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Covariance analysis of protein sequence alignments uses coevolv-
ing pairs of sequence positions to predict features of protein struc-
ture and function. However, current methods ignore the phyloge-
netic relationships between sequences, potentially corrupting the
identification of covarying positions. Here, we use random matrix
theory to demonstrate the existence of a power law tail that distin-
guishes the spectrum of covariance caused by phylogeny from that
caused by structural interactions. The power law is essentially inde-
pendent of the phylogenetic tree topology, depending on just two pa-
rameters - the sequence length, and the average branch length. We
demonstrate that these power law tails are ubiquitous in the large
protein sequence alignments used to predict contacts in 3D struc-
ture, as predicted by our theory. This suggests that to decouple phy-
logenetic effects from the interactions between sequence distal sites
that control biological function, it is necessary to remove or down-
weight the eigenvectors of the covariance matrix with largest eigen-
values. We confirm that truncating these eigenvectors improves con-
tact prediction.

Protein sequence covariance analysis | Co-evolution | Sequencing data |
Maximum entropy | Direct coupling analysis

Approaches to biological sequence analysis typically assume
that mutations at different sites are independent of each

other, though this approximation is clearly limited. Indeed,
covariation between sequence distal positions is important for
predicting RNA secondary structure [1], where Watson-Crick
base pairing rules create strong covariance signals that can be
detected by straightforward methods. In contrast, for proteins,
the signal is less strong, and for many years it was unclear
whether any remnant of molecular phenotypes such as protein
structure is imprinted on covarying sequence positions [2–4].

Recently, with the growth of protein sequence databases [5],
and the introduction of sophisticated analyses [6–8], it has
become clear that covariance analysis of protein sequences can
yield exciting biological insights in a wide range of contexts [9–
27]. In general a set of homologous protein sequences is con-
strained by protein structure and function, and with sufficient
data it is possible to tease out the nature of these constraints
and make biologically relevant predictions [12, 13, 16, 28–32].

An important consideration that limits our ability to infer
sets of covarying residues is sequence phylogeny, i.e. the
relatedness structure of the data samples [33–35]. If some
population subgroups are more closely related, then part of the
covariation observed in the data will be of purely phylogenetic
origin, unrelated to molecular phenotypes such as structure or
function [36–41]. In population and medical genetics features
such as geographical population structure are known to affect
the degree of covariance observed between sequences. [42–44].

This raises the question of whether given n aligned protein
sequences of length p, it is possible to distinguish covariance
due to phylogeny from that caused by molecular phenotypes
[36–41]. Here, we analyse a simple theoretical model of molec-
ular evolution, and use the tools of Random Matrix Theory

(RMT) to develop a theory for the covariance when both phy-
logeny and structural constraints are present. We show that
phylogenetic covariance is distinguished by a power law tail
of large eigenvalues, which is essentially independent of phylo-
genetic details, depending only on the average branch length
m/p and the number b of branching events or generations.

Thus motivated, we turn to data and find that the eigen-
value distributions of covariance matrices from large protein
sequence alignments (MSAs) have power law tails. This sug-
gests a strategy for cleaning the covariance matrix that at
least partly controls for confounding phylogenetic effects: re-
moving the power law tail representing those modes that are
most strongly corrupted by phylogeny. For several protein
families, we show that contact prediction accuracy improves
by excluding those eigenvectors that correspond to the largest
eigenvalues. It is interesting to note that the commonly used
method of inverting the sample covariance matrix similarly
down-weights the largest eigenvalues and up-weights the small-
est ones. Our analysis therefore gives an alternative rational-
isation for why direct coupling analysis (DCA) has proven
so successful at inferring true contacts in proteins from se-
quence data alone. More generally, this eigenvalue power law
will occur in any dataset where the samples have a similar
hierarchical relationship.

