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Abstract—The Dynamical Structure Function of a Linear
Time Invariant (LTI) system reveals causal dependencies among
manifest variables without specifying any particular relationships
among the unmeasured states of the system. As such, it is
a useful representation for complex networks where a coarse
description of global system structure is desired without detailing
the intricacies of a full state realization. In this paper, we
consider the problem of finding a minimal state realization
for a given dynamical structure function. Interestingly, some
Dynamical Structure Functions require uncontrollable modes
in their state realizations to deliver the desired input-output
behavior while respecting a specified system structure. As a result,
the minimal order necessary to realize a particular Dynamical
Structure Function may be greater than that necessary to realize
its associated transfer function. Although finding a minimal
realization for a given dynamical structure function is difficult in
general, we present a straightforward procedure here that works
for a simplified class of systems.

I. INTRODUCTION

In this paper, we address the problem of constructing a
minimal state-space realization of a system represented by a
specific Dynamical Structure Function. The Dynamical Struc-
ture Function (DSF), introduced by Goncalves and Warnick in
[1], is a representation of linear time invariant (LTI) systems
that encodes more detail about a system’s structure than its
transfer function (TF), but less than its state-space realization.
As a result, the DSF is a useful modeling tool for complex
networks where some information about the network’s global
structure is desired without engaging the full complexity of a
complete state-space realization [5], [6]. Examples of applica-
tions that have effectively leveraged the DSF as a modeling
technology include system biology, in the reconstruction of
biochemical reaction networks [7], [19]; computer science, in
the design of intrusion detection protocols for wireless-mesh
communication networks [18]; and distributed systems, in the
design of distributed and decentralized control systems [16],
vulnerability analysis and the design of secure architectures
[15], and structure-preserving model-reduction [6].

Underlying all of these applications, however, is the theo-
retical question relating a Dynamical Structure Function to its
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minimal state realizations [17]. The problem of characterizing
the minimal state realizations of a given transfer function
was considered by Kalman [2] and leads to many important
insights about the nature of these distinct representations of
an LTI system. In particular, these results reveal that a TF-
minimal realization has no uncontrollable or unobservable
modes, and that its order is characterized by the transfer func-
tion’s Smith-McMillian degree. However, as will be shown
here, a DSF-minimal realization may necessarily contain un-
controllable modes (but not unobservable modes) and that its
order is bounded below by the Smith-McMillian degree of its
associated transfer function. The implications of this result are
profound, indicating that a particular number of uncontrollable
modes may be necessary to realize a system with a particular
structure e.g. a ring or a completely decoupled system.

Moreover, a surprising consequence of this fact is that
a Dynamical Structure Function may have both stable and
unstable realizations, including both stable and unstable min-
imal realizations. This disconnection between the stability
properties of representations is not present with transfer func-
tions and their minimal state realizations, making the minimal
realization question considered here absolutely necessary to
characterize the stability properties of a Dynamical Structure
Function. Thus, for example, we can determine, using the
techniques in this paper, that if the minimal realization of
a given Dynamical Structure Function has no uncontrollable
modes, then we know that its stability properties are the same
as its associated transfer function. On the other hand, if we
discover that uncontrollable modes are necessary to realize
a given Dynamical Structure Function, then both stable and
unstable minimal realizations may be possible.

The next section reviews the theory of Dynamical Structure
Functions and relates them to both transfer functions and state-
space realizations as representations of causal LTI systems.
Section III then presents the main result, an algorithm for
finding a minimal realization of a given Dynamical Structure
Function for systems with no zeros and simple poles; results
for finding the minimal realization of the DSF of a general
system are in preparation for publication and can be found
in [10]. Section IV then discusses the implications of these
results, including the fact that DSFs can, in general, have both
stable and unstable realizations.

II. BACKGROUND: DYNAMICAL STRUCTURE FUNCTIONS

This section introduces the required definitions of causal
dynamical network structures, commonly known as dynamical
structure functions (Section II-A). An example of dynamical
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structure functions can be found in the next subsection (Sec-
tion II-B).

In network theory and applications, the most important step
is defining what is actually meant by a network. This is a
step that is typically ignored but fundamental to obtain well-
defined networks. Just like state-space and transfer functions,
networks are not well defined until system variables are fixed.
For example, for a transfer function to be well-defined, we
need to specify what the inputs and outputs are. These inputs
and outputs are chosen carefully for particular objectives (for
example to model or control the system). Similarly, for a
network to be well defined, we need to specify what the nodes
represent. In an electrical circuit that could be the current
across active devices or voltages across them. In a mass-
spring system it could be position and/or velocity of masses.
In cell biology, the states could represent concentrations of
molecules inside a cell. In addition, the relationship between
non-measured (or hidden) and measured states also needs to
be specified and fixed. Different choices of states lead to
different networks, and it is up to users to define what network
representation is useful to them. Once the state variables are
defined (e.g. concentrations of molecules inside cells), then
the state space is fixed and the DSF are also well define
and unique. The remainder of this paper assumes that such a
choice of states has been taken. Moreover, to simplify notation,
the paper assumes that the first states are the measurements
(outputs), followed by unmeasured or hidden states.

