
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-020-03796-z
Commun. Math. Phys. 378, 705–781 (2020) Communications in

Mathematical
Physics

Mode Stability for the Teukolsky Equation on Extremal
and Subextremal Kerr Spacetimes

Rita Teixeira da Costa

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road,
Cambridge CB3 0WA, UK. E-mail: rita.t.costa@dpmms.cam.ac.uk

Received: 18 December 2019 / Accepted: 17 April 2020
Published online: 8 July 2020 – © The Author(s) 2020

Abstract: We prove that there are no exponentially growing modes nor modes on the
real axis for the Teukolsky equation on Kerr black hole spacetimes, both in the extremal
and subextremal case. We also give a quantitative refinement of mode stability. As an
immediate application, we show that the transmission and reflection coefficients of the
scattering problem are bounded, independently of the specific angular momentum of
the black hole, in any compact set of real frequencies excluding zero frequency and
the superradiant threshold. While in the subextremal setting these results were known
previously, the extremal case is more involved and has remained an open problem. Ours
are the first results outside axisymmetry and could serve as a preliminary step towards
understanding boundedness, scattering and decay properties of general solutions to the
Teukolsky equation on extremal Kerr black holes.
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1. Introduction

Einstein’s equation in vacuum,

Ric(g) = 0, (1.1)

and in particular its black hole solutions, have been the object of intense study by the
general relativity community. Among such solutions, the Kerr family of spacetimes
[Ker63] is especially prominent. A Kerr black hole is characterized by a mass M > 0
and specific angular momentum |a| ≤ M ; we say it is subextremal if |a| < M and
extremal if |a| = M . A fundamental problem concerning these spacetimes is whether
they are nonlinearly stable as solutions of the Einstein equation (1.1); we refer the reader
to [DR11] for an introduction to the question of nonlinear stability. Another interesting
problem is to understand scattering processes onKerr black holes spacetimes. This paper
will concern the Teukolsky equation, which plays a key role in both these problems.

In order to solve the nonlinear stability problem, thefirst step is to show linear stability,
i.e. boundedness and decay statements for the linearization of the Einstein equation (1.1)
around the Kerr solutions. In this context, the Teukolsky equation [Teu73]
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�gα
[s] + 2s

ρ2 (r − M)∂rα
[s] + 2s

ρ2

[
a(r − M)

�
+ i

cos θ

sin2 θ

]
∂φα[s]

+
2s

ρ2

(
M(r2 − a2)

�
− r − ia cos θ

)
∂tα

[s] + 1

ρ2

(
s − s2 cot2 θ

)
α[s] = 0
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for s = ±2 plays a central role, as it describes the dynamics of the extremal curvature
components of the metric in the Newman–Penrose formalism [NP62]. (Here, we have
used Boyer–Lindquist coordinates (t, r, θ, φ) and we refer the reader to Sect. 2.1 for a
definition of the weights � and ρ.) This equation can also be considered for arbitrary
values of s ∈ 1

2Z. For s = 0, the Teukolsky equation (1.2) reduces to the wave equation.
For s = ±1, it describes the evolution of the extreme components of the Maxwell
equations in a null frame (see [Cha83] for an extended discussion).

As shown by Teukolsky, equation (1.2) is separable; thus, it is natural to begin its
study by focusing on fixed frequency solutions, called mode solutions, given by

α[s](t, r, θ, φ) = e−iωt eimφS(θ)R(r), ω ∈ C, m ∈ Z, (1.3)

where S and R satisfy certain ODEs with boundary conditions that ensure α[s] has finite
energy along suitable spacelike hypersurfaces (see Definition 2.5).

If one expects boundedness and decay for (1.2) to hold, the most basic statement
one can hope for is that there are no exponentially growing mode solutions, expressible
as (1.3), with �ω > 0, or solutions with ω ∈ R\{0} to (1.2) that would threaten the
validity of a boundedness property. Such a statement is trivially true for Schwarzschild
black holes (a = 0) when s = 0, by the conservation of the energy associated with the
Killing field ∂t . However, when a �= 0, this proof no longer holds, due the existence of
an ergoregion, where ∂t becomes spacelike, and the phenomenon of superradiance that
can thus occur for frequencies satisfying

ω(ω − mω+) ≤ 0, ω+ := a

2M(M +
√
M2 − a2)

. (1.4)

While in the general s ∈ 1
2Z case, the ∂t energy is not conserved, the special algebraic

properties of (1.2) yield another identity for fixed frequency solutions which easily gives
mode stability statements for Schwarzschild black holes (a = 0), but not for general
rotating spacetimes.At least for s ≤ 2, the proof once again only fails for the superradiant
frequencies in (1.4).

Despite these difficulties, Whiting [Whi89] was able to show mode stability for the
Teukolsky equation of any spin s ∈ 1

2Z on subextremal Kerr with ω in the upper half-
plane, thanks to a clever transformation of the mode solutions into solutions of another
wave equation for which there is no ergoregion. Extending this result to the real axis
was an open problem for almost 25 years, and it was finally put to rest by Shlapentokh-
Rothman [Shl15], who showed in addition that the radial integral transformation was
enough to obtainWhiting’s result, and generalized the result for realω �= 0. Shlapentokh-
Rothman’s result was obtained for s = 0; more recently, [And+17] extended [Shl15] for
all spins. The results in this paragraph are summarized in

Theorem 1.1 (Mode stability for subextremal Kerr). There are no non-trivial mode so-
lutions to the homogeneous Teukolsky equation (1.2) of any spin s ∈ 1

2Z on subextremal
Kerr backgrounds with ω such that �ω ≥ 0 and ω �= 0.
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For subextremal Kerr, boundedness and decay for s = 0 was finally settled in
[DRS16], with the proof of Theorem 1.1 on the real axis, in [Shl15], playing a key
role, via a quantitative statement which we will soon describe. Over the last years, some
boundedness and decay statements for higher spins have been obtained. For s = ±1,
Kerr backgrounds with a = 0 and |a| � M were considered in [Pas16] and [Ma17a],
respectively, previously addressed in [AB15] using theMaxwell equations instead of the
Teukolsky formalism. Moreover, for s = ±2, we recall that full linear stability has been
shown for a = 0 in [DHR19b] and boundedness and decay for (1.2) in the |a| � M
case was shown in [DHR19a,Ma17b].

To complete the above results, onewould like to understand the limit |a| → M , which
is moreover of great relevance for astrophysics [Vol+05]. However, our understanding
is significantly more lacking for extremal Kerr black holes. This is due to the plethora
of new difficulties that the degenerate horizon poses, even at the level of s = 0 (see also
[Are18]):

(a) Degeneracy of the redshift and Aretakis instability. For subextremal Kerr, the event
horizon has a positive surface gravity, which allows one to infer strong decay prop-
erties of solutions to the wave equation along the horizon. As the surface grav-
ity vanishes in the extremal case, this stabilizing mechanism is absent. Indeed, in
[Are15], it was observed that transverse derivatives of axisymmetric waves (m = 0)
grow polynomially along the horizon, a phenomenon which is known as Aretakis
instability; the result was later generalized for higher spins in [LR12]. Unlike the
remaing phenomena we will discuss, the Aretakis instability is present even for
nonrotating extremal spacetimes, such as extremal Reissner-Nordström black holes
(spherically symmetric charged black holes); however, in that case, the remaining
difficulties present on the list do not occur and it is known that general solutions of
(1.2) with s = 0 are bounded and decay [Are11a,Are11b], and their precise late-time
asymptotics have been understood in [AAG18].

More recently, in the heuristic work [CGZ16], the authors suggest that solutions with
fixed azimuthalmode for s = 0 also display the effect,with a faster growth for transverse
derivatives than the m = 0 case.1

(b) Trapping meets superradiance. In [DRS16], a fundamental insight for establishing
boundedness and decay for the Teukolsky equation with s = 0 on subextremal Kerr
was the fact that frequencies which are superradiant cannot correspond to trapped
null geodesics, high-energy geodesics which neither intersect the event horizon nor
escape to null infinity. However, when |a| = M , superradiant frequencies, which
exist form �= 0 by (1.4), can bemarginally trapped (see the introduction in [Are12]).

(c) No available mode stability statement. In [DRS16], mode stability on the real axis
played a very important role. While the obstacle to the proof of mode stability is the
superradiance present for both rotating subextremal and extremal Kerr backgrounds
(see (1.4)), the degenerate horizon in extremal Kerr drastically changes the character
of the Teukolsky equation with respect to the subextremal case. This suggests that a
new Whiting-type transformation is necessary.

In view of difficulties we have discussed, it is not surprising that, in the extremal case,
only axisymmetric (m = 0) solutions to the Teukolsky equation with s = 0, which do

1 We remark that the conclusions of [CGZ16] can only hold assuming a mode stability result for extremal
Kerr of the type of Theorem 1.2, to follow; this enables the authors to restrict their investigation into the
regularity properties of a Green’s function for (1.2) with s = 0 to frequencies close to the superradiant
theshold, ω ≈ mω+, rather than the wider range of real frequencies where, in the absence of a mode stability
statement, the Green’s function could have branch points or poles.
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not exhibit superradiance, have been thoroughly studied in [Are15]. The present paper
represents a first step to address general (i.e. not necessarily axisymmetric) solutions of
any spin s ∈ 1

2Z of (1.2) by providing a definitive resolution to (c):

Theorem 1.2 (Mode stability for extremalKerr).There are nonon-trivialmode solutions
to the Teukolsky equation (1.2) of any spin s ∈ 1

2Z on extremal Kerr backgrounds with
ω and m such that either �ω > 0 or ω ∈ R\{0,mω+}.

It turns out that for �ω > 0, Theorem 1.2 can be inferred from Theorem 1.1 (in
the �ω > 0 case) by a continuity argument. However, such an argument cannot be
used to establish mode stability for ω on the real axis. Indeed, the main idea of this
paper is to construct a novel integral transformation adapted to the |a| = M case. Our
transformation is given by2

ũ(x) := (x2 + 2M2)1/2(x − M)−s(x − 2M)−2iMω×
×
∫ ∞

M
e
2iω
M (x−M)(r−M)(r − M)−2iMωe2M

2i(ω−mω+)(r−M)−1
eiωr R(r)dr,

(1.5)

where R is as given in (1.3). Our (1.5) retains the relevant properties of Whiting’s
transformation which enable it to be used in a proof of Theorem 1.2: the ∂t energy is
conserved and can be used to infer mode stability for ũ, moreover the map R �→ ũ is
injective. However, the transformation is adapted to an extremal Kerr spacetime, where
the radial ODE has a different character comparing to the subextremal case (due to the
degenerate nature of the horizon when r = M) and, moreover, unlike in Whiting’s case,
does not produce an ODE for ũ of the same type as that of the radial ODE for R.

We note already that the fact that the superradiance threshold ω = mω+ is omitted
from Theorem 1.2 due to the fact that, for mode solutions, the boundary conditions
required of R (see (1.3)) at the future event horizon are not a priori continuously defined
in the limit ω → mω+, similarly to what occurs with the boundary conditions at future
null infinity in the limit ω → 0.

Our integral transformation allows us to prove Theorem 1.2 for both real ω and
�ω > 0. In doing so, we combine Shlapentokh-Rothman’s approach with the original
insight of Whiting for dealing with nontrivial spin: we define a novel radial transfor-
mation only for s ≤ 0 and the s > 0 case is addressed using a set of differential
relations connecting +s and −s spin solutions to the Teukolsky equation, known as the
Teukolsky–Starobinsky identities (see [TP74,SC74] for the original papers for |s| = 1, 2
and [KMW89] for a generalization to all s ∈ 1

2Z), which we will show are a nondegen-
erate map between mode solutions of different signs of spin. Moreover, we juxtapose
our proof of Theorem 1.2 with that of Theorem 1.1, presenting a unified proof of the
two statements.

We would like to point out that Theorems 1.1 and 1.2 are a testament to the particular
nature of the Teukolsky equation on aKerr black hole spacetime. For a general wave-type
equation on a Kerr background, mode stability is not true in general: unstable modes
have been constructed for the Klein–Gordon equation [Shl14] and even for the wave
equation to which a non-negative and compactly supported potential is added [Mos17].

Finally, we note that Theorems 1.1 and 1.2 can be made quantitative, in particular in
the arguably more relevant case of ω on the real axis. Recall that imposing that R(r) is

2 The equality here should be understood in the space of square-integrable functions; see already Proposi-
tion 3.1 for a precise statement.
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the radial part of a fixed-frequency solution (1.3) of the Teukolsky equation (1.2) yields
an ODE for R(r). We can define the following solutions of this ODE by their asymptotic
behavior (the notation will be made clear in Sect. 2.2.3),

�s(r2 + a2)1/2R[s]
H+ ∼ e−i(ω−mω+)r∗ as r∗ → −∞,

�s(r2 + a2)1/2R[s]
I+ ∼ eiωr

∗
as r∗ → ∞,

�s(r2 + a2)1/2R[s]
I− ∼ e−iωr∗ as r∗ → ∞,

where r∗ = ±∞ correspond to r = ∞ and r = M +
√
M2 − a2, respectively. By

Theorems 1.1 and 1.2, R[s]
H+ and R[s]

I+ are linearly independent, i.e.

W[s] := �1+s
[
R[s]
H+

d

dr
R[s]
I+ − R[s]

I+

d

dr
R[s]
H+

]
,

is nonvanishing and, thus, admits a lower bound on any compact range of frequencies
where the theorems apply. Note thatW[s] depends only on the frequency parameters. The
lower bound which can be inferred directly from Theorems 1.1 and 1.2 is not explicit;
making these results quantitative means providing an explicit, computable bound in
terms of the black hole parameters, the Teukolsky spin, s, and the compact range of
frequencies one considers. Continuity of the Wronskian in the entire range |a| ≤ M
(a natural extension of the arguments in [HW74]) in fact allows us to obtain a bound
uniform in |a| ≤ M :

Theorem 1.3 (Quantitative mode stability, rough statement). Given Kerr parameters
a and M satisfying |a| ≤ M and a spin s, in any compact set, A, of real frequency
parameters where Theorems 1.1 and 1.2 hold,

∣∣∣W[s]
∣∣∣−1 ≤ C(A, M, s) < ∞,

for any |a| ≤ M, where C(A, M, s) can be explicitly computed.

As we mentioned, Theorem 1.3 restricted to a compact range of subextremal Kerr
black holes, which was obtained in [Shl15], is instrumental to the proof of boundedness
and decay for the wave equation on a subextremal Kerr background [DRS16].We expect
that our Theorem 1.3, which gives a bound uniform in the specific angular momentum
of the black hole as well, is also a preliminary step for future understanding of general
solutions of the Teukolsky equation on an extremal Kerr background.

Theorem 1.3 admits a more direct application which appears in the context of the

scattering problem for the Teukolsky equation. Recall that, for ω real,
(
R[s]
I+ , R

[s]
I−
)
and(

R[s]
H+ , R

[s]
H−

)
are pairs of linearly independent solutions to the radial ODE with spin s.

Hence, we can write

T[s]

−i(ω − mω+)
R[s]
H+ = R[s]

iω
R[s]
I+ +

1

iω
R[s]
I− , s ≥ 0,

T[s]

iω
R[s]
I+ = R[s]

−i(ω − mω+)
R[s]
H+ +

1

−i(ω − mω+)
R[s]
H− , s < 0.

for some complex T[s] and R[s]. The complex numbers T[s] and R[s] are known as
transmission and reflection coefficients, respectively, as they measure the fraction of
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energy of the initial flux on past null infinity, I−, if s ≥ 0, or past event horizon,H−, if
s < 0, that is scattered to the two null surfaces to the future, the future event horizon,
H+, and future null infinity, I+ (see Sect. 5.2 for a discussion for general s and [DRS18]
for s = 0). An immediate application of Theorem 1.3 is

Corollary 1.1 (Rough statement). Given Kerr parameters a and M satisfying |a| ≤ M
and a spin s ∈ {

0,±11
2 ,±1,± 3

2 ,±2
}
, in any admissible compact set, B ⊂ A, of real

frequency parameters with ω �= 0 and ω �= mω+,

∣∣∣T[s]
∣∣∣2 + ∣∣∣R[s]

∣∣∣2 ≤ C(B, M, s) < ∞,

whereC(B, M, s) can be explicitly computed. (The definition of admissibility is specified
in the full statement, Corollary 5.3.)

On its own, Corollary 1.1 cannot yet yield a complete scattering theory (we direct
the reader to the introduction of [DRS18] for an overview of the topic) for the Teukol-
sky equation on Kerr black hole spacetimes, as such a theory would require uniform
boundedness of the transmission and reflection coefficients for all admissible frequency
parameters. For subextremal Kerr spacetimes, we note that the uniform boundedness of
the transmission and reflection coefficients for s = 0 follows directly from the estimates
in [DRS16], which enable the authors to construct a full scattering theory in [DRS18].

Outline. This paper is organized as follows. In Sect. 2, we introduce the Kerr space-
time. We also discuss fixed-frequency solutions to the Teukolsky equation (1.2), giving
a precise definition of mode solution. Finally, we introduce the Teukolsky–Starobinsky
identities which are then used to derive an energy identity for nontrivial spin. We finish
the section by discussing how superradiance and the presence of an ergoregion present
an obstruction to the proof of Theorems 1.1 and 1.2. In Sect. 3.1, we introduce the rel-
evant integral transformations we will consider for the radial ODE when |a| < M and
|a| = M and derive the transformed wave-type equations that they satisfy. In Sect. 4, we
use these transformations to prove mode stability for s ≤ 0 and, using the Teukolsky–
Starobinsky identities, extend the result to s > 0; we also provide a different proof that
Theorem 1.2 for �ω > 0 follows by Theorem 1.1 for the same case. Finally, in Sect. 5,
we give a precise statement and proof of Theorem 1.3. We moreover discuss the setup of
scattering problem for the Teukolsky equation and give the precise statement and proof
of Corollary 1.1. The paper concludes with a discussion of the frequencies ω = 0 and
ω = mω+ which are left out of Theorems 1.1 and 1.2.