Results. Molecular phenotypes cause covariance between se-
quence positions (columns) of the MSA matrix X, while phy-
logeny causes covariance between sequences (rows) of X. Co-
variance from either source will appear in both the residue
covariance matrix CR = XTX/n, and the sequence covariance
matrix CS = XXT /p. This is because CR and CS contain the
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Figure 1: The covariance matrices A) CR and B) CS for sequences simulated with just
phylogeny, note that CR has isolated large entries that could be interpreted to indicate
interactions between pairs of sequence positions, though none exist in the simulation.
C) In simulations where the contact map of DHFR is used to generate interactions
(grey), causal interactions are detected well by the largest 200 off-diagonal pairs of
CR in the absence of phylogeny (red = true interaction, blue = false positive). D) The
addition of phylogeny to these simulations confounds the signal.

same information; they have the same non-zero eigenvalues,
and their eigenvectors VR and VS are related by VR = XTVS
and VS = XVR. Analyses of protein sequence data typically
attribute the detected covariance signal to interactions be-
tween sequence positions. This can be misleading: Figs. ??A,
B show CR and CS for a simulated dataset where phylogeny is
the only source of covariance. Note that CR contains isolated
high-scoring residue pairs caused by phylogeny, which could be
erroneously interpreted to be caused by molecular phenotypes.

What happens if there are structural interactions between
specific residue pairs in the simulation? In Fig. ??C, D we
compare the true interactions (grey) with the top 200 scoring
pairs from covariance matrices for sequences simulated (C)
without and (D) with phylogeny. Without phylogenetic corrup-
tion, 185/200 predictions are correct; whereas with phylogeny
this reduces to 54/200. The essential question is to find a way
to disentangle phylogenetic and phenotypic (e.g. structural)
covariance from matrices that contain a superposition of both
(e.g. Fig. ??D). To address this, we first analyse the covari-
ance signal produced by sequences for which the only source
of covariance is phylogeny, and then ask if we can distinguish
this signal when both phylogenetic and structural correlations
are present.

Phylogenetic Covariance. To understand the signature of phylo-
genetic covariance, we consider a Markov model where muta-
tions occur at random and different sites evolve independently.
The process starts with a random sequence of length p, drawn
from a q letter alphabet, which undergoes a series of mutation
and duplication events dictated by a user imposed phylogeny
with b branching events. This generates an alignment of n = 2b
simulated sequences. Population structure changes the eigen-
value spectrum of the resulting covariance matrix. To see this,
consider the simplest phylogeny, a single branching event and
equal length branches. The true covariance matrix ΣS , i.e. the

covariance matrix of the distribution the samples are drawn
from, follows by calculating the covariance between the result-
ing sequences xi and xj . Since this is a stationary Markov
process, the covariance between two sequences separated by
2m mutations, which we denote α(m), is E(x(2m)x(0)):

α(m) = exp
[
− 2qm

(q − 1)p

]
= exp [−4m/p], [1]

where the last equality specialises to a binary alphabet. A
phylogeny with a single branching event has the true covariance
matrix

ΣS =
(

1 α
α 1

)
. [2]

As the mutation rate m→∞, note that α→ 0. This means
that ΣS → I, the sequences are uncorrelated and phyloge-
netic influence is negligible. More generally, as the number
of branching events or generations b increases, we find that
ΣS is composed of nested squares that correspond to each
branching event. This yields b+ 1 distinct eigenvalues λi, with
P (λ = λi) = pi ∝ 2i−b, except for the two largest eigenvalues,
which have pi ∝ 2−b (see SI). These relationships imply that
the eigenvalues follow the power law

λ ∼ rβ [3]

where r is the rank, and β ∝ log 2α is a function of m/p.
Under the influence of phylogeny, the maximum eigenvalue
increases exponentially with the number of branching events b.
Note that there is a precise threshold at 2α = 1, which given
Eq. (1) for α implies 2qm/p(q − 1) = ln(2), above which this
power law behaviour occurs.

