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Section 1 Considerations on the initiation mass

The initiation mass of E. coli, a concept put forward by Donachie in 1968 [1], is an idea that, while independent of

the work presented in this paper, has been at the centre of the research into initiation of chromosome replication since

its inception. This section presents some thoughts on the implications of our model on the initiation mass argument.

As explained in the main text, steady exponential growth of the cell mass is assumed. The volume of the cell at a time

t, denoted Ω(t), is thus

Ω(t) = Ω0e
αt, (12)

where α is the growth rate such that

α =
log(2)

τ
(13)

If it is assumed that the initial mass of the cell is an exponential function of the growth rate [2], it is possible, for

example, to write

Ω0 = Ω0(α) =
eα(C+D)Ω∗

2
, (14)

where Ω∗ is a constant.

With (12) and (13), this implies that

Ω(X)

2n
= constant = Ω∗, (15)

where 2n is the number of oriC in the cell. This gives a constant ratio of oriC to mass at initiation and so is in

agreement with what was shown by Donachie [1].

Donachie’s observations of a constant initiation mass are based on the observation by Schaechter et al. [2] of the

initial mass of a cell growing exponentially with growth rate. As discussed, for the ratio of the mass to number of

origins to be constant at initiation, a very specific initial cell mass is required, namely

Ω(0) =
Ω∗
2
eα(C+D), (16)
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if the Cooper-Helmstetter model is assumed. However, this particular trend of initial mass with growth rate is not

claimed to hold by Schaechter and coworkers: it is simply an exponential relationship that is claimed to hold. Thus, if

the relationship was slightly different, say, for example, Ω(0) = Ω∗
2 eα(C+D+1) then one would have

Ω(X)

2n
= Ω∗e

α, (17)

i.e. the initiation mass would also be an exponential function of the growth rate. So, under the assumption of an

initial cell mass varying exponentially with growth rate, it is not necessary to have an initiation mass that is constant;

an initiation mass that is a continuous function of growth rate is possible. This study is concerned with determining

whether DnaA can fulfill a threshold condition at t = X; this question is independent of whether the origin to mass

ratio is constant or not at t = X .

Section 2 Thermodynamic model for the promoter

This study describes promoter activity using the thermodynamic model first introduced by Shea and Ackers [3, 4].

This section introduces the mathematics of the derivation of this term. Note that the term derived here is for the

simple autorepressor, which is the form used in the equation (11).

The Shea-Ackers model calculates the probability (assuming equilibrium binding) that RNAP is bound to a given

promoter [5]. The validity of the equilibrium binding assumption relies on the rate of binding and unbinding of

RNAP to and from the promoter being much faster than the rate of open complex formation. The same is true for the

relevant transcription factors (such as DnaA-ATP in this case). Under these assumptions, the probability that RNAP is

bound to a particular promoter (in the absence of transcription factors) is given by the ratio of the statistical weight of

the state in which RNAP is bound to that promoter, divided by the sum of the statistical weights of all possible states.

To formalize this, the number of non-specific binding sites on the chromosome is denoted as NNS and the number of

RNAP molecules as P . The number of ways of arranging all the RNAP molecules in the non-specific sites is:

NNS !

P !(NNS − P )!
, (18)

and the statistical weight of this state is thus

Z(P ) =
NNS !

P !(NNS − P )!� �� �
number of arrangements

× e−PεNS

pd
/kBT

� �� �
Boltzmann weight (binding energy)

. (19)

And so, the probability of having RNAP bound to a given promoter is given by
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P(RNAP bound) =
Z(P − 1)e−εS

pd
/kBT

Ztot(P )
, (20)

where Ztot(P ) represents the sum of the possible statistical weights, namely

Ztot(P ) = Z(P )� �� �
promoter unoccupied

+Z(P − 1)e−εS
pd

/kBT

� �� �
RNAP bound to promoter

. (21)

What can be seen is that this form of the derivation for the probability of the RNAP being bound to a given promoter

does not require the volume to be considered explicitly. The spatial distribution of RNAP within the cell is not

considered as it is assumed to provide only a weak perturbation to the probability, given the large number of RNAP

molecules in the cell [5].

Now consider the probability for the promoter in the both more relevant and complex case where a repressing

transcription factor is involved (namely DnaA-ATP).

The notation used is as follows: Q is the promoter term; A is the number of DnaA-ATP molecules as (where the

subscript used in the main text has been dropped for ease of notation); NNS is the number of non-specific binding

sites on the chromosome; P is the number of RNAP molecules.

