for: W = 1 x 10-5 , G = 4000, U = 10-11 
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Figure 4.10: Bissett and Glander pressure and shape, exam-
ple B, for: W = 1.125 x 10-5 , G = 4000, U = lQ-11 · 
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Figure 4.11: Bissett and Glander pressure and shape, exam­
ple C, for: W = 3.927 x 10-5 , G = 4000, U = 2 x 10-11 
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Figure 4.12: Present scheme pressures, Bissett and Glander 
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Example Bf Ltfa H* hmin/h* ]{1 [( flJ w ph 
D.+ H. 2 -0.152 1.571 0.130 0.763 10 25.359 0.0997 1.846 1.084 
D.+ H. 3 -0.187 1.571 1.300 0.770 8 0.822 0.1249 2.791 1.333 
B.+ G. A -0.565 2.529 5.800 0.794 2.700 0.031 0.3673 5.403 1.855 
B.+ G.B -0.566 2.724 6.500 0.781 2.700 0.031 0.3693 6.099 1.970 
B. +G. C same as D. + H. 2 

Table 4.1: Complete solutions. Parameters from the present scheme 

num. eq. 4.33 
Example !:::.M (M)~ (Jvh)R (M1)~ (Mlh)L (Mlh)L (Mh)L 

D. +H.2 0.0412 0.0424 0.0836 0.0683 3.7480 3.2729 0.0734 
D.+ H. 3 0.2350 0.1063 0.3413 0.1675 4.1474 3.6777 0.2144 
B.+ G. A 0.3780 0.5392 0.9172 0.8238 4.6197 4.5824 0.6858 
B.+ G. B 0.4250 0.5746 0.9996 0.8732 5.0770 4.7117 0.9405 
B.+G. C same as D.+ H. 2 

Table 4.2: Stress intensity factors 

Present Theory Dowson and Higginson (D. +H.) 
Example s p cjbh (Hv)min s p c/bh (Hv)min 

2 4.026 10.840 0.913 0.320 X 10 5 4.200 10.930 ~0.9 0.395 X 10 5 

3 7.591 10.664 0.655 0.205 X 10-4 7.470 10.930 ~ 0.6 0.200 x 10-4 

Present Theory Bissett and Glander (B.+ G.) 
Example s p c/bh H* B s p c/bh H* B 

A 5.483 5.008 0.414 1.686 5.980 5.046 0.301 1.86 
B 5.835 5.320 0.477 1.674 5.980 5.352 0.365 1.666 
c 4.027 10.840 0.913 0.111 4.041 10.000 0.866 0.130 

Table 4.3: Output data comparisons 

The parameters S and P are the dimensionless velocity and load, and they are defined 

as: 

( 4.55) 

( 4.56) 

Note that P = g2 and S = 2-114g4 ; where g2 and g4 are the dimensionless parameters 

used by Johnson [40]1970. 
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4.5 Maps of EHL Solutions 

Fig. 4.14 shows calculated central film thicknesses and for comparison collected results 

from other authors are also included; with the following references: Archard [2] 1961; 

Cheng [12]1972; Dowson and Higginson [21]1977; Myers [59]1991, Chittenden et al. [14] 

1986. Now following Kapitza [45]1955, the central film thickness is defined as: 

h* 

which is a convenient dimensionless parameter. The axes P and S, are defined by equa­

tions 4.56 and 4.55. 

In the introduction of the present scheme in Chapter 3 one of the main assumptions 

was discussed: the pressure spike is considered singular; therefore it is not possible to 

calculate its height. However, several authors (e.g Bissett and Glander [6]1988, Venner 

et al. [79] 1990) claim that with enough resolution in the mesh, it is possible to see the 

smoothness of the spike and its finite height. What is clear, is that as the values of the 

dimensionless speed and load are varied, the pressure spike becomes either smoother or 

closer to a singularity (see results in e.g. Venner [75]1991 and Myers [59]1990). Fig. 4.16 

shows a collection of results from several authors showing the spike height as function of 

the two parameters S and P. Where the further references are: Pan and Hamrock [50] 

1990 and Venner et al. [79] 1990. From Fig. 4.16 it is easy to see that compressible 

solutions give lower spike heights than equivalent incompressible ones. 

It is known that the present scheme is more accurate for pressure distributions which 

show nearly singular spikes, where the inlet zone is short (e.g. P > 7 and S > 2). 

Fig. 4.15 shows solutions for the spike location from the same authors as before but some 

results with the present scheme have been also included. 

The variable DM = (Mh)R- Mfi is a good measure of the singularity strength of the 

pressure spike, since D M is the coefficient of the square root term in the central area 

pressures of equation 4.22 (left hand side of the spike) and it is also the coefficient for the 

square root term of the elastic slopes on the right hand side of the spike, equation 4.23. 

Therefore if D M = 0 the pressure distribution near the spike on the central region side 

must behave only as a logarithmic singularity and eventually as a nearly logarithmic 

non-singular function. 
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Figure 4.17: Solutions obtained with D.M = 0 
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Fig. 4.17 shows the solutions found by the present scheme with 6.M = 0, so that 

there are purely logarithmic (i.e. rather weak) singularities. Above this line of solutions 

(for large values of 'P and S) it is impossible to make DM = 0 and it seems likely 

that the square root component will increase. Below the line the spike will be finite and 

smooth until eventually, for low values of P and S, it vanishes. The figure shows points 

representing the solutions obtained by Myers [59] 1991, using a method which can only 

be applied to cases with a finite and smooth spike, or no spike at all: note that, with 

one unexplained exception, all these points lie below, or very close to, the critical line. 

Johnson [40] points out that spikes can be expected for g4 > 2.2 (S > 1.85) and his 

conclusion is based on data with 'P ~ 10; it agrees well with the first point of the log 

curve of Fig. 4.17. 

Fig. 4.18 summarizes the trend of the singularity strength for the pressure spike. 

s 

Line of Purely 
Log. Spikes 

SINGULARITY 

STRENGTH 

Smooth Spikes 

Square Root 
Singular Spikes 

Square Root-Log. 

Nearly Singular Spikes 

Figure 4.18: Observed trend of the singularity strength in the 
pressures spike 

4.6 Compressibility 

The limitations for the applicability of linear fracture mechanics on the solution of trun­

cated Hertzian contacts have been pointed out in Section 3.1 where it is clear that the 

'contact' zone after the application of the external tractions must remain parallel. When 

in EHL the analysis considers compressibility, it is known (e.g. Dowson and Higginson 

[21]) that one of the effects is precisely that the central region shape is no longer parallel 
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but slightly curved. However, if the curvature is not large enough (say less than 10 %of 

h*) the application ofthe fracture mechanics equations would not be appreciably affected. 

Therefore it is useful to obtain a criterion to relate the amount of curvature in the central 

region under given conditions of load, so that the possibility of the application of the 

present EHL scheme can be assessed. 

In order to have parallel film thickness (h = h*) in the central region with constant 

lubricant velocity, the lubricant density has to be constant, since the constant mass flow 

IS: 

For standard values of fJ and 1 the Dowson and Higginson equation of density (e.g. 

Chapter 2) can be written as: 

p = !._ = 1 + 0.6p 
Po 1.7p+1 

( 4.57) 

where p is given in GPa . 

As a measure of parallelism of the channel it is possible to define a ratio of densities 

as: 

Pm in r=--
Pmax 

( 4.58) 

where the density Pmax is located at the pressures spike, then with Pmax = oo from 

equation 4.57: Pmax = 1.353, however, it is not realistic to regard the surroundings of 

the spike as part of the parallel zone (see Fig. 4.19). It is more accurate to take the 

first maximum of pressure p; (the maximum of the equivalent dry contact pressures to 

produce a flat of length a) which in dimensional form is: 

* Pmax = Pa = --
cxPh 

( 4.59) 

Now Pmin is unknown but one can assume that at the end of the inlet zone the pressure 

is a fraction Cq of p;, therefore: 

( 4.60) 
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then by substituting equations 4.59 and 4.60 into equation 4.57, equation 4.58 can be 

written as: 

p~(1.7 + 2.3Cq + 3.91Cqp;) + 1 r= ~~~~~~~~~~---
p;(2.3 + 1.7Cq + 3.91Cqp;) + 1 

A standard value of a is 17 GPa, so equation 4.59 is reduced to: 

with Ph given by equation 4.51. 

* p 
Pa = 17Ph 

( 4.61) 

( 4.62) 

It is also possible to find the value of p~, say fa which produces a minimum in r. So 

by differentiating equation 4.61: dr / dp; = 0, one obtains:· 

Examples: 

[Q.6 
Pa=y~ ( 4.63) 

a).- Cq = 0.3, from equation 4.63: Pa 

tion 4.61: Tmin = 0.9156. 

0.9233 GPa and substituting into equa-

b).- Cq = 0.5, from equation 4.63: fa = 0.7152 GPa and substituting into equa-

tion 4.61: Tmin = 0.9495. 

c).- Cq = 0.7, from equation 4.63: p-._ 

tion 4.61: Tmin = 0.9735. 

0.6044 GPa and substituting into equa-

It is clear than even for small values of Cq (e.g. Cq = 0.3) the minimum density ratio 

r is still near 1 (rmin = 0.91), it is 9 % of difference. Therefore it is likely that in most 

of practical EHL compressible contacts the error due to the parallel film assumption is 

small and the present theory can be applied. 

4.6.1 Analysis of Flow in Compressible EHL 

The Reynolds equation, as showed in Chapter 2, is based on a balance of mass throughout 

the channel. This condition has always to be satisfied. Consider an EHL contact which 

is divided in three zones (e.g. Fig. 4.19): inlet, ending at point '1', central zone from '1' 

to '2' and outlet starting at point '2'. 

The mass flow at the point 1 is given by: 
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Figure 4.19: Balance of flow in a EHL contact 

and for the point 2: 

equating flows: 

from which: 

or in dimensionless form: 

(h*)! = p2 (h*)2 
P1 

( 4.64) 

( 4.65) 

( 4.66) 

(4.67) 

In conclusion, equation 4.66 relates the 'central' film thickness calculated for the inlet 

with the one from the outlet, in compressible lubricants. This condition must be included 

in the present scheme. 
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4.6.2 The Exit Condition for Compressible Fluids 

When dealing with incompressible lubricants the parameter L1 was defined as the value of 

x for which the outlet pressures become zero and h = h* (it is VJ = 0). This parameter is 

important in the integration of the Reynolds equation foF the outlet and in the calculation 

of stress intensity factors and slopes. However, for compressible lubricants the conditions 

to calculate this length are affected by the densities: the pressure becomes zero when 

Poh = p*h*. 

Consider now the Reynolds equation for compressible lubricants: 

dq = 12 uVJ + h*(1- p*jp) 
dx 1)o . (h*+vJ) 3 

( 4.68) 

which in dimensionless form is: 

dq =[~1v1 + H*(1- P* lP) 
dX J{J (H• + V1)3 

( 4.69) 

from equation 4.68 it is clear that the Reynolds boundary condition: * = 0 and p = 0 

at x = L 1 will be satisfied when: 

Vj = -h*(1- p* jp) ( 4. 70) 

since v1 = h- h*, therefore the condition becomes: 

ph= p*h* 

or: 

p0 h = p*h* ( 4.71) 

Finally in dimensionless form equation 4.70 is written as: 

V1 = H*(p*- 1) ( 4.72) 

atX=L1 /a. 

It is no longer: V1 = 0 at X = L,j a. In the inlet L2 --t = and the condition makes no 

difference. 
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4.6.3 Compressible Complete Solutions 

The same procedure described in Fig. 4.2 has been applied for compressible fluids but 

now including the conditions of equations 4.67 and 4. 72 plus the compressible Reynolds 

equation (equation 4.69). 
t40 
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Figure 4.20: Venner pressures profiles for: L = 10, A) M= 2, 
B) M = 5, C) M = 10, D) M = 20, E) M = 50, and F) 
M= 100 
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Figure 4.21: Venner film shapes for: L = 10, A) M = 2, B) 
M= 5, C) M= 10, D) M= 20, E) M= 50, and F) M= 100 

Two examples of compressible lubricant with the Barus' law of viscosity are solved and 
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compared with the results of Venner [75]1991; obtained by using the Roelands equation 

instead. 

1.4,----------------"",-------, 
! 
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/ 

.L--·/ 

Figure 4.22: Present scheme pressure profile for: L = 10, B) 
M= 5, and D) M= 20 
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Figure 4.23: Present scheme film shapes for: L 
M= 5, and D) M= 20 
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The pressure distributions and shapes reported by the reference are shown in Figs. 

4.20 and 4.21. 
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Where the dimensionless parameters used by Venner are: 

M= W(2Utl/2 = V6WI<lfz 

L = G(2U)l/4 = (~)1/4 Kl 
3 J(l/4 

and his pressure and film thickness are defined as: 

The results with the present scheme for examples B and D plus the incompressible 

solution of example B are given in Figs. 4.22 and 4.23, with further data in Tables 4.4, 

4.5 and 4.6. 

Example B, Lda (H*)z (H*)l hmin/h* J(l J( flJ w ph 
B comp. -0.235 1.398 1.300 1.507 0.884 6.7 0.536 0.1491 2.546 1.273 
D comp. -0.092 1.104 0.165 0.192 0.869 17.0 23.893 0.0588 1.791 1.068 
B incomp. -0.214 1.528 1.200 1.528 0.793 7.0 0.653 0.1428 2.662 1.302 

Table 4.4: Complete solutions. Parameters from the present scheme 

num. eq. 4.33 
Example !:>.M (M)):l (Mh)R (M1)fl (Mlh)L (Mlh)L (Jvh)L 
B comp. 0.1300 0.1044 0.2344 0.1644 3.4920 3.5098 0.2988 
D comp. 0.0410 0.0211 0.0621 0.0337 3.0000 3.2391 0.0676 
B incomp. 0.1920 0.1171 0.3091 0.184 7 5.1000 3.6270 0.2130 

Table 4.5: Stress intensity factors 

Present Theory Venner 
Example s p c/bh (H:)z s p c/bh H* 

V 

B comp. 7.075 8.530 0.836 0.401 7.071 8.920 :::;; 0.700 :::;; 0.420 
D comp. 6.948 18.152 0.941 0.072 7.071 19.947 :::;; 0.930 :::;; 0.080 
B incomp. 7.035 9.113 0.694 0.420 - - - -

Table 4.6: Output data comparisons 

It is clear from Figs. 4.22 and 4.23 and Table 4.6 that the agreement of the present 

scheme is slightly better for the Venner's example D where the load is higher. Also in 
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Fig. 4.22 the effect of compressibility in EHL can be seen, since the spike has been shifted 

to the right hand side of the contact and the central film thickness reduced. If the solution 

had been obtained with a conventional numerical scheme, the reduction of the spike height 

would have been observed also. From Table 4.6 it can be seen that the present scheme 

gives slightly lower central film thicknesses than the Venner's values and locates the spike 

slightly more to the right side. 

4. 7 The Roelands Viscosity Law 

In Chapter 2 it was pointed out that for high pressures the viscosities predicted by the 

Barus' law become much larger than the experimental values observed. It was also pointed 

out that a more accurate relation is given by the Roelands' equation. In Fig. 4.24 the two 

equations have been plotted for values of the dimensionless pressure P. The disagreement 

is clear for large pressures. 

1) 
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2 2.5 3 

Figure 4.24: Comparison of viscosities between the Barus and 
Roelands' equations 

Despite this difference, the results for film thickness and pressure in EHL are little. 

affected, since for high pressures the viscosity is already too large and its reciprocal almost 

vanishes in the Reynolds equation. 

However, more recent results from literature frequently are obtained involving the 

Roelands' equation rather than the Barus' law and it is convenient to modify the present 

scheme to deal with it. 

89 



TRUNCATED HERTZIAN CONTACTS AND ITS APPLICATION TO EHL LINE 
CONTACTS. THE FULL SOLUTION 

In the present section the modifications are described and again comparisons with the 

Venner examples are made. 

4.7.1 The Reduced Pressure Equation 

The Roelands relationship was introduced in Section 2.2 from which: 

'T!(P) = exp {c [(1+ ~Y -1]} 
'T/o . Po 

( 4. 73) 

where: c = 9.67 + ln 'T}o; z is constant depending on the lubricant (here z will be taken as 

0.68) and p~ = 1.98 x 108 Pa. 

Substituting equation 4.73 in the reduced pressure equation 3.31 and differentiating 

it, so: 

integrating: 

dq dp 
dx = exp { -c [(1+ pfp~)"- 1]} dx 

q(p) = i:o exp { -c [(1 + pfp:y- 1]} dp 

(4.74) 

( 4. 75) 

The Barus equivalent of equation 4.75 (i.e. equation 3.34) was possible to integrate 

analytically, but in this case it is not possible. 

In dimensionless form, equation 4.75 becomes: 

. ;;P { [ K1P l} q(P) = exp -c (1 + -Y -1 dP 
P=O CZ 

(4.76) 

where K1 has the same definition (K1 = ap;). 

4. 7.2 Outlet Integration of the Reynolds Equation 

The Reynolds equation 3.33 is still valid, and in dimensionless form it is: 

( 4.77) 

with J( defined as before: 
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The first boundary condition is: At X = 1, q = q(1 ), so: 

q(X) = q(1) + 1~I(X) ( 4.78) 

where: 

l x v, 
I( X) = (H V )3 dX 

X=l * + f 
( 4. 79) 

And from equation 4.76: 

q(1) = ,
1
1 = lim {P exp {-c [(1 + K 1P )" -1]} dP (4.80) 

. 1~ 1 P-+oo j P=O CZ 

where K1 is defined as the equivalent constant K 1 for the Reynolds-Roelands equation. 

From equations 4.78 and 4.80: 

q(X) = L + ;{I(X) (4.81) 

The second boundary condition is: At X= L1 /a, P = 0. And from equation 4.78: 

( 4.82) 

where: 

( 4.83) 

and: 

( 4.84) 

Finally by substituting equation 4.84 into 4.81 it is possible to obtain: 

_ 1 [ I(X) l 
q(X) = K1 1 - I(Lda) ( 4.85) 

Equations 4.84 and 4.81 show that the main difference with the equations coming 

from the Barus' law (equations 3.43 and 3.46) is that K 1 has now been replaced by K1 . 
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4.7.3 Calculation of K1 

The constant K1 is defined in equation 4.80, which for general cases has to be solved 

numerically. 

Put: 

so, equation 4.80 becomes: 

1 1 lt (t ) ~-l ij(l) = v = lim r/ e-t - + 1 dt 
.11.1 P-+oo 11.1 t=O C 

( 4.86) 

it is to say: 

1 1 oo t LI 
ij(1) = K- = T/ r e-t(-+ 1). dt 

1 HI lt=O C 
( 4.87) 

equation 4.87 can be solved by using Gaussian quadrature (e.g. Handbook of Mathemat­

ical Functions [1]): 

which gives good results with n 2': 8 . 

Equation 4.80 is solved only once in the computational sequence for every example, 

since the value of K1 remains unchanged. 

4. 7.4 Analytical Solution for ij(X) 

For the particular case when z = 2/3 there is an analytical solution for equation 4.80; 

the equation can be written as: 

defining: 

then: 

P { [ 3K pl2/3 
} q = ec k=o exp -c 1 + T + c 

u= c(1 + 3KIP )2/3 
2c 
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integrating by parts equation 4.88: 

where: 

€ = Vc (1 + 3I<tP Jlf3 
2c 

and: er f( €) is the error function which is approximately: 

where n <:: 70 for values of 2 :::; € :::; 5 to obtain enough accuracy. 

