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Measuring the effects of COVID-19-related disruption on 
dengue transmission in southeast Asia and Latin America: 
a statistical modelling study
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Raman Velayudhan, Annelies Wilder-Smith, Huaiyu Tian†, Oliver J Brady†, on behalf of the CMMID COVID-19 Working Group‡

Summary
Background The COVID-19 pandemic has resulted in unprecedented disruption to society, which indirectly affects 
infectious disease dynamics. We aimed to assess the effects of COVID-19-related disruption on dengue, a major 
expanding acute public health threat, in southeast Asia and Latin America.

Methods We assembled data on monthly dengue incidence from WHO weekly reports, climatic data from ERA5, and 
population variables from WorldPop for 23 countries between January, 2014 and December, 2019 and fit a Bayesian 
regression model to explain and predict seasonal and multi-year dengue cycles. We compared model predictions with 
reported dengue data January to December, 2020, and assessed if deviations from projected incidence since 
March, 2020 are associated with specific public health and social measures (from the Oxford Coronavirus Government 
Response Tracer database) or human movement behaviours (as measured by Google mobility reports).

Findings We found a consistent, prolonged decline in dengue incidence across many dengue-endemic regions that 
began in March, 2020 (2·28 million cases in 2020 vs 4·08 million cases in 2019; a 44·1% decrease). We found a strong 
association between COVID-19-related disruption (as measured independently by public health and social measures 
and human movement behaviours) and reduced dengue risk, even after taking into account other drivers of dengue 
cycles including climatic and host immunity (relative risk 0·01–0·17, p<0·01). Measures related to the closure of schools 
and reduced time spent in non-residential areas had the strongest evidence of association with reduced dengue risk, but 
high collinearity between covariates made specific attribution challenging. Overall, we estimate that 0·72 million 
(95% CI 0·12–1·47) fewer dengue cases occurred in 2020 potentially attributable to COVID-19-related disruption.

Interpretation In most countries, COVID-19-related disruption led to historically low dengue incidence in 2020. 
Continuous monitoring of dengue incidence as COVID-19-related restrictions are relaxed will be important and could 
give new insights into transmission processes and intervention options.
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Introduction
Dengue is a major cause of acute morbidity in 
over 120 countries worldwide and is one of the few 
infectious diseases to show sustained increases year on 
year.1 Countries in the Americas and southeast Asia 
regions are worst affected and routinely account for the 
majority of global cases.2 In 2020, more than 2 million 
cases were reported from these regions, which is 
substantially lower than the 5·2 million recorded in 2019, 
or many previous years.3,4

The COVID-19 pandemic has led to substantial societal 
disruption in 2020, including changes to human move
ment behaviours and the closure of specific venues and 
modes of transport where humans often mixed, through 
government-imposed public health and social measures.5 
Dengue virus is transmitted to humans by Aedes species 
mosquitoes and transmission is closely linked to changes 
in weather, the natural and built environment, and human 
mobility.6 Declines in human mobility—either voluntarily 

or through restrictions (ie, public health and social 
measures)—could reduce dengue virus transmission, but 
might also disrupt vector control and thus increase dengue 
virus transmission. The effects of COVID-19-related 
disruption might also depend on the relative importance 
of inside versus outside the home for dengue virus 
transmission. 7 Although overall cases of dengue declined 
in 2020, worse than average dengue incidence was 
reported in Peru8 and Singapore for 2020.9 Given that 2019 
saw the largest global dengue outbreak in history, 
observing and attributing the effects of COVID-19 
disruption is complicated.2 Some countries might be 
experiencing the continuance of this global dengue 
epidemic, while others might be experiencing below 
average transmission due to the build-up of immunity. 
Finally, concerns have been raised about under-reporting 
of dengue case statistics in 2020 given reduced treatment-
seeking rates, higher potential for clinical misdiagnosis, 
and reduced availability of laboratory testing for dengue.10
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See Online for appendix
For dengue, the COVID-19 pandemic provides a unique 

opportunity to understand how different environments 
and human movement contribute to transmission and 
could lead to new interventions and strategies after the 
public health and social measures are relaxed.11

We aimed to conduct the first multi-continent assess
ment of the effects of public health and social measures on 
dengue incidence using data from 23 countries, with the 
goal of quantifying the strength and magnitude of 
associations between COVID-19-related disruption and 
dengue virus transmission dynamics.

