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Abstract

Certain H∞-control problems are considered and potential numerical difficulties. An alternative test for checking that
the solution to an algebraic Riccati equation is positive semi-definite which is robust to rounding error even when the
matrix is singular is presented. Finally the H∞ loop-shaping method is summarised and its numerical properties are
shown to be satisfactory.
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1. Introduction

This short paper is concerned with H∞-control prob-
lems and the numerical behaviour of solutions to the cor-
responding algebraic Riccati equations (ARE’s). The the-
ory of ARE’s has a long and distinguished history with
the 1971 paper of Jan Willems [17] being fundamental.
Numerical software for solving ARE’s has also received
much attention with methods endeavouring to be as com-
prehensive as possible and using well-established methods
from numerical linear algebra (e.g. [1]). Special purpose
methods have also been derived that exploit Hamiltonian
structures [2]. How such numerical software is used in
practise is of interest. At one extreme it could be to design
a control law that would then be implemented, in which
case issues such as the problem being well-posed and the
solution insensitive to small perturbations are important.
However other legitimate questions can be posed without
the expectation of controller implementation. For exam-
ple ’what-if’ questions could be asked such as how does the
minimal closed-loop gain depend of system parameters and
specification. The designer could then determine the criti-
cal parameters on which to concentrate before performing
a final design.

In the context ofH∞-control theoretical results are pre-
ceded by a list of assumptions which correspond to rank
tests. A user would not typically check these conditions
and it is of interest to determine the behaviour when the
conditions are not satisfied or nearly not satisfied. In the
solution one of the conditions that needs to be checked is
whether the solution, X∞ of an ARE is positive semidefi-
nite when it may be singular. This might appear to require
some test dependent on the machine precision. We will
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show in Theorem 2 that there is a more robust alternative
to this test. In section 4 we consider the H∞ loop-shaping
method and demonstrate that analogous numerical issues
are even less problematic and additional improvements in
computational approaches are possible.

2. Notation

In this note we will use standard notation as for exam-
ple in [18]. R and C will denote the real complex numbers
(resp.). C+ (resp. C−) denotes the open right half plane
(resp. open left half plane). Let C∗ denote the Hermitian
transpose of C ∈ Cm×n. For D ∈ Cm×m, D ≥ 0 indi-
cates that D is positive semi-definite. diag(x1, x2, . . . , xm)
will denote the diagonal matrix whose diagonal entries are
x1, x2, . . . , xm. For A ∈ Rn×n, σ(A) denotes the spectrum
of A i.e. the set of the eigen values of A.

For P (s) a rational transfer function, bounded at infin-
ity, we denote the system with input u, state x and output
y with state-space realisation: ẋ(t) = x(t) +Bu(t); y(t) =
Cx(t) +Du(t), as

P (s) =

[
A B
C D

]
(1)

and for systems with inputs, w ∈ Rm1 and u ∈ Rm2 and
outputs z ∈ Rp1 and y ∈ Rp2

P (s) =

[
P11(s) P12(s)
P21(s) P22(s)

]
=

 A B1 B2

C1 D11 D12

C2 D21 D22

 (2)

The closed-loop system given in Fig. 1 is denoted as z =
F`(P,K)w where

F`(P,K) = P11(s)+P12(s)K(s) (I − P22(s)K(s))
−1
P21(s)

(3)
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Figure 1: Linear Fractional Transformation

3. The H∞ Control Problem

3.1. Background

In this section we will consider theH∞-control problem
to minimise ‖Tz←w‖∞ in Fig. 1, or equivalently for a given
value of γ find a stabilising K(s) such that ‖F`(P,K)‖∞ <
γ. The solution is well-known (see e.g. [5], [18]). We will
make the following standard assumptions for the state-
space model in (2):

A1. (A,B2) is stabilizable and (A,C2) is detectable;

A2. D12 =

[
0
Im2

]
and D21 =

[
0 Ip2

]
; (denote D⊥12 =[

I(p1−m2)

0

]
and D⊥21 =

[
I(m1−p2) 0

]
.)