( 4.89) 

( 4.90) 

Example: z = 2/3, c= 5.049, K 1 = 5, P = 7, then: € = 5.0568, erj(€) ~ erf(oo) = 1, 

and erf(y'C) ~ 0.9985 (with n = 85). 

From equation 4.89: q(P) = 0.21824920. From equation 4.76 integrated by Simpson's 

rule: q(P) = 0.21824930. And from equation 4.87 with P = 7 ~eo: q(P) = 0.21824936. 

The agreement is very good ! 

4.7.5 Computational Procedure for the Outlet 

The procedure is very similar to the one described in Section 3.4.2 except that now the 

integration of the calculation of pressures from the reduced pressures is made following 

several interpolations in order to relate q(X) with P(X). The scheme is shown in Fig. 

4.25. 

4. 7.6 Complete Solutions with the Roe lands Viscosity Law 

The inlet region is solved in the same way as before but now using the interpolation 

scheme described in Fig. 4.25. Notice the value of q1 for the inlet can now take values 

q1 :::; 1/ K1 • The overall computational scheme of Fig. 4.2 is still applicable. 

One example has been solved, the compressible Roelands example B given by Venner 

and already introduced in Section 4.6.3. Here the corresponding Roelands incompress­

ible and compressible solutions are calculated and as a matter of comparison the Barus 

solutions are plotted. Figs. 4.26 and 4.27 show the pressures and shapes for the incom­

pressible example B obtained with the present scheme, and Figs. 4.28 and 4.29 show the 

corresponding pressures and shapes for the compressible solutions of the same example. 
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Figure 4.25: Integration of the Reynolds equation with the 
Roelands viscosity law included 

Further data are given in Tables 4.7, 4.8 and 4.9. The solution can be compared with 

the Venner's results of Figs. 4.20 and 4.21 of Section 4.6.3. 

By looking at Figs. 4.26 and 4.27 (incompressible fluids) it is possible to see that the 

effect of the Roelands viscosity law is small and it tends to locate the pressures spikes 

slightly more to the left hand side of the contact ( ~ 6 %) and the central film thickness 

is now slightly reduced (~ 7.5 %), this is the same qualitative effect expected from a 

reduction of load, since the viscosity has been reduced. However, for the compressible 

case the qualitative effects seem to be the opposite (e.g. Figs. 4.28 and 4.29), the spike has 

been shifted to the right hand side of the contact and the central film thickness reduced. 

This must be the effect of the compressibility rather than the change of viscosity law for 

this particular example. In any case, these remarks should be taken cautiously, since it is 
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very difficult to match precisely the parameters S and P with a comparable given solution 

(i.e. Table 4.9) due to the fact that in the present scheme they are output variables. 
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Figure 4.26: Present scheme pressure profile for: L = 10 and 
M = 5. Incompressible example B 
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Figure 4.28: Present scheme pressure profile for: L = 10 and 
M = 5. Compressible example B 
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Example Bt LJ/a (H*h (H*)1 hmin/h* 1{1 1{ (j_f w 
B comp. R. -0.334 1.342 1.100 1.292 0.896 7.0 0.653 0.155 2.440 
B comp. B. -0.235 1.398 1.300 1.507 0.884 6.7 0.536 0.149 2.5461 
B incomp. R. -0.347 1.685 1.500 1.500 0.757 7.0 0.654 0.155 3.048 
B incom. B. -0.214 1.528 1.200 1.200 0.793 7.0 0.653 0.143 2.6624 

where: R.= Roelands and B.= Barus 

Table 4.7: Complete solutions. Parameters from the present scheme 

num. eq. 4.33 
Example b.. M (M)~ (Mh)R (M1)f1 (M1h)L (Mlh)L (Mh)L 
B comp. R. 0.1353 0.1203 0.2083 0.1885 3.4633 3.4687 0.2881 
B comp. B. 0.1300 0.1044 0.2344 0.1644 3.4920 3.5097 0.2988 
B incomp. R. 0.2217 0.1802 0.4019 0.2806 3.4654 3.7730 0.3053 
B incomp. B. 0.1920 0.1171 0.3091 0.1847 5.1000 3.6271 0.2130 

where: R.= Roelands and B.= Barus 

Table 4.8: Stress intensity factors 

Present Theory Venner 
Example s p c/bh (H:)2 1{1 s p c/bh H* V 

ph 
1.246 
1.273 
1.392 
1.302 

B comp. R. 7.035 8.724 0.866 0.361 6.439 7.071 8.920 >::! 0. 700 >::! 0.420 
B comp. B. 7.075 8.530 0.836 D.401 - - - - -

B incomp. R. 7.034 9.746 0.649 0.387 6.439 - - - -
B incomp. B. 7.035 9.113 0.694 0.354 - - - - -

where: R.= Roelands and B.= Barus 

Table 4.9: Output data comparisons 

4.8 The Outlet in the Full Solution 

4.8.1 The Outlet Pressures 

In Section 3.5.2 it was shown that for incompressible fluids with the Barus viscosity 

law, and when the square root term in the elasticity equations is removed, the outlet 
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pressures are accurately described by the function: 

p 

p 

p _ B [Ld a - X] l ( X - 1 ) 
- f Lda -1 n Lda -1 

2.5;--------------------~ 

[ncompressible, Barus 

2 - Pressures 

-- Approximation 

1.5 

0.5 

xja 

Figure 4.30: Outlet pressures from the complete solution for 
the B Barus incomp. example 

4 

3.5 Incompressible, Roelands J 
3 - Pressures I 

2.5 -- Approximation 

2 

xja 

Figure 4.31: Outlet pressures from the complete solution for 
the B Roelands incomp. example 

In a complete solution, since one is interested also in results away from the 'log. spikes' 

line of Fig. 4.17 then, the singular term cannot be removed and DM =I 0. For DM = 0 
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both the outlet pressures PR and the final internal stresses a f are logarithmic; otherwise, 

the internal stresses include a x-112 term and it is important to know if the final pressures 

are still accurately described by the same function as in Section 3.5.2. Therefore, a similar 

curve fitting was carried out for several Roelands and Barus law outlet solutions, with and 

without compressibility. It was found that the above equation is still very accurate for 

outlet full Barus incompressible solutions, but less accurate for the other cases (obviously 

for compressible solutions the density should be considered). Fig. 4.30 shows the outlet 

pressures from the Venner B Barus incompressible example compared with the above 

equation (with the corresponding constants first obtained by satisfying the equation in 

two values of X). Fig. 4.31 shows the corresponding comparison for the Venner B Roelands 

incompressible example. 

4.8.2 Relation BrK1 

In Section 3.5.3 an analysis was carried out to obtain the relationship between the 

outlet constant B 1 and the constant K 1 for the case when the singular term is cancelled 

6.M = 0. However, if the singular term for the displacements is taken into account (i.e. 

6.M # 0) then the corresponding displacements as X--+ 1 can be approximated according 

to equation 3.29 by: 

It is now convenient to approximate the non-singular component as X --+ 1 by: 

Since at that location the Hertzian displacements are zero, the final shape is approxi­

mated only by: 

(4.91) 

It was just shown in Section 4.8.1 that for Barus incompressible lubricants the approx­

imation for the outlet pressure distribution (equation 3.55) is still valid, so the procedure 

described in Section 3.5.3 can be followed. Therefore the following relations can be 

obtained: 

( 4.92) 
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(L / _ 1)_3; 2 = 3Kl ( v'2ill.MI + Dz) 
1 a 2IKI(H•)3 ( 4.93) 

Equation 4.92 can be used to provide the initial guess of the outlet pressures in the 

iterative process. Its agreement (incompressible Barus examples) with numerical solutions 

is very good, as can be seen in the previous full solutions, Tables 4.1 and 4.4. 

4.9 Conclusions 

Using the basic ideas from Chapter 3 a complete scheme to solve full EHL line contacts has 

been described. The inlet and outlet regions are solved for pressures and shape separately 

(but interacting elastically) by iterating the Reynolds and fracture mechanics equations. 

When the solution is converged, the central pressures are calculated by first truncating 

the original Hertzian contact on both its edges and then replacing the removed Hertzian 

portions of the pressures by the inlet and outlet EHL pressures. The replacement of the 

pressures is done with the use of linear fracture mechanics theory so that the continuity 

and smooth pressures join for the inlet-central regions are included. 

Originally the scheme is described for Newtonian incompressible fluids using the Barus 

law for viscosity; but later it is extended to account for Newtonian compressible and 

Roelands law fluids. Several solutions were obtained and comparisons with reported 

results were shown from which it is possible to outline the following conclusions: 

a).- The agreement of film thickness and pressure distributions by the present theory 

with reported solutions in the literature is in general good, specially for cases which show 

nearly singular spikes, where the inlet region is small (e.g. P > 7 and S > 2). This is 

because for large inlets the removed portion of the inlet pressures to ensure smooth join 

increases. The location of the spike is then directly affected. However, it is difficult to 

measure the actual effect of this error since the spike location varies some times within 

a very wide range among different authors for the same example. This is the case of 

Bissett and Glander example A where by the present theory the spike is located at 0.414, 

Bissett and Glander locate it at 0.301, Venner at 0.2 and Okamura at 0.4 (see Bissett and 

Glander [6]). 

b).- The known effects of lubricant compressibility in EHL solutions were observed: 

the spike moves towards the exit and the central film thickness slightly decreases. 

c).- The use of the Roelands viscosity law instead of the Barus one has small effects on 
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pressure and shape. It was observed that for an incompressible fluid the spike location is 

slightly moved towards the inlet and the central film thickness is slightly increased. 

d).- By solving a set of examples where the square root singular term was completely 

removed from the elasticity equations (fracture mechanics) it was possible to establish 

on a P-S map the boundary for purely logarithmic pressure spikes. By observing the 

behaviour of the square root term coefficient in many other solutions it was possible to 

figure out the probable behaviour of the spike within the map. For high values of P and 

moderate values of S the spike is expected to behave as a square root singularity, however, 

for small values of these variables the spike is expected to behave as nearly logarithmic 

function and for even lower values the spike tends to disappear (as shown by the Myers 

solutions). 

e).- For incompressible Barus fluids the outlet pressure distribution from a complete 

solution still behaves as: 

p = B [L1 - x]ln ( x - a ) 
£1- a L1- a 

where B and L1 are the only two constants required. And now B ~ -3/(2a) and L1 

unknown a priori. 

For Roelands incompressible solutions the above approximations are not so good. 

f).- No problems of convergence have been found in the computational procedure and 

typically one solution converges within 2 or at most 3 complete cycles inlet-outlet. 
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CHAPTER FIVE 

A MICRO-EHL ANALYSIS FOR LINE 
CONTACTS 

In previous chapters the mechanism which generates the pressure distribution and film 

thickness in a EHL line contact with perfectly smooth surfaces has been studied. So far 

the attention has been addressed only. to the macro geometry of the contact. However, in 

recent years the concept of micro-elastohydrodynamic lubrication (micro-EHL) has been 

developed after which the elaborate mechanism of lubrication of microscopic asperities 

has been studied . 

Since the rate of decrease of film thickness with increasing load is very slow, then 

from isothermal EHL theory it appears that there will always be a lubricant film of 

acceptable thickness between smooth surfaces. Therefore it is widely believed that failure 

of lubricated contacts is related to the roughness of the contributing bodies. 

Sophisticated theoretical analyses allow for the effect of roughness, either by a relatively 

simple statistical averaging like Christensen and Ti2Snder [16] 1971, Ti2Snder [60] 1984 or 

by the widely followed 'flow factor' method introduced by Patir and Cheng [62] 1978. 

An average Reynolds equation is introduced with flow factors incorporating the effect of 

the fluid flow passing on rough surfaces. Although originally developed for hydrodynamic 

lubrication, this flow factor method has been used to take into account the effect of 

roughness in an EHL line contact situation, e.g. Patir and Cheng [62], Tripp and Hamrock 

[74]1985, Sadeghi and Sui [70]1989. 

The biggest shortcoming of the flow factor method is to consider the surface roughness 

as rigid: when applied to EHL situations only the effect of elastic deformation on global 

geometry is taken into account. 
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Cheng, however, made one of the earliest calculations of the passage of an asperity 

through an EHL contact (Lee and Cheng [4 7] 1973), and found that it certainly did 

not pass unchanged: deformation takes place, which clearly throws doubt on models of 

'partial' EHL contact in which the initial surface roughness is retained. 

Recent advances in computational technique have enabled authors to study the 'be­

haviour of both transverse and longitudinal ridges or dents, or sinusoidal ripples, e.g. 

Kweh et al. [48]1989, Lubrecht at al. [52]1988, and with the inclusion of non-Newtonian 

and transient effects: Chang et al. [10]1989, Chang and Webster [11]1992. Full numerical 

solutions involving 'real' roughness in surfaces have been carried out assuming Newtonian 

behaviour, e.g. Kweh et al. [49]1992 and Venner [75]1991. 

Despite all these sophisticated theoretical analyses, very little has been completely 

understood about the behaviour of roughness in EHL contacts and the subject is the 

object of numerous studies. 

However, by considering an 'infinitely long EHL contact' instead of the finite 'Hertzian' 

region of a real EHL contact while retaining the characteristic mean pressure and viscosity, 

Greenwood and Johnson [30]1992 developed a simple model to explain the behaviour of 

transverse roughness in EHL; their conclusion was based on the hypothesis that sinusoidal 

induced pressures, corresponding to a not-quite sinusoidal initial roughness, correctly 

represent a sinusoidal roughness: here this criterion will be confirmed. In this chapter a 

steady state 'exact' solution for an 'infinitely long EHL contact' will be proposed which 

enables any (1-D) initial roughness to be studied , and in particular demonstrates that 

only the low wave number components of real roughness persist, so that in some cases a 

rough surface becomes essentially plane. 

5.1 Transverse Sinusoidal Roughness in Sliding EHL Contacts 

In their analysis, Greenwood and Johnson considered the roughness to be sinusoidal rip­

ples, perpendicular to the flow direction in pure sliding with the smooth surface moving 

with velocity u1 and the rough surface stationary (u2 = 0), and with small amplitude 

of roughness compared with its wavelength, so that lubrication was governed by the 

one-dimensional Reynolds' equation. They also relied on the findings of several authors 

(Goglia et al. [25]1984, Kweh et al. [48]1989, Venner [75]1991) that both a single ridge 

and waviness virtually disappear under EHL conditions and are replaced by pressure rip-
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ples. With a finite contact, the pressures are obtained numerically, but since in a wavy 

case the contact area has many ripples, Greenwood and Johnson just used the simple 

elastic solution for a half-space under sinusoidal pressure in order to find the deformation, 

as follows : 

It is well known (e.g. Johnson [41] 1987) that the elastic deformation of a half-space 

surface due to a pressure: 

P = Po +PI cos(27rx /A) (5.1) 

IS: 

(5.2) 

Since in a contact problem two surfaces are involved, and since the pressure which 

removes the roughness on one of them produces (if the two are the same material) a neg­

ative roughness of the same amplitude on the other, therefore the combined deformation 

is required: 

2-Api 
v = -E cos(27rxj.A) 

7l' I 
(5.3) 

Thus the amplitude of the pressure ripples needed to squash completely an initial 

sinusoidal roughness of amplitude z is: 

7r E' z 
PI= --v;- (5.4) 

In order to investigate the hydrodynamic mechanism in which those pressures are built, 

Greenwood and Johnson relied on the hypothesis that both the nominal film thickness 

h* and the mean pressure Po are known. So by substituting equation 5.4 into the 1-D 

Reynolds equation with the Barus' law for viscosity included and Newtonian fluid, they 

were able to obtain equations 5.5 and 5.6 : 

(5.5) 

(5.6) 
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where a is the amplitude of the deformed roughness . For ap1 < 0.5 the variation of the 

final shape is almost sinusoidal but, as ap1 increases the film thickness remains almost 

constant except for local excursions on either side of the pressure minimum, they referred 

to this kind of film thickness variations as 'Reynolds' ripples. 

When they applied the effect of compressibili ty in this analysis (using the Dowson and 

Higginson equation for density variation with pressure) they obtained equations 5.7, 5.8 

and 5.9: 

(5.7) 

(5.8) 

a= k2h* (5.9) 

where the final film thickness variation turned out to be sinusoidal since the compressibility 

effect is sinuidal always and bigger than the Reynolds ripples. 

Clearly the Greenwood and Johnson statement is a simple and useful criterion to 

help to understand the behaviour of roughness in lubrication. But also clear is its main 

shortcoming: it can only deal with almost sinusoidal initial shapes and exactly sinusoidal 

final pressures. 

In further sections the basic principles of this analysis will be extended to deal with 

any 1-D roughness and non-Newtonian fluids. 

5.2 Real Roughness Approach 

The basic assumptions of Greenwood and Johnson will be again used here, equally: the 

behaviour of the roughness in the Hertzian region of an EHL contact can be modelled 

by considering an infinitely large, nominally plane contact; the nominal film thickness is 

assumed to have been determined by conditions in the inlet, and the mean pressure will 

be assumed constant at a value related to the Hertz pressure. But now the Reynolds' 

equation for a compressible non-Newtonian lubricant (Conry et al. [17]) will be used: 
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h- ( *I )h* = [ Dh3] dp 
p p 121)u dx (5.10) 

where D is a non-Newtonian correction factor, such that when 7 0 --+ oo, D--+ 1 (Newto­

nian behaviour): 

and: 

u 

h dp 
tp = 27

0 
dx' 

(5.11) 

It will be assumed that the viscosity follows the Barus' law : 1) = 1)0e"P and the density 

obeys the Dowson and Higginson equation: 

1+!P 
p = 1+ ,Bp 

where : 1 = 2.266 x 10-9m2 IN and .B = 1.683 x 10-9m2 I N. 
For known pressures p, the film thickness h can easily be found from equation 5.10. 

Since the equation is only a cubic in h, an explicit solution is available: but for a step­

by-step solution iterating is more convenient. Although the overall EHL geometry of 

the contact is not considered, the elastic deformation of the roughness will be allowed to 

occur. 

For this infinitely long contact, the pressures can be represented by a Fourier integral, 

or in practice, by a discrete Fourier transform: 

N-1 21rxn N 21rxn 
p(x) = Po + I; En sin(-A-) +I; An cos(-A-) 

n=l n=l 
(5.12) 

the deflection of a half-space by a sinusoidal pressure p1 cos(21rx I A) is given by equation 

5.3 (combined deflection of the two bodies), therefore the deflection due to p(x) is: 

2.\ {N-1 En . 21rxn N An 21rxn } 
v(x) = V 0 + 1rE' ~ -;,-sm(-A-) + ~ -;,-cos(-A-) (5.13) 

and the number of points taken along x is defined as M = 2N. Finally the film thickness 

Js: 
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h(x) = h* + z(x) + v(x) (5.14) 

where z( x) is the initial, undeformed roughness and h* is the constant nominal film 

thickness, Fig. 5.1 . 

