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1 Introduction

Quantum field theories of vector bosons are notoriously problematic unless they arise from
gauge symmetries, whence non-renormalisability and non-unitarity can be tamed. It is
thus imperative that the gauge symmetry of the renormalisable ultra-violet completion of
any such model should not contain any quantum field theoretic gauge anomalies, where
quantum corrections spoil the gauge symmetry that was imposed upon the tree-level theory.
The Standard Model (SM) itself is anomaly-free and can thus remain a self-consistent theory
up to very large renormalisation scales. Despite this, there are good reasons to expect the
SM to be an effective field theory resulting from decoupling other fields. Many reasons have
been invoked to motivate extending the Lie algebra1 sm := su(3) ⊕ su(2) ⊕ u(1)Y of the

1We shall refer to the Lie algebra (as opposed to the Lie group) in mathfrak script.
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Standard Model (SM) by a spontaneously broken gauged u(1)X summand, for example. Such
extensions have been used to explain measurements of the anomalous magnetic moment of
the muon [1], to provide axions [2] or leptogenesis [3], to provide fermion masses through the
Froggatt-Neilsen mechanism [4], or explain measurements of the b→ sl+l− transition which
are currently in tension with SM predictions [5–13]. In general, the X charge assignments of
the models can be family dependent, resulting in family-dependent couplings of a resulting
massive Z ′ vector boson. Indeed, in several applications (the last two in our aforementioned
list) it is a necessary requirement that the X charges are family dependent, since the
symmetry and the Z ′ are respectively used to explain family non-universal effects.

In u(1)X extensions, the phenomenology of the Z ′ is often key and is dictated by
the integer X charges of the other fields in the model (integer X charges results from an
implicit assumption that the extension is compact). The X charges of the chiral fermions
in particular dictate the contribution to perturbative local anomalies of such models. There
is therefore a non-trivial cross-over between the extensions’ phenomenology and anomaly
cancellation via the chiral fermions’ charge assignments. Unfortunately, in general, with a
fixed chiral fermion content, anomaly cancellation conditions (ACCs) are difficult to solve,
the number theory state-of-the art being the solution of a single cubic in three unknown
integer parameters [14].

Some recent progress has been made in this direction, however. In ref. [15], the
gravitational and gauge anomalies of a U(1) gauge symmetry (i.e. with no SM gauge
group but with charged chiral fermionic fields) were solved analytically for the charges
of a priori fixed numbers of chiral fermions via an ingenious algebraic method;2 this was
soon understood from a geometric perspective [17] by using a theorem due to Mordell [14].
Similar geometric methods were employed to find an analytic solution to the more difficult
problem of sm⊕ u(1) anomaly-free charge assignments in the specific case of SM fermion
content, plus three right-handed (RH) neutrinos (i.e. SM-singlet chiral fermion fields which
may carry X charge) [18]. The number of solutions is formally infinite,3 unlike the case
of semi-simple SM extensions with identical fermionic field content, where there is a list
of 340 [19]. Unfortunately, the geometric methods employed only solve a small family of
similar cases and cannot be deployed on general chiral fermionic contents. Furthermore,
the analytic solution, whilst of intrinsic interest in and of itself, comes with a significant
drawback for model-builders interested in using it: each charge is parameterised in terms of
a fourth-order polynomial of integer parameters. Whilst it is easy to input these parameters
and achieve anomaly-free charges, model builders often want to fix a function of them to
certain values for phenomenological purposes, but this is a difficult and currently unsolved
problem, because it involves solving a system of coupled fourth-order diophantine equations.

Fortunately, when appropriately employed, computers come to the rescue of the reverse-
engineering model builder. In an sm ⊕ u(1) ‘anomaly-free atlas’ [20], all solutions of the

2The algebraic approach was partially extended to U(1)n gauge symmetries in ref. [16].
3One way of seeing this is to set the X charges of the first family of particles to be equal to their

hypercharges, the second family to be equal to some integer multiplied by baryon number minus lepton
number B − L, and the third family to have zero charge. Any such charge assignment solves the anomaly
cancellation conditions. Since there are an infinite number of constants we can multiply the second family
by, each of which leads to a distinct chiral solution, there are an infinite number of solutions.
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ACCs for integer charges between -10 and 10 for 18 chiral fermion gauge representations in
the SM plus three RH neutrinos were found by a scan.4 Cases which are in a sense equivalent
(where the charges differ by a common multiple which can be absorbed into the u(1)X gauge
coupling, or which differ by a permutation of the family indices within a species-fields which
have identical SM representations) were only counted once (and aside from some rare cases,
only scanned over once). Anomaly-free solutions are scarce: only roughly one in 109 was
anomaly-free from the whole sample. The list of anomaly-free fermionic charge assignments
was made publicly available. It is a list of over 21 000 000 solutions that is easy and quick
to search through and filter with the aid of a simple computer program. As such, it is user
friendly for would-be U(1)X gauge extension model builders who can search through the list
and filter for charge assignments with various desired properties. The charges are limited in
height (the maximum absolute value of a charge in any solution), but have the advantage of
being easily useable provided one can adapt or write a simple computer program that reads
the list in and filters it.

Heretofore, there has been no similar list made for supersymmetric (SUSY) models.
SUSY model building has several motivations, the primary one being that it does not
suffer from the technical hierarchy problem, where radiative corrections to the Higgs mass
tend to drag it up to the largest fundamental energy scale (for example the Planck mass
∼ 1019 GeV) multiplied by the square root of a loop factor. There are other motivations
for supersymmetry too, for example, in an N = 1 supersymmetrisation of the SM (the
MSSM), the experimental measurements of the gauge couplings agree with the gauge
coupling unification condition predicted by SUSY grand unified theories. When one includes
an extra multiplicative discrete symmetry such as R-parity or matter parity5 the MSSM
possesses a stable particle which, depending upon parameters, has the correct properties to
constitute the universe’s dark matter and potentially dangerous proton decay processes are
suppressed. Particular examples of u(1)X gauge extensions of the MSSM can combine the
aforementioned phenomenological benefits of a Z ′ with those of SUSY models. Some of
these have appeared in the literature, for example see refs. [22–27].

It is our intention here to extend the original non-SUSY anomaly-free atlas to the
SUSY case and make a new list (a ‘ν SUSY anomaly-free atlas’) available to interested
SUSY u(1)X -extension model builders and others. We shall include the addition of up to
three MSSM-singlet chiral superfields: the fermionic components of all or some of these can
play the rôle of RH neutrinos, resulting in tiny neutrino masses via the see-saw mechanism
(below, we call this model the νMSSM). The scalar component of one of these MSSM-singlet
chiral superfields is expected to play the rôle of the flavon, which has a necessarily non-zero
X charge and acquires a vacuum expectation value, spontaneously breaking U(1)X . One
might expect that one of the SM-singlet fields must therefore have a non-zero u(1)X charge,
unlike the non-SUSY case, where the charges of the flavon and all SM-singlet fermions
were a priori unconstrained. However, we won’t impose this condition because the field

4This strategy has also recently been used for the case of U(1) gauge theory with different numbers of
Weyl fermions, in a search for scotogenic models [21].

5Matter parity is defined as (−1)3(B−L), where B is baryon number and L is lepton number, whereas
R-parity is defined as (−1)3(B−L)+2s, where s is spin.

– 3 –



J
H
E
P
0
2
(
2
0
2
2
)
1
4
4

content of the model can easily be extended in a way that does not change the ACCs but
which effectively removes the condition, as we shall explain below. A functional difference
to the original non-SUSY anomaly-free atlas is the appearance of the Higgsino partners
of the two MSSM Higgs doublets, augmenting the number of Weyl fermion SU(2) gauge
representations by two. This therefore extends the original list of 18 X charges to 20. In
case a height larger than 10 is required, we will also provide a general analytic solution to the
anomaly cancellation conditions. This relies on using the same geometric framing in which
the SM-plus-3 RH neutrino case was solved [18]; we take the opportunity to demonstrate a
new technique to solve such problems, although the technique used in ref. [18] would also
have worked.

Since our u(1)X charge assignments are family dependent, some anomaly-free assign-
ments will result in various Yukawa couplings being banned at the renormalisable and
tree level. Further model building can describe how various terms could come about after
the u(1)X is spontaneously broken, for example by inducing non-renomalisable terms (the
Froggatt-Nielsen mechanism), or from non-holomorphic terms, or elsewhere. We emphasise
that the scope of our paper is to provide the atlas and develop the techniques for doing
so; it is not our aim to go into any proper model building, but to instead provide a list
of charge assignments which satisfy the anomaly-free condition. We shall later illustrate
the implementation of some basic model selection rules, with the understanding that these
in no way constitute serious models for phenomenological consideration, rather they will
form a superset of them. Further selection rules and analysis would be required to identify
models of proper interest for phenomenology.

The paper proceeds as follows: in section 2, we describe the anomaly cancellation
conditions relevant for the Lie algebra mssm ⊕ u(1)X , and a chiral superfield content of
the νMSSM. In section 3, we describe the computational scan and how the solutions are
listed and ordered, giving the number of solutions found up to a height of 10. We provide
an analytic method of solution in section 4, along with a parameterisation of the solution.
Various consistency checks of the solutions are described in section 5: some are checks solely
of the numerical solutions, some are of the analytic solution and some are checks of the
analytic solution versus the numeric solutions. Some initial filters of the numerical solutions
(chosen for specific phenomenological reasons) are explored in section 6. We provide a
summary of the paper and a discussion in section 7.