A3. rank

[
A− jωI B2

C1 D12

]
= n+m2 for all ω;

A4. rank

[
A− jωI B1

C2 D21

]
= n+ p2 for all ω;

A5. D11 = 0 and D22 = 0. (only included for simplicity
of formulae).

Now define the Hamiltonian matrices:

H∞ =

[
A−B2D

∗
12C1 γ−2B1B

∗
1 −B2B

∗
2

−C∗1D⊥12D⊥∗12 C1 −(A−B2D
∗
12C1)∗

]
(4)

J∞ =

[
(A−B1D

∗
21C2)∗ γ−2C∗1C1 − C∗2C2

−B1D
⊥∗
21 D

⊥
21B

∗
1 −(A−B1D

∗
21C2)

]
(5)

and the standard results is:

Theorem 1. [5] For the system given by (2) satisfying
assumptions A1–5, then there exists K such that Fig. 1 is
internally stable and ‖F`(P,K)‖∞ < γ if and only if

C1. ∃ X∞ = X∗∞ such that
[
X∞ −I

]
H∞

[
I
X∞

]
= 0

and σ

{[
I 0

]
H∞

[
I
X∞

]}
⊂ C−;

C2. ∃ Y∞ = Y ∗∞ such that
[
Y∞ −I

]
J∞

[
I
Y∞

]
= 0 and

σ

{[
I 0

]
J∞

[
I
Y∞

]}
⊂ C−;

C3. X∞ ≥ 0, Y∞ ≥ 0; and

C4. the spectral radius, ρ(X∞Y∞) < γ2.

3.2. Example

In this subsection we give an example that can be
solved symbolically to illustrate some potential numerical
difficulties with H∞ controller synthesis. Let

P (s) =

[
P11(s) P12(s)
P21(s) P22(s)

]
=

[
1

(s+1)
(s−ε)
(s+2)

(s−1)
(s+1) 0

]
(6)

=


−1 0 1 0
0 −2 0 −(2 + ε)
1 1 0 1
−2 0 1 0

 (7)

and consider the problem,

EK(s) := F`(P,K) =
1

(s+ 1)
+

(s− 1)(s− ε)
(s+ 1)(s+ 2)

K(s)

γo = inf
K∈H∞

‖EK‖∞ (8)

Note that for ε = 0 assumption A3 is not satisfied at ω = 0.
This is a standard model matching problem with the

interpolation constraints (the Nevanlinna-Pick problem):

ε < 0 EK(1) = 0.5 (9)

ε = 0 EK(1) = 0.5, EK(0) = 1 (10)

ε > 0 EK(1) = 0.5, EK(ε) =
1

(1 + ε)
(11)

whose solution (see e.g. [4], pp. 154-160) gives,

γo =


1
2 =: γ−o for ε < 0
1 =: γ0o for ε = 0
1
4

(
1 +

√
1 + 8/(1 + ε)

)
=: γ+o for ε > 0

(12)

For ε < 0 the optimal K, K−o (s) = (s+2)
2(s−ε) , and EK−o = 1

2 .

For ε = 0 there is a family of K giving ‖EK0
o
‖∞ = 1, e.g.

K0
o = 0 or K0

o = − (s+2)
(s+3) .

For ε > 0 some manipulation gives K+
o = −γ+o

(s+2)
(s+α)

where α = 1 + 2(1 + ε)γ+o , and EK+
o

= −γ+o
(s−α)
(s+α) .

The behaviour as ε ↑ 0 or ε ↓ 0 will now be considered.
For ε < 0, K−o (s) cancels the zero at ε and if this is only
done approximately by a term (s−ε̂), then EK(0) = 1− ε

2ε̂ ,
giving an unreliable result (for a small frequency range).
For ε ≥ 0 there is no similar sensitivity. There is clearly
a discontinuity at ε = 0 in γo and Ko and if the near
violation of assumption A3 is buried by numerical precision
unreliable results are likely.