Figure 5.1: Infinitely long lubricated contact 

The work of Rice [67] 1944 suggests a convenient simulation of a typical engineering 

surface: 
nmax 

z( x) = 2:= Zn cos(2mrx /A + en) (5.15) 

where C:n are random phases (0 ::; C:n < 2n} For this surface the autocorrelation function 

IS: 
1 nmax 

E {z(x)z(x + ()} = 2 ?; z; cos(21rn(j ,\) (5.16) 

The RMS roughness 17 is then given by: 

( 5.17) 

5.3 Solution 

The solution of equations 5.10, 5.12, and 5.14 can be carried out by several approaches 

which are chosen according to the degree of numerical instability found in the particular 

case. High frequencies and high amplitudes of the initial roughness are specially harmful 

for the convergence process. However, in this section only the two most used approaches 

will be described. 
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5.3.1 The Direct Approach 

To solve step-by step the involved equations, one takes the Fourier expansion of the initial 

roughness z(x) and tries h(x) = h* as an initial guess, i.e. v(x) = -z(x). 

Equations. 5.12 and 5.13 give the corresponding pressures; equation 5.10 determines 

h(x) and finally equation 5.14 gives a new v(x) (diagram of Fig. 5.2). It proves that 

this scheme is unstable for higher wave numbers: but application of Aitken's method of 

extrapolation to successive set of iterates (i.e. Hamming [35)) improves the convergence. 

5.3.2 The Density Equation Approach 

In cases of higher amplitudes of initial roughness and short wave lengths, despite the use 

of Aitken's extrapolation, instabilities may persist; for those cases the above sequence can 

be modified. 

Defining : 

equation 5.10 becomes: 

where: 

now from equation 5.14 

h- [P(Po)/ p] ha= f 

ha = h (Pmox) P(Pmax) 
P(Po) 

v(x) = p(Po) ha- h*- z(x) + f 
p 

finally from the density-pressure equation: 

P(Po) =[1+/Po]l+,Bp 
p 1 + ,8 Po 1 + I P 

consequentially it is easy to find that: 
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where: 

C= 1-/3 
-;-:( 1-+--;/3:-'-Po-;--;) (.:.._1 +-1-P-.,.o) 

substituting equation 5.23 into equation 5.21 one obtains: 

v(x) + ha(P- Po)C =(ha- h*) +ha/ C(p- Po)Z + f- z(x) 
. 1 +! p 

Since V 0 is arbitrary one may ignore the constant terms. Thus from equations 

and 5.13 and applying FFT to the right hand side of equation 5.25: 

2,\ f. Pn ( 21rnxi) h C f. ( 21rnxi) _ f. ( 21rnxi) 
7r E' L.. exp ,\ + a L.. Pn exp ,\ - L.. qn exp ,\ 

n=1 n n=l n=l 

(5.23) 

(5.24) 

(5.25) 

5.12 

(5.26) 

where qn are the Fourier coefficients of the function in the right hand side of equation 5.25. 

And the Fourier coefficients for the pressures are giving by: 

(5.27) 

Equation 5.25 may be solved iteratively by using estimates of the pressure to find the 

right hand side and hence values of qn: equation 5.27 then gives improved values of the 

pressure (diagram of Fig. 5.3). 

For incompressible fluids : 1 = f3 and therefore C = 0. 
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ENTER: 

p0 , fi, s, E' 

INITIAL GUESS: 

v(x) = -z(x) 

APPLYFFTTO> v(x) 

TO OBTAIN: 

Pn, p(x), p(x) 

SOLVE REYNOLDS EQ. (5.10) 

FOR: h(x) 

NEW 

v(x) =h(x)-h'-z(x) 

NO YES 

FINAL SHAPE: 

h(x)- h' = z(x) + v(x) 

END 1 

Figure 5.2: Direct approach 
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ENTER: 

TJo, et, Po, h', z(x), To, 

Po, ii, s, E' 

w 
INITIAL GUESS: 

h(x) = h' 

1 
BEGlNNING OF ITERATIONS: 

MAKE (5.25) TO BE: 

ha! C(f-Pof +f(x) = z(x) 
+!P -r 

CALCULATE: 

qn = FFT[-z(x)] 

-~ 

OBTAIN Pn FROM {5.27) THEN 

OBTAIN p( X) FROM (S.I2). 

! 
APPLY FFT TO p(x) 

AND FROM (5.13) AND (5.14) 

OBTAIN h(x) 

t 
DISPLACEMENTES: 

v(x) = h(x)- h'- z(x) 

NO E YES 

l t 
CALCULATE: FINAL SHAPE: 

ha I C(f- Pof + f(x)- z(x) h(x) 
'---- +!P 

! AND APPLY FFT TO OBTAIN 9n 
[ END l 

Figure 5.3: Density equation approach 
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5.4 Convergence 

It was pointed out, in previous sections, that high values of amplitude and wave number 

in the original roughness z( x) may lead to numerical instabilities in the convergence 

process. The reason for the difficulties appear to be that when calculating pressures from 

displacements, the pressure coefficients are multiplied by the wave number: Pn = "~~"· n 

thus increasing the numerical error for high values of n. The situation gets worse if the 

initial amplitudes of shape are large, since this will make Pn larger and therefore the 

minimum value of p( x) would be closer to zero, where the analysis fails. 

An inverse scheme which obtains displacements from pressures necessitates the calcula­

tion of both pressures and pressure gradients from the Reynolds-Eyring equation ( 5.10). 

This involves the problem of finding the pressure at the beginning of the analysed interval, 

which turns out to be a very unstable process as well. 

It has also been observed that instability problems appear mainly in non-Newtonian 

cases. The Newtonian equivalents are in general very stable. So, rewriting the Reynolds­

Eyring equation by substituting equation 5.11 into equation 5.10: 

defining: 

therefore: 

writing: 

where: 

h* 1 
1- -(p* I p) = -

h 2 

R= 

h*(p*/p) 
h - -:;::-;-;---"--7--.!.-,------::­

- R(f-- cothtv) + 1 
p 

1 h* 

* h* dp 
t =-­

p 27
0 

dx 

and substituting into 5.29 : 
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h* [p* R] 
h = 1 - R coth tp p - t; 

(5.30) 

Expression 5.30 shows that h -+ oo as R coth ip -+ 1 ; and this may happen for large 

values of ip, iv and pure sliding conditions (s = ±2) since for such cases R-+ 1, and also 

coth tp -+ 1. When the viscosity is high t" is normally high (tv > > 40), and when * is 
large, also tp is large; it is typical of short wave length and high amplitude in the initial 

roughness, precisely the more numerically unstable cases. 

Continuing the analysis but now for a Newtonian fluid, the corresponding Reynolds 

equation is known to be: 

h- (p*jp)h* = h3- dp 
· 121)u dx 

(5.31) 

which does not show the nearly zero denominator for large values of * and numerical 

problems due to it are unlike to occur. 

5.4.1 Analysis of Numerical Error in the Process 

It is convenient to perform an error analysis of the iterative sequence in order to develop a 

convergence criterion. Appendix B shows the deduction of the error equations for a single 

iteration, equations 5.32 and 5.33; where r is the amplification factor of the numerical 

error per iteration in the direct approach. 

a).- Incompressible fluid: 

1rh* E' . [ R] 
r = ( T )

2 

2rot; (1- Rcoth tp) 
1 - t; (n

2

) 
(5.32) 

b).- Compressible fluid: 

r = h* [7rC2~' (n)] 
1- Rcothtp " 

(5.33) 

In both cases I r I< 1 to ensure convergence in the process. Since r = !(*'h) it 

will vary with x, however, in most of the cases with pure sliding R :::; 1 and for critical 

situations (r = rmax): tp = ip max and coth tp :::; coth ip max• 

In equations 5.32 and 5.33 r becomes uncontrollable as R coth tp -+ 1 but for incom­

pressible fluids it happens faster since the error is proportional to the square of the wave 
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number (n2), whilst for compressible ones the error is proportional only to the first power 

of the wave number (n). So incompressible cases are expected to be more numerically 

unstable and they certainly are. 

5.5 Non-Dimensionalisation of Equations 

A convenient non-dimensionalisation of the equations involved in this analysis would 

have to be independent of the Hertzian contact length and of the rollers radii, since it is 

concerned only with an infinitely long contact. 

So writing: 

H=h/h*, P=ap, X=x/L, p=pfpo, V=vfh*, Z=z/h* 

C3 = ah*E'/L 

L is the length studied in the Fourier analysis (i.e. the wave length of the fundamental 

component). 

Clearly for a Newtonian fluid the two EHL independent variables are : K and C3 , 

while for a non-Newtonian fluid the three independent variables are C1 , J( and C3 . 

Then, the Reynolds-Eyring equation 5.10 becomes: 

(5.34) 

where P1 = a(p- Po), D is still given by equation 5.11 but : 

(5.35) 

(.5.36) 

The discrete Fourier representations of p(x) and v(x) are: 
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where: 

N 

P(X) = Po + L Pn exp(21rniX) 
n=l 

N 

V(X) = v;, + L Vn exp(21rniX) 
n=l 

2 
Vn=-

0
Pn 

1l"n 3 

The error equation for an incompressible fluid is: 

1r
2
C1 C3 [1 R] ( )z 

r = t; (1- Rcothtp) - t; n 

and for a compressible fluid: 

where: 

Go= Cja 

5.6 Results 

(5.37) 

(5.38) 

(5.39) 

(5.40) 

In this chapter two sets of data are used to obtain the examples presented, the data 

are given in Table 5.1 and Table 5.2 . Data set 1 corresponds to a sinusoidal surface of 

amplitude Zmax and it is used to make comparisons among Newtonian, non-Newtonian, 

compressible and incompressible cases. Data set 2 corresponds to a real roughness sur­

face with maximum amplitude (zmax) and it is used to obtain solutions for compressible 

N ewtonian and compressible Eyring fluids. 
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Set no. To Po E' u h* Zmax L a 'f/o 

Mpa GP a GP a m/s f.lm f.Lm mm GPa-1 Pas 

1 10 1.0 227 25 0.7125 0.7125 2.4 14.8 0.01.79 

2 10 1.0 227 25 0.304 0.062 5.7 9.6 0.0024 

Table 5.1: Sets of dimensional data 

1 14.8 0.001 9.9441 X 10-10 0.997381 1.0 

2 9.6 2.77xl0-4 1.584x1o-7 0.11635 0.203 

Table 5.2: Sets of dimensionless data 

a).- Sinusoidal Roughness: 

With data set 1 from Tables 5.1 and 5.2, four solutions have been obtained to enable 

comparisons between Newtonian and non-Newtonian (Eyring) cases, as well as between 

compressible and incompressible ones for an initial sinusoidal roughness in pure sliding. 

For these examples it was taken L = 2.A, divided in 64 points. 

The amplitude of the initial roughness is more or less of the same size as the gap (central 

film thickness) which is supposed to pass through, but the elastic deformation which occurs 

makes this possible. For the present example roughness is very much flattened in all the 

cases but the Newtonian incompressible one is specially remarkable, Fig. 5.7. 

By comparing Fig. 5.4 with Fig. 5.6 and Fig. 5.5 with Fig. 5.7, one can see that the 

roughness amplitude reduction is less with non-Newtonian lubricant than the correspond­

ing Newtonian case, while in contrast the amplitude of the final pressure ripples are very 

similar indeed at least for the present example (this will be more extensively investigated 

in Chapter 6). 

With a Newtonian compressible fluid, Fig. 5.6, the shape is in phase with its initial 

shape and exactly 180° out of phase with the pressure (and therefore with the displace­

ments). The compressible non-Newtonian case Fig. 5.4, shows a final shape shifted in 

phase respect to its initial one. 
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Figure 5.9: Data set 1, non-Newtonian incompressible, ~f, tp and tv 

The Newtonian cases can be compared with the results predicted by Greenwood and 

Johnson's equations 5.4 to 5.9. According to them, for the incompressible lubricant the 

final amplitude of shape is ajh* = 2.97 x 10-7 and the amplitude of the pressure ripples 

P1 = 3.1333 while from the results of Fig. 5.7 is: aj h* f'::! 3 x 10-7 and P1 f'::! 3.0. For the 

compressible lubricant, according to Greenwood and Johnson ajh* = 1.436 x 10-2 and 

P1 = 3.089, while from Fig. 5.6 ajh* f'::! 1.5 x 10-2 and P1 = 3.0. Both cases show a good 

agreement with Greenwood and Johnson's approximate result. 

For the non-Newtonian examples the pressure gradients, tp and tv are important pa­

rameters in the convergence process, and they are plotted in, Fig. 5.8 and Fig. 5.9. It 

is possible to see that the difference between compressible and incompressible results is 

almost non-existent, the reason is that for this particular set of data the pressures turned 
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out to be very similar indeed. From these plots and equations 5.39 and 5.40 the error 

factors r are calculated: compressible r = 4.34 x 10-12 and incompressible r = 0.246. In 

both cases r is less than 1 for n = 1 with t; = 0.04 and R=l. Note that in the incom­

pressible case, for n > 4 the factor r > 1 but since the example is a sinusoidal case, the 

amplitudes of the high frequency pressure components are very small and therefore the 

numerical error does not show up. 

b).- Real Roughness: 

Data set 2 is used for this example, the initial roughness shown in Figs. 5.10 and 5.18 

has been obtained by applying equation 5.15 with nmax = 100 and 1024 points along the 

abscissa x. Both the Newtonian and non-Newtonian solutions have been obtained for a 

compressible lubricant. 

For the Eyring fluid, Fig. 5.10, shows a comparison between the undeformed and 

deformed roughness. The change is large, resulting in an almost fiat deformed surface, as 

is also true for the Newtonian case Fig. 5.18. However, an amplification ofthe final shapes, 

Figs. 5.11 and 5.19 shows that the high frequency amplitudes still remain. This is made 

even clearer in Fig. 5.17 where the values of the squared Fourier coefficients for the shapes 

have been plotted versus the wave number. Again the low frequency amplitudes are very 

much deformed, but the higher frequencies are relatively little changed. Another feature 

shown in Fig. 5.17 is that the coefficients line for the deformed shape is slightly curved 

at high n for all non-Newtonian cases. In contrast Newtonian examples always show a 

completely horizontal pattern. Note that the coefficients lines suggest that a roughness 

component with a wave number exceeding 100 (nmax value used to create the artificial 

initial roughness) would be magnified: certainly when such components are included, the 

iteration accumulates numerical error and fails. 

Fig. 5.12 shows the pressure variations for the Eyring example. A comparison with 

the Newtonian pressures Fig. 5.20 suggest that in both cases the pressures are similar but 

certainly they are not the same, as is clear from the different pressure gradients shown in 

Figs. 5.14 and 5.21. 

For the non-Newtonian fluid the parameters tp and iv are shown in Figs. 5.15 and 

5.16. For this real roughness case the wave length of the fundamental component has 

been taken to beL= 5.7mm, a large value for practical cases. A more realistic number 

would be perhaps ~L, and Fig. 5.13 shows the undeformed and deformed roughness for 
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this length. 
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Figure 5.10: Data set 2, non-Newtonian compressible, de­
formed and undeformed roughness 
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Figure 5.11: Data set 2, non-Newtonian compressible, de­
formed roughness 

The error factor for the non-Newtonian (compressible) case is: r = 1.711 x 1Q-3 (n) 

with t; = 0.0139 and R = 1 so, even if n = 500, r is still very small. The convergence is 

ensured in this example. 

Basically the general remark already made for the sinusoidal roughness example is still 

valid in real roughness: the roughness amplitude reduction is less with the non-Newtonian 

lubricant. The conditions which determine how much an initial transverse roughness is 

deformed are studied in Chapter 6. 
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Figure 5.12: Data set 2, non-Newtonian compressible, final 
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Figure 5.14: Data set 2, non-Newtonian compressible, pres­
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5.7 Conclusions 

A simple scheme to investigate the effects of 1-D real roughness and waviness in steady 

state EHL sliding contacts has been developed. Solutions have been obtained for wavy 

and real roughness surfaces and comparisons between Newtonian and non-Newtonian 

cases have been made as well as between compressible and incompressible ones from 

which the following conclusions can be obtained: 

a).- The roughness amplitude reduction is less with a non-Newtonian lubricant. 

b).- Newtonian cases show a final shape in phase with the original roughness and with 

a phase shift of 180° with respect to the pressures. In contrast, the final shape in non­

Newtonian cases is out of phase with the initial roughness and with a shift of phase less 

than Newtonian results with respect to the pressures. 

c).- For surfaces with real roughness the low frequency components are almost com­

pletely flattened after deformation which suggests that the basic assumption of 'partial' 

EHL models of retaining the original surface roughness could be suspect. 

d).- The basic hypothesis of Greenwood and Johnson that sinusoidal induced pressures, 

corresponding to a not-quite sinusoidal initial roughness, correctly represent a sinusoidal 

roughness, has been confirmed, since the results from the present analysis agree very well 

with Greenwood and Johnson model. 
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CHAPTER Srx 

ANALYSIS OF SHORT WAVE-LENGTH 
TRANSVERSE SINUSOIDAL ROUGHNESS IN 
MICRO-EHL 

The numerical difficulties arising from the solution of short wave length roughness in EHL 

problems have been explained in Chapter 5. It was said that the methods of solution 

described may have convergence problems especially when the roughness wave length A is 

short and the pressure gradients are high. However, it is important to be able to solve even 

short wave length problems in order to understand clearly the behaviour of the roughness 

in EHL. 

In this chapter one analytical solution and one new numerical scheme have been devel­

oped to deal with the difficulties. Firstly by assuming the roughness and pressure ripples 

to be sinusoidal and small, an analytical approach is developed to solve the linearised 

Reynolds-Eyring equation under heavily loaded conditions. This solution is also used 

as a first guess for one of the iterative schemes of Chapter 5 in order to solve unstable 

examples. 

Secondly a numerical scheme, the Two Point Boundary Value Problem (TPBVP) ap­

proach, is first used to solve a linearised Reynolds-Eyring equation and the method then 

extended to solve the full equation. The method is rather suitable for short A and low am­

plitudes with only non-Newtonian fluids. However, it becomes unstable when the pressure 

variations are large. 

With the help of these two schemes a criterion to describe the behaviour of the rough­

ness deformation as a function of the ratio Ajh is given. It is shown that for small ratios 

(A/h < 100) under elastic deformation and with the Eyring stress being 7 0 "'"5 x 106 Pa 
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the original roughness is preserved. 

Before describing the schemes and the relevant results, it is convenient to introduce 

two numerical examples of short wave-length transverse sinusoidal roughness which will 

be referred throughout the chapter. 

6.1 Short Wave-Length Examples 

The first example has been obtained from L. Chang (private communication), 1992 

and which will be referred in the future as 

E' = 2.20 x 1011 Pa 
V= 0.3 
a = 1.59 x 10-8 Pa-l 

To= 5 X 106 Pa 
'r/o = 0.04 Pas 
R = 0.0119 m 

Chang's example number 1: 

b = 167 X 10-6 m 

ii = 4 m/s 
h* = 0.65 x l0-6 m 
Po = 0.77 X 109 Pa 
,\ = 50.00 x l0-6 m 
Z1 = 0.104 X lQ-6 m 

The compressible solutions are shown in Fig. 6.1 and Fig. 6.2: 

:~------------------------------T: 

• .; 

• 0 

~~--~~--~----~--~r---~----+; 
-1.6 -1.0 -o.G o.o o.& 1.0 t.5 

DIMENSIONLESS x COORDINATE xjb 

Figure 6.1: Chang's example 1, Non-Newtonian Lubricant 
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Figure 6.2: Chang's example 1, Newtonian lubricant 

The second example has been obtained from L. Chang et al. [11]1992 and in future 

will be referred as Chang's example number 2: 

h* = 0.60 x 10-6 m 
A= 71.70 x 10-6 m 

with all the other data as in example 1. 