2 u(1)X extension of the νMSSM Lie algebra

We shall now detail the field content of the νMSSM and discuss how they change the
ACCs. In table 1, we list our notation for the νMSSM chiral fermionic fields and their
representations under the gauged Lie algebra. As previously mentioned, the left-handed
fermionic fields contained within the two Higgs chiral superfields provide a new feature as
regards the ACCs. We note here that the fermionic components of the chiral superfields Hd

and Li have identical representations under the SM gauge Lie algebra, but the fermionic
component of Hd may or may not be discriminated by a different quantum number under
an imposed symmetry such as matter parity or R-parity.
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Fermions
su(3) su(2)L u(1)Y u(1)X

LH quark doublets Qi 3 2 1 XQi

RH neutrinos ni 1 1 0 Xni

RH charged leptons ei 1 1 −6 Xei

RH up quarks ui 3 1 4 Xui

RH down quarks di 3 1 −2 Xdi

LH lepton doublets Li 1 2 −3 XLi

LH down-type Higgsino H̃d 1 2 −3 XHd

LH up-type Higgsino H̃d 1 2 3 XHu

Chiral superfields
Q̂i 3 2 1 XQi

N̂ c
i 1 1 0 −Xni

Êci 1 1 6 −Xei

Û ci 3̄ 1 −4 −Xui

D̂c
i 3̄ 1 2 −Xdi

L̂i 1 2 −3 XLi

Ĥd 1 2 −3 XHd

Ĥd 1 2 3 XHu

Table 1. Conventions for field content with representations under the gauge Lie algebra. RH stands
for right-handed and LH stands for left-handed. i ∈ {1, 2, 3} is a family index. Note that we have
re-scaled a more conventional hypercharge assignment by a factor of 6 to make all hypercharges
setwise coprime integers. Such a re-scaling can be absorbed into the hypercharge gauge coupling. c
denotes charge conjugation on the scalar and fermionic components of the chiral superfield.

We have thus augmented the MSSM, as far as the fermionic X charges go, by 20
parameters which we write in a 20-tuple

X := {XQ1 , XQ2 , XQ3 , Xn1 , Xn2 , Xn3 , Xe1 , Xe2 , Xe3 , Xu1 , Xu2 , Xu3 , Xd1 ,

Xd2 , Xd3 , XL1 , XL2 , XL3 , XHd , XHu}. (2.1)

We take it as understood that, for the case where R-parity is not a symmetry of the theory,
we modify (2.1) such that XHd is merged with XLi to form XLα , where α ∈ {1, 2, 3, 4}.
For now though, we shall continue the discussion where Hd is discriminated from Li by a
discrete symmetry. Since the gauge extension is here assumed to be compact, X is a priori
valued in Z20.
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2.1 Anomaly cancellation conditions

The MSSM per se is anomaly free. With the addition of u(1)X , local anomalies persist
unless X satisfies the ACCs6

su(3)2⊕u(1)X :
3∑
i=1

(2XQi−Xui−Xdi) = 0, (2.2)

su(2)2⊕u(1)X :
3∑
i=1

(3XQi +XLi)+XHd +XHu = 0, (2.3)

u(1)X -gravity :
3∑
i=1

(6XQi−Xni−Xei−3Xui−3Xdi +2XLi)+2XHd +2XHu = 0, (2.4)

u(1)3
X :

3∑
i=1

(6X3
Qi−X

3
ni−X

3
ei−3X3

ui−3X3
di +2X3

Li)+2X3
Hd

+2X3
Hu = 0, (2.5)

u(1)2
X⊕u(1)Y :

3∑
i=1

(X2
Qi−2X2

ui +X2
di +X2

ei +X2
Li)+X2

Hd
−X2

Hu = 0, (2.6)

u(1)2
Y ⊕u(1)X :

3∑
i=1

(XQi−6Xei−8Xui−2Xdi +3XLi)+3XHd +3XHu = 0. (2.7)

These ACCs inherit some in-practice physical equivalences between u(1)X extensions related
by the following operations:

(i) Permutation of family indices within each species, since this is really just a change of
basis.

(ii) X→ aX, where a ∈ Q\{0}, when the gauge coupling only appears in the Lagrangian
multiplied by a U(1)X charge, since the U(1)X gauge coupling may be simultaneously
re-scaled by 1/a resulting in no substantive change. This is displayed by the fact that
the ACCs are homogeneous.

(iii) X→ X + yY, where Y is the 20-tuple of fermionic field hypercharges (in the same
field ordering as X) and y ∈ Z. Resulting from a group outer automorphism, this
change in fermionic representations can be accounted for by a redefinition of gauge
fields [16].

Ideally, we wish to record exactly one entry in a list for each physically inequivalent charge
assignment.7 As we shall describe, we only found a practical way to do this for conditions (i)
and (ii), but not (iii), implying that there will remain a few physically equivalent charge
assignments in any anomaly-free list that we produce. The existence of these will end up
providing us with a check of our computer program in section 5. In any case, such equivalent

6Note that where necessary, we discriminate between the gauge Lie algebra, which is equivalent to
sm⊕ u(1)X and the MSSM×U(1)X gauge group, which is strictly only determined up to certain quotients,
but this does not affect any of our discussion.

7Note that together, (ii) with (iii) imply that we should regard X→ xX + yY as an equivalent theory,
where x ∈ Q\{0} and y ∈ Q.
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charge assignments are rare, and we do not foresee particular problems resulting from their
presence in our list. From now on, we refer to ‘inequivalent’ solutions to implicitly mean
inequivalent under conditions (i) and (ii) only.

To incorporate (i), we take the convention that the family indices in X are such that,
for each species S ∈ {Q,n, e, u, d, L}, XS1 ≤ XS2 ≤ XS3 (for the case without additional
discrete symmetries to distinguish Hd and S = L, XS3 ≤ XS4 as well). To take (ii) into
account, all integers in the tuple must be setwise coprime but note that this still does not
implement the equivalence with X′ := {−XQ3 ,−XQ2 ,−XQ1 , . . . ,−XHd ,−XHu}. In order
to only list one instance of X,X′, we must define a condition that unambiguously picks one
of them: here, we use the lexicographically smaller tuple.8 An n-tuple a = {a1, . . . , an} is
lexicographically smaller than another n-tuple b = {b1, . . . , bn} (written as a < b) if and
only if an i ∈ {1, · · · , n} exists such that ai < bi and aj = bj for all j ∈ {1, · · · , i− 1}.

2.2 Symmetry breaking

Since we are not empirically aware of a long-range force that can be attributed to an
unbroken U(1)X gauge symmetry, we suppose that it must be spontaneously broken. We
further assume that it is broken by (at least) one of the scalars ν̃Ri contained in the
SM-singlet chiral superfields N c

i , so that it does not break the SM gauge symmetry. In order
for a ν̃Ri field to play this rôle, by Goldstone’s theorem it must possess a non-zero X charge.
Typically, such a field is called a flavon. Let us denote it for the purposes of the current
discussion, as θ. Contrary to the non-SUSY case, we obtain a contribution to the ACCs
through its fermionic superpartner θ̃, the flavino. However, we will still solve the ACCs
as given above assuming three SM-singlet chiral superfields only: N c

i , where i ∈ {1, 2, 3}.
The reasons for not explicitly adding to this number (for example by adding one more SM
singlet chiral superfield) are twofold: firstly, we find practical barriers with four (or more)
SM-singlets; the ν SUSY anomaly-free atlas would take too long to compute and would
take up too much disk space to store for the desired height of 10. Secondly, by sticking to
three SM-singlet chiral superfields, we are able to find an analytic solution to the ACCs.

In principle, the requirement that at least one Xni 6= 0 would allow us to reduce the
domain of X charges considered in our computational search below, although not by much.
We choose not to restrict the domain of X charges in this way however, since one could
augment our model by two additional SM-singlet chiral superfields θ1 and θ2 such that
Xθ1 + Xθ2 = 0. The contributions from Xθ1 and Xθ2 would cancel in the ACCs, leaving
the ACCs above unmodified. This type of extension is commonly used, for example, in
U(1)B−L extensions of the MSSM [23]. More generally one can add several SM-singlet
chiral superfields which satisfy the pure u(1) anomaly equations and thus cancel out of the
ACCs [15, 17]. We also note that to set a superfield’s charge to zero has the same effect on
the ACCs as would removing the superfield (or at least its fermionic component) entirely
from the model.

8Lexicographical ordering is a much simpler condition than the one used in the original anomaly-free
atlas [20].
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With the constraints (or lack thereof) listed above, our inequivalent numerical set of
solutions will have the following subsets:

• The SM plus three RH neutrinos corresponds to the subset with XHu = XHd = 0
(since this is equivalent to the model obtained by removing the Hu superfield and the
Hd Higgsino from our current set-up).