A. Definitions

ẋ = Aox+Bou
y = Cox

(1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp, and (Ao, Bo, Co)
are real matrices of the appropriate dimension. As discussed
above, the choice of states is fixed, which results in unique
matrices (Ao, Bo, Co). Here we restrict our attention to the
case where p < n, Co = [Ip 0] (where Ip is the p× p identity
matrix) and x(0) = 0. The choice of Co = [Ip 0] reflects
the fact that, after some reordering, the first states are the
measurements, as explained above.

To define dynamical structure functions, we separate the
state variables in two parts: xT = [yT zT ]T ∈ Rn is the full
state vector, y ∈ Rp are partial measurements of the state,
and z are the n− p “hidden” (unmeasured) states. Taking the
Laplace transforms of the signals in (1) yields[

sY
sZ

]
=

[
Ao11 Ao12
Ao21 Ao22

] [
Y
Z

]
+

[
Bo1
Bo2

]
U (2)

where Y , Z, and U are the Laplace transforms of y, z, and
u, respectively. Solving for Z gives

Z = (sI −Ao22)
−1
Ao21Y + (sI −Ao22)

−1
Bo2U

Substituting this last expression of Z into (2) then yields

sY = W oY + V oU (3)

where W o = Ao11 + Ao12 (sI −Ao22)
−1
Ao21 and V = Bo1 +

Ao12 (sI −Ao22)
−1
Bo2 . Now, let Ro be a diagonal matrix
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Fig. 1: Different types of representations for the same sys-
tem describe different amounts of structural information. The
Dynamical Structure Function captures more structural infor-
mation than the transfer function, but less than the state-
space realization. Identification, Network Reconstruction, and
Minimal Realization are all problems of translating one, less
structurally informative description of the system to another,
more structurally informative description. This paper addresses
the Minimal Structural Realization problem (dark arrow),
translating a Dynamical Structure Function to a minimal state-
space realization.

formed of the diagonal terms of W o on its diagonal, i.e.
Ro = diag{W o} = diag(W o

11,W
o
22, ...,W

o
pp). Subtracting

RoY from both sides of (3) gives:

(sI −Ro)Y = (W o −Ro)Y + V oU

Inverting (sI −Ro) (which is always invertible since Ro is
proper) leads to:

Y = QY + PU (4)

where

Q = (sI −Ro)−1 (W o −Ro) (5)

and

P = (sI −Ro)−1 V o (6)

Definition 1: Given a causal LTI system described by its
state space realization as in (1), define the Transfer Function
as G = Co(sI −Ao)−1Bo.

Definition 2: Given a causal LTI system described by its
state space realization as in (1), define its Dynamical Structure
Function as the pair of transfer function matrices, (Q,P ), as
derived in Equations (2)-(6).

Definition 3: A dynamical structure function, (Q,P ), is
defined to be consistent with a particular transfer function, G,
if there exists a state-space realization of G, of some order, and
of the form (1), such that (Q,P ) are specified by (5) and (6).
Likewise, a state-space realization is consistent with (Q,P ) if
that state-space realization gives (Q,P ) from (5) and (6).

Definition 4: A state-space realization is G-minimal if this
state-space realization corresponds to a minimal state-space
realization of G. A state-space realization is (Q,P )-minimal
if this state-space realization is consistent with (Q,P ) and
its order is smaller than or equal to that of all state-space
realizations consistent with (Q,P ).
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B. Interpretation and properties

DSF have several important properties. For example, the
diagonal elements of Q are zero and all other entries in (Q,P )
are strictly proper.

Consider the following example to complement Figure 1
and better understand the differences between the state-space,
the DSF and the transfer function.

Proposition 1: [10] Given a dynamical system (1) and
the associated dynamical structure functions [Q,P ] with Ro

constructed as explained above (see (1)-(6)), the following
conditions must hold

diag{Ao11} = lim
|s|→∞

Ro(s); (7)

Ao11 − diag{Ao11} = lim
|s|→∞

sQ(s); (8)

Bo1 = lim
|s|→∞

sP (s). (9)

Proof: Eq. (7) is directly obtained from the definition of
Ro(s):

lim
|s|→∞

Ro(s) = lim
|s|→∞

diag{W o(s)}

= diag{ lim
|s|→∞

W o(s)} = diag{Ao11}

Since the proofs of eq. (8) and (9) are very similar, we focus
on eq. (8) only. In the following, we use the fact that for any
square matrix M , if Mn → 0 when n→ +∞, then

(I −M)−1 =

∞∑
i=0

M i.

From the definition of Q in (5),

Q(s) =

∞∑
i=1

s−iRo i−1(s) (W o(s)−Ro(s))

and

W o(s) = Ao11 +

∞∑
i=1

s−iAo12A
o i−1
22 Ao21,

when |s| has been chosen large enough so that
∥∥Ro

s

∥∥ < 1 and∥∥∥Ao
22

s

∥∥∥ < 1.