Po = 1.1 x 109 Pa 
z1 = 0.15 X lQ-6 m 

The compressible solutions are shown in Fig. 6.3 and Fig. 6.4: 

0 
.; 

~+-----r---~----~--~r----r----+~ 
-1.1 -1.0 -o.o o.o o.o 1.0 1.1 

DlllENSJONLESS X COORDINATE X I b 

Figure 6.3: Chang's example 2, Non-Newtonian lubricant 
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-1.1 -1.0 -0.1 o.o 0.1 1.0 1.1 

DIIIEIISIONLESS • COORDINATE X I b 

Figure 6.4: Chang's example 2, Newtonian lubricant 

The main .difference between the two examples is that for the second one the wave­

length and the amplitude of the initial roughness have been slightly increased, resulting 

in smaller nominal film thickness and larger maximum Hertz pressure. In all the cases 

the solution of these examples with the schemes of Chapter 5 proved to be very unstable. 

For both non-Newtonian solutions there is a remarkably small change in the shapes due 

to deformation and a correspondingly small amplitude of the pressure variations, despite 

the fact that the input data are not extremely different from the largely deformable 

examples of Chapter 5, except for the wave-length. However, Chang's Newtonian 

solutions show more deformable shapes and larger pressure ripples. Notice that Fig. 6.2 

shows already some numerical instabilities for the pressures, so the lack of symmetry of 

the ripples may be just a consequence of it. 

6.2 A Linearised Reynolds-Eyring Equation and its Analytical Solution 

6.2.1 Linearised Reynolds-Eyring Equation 

The Reynolds-Eyring equation for a compressible fluid was first introduced in Chapter 2: 

h- ( • I )h* = Dh3 dp 
P P 12rru dx 

(6.1) 

(6.2) 
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Here equations 6.1 and 6.2 will be reduced in complexity assuming situations where 

the pressure and film thickness variations are small and the mean pressure is high (thus, 

viscosities too). For such cases iv-+ oo and the radical in equation 6.2 becomes isi and 

if ip is not too big, then coth ip - l/iv ~ iv/3 so, D ~ I si iv = ~~~ou, finally equation 6.1 

will be approximated by: 

dp = 1270 ( 1 _ p*h*) 
dx hisi ph 

(6.3) 

which may be compared with the Reynolds equation for Newtonian fluid (D = 1): 

dp = 121)i1 (1 - p* h*) 
dx h2 ph 

(6.4) 

notice that T0 / isl replaces (17u)jh. And in pure sliding situation: s = ±2 and i1 = u1 /2. 

In a general form, it is possible to write equations 6.3 and 6.4 as : 

dp 13 p*h* 
-=-(1--) 
dx h ph 

(6.5) 

where B = (127]i1)/h for a Newtonian fluid and B = (12ro)/ isi for an Eyring fluid. 

However, it must be pointed out while that this equation is a good approximation for 

Eyring fluids, for Newtonian lubricants 1/ B becomes very close to zero due to the high 

viscosity and the equation is valid only when the pressure variations are small. 

Using the Dowson and Higginson equation for the density ratio : 

p* p* 1 + .81(P- Po) 
(6.6) - -

1 + "ll(P- Po) p p 

where: 
,8 

,81 = 1 +,Bp* 
I 

11
=1+/P* 

In order to make p* a known value it is convenient to take p* = p0 , so that p* becomes 

Pm which is the density under the mean pressure, therefore h* is redefined as ha , just as 

in equation 5.20. Then equation 6.5 can be written as: 

1-[£_]1+,8o6P =HBdP (6.7) 
H 1 + !o6P dB 

where: H = h/h, f1, = ha/h, 6P = a(p- Po), () = (27rx)/,\, B = (27rh)/(B>.a) and: 
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j3 - {3 
0 - <>(1+/3Po) 

/o = a(l.h Po) 

Taking the average values of h and 'IJ to calculate B, for Newtonian fluids: 

for Eyring fluids: 

B = JsJ hx 
6T0 Aa 

In dimensionless form, equation 6.9 and equation 6.10 become: Newtonian: 

Eyring: 

6.2.2 First Order Solution 

Assuming a sinusoidal final shape and small pressure variations: 

H = 1 + H1 cos () 

and by series: 
1 
H P:i 1 - H1 cos() 

and also by series: 

1 + f3o!::.P p; 1 _ ( _ j3 )!::.P 
1 + /of::.P /o o 

substituting into 6.7 : 

dp 
1 - !-'[1- H1 cos ()][1- (io- f3o)!::.P] = B(1 + H1 cos()) d() 

neglecting Hr cos()~~ and LP Hr cos() : 

Writing: 

dp 
1 - fL[1 -Hr COS() - (/o - f3o)f::.P] = B d() 
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!-!3 
C 0 = / 0 - f3o = --,o:(,--1 -+---,:/3 P-o ),...;-( 1,..-+-/-P-,-o) 

then: 
dP 

B dB - Cop6.P = 1 - p + H1 p cos e 

A cyclic solution requires p = 1 (first order approximation) : 

. dp 
B dB - Co6.P = H1 cos e 

Assuming: 

t:,p = Pb sin e + P. cos e 

by substituting 6.16 into 6.15 and solving: 

and: 

where: tan,P = -J,: =Go/B. 

p - J:lJ.JL 
b- B 2 +G' 

0 

6.P = J H, sin(B- ,P) 
Bz+cz 

0 

To obtain the displacements from the pressures: 

V = X = V/, sin e + V. cos e 

where: 

V.= AP. 

and: 
2,\ . 

A= =2/C3 1ro:hE' 

then since : 

H(B) = 1 + Z1 cos(B- rf>) + V/,sinB+ V.cosB 
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the amplitude and phase angle of the original roughness with respect to the final shape 

IS: 

z1 =)(HI- V.) 2 + V/,2 

-' = tan-1(--=YL) 
tp H1-Va 

(6.22) 

It is now possible to relate the final amplitude of shape to the initial one by substituting 

equations 6.17 into equations 6.20 and then substituting these into equation 6.22 to 

obtain: 
H1 )B2 + C~ 

-
Z1 V(Co + A)2 + B2 

(6.23) 

Equation 6.23 represents the solution for the amplitude of the sinusoidal film thickness 

H1 as a function of the amplitude of the sinusoidal original roughness Z1 . The pressures 

are given by equations 6.16, 6.17 and 6.18 and the displacements by equations 6.19, 6.20 

and 6.21, finally the phase angle of the original roughness respect to the final shape is 

given in equations 6.22. 

As an example of the application of this approximation Chang's example 2 has been 

solved and the solutions are shown in Figures 6.5 and 6.6, using the same scales as Chang. 

In the non-Newtonian solution, by comparing Fig. 6.5 with Fig. 6.3 it is possible to see 

the good agreement of the analytical scheme with Chang's solution. It is also remarkable 

the small deformation occurred for this case. For the Newtonian case, comparing Fig. 6.6 

with Fig. 6.4 also a good agreement of the solutions is observed. 

Finally, it is important to point out that in this scheme two main approximations are 

made: taking B constant and linearizing the densities in the first order solution. For 

non-Newtonian fluids, B is in general very small, therefore one can avoid the further 

linearisation by using the scheme described in the following section. 

6.2.3 The Analytical Solution as an Initial Guess for the Iterative Process 

In Chapter 5 numerical instabilities remained unsolved for wavy roughness examples with 

very short wave length. One very useful application of the analytical scheme is to produce 

a very realistic first guess of the solution for the iterative schemes of Chapter 5, in this 

way the convergence rate is increased and numerical instabilities reduced. 
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Figure 6.5: Chang's ex. 2 Non-Newtonian, linear solution 
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Figure 6.6: Chang's ex. 2 Newtonian, linear solution 

Taking the Newtonian example of Fig. 6.4 of Chang's example 2, and calculating 

the initial guess for displacements using the analytical scheme, then correcting it with the 

direct approach, a converged solution is quickly obtained in Fig. 6.7 . Fig. 6.8 shows a 

comparison of the analytical pressure variations and the corrected ones after the iterative 

scheme was applied and Fig. 6.9 shows the corresponding comparison of displacements. It 

is easy to see that there is great similarity between the iterative and analytical pressures 

of Fig 6.8, in both cases the amplitudes are almost the same. Perhaps the only noticeable 

difference is that with the analytical solution the pressures are approximated to a perfect 

sinusoidal, whereas in the iterative results it is possible to see that the pressures are not 
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perfectly sinusoidal. 

Fig. 6.7 agrees very well with the Chang's results of Fig. 6.4 in both pressures and 

final shape. 
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Figure 6.7: Chang's ex. 2, Newtonian. Direct scheme with 
initial guess from the analytical solution 

1.6,---~---~-=---~--~------~ 

1.4 

1.2 

0.6 

\, / 
• .... / 

xjb 

-Corrected 
(Direct scheme) 

- Analy. sol. 

Figure 6.8: Comparison of analytical and corrected pressures 
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Figure 6.9: Comparison of analytical and corrected displacements 

6.3 The Two Point Boundary Value Problem Scheme (TPBVP) 

Equation 6.7 is a linear ordinary differential equation and it also can be solved for P for 

example using a Runge-Kutta method. Since it is known that the film thickness is a cyclic 

function, then a cyclic pressure distribution is expected, but the value of the pressures at 

the beginning of the x interval is unknown and has to be calculated from the boundary 

problem itself, that is to say the boundary values are explicitly unknown. This problem 

is an special case of 'two point boundary value problems'. 

The process of solving equation 6. 7 can be started by first assuming an initial guess for 

H ( x), then the initial value of J.L can be assumed to be 1 and the value of the pressures at 

the edges of x can be approximated by the first order solution, equations 6.16 and 6.17 

such that : 

P(x = 0) = Pa + Po 

then equation 6.7 can be solved by Runge-Kutta. A function F is defined as : 

F = P(() = 0)- P(() = 21r) 

and applying a root finder algorithm (e.g. Newton-Raphson) the right value of J.L which 

ensures F = 0 (cyclic pressures) can be found and hence the corresponding pressures. 
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Figure 6.10: Two points boundary problem approach 
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Figure 6.11: Chang's Ex. 1, Non-Newtonian, TPBVP Solu­
tion, f1 = 0.99821 
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Figure 6.12: Non-Newtonian, TPBVP Solution, 
). = 83.1518 X 10-6 m, f1 = 1.00346 

After finding the pressures the displacements and film thickness can be calculated from 

elasticity. The process is described in Fig. 6.10 and the solution for Non-Newtonian fluid 

of Chang's example 1 (Section 6.1) is shown in Fig. 6.11. Notice that this scheme is 

only suitable for non-Newtonian fluids where the constant B in equation 6. 7 is appreciably 

non-zero. 
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Figure 6.13: Non-Newtonian, TPBVP Solution, 
,\ = 5.966 x I0-6 m, f.L = 0.97827 

Two more examples are shown below where the basic data have been taken again from 

Chang's example 1 but the wave length of the initial roughness has been changed. In 

Fig. 6.12 the roughness wave length has been increased to ,\ = 83.151 x I0-6 m, whilst 

in Fig. 6.13 it has been reduced to ,\ = 5.966 x 10-6 m, with no visible deformation !. 

There are two points to notice in this TPBVP scheme. One is that if one continues 

to increase the amplitude of initial roughness there is a value at which the root finder 

for f.L (Newton-Raphson) becomes unstable and the whole process fails. And the other is 

that as the wave length of the initial roughness is increased the amplitude of the pressure 

ripples also increases and at some point again the root finder fails. 

6.3.1 An Extension of the TPBVP Scheme for the Full Reynolds-Eyring 

Equation 

The full Reynolds-Eyring equation can be written as: 

where: 

dp p*h* 
qh-=1--

dx ph 

hD 
q = 127]1L 
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Figure 6.14: Chang's Ex. 1, non-Newtonian, full equation 
TPBVP solution, f1 = 0.99847 

According to 6.2.1 the linearised equation for an Eyring fluid implies: 

and defining : 

127"0 hD 
g=---

lsl 121)u 

it is possible to rewrite equation 6.24 as: 

BgHdP = 1 _ f1 1 + f3o!:>.P 
d(} H 1 + /of:>.P 

so that when g = 1 equation 6.26 becomes 6.7, with B still given by 6.10. 

By non-dimensionalizing: 

6!( D e-(P-Po) 
g= cl !si 

(6.26) 

(6.27) 

Equation 6.26 can be solved following the procedure described in Section 6.3, ea!-

culating g for every value of x. With this scheme Chang's example 1 was solved for the 

Non-Newtonian case, and the solution is shown in Fig. 6.14. By comparing Fig. 6.14 and 

Fig. 6.11 it can be seen that there is no appreciable difference in the results. 
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6.4 Analysis of Deformation for Sinusoidal Roughness 

Fig. 6.12 and Fig. 6.13 clearly show that increasing the roughness wave length while 

keeping the other parameters fixed gives as a result more deformation. The sinusoidal 

roughness examples of Chapter 5 show that in both cases, Newtonian and Eyring fluids, 

the initial roughness almost vanishes after deformation. 

The Chang's e:Xamples show that in the Non-Newtonian solutions, the original rough­

ness is almost completely preserved (Fig. 6.1 and Fig. 6.3), with very little deformation 

occurring and small pressure ripples. The enormous difference in final shapes between 

the Eyring examples from Chapter 5 and the Non-Newtonian Chang's examples which 

have no extremely different input data except for the wave length, arouses some questions 

about the importance of the wave length of the initial roughness in determining the final 

shape. In this section the attention is focused on the influence of A, or more precisely 

Ajh, in the behaviour of transverse roughness in EHL. 

In order to study the dependence of the solution on wave length, the data input of 

the Chang's example 2 were used except that the wave length was varied. The analytical 

solution of Section 6.2.2 has been applied to obtain solutions for compressible Eyring 

and Newtonian fluids. As a matter of comparison, the corresponding solutions using 

the Collocation Method of Appendix C and the incompressible results have been also 

obtained. The results are shown in Figs. 6.15 to 6.20, where Ac is the wave length used 

by Chang in the example 2. The amplitudes of the pressure ripples P1 , are plotted in Fig. 

6.15 and Fig. 6.16, the amplitudes of the elastic displacements VJ., are shown in Fig. 6.17 

and Fig. 6.18. Finally the amplitudes of the final shapes are plotted in Fig. 6.19 and Fig. 

6.20. 

By looking at Fig. 6.19 and Fig. 6.20 it is clear that for both Newtonian and Eyring 

fluids the amplitude of the final shape decreases when A increases, while for small values 

of A the shape remains undeformed; for Newtonian fluids to keep the shape undeformed 

requires much shorter wave lengths than for Eyring fluids. 

This effect cannot be understood by elasticity alone, since v1 = ;~,p1 , the elasticity 

equation suggests a linear variation between v and A which according to Figs. 6.17 and 

6.18 does not happen when hydrodynamics also are involved. 
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Figure 6.15: Non-Newtonian, amplitude of pressure ripples, 
Ac = 71.7 X 10-6 m 
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Figure 6.16: Newtonian, amplitude of pressure ripples, 
Ac = 71.7 X 10-6 m 

In general the linear theory and the collocation method of Appendix C agree well in 

predicting the final shape and pressures. However, when .A is very short and Newtonian 

fluid is considered there are differences in the results for the final shape and displacements, 

see Fig. 6.15. This differences could be attributed to the inaccuracy of the assumptions 

made in the analytical solution for large pressure ripples. 
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Figure 6.18: Newtonian, amplitude of elastic displacements, 
..\, = 71.7 x 10-6 m 

Figs. 6.15 and 6.16 show an important difference between Newtonian and non-Newtonian 

behaviour for the amplitude of the pressures ripples. While the non-Newtonian curves of 

Fig. 6.15 show a maximum value when ..\j ..\, ~ 3; the corresponding Newtonian results 

of Fig. 6.16 show that the amplitude of the pressure ripples always increases when ..\ 

decreases. 
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This effect is clearly due to the variation of viscosity with pressure . And in order to 

understand the reasons, consider equation 6.18. The pressure ripples amplitude can be 

approximated by: 

(6.28) 
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where the amplitude of the sinusoidal final shape H1 is given by equation 6.23; now for 

Newtonian fluids and high viscosity (from equation 6.9) B must be very small, so taking 

B = 0.0, equation 6.23 becomes: 

and equation 6.28 becomes: 

t:J..Pl = Hl 
Go 

(6.29) 

(6.30) 

According to equation 6.21 when,\ decreases, A also decreases and therefore (following 

equation 6.29) H1 increases, thus from equation 6.30 t:J..P increases as well. In an Eyring 

fluid B is not small and the behaviour is different. 

Now using only the analytical solution (Section 6.2.1) the effect of varying the mean 

pressure and therefore the mean viscosity will be analysed. Three different levels of mean 

pressure (Po = 7.95, Po = 17.49, and Po = 31.8) are used to obtain comparisons of 

Newtonian and Eyring solutions when the ratio >./his varied. Again the remaining data 

have been taken from the Chang's example 2. 
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Figure 6.21: Final shape amplitudes for different Po 

Fig. 6.21 shows the ratio of the initial and final amplitude of shape as a function of 

the ratio >.jh, and it suggests that the final shape in an Eyring fluid is barely affected 

by the value of the mean pressure for all values of >.jh, as expected: in the linear the­

ory (Section 6.2.1): the only effect of Po in an Eyring fluid is a minor change in the 
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compressibility. However, for Newtonian fluids a change of Po represents also a change of 
viscosity. 

Fig. 6.23 shows the dimensionless pressure ripple amplitude and it is easy to see 
that for high values of >.fh the pressure ripples will have nearly the same amplitude for 
Newtonian and Eyring fluids, which was already pointed out in Chapter 5. For Fig. 6.23 
Cp is defined as: 

The phase angle between initial and final shapes is plotted in Fig. 6.22 which shows 
that when >.fh is small the shift of phase is almost the same for the three different levels 
of P0 • Finally the pressure gradient is plotted in Fig. 6.24 from which similar conclusions 
to the pressures can be observed. 
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Figure 6.22: Phase angles between initial and final shape for 
different P0 

In order to extend the analysis to an assembly of wave lengths as in real roughness, 
one must replace in equations 6.9, 6.10 and 6.21 the wave length of the fundamental 
component>. by the wave length of then harmonic An= >.jn, since: Vn = n;~,pn, thus: 

Bn=nB An= A/n 

therefore equation 6.23 becomes: 
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(H1 )n jB~ + c; 
(Zl)n - j(An + Co)2 + B~ (6.31) 

The effect of varying the wave number n is shown in Fig. 6.25 which uses the basic 
input data from Chang's example 2. The critical dependence of the final shape amplitude 
on the ratio >.fh is clear. From Fig. 6.25 it can be seen that the amplitudes of the original 
roughness components remain practically unchanged for all values of >.fh. 
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Figure 6.23: Pressure ripples amplitudes for different Po 
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Figure 6.24: Pressure gradients amplitudes for different Po 

The roughness amplitude in the Chang's solution Fig. 6.3 is indeed unchanged; but 
this would no longer be the case if the wave length were increased by a factor 3. One can 
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show by studying equation 6.31 that, for plausible values of the parameters, the critical 
wave length for which the amplitude is reduced by a factor of 2 is given by the simple 
relation: 

~ > 1.6J E' /ro (6.32) 

thus, for Chang's nominal film thickness (example 2) h = 0.6 f1m, the critical wave length 
is ,\ > 200 f1m, in agreement with Fig. 6.25. 