The number of ways of arranging the RNAP molecules and the DnaA-ATP molecules in the non-specific binding

sites is

NNS !

P !A!(NNS − P −A)!
(22)

which is effectively the number of arrangements where the appropriate promoter is unoccupied. The statistical

weight for this can be written

Z(P,A) =
NNS !

P !A!(NNS − P −A)!� �� �
Number of arrangements

× e−PεNS

pd
/kBT

� �� �
weight of each RNAP state

× e−AεNS

ad
/kBT

� �� �
weight of each DnaA-ATP state

, (23)

where the exponential terms are the Boltzmann weights.

Thus, under the assumption that DnaA-ATP acts as an autorepressor, the total statistical weight of all the scenarios is

given by
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Ztot(P,A) =Z(P,A)� �� �
empty sites

+ Z(P − 1, A)e−εS
pd

/kBT

� �� �
RNAP on promoter

+ Z(P,A− 1)e−εS
ad

/kBT

� �� �
DnaA-ATP on specific site

. (24)

The probability that RNAP is bound at the dnaA promoter is

P(RNAP bound) =
Z(P − 1, A)e−εS

pd
/kBT

Ztot(P,A)

=
1

1 + NNS

P e∆εpd/kBT + A
P e(∆εpd−∆εad)/kBT

, (25)

where it has been assumed that NNS � P and A.

The basal rate of transcription of the dnaA promoter is then defined as kA and the copy-number of dnaA promoters in

a given cell at one time (which can be computed from the Cooper-Helmstetter model) as Θ(t, τ).

The same kind of argument can be used in order to justify the fact that one expects a constant initiation threshold for

DnaA. Consider the fact that 20 DnaA molecules must bind to the origin for initiation to occur. It can be assumed

that this state is binary, i.e. that either 20 molecules are bound, or 20 molecules are not bound. The probability of

having 20 molecules bound is thus:

P(Origin Bound) =
Z(A− 20)e−20εao/kBTω

Z(A− 20)e−20εao/kBTω + Z(A)
,

where

Z(A) =
NNS !

A!(NNS −A)!
.

Dividing through, and under the assumptions above, gives that

P(Origin Bound) =
1

1 + e20∆εao/kBT

ω(κr)20

. (26)

Thus, there is a value of r, determined by e20∆εao/kBT

ωκ20 at which the probability rapidly approaches unity. This can be

seen as the value of r where initiation takes place. Note that this estimate is rather robust to the addition of other

possible states, such as states in which DnaA-ATP can be bound to other sites, assuming that the number of these

extra specific sites is small in comparison to the total pool of DnaA-ATP molecules.
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Section 2.1 Considerations on the increase in RNAP levels

A further factor to consider is the way in which RNAP levels vary during the cell cycle. As with other elements of the

cell, the number of RNAP molecules must double during each cell cycle when the bacteria are in exponential growth.

The assumption made here is that the RNAP levels grow exponentially during the cell cycle, to reach double their

initial value at the end of the cell cycle. Combined with the assumption that the volume of the cells grows

exponentially, this means that the concentration of RNAP stays constant through the cell cycle, in agreement with the

results of Oeschger et al. [6]. Moreover, even if the levels of RNAP grow linearly, this is only a weak perturbation

from the exponential growth. Consequently, the expectation is that this will not significantly affect the model

dynamics.

Section 3 Parameter transformation enforcing a constant threshold

This section discusses the parameter transformation of equation (11), providing the key to probing how the

parameters of the model must vary with growth rate. As discussed in the main text, equation (11) is transformed to

fix the value of r at the moment of initiation (t = X) to be the same for every value of τ in the range 20 < τ < 60.

This is enforced by a translation and scaling on r such that

r�(X, τ) = λ(τ)r(X, τ)− a(τ) , (27)

where r� is the translated version of r.

The wish is to see what must happen to the coefficients in the equation for the fixed threshold condition to hold, when

the structure of (11) is preserved in the transformation. The same transformation can be applied in numerical

simulations, but its analytical form is more instructive with respect to classifying the possible parameter

transformations.

Equation (11) can be rewritten in the desired form, with translated variables, as

∂r�

∂t
=

1

Λ

�
Θk�A

1 + c�1
Λ
P � + c�2

Λ
P � r�

− (k�R + r�kΛ)F
�

. (28)

Note that kΛ cannot change, as this rate is externally imposed by the Cooper-Helmstetter model.