Hence, Q(s) = (Ao11−Ro(s))s−1 +L(s), in which L(s) is
a matrix polynomial of s, whose largest degree is −2. Finally,
multiplying by s on both sides and taking the limit as |s| goes
to ∞ results in eq. (8). A similar argument can be used to
prove eq. (9).

Remark 1: This proposition reveals an important property
of dynamical structure functions: they encode the direct causal
relations between observed variables, i.e., Ao11[i, j] ,∀i 6= j.
These relations cannot be encoded by transfer functions.

Example 1: Consider the following structured state-space
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(c)
Fig. 2: The nodes represents states, square inputs and edges
the directed interactions. Red nodes are measured states and
blue hidden. (a) The graph topology of the transfer function,
(b) corresponding graph topology given by the Dynamical
Structure Function, and (c) graph topology of a system with
two inputs, three measured states (states 1, 2, and 3) and two
hidden states (states 4 and 5).

system with its associated transfer function:

ẋ =


a11 0 a13 0 0
0 a22 0 a24 0
0 a32 a33 0 a35
a41 0 0 a44 0
0 a52 0 0 a55

x+


b11 0
0 b22
0 0
0 0
0 0

u
y =

[
I3 0

]
x

Y = G(s)U, G(s) =

G11(s) G12(s)
G21(s) G22(s)
G31(s) G32(s)

 ,

where Gij is generally not identically zero, that is, the transfer
function matrix is typically full even though the state realiza-
tion has a very particular sparsity structure. For this particular
example, the underlying network for transfer matrix is very
different from that for state-space as shown in Fig. 2.

According to the definition, the corresponding Dynamical
Structure Function is then given by

Q =

 0 0 a13
s−a11

a24a41
(s−a22)(s−a44) 0 0

0 a35a52+a32(s−a55)
(s−a33)(s−a55) 0

 ,

P =

 b11
s−a11 0

0 b22
s−a22

0 0

 .

Figure 2 illustrates the different notions of structure asso-
ciated with each representation of this system. Comparing
with Fig. 1, the DSF has more information than the transfer
function, and less than the state-space representation [1].

The results in Proposition 1 give

lim
|s|→∞

sQ(s) =

0 0 a13
0 0 0
0 a32 0

 ;

lim
|s|→∞

sP (s) = s

 b11
s−a11 0

0 b22
s−a22

0 0

 =

b11 0
0 b22
0 0

 .

which are consistent with respective entries of the state-space
representation.
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C. Problem formulation
Similar to transfer functions, there are two important theo-

retical problems for dynamical structure functions (as shown
in Fig. 1). One is identification, i.e. how to obtain dynam-
ical structure functions from input-output data, which was
addressed in [7]. The other problem is minimal realization,
i.e. how to find a state-space realization with minimal order
that is consistent with a given dynamical structure function.

Obtaining a minimal realization is at the core of systems
biology identification problems as it helps understand the
minimum number of unmeasured molecular species needed to
explain observed input-output data. A low number of hidden
states means that most molecule species in that pathway have
been identified and measured, showing a good understanding
of the system; while a large number shows that there are still
many unmeasured variables, suggesting that new experiments
should be carried out to better characterise the biological
system or pathway of interest.

Motivated by this, we aim to solve the following problem
in the rest of this paper.

Problem 1: [Minimal structural realization] Given a
dynamical structure function [Q, P ], from all realizations
Σ , (A, B, C = [I, 0]) consistent with [Q, P ] find
one where A has the smallest dimension among all such
realizations.

III. ALGORITHM TO FIND A (Q,P )-MINIMAL REALIZATION

The Minimal Structural Realization problem considers how
to generate a state-space realization of minimal order that is
consistent with a given Dynamical Structure Function. Note
that if we knew W o(s) and V o(s), given by Equation (3),
then the problem would be straightforward, as we could
minimally realize the transfer function given by the combined
matrix [W o(s) V o(s)], yielding matrices (Ā, B̄, C̄, D̄) such
that [W o(s) V o(s)] = C̄(sI − Ā)−1B̄ + D̄. Partitioning
the resulting B̄ = [B̄1 B̄2] and D̄ = [D̄1 D̄2] matrices
commensurate with the sizes of W and V , we could then
construct the desired realization from (Ā, B̄, C̄, D̄) directly
from the definitions of W and V :[

ẏ
ż

]
=

[
D̄1 C̄
B̄1 Ā

] [
y
z

]
+

[
D̄2

B̄2

]
u

y =
[
Ip 0

] [ y
z

] (10)

The challenge in minimally realizing a system’s DSF arises
from the fact that we do not know W and V , but instead only
know Q and P . Recall from Equations (5) and (6) that we
could construct W o and V o from Q and P , and subsequently
could then use the realization procedure outlined above for
(W o, V o), if we also knew Ro(s). As a result, the key to
minimally realizing the DSF is finding a R(s) that, when
combined with the given (Q,P ) pair, results in a (W,V ) pair
that has minimum Smith-McMillian degree.