2. Preliminaries

In this section, we start by introducing the Kerr spacetime for |a| ≤ M in Sect. 2.1.
In Sect. 2.2, we review the separation of the Teukolsky equation for fixed frequency
solutions, leading up to a rigorous definition of mode solution in Sect. 2.2.4.

In Sect. 2.3, we review the Teukolsky–Starobinsky equations relating mode solutions
of spin +s to solutions of spin −s and vice-versa. Finally, in Sect. 2.4 we review the
definition of energy in the context of the Teukolsky equation and recall the main ob-
struction to obtaining a mode stability statement for a rotating, a �= 0, Kerr black hole,
thus justifying the need for a Whiting-type transformation.
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2.1. The Kerr spacetime. In this section, we recall some well-known properties of the
Kerr spacetime; we refer the reader to [Cha83,ONe95] or any standard textbook in
general relativity for further details.

Fix parameters (a, M) with M > 0 and |a| ≤ M and define

r± := M ±
√
M2 − a2. (2.1)

The Kerr exterior spacetime,R, is a manifold-with-boundary which is covered by Kerr-
star coordinates (t∗, r, θ∗, φ∗) ∈ R×[r+,∞)×S

2 globally, apart from the usual degen-
eration of spherical coordinates. The future event horizon is defined to beH+ := ∂R =
{r = r+}.

More frequently, we will work in Boyer–Lindquist coordinates (t, r, θ, φ) ∈ R ×
(r+,∞) × S

2, which are obtained by the relations

t (t∗, r) := t∗ − t(r), θ := θ∗, φ(φ∗, r) := φ∗ − φ(r) mod 2π, (2.2)

where the functions φ and t(r) are defined by

dφ

dr
:= a

�
,

dt

dr
:= r2 + a2

�
, (2.3)

and some initial condition. These coordinates parametrize a manifold without boundary,
R̃, such thatR = R̃∪H+.With respect to Boyer–Lindquist coordinates, the Kerr metric
becomes

ga,M = −� − a2 sin2 θ

ρ2 dt2 − 4Mar sin2 θ

ρ2 dtdφ

+

(
(r2 + a2)2 − �a2 sin2 θ

ρ2

)
sin2 θdφ2 +

ρ2

�
dr2 + ρ2dθ2, (2.4)

where

ρ2 := r2 + a2 cos2 θ, � := r2 − 2Mr + a2 = (r − r+)(r − r−).

Starting fromBoyer–Lindquist coordinates,we candefine coordinates (∗t, r,∗ θ,∗ φ) ∈
R × [r+,∞) × S

2 by

∗t (t, r) := t − t(r), ∗θ := θ, ∗φ(φ, r) := φ − φ(r) mod 2π, (2.5)

which, as the metric extends smoothly to H− := {r = r+} in this chart, enable us to
extend R to a larger manifold with boundary R ∪H−.

It will also be convenient to define a new radial coordinate r∗ : (r+,∞) → (−∞,∞)

which is the unique function satisfying r∗(3M) = 0 and

dr∗

dr
= r2 + a2

�
, with � := r2 − 2Mr + a2 = (r − r+)(r − r−). (2.6)

2.2. Separation of the Teukolsky equation. In this section, we will consider fixed fre-
quency solutions to the Teukolsky equation (1.2). We begin by identifying the range
of frequencies we will be working with in Sect. 2.2.1. In Sects. 2.2.2 and 2.2.3, we in-
troduce the relevant ODEs arising from the separation of the Teukolsky equation (1.2).
The definition of mode solution, central to the proof of mode stability, is finally given
in Sect. 2.2.4.
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2.2.1. Admissible frequencies For ω ∈ C and m ∈ 1
2Z, it will be convenient to define:

ξ := −i
2Mr+
r+ − r−

(ω − mω+), β := 2iM2(ω − mω+), ω+ := a

2Mr+
. (2.7)

For the remainder of this paper, we will be interested in the following parameters:

Definition 2.1 (Admissible frequencies). Fix s ∈ 1
2Z.

1. We say the frequency parameter m is admissible with respect to s when, if s is an
integer, m is also an integer and when, if s is a half-integer, so is m.

2. We say the frequency pair (m, l) is admissible with respect to s whenm is admissible
with respect to s, l is an integer or half-integer if s is an integer or half-integer,
respectively, and l ≥ max{|m|, |s|}.

3. We say the frequency triple (ω,m, l) is admissible with respect to s when the pair
(m, l) is admissible with respect to s and ω ∈ R\{0}.

4. We say the frequency triple (ω,m, λ) is admissible with respect to s when m is
admissible with respect to s and

(ω, λ) ∈
{
(ω, λ) ∈ C

2 : �ω > 0 and �(λω) < 0
}
∪ (R\{0}) × R.

5. Fix M > 0, |a| ≤ M . We say the frequency pair (ω,m) is admissible with respect
to a when, if |a| = M, ω �= mω+.

2.2.2. The angular ODE We begin with a definition of smoothness for functions which
we call spin-weighted:

Definition 2.2 [DHR19a, Section 2.2.1]. Let

Z̃1 = − sin φ∂θ + cosφ
(−is csc θ − cot θ∂φ

)
,

Z̃2 = − cosφ∂θ − sin φ
(−is csc θ − cot θ∂φ

)
, Z̃3 = ∂φ.

We say a complex-valued function f of the coordinates (θ, φ) is a smooth s-spin-
weighted function on S2 if for any k1, k2, k3 ∈ N ∪ {0}, (Z̃1)

k1(Z̃2)
k2(Z̃3)

k3 f is a
smooth function of the coordinates away from the poles at θ = 0 and θ = π and such
that eisφ(Z̃1)

k1(Z̃2)
k2(Z̃3)

k3 f and e−isφ(Z̃1)
k1(Z̃2)

k2(Z̃3)
k3 f extend continuously to,

respectively, θ = 0 and θ = π .

We are now ready to introduce the angular ODE and its smooth s-spin-weighted
solutions

Proposition 2.1 (Smooth spin-weighted solutions of the angular ODE). Fix s ∈ 1
2Z, let

m be admissible with respect to s, and assume ν ∈ C. Consider the angular ODE

− d

dθ

(
sin θ

d

dθ

)
S[s], (ν)

m,λ (θ) +

(
(m + s cos θ)2

sin2 θ
− ν2 cos2 θ + 2νs cos θ

)
S[s], (ν)

m,λ (θ)

= λ[s], (ν)
m S[s], (ν)

m,λ (θ), (2.8)

with the boundary condition that eimφS[s], (ν)

m,λ is a non-trivial smooth s-spin-weighted
function (see Definition 2.2).
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1. Basic properties of the eigenvalues.

(a) We have λ[s], (ν)
m = λ[s], (ν)

m . Hence, if ν ∈ R, then λ[s], (ν)
m ∈ R.

(b) If �ν > 0, then �
(
ν λ[s], (ν)

m

)
< 0.

2. Eigenvalues inR.For each ν ∈ R, there are countably many solutions to the problem;
using l as an index, we write such solutions, also called s-spin-weighted spheroidal
harmonicswith spheroidal parameter ν, as eimφS[s], (ν)

ml and denote the corresponding

eigenvalues by λ
[s], (ν)
ml . The parameter l is chosen to be admissible with respect to

s and such that the λ
[s], (0)
ml = l(l + 1) − s2 for ν = 0 and λ

[s], (ν)
ml varies smoothly

with ν. Moreover,
{
eimφS[s], (ν)

ml

}
ml

form a complete orthonormal basis on the space

of smooth s-spin-weighted spheroidal functions (see Definition 2.2).
3. Eigenvalues in C. Given ν0 ∈ R, an eigenvalue λ

[s], (ν0)
ml ∈ R can be analytically

continued to ν ∈ C except for finitelymany branch points (with no finite accumulation
point), located away from the real axis, and branch cuts emanating from these. We
define λ

[s], (ν)
mlν0

, for ν0 ∈ R, as a global multivalued complex function of ν such that

λ
[s], (ν0)
mlν0

= λ
[s], (ν0)
ml . (We note that each branch point of λ[s], (ν)

mν0
is a point where

λ
[s], (ν)
mlν0

= λ
[s], (ν)

ml̃ ν̃0
, for ν̃0 �= ν0 and/or l̃ �= l.) For each ν and ν0, there are solutions

eimφS[s], (ν)
mlν0

to (2.8)associatedwith the eigenvalueλ
[s], (ν)
mlν0

; however
{
eimφS[s], (ν)

mlν0

}
ml

but they do not necessarily form a complete basis of the space of smooth s-spin-
weighted spheroidal functions.

Remark 2.2. With Proposition 2.1, setting ν = aω, we can now motivate the admissibil-
ity conditions in Definition 2.1, in particular for frequency parameters λ and l: statement
1 in the proposition translates into the item 4 in the definition.

Remark 2.3. For ν ∈ C, Proposition 2.1 does not yield a complete basis of the space of
s-spin-weighted spheroidal functions. For this reason, whenω ∈ C, the separation of the
radial and angular variables does not necessarily account for the full space of admissible
solutions to the Teukolsky equation. Consequently, while Theorems 1.1 and 1.2, in the
case �ω > 0, rule out mode solutions of the form (1.3), they do not necessarily rule out
solutions of the form

α[s](t, r, θ, φ) = e−iωt eimφ A(r, θ),

for A(r, θ) with suitable boundary conditions. Thankfully, by following the approach in
[DRS16,DRS18] for s = 0, we expect that, to investigate the boundedness, scattering
and decay properties of the Teukolsky equation, it is enough to consider ω ∈ R, where
indeed we have a complete basis of smooth spin-weighted functions provided by the
spin-weighted spheroidal harmonics.

Proof sketch of Proposition 2.1. In what follows, we will drop the sub- and superscripts
on the angular eigenvalue whenever this does not lead to ambiguity, setting λ(ν) :=
λ[s], (ν)
m .
Webeginwith statement 1.Assume S is normalized to have unit L2 norm.Multiplying

the angular ODE by S and integrating by parts, we obtain

�
(
λ[s], (ν)
m

)
=
∫ π

0

∣∣∣S[s], (ν)

m,λ

∣∣∣2 (θ)
(
− cos2 θ�(ν2) + 2s cos θ�ν

)
sin θdθ,
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from where (a) becomes clear (see also the case s = 0 as an application of [MS54,
Proposition 7, Chapter 1.5]). For (b), wemultiply the angular ODE (2.8) byωS, integrate
by parts and take the imaginary part to obtain

�
(
νλ[s], (ν)

m

)

= −�ν

∫ π

0

⎡
⎣
∣∣∣∣∣
dS[s], (ν)

m,λ

dθ

∣∣∣∣∣
2

+

(
(m + s cos θ)2

sin2 θ
+ |ν|2 cos2 θ

) ∣∣∣S[s], (ν)

m,λ

∣∣∣2
⎤
⎦ sin θdθ ≤ 0.

Here, equality is achieved if and only if

∣∣∣∣∣
dS[s], (ν)

m,λ

dθ

∣∣∣∣∣
2

= 0,

(
(m + s cos θ)2

sin2 θ
+ |ν|2 sin2 θ

) ∣∣∣S[s], (ν)

m,λ

∣∣∣2 = 0, ∀θ ∈ (0, π),

in which case one obtains S ≡ 0.
Let us focus now on statement 2. For ν ∈ R, the operator

/̊�[s]
m = − d

dθ

(
sin θ

d

dθ

)
+

(
(m + s cos θ)2

sin2 θ
− ν2 cos2 θ + 2νs cos θ

)

is self-adjoint and it follows from Sturm-Liouville theory that it has a countable set of
eigenfunctions, which form a complete basis os the space of s-spin-weighted spheroidal
functions, and countable set of corresponding eigenvalues (see, for instance, [DHR19a]).
For each s,m and ν, these can be indexed by l ∈ 1

2Z satisfying the constraints in the

statement, so that, in particular, λ[s], (ν)
ml is smooth in ν (see [MS54, Section 3.22, Propo-

sition 1]). This concludes the proof of statement 2.
Now, for statement 3, consider ν ∈ C and fix m and s. The angular ODE (2.8)

has regular singular points at θ = 0, π , where one can apply an asymptotic analysis
to determine the possible behaviors of a solution. By the boundary conditions in the
statement, we are looking for solutions which are finite at θ = 0, π .

Fix ν ∈ C. For θ ∈ (0, π ], we can define a solution satisfying the boundary condition
at θ = π by a power series [Olv73, Chapter 5]:

S[s], (ν0)m,λ :=
∞∑
k=0

c[s]k (cos θ + 1)|m−s|/2+k, θ ∈ (0, π ],

where c[s]k are uniquely determined by some c[s]0 , ν,m and λ, and we require c[s]0 �= 0
so that the solution we have constructed is not trivial. On the other hand, an asymptotic
analysis near θ = 0 shows that

S[s], (ν0)m,λ = F [s]
m (ν,λ)

∞∑
k=0

b̃[s]k (cos θ − 1)−|m+s|/2+k

+ G[s]
m (ν,m,λ)

∞∑
k=0

b[s]k (cos θ − 1)|m+s|/2+k, θ ∈ [0, π),

for b̃0 = b0 = 1 and some complex-valued function F [s]
m and G[s]

m which are analytic
in their arguments (see [Olv73, Chapter 5] or [Shl14, Appendix A]). By construction,
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at least one of F [s]
m and G[s]

m do not vanish. To satisfy the boundary conditions at θ = 0,
we must have F [s]

m = 0. Indeed,

the pair (ν,λ) corresponds to an eigenvalue ⇔ F [s]
m (ν,λ) = 0. (2.9)

Starting from an eigenvalue pair (ν0,λ0 = λ(ν0)) at some ν0 ∈ C, we can define the
curve λ = λ(ν) by the implicit function theorem as long as

∂F [s]
m

∂λ

∣∣∣
(ν0,λ0)

�= 0.

It follows from [Shl14, Proposition B.1] that this condition holds when (ν0,λ0) ∈ R
2,

so an eigenvalue λ
[s], (ν0)
ml for ν0 ∈ R admits a unique analytic extension into a region of

the plane ν ∈ C sufficiently close to the real axis; we call the extension λ
[s], (ν)
mlν0

.
However, further away from the real axis, there are, in general, branch points and

branch cuts; we refer the reader to [MS54, Proposition 5 of Chapter 1.5, Proposi-
tion 2 of Chapter 3.22] for a proof in the case s = 0 and to [MSW80, Chapter 3.2]
for some numerical information on the branch points. For ν ∈ C, a branch point at
(ν,λ

[s], (ν)
mlν0

) is due to

∂F [s]
m

∂λ

∣∣∣
(ν,λ

[s], (ν)
mlν0

)
= 0,

i.e. having some finite number of complex pairs (ν,λ(i)), i = 1, . . . , N where N ≥ 2,
at which F [s]

m vanishes. In light of the equivalence (2.9), it is clear that (ν,λ(i)) =
(ν,λ

[s], (ν)
mlν0

) for some admissible l and some ν0 ∈ R. We also refer the reader to [HW74,
Ste75] for intuition regarding this point. This concludes our proof of statement 3. ��

2.2.3. The radial ODE. In this section, we discuss the radial ODE

�−s d

dr

(
�s+1 d

dr

)
R[s], (aω)
mλ (r)

+

( [ω(r2 + a2) − am]2 − 2is(r − M)[ω(r2 + a2) − am]
�

)
R[s], (aω)
mλ (r)

+
(
4isωr − λ − a2ω2 + 2amω

)
R[s], (aω)
mλ (r) = F̂ [s], (aω)

mλ (r), (2.10)

with inhomogeneity F̂ [s], (aω)
mλ (r). In this section and throughout this paper, whenever

we refer to (2.10) as a homogeneous radial ODE, we are implicitly assuming F̂ [s]
mλ ≡ 0.

Remark 2.4. Often, we make statements regarding the radial ODE (2.10) by itself, so
we will consider admissible frequency triples to have the form (ω,m, λ); in this case,
solutions are written as R[s], (aω)

mλ .
When discussing fixed-frequency solutions to the Teukolsky equation (1.2), the radial

ODE we are considering arises from the separation of variables r and θ , so λ is fixed to
be the separation constant, i.e. a choice of λ[s], (aω)

m from the set identified in Proposition
2.1. We will not make this choice in our proofs, however it can help gain intuition in the
case of ω real where, by contrast with �ω > 0 (see Remark 2.3), Proposition 2.1 gives
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a complete basis of the space of smooth spin-weighted functions. For ω ∈ R, we will
consider admissible frequency triples arising from fixing λ = λ

[s], (aω)
ml to be of the form

(ω,m, l) and denote solutions of that radial ODE by R[s], (aω)
ml .

For the homogeneous case of (2.10), the ODE has a singularity at r = r±, which is
regular if |a| < M but irregular of rank 1 if |a| = M , and an irregular singularity of
rank 1 at r = ∞. By standard asymptotic analysis, we can span the solution space by
two linearly independent asymptotic solutions at each of the singularities (we refer the
reader to [Olv73, Chapters 5 and 7] and [Shl14, Appendix A] for more detail; see also
[Erd56,Inc56]). Our basis is given by the following:

Definition 2.3. Fix M > 0, |a| ≤ M, s ∈ 1
2Z and an admissible frequency triple

(ω,m, λ) with respect to a and s.

1. Define R[s]
H+ and R[s]

H− to be the unique classical solutions to the homogeneous radial
ODE (2.10) with boundary conditions
(a) if |a| < M ,

i. R[s]
H+(r)(r − r+)−ξ+s is smooth at r = r+,

ii.
∣∣∣((r2 + a2)1/2�s(r − r+)−ξ R[s]

H+

) ∣∣
r=r+

∣∣∣2 = 1 ;
(b) if |a| < M and additionally ω − mω+ �= 0,

i. R[s]
H−(r)(r − r+)ξ is smooth at r = r+,

ii.
∣∣∣((r2 + a2)1/2�s/2(r − r+)ξ R

[s]
H−

) ∣∣
r=r+

∣∣∣2 = 1 ;
(c) if |a| = M and additionally ω − mω+ �= 0,

i. (r−M)2iMω+2s R[s]
H+(r)e−β(r−M)−1

and (r−M)−2iMωR[s]
H−(r)eβ(r−M)−1

are
both smooth at r = M,

ii.
∣∣∣((r2 + M2)1/2(r − M)2iMω+2se−β(r−M)−1

R[s]
H+

) ∣∣
r=M

∣∣∣2 = 1, and

iii.
∣∣∣((r2 + M2)1/2(r − M)−2iMωeβ(r−M)−1

R[s]
H−

) ∣∣
r=M

∣∣∣2 = 1.