Equation 6.31 answers the question put in Chapter 5: it is now possible to understand 
why in a real roughness contact, the low frequencies of the initial roughness disappear 
and only the high frequencies remain after deformation. 
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Figure 6.25: Variation of shape amplitude with the wave number 

6.5 Conclusions 

Two approaches have been described to investigate the behaviour of short wave length 
waviness in steady state EHL sliding contacts. The first one is an analytical solution of 
the linearised Reynolds-Eyring equation, which has proved to give good solutions for both 
Newtonian and Eyring fluids, however, its applicability is restricted by the linearisation 
assumption of high mean viscosity and small pressure ripples. Since it is an analytical 
solution there are no stability problems. The second approach is the Two Point Boundary 
Value Problem scheme (TPBVP) which can be used to solve both the full and linearised 
Reynolds-Eyring equations and its applicability is restricted to non-Newtonian fluids. 

Using the TPBVP scheme a numerical example with short wave length was solved, 
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the wave length of the original roughness then was varied while keeping everything else 

fixed. It was observed that when increasing the wave length, the deformation of the initial 

roughness and the pressure ripples amplitude also increased, whereas when reducing the 

wave length it was possible to obtain no visible deformation in the final shape. 

Applying the analytical scheme an important number of solutions have been produced 

by varying the roughness wave length for compressible Newtonian and Eyring :fluids. Us­

ing the collocation method of Appendix C a comparison with the results of the analytical 

scheme was made and some results for incompressible :fluids were also included. Am­

plitudes of the pressure ripples, the displacements and final shape have been plotted as 

well as the phase angle between initial and final shape; from which the following most 

important conclusions can be obtained: 

a).- For Eyring :fluids the deformation of the roughness is strongly dependent on the 

ratio >./fi. For small values of this ratio (>./fi < 100 with a fixed value of 7 0 = 5 x 106 Pa), 

the original roughness is expected to persist. 

b).- The amplitude of the pressure variations for Newtonian :fluids increases when >.jh 
is decreased. But for Eyring :fluids there is a maximum value of this amplitude after 

which it decreases when the ratio >.jh decreases. The maximum is more or less located 

at around >.jh = 200 (for 7 0 = 5 X 106 Pa). 

c).- In Eyring :fluids the variation of the mean pressure has little effect in the final 

shape whilst in Newtonian :fluids when the mean pressure increases the deformation of 

the roughness is increased. This is due to the mean viscosity, when the mean pressure is 

large, then B of equation 6.9 is very small for Newtonian :fluids. 

d).- For Eyring :fluids the phase angle between the initial and final shape decreases 

when >.jh decreases. For Newtonian :fluids this angle is zero. 
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CHAPTER SEVEN 

SUBSURFACE STRESSES IN MICRO-EHL 

The fatigue life of machine elements is directly related to their internal stress distribution. 

The first analysis of deformation and stresses in contacting bodies was carried out by Hertz 

[38] in 1882. The internal stress distribution of dry contacts with wavy surfaces has been 

studied by Westergaard [81] 1939, Dundurs et al. [23] 1973, and Michau et al. [57] 

1973. Real roughness in dry contacts was included only recently when the advances in 

computing and numerical techniques made it possible, e.g. Webster and Sayles [80]1986, 

Merriman and Kannel [56] 1989. 

Dowson et al. [22] 1962 were the first to calculate the overall stress distribution in 

smooth rolling EHL contacts. Goglia et al. [25] 1984 investigated the role of wavy 

surface irregularities on EHL sliding line contacts. Sadeghi [69]1991 shows a comparison 

of the effects of three rheological models on the subsurface stresses of real roughness 

lubricated bodies in contact, his approach solves simultaneously the Reynolds and the 

elastic equations accounting for the whole EHL geometry. 

In general, one important conclusion is obtained from all previous investigations men­

tioned above and dealing with roughness in elastic contacts: The stress fields show two 

high value zones: 

a).- A maximum shear stress, analogous to the classical and well studied Hertzian shear 

stress, located well below the contact surface. 

b).- A series of points of high stress distributed below the contact but very close to the 

surface and directly related to the asperities on the surfaces. 

In this chapter the attention is focused on the subsurface stresses related to the surface 

roughness; and Hertzian (or almost Hertzian) stress distribution related to the full EHL 
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geometry are omitted. Therefore the analysis is concerned with small depths and the 

micro-EHL pressure distribution from any of the schemes of Chapters 5 and 6 can be 

used in the calculation of the subsurface stresses. 

Once the pressures are known, the cartesian and principal stresses can be calculated by 

applying simple elasticity equations in a half-space assuming again the pressures to be an 

assembly of sinusoidal functions whose coefficients are obtained from a Fourier analysis. 

Numerical examples are shown for wavy and real-roughness surfaces, displaying the 

stress distribution at different depths to analyse their variation. 

Then the interest is addressed to the elastic shakedown theory which leads to the simple 

failure criterion: Txz :S: k. The orthogonal shear stress Txz is tested to be a Gaussian 

variable for small depths, so the standard 2S and 3S confidence limits and the usual rules 

for assessing the expected largest value are applied. 

7.1 Stresses Under Micro-EHL Pressures 

Since the attention has been focussed only on the stresses related to the surface roughness, 

ignoring the influence of the EHL geometry, then it is possible to consider an elastic 

half-space under the plane strain criterion loaded on the surface by a known pressure 

distribution, which is the addition of the mean constant pressure Po and the micro-EHL 

pressure variations related to the roughness, see Fig. 7 .1. 

p(x) 

Po p(x)- Po 

Ill J JL + 

Figure 7.1: Elastic half-space loaded with micro-EHL pressures 

The mean pressure will produce subsurface cartesian stresses, which are given by equa­

tions 7.1 (see Fig. 7.2): 
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where: 

17x = -~[2(82- 81)- (sin282 -sin281)] 

l7z = -~[2(82- 81)- (sin 282- sin 281)] 

x-a x+a 
tan81 = -- , tan82 = --

z z 

z = depth below the surface. 
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Figure 7.2: Constant strip of pressure on an elastic half-space 

For small values of z and for a --t oo equations 7.1 become: 

G'x ~ -po 

O'z ~ -po 

Txz ~ 0 

(7.1) 

(7.2) 

The pressure variations can be considered as an assembly of sinusoidal functions with ., 

amplitudes given by their Fourier coefficients. And from elasticity, it is well known that 

the cartesian stresses due to a pressure: p = Pn cos snx are given by: 

(7.3) 

( ) 
-SnZ ' 

Txz = -pn SnZ e SlllSnX 
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therefore, it is easy to find the cartesian stresses related to the pressure variations p( x)-Po 

by superposition of the contributions due to the separate Fourier terms. 

After calculating the cartesian stresses, the principal stresses can be obtained in the 

usual way: 

~ -~+T '-'1- 2 c 

,.... -~-T V2- 2 C 

7.2 Variation of Stresses with the Depth 

(7.4) 

Two examples of micro-EHL pressures both compressible and non-Newtonian, are used 

to show the variation of stresses with the depth. The first example is the sinusoidal case 

for which pressures are shown in Fig. 5.4 and the second one is the real roughness case 

the pressures of which are shown in Fig. 5.12. 

a).- Wavy pressure distribution (Fig. 5.4). 
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Figure 7.3: aux, au., cY.Txz, at xj L = 0.875 

Figs. 7.3 and 7.4 show the distribution of dimensionless cartesian and principal stresses 

for variable depth z/ L underneath the pressure maxima. Figs. 7.5 and 7.6 show the same 

variables but plotted underneath the pressure minima. 
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For the dimensionless stresses aax , aaz and aa1 , aa2 , aa3, the major changes 

occur at very small values of~~ L, however, when zl L-+ oo they will eventually vanish. 

From Figs. 7.3 to 7.6 it can be concluded that the shear stresses rxz and re show a 

maximum at some distance z I L ~ 0.083 below the surface, this would be typical for any 

other point along xI L. These maximum values will produce the high stresses zone which 

can be seen for Txz in Fig. 7.10. Since in failure theory what is important are the absolute 

values of the shear stress, this figure shows a 2-D plot of (arxz) 2. 

Figs. 7.7, 7.8 and 7.9 show the stresses aax, aaz and arxz plotted along xl L for two 

fixed depths. The amplitude of the stresses decreases as the depth increases. 
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b).- Subsurface stresses for a real roughness pressure distribution (Fig. 5.12). 

Figs. 7.11 and 7.12 show the dimensionless stresses a1'xz, aux and aqz distribution for 

a fixed location xj L = 0.35 and variable depth z/ L . Their behaviour is similar to the 

wavy pressure case (Figs. 7.3 and 7.5). Fig. 7.11 shows that the maximum value for the 
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shear stress Txz appears at zj L RJ 0.0035, it can be compared with the 2-D plot of (arxz) 2 

Fig. 7.17 to find that the zone of high stresses is located more or less at the same depth. 

In Figs. 7.13 and 7.14 the dimensionless stresses aux and au. (with standard deviation 

Sand mean f.L) have been plotted for zf L = 0.0035 (the high values zone for Txz)-

Figs. 7.15 and 7.16 show again aux and auz but for a larger depth, z/ L = 0.02. By 

comparing these figures with Figs. 7.13 and 7.14,the reduction of the standard deviation 

S and the disappearance of the high frequency components when the depth is increased 

is clear. 
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7.3 Elastic Shakedown Under Repeated Loading 

In three-dimensional state of stresses, two standard criteria to assess whether plastic 

deformation is going to occur are due to Tresca and von Mises. The first one assumes the 

deformation to be elastic if: 

(7.5) 

And von Mises criterion assumes elastic deformation if: 

where k is the yield stress in pure shear. 

However, considering a practical application of contacts under repeated loading, e.g. 

roller bearings, the bodies in contact resist many repeated passages of the load. If the 

first pass produces some plastic deformation in some points of the bodies it also intro­

duces residual stresses. When the load passes again the material will be subjected to the 

combined stress fields of the stresses due to the load and the residual ones left by the 

previous pass. In general the residual stresses are protective, thus they normally make 

it more difficult for yield to occur. In some cases after a few passes the residual stresses 

have been built up to such a degree that only elastic deformation is produced by subse­

quent passages of the load. This self protecting mechanism is known as shakedown under 

repeated loading. 

To investigate whether in the case of an elastic cylinder, rolling freely on an elastic­

perfectly-plastic half space shakedown occurs, it is convenient to follow Johnson [41]1987. 

Notice that in dry contacts only the rolling condition produces negligible shear tractions, 

however, in lubrication even sliding produces negligible shear tractions. 

According to Johnson the condition to avoid continously plastic deformation is: 

Txz :S k (7.7) 

and the attention will be focused on the orthogonal shear stress Txz. 
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7.4 Normality Test for the Orthogonal Shear Stress 

Looking at Figs. 7.13 to 7.16 where the cartesian stresses corresponding to the real 

pressures example are shown, it is clear that at any given depth they must be some sort 

of random variable. 
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In Chapter 5 the micro-EHL pressure distribution for a real roughness contact was 

obtained from an assembly of an 'infinite' number of sinusoidal functions (as suggested 

by Fourier theory), so that by the Central Limit Theorem these pressures are expected 

to be a Gaussian variable and the stresses must also be Gaussian at least at small depths 

below the surface. Therefore it is interesting, specially for the case of Txz, to investigate 

whether it really behaves like a Gaussian variable in order to apply the standard rules for 
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assessing the largest expected value attained. 

In order to test the 'Normality' of the variable Txz it is convenient to plot some of 

its histograms at different values of of the depth z and compare them with the Normal 

distribution curve scaled in such a way that its area equates the area of the histogram 

(area of the histogram = 1). 

The scaled Normal density function would be: 

where: FN =is a coefficient selected to match the areas. 
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It is also convenient to calculate from the histogram parameters like the skewness 

(sk) and the kurtosis (ku) and compare them with the known values for the Normal 

distribution (sk = 0, ku = 3). 

Figs. 7.18 to 7.21 show the histograms at different depths zl L for arxz of the same 

real pressure example. It is possible to see that in the two first cases (small z) Figs. 7.18 

and 7.19 the variables arxz are quite Gaussian, their skewness and kurtosis are very close 

to the Gaussian values. However, when the depth increases (Figs. 7.20 and 7.21) the 

histograms began to be non-Normal, also the values of the skewness and kurtosis diverge 

from the Gaussian values. 

This behaviour is explained since it has been seen that increasing z has the same 

effect as filtering the high frequency components of the stresses, so at the end, only low 

frequencies remain, therefore the histogram is 'one-sided'. 

Similar tests were carried out to the remaining cartesian and principal stresses finding 

similar behaviour as arxzi they are also Normal for small z. 
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Figure 7.22: Standard deviation ratio (2S I Sv )of arxz vs. z I L 

7.5 Largest Value Attained 

Since it has been proved that for small values of the depth z, the orthogonal stress Txz 

is a Gaussian variable, then the standard 2S and 3S confidence limits (where S is the 

standard deviation of arxz) can be used to asses the expected largest values under the 

shakedown criterion under repeated loading. 
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Figs. 7.23 and 7.24 show the plots of CtTxz at two depths below the surface for the same 

real pressures example. Sp is the standard deviation of the surface pressures ap, for this 

example Sv = 0.089. 

Fig. 7.22 shows the variation of 2S/ Sv with depth zf Land suggests that the maximum 

stress Txz will probably occur at z/ L = 0.0035 with a 5 percent probability of the value 

0.61Sp being exceeded. 

Comparing Fig. 7.22 with the 2-D plot of Fig. 7.17 it is possible to observe a good 

agreement in the location of the zone of maximum stress. 
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7.6 Conclusions 

The subsurface stresses for a micro-EHL line contact with wavy and 'real' pressures have 

been calculated by assuming an elastic half-space and by ignoring the over-all EHL ge­

ometry. The scheme used is based on the idea of superimposing the stresses calculated 

for each of the sinusoidal components of the micro-EHL pressure in addition to the mean 

pressure. 

The following conclusion can be obtained: 

a).- For real roughness EHL contacts, the orthogonal subsurface shear stress at small 

depths was shown to be a Gaussian variable. 

b).- Once having proved that the internal stresses under real roughness pressures are 

Gaussian variables, it is always possible to apply the standard 2S and 3S confidence limits 

to asses the maximum expected value. For instance, in Fig. 7.22, if ak = 0.6lSp, there is 

5 percent of probability that Txz exceeds k and shakedown no longer occurs. Notice that 

the maximum stress is given statistically by a probability and by an approximate depth 

of location, rather than by a specific value and location x,z. 

c).- The shear stresses always show a maximum value zone below but very close to the 

surface. This zone of high stresses is related only to the surface roughness. 

d).- When the depth below the surface is increased and after the zone of maximum 

stresses the sta~dard deviation of the stresses and the high frequency components are 

reduced. 
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CHAPTER EIGHT 

TRANSIENT ANALYSIS OF SURFACE 
WAVINESS IN MICRO-EHL 

In Chapters 5 and 6 some analyses concerned with the behaviour of transverse roughness in 

micro-EHL line contacts have been described. However, those analyses are only complete 

for the pure sliding situation in which the rough surface is stationary and the smooth 

surface is moving. 

Unfortunately, in the real world most EHL contacts, e.g. gears, cams, roller bearings, 

etc. involve combinations of sliding and rolling and in any case the rough surfaces are 

not stationary. Therefore to complete the analysis, it is necessary to include the tran­

sient effects also. In this chapter a contribution on the understanding of the physical 

phenomenon of transient micro-EHL is made. 

Transient micro-EHL investigations have been carried out only recently due to the com­

plexity of computational and experimental resources required. Perhaps the first transient 

analysis of surface irregularities in EHL was made by Lee and Cheng [4 7] 1973, but the 

assumptions made limit very much their results. Later analyses (some of them including 

non-Newtonian fluids) have been made by Chang et al. [10] 1989, Xiaolan and Linqing 

[82]1989, Lee and Hamrock [50]1990. 

Transient analyses of single asperities as well as of one wavy surface in EHL for a 

Newtonian fluid were made by Venner [75]1991, Venner et al. [77]1991 and Venner and 

Lubrecht [76]1992. And the simulation of two-sided surface waviness has been carried out 

by Lubrecht and Venner [53] 1992. Experiments with surface irregularities in transient 

situations have been also carried out, e.g. Kaneta et al. [44] 1992. 

However, the physical understanding of the behaviour of surface irregularities in EHL 
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is just beginning to emerge. Venner [75] 1991 states that in heavily loaded transient EHL 

contacts, since the viscosity is very high, the solution of the Reynolds equation reduces to 

h ~ h(x- ut), so consequently the film thickness irregularities caused by surface features 

e.g. indentation, bumps, waviness, etc. travel with the average velocity of the lubricant 

u, regardless the velocity of which the surface feature itself moves. This has interesting 

consequences specially for sliding situations. For example, consider the case where the 

two surfaces are moving with different velocity and a dent or a bump located on the 

surface is moving with the lower velocity. In the Hertzian region of the contact, since 

h ~ h(x- ut), the changes in the film thickness induced by the feature upon its entrance 

to the Hertzian region will be propagated through the contact with the average velocity. 

This implies that the effects are propagated faster than the feature itself travels through 

the contact. Venner also concludes that the pressure disturbances travel with the velocity 

of the feature which generates them. So for the contrary case, where the feature moves 

with higher velocity than the average velocity of the lubricant, a delay in the film thickness 

respect to the pressures is observed. 

In this chapter a theoretical investigation of the phenomenon is described bringing to 

light some interesting results. It is shown that the full transient solution of the micro­

EHL problem is made of two parts: a) the moving steady state distribution of pressures 

and film thickness related to the squashing of the original roughness (particular integral), 

plus; b) a complementary function of film thickness which generates its own pressure 

distribution and which represents the film thickness modulation due to the roughness 

entering in the contact, so that its wavelength is directly related to the slide-roll ratio. 

Therefore the Venner's conclusions of film thickness disturbances travelling with u and 

pressure disturbances with u, become just a special case of a more general understanding 

of the phenomenon. 

The importance of the inlet in determining the amplitude of the film and pressures 

modulations is now clear. Every time that a roughness ripple enters into the contact it 

produces a reduction and later an increase of the film thickness at that particular point, 

so the entering lubricant flow is modulated in the same way, producing disturbances 

of film and pressure which will be transported with the average velocity of the lubricant 

(according to the arguments ofVenner). However, this is only one part ofthe phenomenon; 

these modulations are added to the deformed shape and corresponding pressures produced 
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by the steady state squashing of the roughness, and the result of this sum is the transient 

shape and pressure distributions. Therefore for special cases (Venner's examples) where 

the 'steady state' situation produces very much deformed shapes with large pressure 

ripples, the complete transient solution will appear having the film thickness produced 

by the inlet modulations (large amplitude) and moving with u together with the pressure 

ripples from the steady state solution (large amplitude) and moving with the velocity of 

the rough surface. 