This problem is formulated precisely as:

R∗ = argminR deg {[W V ]} (11)
= argminR deg {(sI −R)[Q P ] + [R 0]} (12)

= argminR deg
{

(sI −R)s−1[sQ sP ] + [R 0]
}
, (13)

where deg is the Smith-McMillan degree (see [4] for details)
and R is chosen over the set of proper diagonal transfer
matrices. Note that the reformulation to Equation (13) is
useful in the subsequent results because both (sI − R)s−1

and [sQ sP ] are proper transfer functions, which admit state-
space realizations. Furthermore, note that, since there are many
choices for R∗ that minimize the order of minimal realizations
of [W V ], a chosen R∗ may be different from the system’s
actual value of R. Future work may consider precisely what
extra information about the system is needed to reconstruct its
actual Ro, or realize the actual state-space representation of
the system given only its DSF, but this paper considers how to
find some minimal realization that is consistent with the given
DSF, not necessarily how to recover the system’s actual state
space description.

In general, the problem posed in eq. (13) is difficult. Nev-
ertheless, for a particular class of systems we can characterize
the optimal solution R∗ and use the result to drive an algorithm
for constructing minimal realizations of Dynamical Structure
Functions. The following theorem makes these ideas precise.

Theorem 1: Assume [I −Q P ] only has simple poles and
does not have any zeros1. A minimal order realization of
[W V ] in (13) can be achieved using a constant diagonal
matrix R∗.

Proof: From the definition, we have the prior knowledge
that R∗ should be a diagonal matrix.

Assume R∗ has at least one term on the diagonal with the
degree of the numerator greater or equal to 1, e.g., suppose
the ith term in (sI−R∗)s−1 = (s+b)εi(s)

sφi(s)
with any b ∈ R and

deg(εi(s)) = deg(φi(s)) ≥ 1, where deg(·) returns the degree
of a polynomial. Hence, the product (sI − R∗)s−1[sQ sP ]
will introduce deg(φi(s)) new poles, since [I −Q P ] does not
have any zeros. Due to the assumption of simple poles, a good
choice of R can eliminate at most deg(εi(s)) = deg(φi(s))
poles. As a consequence, we can change the ith term from
(s+b)εi(s)
sφi(s)

to s+a
s without increasing the order. Doing this

along all the elements of R∗ proves the result.

If R∗ is a constant matrix, the term [R∗ 0] in eq. (11) is also
a constant matrix. Therefore, the order of a minimal realization
is only determined by (sI −R∗)s−1[sQ sP ] , N [sQ sP ].
Thus, finding the “optimal” R∗ which leads to the minimal
order in eq. (11) is equivalent to finding a diagonal proper
transfer matrix N (N with corresponding minimal realization
(A2, B2, C2, I) is restricted to the set of matrices of the form
(sI −R∗)s−1 with a constant R∗ from Theorem 1) such that
N [sQ sP ] has as few poles as possible. Based on this idea,
the following algorithm is proposed:
Step 1: Find a Gilbert’s realization of the dynamical structure
function.
First, using the results in Lemma 1 of [1], we find a minimal
realization (A1, B1, C1, D1) of [sQ sP ]. When [sQ sP ] has
l simple poles, using Gilbert’s realization [9] gives

[sQ sP ] =

l∑
i=1

Ki

s− λi
+ lim
s→∞

[sQ sP ],

1These assumptions can be relaxed, see Section 3.6 of [10] for more details.
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where Ki = lims→λi
(s − λi)[sQ sP ] and has rank 1 since

we are assuming that [sQ sP ] has simple poles.
Consider a matrix decomposition of Ki of the following

form:
Ki = EiFi, ∀i,

where Ei ∈ Rp has full column rank and Fi =
(ETi Ei)

−1ETi Ki. Then A1 = diag{λi} ∈ Rl×l, B1 =[
FT1 FT2 . . . FTl

]T
, C1 =

[
E1 E2 . . . El

]
and

D1 = lims→∞[sQ sP ].
Step 2: Find the maximal number of cancelled poles.
Let B be the Boolean operator Rp → {0, 1}p, e.g., b = B(a)
means b[i] = 0 if a[i] = 0, otherwise b[i] = 1 if a[i] 6= 0. We
define Φ as a largest subset of {B(E1), · · · ,B(El)} such that
all the elements in Φ are mutually orthogonal. We also define
φ as the cardinality of Φ. Computationally, φ can be obtained
using the algorithm presented in the Appendix. We claim that
φ is equal to the maximum number of poles we can eliminate.

Proposition 2: If [I −Q P ] only has simple poles and
does not have any zeros, then the minimal order of [W V ]
in eq. (11) is

l − φ.

Proof: See Appendix.
As a consequence, the order of the minimal reconstruction
is the dimension of A11 (the constant p) plus the minimal
dimension of A22 (obtained above): p+ l − φ.
Step 3: Construct R∗ to obtain the minimal reconstruction.
Once we have Φ, using eq. (25) and N(s) = (sI − R∗)s−1,
we know that N(λi)[j, j] = 0 implies R∗[j, j] = λi. Con-
sequently, each element in the set Φ will determine at least
one element in R∗. This last fact can be used to construct R∗

element by element. Once R∗ is found, we can obtain A and
B using eq. (10).