• The MSSM with up to three U(1)X -charged RH neutrino chiral superfields, where
the U(1)X is broken by (at least) one of the RH sneutrinos, is the subset where at
least one Xni 6= 0.

• The MSSM with three RH neutrinos and two additional chiral superfields θ1 and
θ2 charged such that Xθ1 + Xθ2 = 0. This is a possibility for the subset with
Xn1 = Xn2 = Xn3 = 0.

3 Numerical solutions up to a height of 10

We produce a list of solutions to the ACCs using a modification of the computer program
that was used to produce the original anomaly-free atlas [20]. To search for solutions, we
scan over integer values in the domain |Xi| ≤ Qmax. For example, if Qmax = 1, our solutions
will only contain X charges in the set {−1, 0, 1}. Each set of solutions can then be classified
by Qmax, its maximum possible height. Note that in this definition, a list of solutions
Qmax = N also contains all solutions with Qmax < N .

There are a priori (2Qmax + 1)20 solutions to be checked as solutions to the ACCs.
Computing speed is the biggest limiting factor in our search for solutions. The original
computer program is described in detail in section 3 of ref. [20], where we direct the curious
reader. Here, we find it expedient to not discriminate a priori between Hd and Li: within
the program, we therefore remove the explicit Hd charge, replacing it by L4, equivalent to
considering the theory without a discrete symmetry to distinguish them. The search for
solutions is sped up by removing some equivalent solutions from the scan, and by using
the four linear ACCs to directly fix the values of four of the charges. This still leaves us
with a large solution space to consider, as compared to the original non-supersymmetric
anomaly-free atlas. We further improve the speed by parallelising the three outer loops
(i.e. over XQ1 , XQ2 and XQ3). For Qmax ≤ 4 the parallelisation improvement is minimal,
but for Qmax ≥ 5 we find that this step is necessary to produce solutions in a reasonable
amount of time.

3.1 Binary search algorithm

The output of the computer program for Qmax = 10 is a large lexicographically ordered list
(the ASCII file is around 125 Gb in size) of inequivalent solutions which solve the ACCs,
each one comprised of a line made of the 20 integers which form X. We have not assumed
a discrete symmetry that distinguishes Li from Hd in the output and so we have four XLα

charges listed. This file forms one of the two most important outputs of the present paper
(the other being the analytic solution for any height described in section 4). As mentioned
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Qmax # νMSSM # RpνMSSM # Non-SUSY # No ACC condition

1 111 267 37 4.5× 106

2 2 321 6 882 357 2.3× 1010

3 44 212 143 707 4 115 8.6× 1012

4 401 129 1367 991 24 551 8.2× 1014

5 2 582 166 9 063 191 111 151 3.3× 1016

6 13 553 325 48 681 027 435 304 7.6× 1017

7 54 699 483 199 275 965 1 358 387 1.1× 1019

8 185 454 955 682 827 818 3 612 733 1.2× 1020

9 598 267 488 2 224 178 673 9 587 084 1.0× 1021

10 1 628 002 737 6 094 894 134 21 546 919 6.8× 1021

Table 2. Number of inequivalent anomaly-free charge assignments found for U(1)X extensions of
the νMSSM where Li and Hd are not discriminated (νMSSM), or where they are (RpνMSSM) or
for the original non-supersymmetric anomaly-free atlas (Non-SUSY). The leftmost columns specifies
the height Qmax, with the corresponding solutions containing all integer charges Xi in the range
−Qmax ≤ Xi ≤ Qmax. The rightmost column lists the number of potential inequivalent solutions in
the SUSY case before ACCs are applied and where a discrete symmetry distinguishes Li from Hd.

in section 1, we envisage that our output file may be used by supersymmetric model builders
by scanning through it with a computer program and filtering the results. Since the file is
so large though, we have facilitated the decrease of the complexity of algorithms used to
analyse the file in order to speed them up. The fact that our list of solutions is ordered
lexicographically means that one can take advantage of the binary search algorithm. This
reduces the complexity of finding a solution in the list from O(n) to O(log n). One usually
has an intuitive understanding of the binary search algorithm since it is roughly how one
usually finds numbers in a phone book or words in a dictionary, as follows. Let us say we
have a solution we want to find in our list or show that it does not exist in the list. The
binary search algorithm goes half-way down the list and determines if our solution is less
then or equal to the solution at the half-way point. If it is present in the first half then we
throw away the second half and keep the first, and if it isn’t we discard the first half and
keep the second. This is then repeated until a list with a single item which will (if it exists)
match the one we are trying to find.

3.2 Output

We display some basic statistics characterising the number of solutions found in table 2.
The number of inequivalent solutions increases rapidly as a function of the maximum
height searched over, Qmax. In all, we find over 1.6 billion solutions for Qmax = 10 in
the case where a discrete symmetry does not pick out one of the XLα charges to be XHd ,
a far larger number than the original anomaly-free atlas (which counts under 22 million
inequivalent solutions). As expected, this increases almost four-fold for the case where one
does pick an XLα to be Hd. Solutions to the ACCs are scarce; their density decreases with
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Figure 1. Fraction of otherwise possible solutions that are anomaly free as a function of Qmax.
Specifically, the fraction is equal to the number of inequivalent solutions divided by the number of
inequivalent possible assignments before the local anomaly cancellation requirements are imposed.

Model Q Q Q n n n e e e u u u d d d L L L L H̃u

Y ′3 −1 −1 1 0 0 0 −6 6 6 −4 −4 4 −2 2 2 −3 3 3 3 −3
B′3 −1 −1 1 −3 3 3 −3 3 3 −1 −1 1 −1 −1 1 −3 3 3 3 −3

ref. [22], table 3 0 0 0 −3 0 0 −1 1 3 −1 −1 −1 1 1 1 −2 0 1 2 −1
ref. [22], table 4 −1 −1 −1 −9 0 0 −9 0 0 1 1 1 1 1 1 0 0 0 9 0

ref. [24] −1 0 0 −1 0 4 −1 0 4 −1 0 0 −1 0 0 −1 0 0 4 0
ref. [25] −1 0 0 1 1 1 1 1 1 −1 0 0 −1 0 0 0 1 1 1 0

SUSY B−L [23] −1 −1 −1 3 3 3 3 3 3 −1 −1 −1 −1 −1 −1 0 3 3 3 0
TFHM [10] −1 0 0 0 0 0 0 0 6 −4 0 0 0 0 2 0 0 0 3 0

Table 3. Some examples of anomaly-free charge assignments found. Here, we list the u(1)X charges
of the (left-handed or right-handed) chiral fermions of each model. These include the solutions
Y ′3 , B′3 used to derive the analytic solution of section 4 as well as the non-SUSY Third Family
Hypercharge (TFHM) solution which we expect to be contained within our list. Note that all
solutions have been rescaled and reordered to satisfy the format of our list as detailed in section 3.
There is no identification yet of a field with its family; that requires more model building of fermion
masses and mixings.

increasing height. For a height of 10, for example, only approximately 1 in 1012 possible
inequivalent charge assignments are anomaly free. We display this fraction for various
different values of Qmax in figure 1 for the case where no symmetry discriminates between
Hd and Li (νMSSM) and the case where it does (RpνMSSM).

In table 3, we display some solutions that appear in the literature and in our list. All
of the solutions shown were found using the binary search algorithm sketched in section 3.1.
Their presence in the list is a check of some expected and found solutions. Two solutions
(Y ′3 and B′3) will be useful for our analytic solution, which we turn to now.
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4 Analytic solution

In this section, we will first frame our problem in a geometric language that will facilitate
our analytic solution of the ACCs. We shall then go on to sketch the geometric method by
which the solution is obtained. Then we shall derive the solution in detail algebraically,
eventually providing an explicit parameterisation of the 20 integer charges of the νMSSM
chiral superfields in terms of some integer parameters. We then provide a right inverse,
which, given a solution to the ACCs, returns parameters which will lead to that solution.
Such an inverse has the dual purpose of facilitating checks between the numerical and
analytic solutions and of providing an additional proof that our solution is generic.

4.1 Geometric framing of the problem

The ACCs form a set of polynomial equations in the integers — otherwise called diophantine
equations. Suppose we take account of only the physical equivalence defined by scaling
(point (ii) in section 2). It then does not matter, from a mathematical point of view, whether
we use the label L4 or Hd for the relevant chiral superfield; here we shall choose the latter.
We can view the unknown charges as corresponding to points in the projective space PQ19.
This is formed by considering the charges as living in the rationals Q20, removing the origin
and providing an equivalence relation between points in Q20 differing by rational multiples.
The points satisfying the ACCs in PQ19 are said to form a projective variety.

One might expect our solution to be parameterised by 14 independent integer-valued
parameters (starting with 20 and subtracting 6 for the ACCs). However, as we shall see,
we shall have to add 9 parameters to cover exceptional cases, making the total number of
integer parameters 23. Our solution will then take the form of a map from Z23 to PQ19

which satisfies the following properties: its image is completely within the projective variety,
it surjects onto the projective variety and its value depends only on the projection onto a
Z14 subspace of Z23 in all but a few classes of exceptional cases.

Within PQ19, the ACCs (2.5) and (2.6) define a cubic and a quadratic hypersurface,
respectively (we shall below refer to these as ‘the cubic’ and ‘the quadratic’, respectively,
for brevity).