The substitution of r from (27) into equation (11) gives
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∂r�

∂t
= λ

∂r

∂t
=

λ

Λ

�
ΘkA

1 + c1
Λ
P + c2

Λ
P ( r

�+a
λ )

− (kR +

�
r� + a

λ

�
kΛ)F

�
. (29)

Comparison of the coefficients of r� and Λ in equation (29) with equation (28), yields the conditions

k�A = λkA, (30)

λkR + akΛ = k�R, (31)

c2
Pλ

=
c�2
P � , (32)

1

P

�
c1 + c2

a

λ

�
=

c�1
P � , (33)

and the condition that defines the transformation, namely

r�(X) = λr(X)− a = constant. (34)

At this point we note the assumption that the concentration of RNAP is constant throughout the cell cycle. Thus

P = P0e
αt (35)

and

P � = P �
0e

αt (36)

Thus, since equations (32) and (33) have eαt as a common factor, it is possible to divide through by it. From hereafter

in this section, P and P � actually refer to P0 and P �
0 but the subscripts are dropped for ease of notation.

Furthermore, equations (32) and (33) can combine to give

a =
c�1
c�2

− λ
c1
c2

(37)

Examination of equation (4), reveals that

c1 =
b0
κ

c2 =
b0
b1

(38)
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where b0 and b1 are given by equation (4). Thus, writing c�1 = b�0
κ and c�2 = b�0

b�1
one sees that equation (37) can be

rewritten

a =
1

κ
(b�1 − λb1) (39)

where b1 = e∆εad/kBT .

Now, mathematically, two things can be chosen to be fixed to satisfy these equations

1. The RIDA rate can be fixed: kR = k�R. It then follows from (31) that

a =
kR
kΛ

(1− λ), (40)

which, when combined with equation (39) gives

b�1 =
κkR
kΛ

(1− λ) + λb1. (41)

Equation (40), when taken with (34), gives the value that λ must take, namely

λ =
r�(X) + kR

kΛ

r(X) + kR

kΛ

. (42)

Either c1 (i.e. b0) or P can then be fixed.

(a) Since it is possible to choose c�1, it is logical to set c�1 = c1. This gives that, c�2 = b0
b�1

and so

P � =
b1Pλ�

κkR

kΛ
(1− λ) + λb1

� . (43)

Note that any trend for b0 could have been chosen. The decision to set b�0 = b0 here, was due to it being

the simplest logical choice. This equation, taken with equations (30), (41) and (42) determines the

transformation.

(b) It is possible to fix P � to a known trend e.g. the one given in ref. [7]. This will then have implications for

how c1 (and hence b0) must vary. Given that P � is now a known quantity, this gives that

b�0 =
b0P �

�
κkR

kΛ
(1− λ) + λb1

�

b1Pλ
. (44)

This equation, taken with equations (30), (41) and (42) determines the transformation.
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2. It is possible to set c1 = c�1 and c2 = c�2. From this it follows that

a =
c1
c2

(1− λ) (45)

and

P � = λP. (46)

Furthermore,

k�R =
kR − c1

c2
(1− λ)kλ

λ
. (47)

Thus, equations (45), (46) and (47), along with

λ =
r�(X) + c1

c2

r(X) + c1
c2

(48)

and (30), determine the transformation, when c1 and c2 are fixed.

Section 4 Average over cell population

This section discusses how to compute average levels of RNA polymerase and average gene expression, used for

example in Figure 4. These average levels are quantities that can be in principle measured directly.

Consider, for example, the expression level of the dnaA promoter (i.e. Q) (presented in Figure 4B). Denote the

average colony expression level as:

Average colony expression level = �Q(α)� (49)

where steady exponential growth is assumed and α is the growth rate. In order to evaluate this average, the

probability of finding a cell at a time t ∈ (0, τ) of the cell cycle is required.

Given the exponentially growing colony with growth rate α, let N(t) denote the number of bacteria in the colony at

time t. If the interval (0, τ) is split into τ/δt equal size segments each of infinitesimal size δt, then the number of

bacteria born in the infinitesimal time inverval (t, t+ δt) is

δN(t) =
dN

dt
δt , (50)
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i.e.