Example 2: Consider a dynamical structure function [Q,P ]:

[Q | P ] =

 0 1
s+2

1
s+3

1
s+4

1
s+1 0 1

s+3
1
s+4

1
s+1

1
s+2 0 1

s+4

 .
We first compute the Smith McMillan degree of the corre-

sponding transfer function: deg{G} = deg{(I−Q)−1P )} = 4,
meaning that a 4th order state-space model is enough to realize
the transfer function. It is interesting to look at the mini-
mal order realization consistent with the dynamical structure
function. The different steps of the algorithm proposed in the
previous section successively yield the following:

Step 1: A minimal Gilbert realization of s[Q,P ] is

A1 = diag{−1,−2,−3,−4}, B1 = diag{2, 2, 2, 4},

C1 =

 0 −1 −1.5 −1
−0.5 0 −1.5 −1
−0.5 −1 0 −1

 , D1 =

0 1 1 1
1 0 1 1
1 1 0 1

 .
Step 2: By definition, Ei = C1vi where vi ∈ R4 has 1 in

its ith position and zero otherwise. Thus,

{B(E1), · · · ,B(E4)} =


0

1
1

 ,
1

0
1

 ,
1

1
0

 ,
1

1
1

 .

Furthermore, φ is 1 and the order of a minimal realization of
the given dynamical structure function is p+l−φ = 3+4−1 =
6. Hence, the system must contain at least 3 hidden states.

Step 3: R∗ can be chosen as diag{a,−1,−1},
diag{−2, a,−2}, diag{−3,−3, a}, or diag{−4,−4,−4}
for any a ∈ R.

The reconstructed networks are represented in Fig. 3. There
are three measured (red) nodes, labeled 1, 2, 3 and by the
analysis above, there are at least three hidden nodes such that
the corresponding realization is consistent with the dynamical
structure function. The red connections between measured
nodes are the same for all candidate networks which is
in accordance with Proposition 3.6.1 in [10]. Dashed lines
correspond to the connections between hidden and measured
nodes.

3 2

1

6

4 5

3 2

1

6

4 5

3 2

1

6

4 5

3 2

1

6

4 5

Fig. 3: Topologies corresponding to the four [Q,P ] minimal
realizations. The measured nodes are colored red, while the
hidden ones blue. Red connections between measured nodes
are the same for all the networks, indicating the direct interac-
tions among measured states, due to Proposition 3.6.1 in [10].
Each node has a self-loop but we omit it for simplicity.

In the context of biochemical reaction networks, this indi-
cates that there are at least 3 unmeasured species interacting
with the measured species. Of course, the “true” biological
system might be even more complicated, i.e., it might have
more than 6 species. Yet, when more states are measured,
the dynamical structure functions can be easily updated and
a new search for a minimal realization of the updated system
can be performed to reveal the corresponding minimal number
of hidden states. Interestingly, however, we discover that since
the minimal structural degree is 6, and the Smith McMillian
degree is 4, there must be at least two uncontrollable modes
in any realization that achieve this structure with the specified
dynamics.

Example 3: The Wnt signaling pathway is a highly con-
served signaling pathway found in many multi-cellular organ-
isms. It plays a role in the regulation of normal embryonic
development, tissue homeostasis, and tissue regeneration. Mu-
tations in the Wnt signaling pathway have been implicated to
play a role in cancer dynamics, particularly colorectal cancer
and hepatocellular carcinoma [20], [22]. Thus, understanding
the components, structure, and function of the Wnt pathway
is important and one of the primary focuses of researchers
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studying cell signaling.

The Wnt pathway controls and regulates the amount of β-
catenin in the cell, a critical constituent of the cadherin com-
plex. Mutation and over expression of β-catenin is correlated
with many forms of cancer, including colon cancer, melanoma,
hepatocellular carcinoma, ovarian cancer, endometrial cancer,
medulloblastoma pilomatricomas, and prostate cancer [21].
Thus, the mechanisms by which β-catenin levels are regulated
via the Wnt pathway are of critical importance. Over the
course of two decades, the complexity and various comprising
reactions of the Wnt pathway have been slowly unraveled. We
show here that by using a minimal dynamical structure realiza-
tion algorithm, we can quickly infer the underlying complexity
of the system required to produce a given dynamical network
structure.

To begin, we consider the nonlinear mass action kinetics
model of the Wnt signaling system as derived in [22]; it is
derived assuming bimolecular, unimolecular, or zeroth order
reactions and has fifteen states. In state-space form, it can be
written as follows:

Fig. 4: Reaction diagram of the Wnt signaling pathway,
adapted from [22]. Wnt converts inactive Disheveled to an
active form, which assists in the breakdown of the dephospho-
rylated destruction complex (APC/Axin/GSK3). Axin binds
with APC to form the APC/Axin complex, which binds in turn
to GSK3 to form the unphosphorylated destruction complex.
The destruction complex binds to free β-catenin, mediates the
phosphorylation of β-catenin and releases it for degradation
via ubiquitiniation. In this way, Wnt stimulation results in the
destabilization of the destruction complex, which effectively
prolongs the lifetime of β-catenin.