To solve systems of diophantine equations, number theorists often use a small set of
solutions as a tool for finding all solutions. Given our extensive numerical scan we are in
a position to make an attempt in this manner. For a generic set of equations this is not
guaranteed to be possible, however we are lucky in that for our particular set of ACCs, at
least two distinct methods exist. The first mirrors the method of ref. [18] which exploits a
special point of PQ19 that is a ‘double point’ of both the cubic and quadratic. A second
new method is presented here.

4.2 Sketch of the method

The linear ACCs are easy to deal with. Their solution defines a projective subspace PL of
PQ19. It is in PL that we must discuss the quadratic and the cubic.

Given a single solution to the quadratic ACC it is possible to find all solutions to the
quadratic ACC by constructing all possible lines through this known solution: along each
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line there must be one further solution to the quadratic, since every rational quadratic in
one dimension has either two or zero rational roots. In a similar vein, given a single solution
to the cubic, with the special property that all first order partial derivatives vanish at this
point, it is possible to find all solutions to the cubic ACC by constructing lines through
this point. Such a point is called a double point of the cubic.

To solve both the quadratic and the cubic simultaneously it is sufficient to have a line
on which every point is a solution to the quadratic and every point is a double point of the
cubic (although as noted above, other methods do exist). In fact for us there is only one
such line (up to permutations of charges within the su(2)-doublet, su(3)-singlet sector, and
other species), which is the one between the points Y3 and B3 given in table 4. These two
points are a reordering of the charges within Y ′3 and B′3, respectively, from table 2. The
first point, Y3, corresponds to hypercharge except for the third family, which has had its
charges sign changed. The second point, B3, corresponds to B − L where the third family
has had its charge’s sign changed and the charges XHu and XHd are modified from their
usual values of zero. We will denote the line between them Y3B3.

To see how Y3B3 will enable us to find all solutions, let us first define the space PL′,
defined to be the subspace of PL whose points are orthogonal to Y3 and B3 with respect to
the standard scalar product on Q20. Every point in PL lies on a plane Y3B3R formed by
Y3B3 and a point R ∈ PL′. Thus, we can restrict our attention to looking at such planes,
and the points within them which satisfy the ACCs.

Generically (we will look at the few exceptions shortly), the intersection of the quadratic
with Y3B3R consists of the union of Y3B3 and another line Lq, as we will see explicitly in
the next subsection. In a similar way, the intersection of the cubic with Y3B3R consists of
the union of Y3B3 and another line Lc. The intersection of the projective variety defined
by the ACCs, and Y3B3R then consists of the line Y3B3 and a single point which is the
intersection of Lq and Lc as shown in the top left-hand panel of figure 2. Finding this point,
which is a new solution to the ACCs, is a trivial task, as we shall shortly see.

Let us now look at the exceptional cases, all of which are illustrated in figure 2. They
correspond to the following situations: (a) the whole plane lies in the quadratic but not
the cubic; (b) the whole plane lies in both the quadratic and the cubic; (c) the whole line
Lq lies in the cubic. The asymmetry between the quadratic and the cubic here is simply a
manifestation of the ordering in which we will do our manipulations in the next subsection,
and nothing more subtle.

We reiterate that since every point in PL lies in a plane Y3B3R, by finding all solutions in
all such planes (considering either the generic case or the exceptional cases) we can find every
point in the projective variety. In section 4.4 we will give an explicit parameterisation of the
solution formed by such considerations. In section 4.5 a right-inverse to this parametrisation
will be given explicitly demonstrating its full generality.
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Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

Y3 1 1 −1 0 0 0 −6 −6 6 4 4 −4 −2 −2 2 −3 −3 3 −3 3
B3 1 1 −1 −3 −3 3 −3 −3 3 1 1 −1 1 1 −1 −3 −3 3 −3 3

Table 4. A new ordering for the anomaly-free charge assignments Y ′3 and B′3 given in table 2,
adapted for the analytic solution. Each row lists the u(1)X charges of the (left-handed or right-
handed) chiral fermions of a model.

Y3 B3

RP0

P L

(in cubic) L
c(in quadratic) Lq

Y3 B3

R

a) (in quadratic)

(in cubic) L
c

Y3 B3

R

b) (in quadratic & cubic)

Y3 B3

R

c)

(in quadratic & cubic) Lq

Figure 2. A schematic of our method. In the generic case (top left), the plane contains one further
line in the quadratic and one further line in the cubic. These intercept at a point P0, which is our
new solution to all ACCs. The exceptional cases are shown in diagrams (a), (b) and (c). In (a), Lc
is a line of solutions to all ACCs. In (b), the Y3B3R is a whole plane of solutions to all ACCs and
in (c), the line Lq is a line of solutions to all ACCs.

4.3 Derivation of the analytic solution

We now give a more detailed description of our solution. To this end we define

q(X,Z) :=
3∑
i=1

(XQiZQi−XLiZLi−2XuiZui +XdiZdi +XeiZei)+XHuZHu−XHdZHd ,

c(W,X,Z) :=
3∑
i=1

(6WQiXQiZQi +2WLiXLiZLi−3WuiXuiZui−3WdiXdiZdi−WeiXeiZei

−WniXniZni)+2WHuXHuZHu +2WHdXHdZHd , (4.1)

which are respectively derived from the quadratic and cubic ACCs with e.g. X3
Q1 replaced

withWQ1XQ1ZQ1 . The maps q and c are the unique trilinear forms which return, respectively,
the quadratic (2.6) ACC and the cubic ACC (2.5), when all inputs coincide.

A point R ∈ PL′ can be parameterised by the 12 charges RS1 for S ∈ {Q,n, e, u, L, d},
RS2 for S ∈ {e, L, d}, Rd3 , RHu and RHd as well as an extra two parameters R1 and R2.
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The remaining charges are given by

RQ2 = 3(R1 +RHd +RL1 +RL2 +RQ1) + 4R2 + 2Rd3 +Re1 +Re2 ,

RQ3 = −4(R1 +R2 +RQ1)− 2(Rd3 +Re1 +Re2)− 3(RHd +RL1 +RL2),
Rn2 = 4R1 +R2 + 3(Re1 +Re2)−Rn1 +RQ1 ,

Rn3 = −(2R1 +R2 +Rd1 +Rd2 +Rd3 +Re1 +Re2 +RQ1),
Re3 = (Rd1 +Rd2 +Rd3) + 3(Re1 +Re2) + 4R1,

Ru2 = −(6R1 +R2 +Rd1 +Rd2 + 2Rd3 + 4(Re1 +Re2) +RQ1 +Ru1),
Ru3 = 4R1 +R2 +Rd3 + 2(Re1 +Re2) +RQ1 ,

RL3 = 3(R1 +Re1 +Re2)− (RL1 +RL2)− (RHu +RHd). (4.2)

Substituting the generic point, αY3 +βB3 +γR, on the plane Y3B3R into the quadratic gives

γ(2αq(Y3, R) + 2βq(B3, R) + γq(R,R)) = 0. (4.3)

Putting the exceptional cases to one side for now, this equation generically has two lines of
solutions: one specified by γ = 0, namely Y3B3, and a new line Lq, a general point of which
is given by

P (c)
c1,c2,c3 = {c2q(R,R)− 2c3q(B3, R)}Y3 + {2c3q(Y3, R)− c1q(R,R)}B3

+ {c1q(B3, R)− c2q(Y3, R)}R, (4.4)

where c1, c2, c3 ∈ Z (over-)parameterise the line.9
On making the same substitution into the cubic we would get a similar line. However,

since we are only interested in the intersection of these two lines, it is sufficient to substitute
P

(c)
c1,c2,c3 into the cubic. This yields

4{c1q(B3,R)−c2q(Y3,S)}2
{
{2q(B3,R)c(R,R,R)3q(R,R)c(B3,R,R)}c1

+{3q(R,R)c(Y3,R,R)−2q(Y3,R)c(R,R,R)}c2

+6{q(Y3,R)c(B3,R,R)−q(B3,R)c(Y3,R,R)}c3
}

= 0. (4.5)

Solving for c1, c2, c3 generically gives the new solution to the ACCs

P0 = {3q(R,R)c(B3, R,R)− 2q(B3, R)c(R,R,R)}Y3

+ {2q(Y3, R)c(R,R,R)− 3q(R,R)c(Y3, R,R)}B3

+ 6{q(B3, R)c(Y3, R,R)− q(Y3, R)c(B3, R,R)}R. (4.6)

Let us now return to the exceptional cases.
(a) The plane lies entirely in the quadratic, but not in the cubic: this occurs when

q(Y3, R) = 0, q(B3, R) = 0 and q(Y3, R) = 0 but at least one of c(Y3, R,R), c(B3, R,R)
and c(R,R,R) is non-zero. In this case, we have a line of solutions (over-)parameterised
by a1, a2, and a3 ∈ Z and given by

P (a)
a1,a2,a3 = {a2c(R,R,R)− 3a3c(B3, R,R)}Y3 + {3a3c(Y3, R,R)− a1c(R,R,R)}B3

+ 3{a1c(B3, R,R)− a2c(Y3, R,R)}R. (4.7)
9Our use of projective space allows us to use, by clearing denominators, Z for these parameters rather

than Q.
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(b) The plane lies entirely within the quadratic and the cubic: this occurs when q(Y3, R) =
0, q(B3, R), q(Y3, R) = 0, c(Y3, R,R) = 0, c(B3, R,R) = 0 and c(R,R,R) = 0. In this
case, every point on the plane lies in the variety. We then parameterise the plane
withb1, b2, b3 ∈ Z:

P
(b)
b1,b2,b3

= b1Y3 + b2B3 + b3R (4.8)

(c) The line in the quadratic and the cubic are the same lines: this occurs (excluding the
case where the line is just αY3 + βB3) when

2q(B3, R)c(R,R,R) = 3q(R,R)c(B3, R,R),
2q(Y3, R)c(R,R,R) = 3q(R,R)c(Y3, R,R),
q(B3, R)c(Y3, R,R) = q(Y3, R)c(B3, R,R). (4.9)

In this case our solution is the line P (c)
c1,c2,c3 .