The standard approach to this problem would be to
perform a search over γ to find bounds on γo by for each
γ-value asking the question: does there exist K ∈ H∞
such that ‖EK‖∞ < γ?
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The Hamiltonian matrices will be

H∞ =


−1 0 γ−2 0

2 + ε ε 0 −(2 + ε)2

0 0 1 −(2 + ε)
0 0 0 −ε



J∞ =


1 0 γ−2 − 4 γ−2 − 4
0 −2 γ−2 − 4 γ−2 − 4
0 0 −1 0
0 0 0 2


For ε < 0, X∞ and Y∞ are given by (resp.)

X−∞ =

[
0 0
0 0

]
, Y −∞ =

[ 2
(4−γ−2) 0

0 0

]
,

giving Y −∞ ≥ 0⇔ γ > 1
2 = γ−o and

K−γ =
γ−2(s+ 2)

(s− ε)((4− γ−2)s+ (4 + γ−2))

For ε > 0, Y∞ = Y +
∞ = Y −∞ and X∞ is given by:

X+
∞ =

2ε

(1 + ε)2 − γ−2

[
1

(1+ε)
(2+ε)

] [
1 (1+ε)

(2+ε)

]
(13)

The spectral radius condition becomes:

ρ(X+
∞Y

+
∞) =

4ε

((1 + ε)2 − γ−2)(4− γ−2)
< γ2 ⇔ γ > γ+o .

In determining γ+o for small ε > 0, since γ+o ≈ 1 there
will be an ε cancellation in the term 2ε

(1+ε)2−γ−2 leading to

potentially unreliable results. Also note that both X+
∞ and

Y +
∞ have rank 1 for all γ and ε > 0, so that determining

whether they are positive semidefinite might require an
accuracy tolerance term which is a potential problem.

This simple example has been included to illustrate
how sensitive the solution can be when, in this case, as-
sumption A3 is nearly violated, and also that testing for
semi-definiteness can be an issue. The former problem
could be interpreted as a problem with the problem formu-
lation, since it allows a pole-zero cancellation near s = 0
for ε < 0, however for ε > 0, K = 0 gives ‖EK‖∞ = 1
which is nearly optimal since γ+o ≈ 1 − ε/3, so that an
‘acceptable’ solution is available.

3.3. Solving the Algebraic Riccati Equations

Solving for X∞ in C1 corresponds to solving an Alge-
braic Riccati equation (ARE) with an indefinite quadratic
term X∞(γ−2B1B

∗
1 − B2B

∗
2)X∞. For γ > γo H∞ will

have no eigen-values on the imaginary axis and one so-
lution method is to find a basis for the stable invariant
subspace of H∞, i.e. find X1, X2 ∈ Rn×n such that (see
e.g. [1], [11])

H∞

[
X1

X2

]
=

[
X1

X2

]
TX , with σ(TX) ∈ C− (14)

For Hamiltonian matrices (and exact arithmetic) it can
be shown that X∗1X2 = X∗2X1 so that X∞ = X2X

−1
1 =

X∗−11 X∗2 = X∗∞. Using the Q-Z algorithm here does not
preserve the Hamiltonian structure and methods that do
preserve this structure have been developed (see [2] and
the references therein for example [3]).

It is normally recommended that iterative refinement
is used in solving ARE’s. If X̂i is an approximate solution
to C1 then Newton’s method will give the refined solution,
X̂i+1 satisfying the Lyapunov equation,

X̂i+1Âi + ÂiX̂i+1 − X̂i(γ
−2B1B

∗
1 −B2B

∗
2)X̂i

+ C∗1D
⊥
12D

⊥∗
12 C1 = 0

where Âi = A−B2D
∗
12C1 + (γ−2B1B

∗
1 −B2B

∗
2)X̂i

(15)

In the H2 problem (γ = ∞) this refinement has excellent
properties with X̂i+1 ≥ X̂i and convergence guaranteed
as long as the initial approximate solution, X̂0 makes Â0

stable [10]. There is also the opportunity to calculate a
square root of the solution. Unfortunately when γ < ∞
the monotonicity property does not hold and square root
algorithms do not appear to exist. However if X̂0 is close
enough to X∞ then convergence of X̂i to X∞ should be
assured.