ẋ1 = −k1 x1 u+ k2 x2

ẋ2 = k1 x1 u− k2 x2
ẋ3 = k4 x4 − k5 x3 − k+8 x3 x11 + k−8 x8 + k10 x9

ẋ4 = −k3 x2 x4 − k4 x4 + k5 x3 + k+6 x5 x6 − k−6 x4
ẋ5 = k3 x2 x4 − k+6 x5 x6 + k−6 x4

ẋ6 = k3 x2 x4 − k+6 x5 x6 − k−6 x4 + k+7 x12 x7 − k−7 x6
ẋ7 = −k+7 x12 x7 + k−7 x6 − k+17 x7 x11 + k−17 x15

ẋ8 = k+8 x3 x11 − k−8 x8
ẋ9 = k9 x8 − k10 x9
ẋ10 = k10 x9 − k11 x10
ẋ11 = −k+8 x3 x11 + k−8 x8 + vo12 − k13 x11
− k+16 x11 x13 + k−16 x14 − k+17 x7 x11 + k−17 x15

ẋ12 = −k+7 x12 x7 + k−7 x6 + vo14 − k15 x12
ẋ13 = −k+16 x11 x13 + k−16 x14

ẋ14 = k+16 x11 x13 − k−16 x14
ẋ15 = k+17 x7 x11 − k−17 x15

(14)
In these equations, the concentration of Wnt protein is denoted
as u since, in practice, Wnt can be viewed as an adjustable
or controlled quantity that is introduced exogenously into the
system to stimulate β-catenin levels [23]. For clarity, the rest of
the system states are listed in Table I with their corresponding
biological name. Note that biological names with an asterisk
are proteins or complexes that are in their phosphorylated state.

Because of its complexity, the model is difficult to analyze.
Thus, the authors in [22] propose a series of time-scale sep-
aration assumptions that can systematically eliminate specific
states. In particular, it is possible to reduce the model to an
eighth order model, given as follows:

ẋ2 = k1
(
DSH0 − x2

)
u− k2 x2

ẋ3 = k4 x4 − k5 x3 +
k−8
K8

x3 x11

ẋ4 = −k3 x2 x4 − k4 x4 + k5 x3 + k+6 x6GSK
0 − k−6 x4

ẋ6 = k3 x2 x4 − k+6 x6GSK
0 + k−6 x4 + k+7 x12

K17APC
0

(K17 + x11)
− k−7 x6

ẋ9 =
k9
K8

x3 x11 − k10 x9

ẋ10 = k10 x9 − k11 x10

ẋ11 = −k+8 x3 x11 +
k−8
K8

x3 x11 + vo12 − k13 x11 − k+16

x11
K16TCF

o

K16 + x11
− k+17

(K17APC
o)

(K17 + x11)x11
+ k−17

APCo x11
k17 + x11

ẋ12 = −k+7 x12
K17APC

o

K17 + x11
+ k−7 x6 + vo14 − k15 x12

(15)
while the states measured are the concentration of dephos-

phorylated β-catenin, dephosphorylated destruction complex
(APC/Axin/GSK3), and APC/Axin. The corresponding output
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State Protein Name State Protein Name State Protein Name
x1 DSHi x6 APC/Axin x11 βcat
x2 DSHa x7 APC x12 Axin
x3 APC*/Axin*/GSK3 x8 βcat/APC*/Axin*/GSK3 x13 TCF
x4 APC/Axin/GSK3 x9 βcat ∗ /APC*/Axin*/GSK3 x14 βcat/TCF
x5 GSK3 x10 βcat∗ x15 βcat/APC

TABLE I

Order
1 2 3 4 5 6 7

a
b
s

10
-10

10
-5

10
0

Hankel Singular Values

Fig. 5: Hankel singular values of G in logarithmic scale.

equations are given as:

y1 = x11

y2 = x4

y3 = x6.

(16)

The parameters used in this model are the same as those in
[22]. Most of these parameters are measured or inferred exper-
imentally, while the remainder (k+8, k−8, k+17, k−17, k+18,
and k−18) are estimated (see Table II for a complete list). It is
important to note that the system (15) is a nonlinear state-space
model. However, the nonlinear system converges to a steady
state [22], indicating that approximating the dynamics of the
nonlinear system with a linearization in a neighborhood of its
steady state may be acceptable. After linearizing around the
steady state (estimated from numerical simulation), we obtain
the following LTI state-space model:

Following the approach in the prequel, it is instructive to
first transform the LTI system so that the output matrix C =[
I 0

]
. For this, we define z = Tx where

T =



0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


(18)

The transformed realization (Ã, B̃, C̃) is then given in eq. (19).
Based on this state-space realization (Ã, B̃, C̃) the corre-
sponding transfer function can be computed in eq. (20) The
magnitude of the Hankel singular values of G are provided
in Fig. 5. Given that the two smallest Hankel singular values
are around four orders of magnitude smaller than the next
smallest one, a typical system identification algorithm would
likely return at most a 5th order system.