It is possible to combine these exceptional cases and the generic case into one parame-
terisation of the solution using Kronecker delta functions. This overall parameterisation is
given by

P = P0 + δq(Y3,R),0δq(B3,R),0δq(R,R),0{P (a)
a1,a2,a3 + δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0P

(b)
b1,b2,b3

}

+ δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

× δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R)P
(c)
c1,c2,c3 . (4.10)

This parameterisation is written in terms of the 12 charges and two extra parameters
specifying R, as well as the parameters a1, a2, a3, b1, b2, b3, c1, c2 and c3, which are
needed in the exceptional cases. Taking these parameters to be integers returns an integer-
valued solution.

4.4 Explicit parameterisation

To write the parameterisation more explicitly, we define

Γ := {3q(R,R)c(B3, R,R)− 2q(B3, R)c(R,R,R)}
+ δq(Y3,R),0δq(B3,R),0δq(R,R),0

(a2c(R,R,R)− 3a3c(B3, R,R) + δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0b1)
+ δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R)(c2q(R,R)− 2c3q(B3, R)),
Σ := {2q(Y3, R)c(R,R,R)− 3q(R,R)c(Y3, R,R)}

+ δq(Y3,R),0δq(B3,R),0δq(R,R),0

× {3a3c(Y3, R,R)− a1c(R,R,R) + δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0b2}
+ δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R){2c3q(Y3, R)− c1q(R,R)},
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Λ := 6{q(B3, R)c(Y3, R,R)− q(Y3, R)c(B3, R,R)}
+ δq(Y3,R),0δq(B3,R),0δq(R,R),0

× {3{a1c(B3, R,R)− a2c(Y3, R,R)}+ δc(Y3,R,R),0δc(B3,R,R),0δc(R,R,R),0b3}
+ δ2q(B3,R)c(R,R,R),3q(R,R)c(B3,R,R)δ2q(Y3,R)c(R,R,R),3q(R,R)c(Y3,R,R)

δq(B3,R)c(Y3,R,R),q(Y3,R)c(B3,R,R){2c1q(B3, R)− 2c2q(Y3, R)}. (4.11)

Then the charges are given explicitly by fourth order polynomials in the coordinates of R:

XQ1 = Γ + Σ + ΛRQ1 , XQ2 = Γ + Σ + ΛRQ2 , XQ3 = −Γ− Σ + ΛRQ3 ,

Xn1 = −3Σ + ΛRn1 , Xn2 = −3Σ + ΛRn2 , Xn3 = 3Σ + ΛRn3 ,

Xe1 = −6Γ− 3Σ + ΛRe1 , Xe2 = −6Γ− 3Σ + ΛRe2 , Xe3 = 6Γ + 3Σ + ΛRe3 ,

Xu1 = 4Γ + Σ + ΛRu1 , Xu2 = 4Γ + Σ + ΛRu2 , Xu3 = −4Γ− Σ + ΛRu3 ,

XL1 = −3Γ− 3Σ + ΛRL1 , XL2 = −3Γ− 3Σ + ΛRL2 , XL3 = 3Γ + 3Σ + ΛRL3 ,

Xd1 = −2Γ + Σ + ΛRd1 , Xd2 = −2Γ + Σ + ΛRd2 , Xd3 = 2Γ− Σ + ΛRd3 ,

XHu = 3Γ + 3Σ + ΛRHu , XHd = −3Γ− 3Σ + ΛRHd . (4.12)

4.5 Right inverse

As previously mentioned, this analytic solution has a right inverse, demonstrating its
complete generality. Specifically, let T be a known solution and define the point G =
108T − (Y3 · T −B3 · T )Y3 − (2B3 · T − Y3 · T )B3, where ‘·’ is the usual scalar product. The
point G can be thought of as T with its components in the line αY3 + βB3 projected out.
The parameters RXj = GXj (for Xj as above), and

R1 = −
3∑
i=1

(Gdi +GLi) +Ge3 −GHu −GHd ,

R2 =
3∑
i=1

(Gdi −Gei + 2GLi)−Ge3 + 2GHu + 2GHd −GQ1 −Gn2 ,

a1 = c(B3, T, T ), a2 = −c(Y3, T, T ),
a3 = −c(B3, T, T )(Y3 · T −B3 · T ) + c(Y3, T, T )(2B3 · T − Y3 · T ).
b1 = (Y3 · T −B3 · T ) b2 = (2B3 · T − Y3 · T ) b3 = 1
c1 = q(B3, T ), c2 = −q(Y3, T ),
c3 = −q(B3, T )(Y3 · T −B3 · T ) + q(Y3, T )(2B3 · T − Y3 · T ), (4.13)

return the point T when substituted into the above analytic solution. In fact, they return
T up to a multiplicative constant given by

6× 1084(q(B3, T )c(Y3, T, T )− q(Y3, T )c(B3, T, T ))
+ δq(Y3,T ),0δq(B3,T ),0(3× 1083(c(B3, T, T )2 + c(Y3, T, T )2) + 108δc(Y3,T,T ),0δc(B3,T,T ),0)
+ 2× 1082δq(B3,T )c(Y3,T,T ),q(Y3,T )c(B3,T,T )(q(B3, T )2 + q(Y3, T )2) (4.14)

but given that our discussion above has been implicitly in projective space, such multiplica-
tive factors are not relevant.
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In the Zenodo repository [28] we provide a Mathematica™ script containing the analytic
solution, allowing one to generate solutions at will.

5 Checks of the solutions

The material content of section 3 is a list of all inequivalent anomaly-free charge assignments
up to a fixed Qmax. A skeptic could justly ask the question: how does one know this list
is complete without redundancies? The algorithm used does guarantee it, but one wishes
to mitigate potential errors involved in its computer implementation. A similar level of
scrutiny can be applied to the analytic solution of section 4. Although here one might
hope the correctness of the solution is mathematically clear-cut, due diligence requires that
we should try to ensure that no fallacies have been committed. Happily, several checks
can be carried out to satisfy all but the most fastidious skeptic. These checks work in
three different modes: consistency checks within the numerical solutions, consistency checks
within the analytic solution alone, and cross-checks between the two. The ability to do
cross-checks between the two is one of several advantages for providing both. Let us discuss
the checks performed for each mode in turn. We note in passing that all checks were carried
out successfully.

For any computer program, one useful check is to make a second structurally different
program but with the same expected outcome. To this end, we produced a second different
program (this one did not use lexicographic ordering, but instead used an ordering similar
to that in ref. [10]). The two outputs where then compared and found to agree.

The addition of hypercharge to any solution also leads to a solution, as stated in (iii)
of section 2.1. This provides a check of the computer program as follows: each solution
for a given Qmax had multiples of hypercharge added or subtracted from it up to three
times. If the resulting charges had a height less than or equal to 10, the binary search
method discussed in section 3 was used to confirm that the solution was present in our
Qmax = 10 list.

Turning to the analytic solution, the most primitive check is to randomly choose
parameters, generate the corresponding charges and confirm that they satisfy the ACCs.
This check was carried out on 105 randomly generated solutions.

The fact that we have a right inverse for our parameterisation means that we can take
a solution, apply the inverse and then the parameterisation to return another solution. If
our analysis is correct this new solution should agree with the one we started with (up to
a scaling). This was carried out on, again, 105 randomly generated solutions. It was also
carried out on all the scanned solutions in our list for Qmax= 10, thereby providing the first
cross check between the numerical and analytic solutions.

The second cross-check between the numerical and analytic solutions was to generate
random solutions using the analytic solution, then to identify those of height less than
or equal to 10 and confirm that these appear in the numerical solution via the binary
search algorithm.
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6 Examples of filters

As mentioned in section 3, we envisage that our list of solutions to ACCs (2.2)–(2.7) may
be used by supersymmetric model builders by scanning with a computer program, filtering
out the charges suited to a particular model. In this section, we provide examples of how
the list of solutions might be filtered in order to identify sets of charge assignments with
various possible desirable phenomenological properties or uses.10 Note that in what follows,
as in section 4, we will distinguish Hd from Li, and the number of solutions satisfying each
constraint is therefore to be compared with the second column of table 2.