3.4. Testing Condition C3

The condition in C3 of Theorem 1 that X∞ ≥ 0 is po-
tentially problematic since X∞ being singular is not patho-
logical and can arise naturally, e.g. X∞ will be singular if
sensor dynamics are included but the sensor output does
not affect z. Similarly Y∞ will be singular if actuator dy-
namics are not affected by input disturbances. The rank of
X∞ and Y∞ is constant for all γ > γo [8]. If rank(X∞) < n
then numerical imprecision in calculating X∞ may suggest
that X∞ � 0. However the following result (c.f. Lemma
6 in [5] ) gives an alternative equivalent condition without
this potential difficulty.

Theorem 2.

(a) Given X∞ satisfying C1 in Theorem 1 then X∞ ≥ 0
if and only if σ(A−B2D

∗
12C1 −B2B

∗
2X∞) ⊂ C−.

(b) Given Y∞ satisfying C2 in Theorem 1 then Y∞ ≥ 0
if and only if σ(A−B1D

∗
21C2 − Y∞C∗2C2) ⊂ C−.

Proof. (a) X∞ satisfying condition C1 is equivalent to,

X∞(A−B2D
∗
12C1) + (A−B2D

∗
12C1)∗X∞

+X∞(γ−2B1B
∗
1 −B2B

∗
2)X∞ + C∗1D

⊥
12D

⊥∗
12 C1 = 0 (16)

and σ(A − B2D
∗
12C1 + (γ−2B1B

∗
1 − B2B

∗
2)X∞) ⊂ C−.

Defining Ã = A−B2D
∗
12C1−B2B

∗
2X∞, and C̃ =

γ−1B∗1X∞B∗2X∞
D⊥∗12 C1

,

gives
X∞Ã+ Ã∗X∞ + C̃∗C̃ = 0 (17)
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and (C̃, Ã) is detectable since σ(Ã+
[
γ−1X∞B1 0 0

]
C̃) ⊂

C− by assumption. Hence X∞ ≥ 0 implies σ(Ã) ⊂ C− by
Lemma 3.19(iii) in [18]. Conversely if σ(Ã) ⊂ C−, then
X∞ ≥ 0 by Lemma 3.18(ii) in [18]. The proof for part (b)
is the dual argument. �

Remark 1. Although this result is not new its use as an
alternative to checking X∞ ≥ 0 in numerical procedures
is perhaps novel.

Remark 2. This condition can be applied to the exam-
ple in §3.2 when for ε < 0 the eigen values of Ã in condi-
tion (a) of Theorem 2 are {−1, ε} and for condition (b)

{− (4+γ−2)
(4−γ−2) ,−2}. For ε > 0 these become respectively:

{−1,−2 ((1+ε)3−γ−2)
((1+ε)2−γ−2)} and {− (4+γ−2)

(4−γ−2) ,−2}. These are all

consistent with the results in the example. Clearly, for
any γ these values are all negative if and only if the (rank
deficient) solutions X∞ and Y∞ are in fact positive semi-
definite.

3.5. Assumptions A1, A3 and A4

Although the theoretical results come with assump-
tions such as A1, A3 and A4 a typical user would not
independently check these are satisfied. (Note that as-
sumptions A2 can be satisfied by suitable scaling of u and
y and orthogonal transformations of w and z so these as-
sumptions are without loss of generality as long as the
weight on u is positive definite and that w can effect all
the measurements independently). If assumptions A1, A3
or A4 are not satisfied then a small perturbation of the
data will typically make them satisfied. It is helpful to
know how the algorithms will fail if these assumptions are
violated or nearly violated.

Suppose (A,B2) is not stabilizable so that there exists
x ∈ Cn and λ ∈ C+ such that x∗A = λx∗ and x∗B2 = 0.

For γ =∞, H∞

[
0
x

]
= −λ∗

[
0
x

]
and hence X1 in (14) will

necessarily be singular and the H2 problem is not solvable.
For γ < ∞ since @ F ∈ Rm2×n such that σ(A − B2F ) ⊂
C−, Theorem 2 gives that X∞ � 0. Similarly if (C2, A) is
not detectable any Y∞ satisfying C2 is not positive semi-
definite. Hence if A1 is violated then the problem is not
solvable and the algorithm will fail in a predictable way.