2. Define R[s]
I+ and R[s]

I− to be the unique classical solution to the homogeneous radial
ODE (2.10) and boundary conditions
(a) R[s]

I+ ∼ eiωr r2Miω−2s−1 and R[s]
I− ∼ e−iωr r−2Miω−1 asymptotically3 as r → ∞.

(b)
∣∣∣(e−iωr r−2iMω�s(r2 + a2)1/2R[s]

I+

) ∣∣
r=∞

∣∣∣2 = 1, and

(c)
∣∣∣(eiωr r2iMω−2s�s(r2 + a2)1/2R[s]

I−
) ∣∣

r=∞
∣∣∣2 = 1.

In light of the previous comments, we find that we have the following representation
for solutions:

Lemma 2.5. Fix M > 0, |a| ≤ M, s ∈ 1
2Z and an admissible frequency triple (ω,m, λ)

with respect to a and s such that ω �= mω+. A solution R[s], (aω)
mλ to the homogeneous

radial ODE (2.10) can be written as, dropping most sub and superscripts,

R[s] = 1

2Mr+

(
a[s]H+R

[s]
H+ + a[s]H−R

[s]
H−

)
,

R[s] = a[s]I+R
[s]
I+ + a[s]I−R

[−s]
I− , (2.11)

3 This notation means that there are constants {ck }∞k=0 such that for every N ≥ 1, R[s]
I+ (r) =

eiωr+2iMω log r ∑N
k=0 ckr

−2s−k−1 + O(r−2s−N−2) for large r .
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for some a[s]H± , a[s]I± ∈ C.

In the more general inhomogeneous setting of (2.10), we define

Definition 2.4 (Outgoing solution to the radial ODE). Fix M > 0, |a| ≤ M , s ∈ 1
2Z

and an admissible frequency triple (ω,m, λ)with respect to a and s. Suppose F̂ [s], (aω)
mλ is

compactly supported with support away from r = r+. We say R is an outgoing solution
to the radial ODE (2.10) if it is nontrivial and satisfies the boundary conditions

1. if |a| = M , R[s], (aω)
mλ (r)(r − M)2iMω+2se−β(r−M)−1

is smooth at r = M ;

2. if |a| < M , R[s], (aω)
mλ (r)(r − r+)s−ξ is smooth at r = r+;

3. for |a| ≤ M, R[s], (aω)
mλ (r) ∼ eiωr r2iMω−1−2s asymptotically as r → ∞;

Remark 2.6. If R[s], (aω)
mλ is an outgoing solution to the homogeneous radial ODE (2.10),

in the sense of Definition 2.4, then, for some for some a[s]H+ , a
[s]
I+ ∈ C, it can be written

as

R[s] = 1

2Mr+
a[s]H+R

[s]
H+ ,

R[s] = a[s]I+R
[s]
I+ . (2.12)

Often, it will be useful to work with the following rescaling of a solution R of the
inhomogeneous radial ODE (2.10):

u[s], (aω)
mλ (r) = (r2 + a2)1/2�s/2R[s], (aω)

mλ (r).

In terms of u, (2.10) becomes, dropping sub and superscripts,

u′′ + (ω2 − V )u = H, (2.13)

where H = �1+s/2(r2 + a2)−3/2 F̂ , the derivatives are taken with respect to the r∗
coordinate (2.6), and

V = �(λ + s + s2 + a2ω2) + 4Mamωr − a2m2

(r2 + a2)2
+

�

(r2 + a2)4

(
a2� + 2Mr(r2 − a2)

)

+
M2 − a2

(r2 + a2)2
s2 − 2is

ω(r3 − 3Mr2 + a2r + Ma2) + am(r − M)

(r2 + a2)2
. (2.14)

We note that Definition 2.3 can be rephrased in terms of this rescaling: we can define

u[s]I+ := (r2 + a2)1/2�s/2R[s]
I+ , u[s]H+ := (r2 + a2)1/2�s/2R[s]

H+ . (2.15)

2.2.4. Mode solutions We are now ready to define precisely what is meant by mode
solution:

Definition 2.5 (Mode solution). Fix M > 0, |a| ≤ M and s ∈ 1
2Z. Letα[s] be a solution

to the Teukolsky equation (1.2) on R̃ (see Sect. 2) which depends on the variables θ and
φ as a smooth s-spin weighted function. We say α[s] is a mode solution if there exists an
admissible frequency triple (ω,m,λ[s], (aω)

m ) with respect to a and s (see Definition 2.1)
and with λ[s],(aω)

m , as identified in Proposition 2.1, such that, in Boyer–Lindquist coor-
dinates,

α[s](t, r, θ, φ) = e−iωt eimφS[s], (aω)

mλ (θ)R[s], (aω)

mλ (r), (2.16)

where
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1. eimφS[s], (aω)

mλ (θ) is a smooth s-spin-weighted solution of the angular ODE (2.8) (see
Proposition 2.1), with respect to the spheroidal parameter ν = aω;

2. R[s], (aω)

mλ (r) is an outgoing solution, in the sense of Definition 2.4 and Remark 2.6, to
the homogeneous radial ODE (2.10) with parameter λ replaced byλ[s],(aω)

m , identified
in Proposition 2.1.

For s = 0, we can motivate the boundary conditions we have imposed for the radial
ODE (2.10) in Definition 2.5. Recall that, at the singularities of the radial ODE (2.10),
r = r+ and r = ∞, there are a priori two possible linearly independent asymptotic
behaviors (see Lemma 2.5). Our choice of boundary conditions at r = r+ ensures that
mode solutions of the wave equation (s = 0) extend smoothly to the future event horizon
H+:

Lemma 2.7. Mode solutions, in the sense of Definition 2.5, to the Teukolsky equa-
tion (1.2) with s = 0 extend smoothly toH+.

Proof. To check that our choice of boundary conditions lead to solutions which are
smooth at the horizon, we must change to coordinates which are well defined at the
horizon. In Kerr-star coordinates (2.2),

α[s](t∗, r, θ, φ∗) = ei
(
ωt−mφ

)
e−iωt∗eimφ∗

S[s], (aω)
m� (θ)R[s], (aω)

m� (r). (2.17)

For subextremal Kerr, we have

dt

dr
= r2 + a2

�
= 1 +

2Mr+
r+ − r−

1

r − r+
− 2Mr−

r+ − r−
1

r − r−

⇒ t(r) = r +
2Mr+
r+ − r−

log

(
r − r+

r

)
− 2Mr−

r+ − r−
log

(
r − r−

r

)
+ C1,

dφ

dr
= a

�
= a

r+ − r−

(
1

r − r+
− 1

r − r−

)
⇒ φ(r) = a

r+ − r−
log

(
r − r+
r − r−

)
+ C2,

so, as r → r+, we have

i
(
ωt − mφ

) = −ξ log(r − r+) + o (log(r − r+)) .

For extremal Kerr, since |a| = M , we have

dt

dr
= r2 + M2

(r − M)2
= 1 +

2Mr

(r − M)2
⇒ t(r) = r − 2M2

r − M
+ 2M log(r − M) + C3,

dφ

dr
= a

(r − M)2
⇒ φ(r) = − a

r − M
+ C4,

so, as r → M , we have

i
(
ωt − mφ

) = − β

r − M
+ 2Miω log(r − M) + o (log(r − M)) .

Thus, the boundary conditions at r = r+ in our definition precisely ensure that (2.17)
is smooth at the horizon in both the extremal and subextremal case. ��
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At r = ∞, the boundary condition in Definition 2.5 ensures that, when s = 0, mode
solutions have finite energy on suitable spacelike hypersurfaces on a Kerr spacetime:
hyperboloidal and asymptotically flat hypersurfaces when �ω = 0 and asymptotically
flat hypersurfaces when �ω > 0 (see Fig. 1 for a sketch of these hypersurfaces and
[Shl15, Appendix D] for precise definitions and a proof that the behavior as r → ∞ is
compatible with these statements).

For general s, since the Teukolsky equation (1.2) is derived in the Newman–Penrose
formalism with the algebraically special frame for Kerr, which is itself not regular at
H+, Lemma 2.7 does not apply. However, using an appropriately weighted definition of
energy for solutions of (1.2), we can also show that mode solutions for s �= 0 have finite
energy on the same spacelike hypersurfaces as for s = 0 (see [DHR19a] for definitions
of energy for s = ±2).

2.3. TheTeukolsky–Starobinsky identities. In this section,wewill introduce theTeukolsky–
Starobinsky identities. We begin by defining the differential operators

D±
n = d

dr
± i

(
ω(r2 + a2)

�
− am

�

)
+
2n(r − M)

�
, (2.18)

L±
n = d

dθ
±
( m

sin θ
− aω cos θ

)
+ n cot θ. (2.19)

2.3.1. The Teukolsky–Starobinsky constant We state the following two propositions,
which are implicit in much of the literature:

Proposition 2.8. Fix s ∈ {0, 1
2 , 1,

3
2 , 2}, ω ∈ C and a frequency parameterm admissible

with respect to s. Then, a solution of the angular ODE (2.8) with spin±s corresponding
to an angular eigenvalue λ[s], (aω)

m is an eigenfunction of the operator

2s−1∏
j=0

L∓
s− j

2s−1∏
k=0

L±
s−k, (2.20)

with indices j, k increasing from right to left on the product. The eigenvalue, which is
called the angular Teukolsky–Starobinsky constant,Bs = Bs(|s|, ω,m,λ[s], (aω)

m ), can
be computed explicitly.

If ω ∈ R, we will alternatively denote the angular Teukolsky–Starobinsky constant
corresponding to an s-spin-weighted spheroidal harmonic S[s], (aω)

ml byBs(|s|, ω,m, l),

which makes the choice λ[s], (aω)
m = λ

[s], (aω)
ml explicit. Moreover, in this case, Bs ≥ 0

for integer s and Bs ≤ 0 for half-integer s.

Proof. Existence of the angular Teukolsky–Starobinsky constant can be shown by in-
crementally factoring out the differential operators and using the angular ODE (2.8)
to replace second derivatives by first derivatives and zeroth order terms. This yields
Bs(ω,m, l) explicitly and one can check that it depends on the spin only through |s|.
The reader may refer to [Cha83, Sections 70 and 81] for a detailed proof for |s| = 1, 2,
respectively.

Recall the integration by parts lemma [Cha83, Section 68, Lemma 1]
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Lemma 2.9. For f and h sufficiently regular functions of θ ,
∫ π

0
hL±

n f sin θdθ = −
∫ π

0
f L∓

−n+1h sin θdθ.

Assume that ω is real. Then (2.8) and (2.20) are real. Without loss of generality, let
S[±s] be real solutions to (2.8) normalized to have unit L2 norm. Then, by the lemma,
assuming existence of the constant,

Bs =
∫ π

0
S[±s]

2s−1∏
j=0

L∓
s− j

2s−1∏
k=0

L±
s−k S

[±s] sin θdθ

= (−1)2s
∫ π

0

(
2s−1∏
k=0

L±
s−k S

[±s]
)2

sin θdθ,

where the integral on the right hand side is non-negative. ��
Proposition 2.10. Fix s ∈ {0, 1

2 , 1,
3
2 , 2}, (ω, λ) ∈ C

2 and an admissible frequency
parameter m with respect to s. Then, for R[±s] solutions of the radial ODE (2.10) with
spin ±s, we set

P [+s] := �s R[+s], P [−s] := R[−s]. (2.21)

P [±s] is an eigenfunction of the operator

�s (D∓
0

)2s
�s (D±

0

)2s
, (2.22)

where indices j, k increase from right to left in the product. The eigenvalue, which is
called the radial Teukolsky–Starobinsky constant Cs , depends explicitly [KMW89] on
|s| and the frequency triple (ω,m, λ) only. Moreover, if ω and λ are real, so is Cs .

Proof. Existence of the radial Teukolsky–Starobinsky constant can be shown by in-
crementally factoring out the differential operators and using the radial ODE (2.24)
to replace second derivatives by first derivatives and zeroth order terms. This yields
Cs(ω,m, λ) explicitly and one can check that it depends on the spin only through |s|
and that it is real when ω is real. The reader may refer to [Cha83, Sections 70 and 81]
for a detailed proof for |s| = 1, 2. ��
Remark 2.11. Though we have stated Propositions 2.8 and 2.10 only for |s| ≤ 2, we
have verified these statements for |s| ≤ 9/2 in the manner described in the proofs and
[KMW89], for instance, establish Proposition 2.10 for |s| ≤ 7/2. Indeed, we expect that
that there is an inductive structure would that allow one to obtain these statements for
general s ∈ 1

2Z, though it is not yet present in the literature.

Remark 2.12. In Sect. 2.4.2 and 5.2, it will be of interest to understand the sign of
Cs for ω ∈ R. In contrast with the angular case, it is not clear that an integration by
parts lemma can resolve this question. One hope would be to instead relate the angular
and radial Teukolsky–Starobinsky constants, when we assume that the radial ODE arises
specifically from a separation of variables, i.e. whenwe letλ = λ

[s], (aω)
ml (see Proposition

2.1). In this case, in general, one can show that Bs = (−1)2sCs |M=0 [KMW92], but
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this is not enough to determine the sign of Cs . By explicit computation, however, we can
also show that

C1/2 = −B1/2 ≥ 0, C1 = B1 ≥ 0, C3/2 = −B3/2 ≥ 0,

C2 = B2 + 144M2ω2 ≥ 0. (2.23)

Were there frequencies for which there exist nontrivial solutions of the radial ODE (2.10)
with boundary conditions as in Definition 2.5, the inequalities in (2.23) would be strict,
as we will show in Lemma 2.18. However, it is worth pointing out that this is already
the case for C2: C2 ≥ 144M2ω2 could only vanish for ω = 0, but in this case, using the
explicit form of the angular eigenvalues, we find that C2(ω = 0) > 0.

For higher spins, Cs − (−1)2sBs will depend on λ
[s], (aω)
ml and we cannot expect

to prove Cs − (−1)2sBs ≥ 0 without appealing to specific properties of the angular
eigenvalues.

Remark 2.13. So as to apply for any s ∈ 1
2Z, our proofs of Theorems 1.1, 1.2 and 1.3

will not rely on Propositions 2.8 and 2.10. These results require the existence only of the
radial Teukolsky–Starobinsky constant; however, as we will always be dealing with ra-
dial functions with prescribed outgoing boundary conditions for the homogeneous radial
ODE (2.10) in these theorems, we will define Cs using the Teukolsky–Starobinsky iden-
tities (see Proposition 2.14) from the next section to avoid appealing to Proposition 2.10
(see Remark 2.15).

In Sect. 2.4.2 and in our application to scattering theory (Corollary 1.1), we will be
workingwith solutions to the homogeneous radial ODE (2.10)withmore general asymp-
totics. In these two instances,wewill have to define theTeukolsky–Starobinsky constants
by Propositions 2.8 and 2.10. In Sect. 2.4.2, we moreover appeal to Remark 2.12 for
information on the the sign of Cs when λ arises from a separation of variables and ω is
real.

2.3.2. The radial Teukolsky–Starobinsky identities The radial Teukolsky–Starobinsky
identities are differential identities, which relate solutions of the homogeneous radial
ODE (2.10) with spin +s and spin −s, were introduced in [TP74,SC74] and extended
for general s in [KMW89]. We will present a rigorous statement:

Proposition 2.14 (Radial Teukolsky–Starobinsky identities). Fix M > 0, |a| ≤ M and
s ∈ 1

2Z≥0. Let (ω,m, λ) be an admissible frequency triple with respect to s and a.
Dropping most subscripts, let R[±s] be solutions to the homogeneous radial ODE (2.10)
of spin ±s. Consider the representation (2.11)

R[±s] = 1
2Mr+

a[±s]
H+ R[±s]

H+ + 1
2Mr+

a[±s]
H− R[±s]

H− = a[±s]
I+ R[±s]

I+ + a[±s]
I− R[±s]

I− ,

if additionally ω �= mω+ or, if the solution is outgoing,

R[±s] = 1
2Mr+

a[±s]
H+ R[±s]

H+ = a[±s]
I+ R[±s]

I+ ,
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for some complex a[±s]
H+ , a[±s]

H− , a[±s]
I+ and a[±s]

H− . Then we have

�s (D+
0

)2s (
�s R[+s]) = C(1)

s a[+s]I+ R[−s]
I+ + C (7)

s a[+s]I− R[−s]
I−

= C(4)
s

1

2Mr+
a[+s]H+ R[−s]

H+ + C(6)
s

1

2Mr+
a[+s]H− R[−s]

H− ,

�s (D−
0

)2s
R[−s] = C(3)

s a[−s]
I+ �s R[+s]

I+ + C(5)
s a[+s]I− �s R[+s]

I−

= C(2)
s

1

2Mr+
a[−s]
H+ �s R[+s]

H+ + C(8)
s

1

2Mr+
a[−s]
H− �s R[+s]

H− , (2.24)

for some C(i)
s ∈ C, i = 1, . . . , 8, which depend only on s and (ω,m, λ) and such that

C
(i)
0 = 1, C(1)

s = (2iω)2s , C(5)
s = (−2iω)2s and

C(2)
s =

⎧⎪⎪⎨
⎪⎪⎩

2s−1∏
j=0

(2ξ + s − j) if |a| < M

(−2β)2s if |a| = M

, C(6)
s =

⎧⎪⎪⎨
⎪⎪⎩

2s−1∏
j=0

(−2ξ + s − j) if |a| < M

(2β)2s if |a| = M

.