The dynamical structure function (Q(s), P (s)) is computed
in eq. (21) and (22).

Again, we examine the Hankel singular values of non-zero
elements in [Q,P ] and also truncate those Hankel singular
values that are orders of magnitude smaller than the next
smallest ones. Applying the proposed algorithm gives a min-
imal realization of [Q,P ] of 7th order. Furthermore, we can
obtain, using Proposition 1 in the paper, the causal relationship
between measured states as:

Ão11 − diag{Ão11} = lim
|s|→∞

sQ(s) =

 0 0 0
0 0 4.54

−9.9 ∗ 10−9 5.45 0

 ;

B̃o1 = lim
|s|→∞

sP (s) =

0
0
0

 .
This biologically motivated example illustrates the main

features of the paper.
a) In particular, it shows that when there are pole/zero

cancellations between (I − Q)−1 and P , such canceled
poles do not show up in G but can still be seen in (Q,P ).
In this example, (Q,P ) revealed two additional states
that could not be seen in G, and, hence, it provided
information on the existence of additional complexity, not
seen from the transfer function.

b) It also reveals the direct causal relation between measured
states, how the three states x11, x4 and x6 affect each
other, which cannot be seen in G.

IV. DISCUSSION AND IMPLICATIONS

Solving the Minimal Structural Realization problem leads
to a number of interesting insights about Dynamical Structure
Functions as a representation of LTI networks. First, since
the minimal structural degree of a particular DSF can be
strictly greater than the Smith-McMillian degree of its as-
sociated transfer function, we see that uncontrollable modes
may be necessary to realize systems with a particular dynamic
behavior and structure.

This necessity of the presence of uncontrollable modes
in systems that require particular dynamics and structure is
rather unexpected and surprising. It has especially interesting
consequences for the design of controllers that meet particular
structural constraints [16], in that these controllers may nec-
essarily contain uncontrollable modes to meet their structural
constraints.

Furthermore, this result leads to another important insight
about the nature of these representations, namely that Dynam-
ical Structure Functions with structural degree strictly greater
than the Smith-McMillian degree of their associated transfer
functions may have both stable and unstable realizations. This
can happen when, for example, the transfer function is stable
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

ẋ2
ẋ3
ẋ4
ẋ6
ẋ9
ẋ10
ẋ11
ẋ12


=



−18.2 0 0 0 0 0 0 0
0 −.99 .27 0 210 0 −3× 10−4 0

−1.05× 10−6 .13 −5.72 4.55 0 0 0 0
0 0 5.45 −5.45 0 0 9.92× 10−8 9.09
0 0.07 0 0 −210 0 2.39× 10−5 0
0 0 0 0 210 −.41 0 0
0 −.85 0 0 0 0 −9.92 0
0 0 0 .91 0 0 9.92× 10−8 −9.26





x2
x3
x4
x6
x9
x10
x11
x12


+



1.65 ∗ 108

0
0
0
0
0
0
0


u

y1y2
y3

 =

0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 [x2 x3 x4 x6 x9 x10 x11 x12
]T

(17)

Ã =



−9.92 0 0 0 −0.85 0 0 0
0 −5.72 4.54 −1.06× 10−6 0.13 0 0 0

−9.9× 10−9 5.45 −5.45 1.06× 10−6 0 0 0 9.09
0 0 0 −18.22 0 0 0 0

−2× 10−4 .27 0 0 −.98 210.0 0 0
2.4× 10−5 0 0 0 7.46× 10−3 −210.0 0 0

0 0 0 0 0 210.0 −0.42 0
9.92× 10−8 0 0.91 0 0 0 0 −9.26


B̃ =

[
0 0 0 1.65 0 0 0 0

]T ∗ 108

C̃ =

 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0



(19)

G =


−2.489e−06s5−0.0005675s4+40.13s3+8837s2+8.573e04s+1304

s7+259.6s6+1.131e04s5+1.973e05s4+1.578e06s3+5.285e06s2+4.258e06s+3.954e05
−174.9s5−4.041e04s4−7.947e05s3−4.446e06s2−3.666e06s−5.482e04

s7+259.6s6+1.131e04s5+1.973e05s4+1.578e06s3+5.285e06s2+4.258e06s+3.954e05
174.9s5+4.03e04s4+7.704e05s3+4.278e06s2+4.356e06s+7.675e05

s7+259.6s6+1.131e04s5+1.973e05s4+1.578e06s3+5.285e06s2+4.258e06s+3.954e05

 . (20)

Q =

 0 Q12 0
Q21 0 4.54s+4.415

s2+6.693s+5.528
−9.9e−09s2+7.184e−07s+7.501e−06

s3+23.97s2+178.4s+390.7
5.45s+50.47

s2+14.71s+42.2 0

 (21)

P =

 0
−174.9s−170.1

s3+24.91s2+127.5s+100.7
174.9s+1620

s3+32.93s2+310.2s+768.8

 . (22)