δN(t) = αN dt = αN0e
αtδt. (51)

Within a population of bacteria at time t�, the probability of finding a bacterium born in the time interval (tb, tb + δt)

(with tb < t�) is given by

δN(tb)

N(t�)
=

αN0eαtb

N(t�)
δt = αeα(tb−t�)δt. (52)

This is equivalent to finding a bacterium with an age in the range (t, t+ δt) where t = t� − tb, and so it can be written

that the probability of finding a bacterium with an age in the range (t, t+ δt) is

P(t,α) = αe−αtδt. (53)

Moreover, since bacteria divide after a time τ , the probability of finding a bacterium at a stage in the range (t, t+ δt)

of the cell cycle is given by

P(t,α) =
∞�

n=0

P(nτ + t)

= αe−αt
∞�

0

e−αnτδt

= αe−αt

�
1

1− e−ατ

�
δt

= αe−αt

�
1

1− 1
2

�
δt

= 2αe−αtδt

= φ(t,α)δt (54)

Note that the individual bacteria are assumed to grow exponentially with growth rate α in the same way as the colony

itself. Thus,

�Q(α)� =
τ/δt�

m=0

Q(mδt,α)P(mδt,α)

=

τ/δt�

m=0

Q(mδt,α)φ(mδt,α)δt

=

� τ

0
Q(t,α)φ(t,α) dt in the limit as δt → 0 (55)
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This argument gives the average value of any observable quantity. For example to get the average of P , as in

Figure 4A, one would take

�P (α)� =
� τ

0
P (t,α)φ(t,α) dt. (56)

Section 5 Considerations on other forms of the promoter

This section deals with thermodynamic models for promoters that incorporate some further experimental findings on

the behaviour of the dnaA gene [8]. Data from footprint experiments has provided an insight into the cooperativity

of the DnaA boxes on the dnaA gene, which has been proposed to be important for the correct timing of DNA

replication in Escherichia coli, as well as potential autoactivation of the gene [9]. The models considered are (i) a

promoter with no autorepression, (ii) a model with cooperativity of DnaA binding to the repression sites at the dnaA

promoter, (iii) a promoter with both cooperativity and autoactivation. The reasons for not choosing these model

variants as the main model formulation are then discussed.

Section 5.1 Promoter with no autorepression

This section considers a simpler model for the promoter than the one used in the main text, namely one that has no

autorepression. The form for this type of promoter was derived in Section 2 and its implications are discussed more

fully here. When the results from Section 2 are used, the main equation takes the form

∂r

∂t
=

1

Λ

�
ΘkA

1 + c1
Λ
P

− (kR + rkΛ)F
�
. (57)

This is integrated, with fixed parameters kA, c1, kR and kΛ assumed, to give r(t, τ), for a given τ . The parameter c1

is then varied (for a fixed value of τ ) to probe the effect that autorepression has (see Figure A2). What can be see in

Figure A2 is that autorepression causes the range of values for r(t, τ) (the oscillation size), to be much narrower than

for the non-autorepressed case. This might be an important role that autorepression plays in fine tuning the timing of

replication initiation, since it ensures that, even before any other parameters are considered to be variable, the

differences in the ratio DnaA-ATP:DNA length is reduced across different τ . For this reason, autorepression was

chosen to be included in the main model formulation.

Section 5.2 Promoter with cooperativity of DnaA binding

This section discusses a model for a promoter in which there are two binding sites for DnaA. First, it deals with a

form for a simple case of cooperativity, and then it introduces a more complex form including differential action of
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DnaA-ATP and DnaA-ADP.

Section 5.2.1 Simple cooperativity

In the model considered here, there are two binding sites for DnaA, both of which have a repression effect when

bound, and which bind highly cooperatively. The sites are considered to have a low affinity for DnaA so only a

probability to the situation in which both sites are bound is allocated . As in Section 2, the number of DnaA-ATP

molecules is denoted as A, the number of non-specific binding sites as NNS and the number of RNA polymerase

molecules as P . Furthermore, the binding energy between a molecule x and a (non-)specific site on the DNA is

defined as ε(N)S
xd and the difference is denoted as

∆εxd = εSxd − εNS
xd . (58)

In addition, the cooperativity of binding between two DnaA-ATP molecules is written as ω.

Thus, the sum of all the statistical weights is

Ztot = Z(P,A)� �� �
Empty sites

+Z(P − 1, A)e−εS
pd

� �� �
RNAP bound

+ Z(P,A− 2)e−2εS
adω� �� �

DnaA-ATP bound cooperatively

. (59)

This form allocates zero probability that DnaA-ATP can bind by itself. This leads directly to the probability of RNAP

being bound to the promoter, namely

P(RNAP bound) =
Z(P − 1, A)e−εS

pd

Ztot
, (60)

i.e.