Remark 2.15 (Definition of the radial Teukolsky–Starobinsky constant). Assume that
R[±s] are outgoing solutions of the homogeneous radial ODE, i.e. a[±]

H− = a[±]
I− = 0 in

(2.11). Then, (2.24) provide an alternative definition of the radial Teukolsky–Starobinsky
constant from Proposition 2.10 as

Cs := C(1)
s C(3)

s = C(2)
s C(4)

s . (2.25)

If R[±s] are not outgoing, we consider the radial Teukolsky–Starobinsky constant as
defined in Proposition 2.10 and conclude

C(1)
s C(3)

s = C(2)
s C(4)

s = C(5)
s C(7)

s = C(6)
s C(8)

s = Cs .

Having defined the radial Teukolsky–Starobinsky constant, we can write (2.24) in
terms of this constant and the C(i)

s for which we have simple formulas in terms of the
frequency parameters:

�s (D+
0

)2s (
�s R[+s]) = C(1)

s a[+s]I+ R[−s]
I+ + Cs

(
C(5)
s

)−1
a[+s]I− R[−s]

I−

= Cs

(
C(2)
s

)−1 1

2Mr+
a[+s]H+ R[−s]

H+ + C(6)
s

1

2Mr+
a[+s]H− R[−s]

H− ,

�s (D−
0

)2s
R[−s] = Cs

(
C(1)
s

)−1
a[−s]
I+ �s R[+s]

I+ + C(5)
s a[+s]I− �s R[+s]

I−

= C(2)
s

1

2Mr+
a[−s]
H+ �s R[+s]

H+ + Cs

(
C(6)
s

)−1 1

2Mr+
a[−s]
H− �s R[+s]

H− .

(2.26)

Inorder to proveProposition2.14,we recall the following two results from [KMW89]:

Lemma 2.16. If P [±s], s > 0, are as defined in Proposition 2.14, they satisfy the homo-
geneous radial ODE
[
�D∓

1−sD
±
0 ± 2(2s − 1)iωr

]
P [±s](r) =

(
λ[s] + s + a2ω2 − 2amω + |s|

)
P [±s](r).

(2.27)
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By induction on s, one can also show that:

Lemma 2.17. The operators D±
0 , defined in (2.18), satisfy the commutation relation

�s (D±
0

)2s [
�D±

1−sD
∓
0 ∓2(2s − 1)iωr

] = [
�D∓

1−sD
±
0 ± 2(2s − 1)iωr

]
�s (D∓

0

)2s
.

Combining the two lemmas, we see that �s
(
D±

0

)2s
P [±s] is a solution of the homo-

geneous radial ODE (2.27) for spin ∓s. We are now ready to prove Proposition 2.14:

Proof of Proposition 2.14. The statement is trivial for s = 0, since the map referred is
just the identity. For s �= 0, we obtain the result by using the asymptotic representations
(see [Olv73, Chapters 5 and 7] and [Shl14, Appendix A]) of R[±s]

H+ , R[±s]
I+ , R[±s]

H− and

R[±s]
I− ,

R[±s]
I+ = eiωr r2iMω∓2s−1

[
2s∑
k=0

c[±s]
k r−k + O

(
r−2s−1

)]
,

R[±s]
I− = e−iωr r−2iMω−1

[
2s∑
k=0

c[±s]
k,2 r−k + O

(
r−2s−1

)]
,

R[±s]
H+ =

{∑∞
k=0 b

[±s]
k (r − r+)ξ∓s if |a| < M∑∞

k=0 b
[±s]
k eβ(r−M)−1

(r − M)2iMω−2s if |a| = M
,

R[±s]
H− =

{∑∞
k=0 b

[±s]
k,2 (r − r+)−ξ if |a| < M∑∞

k=0 b
[±s]
k,2 e−β(r−M)−1

(r − M)−2iMω if |a| = M
,

(2.28)

on which we can act directly with the Teukolsky–Starobinsky operators. Without loss
of generality, we assume c[+s]0 = c[−s]

0 , c[+s]0,2 = c[−s]
0,2 , b[+s]0 = b[−s]

0 and b[+s]0,2 = b[−s]
0,2

For computations at r = r+, it will be use to recall from the definition of ξ and β in
(2.7),

ξ(r − r−) + iω(r2 + a2) − iam

= ξ(r+ − r−) + iω(r2+ + a2) − iam + ξ(r − r+) + iω(r − r+)(r + r+)

= ξ(r − r+) + iω(r − r+)(r + r+), (2.29)

β + iω(r − M)(r + M) = iω(r2 + M2) − iam. (2.30)

The cases R[+s]
I+ and R[−s]

H+ . In these cases, the constant arising from application of the
Teukolsky–Starobinsky operators to these functions involves only the first term of the
series.

We begin at r → ∞, with positive spin. For any s ≥ 1/2, we will have

D+
0

(
�s R[+s]

I+

)
=
(

d

dr
+ iω

r2 + a2

�
− iam

�

)(
�s R[+s])

= eiωr r2iMω−1

[
2s∑
k=0

c[+s]k

(
2iω − k + 1− 2iMω

r
+
2Miωr

�
− iam

�

)
r−k

. + O
(
r−2s−1

)]
.
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Repeating 2s − 1 times, we obtain

�s (D+
0

)2s (
�s R[+s]

I+

)

= eiωr r2iMω+2s−1

[
2s∑
k=0

c[+s]k

[
(2iω)2s + O

(
r−1

)]
r−k + O

(
r−2s−1

)]
. (2.31)

By Lemma 2.17, (2.31) satisfies the spin −s radial ODE, hence, by Definition 2.3, we
conclude

�s (D+
0

)2s (
�s R[+s]

I+

)
= C(1)

s R[−s]
I+ , C(1)

s := (2iω)2s .

We now turn to r = r+, and consider solutions with spin−s. We start with |a| < M ;
for any s ≥ 1/2, using (2.29), we obtain

D−
0 R[−s]

H+ =
(

d

dr
− iω

r2 + a2

�
+
iam

�

)
R[−s]

=
∞∑
k=0

b[−s]
k

[
(ξ + k + s) − iω(r2 + a2)

r − r−
+

iam

r − r−

]
(r − r+)

ξ+k+s−1

=
∞∑
k=0

b[−s]
k

[
(2ξ + k + s) − (ξ + iω(r + r+))(r − r+)

r − r−

]
(r − r+)

ξ+k+s−1,

which, repeating 2s − 1 times, yields

�s (D−
0

)2s
R[−s]
H+ =

∞∑
k=0

b[−s]
k

⎡
⎣2s−1∏

j=0

(2ξ + k + s − j) + O(r − r+)

⎤
⎦�s(r − r+)

ξ+k−s .

(2.32)

On the other hand, if |a| = M , then for any s ≥ 1/2, using (2.30), we obtain

D−
0 R[−s]

H+ =
(

d

dr
− iω

r2 + M2

(r − M)2
+

iam

(r − M)2

)
R[−s]

=
(

d

dr
− β

(r − M)2
− (r + M)iω

(r − M)

)
eβ(r−M)−1

∞∑
k=0

b[−s]
k (r − M)−2iMω+2s+k

= [−2β + O(r − M)] eβ(r−M)−1
∞∑
k=0

b[−s]
k (r − M)−2iMω+2s−2+k,

which, repeating 2s − 1 times, yields

�s (D−
0

)2s
R[−s]
H+ =

∞∑
k=0

b[−s]
k

[
(−2β)2s + O(r − M)

]
eβ(r−M)−1

(r − M)−2iMω+k .

(2.33)
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By Lemma 2.17, (2.32) and (2.33) satisfy the homogeneous spin +s radial ODE
(2.27) for |a| < M and |a| = M , respectively, hence, by Definition 2.3, we conclude

�s (D−
0

)2s
R[−s]
H+ = C(2)

s �s R[+s]
H+ ,

where we have defined

C(2)
s :=

2s−1∏
j=0

(2ξ + k + s − j) if |a| < M, C(2)
s := (−2β)2s if |a| = M.

The cases R[+s]
H+ and R[−s]

I+ . We note that, using Proposition 2.10, the result for outgoing
solutions would now follow. If we do not wish to use Proposition 2.10, however, we
need to take the same series-based approach as in the previous case. As we will see,
for R[+s]

H+ and R[−s]
I+ , the constant arising from application of the Teukolsky–Starobinsky

operators to the series for these functions is more complicated to compute, as it involves
up to 2s terms of their series expansion.

We begin with spin −s at r = ∞. For any s ≥ 1/2, we have

D−
0 R[−s]

I+ =
(

d

dr
− iω

r2 + a2

�
+
iam

�

)[
eiωr r2iMω+2s−1

2s∑
k=0

c[−s]
k r−k + O

(
r−2s−1

)]

= eiωr r2iMω+2s−1
(
2iMω

a2 − 2Mr

r�
+
iam

�
+
2s − 1− k

r

) 2s∑
k=0

c[−s]
k r−k .

(2.34)

The key difficulty, which is not present in the case of spin +s, is the cancellation that
occurs between the ω dependence ofD−

0 and that of the leading order behavior of R[−s]
I+ .

For instance, if s = 1/2, then

D−
0 R[−1/2]

I+ = eiωr r2iMω

[
1∑

k=0

(
2iMω

a2 − 2Mr

r�
+
iam

�
− k

r

)
c[−1/2]
k r−k + O(r−4)

]

=
[
(−4iM2ω + iam)c[−s]

0 − c[−1/2]
1 + O(r−1)

]
eiωr r2iMω−2,

so takingD−
0 lowers the leading order behavior by a factor of r−2. Indeed, an application

of (D−
0 )2s lowers the leading order polynomial decay of R[−s]

I+ by a factor of r−4s and
the coefficient of the leading order term on the right hand side depends on coefficients
c[−s]
0 , . . . , c[−s]

2s of the asymptotic expansion for R[−s]
I+ :

�s (D−
0

)2s
R[−s]
I+ = �seiωr r2iMω−2s−1

[
f+
(
c[−s]
0 , . . . , c[−s]

2s , ω,m
)
+ O(r−1)

]
(2.35)

where f+ is independent of r . By standard theory of asymptotic analysis [Olv73],
c[−s]
1 , . . . , c[−s]

2s are uniquely determined by c[−s]
0 and the ODE parameters (ω,m, λ, s),

so we can define

C(3)
s (ω,m, λ, s) := f+

(
c[−s]
0 , . . . , c[−s]

2s , ω,m
)

/c[−s]
0 .
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By Lemma 2.17, (2.35) satisfies the spin −s radial ODE. As before, by Definition 2.3,
we conclude

�s (D−
0

)2s
R[−s]
I+ = C(3)

s �s R[+s]
I+ .

Now consider spin +s near r = r+, and recall (2.29) and (2.30). If |a| < M , then

D+
0

(
�s R[+s]

H+

)
=
(

d

dr
+ iω

r + r+
r − r+

− ξ

r − r+
+

ξ

r − r−

) ∞∑
k=0

b[+s]k (r − r+)
ξ+k(r − r−)s

=
∞∑
k=0

b[+s]k

[
k

r − r+
+

ξ + s + iω(r + r+)

r − r−

]
(r − r+)

ξ+k(r − r−)s,

and if |a| = M ,

D+
0

(
�s R[+s]

H+

)
=
(

d

dr
+

β

(r − M)2
+
2Miω

r − M
+ iω

) ∞∑
k=0

b[+s]k eβ(r−M)−1
(r − M)−2iMω+k

=
∞∑
k=0

b[+s]k

[
k

r − M
+ iω

]
eβ(r−M)−1

(r − M)−2iMω+k .

As in the previous case, there is cancellation between the ξ or β dependence of the
Teukolsky–Starobinsky operators and that of the leading order behavior of �s R[+s]

H+ .
Proceeding as above, we note that application of (D−

0 )2s does not change the leading

order polynomial decay of R[+s]
H+ as r → r+, but makes the coefficient of the resulting

leading order term depend on coefficients c[−s]
0 , . . . , c[−s]

2s of the asymptotic series for

R[+s]
H+ .We again appeal to theory of asymptotic analysis [Olv73] to defineC(4)

s (ω,m, λ, s)
such that

�s (D+
0

)2s (
�s R[+s]

H+

)
= C(4)

s R[−s]
H+ .

The cases R[±s]
H− and R[±s]

I− . Finally by direct inspection of (2.28), for R[±s]
H− and R[±s]

I− ,

we can easily obtain the Teukolsky–Starobinsky identities by analogy with R[∓s]
H+ and

R[∓s]
I+ , respectively. ��

2.3.3. Algebraically special frequencies In this section, we consider frequencies for
which Cs = 0.

Definition 2.6. Fix M > 0, |a| ≤ M and s ∈ Z. We say an admissible frequency
triple (ω,m, λ) is algebraically special if the radial Teukolsky–Starobinsky constant,
Cs(ω,m, λ), vanishes.

Lemma 2.18. Fix M > 0, |a| ≤ M and s ∈ Z. Let (ω,m, λ) be an admissible frequency
triple which is algebraically special. Let R[±s] be solutions to the homogeneous radial
ODE (2.10) of spin ±s.

1. If R[+s] = 1
2Mr+

a[+s]H+ R[+s]
H+ , then we have

R[+s] = a[+s]I− R[+s]
I− = 1

2Mr+
a[+s]H+ R[+s]

H+ .
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2. If R[−s] = a[−s]
I+ R[−s]

I+ , then R[−s] is trivial or, if ω �= mω+, we have

R[−s] = 1

2Mr+
a[−s]
H− R[−s]

H− = a[−s]
I+ R[−s]

I+ .

Proof. The result follows by direct inspection of (2.26). ��
A simple corollary of Lemma 2.18 is that, for algebraically special frequencies, there

are no nontrivial outgoing solutions to the radial ODE (2.10), hence

Lemma 2.19. The Teukolsky–Starobinsky identities (2.24) map nontrivial outgoing so-
lutions of the radial ODE (2.10) of spin +s to nontrivial outgoing solutions of the radial
ODE (2.10) of spin −s and vice-versa (see Definition 2.4).

2.4. Energy and superradiance for the radial ODE. In this section, we will present
currents at the level of the radial ODE (2.10) which give a notion of energy for real
ω (see Propositions 2.20 and 2.21). For generality, we will work with solutions of the
homogeneous radial ODE (2.13) with the general asymptotics (2.11)

u[s] = a[s]H+u
[s]
H+ + a[s]H−u

[s]
H− = a[s]I+u

[s]
I+ + a[s]I−u

[−s]
I− , (2.36)

for some complex a[s]H± and a[s]I± .
For outgoing solutions (compatible with Definition 2.4) of the homogeneous radial

ODE (2.13), we will moreover show that the main obstacle in proving mode stability
via the argument for a = 0 is the presence of a region, includingH±, where ∂t becomes
spacelike, leading to superradiance. The integral transformations we will eventually
present in Sect. 3.1 are designed to specifically circumvent this issue, making all fre-
quencies non-superradiant.

2.4.1. The case s = 0 Define the frequency-localized current generated by the Killing
vector field T as

QT [u] := �(u′ωu), −
(
QT [u]

)′ = �(ω)
[
|u′|2 + |ω|2|u|2

]
+ �(Vω)|u|2,

(2.37)

where the last equality is obtained using (2.13).Whenω ∈ R, (2.37) yields the following
conservation law

Proposition 2.20 (Energy identity for the homogeneous radial ODE, s = 0). Fix M > 0
and |a| ≤ M. Let (ω,m, λ) be an admissible frequency triple with respect to a such that
ω is real. Let u be a solution to (2.13) with s = 0 given by (2.36). Then, dropping the
superscripts,

ω2 |aI+ |2 + ω(ω − mω+) |aH+ |2 = ω2 |aI−|2 + ω(ω − mω+) |aH−|2 (2.38)

holds for a general u if ω �= mω+. The same identity with vanishing right hand side
holds for an outgoing, in the sense of Definition 2.4, solution u.

Proof. The proof follows by applying the fundamental theorem of calculus to (2.37) and
evaluating QT [u](±∞) using the asymptotic behavior of u (recall Definition 2.3). ��
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We will now recall why such a current can be used to show Theorems 1.1 and 1.2 in
the case a = 0 but fails to do so whenever |a| > 0.

Consider an outgoing solution of the homogeneous radial ODE (2.13) with ω real.
If a = 0, (2.38) shows that u(±∞) = 0 and we can apply a unique continuation result
(see, for instance, Lemma 4.1) or Lemma 2.5 to conclude that u ≡ 0. Thus, Theorem 4.1
certainly holds for a = 0. However, when |a| > 0, if ω ∈ R and m are superradiant,
that is

ω(ω − mω+) ≤ 0, (2.39)

then (2.38) fails to give an estimate for |u(±∞)|2, so we can no longer infer mode
stability.

Now consider �ω > 0 and λ = λ from Proposition 2.1; then (QT )′ �= 0. On the
other hand, the boundary conditions for the radial ODE in Definition 2.4 give us strong
decay as r∗ → ±∞, so an application of the fundamental theorem of calculus yields,
recalling (2.14),

0 =
∫ ∞

−∞

(
QT [u]

)′
dr∗

≥
∫ ∞

−∞
�(ω)

[
|u′|2 +

(
|ω|2

(
1− a2�

(r2 + a2)2

)
− a2m2

(r2 + a2)2

)
|u|2

]
dr∗ (2.40)

where we have used the fact that, by statement 1(b) of Proposition 2.1, �(λω) ≥ 0. It is
clear that Theorem 4.2 certainly holds if a = 0: the coefficient on |u|2 is positive for all
r∗ and we can thus conclude that u ≡ 0. On the other hand, if |a| > 0, there exist ω with
�ω > 0 and m ∈ Z such that the coefficient on the |u|2 term is negative near r = r+.
This negativity for certain frequencies is a manifestation of the fact that, near r = r+, the
Killing field ∂t becomes spacelike and prevents us from inferring mode stability from
(2.40) when |a| > 0.