Methods
Study design and participants
The study covers 23 countries (16 in Latin America and 
7 in southeast Asia; listed in figure 1) located between 
30° N and 30° S that reported at least 2000 cases per year 
during 2014–20. We collected the monthly number of 
dengue cases in 2014–20 as reported by WHO weekly 
reports.3,4 Cases comprise a mixture of suspected and 
diagnostic test-confirmed cases with case definition and 
surveillance quality differing between countries, but with 
increased consistency when comparing within a country 
over time.12

Climate and population data
We obtained air temperature at 2 m above the earth’s 
surface, surface temperature, relative humidity, convective 
precipitation, and total precipitation during 2014–20 

from ERA5 monthly averaged reanalysis data with a 
resolution of 0·1° × 0·1°.13 The climate variables chosen 
in our analysis have proven associations with dengue 
transmission.14 Environmental covariates were averaged 
across countries as populaton-weighted averages. We 
used population-weighted means based on WorldPop 
population data (appendix p 5).15,16

Restrictions and human mobility data
We independently tested for associations between dengue 
risk and two different measures of COVID-19-related 
disruption: announced containment and closure policies 
(hereafter public health and social measures) and observed 
changes in human movement behaviours. We extracted 
data on public health and social measures from the Oxford 
Coronavirus Government Response Tracer (OxCGRT) 
project.17 This included eight containment and closure 
public health and social measures (school closing, 
workplace closing, cancelling of public events, restrictions 
on gathering sizes, closing public transport, stay at home 
requirements, restrictions on internal movement, and 
international travel controls) in addition to an overall 
stringency index based on public health and social 
measures and other restriction indicators.

Because individual public health and social measures 
can vary in intensity and domestic geographical scope, 
we used OxCGRT proposed methods17 to convert the 
original ordinal data for each public health and social 
measures to eight continuous sub-index scores. These 

Research in context

Evidence before this study
Previous studies have shown that human movement, 
heterogeneity in environmental risk, and mosquito control 
practices all strongly influence the transmission of dengue virus. 
Restrictions put in place in response to the COVID-19 pandemic 
led to substantial changes in how people move, where they 
spend time, and the continuity of disease control programmes, 
but the net effect on dengue remains unclear. We searched 
PubMed for studies published between database inception and 
April 4, 2021, without language restrictions, using the search 
terms “(COVID-19 OR coronavirus OR SARS-CoV-2) AND 
(lockdown OR interventions OR restriction OR human mobility) 
AND (dengue* OR DENV*)”. We also searched WHO Weekly 
Report and government websites for dengue case data reported 
for countries in Latin America and southeast Asia. Although 
15 studies warned about the risk of COVID-19 exacerbating 
dengue transmission and the subsequent pressure on intensive 
care resources, only three studies analysed dengue and 
COVID-19 data from 2020. Among the three studies that have 
looked for associations between COVID-19 restrictions and 
dengue, findings have been mixed—with protective effects, 
enhancing effects, and no significant effects seen in different 
countries. Assessing the effect of the COVID-19 pandemic on 
dengue is challenging due to the high immunity levels against 

dengue caused by an unusually large global dengue outbreak 
in 2019 and previously incomplete dengue datasets from 2020.

Added value of this study
To our knowledge, this study is the first to analyse dengue data 
throughout 2020 from 23 countries spanning the main dengue 
endemic regions of Latin America and southeast Asia. Our 
findings show that there is a consistent association between 
various measures of COVID-19-related disruption and reduced 
dengue transmission that cannot be explained by seasonal or 
extra-seasonal dengue cycles or underreporting. Although 
attributing change to specific restrictions or behaviours was 
restricted by collinearity, we present evidence that suggests 
specific roles for schools and other commonly visited 
non-residential venues.

Implications of all the available evidence
This combined evidence base emphasises the importance of 
high-traffic, high-mixing venues for dengue transmission 
and could lead to new interventions and targeting strategies. 
Although we are unlikely to ever see 2020-like restrictions used 
to control dengue outbreaks, targeted testing and mosquito 
control based on patient-reported recent movements could 
offer new approaches for a disease that continues to evade 
control by existing approaches.
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public health and social measures indices take values 
between 0 and 100 and allow international comparability 
of public health and social measures, taking into 
account both their extent and intensity. A higher 
score indicates a more stringent, more geographically 
comprehensive COVID-19 response policy (0 for no 
response policy and 100 for the most stringent response 
policy). Socio-geographical human mobility data across 
countries were obtained from Google Mobility Reports, 
which included human movement behaviour metrics 
on time spent in six different location types (residential, 
workplace, transit stations, parks, grocery and pharmacy, 
and retail and recreation). The baseline is the median 
value for the corresponding day of the week during the 
first 5 weeks of 2020 (Jan 3–Feb 6). For the purpose 
of our analysis, we assume all human movement 
behaviour variables take the value of 100% before 
Feb 7, 2020.