Finite Sampling Effects. We have thus seen that phylogeny pro-
duces a striking signature in the covariance matrix. However,
because the number of MSA sequences is limited, this signa-
ture will be affected by finite sampling - the sample covariance
matrix will contain large entries purely by chance. We use
random matrix theory to develop a quantitative characteriza-
tion of the effect on the corresponding eigenvalue distribution.
Consider n independent sequences of length p, with amino
acids drawn uniformly at random. The probability distribu-
tion of the sample eigenvalues follows the Marčenko-Pastur
(MP) distribution:

f(λ) =
√

(b+ − λ)(λ− b−)
2πcλ , b± = (1±

√
c)2, [4]

where c = n/p [45]. Our simulations confirm that the his-
togram of eigenvalues of sequences simulated without phy-
logeny or structural interactions is well described by this
analytical formula (fig. ??A). As n increases, Eq. (4) implies
that this distribution sharpens around λ = 1. Random Matrix
theory further predicts how Eq. (4) generalises to describe
the eigenvalue distribution of the sample covariance matrix
C for any true covariance matrix Σ, such as those caused by
phylogeny. We start with the Stieltjes transform:

G(z, c) =
∫ +∞

−∞

dF (λ)
z − λ , [5]

where F (λ) is the cumulative distribution function of f(λ),
the limiting eigenvalue distribution of C. Marčenko and Pas-
tur [45] used the method of characteristics to relate G(z, c)
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Figure 2: Eigenvalue distributions of (A) n = 4096 sequences with p = 100 residues,
drawn from a model with Σ = I. The eigenvalues of the sequence covariance matrix
(bars) match the classical MP distribution (blue curve). (B) Here 211 initial sequences
are simulated along a tree with equal branch lengths and a single branching event,
with m = 10 mutations per branch. (C) 29 initial sequences are evolved with b = 3
branching events (inset), branch lengths drawn from a Poisson distribution with mean
10. (D) 25 initial sequences are evolved with b = 7 branching events and branch
lengths drawn from a half-normal distribution with mean 10 (Inset: eigenvalue tail).
In each case, the histogram of eigenvalues (averaged over 200 runs) matches the
analytical solution (red curve), not the classical MP distribution (blue curve).

to T (λ), the cumulative eigenvalue distribution of the true
covariance matrix Σ, yielding

G(z, c) = −1
(
z − c

∫ ∞
−∞

λdT (λ)
1 + λG(z, c)

)−1

[6]

This equation describes the effects of finite sampling. If the
true eigenvalues cluster at/near unity, this will result in the
Marčenko-Pastur (MP) distribution of Eq. (4). For phylogeny,
the eigenvalues of Σ are drawn from a discrete distribution, so
dT (λ) =

∑
i piδ(λ− λi)dλ [46], where pi = P(λ = λi) follows

the power law of Eq. (3). Eq. (6) describes how finite sampling
smooths out this discrete distribution.

Fig. ??B shows how the eigenvalue distribution changes
if the sequences follow our simplest phylogeny, where ΣS

(Eq. (2)) has eigenvalues λ± = 1± α. Alignments of n0 = 211

sequences were simulated with m = 10 mutations per branch.
The shape of the eigenvalue distribution differs significantly
from the MP distribution (blue curve). RMT allows us to
predict this spectrum using Eq. (6), which becomes

z − c

2

(
1 + α

1 + (1 + α)G

)
− c

2

(
1− α

1 + (1− α)G

)
= − 1

G
.

The inverse Stieltjes transform, given by the positive imaginary
part of G(z, c), analytically describes the expected eigenvalue
distribution of CS . This is used to plot the red curve in
Fig. ??B, which shows excellent quantitative agreement with
the simulation, unlike the MP distribution shown in blue. As
the number of branching events increases we simply use our
exact formulas (see S.I.) for the true eigenvalue distributions
in Eq. (6) to compute the expected distribution.

Analysis of Inhomogeneous Phylogenies. Real phylogenetic trees
are inhomogeneous, with branches of different lengths. Our
framework naturally extends to this setting. Figs. ??C, D
show the eigenvalue distributions of trees drawn from different
distributions; Fig. ??C has three branching events with branch
lengths drawn from a Poisson distribution, while Fig. ??D
has seven branching events with branch lengths drawn from
a half normal distribution. Note that the eigenvalue distribu-
tion broadens as the number of branching events b increases,
reflecting that the maximum true eigenvalue is ∝ αb.