2.4.2. The case s �= 0 In the case of nontrivial spin, we cannot hope to be able to
use the procedure we just outlined even if a = 0: as the Teukolsky potential (2.14) is
complex even when ω is real, the T -current (2.37) is not a conserved quantity for the
system. However, recall that, for solutions of the radial ODE (2.13) u[+s] and u[−s], the
Wronskian defined by

W
(
u[+s], u[−s]

)
:=

(
u[+s]

)′ · u[−s] − u[+s] ·
(
u[−s]

)′
(2.41)

satisfies

d

dr∗
[
W
(
u[+s], u[−s]

)]

=
[
4i�ω�ω +

�(λ[+s] + s − λ[−s] − s)

(r2 + a2)2

]
u[+s] · u[−s]

+ 2i�ω

[
−2a2��ω + 4Mamr)

(r2 + a2)2
+
2s(r3 − 3Mr2 + a2r + a2M

(r2 + a2)2

]
u[+s] · u[−s].

Clearly, W ′ = 0 when ω is real, yielding a conservation law which substitutes the
T -current (2.37) we had for s = 0.
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Proposition 2.21 (Energy identity for the homogeneous radial ODE, s �= 0). Fix M >

0, |a| ≤ M and s ∈ 1
2Z>0. Let (ω,m, λ) be an admissible frequency triple with respect

to s and a such that ω is real. Let u[±s] be solutions to (2.13) given by (2.36).
Define Cs by (2.25) if u[±s] are outgoing in the sense of Definition 2.4 and by Propo-

sition 2.10 otherwise. Then, the following identities hold for a general u[±s] ifω �= mω+
and, with vanishing right hand side, for an outgoing u[±s].

For spin +s, if |a| = M,

24sω2[2M2(ω − mω+)]2sω4s
∣∣∣a[+s]I+

∣∣∣2 + ω(ω − mω+)ω
2sCs

∣∣∣a[+s]H+

∣∣∣2

= ω2[2M2(ω − mω+)]2sCs

∣∣∣a[+s]I−
∣∣∣2

+24sω(ω − mω+)ω
2s[2M2(ω − mω+)]4s

∣∣∣a[+s]H−
∣∣∣2 , (2.42)

if |a| < M and s is an integer,

(2ω)2sCs

∣∣∣a[+s]H+

∣∣∣2 + 4ω(ω − mω+)

s−1∏
j=1

[
4|ξ |2 + (s − j)2

]
(2ω)4s

∣∣∣a[+s]I+

∣∣∣2

= 4(2ω)2s |ξ |2(4|ξ |2 + s2)
s−1∏
j=1

[
4|ξ |2 + (s − j)2

]2 ∣∣∣a[+s]H−
∣∣∣2

+4ω(ω − mω+)

s−1∏
j=1

[
4|ξ |2 + (s − j)2

]
Cs

∣∣∣a[+s]I−
∣∣∣2 ,

taking the products denoted by � to be the identity if s = 1; and, finally, if |a| < M and
s is a half-integer,

(2ω)4s
2Mr+
r+ − r−

�s�∏
j=1

[
4|ξ |2 + (s − j)2

] ∣∣∣a[+s]I+

∣∣∣2 + (2ω)2s−1Cs

∣∣∣a[+s]H+

∣∣∣2

= 2Mr+
r+ − r−

�s�∏
j=1

[
4|ξ |2 + (s − j)2

]
Cs

∣∣∣a[+s]I−
∣∣∣2

+(2ω)2s−1(4|ξ |2 + s2)
�s�∏
j=1

[
4|ξ |2 + (s − j)2

]2 ∣∣∣a[+s]H−
∣∣∣2 , (2.43)

taking the products denoted by � to be the identity if s = 1/2. For spin −s, the above
identities hold, replacing a[+s]H± with a[−s]

H∓ and a[+s]I± with a[−s]
I∓ .

Proof. We first notice that we can rewrite the Wronskian as (dropping most subscripts)

W
(
u[+s], u[−s]

)
= W

(
�−s/2(r2 + a2)1/2�s R[+s],�−s/2(r2 + a2)1/2R[−s]

)

= �−s
(

�
d

dr

(
�s R[+s]) R[−s] −

(
�s R[+s])�

d

dr
R[−s]

)
.
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Recalling the asymptotic expansions for R[±s]
I+ , R[±s]

I− , R[±s]
H+ and R[±s]

H− in (2.28), we
have

W
[
u[+s], u[−s]

]
= 2iω�

(
a[+s]I+ a[−s]

I+ R[+s]
I+ R[−s]

I+ − a[+s]I− a[−s]
I− R[+s]

I− R[−s]
I−

)

= 2iω
(
a[+s]I+ a[−s]

I+ − a[+s]I− a[−s]
I−

)
+ O(r−1),

W
[
u[+s], u[−s]

]
=

⎧⎪⎨
⎪⎩

(2ξ − s)
r+ − r−
2Mr+

(
a[+s]H+ a

[−s]
H+ − a[+s]H− a

[−s]
H−

)
+ O(r − r+) if |a| < M

−2i(ω − mω+)
(
a[+s]H+ a

[−s]
H+ − a[+s]H− a

[−s]
H−

)
+ O(r − r+) if |a| = M

.

In order to reduce these expressions to identities for just one of the signs of spin, we
use the Teukolsky–Starobinksy identities (2.26). For instance, to obtain the identity for
spin +s, we impose that

R[−s] := �s (D+
0

)2s (
�s R[+s]) ,

which, noting ω ∈ R implies C(5)
s = C

(1)
s and C

(6)
s = C

(2)
s , yields

a[−s]
I+ = C(1)

s , a[−s]
I− = Cs

(
C

(1)
s

)−1

, a[−s]
H+ = Cs

(
C(2)
s

)−1
, a[−s]

H− = C
(2)
s .

Hence, we find that conservation of the Wronskian gives

2iω

C
(1)
s

(∣∣∣C(1)
s

∣∣∣2 ∣∣∣a[+s]I+

∣∣∣2 − Cs

∣∣∣a[+s]I−
∣∣∣2
)

=
{

(2ξ − s) r+−r−
2Mr+

if |a| < M
−2i(ω − mω+) if |a| = M

}

(
C

(2)
s

)−1 (
Cs

∣∣∣a[+s]H+

∣∣∣2 − |C(2)
s |2

∣∣∣a[+s]H−
∣∣∣2
)

. (2.44)

Similarly, defining

R[+s] := (
D+

0

)2s
R[−s],

is equivalent, by (2.26), to setting

a[+s]I+ := Cs

(
C(1)
s

)−1
, a[+s]I− := C

(1)
s , a[+s]H+ := C(2)

s , a[+s]H− := Cs

(
C

(2)
s

)−1

,

which yields the conservation law

2iω

C
(1)
s

(
|C(1)

s |2
∣∣∣a[−s]

I−
∣∣∣2 − Cs

∣∣∣a[−s]
I+

∣∣∣2
)

=
{

(2ξ − s) r+−r−
2Mr+

if |a| < M
−2i(ω − mω+) if |a| = M

}

(
C

(2)
s

)−1 (
Cs

∣∣∣a[−s]
H−

∣∣∣2 − |C(2)
s |2

∣∣∣a[−s]
H+

∣∣∣2
)

. (2.45)
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We note that, if |a| < M and s is an integer,

C(2)
s =

2s−1∏
j=0

(2ξ + s − j) = (2ξ + s)(2ξ + s − 1) · · · 2ξ · · · (2ξ + 1− s)

= 2ξ(2ξ + s)
s−1∏
j=1

(2ξ + s − j)(2ξ + j − s)

= −2ξ(2ξ + s)(−1)s
s−1∏
j=1

[
4|ξ |2 + (s − j)2

]
,

but if s is a half integer,

C(2)
s =

2s−1∏
j=0

(2ξ + s − j) = (2ξ + s)(2ξ + s − 1)

(2ξ + s − 2) · · · (2ξ + 2− s)(2ξ + 1− s)

= (2ξ + s)
�s�∏
j=1

(2ξ + s − j)(2ξ + j − s) = i2s+1(2ξ + s)
�s�∏
j=1

[
4|ξ |2 + (s − j)2

]
,

The result now follows by substituting in (2.44) and (2.45) the explicit constants C(2)
s

and C
(1)
s , as given above and in Proposition 2.14. ��

As in the previous section, we will now recall how such a current can be used to show
Theorems 1.1 and 1.2 for real ω in the case a = 0 but fails to do so whenever |a| > 0.

Consider solutions to the homogeneous radial ODE (2.13) compatiblewith the outgo-
ing condition fromDefinition 2.4. If a = 0, thenω+ = 0 and, by explicit computation of
the radial Teukolsky–Starobinsky constant, we find that, if λ = λ from Proposition 2.1,
then Cs(ω,m,λ) > 0. Hence, equations (2.42) and (2.21) yield a[±s]

I+ = a[±s]
H+ = 0 we

can again appeal to Lemma 2.5 to obtain mode stability.
An interesting remark is that such a proof of Theorem 4.1 in the whole range |a| ≤ M

would also hold for half-integer spin, assuming that one could show Cs(ω,m,λ) > 0
for any admissible frequency triple (ω,m, l) for which there could be nontrivial mode
solutions. Indeed, consistently with Remark 2.12, the absence of superradiance for |s| =
1/2 and |s| = 3/2 was first shown in [Unr73] and [MN98], respectively, who used a
spinor formalism (instead of the Teukolsky equation) and interpreted the Wronskian
conservation law we obtain in Proposition 2.21 as a conservation law for the number of
particles.

For integer spin and |a| > 0, on the other hand, assuming Cs(ω,m, λ) > 0 for any
admissible frequency triple (ω,m, λ) for which there could be nontrivial solutions to
the homogeneous radial ODE (2.13) compatible with the outgoing condition (this must
hold if λ = λ at least for 0 < |s| ≤ 2, by Remark 2.12), (2.42) and (2.21) fail to give
an estimate for u(±∞) if the frequency parameters are superradiant (2.39). Hence, we
cannot deduce mode stability on the real axis from Proposition 5.4 for |a| > 0 and
integer s.
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Remark 2.22. For the integral transformations we will present in Sect. 3.1, we can ob-
tain estimates which show, via a T -current (2.37) (rather than the Wronskian current
presented in this section), that the transformed quantities vanish identically, even when
s �= 0 (see Sect. 4).

3. Integral Transformations for s ≤ 0

In this section, we will define integral transformations for the radial ODE (2.10) for
extremal and subextremal Kerr backgrounds. In Sect. 3.1, we consider an extremal Kerr
solution and introduce a novel integral transformation in Proposition 3.1.On subextremal
Kerr spacetimes, we considerWhiting’s transformation and extend the results in [Whi89,
Shl15] to Proposition 3.8 in Sect. 3.2.

We remark that, in the interest of presenting a unified picture for the full range
|a| ≤ M , the structure of Sect. 3.2 is very similar to that of Sect. 3.1.

3.1. An integral radial transformation for extremal Kerr (|a| = M). Webegin by rewrit-
ing the radial ODE (2.10) as

d

dr

[
(r − M)2

d

dr

]
R(r) + 2s(r − M)

d

dr
R(r)

−
[ [β − α(r − M) − γ (r − M)2]2

(r − M)2
+
2s[β − α(r − M) − γ (r − M)2]

(r − M)

]
R(r)

− [
4sγ (r − M) + 2sα + L

]
R(r) = (r − M)2 F̂(r), (3.1)

where F̂(r) is a smooth inhomogeneity compactly supported away from r = r+ and
r = ∞ and we have defined

α := −2iMω, β := 2iM2(ω − mω+), γ = −iω, L := λ + a2ω2 − 2amω.

(3.2)

While in the subextremal case the radial ODE has a regular singularity at r+ (see
Sect. 3.2), in (3.1) we have an irregular singularity of rank 1 (see for instance [Olv73]),
so Whiting’s transformation cannot be defined in the extremal case. Indeed, to apply the
strategy of [Whi89,Shl15] one requires a fundamentally novel transformation. We will
consider the following:

Proposition 3.1. Fix M > 0, |a| = M and s ∈ 1
2Z≤0. Let (ω,m, λ) be admissible

frequency parameters with respect to a and s (see Definition 2.1). Let R[s],(aω)
mλ be an

outgoing solution to the radial ODE (3.1) as in Definition 2.4. Dropping subscripts,
define ũ as the integral transformation

ũ(x) := lim
y→0

(x2 + 2M2)1/2(x − M)−s(x − 2M)α×

×
∫ ∞

M
e−

2γ
M (x+iy−M)(r−M)(r − M)αeβ(r−M)−1

e−γ r R(r)dr, (3.3)
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with α, β and γ as in (3.2), where the limit is taken in the function space L2
x ([2M,∞)).

Introduce a new coordinate x∗(x) : (2M,+∞) → (−∞,∞) by

dx∗

dx
= x2 + 2M2

(x − M)(x − 2M)
, x∗(3M) = 0.

Then the following hold:

1. ũ(x) is in fact smooth for x ∈ (2M,+∞);
2. ũ satisfies the ODE

ũ′′ + Ṽ ũ = (x − 2M)(x − M)

x2 + 2M2 H̃ , (3.4)

where the inhomogeneity H̃ is given by

H̃ := (x2 + 2M2)1/2(x − M)−s(x − 2M)α×
×
∫ ∞

M
e−

2γ
M (x−M)(r−M)(r − M)αeβ(r−M)−1

e−γ r F̂(r)dr,
(3.5)

and the potential is

Ṽ (x) := M(x − M)2[3(2x − 3M) + (x − M)2 + (x − 2M)2](
x2 + 2M2

)2 ω2 − (x − 2M)2

(x2 + 2M2)2
s2

− (x − M)(x − 2M)(
x2 + 2M2

)2 (λ + s) − 2mω(x − M)(x − 2M)(2x − 3M)(
x2 + 2M2

)2
− (x − M)(x − 2M)

(x2 + 2M2)4

[
2M2(x − M)(x − 2M) + 3Mx(x2 − 2M2)

]
.

(3.6)

3. ũ and ũ′ are bounded for x∗ ∈ R;
4. ũ and ũ′ satisfy the boundary conditions
(a) if �ω > 0 and F̂ ≡ 0, then

i. ũ′, ũ = O
(
(r − r+)2M�ω

)
as x → r+,

ii. |ũ′ũ| = O(|ũ|2x−1/2) = o(1) as x → ∞,
(b) if ω ∈ R\{0} and F̂ is compactly supported in (M,∞), then

i. ũ′ + 1
3 iωũ = O(r − M) as x → M,

ii. if additionally ω(ω − mω+) > 0,

x1/4
(
ũ′ − 4i signω

√
2Mω(ω − mω+)x

−1/2ũ
)
= O(x−1/2),

as x → ∞, and

∣∣∣(x−1/4ũ)(+∞)

∣∣∣2 = π

4M |ω|
∣∣∣∣2M

3(ω − mω+)

ω

∣∣∣∣
1/2−2s ∣∣∣(�s/2u)(−∞)

∣∣∣2 ,
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iii. if additionally ω(ω − mω+) < 0,

exp
(
4
√−2Mω(ω − mω+)x

1/2
)
x1/4×

×
(
ũ′ − 2

√
2Mω(ω − mω+)x

−1/2ũ
)
= O(x−1/2),

as x → ∞, and∣∣∣[exp (−4
√−2Mω(ω − mω+)x

1/2
)
x−1/4ũ

]
(+∞)

∣∣∣2

= π

4M |ω|
∣∣∣∣2M

3(ω − mω+)

ω

∣∣∣∣
1/2−s ∣∣∣(�s/2u)(−∞)

∣∣∣2 ;

5. the integral transformation (3.3) defines an injective map R �→ ũ: if ũ vanishes
identically, then R must also vanish identically.

Remark 3.2. For our proof in Sect. 4.2, it will be useful to highlight the following prop-
erties of Ṽ (x) for x ∈ (2M,∞):

(i) ω2 has a positive coefficient;
(ii) λ has a non-positive coefficient;
(iii) the (ω,m, l)-independent part of Ṽ is non-negative;
(iv) Ṽ and is real whenever ω is real;

These properties follow easily from (3.6).

To prove Proposition 3.1, it will be useful to break up (3.3) into smaller pieces which
we will analyze separately. With this in mind, we define the auxiliary function

g(r) := (r − M)−α+2se−β(r−M)−1
e−γ r R(r), (3.7)

so that we have factored out the oscillatory behavior at the horizon but reinforced it as
r → ∞. Indeed, if R(r) satisfies the boundary conditions in Definition 2.5, we have

g(r) =
∞∑
k=0

bk(r − M)k as r → M,

g(r) = e−2γ r r−α−1

[
N∑

k=0

ckr
−k + O

(
r−N−1

)]
as r → ∞. (3.8)

We also define the following weighted integral of g: for z = x + iy with (x, y) ∈
[2M,∞) × {y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0},

g̃(z) :=
∫ ∞

M
eA(z−M)(r−M)(r − M)2α−2se2β(r−M)−1

e2γ r g(r)dr

=
∫ ∞

M
eA(z−M)(r−M)(r − M)αeβ(r−M)−1

eγ r R(r)dr,
(3.9)

where A = −2γ /M . With these definitions, the integral transformation (3.3) becomes
simply

ũ(x) = (x2 + 2M2)1/2(x − M)−s(x − 2M)α lim
y→0

g̃(x + iy), (3.10)
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where the limit is, a priori, taken in the function space L2
x ([2M,∞)).

We will prove Proposition 3.1 over the next sections: first, in Sect. 3.1.1, we show
that g̃(x + iy) admits a pointwise C1,1/2

x ([2M,+∞)) extension as y → 0; then, in
Sect. 3.1.2, we show that it is in fact a smooth solution to a second order ODE. We also
obtain precise asymptotics for g̃(x) in Sect. 3.1.3. Finally, in Sect. 3.1.4 we put these
together to prove Proposition 3.1. The structure of the section is based on the approach
to Whiting’s subextremal radial transformation in [Shl15].

3.1.1. Defining the integral transformation for real ω In this section we will show
that (3.10) is well-defined, by understanding the limit of g̃(x + iy) as y → 0 with
x ∈ [2M,∞).