Collinearity analysis
Because there could be a high degree of collinearity 
between different public health and social measures or 
human movement behaviours, we used Pearson 
correlation analysis and hierarchical clustering analysis, 
using Ward’s method,18 to compare the similarity of the 
timeseries of eight public health and social measures and 
six human movement behaviour variables (no lagged 
terms included) across all countries. We used Euclidean 
distance to distinguish clusters of multiple variables and 
assess variable similarity following a previous study.19 We 
used multi-scale bootstrapping (n=10 000) to test the 
statistical significance of the identified clusters, defined 
using approximate unbiased p values less than 0·05 in 
the “pvclust” R package (version 2.2).

Under-reporting analysis
To assess under-reporting, we calculated country-
specific annual case fatality rates (deaths / cases). We 
hypothesise that if COVID-19 has substantially impacted 
dengue reporting, this disruption will disproportionately 
affect less severe cases, with severe and fatal cases still 
warranting emergency care, diagnosis, and reporting 
even during peak disruption. This scenario would result 
in excessively high case fatality rates in 2020 versus 
years.

Statistical analysis
First, a historical model was fitted to monthly case counts 
before 2020 (January, 2014 to December, 2019) in 
23 countries:

where yc,t is the monthly number of cases in the respective 
country. We used a negative binomial distribution for 
the response variable (dengue cases) to account for 
overdispersion (κ) of case counts. We included a 
distributed lag non-linear model formulation using 
natural cubic spline (NS) in R packages dlnm and splines 
to quantify the non-linear relationship between each 
climate factor (var df) with changing dengue risk over 
different lag periods 0–3 months (lag df; appendix 
pp 4–7).20,21 The difference between cases reported in the 
previous year and mean long-term annual average (over 
years 2014–19) (annual anomaly[c,a(t) – 1]) was introduced 
to account for inter-annual immunity changes, where 
a(t) = 2014,…,2019. We included structured random 
effects to account for spatial, seasonal, and extra-seasonal 
variations in unknown and unmeasurable factors (such 
as differences in health care, vector control, and human 
mobility). We fit a cyclic first-order monthly random walk 
with no discontinuity between December in yeara(t) – 1 and 
January in yeara(t), ßc, m(t), for each country to account for 
seasonality, where m(t) = 1,…12 (January to December). 
We also included a modified Besag-York-Mollié 
model,22 which consists of one precision parameter 
and one mixing parameter that determines the 
relative contribution of spatially structured (μc, a(t)) and 
unstructured (φc, a(t)) random effects. We use a penalised 
complexity prior approach for the precision t = 1 / σ², so 
that Pr(1 / √t >0·5) = 0·01.23 Population size was included 
as an offset variable.

Model parameters were estimated using integrated 
nested laplace approximation in a Bayesian framework 
with flat uninformative priors. All combinations of 
climatic, economic, and immunity covariates were tested 
in different mode formulations, all of which included 
spatiotemporal random effects. We used deviance infor
mation criterion and mean cross-validated log score (on a 
repeated leave 1 month per country out hold-out set) to 
test model explanatory and predictive power.24 To test 
long-term (12 month) predictive performance, we also 
tested the model’s ability to predict monthly dengue 
incidence in 2018 when fit to data for 2015–17.

A second non-Bayesian intervention model was fit to 
monthly dengue data in 2020 (t), taking into account the 
mean predicted case counts from the historical model 
(on the log scale, ў).

where PHSM denotes public health and social measures 
and HMB denotes human mobility behaviour.

Two separate, distributed lag, non-linear models were 
formulated to test for associations between dengue risk 
and either public health and social measures or human 
movement behaviours. Relative risk (RR) estimates for 
public health and social measures or human movement 

yc,t | dengue casec,t, κ  ~ NegBin(dengue casec,t, κ )

log(dengue casec,t) = NS(climate factors c,t, var df, lag df )
                               + β c, m(t) + φ c, a(t) + μc,a(t)

+ annual anomaly[c,a(t)–1]
+ offset[populationc, a(t)]

yc,t | dengue casec,t, κ  ~ NegBin(dengue casec,t, κ )
log(dengue casec,t) = NS(PHSMc,t or HMBc,t,
var df, lag df ) + offset(ўc,t)
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behaviours were calculated relative to values of 0 or 100%, 
respectively.

Both univariable and multivariable models were fit to 
compare the direction and strength of associations at 
different lags. Multivariable models used both forward 
and backward selection procedures based on Akaike 
information criterion as implemented in the mvabund 
R package.