If assumption A3 is violated at ω = ωo then ∃ x, u such
that , [

A− jωoI B2

C1 D12

] [
x
u

]
=

[
0
0

]
(18)

=⇒ H∞

[
x
0

]
= jωo

[
x
0

]
∀ γ (19)

and this will imply that the algorithm should fail. How-
ever numerical inaccuracy might make the calculated eigen
values off the imaginary axis. As seen in the example in
3.2 there might be significant sensitivity in the solution in
spite of the problem seeming to have a sensible solution.

Indeed if for some value of γ either H∞ or J∞ have
an eigen value at jωo then the largest singular value of
F`(P (jωo),K(jωo)) is necessarily ≥ γ for any K, indepen-
dent on any closed-loop stability requirement, as demon-
strated in the following Lemma (whose simple proof is in
the Appendix).

Lemma 3. If ∃ωo ∈ R and ξ1, ξ2 ∈ Cn such that, det(jωoI−
A+B2D

∗
12C1) 6= 0 and

H∞

[
ξ1
ξ2

]
= jωo

[
ξ1
ξ2

]
,

[
ξ1
ξ2

]
6= 0 (20)

then ∃wo ∈ Cm1 such that for zo := P11(jωo)wo+P12(jωo)u,
z∗ozo ≥ γ2w∗owo for all u ∈ Cm2 .

3.6. A Descriptor Form for the H∞ controller

In Theorem 1 a realisation of the central controller is
given by (e.g. Theorem 17.1 in [18])

K =

[
Â B̂

Ĉ 0

]
where

Â = A−B2D
∗
12C1 + γ−2B1B

∗
1X∞ −B2B

∗
2X∞

− B̂(C2 + γ−2D21B
∗
1X∞)

B̂ = Z∞(B1D
∗
21 + Y∞C

∗
2 )

Ĉ = −(D∗12C1 +B∗2X∞)

Z∞ = (I − γ−2Y∞X∞)−1

It is noted that from (14) forming X∞ = X2X
−1
1 , Y∞ =

Y2Y
−1
1 and Z∞ requires the inverses of matrices that might

not be well-conditioned especially when γ ≈ γo. If a de-
scriptor form for K is acceptable then the following formu-
lae are easily derived and contain no matrix inverses (see
also [13] [6])

K = Ĉd

(
sÊd − Âd

)−1
B̂d (21)

where

Êd = Y ∗1 X1 − γ−2Y ∗2 X2 (22)

Ĉd = −(D∗12C1X1 +B∗2X2) (23)

B̂d = Y ∗1 B1D
∗
21 + Y ∗2 C

∗
2 (24)

Âd = ÊdTX − B̂d(C2X1 + γ−2D21B
∗
1X2) (25)

where X1, X2 and TX are defined in (14) and Y1 and Y2
from the corresponding definition for J∞. Also an alter-
native condition for X∞ ≥ 0 and Y∞ ≥ 0, as in Theorem
2 is the generalised eigen value problem condition: only
λ ∈ C− satisfy

det (λX1 − (A−B2D
∗
12C1)X1 +B2B

∗
2X2) = 0

det (λY1 − ((A−B1D
∗
21C2)∗Y1 + C∗2C2Y2) = 0

which can be checked via the Q-Z algorithm. The spectral
radius condition, C4, can be formulated as the generalised
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Figure 2: H∞-Loop-shaping block diagram

eigen value problem (without requiring inverses of X1 or
Y1): that all λ such that det(λX∗1Y1 −X∗2Y2) = 0 satisfy
λ < γ2.

Remark 3. As γ decreases towards γo, X∞ and Y∞ both
increase monotonically [8]. The ARE’s will then fail to
have the desired solutions when X1 or Y1 become singular
or when H∞ or J∞ have eigen values on the imaginary
axis. With the optimal value of γ, Êd may become singu-
lar but the descriptor formulae may nevertheless give an
optimal controller which can then have a proper transfer
function rather than a strictly proper transfer function.