Clearly, when �ω > 0, the terms eβ(r−M)−1
and eA(x−M)(r−M) in the integrand

contribute with exponential decay as r approaches M and ∞, respectively, so we can
easily take y = 0 in (3.9) and obtain a convergent integral, regardless of the sign of s.
On the other hand, if ω is real, we no longer have this exponential decay at both ends
when y = 0. The integrand is at worst O((r − M)−2s) as r → M , which is integrable
even when y = 0, and and O(e−�ωx−�ωyr r−1−2s) as r → ∞, which is not integrable if
y = �ω = 0. Hence, to define g̃ properly in the limit y → 0, we will integrate by parts
to produce more decay near r = ∞:

Lemma 3.3. Fix s ≤ 0 and ω such that �ω > 0 or ω ∈ R\{0}. Let z := x + iy where
(x, y) ∈ [2M,∞) × {y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. Let ε > 0 be arbitrary; we
have

g̃(z) =
∫ M+ε

M
eA(z−M)(r−r−)(r − M)2(α−s)e2β(r−M)−1

e2γ r g(r)dr

+
1

[A(z − M)]1−2s

∫ ∞

M+ε

×
{
eA(z−M)(r−M)

(
d

dr

)1−2s (
(r − M)2(α−s)e2β(r−M)−1

e2γ r g(r)
)}

dr

+
2−2s∑
k=1

(−1)k

[A(z − M)]k

×
[
eA(z−M)(r−M)

(
d

dr

)k (
(r − M)2(α−s)e2β(r−M)−1

e2γ r g(r)
)]

r=M+ε

,

(3.11)

and similarly, for j = 1, 2, 3,

1

A j

∂ j

∂x j
g̃(z)

=
∫ M+ε

M
eA(z−M)(r−r−)(r − M)2(α−s)+ j e2β(r−M)−1

e2γ r g(r)dr

+
1

[A(z − M)]1+ j−2s

∫ ∞

M+ε
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×
{
eA(z−M)(r−M)

(
d

dr

)1+ j−2s (
(r − M)2(α−s)+ j e2β(r−M)−1

e2γ r g(r)
)}

dr

+
j−2s∑
k=1

(−1)k

[A(z − M)]k
[
eA(z−M)(r−M) ×

×
(

d

dr

)k (
(r − M)2(α−s)+ j e2β(r−M)−1

e2γ r g(r)
)]

r=M+ε

, (3.12)

Moreover, g̃(x + iy) admits a unique extension to (x, y) ∈ [2M,∞) × {y ∈ [−1, 1] :
y�ω ≥ 0 or yω ≥ 0} such that

(i) g̃(x + iy) → g̃(x) in H2
x ([2M,+∞)) and pointwise in C1,1/2

x ([2M,+∞) as y → 0;
(ii) g̃(x) and its weak derivative, ∂x g̃(x), are L∞

x ([2M,+∞)).

Proof. In (3.9), we split the integration range at M + ε and integrate by parts under the
integral ranging over over [M + ε,+∞), noting that

e−A(z−M)(r−M) d

dr

(
eA(z−M)(r−M)

)
= A(z − M).

We obtain ∫ ∞

M+ε

d

dr

(
eA(z−M)(r−M)

)
(r − M)2(α−s)e2β(r−M)−1

e2γ r g(r)dr

=
[
eA(z−M)(r−M)(r − M)2(α−s)e2β(r−M)−1

e2γ r g(r)
]∞
M+ε

−
∫ ∞

M+ε

{
eA(z−M)(r−M)(r − M)2α−2s−1e2β(r−M)−1

e2γ r g(r)

×
[
2(α − s) − 2β

r − M
+ 2γ (r − M) +

(r − M)

g

dg

dr

]}
dr.

If either�ω > 0or yω > 0, the upper boundary termvanishes, because it is exponentially
decaying as r → ∞. We are left with an integral on the right hand side whose integrand
is at worst O(r−2−2s); if s = 0, we are done, but otherwise, we need to repeat this
integration by parts procedure −2s times more. In the end, we obtain an integrand
which is O(r−2), hence integrable.

For the j th derivative of g̃ we note that, if either �ω > 0 or yω > 0, the integral
is absolutely convergent, so we can differentiate inside the integral; this produces an j
extra powers of (r − M) in the integrand. This is helpful at the horizon, but not so as
r → ∞. Thus, to obtain the same decay at infinity for the integrand in the j th derivative
of g̃, we need to apply the integration by parts procedure j more times, i.e. −2s + j
times in total. The boundary terms at infinity will vanish when either �ω > 0 or yω > 0
due to the exponential decay that was similarly present in the analogous procedure for
g̃. Iterating this procedure, we find that if either �ω > 0 or yω > 0, g̃(z) is actually
holomorphic.

We have now obtained formulas (3.11) and (3.12). Since |z| ≥ x ≥ 2M > M , the
right hand side of these formulas is bounded and O(x−1) as x → ∞ for any y; hence,

|g̃(z)|2 + |∂y g̃(z)|2 + |∂x g̃(z)|2 + |∂y∂x g̃(z)|2 + |∂2x g̃(z)|2 + |∂y∂2x g̃(z)|2

� |g̃(z)|2 + |∂x g̃(z)|2 + |∂2x g̃(z)|2 + |∂3x g̃(z)|2 � 1

x2
,

(3.13)
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for any (x, y) ∈ [2M,∞) × {y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. We now have two
cases

1. If �ω > 0, g̃(z) is holomorphic for (x, y) ∈ [2M,∞) × {y ∈ [−1, 1] : y�ω ≥ 0},
so (i) must hold. Moreover, (ii) follows from (3.13).

2. If ω ∈ R\{0}, then without loss of generality, we can take ω > 0 and y ∈ (0, 1].
We define the extension of g̃(x + iy) to H2

x ([2M,+∞)) as follows. Let gx : (0, 1] →
H2
x ([2M,+∞)) be given by gx (y) = g̃(x+iy). By (3.13), gx is uniformly continuous

for y ∈ (0, 1] and hence admits a unique limit as y → 0; we call this limit g̃(x) ∈
H2
x ([2M,∞)), thus proving (i). By Morrey’s inequality, in fact g̃(x + iy) → g̃(x) in

C1,1/2
x ([2M,+∞)). Thus, g̃(x) and ∂x g̃(x) are continuous L2

x functions and, hence,
bounded, as stated in (ii).

This concludes the proof. ��
3.1.2. Differential equations for the auxiliary functions Let Tr be the double confluent
Heun operator [Mar+95]4 given by

Tr := (r − M)2
d2

dr2
+ 2

[
(α − s + 1)(r − M) − β + γ (r − M)2

] d

dr
+ α − 2s − 2sα − L + 2γ (1− 2s)(r − M).

(3.14)

Given the definition of g in (3.7), since R(r) is a solution to the radial ODE (3.1)
with inhomogeneity F̂ , we find that g satisfies Tr g = G where

G(r) := (r − M)−α+2se−β(r−M)−1
eγ r F̂(r)

and α, β and γ are defined in (3.2).
As we will see in Sect. 3.2.4, for the subextremal transformation, one can show that

the analogous g (3.27) and g̃ (3.29) satisfy differential equations of the same type but
with different parameters. The same cannot be true of g (3.7) and g̃ (3.9) for the extremal
transformation, introduced in Proposition 3.1, which we are now considering; however
the kernel eA(z−M)(r−M), z = x + iy with x, y as before, can be used to produce a
solution to a reduced confluent equation [KS96,SW95]:

e−A(z−M)(r−M)Tr eA(z−M)(r−M)

= (x − B)(x − M)A2(r − M)2 + [2γ + (B − M)A](x − M)(r − M)2

+

[
2(α − s + 1)(x − M) +

2γ

A
(1− 2s)

]
A(r − M)

+ α(1− 2s) − 2s − L − 2βA(x − M),

so ifwechoose B = 2M and A = −2γ /M ,wehave T̃x eA(z−M)(r−M) = Tr eA(z−M)(r−M),
where

T̃x := (x − 2M)(x − M)
d2

dx2
+ [(2α + 1)(x − M) + (1− 2s)(x − 2M)] d

dx

+ α(1− 2s) − 2s − L +
4βγ

M
(x − M)

(3.15)

4 Comparing to the analogous operator (3.34) which is considered for the subextremal case, we find that
the two distinct regular singularities r± in that confluent Heun operator have merged to form an irregular one
in our double confluent Heun operator, (3.14).
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is a type of confluent Heun operator with a half-integer singularity at infinity (ε = 0 in
the notation of [Olv+18]). In essence, using the kernel eA(z−M)(r−M) allows us to split
the extremal horizon, of multiplicity two, into two “horizons” at the expense of losing
the usual asymptotics as r → ∞.

Lemma 3.4. Suppose �ω > 0 or ω ∈ R\{0}. Let z = x + iy with (x, y) ∈ [2M,∞) ×
{y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. For y �= 0, we have T̃x g̃(x + iy) = G̃(x + iy),
where T̃x is defined by (3.15) and

G̃(x + iy) :=
∫ ∞

M
eA(z−M)(r−M)(r − M)2α−2se2β(r−M)−1

e2γ rG(r)dr.

Moreover, if y = 0, g̃(x) is smooth for x ∈ (2M,+∞) and satisfies

T̃x g̃(x) = G̃(x) (3.16)

classically.

Proof. If either �ω > 0 and y�ω ≥ 0 or yω > 0, the integral is absolutely convergent
and we can thus differentiate under the integral to obtain

T̃x g̃(z) =
∫ ∞

M
T̃x
(
eA(z−M)(r−M)

)
(r − M)2α−2se2β(r−M)−1

e2γ r g(r)dr

=
∫ ∞

M
Tr
(
eA(z−M)(r−M)

)
(r − M)2α−2se2β(r−M)−1

e2γ r g(r)dr

= G̃(z) +

[(
A(x − M)g − dg

dr

)
(r − M)2(α−s+1)e2β(r−M)−1

e2γ r eA(z−M)(r−M)

]∞
0

,

where we havemade use of the properties of the kernel, the equation for g and the lemma

Lemma 3.5. Let Tr be a differential operator as defined in (3.14). Then, for sufficiently
regular functions f, h, we have

∫ A2

A1

(hTr f − f Tr h) (r − M)2α−2se2β(r−M)−1
e2γ r dr

=
[(

h
d f

dr
− f

dh

dr

)
(r − M)2(α−s+1)e2β(r−M)−1

e2γ r
]r=A2

r=A1

,

obtained by using (3.14) and integrating by parts. This lemma justifies the introduction
of weights (r − M)2α−2se2β(r−M)−1

e2γ r : when evaluated against such a measure, Tr is
self-adjoint.

We still need to show that the boundary terms vanish. This is clear at r = ∞, due to
the decay of g and dg/dr , together with the exponential decay brought of either �ω > 0
or yω > 0. At the horizon, the extra factor of (r − M)2 also make the boundary term
term vanish, due to the boundary conditions (3.8) that g satisfies.

To consider the case y = 0, first note that G̃(x + iy) is smooth even for y = 0, by
compact support5 of F̂ . We have shown that g̃(x + iy), for y �= 0, satisfies the ODE

5 Note that G̃(x + iy) can be rewritten as the Fourier transform of a compactly supported function; see the
proof of statement 5 of Proposition 3.1 in Sect. 3.1.4.
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classically, hence, it also satisfies the ODE weakly as an H1
x ([2M,∞)) function. Thus,

for any smooth ϕ compactly supported in (2M,∞),
∫ ∞

2M

d

dx
g̃(x)

[
(2α(x − M) − 2s(x − 2M)) ϕ(x) + (x − M)(x − 2M)

dϕ

dx
(x)

]
dx

+
∫ ∞

2M
g(x)

[
α(1− 2s) − 2s − L +

4βγ

M
(x − M)

]
ϕ(x)dx −

∫ ∞

2M
G̃(x)ϕ(x)dx

=
∫ ∞

2M

[
d

dx
g̃(x) − d

dx
g̃(x + iy)

]
[2α(x − M) − 2s(x − 2M)]ϕ(x)dx

+
∫ ∞

2M

[
d

dx
g̃(x) − d

dx
g̃(x + iy)

]
(x − M)(x − 2M)

dϕ

dx
(x)dx

+
∫ ∞

2M
[g(x) − g(x + iy)]

[
α(1− 2s) − 2s − L +

4βγ

M
(x − M)

]
ϕ(x)dx

−
∫ ∞

2M

[
G̃(x) − G̃(x + iy)

]
ϕ(x)dx . (3.17)

As the left hand side is independent of y, we can take a limit as y → 0 of the right hand
side. Recall that g̃(x + iy) → g̃(x) in C1,1/2

x ([2M,+∞)), by Lemma 3.3, with uniform
convergence in the compact support of the test function ϕ. Hence, we can exchange the
limit with the integral, which shows that g̃(x) is a weak H1

x ([2M,+∞)) solution to the
ODE as well. As G̃ is smooth, by elliptic regularity of T̃x we conclude that g̃(x) is in
fact smooth for x ∈ (2M,+∞) and satisfies the ODE classically. ��

3.1.3. Asymptotics of g̃ for large x By Lemma 3.3, g̃(x) is bounded and C1
x ([2M,∞)),

which uniquely determines the behavior at r = 2M :

g̃(x) =
∞∑
k=0

bk(x − r+)
k as x → 2M

On the other hand, g̃ satisfies (3.16) by Lemma 3.4. If the inhomogeneity is compactly
supported away from x = ∞ or vanishes, by asymptotic analysis, we find that g̃ must
be a superposition of, for N ∈ N,

exp

[
−4

√−βγ
( x

M

)1/2]
x−3/4+s−α

[
N∑

k=0

ckx
−k/2 + O

(
x−N/2−1/2

)]
,

exp

[
4
√−βγ

( x

M

)1/2]
x−3/4+s−α

[
N∑

k=0

ckx
−k/2 + O

(
x−N/2−1/2

)]
.

If �ω > 0, then unless −βγ is real and negative, one of the two solutions provides
exponential growth an the other provides exponential decay. Since −βγ is real if and
only if −βγ = 2M2|ω|2 > 0, boundedness of g̃ restricts us to the case of exponential
decay, and hence to a unique choice between the two previous solutions. The same is
true for ω on the real axis if βγ < 0, but, if βγ > 0, we cannot a priori rule out one of
the behaviors. Moreover, we cannot relate the amplitude, i.e. the first coefficients in the
expansion, to the solution to the radial ODE, R, we began with.
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With more effort, we can obtain precise asymptotics for g̃ when ω is real, even if
the inhomogeneity is not trivial. We need to use slightly different strategies depending
on the sign of ω(ω − mω+). The next lemma summarizes the technical core of our
asymptotic analysis:

Lemma 3.6. Let h be a smooth function on [M,+∞) such that: if μν > 0, h vanishes
on [M + 2,∞); if μν < 0, |h(r)| = O(r−2−2s) as r → ∞. Then, we have

Z(ν, μ) :=
∫ ∞

M
eiν(r−M)eiμ(r−M)−1

(r − M)2α−2sh(r)dr

= i1/2
√

π

|ν|
(μ

ν

)1/4−s+α

e2σ
√|μν| [h(M) + O

(
|ν|−1/2

)]
,

where σ = i sign ν if μν > 0 and σ = −1 if μν < 0.

Proof. Defining w = |ν|1/2(r − M), we rewrite Z(ν, μ) as

Z(ν, μ) = |ν|−1/2+s−α

∫ ∞

0
eisign ν|ν|1/2(w+sign(μν)|μ|w−1

)
w2α−2sh(|ν|−1/2w + M)dw

The phase of Z(ν, μ) is now the function f satisfying

f (w) = sign ν

(
w + sign(μν)

|μ|
w

)
, f ′(w) = sign ν

(
1− sign(μν)

|μ|
w2

)
,

f ′′(w) = sign ν

(
2sign(μν)|μ|

w3

)
.

The only critical points of f are at w0 = ±√sign(μν)|μ|, where

f (w0) =
{±2i sign ν|μ|1/2 if νμ < 0

±2 sign ν|μ|1/2 if νμ > 0
, f ′′(w0) =

{∓2i sign ν|μ|−1/2 if νμ < 0

±2 sign ν|μ|−1/2 if νμ > 0

Consider the case μν > 0 first. In this case, the only stationary point of f which
is in the integration range is w0 = +|μ|1/2. Assuming compact support of h, we can
apply the stationary phase approximation with large parameter |ν|1/2 (see e.g. [Tao18,
Lemma 2.8]) to obtain

Z(ν, μ) = i1/2
√

π

|ν|
(μ

ν

)1/4−s+α

e2i sign ν
√|μν| [h (M +

√|μ/ν|
)
+ O

(
|ν|−1/2

)]
.