We summarise the phenomenological constraints of this section in table 9. We emphasise
that the filters used throughout this section provide an initial exploration into the constraints
we expect will be most commonly needed by model builders. We expect that the scope of
this list is much broader than the phenomenological applications dealt with here, and by
making the list of charge assignments publicly available on Zenodo [28] we encourage model
builders to search for charge assignments of more specific interest.

6.1 The superpotential

In general, interactions between the chiral supermultiplets of the MSSM are given by the
superpotential W = WRp +WLV +WBV , where

WRp = µĤuĤd + (yu)ijÛ ci Q̂jĤu + (yd)ijD̂c
i Q̂jĤd + (ye)ijÊci L̂jĤd,

WLV = 1
2λ

ijkL̂iL̂jÊ
c
k + λ′ijkL̂iQ̂jD̂

c
k + µ′iL̂iĤu,

WBV = 1
2λ
′′ijkÛ ci D̂

c
jD̂

c
k.

(6.1)

Û ci , D̂c
i , Q̂i, L̂i, Êci , Ĥu and Ĥd denote the chiral supermultiplets containing of table 3, and we

denote flavour indices by i, j, k ∈ {1, 2, 3}. λijk, λ′ijk, λ′′ijk, (yu,d,e)ij are all dimensionless
coupling constants and µ, µ′i each have mass dimension 1. Gauge indices have been
suppressed. Note that here we ignore the neutrino chiral supermultiplets N̂ c

i , postponing
their discussion until section 6.3. HereWRp denotes terms invariant under R-parity, whereas
R-parity is violated in the L and B-violating terms WLV and WBV respectively.

6.1.1 The µ problem

The MSSM has a fine tuning problem associated with the µĤuĤd term. Given that this
term respects supersymmetry and gauge symmetry, there is no explicitly stated reason
for the scale of µ to be small. The gauge group can be extended by U(1)X to provide a
solution to this so-called µ problem [29]. This is achieved by charging Ĥu and Ĥd under
U(1)X such that the µ term above is forbidden by the U(1)X symmetry. Instead, the flavon
θ is charged, allowing a term of the form (where h is a dimensionless coupling constant)

W ⊃ hθĤuĤd → h〈θ〉ĤuĤd, (6.2)
10Computer programs implementing these filters are available on Zenodo [28].
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such that when the U(1)X symmetry is spontaneously broken, the scalar component of θ
acquires a vacuum expectation value 〈θ〉 at the TeV scale i.e. the µ term is dynamically
generated.11 The µνSSM [30–33] also solves the µ problem in precisely this manner. Any
model with such a dynamically generated µ term is often referred to as the next-to-minimal
supersymmetric standard model (NMSSM). The NMSSM has received much attention in
the literature [34–37].

Remembering that we shall pick one of the N̂ c
i chiral superfields with a non-zero charge

to be the flavon chiral superfield θc, which has a non-zero X charge out of necessity, we
search for such solutions in our list of charges by applying the conditions

∃i ∈ {1, 2, 3} : XHu +XHd = Xni 6= 0, (6.3)

where we take θc to be the N̂ c
i superfield which satisfies this condition.12 We find a total

of 77 solutions satisfying these constraints with Qmax = 1, constituting ∼ 30% of the full
Qmax = 1 list. This percentage reduces to 20% when Qmax = 4, and 11% when Qmax = 10,
providing in this case a total of 649 831 168 options for a dynamically generated µ term.
Note that these solutions may not all produce viable models, and that the specifics of further
model building will place further constraints on the fermion charges. Here we provide only
an initial filter as a preliminary example of how the list of solutions may be queried for the
purpose of phenomenological model building.

6.1.2 A renormalisable Yukawa sector

In contrast to the rather weak constraints of (6.3), we may place strong conditions on the
Yukawa sector by requiring that all renormalisable Yukawa couplings of charged fermions
are allowed in the superpotential WRp by being U(1)X gauge invariant, i.e. they must satisfy
the following equations ∀i, j ∈ {1, 2, 3}:

XQi +XHu −Xuj = 0, XQi +XHd −Xdj = 0, XLi +XHd −Xej = 0. (6.4)

(6.4) implies family universality for the species Q, e, u, L and d. For the non-supersymmetric
case, it has been shown that anomaly-free charge assignments exist which allow all of the
renormalisable Yukawa terms [20]. One can show that in the νMSSM, we obtain one
solution for each non-supersymmetric solution of [20], where we must additionally fix Hu

and Hd to satisfy

3XHu = −3XHd = −3
3∑
i=1

XQi −
3∑
i=1

Xni . (6.5)

(6.5) means that there cannot be any overlap with the solutions satisfying (6.3), i.e. none
of these solutions can simultaneously solve the µ problem. By filtering through our list of
charges, we find 2 solutions allowing a fully renormalisable Yukawa sector with Qmax = 1
and 5 with Qmax = 4, as shown in table 5. The full list of Qmax = 10 solutions comprises
38 such solutions.

11Further detailed model building is required to make sure that 〈θ〉 ∼ O(TeV), but we shall merely assume
here that this is possible.

12The UµνSSM [38] uses (6.3) in a certain U(1)′ extension of the νMSSM (involving additional quark
fields) to solve the µ problem, also.
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Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 0 0 0 1 −1
−1 −1 −1 3 3 3 3 3 3 −1 −1 −1 −1 −1 −1 3 3 3 0 0
−1 −1 −1 2 2 2 4 4 4 −2 −2 −2 0 0 0 3 3 3 1 −1
−1 −1 −1 4 4 4 2 2 2 0 0 0 −2 −2 −2 3 3 3 −1 1

Table 5. Anomaly-free charge assignments with Qmax = 4 allowing all Yukawa terms at the
renormalisable level. Each row lists the u(1)X charges of the (left-handed or right-handed) chiral
fermions of a model. Note that all listed solutions satisfy XHu +XHd = 0, reducing the ACCs to
those of the SM after substitution.

We will now relax the assumption that all Yukawa terms must be present in the
Lagrangian at the renormalisable level. We will enforce that the top and bottom quark
and the tau lepton tree-level Yukawa terms can be present (since they are closer to order 1
and so more difficult to explain by non-renormalisable or loop interactions, which imply a
suppression below order 1) by applying the constraints

∃σ1, σ2, σ3, σ4, σ5 ∈ S3 : XQσ1(3) +XHu −Xuσ2(3) = 0,

XQσ1(3) +XHd −Xdσ3(3) = 0,

XLσ4(3) +XHd −Xeσ5(3) = 0,

(6.6)

where S3 is the group of permutations of 3 objects. We expect Qσ1(3), uσ2(3) and dσ3(3) to be
predominantly third generation quarks, and similarly Lσ4(3) and eσ5(3) to be predominantly
composed of third generation leptons. We will further assume that tree-level renormalisable
Yukawa terms are not present for the first and second generation fermions by forbidding all
other terms in the Yukawa matrices. We can express these constraints by first defining

Pijklmn := (XQi +XHu = Xuj ) ∧ (XQn +XHd = Xdk) ∧ (XLl +XHd = Xem), (6.7)

(where ∧ means logical ‘and’) and then imposing

(∃! i, j, k, l,m, n ∈ {1, 2, 3} : Pijklmn) ∧ (∀i, j, k, l,m, n ∈ {1, 2, 3} Pijklmn ⇒ n = i), (6.8)

where, in standard logic notation, ∃! means ‘there exists a unique’.
This choice is made with the fermion mass problem in mind: it allows larger masses to

be generated for the top, bottom and tau through the standard Yukawa terms, but forbids
them for the light quarks, producing a mass hierarchy between the light and heavy fermions.
In ref. [22] it was shown that the chiral fermions can obtain their masses at loop level
through the interactions with their superpartners by including non-holomorphic soft terms
in the Lagrangian density. Alternatively, light fermion masses may be acquired through
non-renormalisable operators after the flavon θ breaks U(1)X . Either of these mechanisms
require the Lagrangian density to contain terms which will further constrain the charges.
We shall assume that all first and second generation fermions acquire their masses through
some mechanism such as one of these two, but leave the more model dependent effect of
any additional constraints to future investigations.
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We find that when Qmax = 1, the list contains 2 solutions satisfying the constraints
of (6.8). At Qmax = 4 a total of 15 818 solutions pass these constraints, and at Qmax = 10
this number grows to 34 646 735. This makes clear that by imposing these constraints,
not only do we begin to address the fermion mass problem, but we make way for a larger
number of options for model-building compared to those of a fully allowed renormalisable
Yukawa sector. For example, when Qmax = 2 there are 8 solutions which simultaneously
solve the µ problem and satisfy (6.8). This overlap grows to 2 954 solutions when Qmax = 4
and 4 088 200 solutions when Qmax = 10. Furthermore, the constraints (6.8) are inherently
flavour non-universal, and thus have the potential to address the B anomalies. This overlap
will be discussed in more detail in section 6.2.