One potential disadvantage of this approach is that it
is not apparent how iterative refinement as outlined in §3.3
could be adapted.

4. H∞ Loop-shaping

The H∞ Loop-shaping control system design method
has been shown to have many appealing features from both
mathematical and design perspectives (see e.g. [16] [14]).
In this section we will discuss some numerical aspects and
will not review the design rationale. We will show that the
computations can be very straightforward and reliable.

The central computational problem is to solve the H∞-
control problem in Fig. 2 : for a given γ ∈ R+ find an in-
ternally stabilizing K(s) such that the closed-loop transfer

function from

[
w1

w2

]
to

[
z1
z2

]
has H∞-norm < γ. i.e.

‖F`(P,K)‖∞ < γ, where P =

[
G
I

]
(I −KG)−1

[
I K

]
(26)

A main result from [12][18] is that

Theorem 4. In Fig. 2 let G =

[
A B
C 0

]
in which (A,B)

is stabilizable and (C,A) is detectable, then ∃K such that
Fig. 2 is internally stable and ‖F`(P,K)‖∞ < γ if and
only if

D1. ∃ X = X∗ such that σ(A−BB∗X) ⊂ C− and

A∗X +XA+ C∗C −XBB∗X = 0 (27)

D2. ∃ Z = Z∗ such that σ(A− ZC∗C) ⊂ C− and

AZ + ZA∗ +BB∗ − ZC∗CZ = 0 (28)

D3. X ≥ 0, Z ≥ 0; and

D4. 1 + ρ(XZ) < γ2.

If conditions D1–D4 are satisfied then two state-space re-
alisations of the central (maximum entropy) controller are
given by

K =

[
A+BF∞ + L2C −L2

F∞ 0

]
(29)

=

[
A+BF2 + L∞C −L∞

F2 0

]
(30)

where (31)

F2 = −B∗X, L2 = −ZC∗, F∞ = F2W
−1, L∞ = W−1L2

(32)

W = I − γ−2(I + ZX). (33)

Remark 4. The state-space realisation in (29) can be ob-
tained from that in (30) by the state transformation W−1.
Both these realisations are in ‘observer form’ and hence
the closed-loop poles will be σ(A+L2C) and σ(A+BF∞)
which are the same as σ(A+BF2) and σ(A+L∞C) respec-
tively. Note that the observer poles and controller poles
are switched between the two realisations. The observer in
(30) gives the Kalman filter state estimate if the elements
of w1 and w2 are assumed to be independent white noise
processes with equal spectral densities. However in a loop-
shaping problem set-up such white noise assumptions are
unlikely to be valid and hence such a state estimate should
be treated with due caution.

Remark 5. The ARE’s in (27) and (28) are very stan-
dard and could be solved by a variety of methods (see [1]),
including iterative refinement and square root algorithms.
If a Schur-type method is used a modest efficiency is pos-
sible as follows. The corresponding Hamiltonian matrices
for (27) and (28) are,

H2 =

[
A −BB∗

−C∗C −A∗
]
, J2 =

[
A∗ −C∗C
−BB∗ −A

]
, (34)

From the Schur form for H2 two ordered Schur forms
can be determined to give,

H2

[
X1

X2

]
=

[
X1

X2

]
TX , H2

[
−Z2

Z1

]
=

[
−Z2

Z1

]
(−TZ) (35)

⇒J2
[
Z1

Z2

]
=

[
Z1

Z2

]
TZ (36)

X = X2X
−1
1 , Z = Z2Z

−1
1 (37)

where σ(TX) ⊂ C− and σ(TZ) ⊂ C−. The refinement step
can then be solved by the square-root solution method to
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the Lyapunov equation given in [7], giving the observabil-

ity Gramian of

(
A−BB∗X̂i,

[
B∗X̂i

C

])
as X̂i+1 = R∗R.