For inhomogeneous phylogenies we discovered that ana-
lytical solutions follow a simple rule. Consider a phylogeny
with branch lengths drawn from a distribution with mean
〈m〉 and bounded variance, the eigenvalue distribution is then
well approximated by the eigenvalue distribution for the tree
with all branch lengths equal to 〈m〉, and the same number
of branching events. The red curves in fig. ??C, D show
that this prediction fits the simulated data closely. To derive
the result, we consider a phylogeny with b = 1 and branch
lengths m1,m2 drawn from a Poisson distribution with mean
〈m〉 = µ, so that ρi := P(m1 + m2 = i) = (2µ)ie−2µ/i!.
If αi = exp(−qi/p(q − 1)), then the eigenvalues of the true
covariance matrix are λ = 1± αi. Applying Eq. (6) we find:

z − c

2

∞∑
i=0

ρi(1 + αi)
1 + (1 + αi)G

− c

2

∞∑
i=0

ρi(1− αi)
1 + (1− αi)G

= − 1
G

Examining the summands, we note that

∞∑
i=0

ρi(1 + αi)
1 + (1 + αi)G

= 1
G
− 1
G(1 +G)

∞∑
i=0

ρi

1 + αi
G

1+G

where

∞∑
i=0

ρi

1 + αi
G

1+G
=
∞∑
i=0

ρi

[
1− G

1 +G
αi +

(
G

1 +G

)2
α2
i + · · ·

]

In the limit of large p the dependence on the tree parameters,
ρi and αi simplifies, so that:

∞∑
i=0

ρi (αi)j = exp
{

2µ(e−qj/p(q−1) − 1)
}
∼ e−2µqj/p(q−1)

This approximation, valid for large p allows us to write

∞∑
i=0

ρi(1 + αi)
1 + (1 + αi)G

≈ 1 + e−2qµ/p(q−1)

1 + (1 + e−2qµ/p(q−1))G

Hence the Stieltjes transform for the inhomogenous tree is
equal to the Stieltjes transform for a homogeneous tree with
m = µ the mean of the distribution the branch lengths are
drawn from. This result can be generalised for any arbitrary
distribution and phylogenetic tree topology (see S.I.). This
result about inhomogeneous phylogenies is important as it
extends our analysis methods to more realistic phylogenies,
implying that the power law tail of large eigenvalues described
above is general.

Qin et al. PNAS | October 26, 2017 | vol. XXX | no. XX | 3



0 2 4 6
0

0.5

1

1.5

0 50 100 150
nz=784

0

50

100

150

BA

5 6 7

Figure 3: Simulations with just structural interactions. Here 4096
sequences are simulated without phylogeny, with structural interactions taken from
the contact map of DHFR with strengths uniformly distributed on [-5, 5]. Left panel
shows the interaction matrix, right panel is the spectrum of the covariance matrix
of the resulting sequence alignment. Inset shows the upper edge of the eigenvalue
distribution in more detail, compare with Fig. ??D.

Phenotypic covariance. The eigenvalue spectrum for phenotypic
covariance depends on how phenotype couples the residues
to each other. While this will differ for different phenotypes,
recent work has focused on using covariance analysis to predict
contacts in tertiary protein structure [11, 13, 14, 16–18]. If we
consider interactions drawn from a protein contact map, what
covariance is caused? For an alphabet with q = 2, the correla-
tion between two residues that interact with strength j is given
by tanh(j), which saturates as j increases so that the resulting
correlation does not exceed unity. With multiple interactions
and a larger alphabet, the situation is more complex, however,
we can use simulations to characterise the sample covariance
matrix and corresponding eigenvalue distribution. We first
simulate sequences without phylogeny, using a simple Markov
model with non-zero residue couplings at locations dictated by
protein contact maps. These couplings were chosen uniformly
from the interval [-5,5]. With the 784 interactions of Fig. ??A,
the eigenvalue distribution of the sample covariance matrix is
described well by the Marčenko-Pastur distribution (Fig. ??B).
This empirical observation suggests that the eigenvalues of the
true covariance matrix are all of similar size, suggesting that
structural interactions do not lead to an eigenvalue power law.
While real proteins will also have other phenotypic interactions,
this model provides a relevant starting point.