To estimate the number of dengue cases averted due 
to general COVID-19-related disruption in 2020, we 
calculated the difference between observed cases in 2020 
and the number of cases predicted by the historical 
model for that year. To attribute these averted cases to 

specific public health and social measures and human 
movement behaviours, we used the RR estimated by 
the final multivariable intervention model estimated to 
quantify the monthly prevention fraction using the 
forward attribution method.25 The total prevention 
fraction was the sum of prevention fraction for 12 months 
in 2020.

All analyses were performed in R (version 4.1.12).

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Figure 1: Dengue incidence and government interventions in Latin America and southeast Asia in 2020 versus 2014–19
(A) Relative change ratio of annual dengue incidence in 2020 versus the mean incidence in 2014–19. (B) Distribution of relative change ratio of annual dengue 
incidence for each country in 2020 versus 2019. The boxplot displays 2·5th, 25th, 50th,75th and 97·5th percentiles. (C) The relative change ratio of monthly dengue 
incidence in 2020 relative to the monthly mean incidence in 2014–19. (D) Change of government stringency index against COVID-19 in 2020. The black line 
represents the beginning of a consistent dengue incidence decline in 2020 versus the monthly mean in 2014–19.
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Results
19 of 23 countries reported lower dengue incidence 
in 2020 (cumulative Jan–Dec, 2020) than average (vs 
2014–19, figure 1A), with exceptions seen in Brazil, 
Peru, Bolivia, and Singapore. Compared with 2019, 
incidence decreased by 44·1% across the study area of 
Latin America and southeast Asia (2·28 million cases 
in 2020 vs 4·08 million cases in 2019), with a 40·2% 
decrease in Latin America (569·26 to 340·33 cases per 
100 000 population) and 58·4% decrease in southeast Asia 
(297·31 to 123·58 cases per 100 000 population, figure 1B). 
This decline becomes even more pronounced when 
comparing incidence from April 2020 onwards (figure 1C); 
exceptions include Singapore, which saw above average 
caseloads throughout 2020, and Ecuador, Brazil, and 
Peru, which had extra-seasonal increases later in the year. 
At the time of analysis, we were unable to obtain complete 
(Jan–Dec, 2020) reported dengue case values for several 
large dengue-endemic countries, including India, 
Sri Lanka, Nepal, Myanmar, Paraguay, and Indonesia.

These declines occurred at the beginning of the dengue 
season in many countries, with cases in southeast Asia, 
Central America, and the Caribbean typically increasing 
between June and September. Nine of 11 countries in 
Central America and the Caribbean, and the Philippines 

in southeast Asia, saw complete suppression of their 2020 
dengue season, with most other countries experiencing a 
much suppressed dengue season (appendix pp 13–14). In 
countries where public health and social measures began 
at the peak of the dengue season, such as in South 
America, sharper than expected declines were seen 
despite above average incidence earlier in the year 
(appendix pp 13–14).

These abnormal declines coincide with the introduction 
of public health and social measures (late March to early 
April) and the subsequent shift of human movement 
behaviours towards time spent in residential premises in 
late March to April (figure 1D; appendix pp 13–18). The 
observed climate in 2020 was similar to the average of 
the previous 6 years, with the exception of mildly higher 
temperatures in Jamaica and lower temperatures in 
Venezuela (appendix p 19). We found no evidence that 
this decline in incidence is due to underreporting. If 
cases were underreported, we would expect to see higher 
case fatality rates than reported due to reporting of severe 
cases being less adversely affected than mild cases. Case 
fatality rates for 2020 were within the range of the 
previous 6 years for all countries except Venezuela, which 
had a mild increase in incidence over its 2017 peak 
(appendix p 15).

Figure 2: Strength of association between dengue risk and public health and social measures and human mobility behaviours
(A) Dendrogram showing the hierarchical clustering of public health and social measures and human mobility behaviours timeseries. The height of nodes connecting 
two variables on the dendrogram represents the degree of similarity. For example, the school closing variable is more similar to the cancel public events variable than 
it is to the restrictions on gathering size variable. (B) Data show the strength of evidence of association between dengue risk and either public health and social 
measures or human movement behaviours. Variables are coloured according to their respective clusters. All columns except the first refer to the multivariable model. 
For terms with p<0.05, the direction of RR is given. RRs were calculated cumulatively over all lag periods and compare the variables at their strictest (1 and 100%) 
with baseline pre-pandemic levels, with 95% CIs. *Clusters with approximately unbiased p values larger than 95% are classified as significant clusters. NS=not 
significant (p>0·05). RR=relative risk.