Similarly for Ẑi+1 = S∗S. Let the svd of SR∗ = UΣV ∗

with Σ = diag(σ1, σ2, · · · , σn), σi ≥ σi+1,∀i. Then condi-
tion D4 gives 1 + σ2

1 < γ2 and γopt =
√

1 + σ2
1 . These σi

were introduced as the “LQG-characteristic values” in [9]
The algorithm in [15] can now be used to give a change

in state coordinates such that X = Z = Σ in the new
state coordinates. In this method the terms σ

− 1
2

i occur
so there are potential problems if some σi � 1 and [15]
suggested that such states are truncated with a minimal
model reduction error. In the present context this will
imply that if Ĝ is the model truncated to k states then the
ν-gap metric, δν(G, Ĝ) < 2

∑n
i=k+1 σi (see [16]). E.g. for

σk+i < 10−3 the approximation error will be negligible and

for σi > 10−3 the terms σ
− 1

2
i should not present numerical

problems.
The above illustrates some advantages of this method

since robustness to uncertainty in the gap metric and ap-
proximation in the gap metric are both relative to unity.
If the resulting robustness in the gap metric, ∼ 1/γ, turns
out to be smaller than say 0.2, then if such a controller is
implemented its closed-loop behaviour is most likely to be
poor, and for example the controller should be re-designed
with a less ambitious loop-shape.

Remark 6. For the balanced coordinates given above the
normalised left and right coprime factorisations of G are
given by [

Ñ M̃
]

=

[
A+ L2C

[
B L2

]
C

[
0 I

] ]
(38)

[
N
M

]
=

 A+BF2 B[
C
F2

] [
0
I

]  (39)

with controllability Gramians are Σ and Σ
(
I + Σ2

)−1
resp.

and observability Gramians Σ
(
I + Σ2

)−1
and Σ resp.. Hence

the Hankel singular values of these coprime factorisations
are σi/

√
1 + σ2

i . Here σ1 determines the optimal perfor-
mance and the small σi give the opportunities for model
reduction, with bounds on the resulting performance and
robustness guaranteed via results on the ν-gap metric as
in [16].

Remark 7. In this section we have demonstrated that the
H∞-loop shaping problem is well-behaved especially when
compared to some of the potential issues mentioned in §3.
An area where numerical difficulties might arise is when
the internal description of G is poorly scaled and initial
diagonal scaling can help avoid this ([1]).
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Appendix: Proof of Lemma 3.

Proof. A sinusoidal analysis at frequency ωo, together
with the change of variable, u = v −D∗12C1x, gives

jωox = (A−B2D
∗
12C1)x+B1w +B2v

z = D⊥12D
⊥∗
12 C1x+D12v
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and defining

L := jωoI −A+B2D
∗
12C1; M := D⊥∗12 C1L

−1;

F1 := MB1; F2 := MB2; N := (I + F ∗2 F2)−1F ∗2 F1

gives x = L−1(B1w +B2v), and

z∗z − γ2w∗w = x∗C∗1D
⊥
12D

⊥∗
12 C1x+ v∗v − γ2w∗w

=(F1w + F2v)∗(F1w + F2v) + v∗v − γ2w∗w
= (v +Nw)

∗
(I + F ∗2 F2) (v +Nw)

+ w∗(−γ2I + F ∗1 (I + F2F
∗
2 )−1F1)w

≥w∗(−γ2I + F ∗1 (I + F2F
∗
2 )−1F1)w ∀ v

(.1)

Now (20) gives

Lξ1 = (γ−2B1B
∗
1 −B2B

∗
2)ξ2; L∗ξ2 = C∗1D

⊥
12D

⊥∗
12 C1ξ1

giving

ξ1 = L−1(γ−2B1B
∗
1 −B2B

∗
2)L∗−1C∗1D

⊥
12D

⊥∗
12 C1ξ1

and defining q := D⊥∗12 C1ξ1 gives

γ2q = (I + F2F
∗
2 )−1F1F

∗
1 q (.2)

Now let w = wo := F ∗1 q when (.2) implies

q∗F1(−γ2I + F ∗1 (I + F2F
∗
2 )−1F1))F ∗1 q = 0

and then (.1) gives z∗ozo ≥ γ2w∗owo as required. �
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