Once again, to facilitate the analysis the real contact with maximum Hertz pressure 

Po is replaced by an infinitely long contact with known mean film thickness h and mean 

pressure taken to be equal to Po. The Reynolds-Eyring equation is linearised and solved 

by using finite differences. 

Firstly, the moving steady state solution will be obtained for both cases: one and 

two-sided surface sinusoidal roughness using Newtonian and Eyring fluids. This solution 

predicts satisfactorily the distribution of pressures and in the case of two-sided surface 

roughness also the deformation; but does not predict the current film thickness. 

Secondly, the complementary function from the inlet is included in the case of one-sided 

sinusoidal roughness and the effects of varying the slide-roll ratio and the rheology of the 

lubricant in the full transient solution are shown. However, since the contact is considered 

to be infinitely long (the full EHL contact geometry is not considered), no natural way to 

include the inlet modulation of the film thickness exists, therefore the analysis requires 

an assumption about the amplitude of this modulation, from which the solution for the 

wavelength is then obtained. 

8.1 The Physical Phenomenon 

Moving roughness in EHL contacts produces modifications in the film thickness and pres­

sures which are important to understand in order to model the situation. In these cases, 

the inlet of the contact plays a major role in the modulation of the amplitude and wave­

length of the final shape. 

Consider an EHL contact with the upper rough surface moving with velocity u2 and 

the lower smooth surface moving with velocity u1 as shown in Fig. 8.1. To deform the 

original roughness a pressure distribution has to build up, just as in the steady state and 

this pressure will travel with the velocity of the original roughness u2 and will modify 
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the film thickness which will also travel at u2 • However, the roughness at the inlet of 

the contact is much less deformed than down stream (because of the lower pressures), 

and every time that a roughness ripple enters into the contact it will produce a varia­

tion in the film thickness at the inlet affecting the lubricant flow, and generating in this 

way a film thickness disturbance which will be transported down stream at the average 

velocity of the lubricant. Such film thickness disturbances will necessarily generate corre­

sponding pressure disturbances also travelling at u. Finally the film disturbances will be 

added to the moving steady state film thickness and the same will occur to the pressure 

disturbances, see Fig. 8.1. 

p VVVVV\M 
+ 

__ ____,,._ Ut 

Moving steady state Inlet disturbances Transient solution 

Figure 8.1: Final transient pressures and film thickness 

Notice that in Fig. 8.1 the moving steady state solution associates small film rip­

ples with large pressure ripples, because in general the original roughness is very much 

deformed, resulting in large pressure amplitudes; whilst the inlet disturbances associate 

large film ripples with small pressure ripples, because in general the incompletely deformed 

inlet roughness produces large amplitude shape and small pressure ripples. However, this 

situation may change in cases where even in the central zone the original roughness is 

little deformed (due to its short wavelength or to non-Newtonian behaviour of the fluid). 

In many heavily loaded contacts with relatively long-wavelength roughness and New­

tonian fluid, the initial shape is very much deformed by the 'steady state' pressure ripples 

which have a large amplitude. For these cases, in the transient situation only the inlet 

modulation would be visible and therefore the conclusion already made by some authors, 

e.g. Venner and Lubrecht [76] 1992 that final pressures travel at u2 whilst film thickness 

travels at il, is essentially correct. However, in cases where the initial roughness is not so 
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much deformed by the steady state pressures, so that the shape is of the same order as 

the inlet disturbances, the results are different. 

What is also completely clear is that the wavelength of the inlet modulations of the 

film thickness and pressure will depend directly on the average velocity of the lubricant 

and therefore on the slide-roll ratio. 

For pure rolling where there is no relative velocity between the two surfaces and 

u = u2 = u1 the inlet disturbances will have the same wavelength as the initial rough­

ness, and they may change the phase and the amplitude of the final shape but not its 

wavelength. 

However, when the rough surface travels with higher velocity than the smooth one, then 

the film thickness and pressure modulations due to the inlet will have a shorter wavelength 

than the initial roughness. Finally, for the case when the rough surface travels with lower 

velocity than the smooth surface, the inlet disturbances will have larger wavelength than 

the initial roughness. 

The geometry and velocity of the final shape and pressures will depend on the ampli­

tude of both the inlet disturbances and the steady state shape and pressures. 

8.2 The Transient Reynolds Equation 

The Reynolds equation for line contacts including the squeeze term has been introduced 

in Section 2.1.5 for Newtonian :fluids. However, a more general equation which includes 

Eyring fluids is equation 2.12: 

where D is the non-Newtonian correction factor defined in Section 2.1.7. 

It is important to recognise the components of the film thickness when rough surfaces 

are in movement. For this new situation the film thickness h(x, t) is given by the addition 

of the mean film thickness h, the elastic displacements v(x, t) and the moving initial 

roughness, see Fig. 8.2: 

(8.1) 

and the film thickness is now a function of the location x and the timet. In equation 8.1, 
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v(x, t) represents the combined elastic displacements of the two surfaces and is related to 

the 'steady state' pressure ripples. 

Throughout this analysis the average film thickness h will be assumed constant in time. 

However, a more complex analysis should remove this assumption; for example consider 

a finite contact which in a particular instant of time carries the total load distributed in 

say, 5 positive and 4 negative pressure ripples, an instant later, the contact may carry 

the same load with 4 positive and 5 negative pressure ripples. This of course produces a 

variation of the mean pressure and therefore a variation of the mean film thickness. 

Figure 8.2: Film thickness in moving rough surfaces 

8.2.1 Linearised Reynolds Equation 

By writing r =ph/ Po and B = r~~', equation 2.12 can be written as: 

(8.2) 

the linearisation is based on the assumption that the viscosity is high (high pressures) 

therefore B is small so that it can be considered to be constant and given by the mean 

values of its parameters: 'r/m, h, rm; D will have different values according to the rheology 

of the lubricant. 

a).- Eyring Lubricant 

When the pressure and film thickness variations are small and the mean pressure is 

high, it was shown in Section 6.2.1 that: D ~ (lslryu)j(hro), therefore B becomes: 

(8.3) 

b).- Newtonian Lubricant 

For Newtonian lubricants, the situation is different, D = 1 and: 
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(8.4) 

It is important to point out that the Eyring linearisation is valid for moderately large 

pressure ripples but the Newtonian one only for rather small ripples. This is in fact useful 

since for Newtonia,n fluids iJ is very small (B P:J 0) so it simplifies even more equation 8.4. 

Finally, the linearised transient equation can be written as: 

(8.5) 

A further simplification can be done in equation 8.5. The density ratio equation, 

following Section 6.2.2 can be linearised to give: 

where Go is given by: 

! P:J aC0 b.p + 1 
Pm 

,-(3 
C 0 = -a (,.,-1-+-(3::!--p--,-o )7( 1_+_/_P---,-o) 

and Pm is the mean of the density ratio p = pf Po· 

Therefore: 

with small film thickness variations: 

therefore: 

f)Zp 1 [EJ2r __ iJ2h] 
OX2 hCoCXPm 8x2 Pm 8x2 (8·

6
) 

Substituting equation 8.1 with: C = 1/(haC0 pm) and v(x) = Ab.p, where A=;£, 
g1ves: 

(8.7) 
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Finally substituting equation 8.7 into equation 8.5: 

(8.8) 

where: 
.86 eT= A A 

1 +CA,Om 
Equation 8.8 is a form of equation 8.5 which can be solved by using finite differences. 

8.3 Steady State Moving Solution 

In this section two finite difference methods to solve equation 8.8 for r will be described. 

The schemes do not account for the inlet disturbances of real transient micro-EHL yet, 

but they form the basis of a more complete solution to follow. 

8.3.1 Explicit Method 

In this scheme the time derivatives will be discretized using forward differences and the 

space derivatives using central differences. The dashed variables (r', z~, z~, etc) will 

represent values at the present step of time, the undashed variables ( r, z1 , z2 , etc) will 

represent values at the previous step of time. 

The subscript j will represent the grid index in x direction. So: 

fJr r'·- r· J J 
fJ2r Tj+1 - 2rj + Tj-1 

-
fJt b.t fJx2 ( b.x )2 

fJr Tj+1 - Tj-1 fJ2z Zj+l - 2Zj + Zj-1 
fJx2 = ( b.x )2 fJx 26.x 

substituting these equations into equation 8.8 and solving for rj: 

rj = (::) 2 CT {rj+1- 2rj + Tj-1- Pm[(z2)j+1- 2h)i + h)j-1]+ 

ub.t 
,Om[(z1)j+1 - 2(z!)j + (z1)j-1]}-

2
/:;.x h+l- Tj-1) + Tj (8.9) 

Equation 8.9 is an explicit formula for rj and it is completely defined for each value 

of j, except for the edges. 

Consider that in x there are n - 1 grid cells and n points, then assuming sinusoidal 

roughness: (z1)o = (z1)n-1i (z1)n+1 = (z1)2, equally (z2)o = (z1)n-1i (z2)n+1 = (z2)2. 

However, the behaviour of r is unknown, and there are at least two possibilities: 
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a).- Since the roughness is cyclic, one could expect that r will be also cyclic at any 

time, thus: 

(8.10) 

b).- At the edges r is free so an extrapolation is useful. Newton's backward extrapolation 

formula gives good results: 

(8.11) 

In practice, equations 8.10 and 8.11 give the same steady state moving solution for r, 

which suggests that in fact the steady state r for sinusoidal roughness is cyclic. However, 

equations 8.11 will be useful for the full transient scheme where r is no longer cyclic. 

It is important to point out that for the case of equal two-sided surface sinusoidal 

roughness, the explicit method is not self-starting. If at t = 0 the shapes are in phase 

(since h = constant, thus ~'i+l = ~'i-l = l'j and (z2 )j = (z1)j, so rj = rj) and some other 

method must be used for this situation. 

In general for Newtonian fluids the explicit method is numerically stable when L'l.x 

and L'l.t are small enough. For non-Newtonian fluids the stability is very much reduced. 

However, its application remains valid for calculating the boundary conditions in the 

implicit method when r is not cyclic. 

8.3.2 Implicit Method 

A much more stable solution of equation 8.8 is provided by a general implicit method. 

Consider that ~~ behaves linearly between the consecutive times t- L'l.t and t, also consider 

that ~~ at a certain time (t- L'l.t) + fJL'I.t inside this interval (where 0 ::0: f) ::0: 1) can be 

approximated to r~r, therefore using linear interpolation it is possible to show that: 

(8.12) 

This general equation of finite differences can be particularized according to the value 

of f) to produce different well known schemes; see Table 8.1; (e.g. Reddy [65]1984). 
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value of() scheme in time convergence 

0 forward differences conditionally stable 

1/2 Crank-Nicholson unconditionally stable 

2/3 Galerkin unconditionally stable 

1 backward differences conditionally stable 

Table 8.1: Various schemes for the general implicit method 

Choosing properly the value of () it is possible to improve the numerical stability of 

the solution in any particular case. The most stable schemes are Crank-Nicholson and 

Galerkin but () can take any other value if required (here it was used () = 2/3). For() = 0, 

equation 8.12 is reduced to the explicit method (forward differences in time). 

For the implicit method, the following difference equations will be used: 

substituting these equations into equation 8.8 and then substituting the result into equa­

tion 8.12: 

-BQz[rj+l- rj_1] + (1- B)Q1b+1- 2rj + rj-1J + (1- B)Q1.0m[(zz)j+1- 2(zz)j + (zz)H] 

+ (1- B)Q1.0m[(z1)j+1- 2(z1)j + (z1)H]- (1- B)Qz[ri+1- rj-1]- rj + rj = 0 (8.13) 

where: 

Equation 8.13 has been obtained for a point j, in the same way taking j = 2 ton -1, 

gives a linear system of equations: 

[A] {r'} = [B] {r} + [C] { z~} + [C] {zD + [DJ { zz} + [D] { zt} (8.14) 
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where the symbol [ ] represents matrices and the symbol { } vectors. For example: 

A1 Az A3 0 0 0 0 0 
0 A1 Az A3 0 0 0 0 

[A]= 0 0 A1 Az A3 0 0 0 

0 0 0 0 0 A1 Az A3 (n-2)xn 

and: 

{c'} J ·~:·) l 1 nxl 

where: 

similarly: 

The right hand side of equation 8.14 can be reduced to a known vector {G} and the 

system can be written as: 

[A] {r'} = { G} (8.15) 

· where {r'} is the unknown vectorfor the present time values of r. 

In order to be able to solve the system 8.15 the boundary conditions have to be 

specified. For sinusoidal roughness, once again: (z1) 1 = (zr)n and (zz)I = (zz)n· 

Now for the boundary values in {r'} it is possible to follow at least two ways: 

a).- Method 1: The variable r is assumed to be cyclic, so: 

in =it ; ~~ = r~ 

and 
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therefore in the system 8.15 one more equation is needed for the point j = n, which 

becomes: 

{A1 A2 Aa} { r~~ 1 } = { G~=1 } 

and the equation for the point j = 2 then can be written: 

so the new system of equations is: 

A2 Aa 0 0 0 A1 rl n Gn 
A1 A2 A a 0 0 0 

I . 
rn-1 Gn-1 

0 A1 A2 Aa 0 0 = (8.16) 

Aa 0 0 0 A1 A2 (n-1)x(n-1) rl G2 2 (n-1)x1 (n-1)x1 

where: 

Gj = j[(z1)j, (z2)j, (z1)j, (z2)j, rj] 

Since the matrix [A] is tri-diagonal with additional elements in the upper right corner 

(A1 ) and the lower left corner (A3 ), the system can be solved efficiently by using a modified 

Thomas algorithm, e.g. Hirsch (39] 1988. 

b).- Method 2: The boundary conditions of {r1
} are free and can be calculated by using 

the explicit method with the extrapolation condition (equations 8.11) for r0 and rn+1· 

Then the values of r~ and ri will be known and the system 8.15 is reduced to: 

A2 A a 0 0 0 0 
I 

rn-1 Gn-1- A1r~ 

A1 A2 A a 0 0 0 
I 

rn-2 Gn-2 
0 A1 A2 Aa 0 0 = (8.17) 

0 0 0 0 A1 A2 (n-2)x(n- ) rl G2 -Aari 2 (n-2)x1 (n-2)x1 

and it can be solved by using the unmodified Thomas algorithm for tri-diagonal systems. 

For the moving steady state solution the answer obtained by using (a) is the same as 

the one from (b), which shows that the steady state r is indeed cyclic. However, (b) will 

be useful in the full transient solution when r is no longer cyclic. 
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8.3.3 The Solution for H and P 

Once the solution for the variable r has been found, the analysis can be completed with 

the calculation of the film thickness and pressures. In this section the procedure to do 

this is described. 

It was shown in Section 8.2.1 that from the linearised density ratio equation: 

therefore by substituting equation 8.1 into 8.18 with v = A6.p: 

and solving 8.19 for 6.p: 

where: 

-b+ vb2 - 4ac 
6.p = --'-:----

2a 

c = Pm(z2- Zt +h)- r 

a= cxACoPm 

(8.18) 

(8.19) 

(8.20) 

From equation 8.20 the pressure variations can be obtained and from them the density 

ratios calculated: 

Finally, the film thickness can be obtained by: 

8.3.4 Two-Sided Surface Roughness Results 

a).- Newtonian Fluids 

(8.21) 

(8.22) 

In order to show the results obtained for the case of two-sided surface roughness with 

Newtonian fluid it will be convenient to use perhaps the only example so far available 

in the literature: Lubrecht and Venner [53]1992, which describes two sinusoidal surfaces 

moving with different velocities: 
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b = 5 x 10-4 m 
u = 0.97 m/s 
h = 0.355 x 10-6 m 
.\ = 1.25 x 10-4 m 

E' = 2.20 x 1011 Pa 
a= 2.2 x 10-s Pa-1 

'f/o = 40 X 10-3 Pa s 
R = 1.41 x 10-2 m 
Po = 2.0 x 109 Pa 
s=-1 (u!=3u2) 

(z2)max = (zl)max = 0.25 X 10-6 m 

Their results for film thickness and pressures are shown in Figs. 8.3 to 8.7, where: 

T = tujb, P = pjp0 , H = hR/b2 , Z = zR/b2 , X= xjb. 

An interesting feature of Figs. 8.3 to 8.6 is that despite the movement of the un­

deformed roughness , the deformed shapes keep their relative phase. Fig. 8.7 shows 

the Lubrecht and Venner variation of pressure and film thickness with time for a fixed 

location at xjb = 0.25. 

Fig. 8. 7 before T = 4.25 shows a transition period where the roughness are entering 

into the contact (running-in), since the simulation started at T = 0 with the smooth 

surfaces and since u1 = 3u2, the roughness of the lower surface enters before the upper 

one and causes a sharp increase in the central film thickness and the first oscillations in 

pressure and film thickness. But after T = 4.25 the situation is steady. 

In comparison with the previous results, the film thickness and pressure distributions 

corresponding only to the moving steady state solution obtained by the implicit method 

with cyclic boundary conditions are shown in Figs. 8.8 to 8.12. 

0.40 

0.30 

0.20 H 

0.10 

o.oo 
1 2 

X 

Figure 8.3: Pressures and film thickness for T = 6.88, from 
Lubrecht and Venner 
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X 

Figure 8.4: Pressures and film thickness for T = 6.94, from 
-Lubrecht and Venner 
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0.30 

u o.2o H 

/ 
0.10 

p 0 

\ 
-1 

\ 0.00 
1 2 

-2 I. 
-3 2 1 0 

X 

Figure 8.5: Pressures and film thickness for T = 7.00, from 
Lubrecht and Venner 

2 0.40 

1 0.30 

p 0 0.20 H 

-1 0.10 

-2 0.00 
-3 -2 2 

X 

Figure 8.6: Pressures and film thickness forT = 7.06, from 
Lubrecht and Venner 
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p 0 

-I 
H 

-2 .'--~----';----"----:'-----1 0.00 
0 2 4 6 8 10 

T 

Figure 8. 7: Pressures and film thickness for x j b = 0.0 as 
function ofT, from Lubrecht and Venner 

For the present analysis the simulation was started when both surfaces are in phase 
and the pressure variations are P = 1 (Fig. 8.8), just like Lubrecht and Venner Fig. 8.3. 

Now, Figs. 8.8 to 8.11 (for a better understanding) show two zones, from xjb = -1 to 
xjb = 0 represents the undeformed shapes, so the relative phase can be followed, and 

from xjb = 0 to xjb = 1 the deformed shapes and associated pressures are shown. Once 
again, despite the relative movement of the undeformed surfaces, the deformed ones still 
keep their original phase. 

0.2,-------~-----.---~----------, 

0.15 

P/10 
0.1 inlet zone 

central zone 
0.05 z H 

0 

·0.0?1'<.5---_-;-1---.~0.5,----;!0,-----;;0.'-;5----:------,JJ.5 

X 

Figure 8.8: Pressures and film thickness for T = 0.0 
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Figure 8.9: Pressures and film thickness for T = 0.06 
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inlet zone P/10 
central zone 

0.15 

~ f 0.1 
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Figure 8.10: Pressures and film thickness forT= 0.12 
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P/10 

0.15 
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Figure 8.11: Pressures and film thickness forT= 0.18 
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2~-------------------------------------------------------------------------------·---------------··--. ---------------1 

I i 
I 

-- Hx!OO 

-P 
%~~0~.1~~0.2~~0~.3--~0~.4~~0-~5--~0~.6---0~.7~~0.~8--~0~.9--~ 

T 

Figure 8.12: Pressures and film thickness for xjb = -0.0625 
as function of T 

The deformed shapes and pressures agree well with Lubrecht and Venner results Figs. 