Finally, by expanding h with a Taylor series, we get the statement in the case μν > 0.
Ifμν < 0, then the critical points of f are in the complex plane, so application of the

stationary phase lemma would could only give us at most arbitrarily fast polynomial de-
cay in |ν|. Instead, wewant to deform the integral inw ∈ [0,∞) into one on the complex
plane passing through the critical points and apply the method of steepest descent. Con-
sidering Fig. 2, we see that, by Cauchy’s theorem, since ei |ν|1/2 f (z)z2α−2sh(|ν|−1/2z+M)

is holomorphic for z in the region contained by γ1 ∪ γ2 ∪ γ3 ∪ γ4, we have∫ ∞

0
= lim

ε→0

∫
γ2

+ lim
ε→0, R→∞

∫
γ3

+ lim
R→∞

∫
γ3

,
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where we have suppressed the integrand. To determine which of the two points is ap-
proached by γ3, we look at the integral over γ2 = {z = εeiθ , θ ∈ (0, π/2) or θ ∈
(0,−π/2)}:

∣∣∣∣
∫

γ2

ei |ν|1/2 f (z)z2α−2sh(|ν|−1/2z + M)dz

∣∣∣∣
≤ ε

∫ ±π/2

0
e−signν |ν|1/2(ε+|μ|ε−1

)
sin θ ε−2se2iαθ |h(|ν|−1/2εeiθ + M)|dθ → 0,

as ε → 0 if and only if sign ν sin θ > 0 in the integration range.We thus pick contour (a)
in Fig. 2 for ν > 0 and (b) for ν < 0. For the integral over γ4 = {z = Reiθ , θ sign ν ∈
(π/2, 0)}, we can show that

∣∣∣∣
∫

γ4

ei |ν|1/2 f (z)z2α−2sh(|ν|−1/2z + M)dz

∣∣∣∣
≤
∫ 0

π/2
e−|ν|1/2(R+|μ|R−1

)
sin θe2iαθ R1−2s |h(|ν|−1/2Reiθ + M)|dθ,

which goes to zero as R → ∞ as long as h(r) = O(r2−2s).
The only remaining contribution is over γ3 = {z = i sign νy, y ∈ (ε, R)}, along

which we have

i sign ν|ν|1/2 f (z) = −|ν|1/2
(
y +

|μ|
y

)
= |ν|1/2S(y),

where

S(y) = −
(
y +

|μ|
y

)
, S′(y) = −

(
1− |μ|

y2

)
, S′′(y) = −2|μ|

y3

has a unique maximum at y0 = |μ|1/2 which is in the integration range if ε is sufficiently
small and R is sufficiently large. Moreover, as S(y) ≤ 0, the integrand is exponentially
decaying as y → ∞, so we can apply the Laplace’s method (a version of the method of
steepest descent) [Olv+18, Theorem 7.1] to conclude:

|ν|−1/2+s−α

∫
γ3

ei |ν|1/2 f (z)z2α−2sh(|ν|−1/2z + M)dz

= i2α−2s+1|ν|−1/2+s−α

∫ R

ε

e|ν|1/2S(y)y2α−2sh(|ν|−1/2iy + M)dy

= i1/2
√

π

|ν|
(μ

ν

)1/4−s+α

e−2
√|μν| [h (M +

√|μ/ν|
)
+ O

(
|ν|−1/2

)]
.

Expanding h as a Taylor series, we obtain the result in the statement. ��
Applying Lemma 3.6 to g̃, we obtain
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Lemma 3.7. For any ω real such that ω �= 0 and (ω − mω+) �= 0, we have

g̃(x) = e4σ
√−βγ (x/M)1/2x−3/4−α+s×

×
(√

iπM

2|ω|
(
2M3(ω − mω+)

ω

)1/4−s+α

e−2iMω
[
e−

β
r−M (r − M)−α+2s R

]
r=M

+O(x−1/2)
)
as x → ∞,

where σ = +1 if β, γ < 0 and σ = −1 otherwise.

Proof. The method of steepest descent suggests that the greatest contribution to the
integral will come from the stationary point of the phase in the oscillatory integral
defining Z , which will be very close to r = M as x → ∞.

Let χ(r) be a cutoff function that is identically one close to r = M and vanishes for
[M + 2,∞). We allow χ to depend on x , but require 1 ≤ |∂rχ | ≤ 2. We can split the
integral in the definition of g̃ as follows:

g̃(x) = e−2iωM
∫ ∞

M
eAx(r−M)(r − M)2α−2se2β(r−M)−1

(
e−

β
r−M (r − M)−α+2seγ rχR

)
dr

+ lim
y→0

e−2iωM
∫ ∞

M
eA(x+iy)(r−M)(r − M)2α−2se2β(r−M)−1×

×
(
e−

β
r−M (r − M)−α+2seγ r (1− χ)R

)
dr, (3.18)

for (x, y) ∈ [2M,∞) × {y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. For the second integral,
we appeal to the integration by parts argument of Lemma 3.3 to write, for y �= 0 and
z := x + iy,

∫ ∞

M
eA(z−M)(r−M)(r − M)αeβ(r−M)−1

eγ r R (1− χ) dr

= 1

[A(z − M)]k

∫ ∞

M
eA(z−M)(r−M) dk

drk

(
(r − M)αeβ(r−M)−1

eγ r R (1− χ)
)
dr.

(3.19)

The right hand side of (3.19) is certainly a convergent integral if k ≥ 2 − 2s, in which
case it is O(x−2+2s) as x → ∞.Moreover, as in Lemma 3.4we have shown that g̃(x+iy)
admits a C∞

x ([2M,∞)) extension, g̃(x), (3.19) must hold for y = 0. We note that the
integrand is O(r−1−2s−k) for any k.

Set iν = Ax, iμ = 2β. For the non-superradiant frequencies, the result now follows
from Lemma 3.6 by taking χ to be identically one in [M, M + 1] and letting h(r) as
the function in brackets in the first integral of (3.18). For the superradiant frequencies,
we set χ to be identically one in [M, M +

√
(M |β|)/|γ |x−1/2/2] so that both integrals

in (3.18) will include the critical point of the phase; then we apply Lemma 3.6 for the
integral in (3.18) and the integral (3.19) with h being the functions in brackets (note that
these satisfy the decay assumptions of Lemma 3.6 as one is compactly supported and
the other has as much polynomial decay as we want by the previous considerations). ��
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3.1.4. Proof of Propositions 3.1 We are now ready to prove Proposition 3.1:

Proof of Proposition 3.1. Recall that out integral transformation ũ is given by (3.10)

ũ(x) = (x2 + 2M2)1/2(x − M)−s(x − 2M)α g̃(x),

with derivative

ũ′ = (x − 2M)(x − M)

x2 + 2M2

[
x

x2 + 2M2 − s

x − M
+

α

x − 2M
+
1

g̃

d g̃

dx

]
ũ. (3.20)

By Lemma 3.4, g̃ is a smooth function for x ∈ (2M,+∞), so ũ must also be smooth
in x ∈ (2M,+∞). The ODE (3.4) for ũ can be computed directly from the ODE (3.16)
for g̃. This shows statements 1 and 2.

By Lemma 3.3, g̃(x) and ∂x g̃(x) are bounded functions on x ∈ [2M,+∞), so ũ
and ũ′ must be bounded as well, which shows statement 3. In the previous section, we
have computed the asymptotics for g̃ which, combined with (3.20), yield the boundary
conditions for ũ as in statement 4.

Finally, we must show injectivity; we will proceed as in [Shl15, proof of Theo-
rems 1.5, 1.6]. Extend R(r) to r ∈ R by 0.

• If �ω > 0, we write the Fourier transform of (r − M)αeβ(r−M)γ eγ r R(r) as

R̂(z) := 1

2|ω|2
∫ ∞

−∞
e2i |ω|2z(r−M)(r − M)αeβ(r−M)γ eγ r R(r)dr,

which is a holomorphic function in the upper half plane (by the Paley–Wiener theo-
rem, due to R being an L2 function of r ∈ (M,∞) ⊆ R+). However, since

∫ ∞

M
e
2iω
M (z−M)(r−M)(r − M)αeβ(r−M)γ eγ r R(r)dr ≡ 0,

for all x ∈ (2M,+∞), we conclude that R̂(z) vanishes along the line {z ∈ C : z =
y/ω, y ∈ (2,+∞)}. By analyticity, R̂ and hence R vanish identically.

• If ω ∈ R\{0}, then we write the Fourier transform of (r −M)αeβ(r−M)γ eγ r R(r) as
the L2

y(R) function given by

R̂(y) := 1

2ω

∫ ∞

−∞
e2iωy(r−M)(r − M)αeβ(r−M)γ eγ r R(r)dr.

Since ∫ ∞

M
e
2iω
M (z−M)(r−M)(r − M)αeβ(r−M)γ eγ r R(r)dr ≡ 0,

for all x ∈ (2M,+∞), we conclude that R̂(y) vanishes along the line y ∈ (2,+∞).
However, the Fourier transform of a non-trivial L2 function supported in R+ cannot
vanish. Since R is an L2 function in its support contained in (M,+∞) ⊆ R+, we
conclude that R vanishes identically.

Hence (3.3) defines an injective map R �→ ũ, as in statement 5. ��
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3.2. Whiting’s integral radial transformation for subextremal Kerr (|a| ≤ M). For a
subextremal Kerr background, |a| < M , we rewrite the radial ODE (2.10) as, dropping
subscripts

d

dr

[
(r − r+)(r − r−)

d

dr

]
R(r) + s(r − r+ + r − r−)

d

dr
R(r)

+γ
[
(s − 1)(r − r+ + r − r−) − 2η(r − r+) − 2ξ(r − r−)

]
R(r)

+2γ (1− s)(r − r−) + γ (1− s)(r+ − r−) − L − 2ηξ

+
η(s − η)(r − r+)2 + ξ(s − ξ)(r − r−)2

(r − r−)(r − r+)
− γ 2(r − r+)(r − r−)R(r)

= �F̂(r), (3.21)

where F̂(r) is a smooth inhomogeneity compactly supported away from r = r+ and
r = ∞ and where we have defined

ξ := i
am − 2Mr+ω

r+ − r−
, η := i

2Mr−ω − am

r+ − r−
, γ = −iω, L := λ + a2ω2 − 2amω.

(3.22)

We will use Whiting’s integral transformation for the radial ODE. The following
proposition combines results in [Whi89,Shl15] and extends them:

Proposition 3.8. Fix |a| < M, s ∈ 1
2Z≤0 and some frequency parameters (ω,m, λ) ∈

C×Z×C with �ω > 0 or (ω,m, λ) ∈ R\{0}×Z×R. Let R[s],(aω)
ml be a solution to the

radial ODE (3.21) with boundary conditions as in Definition 2.5. Dropping subscripts,
define ũ via the integral transform

ũ(x) := lim
y→0

(x2 + a2)1/2(x − r−)−s(x − r+)
ξ+η×

×
∫ ∞

r+
e
− 2γ

r+−r− (x+iy−r−)(r−r−)
(r − r−)η(r − r+)

ξ e−γ r R(r)dr,
(3.23)

with ξ, η and γ as in (3.22), where the limit is taken in the function space L2
x ([r+,+∞)).

Introduce a new coordinate x∗(x) : (r+,+∞) → (−∞,∞) by

dx∗

dx
= x2 + a2

(x − r−)(x − r+)
, x∗(3M) = 0.

Then the following hold:

1. ũ(x) is in fact smooth for x ∈ (r+,+∞);
2. ũ satisfies the ODE

ũ′′ + Ṽ ũ = (x − r+)(x − r−)

x2 + a2
H̃ , (3.24)

where the inhomogeneity H̃ is given by

H̃ := (x2 + a2)1/2(x − r−)−s(x − r+)
ξ+η×

×
∫ ∞

r+
e
− 2γ

r+−r− (x−r−)(r−r−)
(r − r−)η(r − r+)

ξ eγ r F̂(r)dr,
(3.25)
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and the potential is

Ṽ (x) := (x − r−)(x − r+)

(x2 + a2)2

[
(x − r+)(x − r−) +

4M2(x − r−)

r+ − r−
+ a2

]
ω2

+
4M2(x − r−)2

(x2 + a2)2
ω2 − (x − r−)(x − r+)

(x2 + a2)2
s2

− (x − r−)(x − r+)(
x2 + a2

)2 (λ + s) − 4mω(x − M)(x − r+)(x − r−)(
x2 + a2

)2
− (x − r+)(x − r−)

(x2 + a)4

[
2M2(x − r−)(x − r+) + 2Mx(x2 − a2)

]
. (3.26)

3. ũ and ũ′ are bounded for x∗ ∈ R;
4. ũ and ũ′ satisfy the boundary conditions
(a) if �ω > 0, then

i. ũ′, ũ = O
(
(r − r+)2M�ω

)
as x → r+,

ii. ũ′, ũ = O
(
e−�ω x

)
as x → ∞,

(b) if ω ∈ R\{0}, then
i. ũ′ + iω r+−r−

r+
ũ = O(r − r+) as x → r+,

ii. ũ′ − iωũ = O(x−1) as x → ∞ with

|ũ(∞)|2 = |�(2ξ − s + 1)|2(r+ − r−)2

8Mr+ω2

(
(r+ − r−)2

2|ω|
)2−2s ∣∣∣(�s/2u)(−∞)

∣∣∣2 ,

where �(z) := ∫∞
0 e−t t z−1 is the Gamma function;

5 the integral transformation (3.23) defines an injective map R �→ ũ: if ũ vanishes
identically, then R must also vanish identically.

Remark 3.9. For our proof in Sect. 4.2, it will be useful to highlight the following prop-
erties of Ṽ (x) for x ∈ (r+,∞):

(i) ω2 has a positive coefficient;
(ii) λ + s has a non-positive coefficient;
(iii) the (ω,m, λ)-independent part of Ṽ is non-negative;
(iv) Ṽ is real whenever ω is real;
(v) Ṽ = ω2 + O(x−2) as x → ∞ and Ṽ = ω2(r+ − r−)2/r2+ + O(x − r+) as x → r+.

These properties follow easily from (3.26).

To prove Proposition 3.8, we will follow the same steps as for the identical result,
Proposition 3.1, for |a| = M . We break up (3.23) into smaller pieces which we will
analyze separately: we define the auxiliary function

g(r) := (r − r−)−η+s(r − r+)
−ξ+se−γ r R(r), (3.27)

such that, if R(r) satisfies the outgoing boundary conditions in Definition 2.4, we have

g(r) =
∞∑
k=0

bk(r − r+)
k as r → r+,

g(r) = e−2γ r r ξ+η−1

[
N∑

k=0

ckr
−k + O

(
r−N−1

)]
as r → ∞, (3.28)
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and the weighted integral of g

g̃(z) :=
∫ ∞

r+
eA(z−r−)(r−r−)(r − r−)2η−s(r − r−)2ξ−se2γ r g(r)dr

=
∫ ∞

r+
eA(z−r−)(r−r−)(r − r−)η(r − r+)

ξ eγ r R(r)dr,
(3.29)

where A(r+ − r−) = −2γ = iω and z = x + iy, with z = x + iy for (x, y) ∈
[r+,∞) × {y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. With these definitions, the integral
transformation (3.23) becomes simply

ũ(x) = (x2 + a2)1/2(x − r−)−s(x − r+)
ξ+η lim

y→0
g̃(x + iy), (3.30)

where the limit is, a priori, to be taken in the function space L2
x ([r+,+∞)).

Wewill prove Proposition 3.8 over the next sections: first, in Sect. 3.2.1, we show that
g̃(x) is well-defined and that it is C1,1/2

x ([r+,∞)) and bounded; then, in Sect. 3.2.2, we
show that it is in fact a smooth solution to a second order ODE. We also obtain precise
asymptotics for g̃(x) in Sect. 3.2.3. Finally, in Sect. 3.2.4 we put these together to prove
Proposition 3.8.

3.2.1. Defining the integral transformation for real ω In this section we will show that
(3.30) is well-defined, by understanding the limit of g̃(x + iy) as y → 0 for x ∈ [r+,∞).
Note that the integrand in (3.30) is O((r − r+)−s) as r → r+, hence integrable (as
s < 0); as r → ∞, since the term e2γ r exactly matches the exponential in the boundary
condition of g at r = ∞ in (3.28), the integrand is O(e−�ω yr−�ω xr r−1−2s), which is
not integrable if �ω = y = 0. To define g̃ properly in the limit y → 0, we will integrate
by parts to produce more decay near r = ∞:

Lemma 3.10. Fix s ≤ 0 and ω ∈ C such that ω ∈ R\{0} or �ω > 0. Let z := x + iy,
where z = x + iy for (x, y) ∈ [r+,∞)×{y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. Let ε > 0
be arbitrary; we have

g̃(z) =
∫ r++ε

r+
eA(z−r−)(r−r−)(r − r−)2η−s(r − r+)

2ξ−se2γ r g(r)dr

+
1[

A(z − r−)
]1−2s

∫ ∞

r++ε

{
eA(z−r−)(r−r−)×

×
(

d

dr

)1−2s (
(r − r−)2η−s(r − r+)

2ξ−se2γ r g(r)
)}

dr

+
1−2s∑
k=1

(−1)k

[A(z − r−)]k
[
eA(z−r−)(r−r−) ×

×
(

d

dr

)k−1 (
(r − r−)2η−s(r − r+)

2ξ−se2γ r g(r)
)]

r=r++ε

, (3.31)
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and similarly, for j = 1, 2,

1

A j

∂ j

∂z j
g̃(z)

=
∫ r++ε

r+
eA(z−r−)(r−r−)(r − r−)2η−s+ j (r − r+)

2ξ−se2γ r g(r)dr

+
1[

A(z − r−)
]1+ j−2s

∫ ∞

r++ε

{
eA(z−r−)(r−r−)×

×
(

d

dr

)2+ j−2s [
(r − r−)2η−s+ j (r − r+)

2ξ−se2γ r g(r)
]}

dr

+
1+ j−2s∑
k=1

(−1)k

[A(z − r−)]k
[
eA(z−r−)(r−r−)×

×
(

d

dr

)k−1 (
(r − r−)2η−s+ j (r − r+)

2ξ−se2γ r g(r)
)]

r=r++ε

. (3.32)

Moreover, g̃(x+iy)admits aunique extension to (x, y) ∈ [r+,∞)×{y ∈ [−1, 1] : y�ω ≥
0} such that

(i) g̃(x + iy) → g̃(x) in H2
x ([r+,+∞)) and pointwise in C1,1/2

x ([r+,+∞)) as y → 0;
(ii) g̃(x) and its weak derivative, ∂x g̃(x), are bounded.

Proof. To obtain formulas (3.31) and (3.32), we proceed in the same way as in the
proof of Proposition 3.1 for |a| = M . In (3.29), we split the integration range at r+ + ε,
obtaining a sum of an integral on [r+ + ε] and an integral on [r+ + ε,+∞). The latter can
be integrated by parts, noting that

e−A(z−r−)(r−r−) d

dr

(
eA(z−r−)(r−r−)

)
= A(z − r−).

The boundary terms generated by the integration by parts at infinity will vanish when
either �ω > 0 or yω > 0 due to the exponential decay that was similarly present in the
identical procedure for g̃. One can repeat this procedure for �ω > 0 or yω > 0 for any
number of derivatives by first differentiating under the integral.