··

··

N ··

 RR <1

 RR <1

 RR <1

 RR <1

Public health and social measures
Human movement behaviours Variable

A B

Significant  in
univariate
model

Selected in forward
and backward
procedures

RR (95% CI)

 RR <1

 RR <1

 RR <1

 RR <1

 RR <1

 RR <1

 RR <1

0·03  (0·00–0·22)

0·01  (0·00–0·04)

0·03  (0·00–0·24)

0·04  (0·01–0·27)

··

··

··

··

*

*

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

 RR <1

 RR <1

 RR <1

0·17  (0·09–0·31)

··

 RR<1

··

NS

N S

Stay at home requirement mobility  

Closing public transport mobility 

Reduction in retail and recreation mobility 

Reduction in park mobility 

Reduction in workplace mobility 

Reduction in transit station mobility 

Reduction in grocery and pharmacy mobility  

Increase in residential mobility 

International travel controls 

Workplace closing

Restrictions on internal movements

Cancel public events 

School closing 

Restrictions on gathering size



Articles

6	 www.thelancet.com/infection   Published online March 2, 2022   https://doi.org/10.1016/S1473-3099(22)00025-1

To investigate the association between public health 
and social measures, human movement behaviours, and 
dengue incidence, we also considered climatic and 
immunological factors that can also influence seasonal 
and extra-seasonal dengue cycles. In the historical 
model fit to data before the COVID-19 epidemic 
(2014–19), we retained the climate variables of convective 
precipitation, surface temperature, and short-term and 
long-term autocorrelation effects (appendix p 8). This 
model specification resulted in the largest improvements 
in both within-sample explanatory and out-of-sample 
predictive performance, with a decrease in deviance 
information criterion of 76·30 and cross-validated mean 
log score of 0·033 over a baseline model of spatiotemporal 
effects (appendix pp 8, 21–24). The model accurately 
replicated seasonal dynamics in all countries, explained 
large outbreak years (eg, 2019) globally and prolonged 
periods of low transmission (eg, 2017–18 in Central 
America; appendix pp 29, 31), and estimated approximate 
seasonal dynamics and comparative outbreak size 
between countries when making predictions up to a year 
ahead (appendix p 32).

We used an intervention sub-model to explain the 
difference between observed case counts in 2020 and 
predicted case counts in 2020 from the historical model 
(appendix pp 29, 33). In our univariable intervention 
model, seven (88%) of eight public health and social 
measures (except closing public transport) and the 
composite stringency index showed significant negative 
correlations with dengue risk. Similarly, three (50%) of 
six human movement behaviours (except residential, 
retail or recreation, and park) showed significant positive 
associations with dengue relative risk (appendix pp 25–26). 
Although these findings suggest a potential association 
between one or multiple public health and social measures 
or human movement behaviours and reduced dengue 
risk, collinearity prevents us from identifying associations 
with specific variables when using univariable analyses 

Figure 3: Association between different selected intervention and human 
movement variables with dengue risk over different lags
The index for public health and social measures ranges from 0 to 100. A higher 
score indicates a more stringent, more geographically comprehensive COVID-19 
response policy (0 for no response policy and 100 for the most stringent 
response policy). The baseline of human mobility was the median for the 
first 5 weeks of 2020 (Jan 3–Feb 6), which was defined as 100%. (A) Contour plot 
of the association between selected intervention and human movement 
variables and risk of dengue, relative to the baseline, without government 
interventions (ie, 0 for public health and social measures and 100 for human 
movement behaviours). The deeper the shade of red, the greater the increase in 
relative risk of dengue compared with the baseline. The deeper the shade of blue, 
the greater the decrease in relative risk of dengue compared with the baseline. 
(B) Dengue lag–response association for loose, moderate, and strict government 
interventions relative to the baseline. (C) Cumulative lags over the 4-month 
time periods associations between public health and social measures or human 
movement behaviours and risk of dengue, relative to the baseline, without 
government interventions. Shaded regions are 95% CIs. Predictions are from the 
intervention models. Cumulative lags over the 4-month time periods are shown 
in the appendix (p 10).
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alone. Therefore, we used a hierarchical cluster analysis 
to quantify the structural collinearity between public 
health and social measures and human movement 
behaviours timeseries. This analysis clustered variables 
into five distinct clusters, two of which were statistically 
significant (approximate p>0·05), including the stay at 
home requirement and closing public transport cluster, 
and the cluster of all non-residential human movement 
metrics (figure 2; appendix p 27). For public health and 
social measures, three variables (cancel public events, 
school closing, and restrictions on gathering size) were 
highly colinear (correlation coefficient >0·8; appendix p 28) 
indicating they were consistently applied at the same time. 
As expected, the composite stringency index showed 
high collinearity with all eight of the specific public health 
and social measures indicators (correlation coefficient 
range 0·73–0·91; appendix p 28); therefore, we excluded 
stringency index from subsequent multivariable analysis. 
All non-residential human movement metrics were highly 
colinear (absolute correlation coefficient range 0·82–0·94) 
with change in mobility in grocery or pharmacy showing 
lower, but still high, collinearity (0·82–0·86). No public 
health and social measures, nor human movement 
behaviours, had strong correlation with any environmental 
variables.