8.3 to 8.6 despite the incompleteness of the moving steady state solution. 

Fig. 8.12 shows the film thickness and pressure distribution as a function of time T 

for a fixed point at xjb = -.0625 obtained with the implicit method. This figure may 

be compared with the Lubrecht and Venner results of Fig. 8.7 for times larger than 

T = 4.25. The pressures show very good agreement but the film thickness does not. In 

this comparison is clear that the inlet excitation cannot be neglected for the film thickness 

solution. 

b).- Eyring Fluid 

Using the implicit method and starting at T = 0.0 with the shapes in phase the 

following results were obtained for a compressible Eyring fluid (ro = 5 x 106 Pa). 

Figs. 8.13 to 8.15 show smaller pressure ripples and less-deformed final shapes than 

their equivalent Newtonian cases Figs. 8.9 to 8.11. The deformed shapes do not keep 

their initial phase. 

Fig. 8.16 shows a shift of phase between pressures and film thickness for the non­

Newtonian fluid. This shift of phase is likely to be related to the steady state shift 

discussed in Chapter 5. 

182 



TRANSIENT ANALYSES OF SURFACE WAVINESS IN MICRO-EHL 
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Figure 8.13: Pressures and film thickness forT= 0.06, Eyring 
fluid 
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Figure 8.14: Pressures and film thickness forT= 0.12, Eyring 
fluid 
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Figure 8.15: Pressures and film thickness forT= 0.18, Eyring 
fluid 
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Figure 8.16: Pressures and film thickness for xjb = 0.0625, 
Eyring fluid 

8.4 One-Sided Surface Roughness Results 

In the condition of two-sided surface roughness it was relatively simple to invent some 

initial conditions for the simulation, since it was shown that after some running-in time 

the situation becomes steady and it was simpler to start the simulation with the two 

surfaces in phase. 

However, for the case of one rough surface and the other smooth, there are at least two 

choices to start the simulation with; despite the fact that when the steady state condition 

is reached the result is the same. 

a).- Steady state solution (s=-2) as initial condition: 

This initial condition was chosen by Venner and Lubrecht [76] 1992 to solve the fol­

lowing example: 

ii = 0.745 m/s 
h = 0.30 X 10-6 m 
A= 2.5 x 10-4 m 
(z!)max = 0.5 X lQ-6 m 

with the remaining parameters unchanged. Again T = tujb, P = pjp0 , H - hR/b2
, 

Z = zR/b2
, and X= xjb. 
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Figure 8.17: Pressures and film thickness for the case s = 0, 
from Venner and Lubrecht 
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Figure 8o18: Pressures and film thickness for the cases= -1, 
from Venner and Lubrecht 
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Their results for two different slide-roll ratios ( s = 0 and s = -1) and compressible 

Newtonian fluid are shown in Figs. 8.17 and 8.18, where the film thickness and pressures 

are shown. 

Using for example the TPVBP method of Section 6.3 it is possible to obtain the 

steady state solution for the given example with s = -2 (pure sliding with the rough 

upper surface stationary). This solution now will be used as the initial condition with 

the implicit method and free boundary conditions to obtain the moving steady state 

solution of the Venner and Lubrecht example. The pressures and film thickness after a 

timeT= 1.5 are given in Fig. 8.19. 
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\ ! \ \ \ j \ \ \i \ ! \ \ ! \ 
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X 

Figure 8.20: Steady State Pressures and film thickness for the 
cases= 0 at T = 24.7, starting with the undeformed shape 

Fig. 8.19 shows clearly that after a certain time the steady state solution has been 

transported downstream without changing the amplitude or wavelength of the film thick­

ness. This solution does not agree with the corresponding Venner and Lubrecht case of 

Fig. 8.18. So it is clear that there is some additional effect from the inlet which must be 

considered. 

b).- Undeformed Shape as Initial Condition 

It is interesting to observe the deformation process of the initial roughness in time 

without considering the effects of the inlet. This is perhaps the only way to see the effects 

of the squeeze term in the Reynolds equation under moving steady state conditions. 
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By taking the undeformed shape as the initial condition, after a time T = 3500L::.T 

where L::.T = 0.00705, the Newtonian steady state solution is reached, see Fig. 8.20. 

Fig. 8.21 shows the corresponding plot for pressures and film thickness as a function 

of time for the location xfb = -.0625. This makes clear the transitory state of the 

deformation and the build up of pressure. 

8.5 The Full Transient Solution 

So far solutions for one and two-sided sinusoidal surfaces· have been obtained without 

accounting for the contact inlet effects. It was shown that the steady state moving solu­

tions agreed well with Lubrecht and Venner results for the pressure distribution (and in 

the case of two-sided surface roughness for the final shape also) but the analysis cannot 

predict the amplitude and frequency of the film thickness. 

1.5~---~---~---------------, 

0.5 p 

0 HxlO 

-0.50~----;5,.----::';10,------:1:':"5------;;20;;-----;!25 

T 

Figure 8.21: Transitory Pressures and film thickness for the 
case s = 0, starting with the undeformed shape 

The full transient solution of a micro-EHL contact can be regarded as made of two 

separate solutions: the moving steady state solution and a complementary function ac­

counting for the inlet modulation of pressures and film thickness which are transported 

down stream with the average velocity of the lubricant. 
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8.5.1 The Excitation Function 

For the case of sinusoidal initial roughness it is reasonable to expect sinusoidal inlet 

disturbances of film and pressure, and therefore also sinusoidal disturbances are expected 

in the variable r = hp acting at the left hand side boundary (inlet) of the x interval 

(j = 1). An excitation function r 1 = f(t) will be imposed with a frequency determined 

by the velocity of the wavy surface (u2 ). 

(8.23) 

Cyclic boundary conditions can no longer be assumed in the implicit method, therefore 

for the right hand side boundary condition (r~) the explicit solution will be used with the 

calculation of rn+I by the extrapolation equations 8.1l. 

The constant rm in equation 8.23 is the mean value of ph and it can be approximated 

to rm = Pmh. Unfortunately it is impossible to know the amplitude of the excitation 

function rb; this would require the consideration of the whole EHL contact geometry (like 

Venner and Lubrecht). Therefore an arbitrary value for rb will have to be given and 

the solution obtained will predict only the wavelength of the film and pressures but not 

their amplitudes. However, at the inlet the roughness is considerably but incompletely 

deformed so one might expect rb R:J 0.5rm and in fact, it was found that with rb = 0.45rm 

(where rm = 2.6956 x 10-5 ) it is possible to obtain approximately the amplitude for the 

film thickness reported by Venner and Lubrecht in their one-sided surface roughness pure 

rolling results, Fig 8.17 

8.5.2 Newtonian Fluid Results 

Figs. 8.22, 8.23, 8.25, 8.26 show the results using the implicit method for the transient 

solution including the complementary function of the Venner and Lubrecht example of 

Section 8.4 (with Newtonian compressible fluid). Fig. 8.22 represents the case of pure 

rolling and it shows that the film thickness and pressures from the steady state solution 

(initial condition) are being replaced by the inlet modification (for 1.5 ::; x/b) which show 

film thickness and pressure with equal wavelength. The results agree well with Venner 

and Lubrecht Fig. 8.17. 
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Fig. 8.23 shows the film thickness and pressure for the roll-sliding case of s = -1 

( u1 = 3u2 ) for a time when the initial shape has been fully replaced by the inlet modifica­

tion. It is clear for this case where the velocity of the rough upper surface is only a third· 

of the velocity of the lower surface that the inlet modulation will have a wavelength three 

times larger than the original roughness and pressure. This film modulation will also pro­

duce a pressure modulation of the same wavelength but small amplitude (if the amplitude 

and wavelength of the shape increases, the amplitude of the pressures decreases) and they 

will be added to the original pressures producing the pressure distribution shown if Fig. 

8.23. This mechanism is better understood by looking at Fig. 8.24 where the pressure 

distribution of Fig. 8.23 is reproduced by adding together the pressures from the defor­

mation of the original roughness and the pressures corresponding to the film modulation 

from the inlet (using the Greenwood and Johnson equations of Section 5.1). It can be 

seen that the steady state pressures are just slightly modified by the inlet modulation 

since its amplitude is small. In order to have a complete picture it would be necessary to 

add the 'Hertzian' pressures associated with a finite contact. 
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In Fig. 8.25 it is easy to see that the location xjb 

modulation at T = 1.3. 

1.36 is reached by the inlet 

Fig. 8.26 shows the film thickness and pressures for an instant when the inlet distur­

bances have nearly fully replaced the initial conditions in the case of pure sliding with the 

smooth lower surface stationary (s = 2). Since u2 = 2u, for this case the wavelength of 

the film modulation has been halved in comparison with the wavelength of the original 

roughness. The pressures have been only slightly distorted. 

8.5.3 Non-Newtonian Results 

The full transient solutions for the Venner and Lubrecht example of Section 8.4 but now 

with a compressible Eyring fluid are shown in Figs. 8.27 to 8.29. The pressures and 

film thickness for the case of pure rolling s = 0 are shown in Fig. 8.27 from which by 

comparison with its Newtonian equivalent Fig. 8.22 it is easy to see that there are no 

difference in amplitudes or wavelength since for this case there is no shear in the lubricant 

therefore the non-Newtonian effects are negligible. 

Fig. 8.28 shows the film thickness distribution for three different values of the ampli­

tude of the inlet excitation rb (0.1rm, 0.45rm, 1.5rm) for the case when s = -1 and the 

steady state solution has been only partially replaced. For xjb > 1.7 the steady state film 

shape still can be seen; it is also clear that for this case (non-Newtonian fluid) the original 
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roughness is much less deformed than for the Newtonian fluid, therefore the steady final 

deformed shape will be more visible after the inlet modulation is added. For the case 

of rb = 0.1rm, when the inlet modulation has small amplitude, the steady shape is only 

slightly modified in shape and wavelength. In the intermediate case of rb = 0.45rm the 

final shape is clearly a mixture of the steady state shape and the complementary function 

and is not sinusoidal, its wavelength is evolving to become the disturbances wavelength. 

Finally for the case when rb = l.5rm the dominant wave is the complementary function. 

Fig. 8.29 shows the corresponding pressures to the films of Fig. 8.28, where basically 

the original wavelength is preserved in all the cases, but the amplitudes are modified. 

Fig. 8.30 shows the film thickness and pressures for a fixed location at xfb = 0.68 and 

s = -1 so it is comparable with its Newtonian equivalent Fig. 8.25. The main difference 

is the shift of phase between the pressures and the film thickness. This difference must be 

related to the steady state shift discussed in Chapter 5. Besides it, the different locations 

xfb are reached at different times. 
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Figure 8.27: Complete pressures and film thickness for s = 0, 
Eyring fluid 

1Note that in the LH side of Figs. 8.27 to 8.29 the complete transient shapes and pressures are shown, 
whist in the RH side the steady state solution still remains. This is of course only a theoretical exercise, 
in practical EHL only the two separate zones have physical meaning since the inlet disturbances almost 
instantaneously reach the exit of the contact. 
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8.6 Numerical Damping of the Shape 

In order to avoid numerical error in the solution of the transient Reynolds equation with 

complementary function included, care must be taken with the choice of f..X and f..T. 

Despite the stability of the implicit method, if the space grid and the time step are 

not small enough, the numerical error generated in the left hand side boundary will be 

transported down stream and added to the error there, and therefore the solution for r 

will be noticeably affected. The error will show up as a 'numerical damping' steadily 

reducing the amplitude of r and therefore H for larger values of X. Venner [7 5] 1991 

and Venner and Lubrecht [78] 1992 have shown transient solutions of wavy surfaces where 

the film thickness appears to be gradually reduced in amplitude as it moves towards the 

exit of the contact. However, when Lubrecht and Venner increased the number of grid 

points (private communication) the same solutions showed a noticeable reduction in the 

damping. It is now believed that those solutions in fact show only numerical damping. 
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Figure 8.31: Variation of amplitude for pH for two mean loads 
and s = 2 (f..X = 0.0078, f..T = 0.0025) 

The only possible explanation for a real physical damping in the film thickness ampli­

tude as x increases is the variation of the viscosity along x, in which case the term 8pj8x 

of equation 8.2 is affected since B cannot be considered as constant, then amplitudes 

of r and therefore h calculated from a high viscosity zone will be different from those 

calculated from a low viscosity zone. Then in pure rolling where the pressures and shape 
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remain in phase, the shape would be one-sided reduced, while in sliding condition the 

reduction would be alternating. Notice that the linearisation of the Reynolds equation 

of Section 8.2.1 would not be possible, and its numerical solution would be much more 

complicated. In any case, the shapes showed by Venner and Lubrecht do not exhibit any 

of these features. 

With the present linearized Reynolds equation it is possible to asses the influence of 

the viscosity term in the damping of the shape by changing the mean pressure p0 • Fig. 

8.31 shows the solution for r of the Newtonian fluid example of Section 8.4 with s = 2 

for two different mean pressures Po = 22.0 and Po = 44.0 giving almost exactly the same 

amplitude !. It is shown below, that the reduction of amplitude along x that they both 

show is only due to numerical problems; however, the important feature here is to show 

that in typical heavily loaded EHL contacts the reciprocal of the viscosity is so small 

that to regard or not its variation along x makes no difference in the solution (especially 

with Newtonian lubricants, B ~ 0) and therefore there is no evidence of a real physical 

damping in the shape. 
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Figure 8.32: Numerical damping of pH for various f...X and 
f...T with s = 2 

Considering again the Newtonian fluid example of Section 8.4, to give a solution with­

out visible numerical error for the case s = 0 required f...X = 0.0078 and f...T = 0.005; for 

s = -1 it required f...X = 0.0078 and f...T = 0.005; and fors= 2 it needed f...X = 0.0039 
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and !::.T = 6.25 x 10-4 • There is a clear tendency of producing more numerical error for 

larger absolute values of s. This can be understood by considering the linearized Reynolds 

equation 8.8; the larger the absolute value of s the larger the constant Cy and therefore 

also the term involving derivatives of r, z2 and z1 , so it is clear that this term is the source 

of the numerical error. 

Fig. 8.32 shows the reduction of the numerical damping in the variable r when reducing 

!::.T and !::.X in the Newtonian example with s = 2 of Fig. 8.26. 

8. 7 Conclusions 

A simple scheme to study the kinematic behaviour of sinusoidal roughness in EHL has 

been described. The approach once again assumes an infinitely long contact and solves a 

combined transient Reynolds-elasticity equation by finite differences for moving surfaces 

allowing for Newtonian and Eyring fluids. 

It was shown that the full solution for pressures and film thickness is made of two 

parts : a) the moving steady state solution which is related only to the deformation of 

the original roughness and which produces pressure and film ripples travelling with the 

velocity of the rough surface u2; b) a complementary function from the inlet modulation 

of film thickness and pressures which produces film and pressure disturbances travelling 

with the average velocity of the lubricant u, so their wavelength depends directly on 

this velocity and therefore on the slide-roll ratio s. Since the complementary solution is 

completely produced by the inlet, with an infinitely long contact its amplitude is unknown 

and only solutions for the wavelength are given. 

The following conclusions can be pointed out: 

a).- The full kinematic solution of an EHL contact with rough surfaces is made of two 

components, see Fig. 8.24: the steady state solution for shape and pressure related to 

the deformation of the initial roughness and the inlet disturbances of film and pressure 

related to the entry into the contact of the less deformed roughness ripples. Therefore the 

final film and pressures will have geometry and velocity determined by a combination of 

these two components, i.e. Figs. 8.28 and 8.29. 

b).- In one-sided surface roughness cases when the initial shape is very much deformed 

by the steady state pressures, and the inlet disturbances have a dominant amplitude in 

the solution then: 
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For pure rolling condition (s = 0) the final shape and pressures will keep the wavelength 

of the initial roughness regardless the rheology of the lubricant, i.e. Figs. 8.22 and 8.27. 

For s = -1 (rough surface moving with half the velocity of the lubricant) the final 

shape has wavelength twice as long as the original roughness travelling at the average 

velocity, and pressures slightly different from the steady solution with the original rough­

ness wavelength and velocity, regardless the lubricant rheology, i.e. Figs. 8.23 , 8.28 and 

8.29. 

Fors= 2 (rough surface moving twice as fast as the average velocity of the lubricant) 

the final shape has wavelength half as long as the initial roughness wavelength, and the 

pressures are nearly the same as the steady solution with the original roughness wavelength 

and velocity, i.e. Fig. 8.26. 

c).- By looking at some literature results (e.g. Venner and Lubrecht [76]) one can be 

very surprised when comparing the steady state solution with the transient one to find 

that the transient pressure ripples are almost the same as the steady state ones while the 

shapes are very different indeed; in general the transient shape shows larger amplitude of 

ripples as well as the difference in wavelengths. It would seem as if the transient shape is 

independent of the transient pressures!. This apparent disagreemell.t is now understood 

with the consideration of having a transient solution made of two parts as explained in 

(a). So that in the referred cases the steady state solution presents very deformed shapes 

with large pressure ripples whilst the complementary solution due to the effect of the inlet 

shows large amplitude shapes with small pressure ripples; and when the two solutions are 

superimposed the steady state pressures are almost unchanged and so the transient shape. 

This phenomenon can be seen for pressures in Fig. 8.24. 

d).- No real physical damping in the final shape was found. The damping exhibited in 

the Venner and Lubrecht solutions is now believed to be the result of numerical error. 

e).- The main difference between Newtonian and Eyring fluid full solutions is the 

amplitude of shape and pressures from the steady state. Fig. 8.28 for xjb > 1.6 still 

shows the steady state shape which is being replaced by the inlet disturbances, so one 

can see that in comparison with an equivalent Newtonian case; Fig. 8.22 with the steady 

state shape visible for xjb > 1.6, the Eyring amplitude is much larger than the Newtonian 

one, so that for this case the Eyring steady shape is distorting the final shape. 

Apart from this, there is a different shift of phase between pressures and final shape 
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in time, related to the steady state shift already discussed in Chapter 5. 

f).- In the case oftwo-sided surface roughness, it was shown that the Newtonian moving 

steady solution agrees well with Lubrecht and Venner results for pressure and shape but 

not for film thickness. The inlet has to be considered to obtain a complete solution. 

The Eyring solutions show less deformed shapes and a shift of phase between shape and 

pressures in time in comparison with their Newtonian equivalents, i.e. Figs. 8.12 and 8.16. 