P(RNAP bound) =
1

1 + e∆εpd NNS

PFreg

, (61)

where

F−1
reg = 1 + e−2∆εadω

�
A

NNS

�2

. (62)

Figure A6C shows that the presence of cooperativity alone cannot produce a constant threshold. Thus, it is necessary

to try and impose a constant threshold on the model using a transformation such as that described in Section 3. Now,

if it is written that rκ = A
NNS

(see main text for definition of κ), an attempt to perform the same transformation as

in Section 3, i.e.

r� = λr − a , (63)
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shows that the (rκ)2 term produces a linear term in r� that is not present in the original form of Freg and so the

transformation will fail as it will not generally be possible to retain the original form of the model.

Section 5.2.2 A more sophisticated model for cooperativity

We consider here the more realistic situation where the two binding sites differ. One is a high-affinity site, which

does not contribute towards autorepression, and the other is a low-affinity site to which DnaA binds cooperatively

and such that, when bound, DnaA has a repression effect on the dnaA gene [10]. The number of ways of distributing

P RNA polymerase molecules and A DnaA-ATP molecules in NNS binding sites is thus

Z(P,A) =
NNS !

P !A!(NNS − P −A)
× e−PεNS

pd e−Aε
NNS

ad . (64)

There are five different possible states of the system, described in the sum of the statistical weights:

Ztot = Z(P,A)� �� �
Empty sites

+ Z(P − 1, A)e−εS
pd

� �� �
RNAP bound

+ Z(P − 1, A− 1)e−(εS
pd

+εH
ad

)

� �� �
RNAP bound and high affinity site bound

+ Z(P,A− 1)e−εH
ad

� �� �
High affinity site bound and RNAP not bound

+ Z(P,A− 2)e−(εH
ad

+εL
ad

)ω� �� �
DnaA-ATP bound cooperatively

. (65)

This model allocates zero probability that DnaA-ATP can bind to the low-affinity site alone. For it to bind to this site

it must do so cooperatively once the high affinity site is bound.

This leads to the probability of RNAP being bound to the promoter, namely:

P(RNAP bound) =
Z(P − 1, A)e−εS

pd + Z(P − 1, A− 1)e−(εS
pd

+εH
ad

)

Ztot
, (66)

i.e.

P(RNAP bound) =
1

1 + e∆εpd NNS

PFreg

(67)

where
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F−1
reg =

1 + A
NNS

e−∆εH
ad + ω

�
A

NNS

�2
e−(∆εH

ad
+∆εL

ad
)

1 + A
NNS

e−∆εH
ad

. (68)

Now, writing rκ = A
NNS

(see main text for definition of κ), the same transformation as for the main equation can be

performed, following the steps in Section 3, i.e. writing

r� = λr − a (69)

and collecting and comparing terms in r�.

Section 5.3 Promoter with both cooperativity and autoactivation

This section considers an even more realistic form for the promoter which incorporates both autoactivation and

cooperativity of DnaA binding of both forms of bound DnaA. The main conclusion is that this representation

introduces too many new parameters in the model, which cannot be estimated from experiments, and therefore adds

uncontrolled uncertainty. Hence, priority was given to the simpler and more controlled model presented in the main

text.

First, consider the dnaA gene itself, which has in fact two promoters, dnaAp1 and dnaAp2. Since the expression of

the dnaA gene is controlled mostly by the dnaAp2 promoter, only this promoter is considered. There are 5 DnaA

boxes on the dnaA gene, two high affinity boxes (1 and 2) which bind both DnaA-ATP and DnaA-ADP and three

low affinity boxes (a, b and c) which bind only DnaA-ATP. Since box a appears to only affect the dnaAp1 promoter,

it is ignored for this derivation. DnaA boxes b and c appear to cause autorepression when bound by DnaA-ATP.

Boxes 1 and 2 appear to cause autoactivation when bound by either DnaA-ATP or DnaA-ADP in situations when

DnaA boxes b and c are unbound. Moreover, it is assumed that, due to cooperativity, there must be pairwise binding

between boxes 1 and 2 and boxes b and c i.e. if box 1 is bound by DnaA-ATP then box 2 must also be bound by

DnaA-ATP [9].