6.1.3 R-parity violation

In contrast to the SM, L and B violating terms are allowed by the field content and gauge
symmetries of the MSSM, as shown in (6.1). The simultaneous presence of both B and L
violating terms will lead to proton decay in contravention to experimental bounds unless one
introduces a large degree of fine tuning. Usually, all terms in WLV and WBV are forbidden
by the imposition of R-parity. In the case that R-parity is not imposed though, we may
ask that our U(1)X symmetry maintains the stability of the proton instead. We can form
three broad sets of solution within this requirement: where all R-parity violating terms
are banned (this will also maintain the stability of the lightest supersymmetric particle,
which may have the properties to constitute cold dark matter), where all terms in WBV

are banned but where at least one term in WLV is allowed, and those where all terms in
WLV are banned but at least one in WBV is allowed. Terms such as those in WLV give a
Majorana mass term to left-handed neutrinos (sometimes through loop diagrams) without
the need for right-handed neutrinos [39]. Terms in WBV , on the other hand, can assist in
baryogenesis [40].

We may ban terms in WBV by imposing ∀i, j, k ∈ {1, 2, 3}

Xui +Xdj +Xdk 6= 0 (6.9)

where j 6= k since the antisymmetry of λ′′ijk in j, k forbids the j = k terms from appearing
in the superpotential. Similarly, we may ban all terms in WLV by imposing the conditions
∀i, j, k, l,m, n, p ∈ {1, 2, 3}

XLi +XLj −Xek 6= 0, XLl +XQm −Xdn 6= 0, XLp +XHu 6= 0, (6.10)

where i 6= j because λijk is antisymmetric in i, j. At Qmax = 1 we find 8 solutions which
ban all R-parity violating terms. These solutions are listed in table 6. We find a total of 51
solutions which ban WBV while allowing terms in WLV . We find no solutions which ban
WLV while allowing terms in WBV , i.e. the only solutions which ban WLV are those which
ban all R-parity violation.

By increasing the maximum charge Qmax, we find solutions which ban WLV while
allowing B-violation. At Qmax = 10, we find 444 357 847 solutions which forbid WLV while
allowing terms in WBV . We find 2 916 984 840 solutions which forbid WBV while allowing
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Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 1 1
−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 0 0
−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 1 0
−1 −1 1 1 1 1 1 1 1 −1 −1 1 −1 −1 1 1 1 1 1 −1
0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 0 0 0 −1 1
0 0 0 −1 −1 −1 1 1 1 −1 −1 −1 1 1 1 0 0 1 1 −1
0 0 0 −1 −1 1 −1 1 1 −1 −1 1 −1 1 1 0 0 0 −1 1
0 0 0 −1 0 0 −1 1 1 −1 −1 1 −1 1 1 0 0 0 −1 1

Table 6. At Qmax = 1, we find 8 anomaly-free charge assignments in our list banning all R-parity
violating terms in the MSSM superpotential. Each row lists the u(1)X charges of the (left-handed or
right-handed) chiral fermions of a model.

for terms in WLV at Qmax = 10, and a total of 885 951 137 solutions which ban all R-parity
violating solutions, constituting 14% of the list of charge assignments.

6.2 B anomalies

Family-dependent charges in the quark and lepton sectors are well-motivated by the recent
hints at lepton flavour non-universality associated with b→ s`+`− transitions [5–13], also
known as ‘B anomalies’. Global fits incorporating angular distributions and branching
fractions point towards new physics contributions to the Wilson coefficients C9, C10 of weak
effective theory Hamiltonian operators O9, O10, respectively, where

O9 = (s̄′Lγµb′L)(µ̄′γµµ′) O10 = (s̄′Lγµb′L)(µ̄′γµγ5µ′). (6.11)

Here the primes denote that the fermionic fields are in the mass eigenbasis. A vector-like new
physics contribution to C9 with C10 = 0, or a new physics coupling to left-handed muons
through the combination C9 = −C10, are both favoured by global fits [41] in comparison to
the SM.

We will filter through our list in search of solutions potentially capable of explaining
the so-called B anomalies via the mediation of flavour-changing Z ′ interactions, resulting
from the spontaneously broken U(1)X symmetry. We will begin by searching for solutions
for which there exists i, j ∈ {1, 2, 3} with Qi and Lj charged. These will play the role of the
left-handed bottom/top quark doublet and muon respectively, contributing to the effective
operator (b̄LγµbL)(µLγµµL) + . . . once the heavy Z ′ is integrated out of the effective field
theory. We will assume that a rotation to the mass eigenbasis will mix the down-type
quarks such that the necessary b̄′Lγµs′L coupling is produced. As well as this, we will require
that the left-handed leptons are not completely flavour universal, i.e. ∃k ∈ {1, 2, 3} such
that XLk 6= XLµ . This will ensure we can have the necessary µ− e flavour non-universality
to explain the b→ s`+`− data.

We find 114 solutions with Qmax = 1 satisfying these conditions, constituting approxi-
mately 43% of the total list. When Qmax = 10 this number grows to 1 567 142 472, roughly
25% of the full list of charge assignments. Such large numbers indicate that these conditions
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Figure 3. We filter through our list to determine the number of solutions capable of solving the µ
problem and the B-anomalies, as well as those allowing only 3rd family Yukawa terms. We find an
overlap between these applications, with 2 solutions at Qmax = 2 satisfying all constraints and 1 556
at Qmax = 4.

Q Q Q n n n e e e u u u d d d L L L H̃d H̃u

−1 0 0 −2 1 2 1 2 2 −2 −1 0 −1 0 2 −1 0 2 1 1
−1 0 0 1 2 2 −2 1 2 −1 0 2 −2 −1 0 −1 0 2 1 1

Table 7. As depicted in figure 3, at Qmax = 2, only 2 anomaly-free charge assignments satisfy the
constraints required to solve the µ problem and the B-anomalies while allowing 3rd family Yukawa
terms in the Lagrangian. Each row lists the u(1)X charges of the (left-handed or right-handed)
chiral fermions of a model.

leave the charges quite unconstrained, and thus we query the list further for interesting
solutions. Firstly, there are solutions within this set which can simultaneously address the
µ problem and allow only renormalisable tree-level Yukawa terms for the top, bottom and
tau. The overlap between each set of constraints is depicted in figure 3. Only 2 solutions
can account for all three conditions when Qmax = 2, and are shown in table 7. This overlap
grows when Qmax = 4, with 1 556 solutions solving all three conditions.

Secondly, we will filter through the list for solutions that aren’t obviously in danger of
violating experimental constraints. Following the motivation of refs. [9, 42], we search for
solutions with uniform light quark charges so as to avoid constraints on flavour-violation in
the light quark sector. Additionally, we will search for solutions which feature zero coupling
of the electron to the associated Z ′ i.e. ∃ i, j ∈ {1, 2, 3} such that XLi = 0 and Xej = 0.
This is motivated by the strong experimental constraints originating from e+e− collisions
at LEP. We find 21 such solutions that also allow only third family Yukawa terms and
address the µ problem in our list with Qmax = 10. A selection of 10 of these solutions are
listed in table 8. Here, in contrast to other tables, the index on each fermion denotes the
family number (since these are used in the constraints), and we use θ̃ to denote the RH
neutrino that plays the role of the (RH) flavino.
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Q1 Q2 Q3 θ̃ n1 n2 e1 e2 e3 u1 u2 u3 d1 d2 d3 L1 L2 L3 H̃d H̃u

(a) −3 −3 3 −6 0 10 0 9 5 −3 −3 −2 0 0 2 0 9 6 −1 −5
(b) 0 0 −2 6 −3 4 0 3 2 0 0 −1 −3 −3 3 0 3 −3 5 1
(c) 0 0 −2 10 −1 10 0 0 −7 3 3 5 −8 −8 1 0 6 −10 3 7
(d) 0 0 −1 8 −9 1 0 0 6 −2 −2 0 −2 −2 6 0 −4 −1 7 1
(e) 0 0 −5 6 8 10 0 −1 7 4 4 −4 −7 −7 0 0 7 2 5 1
(f) 0 0 −3 10 −9 3 0 8 6 −5 −5 2 0 0 2 0 −2 1 5 5
(g) 0 0 −3 2 0 3 0 7 6 −1 −1 −5 0 0 1 0 5 2 4 −2
(h) 0 0 −2 6 −6 −3 0 8 7 −5 −5 −1 2 2 3 0 −2 2 5 1
(i) 0 0 −2 6 −6 3 0 4 5 −3 −3 1 0 0 1 0 −2 2 3 3
(j) 0 0 −1 −4 −6 0 0 7 9 −5 −5 −4 7 7 −2 0 −3 10 −1 −3
(k) 0 0 −1 2 2 8 0 −5 −1 4 4 0 −5 −5 0 0 3 −2 1 1

Table 8. At Qmax = 10 we find 21 solutions which simultaneously solve the µ problem and
B anomalies, allow 3rd family Yukawa terms and are well-suited to avoid strong experimental
constraints from LEP and quark flavour violation between the first two families. A selection of 10 of
these are shown here. Each row lists the u(1)X charges of the (left-handed or right-handed) chiral
fermions of a model.