N ewtonian deformed shapes always keep their initial relative shift of phase regardless the 

motion of the surfaces, whilst the Eyring deformed shapes vary their initial shape; this 

should also be related to the steady state shift discussed in Chapter 5. 
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CHAPTER NINE 

CONCLUSIONS AND FUTURE RESEARCH 

9.1 General Conclusions 

In the present work some aspects of Elastohydrodynamic lubrication of smooth and rough 

surfaces in isothermal line contacts have been studied. With respect to smooth surfaces, 

a scheme which uses fracture mechanics theory has been suggested to solve separately the 

inlet, central and outlet regions of an EHL contact. The pressure spike is treated as a 

singularity so that there is no need to solve the Reynolds equation at the spike location, 

avoiding in this way the disadvantages of numerical instability of the full numerical so­

lutions. The scheme is also extended to deal with lubricant compressibility and with the 

Roelands viscosity law. Outlet and complete EHL solutions are obtained, therefore the 

following conclusions can be outlined: 

a).- The outlet pressure distribution is a closely logarithmic curve with two constants 

defining it completely. 

b).- As an elastic consequence of( a) the exit bump joins the parallel film region with 

finite slope, not as in Greenwood's theory. 

c).- The agreement of the results predicted by the present theory and results found in 

the literature from complete numerical solutions is in general good, especially for the cases 

when the spike is located closer to the exit. However, it was found that among different 

authors there is still great disagreement in some results related to the spike location. 

d).- From the results obtained with the present scheme and from the observation of 

literature results it is possible to establish the behaviour of the pressure spike in a non­

dimensional map P - S. 

e).- The use of the Roelands viscosity law instead of the Barus law brings almost no 
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difference in the film and pressure results. 

With respect to rough surfaces several schemes are shown for the solution of EHL 

contacts with Newtonian and non-Newtonian as well as compressible and incompressible 

lubricants. All of them are based on the idea that an EHL contact can be treated as 

an infinitely long contact with known mean film thickness and pressure. The roughness 

and associated pressures can then be considered to be an assembly of sinusoidal curves 

with the coefficients obtained from a Fourier analysis. Steady and transient effects are 

studied as well as 'real' and wavy roughness. Subsurface stresses related to the roughness 

are estimated and presented in form of probabilities rather than by specific value and 

location. And in summary the following conclusions are obtained: 

1).- The roughness amplitude reduction after deformation is less with a non-Newtonian 

fluid, and the final shape shows a shift of phase with respect to the original one. In real 

roughness the high frequency components are retained after deformation. 

2).- For Eyring fluids the deformation of the roughness is strongly dependent on the 

ratio >../h. For low values of this parameter the roughness will persist, even in heavily 

loaded situations. This conclusion gives a criterion of roughness deformation and explains 

why in (1) the high frequency components persist after deformation. 

3).- In Eyring fluids varying the mean pressure has little effect on the final shape, whilst 

in Newtonian fluids when the mean pressure increases the deformation of the roughness 

is also increased. This is related to the mean viscosity and its effect on the Reynolds 

equation. 

4).- The subsurface stresses under real-roughness pressures are shown to be Gaussian 

variables. This can be expected from the Central Limit Theorem since the stresses are 

an assembly of sinusoidal curves. Therefore the standard probability rules to asses the 

largest expected value can be applied. The results are given as a probability of exceeding 

certain limits rather than a specific value and location for the maximum stress. 

5).- The transient EHL solution for film and pressures of rough surface contacts is 

shown to be made of two separate functions: the steady state pressure and shape distri­

butions moving with the velocity of the rough surface, plus a film thickness and pressure 

complementary function moving with u and resulting from the modulation of the rough­

ness of film and pressures in the inlet of the contact; this conclusion provides a more 

general understanding of the transient physical phenomenon. 
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6).- It is also shown that the gradual reduction of shape amplitude along the contact 

length (shape damping) previously reported in literature, is only a 'numerical feature' 

rather than a real physical damping. 

9.2 Recommendations for Future Work 

Elastohydrodynamic lubrication of smooth and rough surfaces offers an extensive field 

of research and the topics covered by the present work represent only a limited sample. 

However, the aim of the work was to perform general analyses with the minimum of 

complexity in the algorithms. Such a combination of objectives is particularly difficult to 

achieve in a field where the numerical instability is a major problem. 

In relation with the work on smooth surfaces it is recommended to extend the applica­

bility of the present theory to other regions of the 'P-S map by implementing a less-error 

way to join the inlet and central pressures. 

The greatest shortcoming of the present scheme is its limitation to predict the spike 

height, so a modification to enable the scheme to deal with finite spikes would be very 

useful. Even if fracture mechanics cannot be applied any longer for this situation. 

Equally necessary modifications are the inclusion of the energy equation (to account 

for the effects of temperature) and the capability to deal with non-Newtonian fluids, so 

the effects of shear friction specially in sliding contacts could be studied. 

With respect to rough surfaces EHL a study of single asperities and real roughness 

effects would be interesting to make especially in transient situations, however, the algo­

rithms would require some important modifications. Now that the nature of the transient 

solution is better understood and the importance of the inlet in the determination of the 

modulations amplitude has been established, it would be necessary to modify the present 

algorithms to account for the inlet in some way. It is also recommended to extend the 

transient analysis to more real situations like the double sided roughness case. 

Finally, in order to demonstrate the integration of the smooth and rough surfaces 

analysis described in the present work, it is necessary to perform a set of solutions where 

the macroscopic parameters as the mean film thickness and pressure are calculated 'using 

the EHL scheme and the microscopic effects as roughness deformation by using the micro­

EHL schemes. 

201 



APPENDIX A 

Numerical Solution of Stress Replacement Integrals 

Most of the integrals showed in Chapters 3 and 4 related to the calculation of stress 

intensity factors, pressures and elastic slopes show singularities at either x = a or x = -a, 

therefore care must be taken in their numerical solution. In this Appendix the used 

numerical schemes to carry out the integrals are described. 

A.l Stress Intensity Factors 

a).- Calculation of M: The calculation of these stress intensity factors involves the eval­

uation of: 

The singularity at x1 = a can be removed by the substitution: t = ,jx1 a; therefore 

equation A.l becomes: 

I= 2 {-../L-a p(t) dt 
lt=o ,jt2 + 2a 

(A.2) 

which can then be evaluated by Simpson's rule. 

b).- Calculation of M1 : The calculation of M1 involves the solution of two different 

sorts of integrals: 

(A.3) 
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{L JX1 +a 1 

12 = lx,=a xl - ap (xl) dxl (A.4) 

In each case, put t = ,jx1 -a, then equations A.3 and A.4 become: 

(A.5) 

l
..;r;:::a 

I2 = 2 t=o p'(t)vt2 + 2a dt (A.6) 

A.2 Pressures 

The equation for the pressures in the central region (i.e. equation 4.22) involves an 

integral of the type: 

(A.7) 

for x <a. 

This integral for pressures is singular at x1 = a because J xi - a2 = 0 and at x1 = a 

also because the pressures become infinity. Unlike the equation for the deflection slopes, 

which also involves this integral, here always x1 > x. Therefore a second singularity is 

avoided. 

The integral of equation A.7 can be solved just like equation A.l. Put: t = ,jx1 - a 

ands=~, so: 

I = 21..;r;:::a p( t) 
t=O (t2- s2),Jt2 + 2a 

(A.8) 

for x <a. 

A.3 Slopes 

Equations 4.23 and 4.24 show two different integrals: 

(A.9) 
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for x > a and x1 > a. 

11 presents only the same singularity as the pressure integral equation 

tuting again: t = ,jx1 - a and s = ~, equation A.9 becomes: 

1-../L-a p(t) 
11 = 2 dt 

t=O (t2 + s2 ),jt2 - 2a 

(A.10) 

A. 7, so substi-

(A.ll) 

However, the solution of equation A.10 is much more complicated, due to the strong 

singularity when x1 = x, and the situation gets worse for the outlet, where the pressures 

are also singular. 

For the solution of equation A.10 it is better to start by taking its simpler form given 

by equation A.S, then put: 

(t) - p(t) 
g - ,Jt2 + 2a 

then: 

1-../L-a dt 
12 = 2 g(t) 2 2 

t=O t - S 
(A.12) 

now, s1nce: 

1 1 1 1 
t2-s2 = 2s(t-s- t+s) 

hence: 

11-../L-a 1 1 h = - g(t)(-- -) dt 
s t=O t-s t+s 

and integrating by parts: 

h =- g(t)lnl-1 - g'(t)lnl-1 dt 
1 [ t _ s I ..;y;:::;; 

1
..;y;:::;; t _ s J 

S t + S t=O t=O t + S 

where: g'(t) = ¥,, and ln 1- s/ si = 0. And: 

1 [ ~ ,JL-a-s 1..;y;:::;; t-s ] 12 =- g(vL-a)lnl,;r=a 1- g'(t)lnl-ldt 
s L - a + s t=O t + s 

(A.13) 
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but in EHL p( ~ = 0 (end oft he outlet and beginning of the inlet), so g( y L - a) = 0. 

Then: 

where: 

-1 
12=-J 

s 

1
-./L-a t S 

J= g'(t)lnl-=--ldt 
t=O t + S 

(A.14) 

(A.15) 

The integral A.l5 can be solved by using a discrete numerical method developed by 

Johnson and Bentall [42]1977, in which the 'pressures' (function g(t)) are divided into n 

regular elements, say triangles. Then the integration is carried out as a summation of n 

analytical integrals. Since the values of g'(t) for a triangular element are known (i.e. Fig. 

A.1 ), therefore according to Johnson and Ben tall the integral J is: 

n 

(Jt)i,j =- L9i[f(i + j)- JU- i)J (A.16) 
j=l 

where the index i corresponds to values of s ( s = ih) and the index j corresponds to 

values oft (t = jh). For a complete triangular element: 

f(k) = (k+ 1)lnlk+ 1l-2klnlkl + (k -1)lnlk -11 (A.17) 

g(t) 

t, s 

Figure A.1: Discretization with complete triangular elements 
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However, it is clear that for outlet EHL pressures, one cannot represent them accurately 

using only complete triangular elements, but two more types of element should be added: 

a half triangle and a logarithmic element, as shown in Fig. A.2: 

g(t) 

logarithmic element 

half triangular element 

complete triangular element 

Figure A.2: Discretization using three types of elements 

Half triangular element: 

The slope is: g'(t) = -gi/h, for jh ::_::: t ::_::: (j + l)h, then solving equation A.15: 

l (i+l)h g. hj - hi 
( Jht)i,j = - . ( hJ) In I h.+ h .1 dt = -gi[fht(j + i) - !ht(j - i)] 

t=Jh J ! 
(A.l8) 

where: 

!ht(k) = (k + l)ln lk + 11- klnlkl (A.19) 

Logarithmic element: 

Put: g(t) = BIn I la I, so from equations A.13 to A.15 the J integral of a logarithmic 

element of pressure (for 0 ::_::: t ::_::: t f) is: 

(A.20) 

where: 
B l'I t

2 
dt 

!2/og = - In 1-L-1 2 2 s t=D -a t - s 
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In this particular case it is simpler to solve directly 12Io9 ; which by substituting q = tl s 

becomes: 

121o9 = 2B 11 

[ 

1 
I -

1 
I ] ln lql dq 

q=D q-s tf q+s tf 
(A.21) 

The integral A.21 can be numerically solved for all values of s I t f with a modified 

Gaussian quadrature, the method is fully described in the Handbook of Mathematical 

Functions [1] from where the solution of the integral: 

f f(z) ln(z) dz 

is given by: 

where the coefficients w; are given in the reference according to the chosen number m. 

Full solution of h 

Finally the solution of the integral of slopes 12 of equation A.10 is given by: 

(h)i,j = -~ {9i[fh,(j + i)- fh,(j- i)J + tgj[f(i +i)-tU- i)J 
% j=2 

t} tf-ih . } 
-Blni-L-Ilnl .hl+(%h)12Io9 -a tf +% (A.22) 

with fht(k) given by equation A.19, f(k) by equation A.17 and 12/og by equation A.21. 
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APPENDIX B 

Numerical Error in the Direct Approach 

B.l Incompressible Fluids 

The convergence process in the direct approach goes in the following way: 

displacements -t pressures -t shape -t new displacements 

to go from displacements to pressures, the process is based on equation 5.13, from which: 

(B.l) 

and the Fourier coefficients of !j; would be: 

(B.2) 

therefore the coefficients of tp are: 

defining: 

(B.3) 

To calculate the Fourier coefficients of the film thickness, the equation B.3 is substi­

tuted into the Reynolds equation 5.30: 
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and writing: 

7rh* E'[l- (t~) ](n)2 ( )2 p n 

r= T 2T0 (t;)n(l-Rcothtp) (B.4) 

thus: 

(B.5) 

Finally the Fourier coefficients of the new displacements are given by subtracting the 

coefficients of the original roughness Zn from the coefficients hn: 

(V J )n = 7'Vn - Zn (B.6) 

In order to obtain convergence in the process, it is required that: ( v 1 )n = Vn, therefore 

from equation B.6 : 

-Zn 
Vn == --

1-r 

and if there is any numerical error ~, then the coefficients become: 

substituting B.7 into B.6 : 

-Zn 
Vn = -

1
-- +~ 
-r 

-Zn 
(vJ)n = --+n 

1-r 

(B.7) 

(B.8) 

Comparing equation B.8 and equation B. 7 it is possible to see that the numerical 

error in one iteration of the process has increased to r~, therefore the error might become 

uncontrollable if: 

lrl > 1 (B.9) 

and r can now be defined as the magnification factor of numerical error per iteration, for 

incompressible fluids it is given by equation B.4. 
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B.2 Compressible Fluids 

Again the direct approach has the same sequence as for incompressible fluids. The pressure 

Fourier coefficients are still given by equation B.l. However, this time the compressibility 

ratio p* / p will be different from 1 in the Reynolds equation 5.30. 

Linearizing the density equation: 

where: 

p* 
- ~ 1- C(p- Po) 
p 

c = ~--;::-''-;:-..,.:'(3-----­
(1 + f3Po)(1 + /Po) 

by taking Rj(t;) ~ 1, equation 5.30 becomes: 

h ~ h*[-C.6.p] 
1- Rcothtv 

(B.10) 

(B.ll) 

Substituting equation B.1 in equation B.ll, the Fourier coefficients for h can be 

obtained: 

h*C 1r E' 
h - (n)v 

n - 1 - R coth tp 2.\ n 
(B.12) 

The Fourier coefficients for the new displacements are obtained by subtracting the 

coefficients of the original roughness Zn from the hn coefficients of equation B.12: 

h* C1rE' 
(vJ)n = 1- Rcotht [~(n)vn]- Zn 

p 

and writing: 

(B.13) 

then: 

(B.14) 

In order to have convergence in the process one requires that ( VJ )n = vn, therefore 

from equation B.14 : 
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-1 
Vn = -

1
-(zn) 
-r 

If there is any numerical error € , then it becomes: 

1 
Vn = --

1 
(zn) + € 

r-

and substituting equation B.15 into equation B.14: 

(B.15) 

(B.16) 

By comparing equation B.16 with equation B.l5, it is easy to see that in one iteration 

of the process the error has increased from € to n and it might become uncontrollable if: 

lrl > 1 (B.17) 

Once again r is the magnification factor of the numerical error per iteration and for 

compressible fluids it is given by equation B.13. 
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APPENDIX C 

The Collocation Method (CM) 

C.l Description 

The idea in this scheme is to avoid the long and numerically unstable process of iterating 

from pressures to shape or vice-versus. Here one must begin by using as the basic equation 

a combination of the Reynolds and elasticity equations and then solve it by approximating 

the pressures and displacements to an assembly of sinusoidal waves and satisfying the 

equation at some given values of x (points). 

The analysis will be described for the general case of m points. And the basic equation 

to be used is 5.25 : 

v(x) + ha(P- Po)C =ha- h* +ha/ C(p- PoJ2 + f- z(x) 
1 +iP 

assuming that the pressure distribution, elastic displacements and initial roughness are 

additions of sinusoidal waves with amplitudes given by the Fourier coefficients, and writ­

mg: 0 = 2~x, then: 

p( 0) = Po + Er sin 0 + Ar cos 0 + ... + En sin nO + An cos nO 

(C.1) 
z( 0) = b1 sin 0 + a1 cos 0 + ... + bn sin nO + an cos nO 

h(O) = h* + v(O) + z(O) 

where En and An are the Fourier coefficients for the pressures and bn and an are the 

Fourier coefficients of the initial undeformed roughness, so: 
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Substituting equations C.1 into equation 5.25 for m different points along x, say 01 , 

B2 , ••• ,Bm, one obtains a non-linear algebraic system of equations: 

v(Bm) + haC[p(Bm- Po]- ha·\~~~lTJ' - f(Bm) + z(Bm) = 0 

Notice that for every equation there are 2n unknowns (An and En), so m= 2n points 

are needed to solve the system. It can be solved by any root finder method, i.e. Newton­

Raphson. And the initial guess for the pressure Fourier coefficients can be obtained by 

assuming the roughness to be totaily flattened by the pressures. 

After solving equations C.2 no further iterations are required, and the pressure coef­

ficients are used directly to find the displacements and the final shape (by using equa­

tions C.1). 

C.2 Effects of the Number and Location of the Points in the Solution 

Since the method is 'exact' only at the values of x where the equations are fully satisfied 

the accuracy of the solution must improve when the number of points is increased, and 

some variation in the results scan be expected. 

The location of the points affects not only the convergence rate of the solution, but 

also its accuracy. If the points are not equally distributed within the interval of analysis, 

then one must expect a more accurate solution in the region where the density of points 

is higher. 

The effect of varying the number of points in this scheme is shown in Fig. C.1 and Fig. 

C.2 where the Chang example 1 (Section 6.1) has been solved and Chang's variables are 

used to display the solution. 

Fig. C.1 shows the Newtonian solution where the pressures have been plotted for 2, 

6 and 10 points equally distributed along the interval -0.71r to 0.37r, and the deformed 

shape shown represents the 10 points solution. It can be seen that the pressures slightly 

vary when the number of points is increased. In general, the CM solution for this example 

hardly agrees with Fig 6.2 ( Chang's results) where the pressures appear non-symmetrical 

and with higher amplitude, besides, Chang's final shape is less deformed. However, notice 
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that Chang's own solution shows already some stability problems in the pressures and 

they may be the reason of the difference. 
1.8,----~---~~---::---·:/r.c-~·---~-----, 

Pressures,P Po 
o 10 points 

" - 6 points 

'\ ·· 2.p.Oi:ts ... 

~ ...... 

1.6 

1.4 

L2 

I .. ········ 

\\ 
\\ / 

·---~ 
0.4 

- (10 points) Defonned shape, h J h • 0.2 
-- Undeformed shape~ h/ h* 

00~----~~----~~----~~----~------~------~ QJ U m M ~ M 

xjb 

Figure C.1: Effect of the number of points, Newtonian lubricant 
1.4,---------~-----c.-----------~--------, 

Pressures, P/Po 
- 10 points 
-- 4 points 1.2 

0.4 
- (10 points) Deformed shape/2, hj2h' 

0_2 ·· Udeformed shape/2, hj2h' 

%~----~o.'J----.-o~.2,-----,0~.3~----"o~.4------~o.7s------~0.6 

xjb 

Figure C.2: Effect of the number of points, Eyring lubricant 

Fig. C.2 shows the non-Newtonian solution where this time the pressures are plotted 

for 10, and 4 points equally distributed along the interval 0.0 to 1r, and the deformed 

shape shown represents the 10 point solution. Again the pressures barely vary when the 

number of points is increased. For this example, the results are in very good agreement 

with Chang's results (Fig. 6.1 ). It is also clear in this case that the pressures obtained 

by Chang (Fig. 6.1) look very stable. Notice the small amplitude of the pressure ripples 

and the small deformation occurred in the shape. 
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