In a similar manner to the previous section, the number of DnaA-ATP molecules is denoted as A−, the number of

DnaA-ADP molecules as A+, the number of non-specific binding sites as NNS and the number of RNA polymerase

molecules as P . Furthermore, the binding energy between a molecule x and a (non-)specific site, i, on the DNA is

defined as ε(N)Si

xd and the difference as

∆εxd = εSi

xd − εNS
xd . (70)
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In addition to this, the binding energy (cooperativity) between two molecules a and b is written as εab. So, the

statistical weight of distributing P RNA polymerase molecules, A− DnaA-ATP molecules and A+ DnaA-ADP

molecules among NNS non-specific binding sites is

Z(P,A−, A+) =
NNS !

P !A−!A+!(NNS − P −A− −A+)
× e−PεNS

Pd e
−A−εNS

A−de
−A+εNS

A+d . (71)

The sum of all the statistical weights is

Ztot = Z(P,A−, A+) + Z(P − 1, A−, A+)e
−εS

Pd

+ Z(P,A− − 2, A+)kb,c + Z(P − 1, A− − 2, A+)e
−εS

Pdk−1,2ω
−
0,1

+ Z(P,A− − 2, A+)k
−
1,2 + Z(P,A−, A+ − 2)k+1,2

+ Z(P,A− − 4, A+)kb,ck
−
1,2ω

−
b,1 + Z(P − 1, A−, A+ − 2)e−εS

Pdk+1,2ω
+
0,1

+ Z(P,A− − 2, A+ − 2)kb,ck
+
1,2ω

+
b,1, (72)

where

kb,c = e
−2ε

S
b,c

A−d

k−1,2 = e
−2ε

S1,2
A−d

k+1,2 = e
−2ε

S1,2
A+d

ω−
0,1 = e−εA−P

ω+
0,1 = e−εA+P

ω+
b,1 = e

−εb,1
A−A+

ω−
b,1 = e

−εb,1
A−A− . (73)

Thus, the probability of RNA polymerase being bound to the dnaA promoter is

P(RNAP bound) =
1

Ztot

�
Z(P − 1, A−, A+)e

−εS
Pd + Z(P − 1, A− − 2, A+)e

−εS
Pdk−1,2ω

−
0,1

+Z(P − 1, A−, A+ − 2)e−εS
Pdk+1,2ω

+
0,1

�
, (74)

i.e.
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P(RNAP bound) =
1

1 + e∆εPd
NNS

PFreg

, (75)

where

F−1
reg =

1 +∆kb,c
�

A−
NNS

�2
+∆k−1,2

�
A−
NNS

�2
+∆k+1,2

�
A+

NNS

�2
+∆kb,c∆k−1,2ω

−
b,1

�
A−
NNS

�4
+∆kb,c∆k+1,2

A2
−A2

+

N4
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where it has been assumed that NNS � P , A− and A+. In this equation, ∆k(+/−)
i,j = k(+/−)

i,j × e
2(εNS

A+/−d
)
.

Now, if the substitution rκ = A−
NNS

is used (see main text for definition of κ), then when a transformation such as that

in Section 3, namely

r� = λr − a, (77)

is attempted, it can be seen that the (rκ)2 and (rκ)4 terms will create terms that are linear, and cubic, in r�. Thus, it is

not possible in general to make a scaling and translation on r in this way and keep the Freg in the same form. This

information shows that this model of the promoter, with fixed parameters, cannot explain a constant threshold for the

ratio r at initiation, and suggests that analyzing this promoter poses a different problem altogether as it cannot be

done by applying the techniques used in this work for the more simple promoter. Moreover, equation (73) introduces

many new parameters in the model, which generally cannot be directly estimated from experiments, and therefore

adds an element of uncertainty into the model. For this reason it is believed that, while the promoter model is

satisfactory with respect to existing footprinting data [9] , in absence of more precise knowledge, a simple controlled

model such as the one presented in the main text is to be preferred.

Section 6 Considerations on other model ingredients
Section 6.1 DnaA-ATP recycling regions

As explained in the main text, the DnaA recycling sequences, known to convert the ADP-bound form of DnaA into

its ATP-bound form were considered in a model variant. Here we discuss the mathematics of including a term in the

equation to represent this reactivation. We show how it counters RIDA, with a rate that is proportional to the genome

amount rather than genome replication rate, and analyze its effects under variations of the growth rate.

The number of the DnaA recycling sites is assumed to be proportional to the total length of the genome in the cell.