After covariate selection, the human movement 
behaviours model retained all non-residential variables 
except change in workplace, whereas the public health 
and social measures model only retained school closing 
(figure 2). Consistent with the univariable analysis, these 
variables were negatively associated with dengue risk (RR 
range 0·01–0·17), but the magnitude of association varied 
over different lag periods (figures 2, 3). School closing 
was associated with the biggest decrease in dengue risk at 
short lags (0–1 month) and—to a lesser extent—long lags 
(3 month; figure 3). To reduce the impact of collinearity, 
we aggregated human movement behaviour variables 
(arithmetic mean) into residential and non-residential. 
Only the non-residential variable was retained by the 
human movement behaviour model, and a positive 
association with dengue risk was identified (figure 3). 
Low values of non-residential movement showed the 
strongest protective effects at short (0–1 month) and 
medium to long (2–3 months) time lags.

The selected variables belonged to highly colinear 
clusters. This means that we cannot accurately rule out 
an association between dengue risk and restrictions 
on gathering size or cancelling public events. This 
analysis does, however, suggest that there is relatively 
less evidence for an association between dengue risk and 
stay at home requirements, closure of public transport, 
restrictions on domestic and international movement, 
and workplace closures.

By comparing observed and predicted cases (via the 
historical model) between April and December, 2020, we 
estimate that 0·72 million (95% CI 0·12–1·47) fewer 
dengue cases occurred (table), representing a 35% (9–56) 

Observed 
cases in 
2020

Predicted cases in 
2020, n (95% CI)

Averted cases, n 
(95% CI)

Percentage of 
averted cases*

Latin America 851 933 727 359 
(438 058–1 161 136)

–124 574 
(–413 875 to 309 203)

–29% 
(–94 to 27)

Belize 1350 1198 
(304–2553)

–152 
(–1046 to 1203)

–77% 
(–344 to 47)

Bolivia 12 086 15 403 
(2819–38 365)

3317 
(–9267 to 26 279)

–42% 
(–329 to 68)

Brazil 586 945 162 972 
(13 799–528 274)

–423 973 
(–573 146 to –58 671)

–1225% 
(–4154 to –11)

Colombia 35 456 84 116 
(23 885–173 679)

48 660 
(–11 571 to 138 223)

39% 
(–48 to 80)

Costa Rica 7760 9142 
(2516–19 419)

1382 
(–5244 to 11 659)

–26% 
(–208 to 60)

Dominican Republic 931 19 519 
(5311–40 896)

18 588 
(4380 to 39965)

93% 
(82 to 98)

Ecuador 8882 27 862 
(6703–62 513)

18 980 
(–2179 to 53 631)

49% 
(–33 to 86)

El Salvador 3048 16 674 
(4509–36 938)

13 626 
(1461 to 33 890)

73% 
(32 to 92)

Guatemala 2580 30 900 
(7792–65 772)

28320 
(5212 to 63192)

87% 
(67 to 96)

Honduras 13 978 17 515 
(5040–35 915)

3537 
(–8938 to 21 937)

–18% 
(–177 to 61)

Jamaica 224 8040 
(1732–18 950)

7816 
(1508 to 18 726)

95% 
(87 to 99)

Mexico 99 504 215 028 
(47 650–503 367)

115 524 
(–51 854 to 403 863)

24% 
(–109 to 80)

Nicaragua 33 685 16 085 
(4375–34 811)

–17 600 
(–29 310 to 1126)

–208% 
(–670 to 3)

Panama 1146 9038 
(2627–19 171)

7892 
(1481 to 18 025)

81% 
(56 to 94)

Peru 40 509 32 175 
(7526–67 705)

–8334 
(–32 983 to 27 196)

–101% 
(–438 to 40)

Venezuela 3849 61 693 
(15 386–127 462)

57 844 
(11 537 to 123 613)

90% 
(75 to 97)

Southeast Asia 299 291 1 147 357 
(641 700–1 766 550)

848 066 
(342 409 to 1 467 259)

71% 
(53 to 83)

Cambodia 10 085 84 745 
(21 717–186 668)

74 660 
(11 632 to 176 583)

82% 
(54 to 95)

Laos 6863 18 300 
(4799–41 347)

11 437 
(–2064 to 34 484)

42% 
(–43 to 83)

Malaysia 54 932 114 854 
(27 976–246 123)

59 922 
(–26 956 to 191 191)

24% 
(–96 to 78)

Philippines 35 838 377 556 
(95 003–819 952)