Q12 =
−0.2295s5 − 145s4 − 3.065e04s3 − 2.185e06s2 − 4.163e06s− 2.01e06

s7 + 642.9s6 + 1.404e05s5 + 1.098e07s4 + 1.231e08s3 + 2.982e08s2 + 2.704e08s+ 8.451e07
, (23)

Q21 =
−2.6e− 05s5 − 0.01578s4 − 3.195s3 − 218.1s2 − 415.2s− 200.4

s7 + 638.7s6 + 1.378e05s5 + 1.042e07s4 + 8.259e07s3 + 1.828e08s2 + 1.589e08s+ 4.842e07
(24)

but the uncontrollable modes necessary to realize the DSF can
be either stable or unstable. Future work lies in the application
of the developed theory to real-world applications emerging in
complex dynamical network research.
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Parameter Name Value Parameter Name Value
Dsho 100 nM k−6 0.909 min −1

APCo 100 nM k+8 20 min −1

TCF o 15 nM k−8 2 min −1

GSKo 50 nM k9 206 min−1

K7 50 nM k10 206 min−1

K8 120 nM k11 206 min−1

K16 30 nM k13 2.57× 10−4 min−1

K17 1200 nM k15 0.167 min−1

k1 0.182 min−1 k+16 9.09× 10−2 min−1

k2 1.82× 10−2 min−1 k−16 9.09× 10−1 min−1

k3 5.00× 10−2 min−1 k+17 9.09× 10−2 min−1

k4 0.267 min−1 k−17 9.09× 10−1 min−1

k5 0.133 min−1 v12 0.423 nmol−1 min−1

k+6 9.09× 10−2 nmol−1 min−1 v14 8.22× 10−5 nmol−1 min−1

TABLE II
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APPENDIX

Proof to Proposition 2:
Proof: Using results from Section 4 of [8], if a pole of

[sQ sP ], say λi, is cancelled by N = (sI − R∗)s−1 ,
C2(A2 − sI)−1B2 + I , then the realization of the cascade
(sI −R)s−1[sQ sP ] loses observability.

In this case, it follows that there exists a nonzero vector
wi = [wT1,i, w

T
2,i]

T such thatA1 − λiI 0
B2C1 A2 − λiI
C1 C2

[w1,i

w2,i

]
= 0.

The first equation shows that w1,i is an eigenvector of
A1 corresponding to λi. Since A1 is diagonal, wT1,i =[
0 . . . 0 1ith 0 . . . 0

]
∈ R1×l. Therefore, we have[

A2 − λiI B2

C2 I

] [
w2,i

C1w1,i

]
= 0.

Noticing that C1w1,i = Ei and that[
I 0

−C2(A2 − sI)−1 I

] [
A2 − sI B2

C2 I

]
=

[
A2 − sI B2

0 N(s)

]
,

we obtain, since λi 6= 0 is not a pole of N ,

N(λi)Ei = 0. (25)

In summary, designing R∗ to cancel any pole λi of [sQ sP ] is
equivalent to imposing that eq. (25) holds. The next question
is: given [sQ sP ] what is the maximal number of poles that
can be cancelled by N , i.e., what is the largest number of
poles for which eq. (25) is satisfied?

To answer this, notice that Ei[j] being nonzero for some j,
implies that there exists at least one nonzero element in the
jth row of Ei. In this case, satisfying eq. (25) imposes that
the jth diagonal element of N(λi) is 0, i.e., the jth diagonal
element of R∗ is λi. In other words, a nonzero element in
Ei corresponds to a fixed value in the corresponding diagonal
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position in R∗. Since R∗ is a constant diagonal matrix then
any pair of orthogonal vectors in {B(E1), · · · ,B(El)} does
not intervene in the choice of an element on the diagonal of
R∗.

Therefore, the minimal order of [W V ] in eq. (11) is l−φ.

Algorithm to find φ and Φ:
As is presented in [12], an undirected graph is denoted by
G = (V, E) where V = {ν1, . . . , νl} is the set of nodes and
E ⊂ V × V is the set of edges.

For our purposes, we construct an undirected graph Ga using
the following rules:
• A node is associated with each boolean vector in the

set {B(E1), · · · ,B(El)}. There are thus l nodes in the
considered graph.

• An undirected edge (i, j) is drawn between node i and
node j if the equality B(Ei)

TB(Ej) = 0 is satisfied.
It is easy to see that the maximum cardinality of the set Φ

corresponds to the maximum number of nodes in a complete
subgraph Kn of the graph Ga.

Although the problem of finding a largest complete sub-
graph in an undirected graph is an NP-hard problem, methods
to this end have been well-studied in [13]2. To our best
knowledge, for an arbitrary graph, the fastest algorithm has
a complexity of O(2n/4) [14]. Therefore, we can use these
methods to obtain a largest complete subgraph and conse-
quently compute the corresponding set Φ and its corresponding
cardinality φ.

2Some corresponding MATLAB code can be downloaded from
http://www.mathworks.com/matlabcentral/fileexchange/19889.