Furthermore, regeneration is assumed to be replication fork independent, and it is assumed that the rate limiting
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parameter is the recycling rate per recycling site, rather than the amount of DNA-ADP in the cell. Thus the new,

effective, RIDA term becomes:

k̃R = kR − ρ
Λ

F , (78)

where ρ is the recycling rate per length of chromosome (i.e. ρ is (the recycling rate per site)×(the number of

recycling sites per genome equivalent). Performing the same transformation as in equation (27) gives

k�R = λkR + akΛ (79)

and

ρ� = λρ (80)

i.e. unless λ = 1, the recycling rate per site must also vary with growth rate. This indicates that the effect of DARS

recycling is not able by itself to impose a constant threshold with varying growth rate.

Note that one now has

k̃�R = λk̃R + akΛ , (81)

which is equivalent to equation (31) with k̃R in place of kR. Thus this new, effective RIDA rate behaves similarly as

the previous RIDA rate does in the main equation, scaling and translating as a function of cell doubling time.

Section 6.2 Specific binding sites for DnaA

This section considers a model variant including specific sites along the chromosome, at which DnaA-ATP can bind,

providing a titrating effect reducing the reservoir of free DnaA-ATP that can be bound non-specifically on the

chromosome. We show that the inclusion of a term of this form is equivalent to a reduction of the RIDA rate.

Let β denote the number of specific binding sites per genome equivalent. We further assume that once these specific

binding sites are created, they are (nearly) always bound by a DnaA-ATP molecule. Thus

∂A−
∂t

= Q− kRF − β
∂Λ

∂t

= Q− (kR + βkΛ)F , (82)

where A− now represents the ‘free’ DnaA-ATP. Thus, equation (82) is the same as the main equation for ∂A−
∂t , but

with an effective increase of the RIDA rate due to titration, where the new, effective, RIDA rate is given by
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k̃R = kR + βkΛ. (83)

β ≈ 300 and kΛ = 1
40min−1, hence βkΛ ≈ 7.5min−1. As shown in Additional Figure A8, the model is robust to

changes in the RIDA rate of this order of magnitude, and thus adding the role of specific binding sites does not affect

the qualitative behavior of the model.

Section 7 Experimental Methods

Escherichia coli K-12 strains BW25113 carrying the pKK-gfp plasmid, where the reporter gene gfp (green

fluorescent protein) was expressed under control of the dnaA promoter region (PdnaA), were grown at 37◦C in four

different M9 minimal media to support different growth rates. Fluorescence and optical density were measured as a

function of time with an automated temperature-controlled plate reader Wallac Victor3. Gene expression was

calculated by taking the time derivative of the fluorescence divided by the optical density, which provides a measure

of the promoter activity as previously described [11].

To obtain data for the promoter activity as a function of growth rate during exponential phase, an exponential window

was automatically detected by taking as maximum value the inflection point of the OD curve and as minimal value

the first OD value that is two times higher than the OD background value. In this window the data was then fitted to

an exponential function and this fit was used in order to extract the values of generation time. Expression data for

different growth rates were corrected for plasmid abundance.
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Section 8 Additional Figures

Figure A1: Flow-chart of the procedure adopted for defining the scenarios of parameter variation with growth

rate.
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Figure A2: Autorepression reduces the amplitude of the oscillations of the cell cycle. If one varies the dimension-
less binding affinity of DnaA-ATP to its self-repression sites, one can effectively vary the amount of autorepression.
As the amount of autorepression is increased, the amplitude of the oscillations of the cell cycle decrease. The ampli-
tude is defined as the difference between the maximum and minumum values of r in a given cell cycle. This cell cycle
length in this plot is τ = 35 mins.
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Figure A3: There is a critical value at which the probability of DnaA-ATP molecules binding to the origin

quickly approaches unity. In this plot, f(r) = 1
ωe20∆ε/kBT r−20+1

, which is the probability of having 20 DnaA-ATP
molecules bound to the origin, where we have taken ωe20∆ε/kBT = 0.0001 in this case.
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Figure A4: A constant threshold can still be achieved when the RIDA rate kR is varied significantly. A: The
oscillations of the cell cycle when kR = 2 molecules/minute. B: The oscillations of the cell cycle when kR = 17
molecules/minute. Despite RIDA rates being nearly 10 fold different, a constant threshold can still be achieved for
each.
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Figure A5: In scenario 1a, the binding affinity of RNAP to the DnaA promoter (e∆εpd/kBT
) varies with cell