Phylogenetic vs structural covariance. Crucially, this model sug-
gests that there are strikingly different signatures between
the covariance matrix expected from phylogeny and that ex-
pected for interactions caused by residue contacts. If only
structural interactions are present, the limiting behaviour of
the maximum eigenvalue saturates logarithmically as a func-
tion of the number of interactions (Fig. ??A). In contrast,
Fig. ??B shows that the maximum eigenvalue caused by phy-
logeny increases exponentially as the sequences undergo more
duplication events. Moreover, fig. ??C shows a log-log plot of
the eigenvalues as a function of rank for our simulations with
just phenotypic interactions (see Fig. ??); the data are well fit
by a line of slope zero reflecting the absence of the power law.

To probe these signatures further, we use simulations with
a controlled mix of phylogeny and structural interactions.
Fig ??D shows that the spectra for simulations with just phy-
logeny and simulations with both phylogeny and 200 random
structural interactions obey the same power law. In both cases
that the upper power law tail follows β = log(2α)/ log(2) (red
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Figure 4: Largest eigenvalue obtained in simulations with A) only
structural interactions with strength 1.0, and B) only phylogeny. Lines of best fit shown.
C) Eigenvalue distribution obtained in simulations from Fig. ?? with just structural
interactions, the predicted slope is zero. D) Comparison of eigenvalue distributions
obtained in simulations with (yellow) phylogeny, and (blue) phylogeny and structural
interactions. The presence of interactions does not alter the power law, but does
affect the small eigenvalue behaviour. The lines of best fit are constrained using
λ ∝ (r )log(2α)/ log(2), where α is from Eq. (1)

line). With interactions, the lower extent of the power law is
diminished; the blue curve in Fig. ??D drops off before the
yellow curve. Importantly, these two spectra only diverge out-
side the power law regime, implying that phylogeny dominates
those modes that follow the power law.

These simulations therefore suggest that interactions be-
tween residues affect the smallest eigenvalues, while phylogeny
affects the largest eigenvalues, giving a potential mechanism
for distinguishing the effects of phylogeny. Intuitively, this
could arise because interactions between residues makes it less
likely that mutations at those sites will be accepted; reducing
the effective mutation rate of these residues and hence affecting
eigenvectors with low eigenvalues. In Fig ?? we simulate sets
of sequences with both phylogeny and structural interactions
from two different protein contact maps, and obtain similar
results to Fig ??D. In contrast to Fig. ??, we find that the
eigenvalue distributions of the resulting sequence alignments
are not MP, but are well fit by our analytic approach. The
red curves in Fig. ??A, B are each found using the phylo-
genetic parameters from the power law fits in Figs. ??C, D
respectively.

Eigenvalue Spectra of Protein Sequence Data. Given the vastly dif-
ferent signatures in the eigenvalue distributions expected from
phylogeny and structural interactions, it is of great interest
to see if such signatures arise in protein sequence data. To
probe this, we choose three representative protein families for
which covariance analysis has been shown to yield accurate
contact predictions. In the top row of Fig. ?? we show that
the eigenvalue distributions follow a power law in each case,
as predicted by our theory. Furthermore, as for the simulated
data, the middle row of Fig. ?? shows that the phylogenetic
parameters extracted from the power fitted in each case pro-
vide a closer fit (red curves) to the eigenvalue distribution
than the MP distribution (blue curves).
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Figure 5: Simulations with phylogeny and interactions. Here se-
quences are simulated with phylogeny and interactions taken from the contact map of
A) DHFR, using m/p = 0.068 and B) Trypsin, using m/p = 0.059. Top row shows
the histograms of eigenvalues, compare each with the MP distribution (blue curve),
insets show the contact maps. These m/p values are used to compute the analytical
distributions (red curves) which match the data well. The bottom row shows log-log
plots of the eigenvalues as a function of rank. The predicted slope is calculated from
the value of α(m/p) using Eq. (1) in each case, and provides an excellent fit.