341 718 
(59 165 to 784 114)

85% 
(62 to 96)

Singapore 30 370 21 653 
(5531–46 632)

–8717 
(–24 839 to 16 262)

–121% 
(–449 to 35)

Thailand 62 134 287 687 
(71 906–614 232)

225 553 
(9772 to 552 098)

66% 
(14 to 90)

Vietnam 99 069 242 561 
(59 857–543 930)

143 492 
(–39 212 to 444 861)

34% 
(–66 to 82)

Total 1 151 224 1 874 716 
(1 266 555–2 618 688)

723 492 
(115 331 to 1 467 464)

35% 
(9 to 56)

Data are based on the historical model projected on 2020 environmental and epidemiological conditions. 
*Percentage averted cases = averted cases / predicted cases.

Table: The number of cases observed and predicted (April–Dec, 2020) after the implementation of public 
health and social measures
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decrease that is potentially attributable to COVID-19-
related disruption.

This reduction was more pronounced in countries in 
southeast Asia than in Latin America (table). In southeast 
Asia all countries except Singapore were predicted to 
have substantial reductions in dengue cases with the 
largest reductions seen in the Philippines and Cambodia. 
In Latin America, most (nine of 16) countries had fewer 
cases than expected; however, Belize, Bolivia, Brazil, 
Costa Rica, Honduras, Nicaragua, and Peru experienced 
more cases than anticipated. Brazil, in particular, 
remains a major outlier that negatively skews regional 

and global estimates of the percentage of averted cases, 
accounting for 51% of all observed dengue cases between 
April and December, 2020. This discrepancy between 
expected and observed cases in 2020 in Brazil might be 
related to the less stringent public health and social 
measures, variable adherence,26 and more modest 
changes in human movement behaviours that occurred 
in the country in 2020 (appendix pp 17–18).

We then tested what proportion of the difference 
between expected (historical model) and observed case 
counts in April to December, 2020 could be explained 
by the specific public health and social measures and 
human movement behaviour variables in our analysis 
(appendix p 10). School closures in the public health 
and social measures model explained 70·95% (95% CI 
55·55–80·48) of the reduction, whereas reductions in 
movement in non-residential locations in the human 
movement behaviour model explained 30·95% 
(15·57–43·65; appendix p 30). Even in countries with 
low or negative estimates of averted cases (table), such 
as Brazil, variation in monthly case counts could be 
explained by the public health and social measures 
models (figure 4), suggesting these countries would 
have experienced lower dengue case counts if public 
health and social measures had been more stringent or 
declines in non-residential movement been more 
substantial.

Discussion
By combining the most globally comprehensive collection 
of dengue and COVID-19 response data, we show that the 
sudden decline in dengue cases in April, 2020 is associated 
with the imposition of restrictions and changes in human 
movement behaviours. We show that school closures and 
declines in non-residential trips have the strongest 
association with reduced dengue risk. Combined, we 
estimate that 0·72 million (95% CI 0·12–1·47) fewer 
dengue cases occurred in 2020 than would have occurred 
in the absence of COVID-19-related disruption.

It remains to be seen how many of these 0·72 million 
cases are truly averted or just delayed until later years as 
pre-COVID-19 human movement behaviours re-establish. 
By using distributed lag non-linear models, we were able 
to show that public health and social measures and 
human movement behaviours confer both short-term 
(0–1 month) and medium to long-term (2–3 months) 
protective effects. Continued observation and re-analysis 
will be needed to assess longer term effects. Disruption to 
routine vector control (eg, household larval inspections 
and community clear-up campaigns) could suffer long-
term effects that are not observable until the next dengue 
epidemic.7 In the long term, more routine measurement 
of population seroprevalence for dengue27 and a better 
understanding of how treatment-seeking behaviour 
changes at different phases of dengue and COVID-19 
epidemics (as access to care and rapid diagnostics 
changes) will be important to interpret changes in 
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reported caseloads. Continued monitoring of dengue 
trends in 2021 and beyond will be key, including the 
continued collection of human movement data, better 
data on adherence to public health and social measures,26 
and the use of disease forecasting systems to detect and 
respond to dengue epidemics when they do occur.

Theoretically, COVID-19-related disruption could 
increase or decrease dengue transmission through 
mechanisms such as mosquito control disruption, 
reduced human movement restricting geographical 
spread, and reduced time spent in high risk non-
residential environments.7 These hypothetical changes 
in risk would probably act over different timescales, 
with reducing time in high-risk environments leading 
to the most immediate reductions, whereas restricting 
spread and disruption to mosquito control could take 
1–3 months to have substantial effects. This mixture of 
effects might explain why we estimate varying levels of 
protection at different lags.