doubling time (τ ). In particular it decreases with cell doubling time, in a similar manner to the binding affinity of
DnaA-ATP. This could be caused by supercoiling.
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Figure A6: Model variants were considered which all fail to explain a constant initiation threshold in r. The
models include: A: The datA locus, binding up to 300 DnaA-ATP molecules soon after initiation. B: A delay in
the synthesis of DnaA-ATP, to reflect the time interval between the mRNA being transcribed and the DnaA protein
being translated. C: A more complex form for the dnaA promoter, containing two binding sites for DnaA which binds
cooperatively. None of these variants succeeds in achieving a constant initiation threshold in r, leading us to pursue a
model in which some of the parameters of the model are able to vary with growth rate.
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Figure A7: A mutant in which the RIDA rate is varied. Attempting to reproduce the effect of over or under-
expressing the Hda protein or sequestering DnaA from specific titration sites uniformly distributed along the genome,
we modified the RIDA rate leaving the other parameters fixed to their values when kR = 10 molecules/minute. A:
The RIDA rate is reduced to kR = 2 molecules/minute, resulting in a lower value of r at t = X at slower growth rates,
and thus later initiation time. B: The RIDA rate is increased to kR = 17 molecules/minute, resulting in a higher value
of r at t = X at slower growth rates, and thus earlier initiation time.
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Figure A8: The model is robust to changes in the input parameters. In order to show that the qualitative trends,
observed from transforming the main equation, were independent of the choice of parameters, the values of the input
parameters were varied and the trends replotted. A: The trend of kA as the value of the RIDA rate, kR, is varied, with
kR ∈ {5, 7, 9, 11, 13, 15}, denoted by the symbols, +, , , , , respectively. B: The trend of the dimen-
sionless binding affinity of DnaA-ATP to its self-repression sites as kA is varied, with kA ∈ {50, 60, 70, 80, 90, 100},
denoted by the symbols, +, , , , , respectively. C: The trend of the RIDA rate, kR as the dimensionless
binding affinity of RNAP to the DnaA promoter is varied, with e∆�pd/kBT ∈ 10−4 × {5, 7, 9, 11, 13, 15}, denoted by
the symbols, +, , , , , respectively. D: The trend of kA as the dimensionless binding affinity of RNAP to
the DnaA promoter is varied, with e∆�pd/kBT ∈ 10−4 × {5, 7, 9, 11, 13, 15}, using the same symbols as in C. In all
the plots, the qualitative trend is the same for all the parameter values.
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Figure A9: The model with no autorepression but with RIDA is robust to changes in the input parameters. A:
The trend of kA as the dimensionless binding affinity of RNAP to the DnaA promoter is varied. B: The trend of kA
as the RIDA rate, kR is varied. C: The trend of the dimensionless binding affinity of RNAP to the DnaA promoter as
kA is varied. D: The trend of the dimensionless binding affinity of RNAP to the DnaA promoter as the RIDA rate, kR
is varied. In each case, the set different values taken by the varied parameter, and the corresponding symbols in the
plots, are the same as those given in the caption of Additional Figure A8.
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Figure A10: The model with no autorepression and no RIDA is robust to changes in the input parameters. A:
The trend of kA as the input value of kA is varied. B: The trend of kA as the dimensionless binding affinity of RNAP
to the DnaA promoter is varied. C: The trend of the dimensionless binding affinity of RNAP to the DnaA promoter
as kA is varied. D: The trend of the dimensionless binding affinity of RNAP to the DnaA promoter is varied. In each
case, the set different values taken by the varied parameter, and the corresponding symbols, are the same as those
given in the caption of Figure A8. Note that the spread seen in A and D is due to the fact that these plots are relative
to parameters whose initial values (at τ = 21mins) are themselves changed. The observation that the transformation
makes the initial spread at τ = 60mins narrower for larger τ is further evidence of robustness.
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Figure A11: Varying the binding affinity of DnaA-ATP to the sites at the origin has only a minor effect on the

initiation threshold. The probability of twenty DnaA-ATP molecules binding to the promoter, and hence starting initi-
ation (as given in equation (26)) was plotted for different values of the binding affinity e∆εao/kBT , to examine whether
this had a large effect on the initiation threshold. The values chosen for the binding affinity were e∆εao/kBT = 0.0001
(solid red curve), and e∆εao/kBT = 0.000088 (dashed blue curve), which are the extreme values that the binding
affinity of DnaA-ATP to its self repression sites attains in Scenario 1a (see Figure 4). The initiation threshold is given
by the inflection point of the curve. Thus, the difference between the initiation thresholds is ≈ 40 (molecules/genome
equivalents) ≈ 10% change. This is approximately constant, particularly when compared with the differences in r(X)
attained in the untransformed model (Figure 3A), suggesting that this scenario might be robust.
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