The 10 solutions shown all feature suppressed couplings of the Z ′ to the light quarks,
either because the light RH down-type quarks have zero charge, as in solution (a), or because
the light LH quarks have zero charge as in solutions (b)-(k). In solutions (a) and (b), the
muon has equal RH and LH charge i.e. L2 = e2. This results in a purely vector-like coupling
with C10 = 0. Similarly, solutions (c), (d) and (e) are particularly interesting in that they
all produce negative values of the ratio C9/C10, with (c) and (d) giving exactly C9 = −C10
and solution (e) satisfying C9 = −3

4C10. In section 3 we queried the full list of charge
assignments in search of known solutions in the literature, listed in table 3. None of these
solutions are found in the list of 21 solutions passing our constraints: either because they
cannot solve the µ problem and address the 3rd family Yukawa terms simultaneously, or
because they do not satisfy the constraints we impose to facilitate solving the B anomalies.

6.3 Neutrino masses

Finally, we turn to the neutrinos. The inclusion of RH neutrinos has allowed us the flexibility
to solve the ACCs while simultaneously addressing the phenomenological constraints of
section 6.1 and section 6.2, as evidenced by the fact that these solutions often have nonzero
charges for the RH neutrinos. In particular, this can be seen from table 8 in which all of
the solutions feature nonzero charges for at least one of the RH neutrinos. It is then useful
to ask what these charge assignments imply for the neutrino masses and mixings.

In order to describe neutrino masses and mixings, we extend the superpotential to
include the following terms,

W = WRp + (yν)ijN c
i LjHu + (MνR)ijN c

iN
c
j , (6.12)
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where (yν)ij is a 3 by 3 matrix of dimensionless Dirac Yukawa coupling constants and
(MνR)ij is a 3 by 3 matrix of Majorana mass terms (of mass dimension 1) for the RH
neutrinos. Neutrino masses are then produced through a Type-1 see-saw mechanism. Many
alternative mechanisms for producing neutrino masses in the MSSM exist in the literature.
Bilinear R-parity violating models extend the superpotential to include the L-violating
µ′iLiHu terms which produce neutrino masses through mixing with the neutralinos [43, 44].
In [45], a suppressed Dirac mass term is produced after U(1)X -breaking, through the flavon’s
vacuum expectation value 〈θ〉. The µνSSM extends the MSSM to produce neutrino masses
through the inclusion of the trilinear term κijkN

c
iN

c
jN

c
k in the superpotential [30–33].

While an investigation into each of these mechanisms and models is beyond the scope of
this paper, we will filter through our list in search of solutions which allow all of the terms
of (6.12), allowing all possible neutrino masses and mixings via the see-saw mechanism.
Note that further model building will further constrain the fermion charges. Here we provide
only an initial filter as a preliminary example of how the list of solutions may be queried
for the purpose of generating neutrino masses via the see-saw mechanism. The solutions
must satisfy the following constraints ∀i, j ∈ {1, 2, 3}

XLi +XHu −Xnj = 0, Xni +Xnj = 0, (6.13)

implying Xni = 0 and XLi = −XHu . We find a total of 3 solutions with Qmax = 1 in our list
satisfying these constraints. At Qmax = 4 a total of 118 solutions exist, and at Qmax = 10
the list contains 4 878 of these solutions.

7 Summary

Specific models incorporating the MSSM with an additional U(1)X gauge group can combine
the phenomenological advantages of supersymmetry with potential uses of the additional
gauge factor and they have received quite some attention in the literature, particularly for
the case where the U(1)X charges are family dependent. We have found, for the first time,
all charge assignments of the MSSM plus three SM-singlet chiral superfields which are free
of local anomalies (the SM-singlets can produce neutrino masses as well as spontaneously
break the U(1)X symmetry). Chiral superfields in real representations can be added to any
anomaly-free matter content and result in an anomaly-free solution, since the additional
fermionic content will be in a vector-like representation of the gauge group and so its effects
cancel in the anomalies. The local anomaly cancellation conditions described in section 2
constitute a system of six homogeneous coupled diophantine equations (2.2)–(2.7), the like
of which are notoriously difficult to solve, in general.

Global anomalies are beyond the scope of our work; however, for the case of U(1)
extensions of the usual SM gauge group, there are none [46]. One may question whether
a quantum field theory absolutely has to be free from anomalies; after all, in an infra-red
effective field theory (such as we might expect the MSSM×U(1)X to be) one can in principle
add Wess-Zumino terms to the Lagrangian density in order to cancel them. Such terms can
result from decoupling a heavy state from the effective field theory. In order to contribute to
the anomaly though, the additional heavy state must be a chiral fermion of non-zero U(1)X
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Proposition # Qmax = 10
µ problem ∃i ∈ {1, 2, 3} : XHu +XHd = Xni ∧ Xni 6= 0 649 831 168
All renormalisable charged
fermion Yukawas

(∀i, j, k, l,m, n ∈ {1, 2, 3}Pijklmn) 38

Only 3rd family renormalisable
charged fermion Yukawas

(∃! i, j, k, l,m, n ∈ {1, 2, 3} : Pijklmn)∧
(∀i, j, k, l,m, n ∈ {1, 2, 3}Pijklmn ⇒ n = i)

34 646 735

L-conservation & B-violation PL ∧ ¬PB 444 357 847
B-conservation & L-violation PB ∧ ¬PL 2 916 984 840
L & B-conservation PL ∧ PB 885 951 137
B anomalies ∃i, j, k ∈ {1, 2, 3} :XQi 6= 0 ∧ XLj 6= 0 ∧

XLk 6= XLj

1 567 142 472

B anomalies, µ problem, 3rd
family Yukawa terms & exper-
imental constraints

See section 6.2 21

See-saw ν masses ∀i, j ∈ {1, 2, 3} XLi + XHu = Xnj ∧ Xni =
−Xnj

4 878

Table 9. Summary of the phenomenological conditions applied in this paper, along with the
number of inequivalent Qmax = 10 solutions which satisfy them. In the above we have used
standard logic notation in which ∀ reads as ‘for all’, ∧ as ‘and’, ∨ as ‘or’, ∃ as ‘there exists’,
∃! as ‘there exists a unique’, ⇒ as ‘implies’, : as ‘such that’, ¬ as ‘not’. For the condition of
allowing all renormalisable charged fermion Yukawa terms, we have used the proposition Pijklm
defined as Pijklmn := (XQi + XHu = Xuj ∧ XQn + XHd = Xdk ∧ XLl + XHd = Xem). For the
R-parity related conditions we have used the propositions PL := ∀i, j, k, l,m, n, p ∈ {1, 2, 3} i =
j ∨ (XLi + XLj − Xek 6= 0 ∧ XLl + XQm − Xdn 6= 0 ∧ XLp + XHu 6= 0), and PB := ∀i, j, k ∈
{1, 2, 3} i = j ∨Xui +Xdj +Xdk 6= 0.

charge. It is then not a priori obvious how such a state may acquire a large mass, unless
it is linked to the scale of U(1)X breaking.13 One recent non-supersymmetric U(1) gauge
extension of the SM [13] has achieved this with some additional fermions that under the
SM are in vector-like representations, but which are chiral with respect to U(1)X . However,
it is far from obvious whether this is possible in general model set-ups, particularly when
several mixed anomalies do not cancel. From the model builder’s point of view therefore, it
is safer to begin with an anomaly-free effective field theory rather than having to worry
about how such anomalies are cancelled.

We have provided the general analytic solution for the charges via a new geometric
method (a different geometric method was previously employed to solve the anomaly can-
cellation conditions for non-supersymmetric U(1)X extensions of the SM [18]) described
in section 4. One inputs 23 integer parameters for each anomaly-free charge assignment.

13Integrating the top quark out of the SM yields apparent gauge anomalies, but when one includes effective
operators resulting from integrating it out, gauge symmetry is restored [47]. This is precisely a case where
the heavy mass is linked to the symmetry breaking scale (in this case, of the electroweak symmetry).

– 26 –



J
H
E
P
0
2
(
2
0
2
2
)
1
4
4

A Mathematica™ program has been made publicly available which, given the input pa-
rameters, produces one such assignment. The general analytic solution passed various
internal consistency checks. Whilst the general analytic solution can be difficult for model
builders to use, it is useful for (among other things) providing non-trivial checks of any list
of numerical solutions.

Anomaly-free charge assignments are scarce: for example, for heights up to 10, as
figure 1 shows, only one out of some 1012 (or so) inequivalent assignments is anomaly free.
Despite their scarcity, the different assignments are still legion (we have identified over
1.6 billion up to a height of 10). The model builder is therefore faced with an enormous
haystack in which to find the proverbial needle.

An explicit list of all of these 1.6 billion inequivalent charge assignments up to a
maximum absolute value of 10 has been produced via a computer program described in
section 3 and made publicly available [28]. Each entry in the list comprises 20 integers, the
U(1)X charge assignments of 20 chiral superfields of the model. Extensive checks of the list
have been made using the analytic solution as well as those of internal consistency. With the
aid of a computer, such a list is easily and quickly searched and filtered, looking for charge
assignments with various desirable properties. For example, if fewer than three SM-singlets
are required for the model, one can filter the list and find all solutions where one of the
SM-singlet U(1)X charges is zero. As far as anomalies go, having a zero charge for the
superfield is equivalent to removing it from the model. We have shown some simple example
filters, looking for different desirable properties of the charge assignments in section 6 as a
tutorial in their implementation. We hope that the list will be of use for beyond-the-MSSM
builders in terms of inspiration and phenomenology.
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