Cleaning Protein Spectra. The analysis of simulated data suggests
that the effects of phylogeny can be diminished by removing
large modes of the covariance matrix, and enforcing the con-
straint that the remaining eigenvalues are all the same size.
Namely, instead of the full covariance matrix from the sequence
alignments, we propose truncating the highest modes:

C(t) = vtvTt + · · ·+ vrvTr , λ1 ≥ · · · ≥ λt ≥ · · · ≥ λr ,

where r = p(q− 1). Fig. ?? shows the results of this approach
for contact prediction. For each protein, the slope of the power
law fit in the top row is used to estimate the phylogenetic
parameters required for the analytical solution in the middle
panel (red curve). The point at which the eigenvalues deviate
from the power law fit in the top row (purple dashed line) is
used to determine which modes are dominated by phylogeny
and should be truncated from the outer product expansion of
the sample covariance matrix. The bottom panels show how
well different truncations do at contact prediction, the purple
dashed line reflects the threshold found from the power law fit,
and is near optimal in all cases. This phenomenology is entirely
consistent with the notion that the modes corresponding to
the large eigenvalues reflect the phylogenetic relatedness of
the aligned sequences.

Discussion

This paper was motivated by recent advances [9–14, 16, 21] in
predicting protein structure and function from the covariation
of sequences, a strategy that has been successful for predicting
RNA secondary structure for some time [1, 35]. A major
confounding effect in both situations is the effect of phylogeny,
which introduces correlations between residues [30, 36, 38].
The correlations due to structure/function and phylogeny
must be disentangled for accurate prediction.

The primary accomplishment of this manuscript is to iden-
tify a feature of the eigenvalue distribution of protein covari-

ance matrices (the power law tail) that distinguishes covariance
due to phylogeny from that caused by structural interactions.
The presence of power law tails in the data from diverse
protein families allows us to develop an initial approach to
deconvolving structural interactions from the covariance that
results from sequence phylogeny alone. Our finding that the
largest modes of the covariance matrix are dominated by phy-
logeny suggests an alternative rationalisation for the matrix
inversion step that enabled features of protein structure and
function to be predicted from covariance analysis of large pro-
tein sequence alignments. Furthermore the resulting cleaned
covariance matrix can be used as input for other inference
approaches [9–12, 18, 19, 21]

A further result is a general understanding of how phyloge-
netic effects impact sequence covariation in different regions of
parameter space. Depending on the sequence length p and the
average branch length m, there is a parameter regime where
the covariance matrix does not feature a power law tail of
large eigenvalues, and hence a different approach to disentan-
gling phenotypic interactions from phylogenetic correlations is
required. Specifically, as the eigenvalues of the true covariance
matrix for phylogenetic interactions are ≈ (2α)k, we expect
large eigenvalues when 2α > 1. Given Eq. (1) for α, this is
equivalent to 2q/(q − 1)m/p < ln(2).

We have focused on the eigenvalue distribution, however
information about the phylogeny will also be imprinted in
the eigenvectors of the covariance matrix. In the phyloge-
netic regime, the eigenvectors will have structure that reflects
the relationship between the different sequences [43, 44], pro-
viding additional information about which modes should be
removed for better inference of phenotypic interactions. Un-
derstanding the extent to which the effects of phylogeny and
structural/functional interactions can be disentangled is an im-
portant direction for future research. Is it possible to separate
the effects of phylogeny from those of interaction in parameter
regimes with no power law tail? Under what circumstances
can we accurately infer the strength of interactions? The ap-
proach outlined here provides a mathematical framework that
future work can exploit to definitively answer these questions.
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Figure 6: Protein sequence alignments follow the power law, and moreover spectral deviation from the power law can be used to
deconvolve the influence of phylogeny and facilitate contact prediction. The three panels show analysis of protein sequence data from A) Trypsin,
B) DHFR, and C) TRML-HAEIN, a knotted tRNA-methyltransferase. In the first row we show that the eigenvalues of each protein sequence alignment follow a power law.
The purple dashed line indicates the point at which the spectrum deviates from this power law, indicating a threshold above which phylogeny dominates the spectrum. The
parameter m is inferred from this power law using the equation λ ∼ r−β, where β = log 2α/ log 2 and α(m) is given by Eq. (1). The inferred values of m are used to plot
the red lines in the second row, which provide a good fit to the empirical spectral distributions. The third row of plots show that the phylogenetic threshold, derived from the first
row of plots, provides an excellent indication of which modes should be removed from the covariance matrix to deconvolve the influence of phylogeny and dramatically improve
contact prediction using just the covariance matrix.
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