Although we caution against overinterpretation of the 
selection, magnitude, lag, or direction of specific variables 
in our analysis, some consistent trends could guide 
further studies. Reductions in non-residential movement 
and closure of schools had the strongest evidence of an 
association with reduced dengue risk among the variables 
analysed. Understanding where dengue transmission 
occurs in different settings (eg, home, workplace, or 
school) remains a major knowledge gap. Targeting 
mosquito control measures to households of individuals 
with dengue has long been recommended and practiced2 
under the assumption that mosquito exposure within, or 
in close proximity to, the home drives transmission. 
Despite this, household cluster studies rarely identify 
strong clustering of transmission around houses,28 and a 
competing theory has emerged that transmission occurs 
in shared spaces away from the home or is driven by the 
movement of people that allows the virus to expand into 
new pockets of human susceptibility.29,30 By showing that 
dengue risk is more closely associated with reduced time 
spent in public areas, we add evidence to this theory. Our 
findings imply that schools and other commonly visited 
public areas (or travel between home and these places) 
could be dengue transmission hotspots. These findings 
are consistent with the apparent concentration of 
symptomatic cases in children younger than 15 years31 and 
the main vector of dengue, Aedes aegypti, preferentially 
biting during the day. If supported by further outbreak 
investigation studies, this finding would suggest a greater 
emphasis is needed on dengue control in public places, 
and in schools in particular. These findings might also be 
of relevance to the dynamics of other arboviral diseases 
(eg, Zika and chikungunya) and to infectious diseases 
more generally, and serves as an example that COVID-19-
related disruption does not always result in adverse effects.

Our findings have several limitations. First, owing to 
data availability, we did not include information on 
dengue serotypes or genotypes, which are well known 

drivers of dengue outbreaks.32 Such switches might 
explain outliers, such as Singapore, where a sustained 
switch in the predominant serotype from DENV-1 or 
DENV-2 to DENV-3 could have led to the observed 
increases in incidence in 2020.32 Second, explicitly 
considering the timing of changes in public health and 
social measures and human movement behaviours 
relative to the usual dengue season might also have 
improved model fit. 33

Third, we were unable to control for potential changes 
in dengue reporting that might have occurred due to 
COVID-19 disruption. By showing that case fatality rates 
in 2020 were not abnormal, we provide evidence against 
the theory that reduced dengue incidence in 2020 is due 
solely to underreporting. Some countries, such 
as Sri Lanka, have also reported undertaking additional 
community outreach activities for dengue during the 
COVID-19 pandemic to restrict the effects of any 
reduced treatment-seeking behaviours.34 Effects on case 
presentation, diagnosis, and reporting are likely to be 
complex, country-specific, and delayed. Additionally, if 
dengue cases were substantially underreported then we 
would expect a rapid rise in reported cases as COVID-19 
restrictions are lifted, as opposed to a more gradual 
rise due to resurgence of dengue transmission. Despite 
countries in Asia relaxing domestic COVID-19 
restrictions in late 2020, we did not observe rapid rises in 
reported dengue cases. A more detailed temporal analysis 
of fatal and non-fatal cases of multiple acute conditions 
would give more insight into how disease surveillance 
has changed during the COVID-19 pandemic.

Fourth, we were not able to include all countries 
seriously affected by dengue in our analysis because 
publicly available monthly case reports could not be 
found for some countries. Indonesia reports the highest 
number of dengue cases in southeast Asia and, with 
equatorial seasonality, would have improved our historical 
and intervention models. However, the reported annual 
case decline in Indonesia (138 127 in 2019 and 108 303 
in 2020)35 is within the range of other countries in the 
region and is unlikely to change our main findings.

Fifth, in this study we use penalised complexity priors 
for estimating parameters using integrated nested 
laplace approximation. Penalised complexity priors are 
well suited for penalising more complex models with 
multiple variables; however, model fit and predictions of 
the number of averted cases might differ with different 
prior specifications.

Lastly, our analysis was restricted to national-scale 
dengue and movement dynamics. There is probably 
substantial sub-national heterogeneity in the size and 
strength of association between movement restrictions 
and dengue risk that will be important to quantify. One 
priority for research is measuring how this association 
varies between urban and rural areas, with urban areas 
typically having much higher baseline movement than 
rural areas.
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In summary, this study is the most geographically 
comprehensive study to date to show that the substantial 
reduction in dengue cases seen in 2020 is potentially 
attributable to COVID-19-related disruption. Although it 
remains unknown what effect these restrictions will have 
on dengue dynamics in the long term, the unique 
circumstances of the COVID-19 pandemic might give 
new insights into the development and targeting of new 
and existing interventions for dengue.
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