We have now obtained formulas (3.31) and (3.32). In these formulas, since |z| ≥
x ≥ r+ > r−, the right hand side is bounded and O(x−1) as x → ∞ for any y ∈ {y ∈
[−1, 1] : y�ω ≥ 0}. We also note that g̃ is holomorphic for y �= 0 in this range, so we
can write

|g̃(z)|2 + |∂y g̃(z)|2 + |∂x g̃(z)|2 + |∂y∂x g̃(z)|2 + |∂2x g̃(z)|2 + |∂y∂2x g̃(z)|2

� |g̃(z)|2 + |∂x g̃(z)|2 + |∂2x g̃(z)|2 + |∂3x g̃(z)|2 � 1

x2
,

(3.33)

for any (x, y) ∈ [r+,∞) × {y ∈ [−1, 1] : y�ω ≥ 0}. By the same argument as in
Proposition 3.1, we can now infer (i) and (ii) from (3.33). ��
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Remark 3.11. In our treatment of the subextremal case,we have chosen to interpret (3.23)
as an oscillatory integral, the approach followed by [Shl15]. An alternative subsequent
approach is to substitute integration along the real axis by integration along a suitable
contour in the complex plane, as in [And+17]; this then enables the authors to define the
transformation for s > 0 via integration along a (different) suitable complex path.

As one of our goals is to provide a quantitativemode stability statement (Theorem1.3)
in the spirit of that in [Shl15], our choice in defining (3.23) is motivated by the desire to
present a unified picture for the entire black hole parameter range |a| ≤ M that can be
directly compared with the latter work.

3.2.2. Differential equations for the auxiliary functions Let Tr be the confluent Heun
operator [Mar+95] given by

Tr := (r − r+)(r − r−)
d2

dr2
+ 2γ (1− 2s)(r − r−) + 2γ (1− s)r− − 2s − L

+
[
(2η + 1− s)(r − r+) + (2ξ + 1− s)(r − r−) + 2γ (r − r+)(r − r−)

] d

dr
.

(3.34)

Given the definition of g in (3.27), since R(r) is a solution to the radial ODE (3.21)
with inhomogeneity F̂ , we find that g satisfies Tr g = G where

G(r) := (r − r−)−η+s(r − r+)
−ξ+seγ r F̂(r)

and ξ, η and γ are defined in (3.22).
Following [Shl15], we would now like to show that g̃ also satisfies a confluent Heun

equation with some new parameters (see also [KS96,SW95]). Since

e−A(z−r−)(r−r−)Tr eA(z−M)(r−M)

= (z − r+)(z − r−)A2(r − r−)2

+ [A(r+ − r−) + p][A(r − r+)(r − r−)(z − r−) + (1− 2s)2γ ]
+
[
(1− 2s)(z − r+) + (1 + 2ξ + 2η)(z − r−)

]
A(r − r−)

− A(r+ − r−)(z − r+)(z − r−)A(r − r−)

− A(r+ − r−)(2η + 1− s)(z − r−) + 2γ (1− s)r− − 2s − L

if we pick A = −2γ /(r+ − r−), we have T̃xeA(z−r−)(r−r−) = Tr eA(z−r−)(r−r−), where

T̃x := (r − r+)(r − r−)
d2

dx2
+ 2γ (2η + 1− s)(x − r−) + 2γ (1− s)r− − 2s − L

+
[
(1− 2s)(x − r+) + (1 + 2ξ + 2η)(x − r−) + 2γ (x − r+)(x − r−)

] d

dx
(3.35)

is another confluent Heun operator with different parameters.

Lemma 3.12. Suppose �ω > 0 or ω ∈ R\{0}. Let z = x + iy with (x, y) ∈ [2M,∞)×
{y ∈ [−1, 1] : y�ω ≥ 0 or yω > 0}. For y �= 0, we have T̃x g̃(z) = G̃(z), where T̃x is
defined by (3.35) and

G̃(z) :=
∫ ∞

r+
eA(z−r−)(r−M)(r − r−)2η−s(r − r+)

2ξ−se2γ rG(r)dr.
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Moreover, if y = 0, g̃(x) is smooth for x ∈ (r+,+∞) and satisfies

T̃x g̃(x) = G̃(x) (3.36)

classically.

Proof. If �ω > 0 with y�ω ≥ 0 or yω > 0, the integral is absolutely convergent and
we can thus differentiate under the integral to obtain

T̃x g̃ =
∫ ∞

r+
T̃x
(
eA(z−r−)(r−r−)

)
(r − r−)2η−s(r − r+)

2ξ−se2γ r g(r)dr

=
∫ ∞

r+
Tr
(
eA(x−r−)(r−r−)

)
(r − r−)2η−s(r − r−)2ξ−se2γ r g(r)dr

= G̃(z) +

[(
A(x − r−)g − dg

dr

)
(r − r−)2η−s+1(r − r+)

2ξ−s+1e2γ r eA(z−r−)(r−r−)

]∞
0

,

where we havemade use of the properties of the kernel, the equation for g and the lemma

Lemma 3.13. Let Tr be a differential operator as defined in (3.34). Then, for sufficiently
regular functions f and h, after integration by parts,

∫ A2

A1

(hTr f − f Tr h) (r − r−)2η−s(r − r+)
2ξ−se2γ r dr

=
[(

h
d f

dr
− f

dh

dr

)
(r − r−)2η−s+1(r − r+)

2ξ−s+1e2γ r
]r=A2

r=A1

.

This lemma justifies the introduction of weights (r − r−)2η−s(r − r+)2ξ−se2γ r : when
evaluated against such a measure, Tr is self-adjoint.

We still need to show that the boundary terms vanish. This is clear at r = ∞, due
to the decay of g and dg/dr , together with the exponential decay brought in by either
�ωy > 0 or �ω > 0. At the horizon, the extra factor of (r − r+) makes the boundary
term vanish, due to the boundary conditions (3.28) of g.

To consider the case y = 0, first note that G̃(x + iy) is smooth even for y = 0, by
compact support6 of F̂ . We have shown that g̃(x + iy), for y �= 0, satisfies the ODE
classically, hence, it also satisfies the ODE weakly as an H1

x ([r+,∞)) function. Thus,
for any smooth ϕ compactly supported in (r+,∞),

∫ ∞

r+

d

dx
g̃(x)

[
2(ξ + η)(x − r−) − 2s(x − r+) + 2γ (x − r+)(x − r−)

]
ϕ(x)dx

+
∫ ∞

r+

d

dx
g̃(x)(x − r−)(x − r+)

dϕ

dx
(x)dx

+
∫ ∞

r+
g(x)

[
2γ (1− s)r− − 2s − L + 2γ (2η + 1− s)(x − r−)

]
ϕ(x)dx

−
∫ ∞

r+
G̃(x)ϕ(x)dx

6 Note that G̃(x + iy) can be rewritten as the Fourier transform of a compactly supported function; see the
proof of statement 5 of Proposition 3.8 in Sect. 3.2.4.
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=
∫ ∞

r+

[
d

dx
g̃(x) − d

dx
g̃(x + iy)

] [
2(ξ + η)(x − r−) − 2s(x − r+)

]
ϕ(x)dx

+
∫ ∞

r+

[
d

dx
g̃(x) − d

dx
g̃(x + iy)

]
[
(x − r+)(x − r−)

dϕ

dx
(x) + 2γ (x − r+)(x − r−)ϕ(x)

]
dx

+
∫ ∞

r+
[g(x) − g(x + iy)]

[
2γ (1− s)r− − 2s − L

+2γ (2η + 1− s)(x − r−)
]
ϕ(x)dx

−
∫ ∞

r+

[
G̃(x) − G̃(x + iy)

]
ϕ(x)dx .

As the left hand side is independent of y, we can take a limit as y → 0 of the right hand
side. Recall that g̃(x + iy) → g̃(x) in C1,1/2

x ([r+,+∞)), by Lemma 3.10, with uniform
convergence in the compact support of the test function ϕ. Hence, we can exchange the
limit with the integral, which shows that g̃(x) is a weak H1

x ([r+,+∞)) solution to the
ODE as well. As G̃ is smooth, by elliptic regularity of T̃x we conclude that g̃(x) is in
fact smooth for x ∈ (r+,+∞) and satisfies the ODE classically. ��

3.2.3. Asymptotics of g̃ for large x By Lemma 3.10, g̃(x) is bounded and C2
x ([r+,∞)),

which uniquely determines the behavior at r = r+:

g̃(x) =
∞∑
k=0

bk(x − r+)
k as x → r+.

As r → ∞, since g̃ satisfies (3.36) by Lemma 3.12, if the inhomogeneity vanishes, g̃
must be superposition of, for N ∈ N,

exp (−γ x) x−1+s−2ξ

[
N∑

k=0

ckx
−k + O(x−N−1)

]
as r → ∞,

x
− 2γ (2η+1−s)

4|ω|2
[

N∑
k=0

ckx
−k + O

(
x−N−1

)]
as r → ∞.

Boundedness of g̃ can be used to rule out the second behavior. However, the asymptotics
at this end canbederived in several otherways forwhichwedonot require the assumption
H̃ ≡ 0. For instance, following [Shl15, Lemma 4.4], one can use the formulas in Lemma
3.10 to show that g̃ ∼ O(x−1+s) as x → ∞ and

d

dx
g̃ − A(r+ − r−)g̃ = O(x−2+s) as x → ∞.

Alternatively, on the real axis, we can generalize [Shl15, Lemma 4.10] to obtain the
precise asymptotics for spin s:
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Lemma 3.14. As x → ∞, if ω ∈ R\{0}, we have

g̃(x) = �(2ξ − s + 1) exp

(
iπ

2
(2ξ − s + 1)

)(
2|ω|

r+ − r−

)−2ξ+s−1

e−iω(M+r−)

× (r+ − r−)η
(
(r − r+)

−ξ+s R(r)
) ∣∣∣

r=r+
e−2γ x x−2ξ+s−1 + O

(
x−2+s

)
.

Proof. Let χ(r) be a cutoff function that is identically one in [r+, r+ + 1] and vanishes
for [r+ + 2,∞). We can split the integral in the definition of g̃ as follows:

g̃(x) =
∫ ∞

r+
eAxr (r − r+)

2ξ−s
(
e−A(r−r−)r−e−Axr−e−iωr

(r − r−)η(r − r+)
−ξ+s R(r)χ(r)

)
dr

+ lim
y→0

∫ ∞

r+
eA(z−r−)(r−r−)(r − r−)η(r − r+)

ξ e−iωr R(r) (1− χ(r)) dr. (3.37)

For the second integral, we appeal to the argument of Lemma 3.10 to write, for
�ω > 0 or y�ω > 0,

∫ ∞

r+
eA(z−r−)(r−r−)(r − r−)η(r − r+)

ξ e−iωr R(r)(1− χ(r))dr

= 1[
A(z − r−)

]k
∫ ∞

r+
eA(z−r−)(r−r−) d

k

drk(
(r − r−)η(r − r+)

ξ e−iωr R(r)(1− χ(r))
)
dr,

where, in the limit y → 0, the right hand side is certainly a convergent integral if
k = 2− 2s; it is also of O(x−2+2s) as x → ∞.

For the first integral, consider the following lemma:

Lemma 3.15. Let h be a smooth function on [r+,∞) which vanishes on [r+ + 2,∞).
Then, for ν ∈ R\{0} or �ν > 0,

Z(ν) =
∫ ∞

r+
eiνr (r − r+)

2ξ−sh(r)dr

= �(2ξ − s + 1) exp

(
iπ

2
(2ξ − s + 1)

)
h(r+)e

iνr+ν−2ξ+s−1 + O
(
|ν|−1+s

)
,

as ν → ∞.

Proof. We want to compute Z(ν) by integrating by parts, so it will be useful to obtain
a formula for the anti-derivative of eiνr (r − r+)2ξ−s . In order to do this for, we extend r
to w ∈ C\(−∞, r+] and let

l0(r, ν) := eiνw(w − r+)
2ξ−s

where (w − r+)2ξ−s = exp
[
(2ξ − s) log(w − r+)

]
and we are taking the principal

branch of the logarithm. Clearly, exp
[
(2ξ − s) log(w − r+)

]
is uniformly bounded for
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{w : �w ∈ [r+, r+ + 2)}. Assume ν > 0 first; the exponential decay from eiνw as
w → r + i∞ means we can define the anti-derivative of l0 as

l−1(r, ν) := −
∫ r+i∞

r
eiνw(w − r+)

2ξ−sdw,

on any contour connecting r and r + i∞ which avoids the branch cut (and thus passes
only through points where the integrand is holomorphic), by Cauchy’s theorem. Take
the contour w(t) = r + i t for t ∈ [0,∞); then we have

l−1(r, ν) = −ieiνr
∫ ∞

0
e−νt (r − r+ + i t)2ξ−sdt integrating along t �→ r + i t

= −ieiνrν−1
∫ ∞

0
e−t

(
r − r+ +

i t

ν

)2ξ−s

dt. (3.38)

For ν < 0, one repeats this argument along a path finishing at r − i∞ instead, so as to
obtain the exponential decay that allows for convergence of the integral.

Now, integration by parts once allows us to rewrite Z as

Z(ν) = S0(ν) + S1(ν), S0(ν) = −h(r+)l−1(r+), S1(ν) =
∫ ∞

r+
h′(r)l0(r)dr.

By (3.38), at r = r+,

l−1(r+, ν) = −i2ξ−s+1eiνr+ν−2ξ+s−1�(2ξ − s + 1)

⇒ s0 = �(2ξ − s + 1)i2ξ−s+1eiνr+ |ν|−2ξ+s−1h(r+).

For the remainder term, we note that

∫ ∞

r+

d

dr
h(r) (ν(r − r+) + i t)2ξ−s dr

=
∫ r++ν−1

r+

d

dr
h(r) (ν(r − r+) + i t)2ξ−s dr

+ (iν)−1 (1 + i t)2ξ−s h(r+ + ν−1)

− (iν)−1
∫ ∞

r++ν−1

(
d

dr

)[
(ν(r − r+) + i t)2ξ−s h(r)

]
dr,

which is O(|ν|−1) by compact support of h. Thus, after Fubini

|S1(ν)| ≤ |ν|−1+s
∫ ∞

0
e−t

∣∣∣∣
∫ ∞

r+
h′(r) (ν(r − r+) + i t)2ξ−s dr

∣∣∣∣ dt � |ν|−2+s,

for ν ∈ R{0} and similarly for �ω > 0. ��
Applying this lemma with iν = Ax and h(r) as the function in brackets in the first

line of (3.37) yields the statement. ��
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3.2.4. Proof of Proposition 3.8 We are now ready to prove Proposition 3.8:

Proof of Proposition 3.8. Recall that out integral transformation ũ is given by (3.30)

ũ(x) = (x2 + a2)1/2(x − r−)−s(x − r+)
ξ+η g̃(x),

with derivative

ũ′ = (x − r+)(x − r−)

x2 + a2

[
x

x2 + a2
− s

x − r−
+

ξ + η

x − r+
+
1

g̃

d g̃

dx

]
ũ. (3.39)

By Lemma 3.12, g̃(x) is a smooth function for x ∈ (r+,∞), so ũ must also be smooth
in x ∈ (r+,∞). The ODE (3.24) for ũ can be computed directly from the ODE (3.36)
for g̃. This shows statements 1 and 2.

By Lemma 3.10, g̃(x) and ∂x g̃(x) are bounded functions on x ∈ [r+,∞), so ũ and
ũ′ must be bounded as well, which shows statement 3. In Sect. 3.2.3, we computed the
asymptotics of g̃, from which, together with (3.39), the boundary conditions as stated in
statement 4 follow.

Finally, we must show injectivity; we will proceed as in [Shl15, proof of Theo-
rems 1.5, 1.6]. Extend R(r) to r ∈ R by 0.

• If �ω > 0, we write the Fourier transform of (r − r−)η(r − r+)ξ eγ r R(r) as

R̂(z) := 1

2|ω|2
∫ ∞

−∞
e2i |ω|2z(r−r−)(r − r−)η(r − r+)

ξ eγ r R(r)dr,

which is a holomorphic function in the upper half plane (by the Paley–Wiener theo-
rem, due to R being an L2 function of r ∈ (M,∞) ⊆ R+). However, since

∫ ∞

r+
e

2iω
r+−r− (z−r−)(r−r−)

(r − r−)η(r − r+)
ξ eγ r R(r)dr ≡ 0,

for all x ∈ (r+,+∞), we conclude that R̂(z) vanishes along the line {z ∈ C : z =
y/ω, y ∈ (1,+∞)}. By analyticity, R̂ and hence R vanish identically.

• If ω ∈ R\{0}, then we write the Fourier transform of (r − r−)η(r − r+)ξ eγ r R(r) as
the L2

y(R) function given by

R̂(y) := 1

2ω

∫ ∞

−∞
e2iωy(r−r−)(r − r−)η(r − r+)

ξ eγ r R(r)dr.

Since ∫ ∞

r+
e

2iω
r+−r− (z−r−)(r−r−)

(r − r−)η(r − r+)
ξ eγ r R(r)dr ≡ 0,

for all x ∈ (r+,+∞), we conclude that R̂(y) vanishes along the line y ∈ (1,∞).
However, the Fourier transform of a non-trivial L2 function supported in R+ cannot
vanish. Since R is L2 in its support contained in (r+,+∞) ⊆ R+, we conclude that
R vanishes identically.

Hence (3.23) defines an injective map R �→ ũ, as in statement 5. ��
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4. Proof of Mode Stability on Kerr Backgrounds

In this section, we will prove mode stability for ω in the upper half-plane and on the real
axis for Kerr black hole spacetimes, including extremality. Let us begin by giving the
precise statements we will prove. For convenience in the later sections, we separate the
case of ω real and ω in the upper half-plane.

Theorem 4.1. Fix M > 0, |a| ≤ M and s ∈ 1
2Z. There are no nontrivial outgoing

solutions to the homogeneous radial ODE (2.10), in the sense of Definition 2.4, for any
admissible frequency triple (ω,m, λ) with respect to s and a where ω is real.

Theorem 4.2. Fix M > 0, |a| ≤ M and s ∈ 1
2Z. There are no nontrivial outgoing

solutions to the homogeneous radial ODE (2.10), in the sense of Definition 2.4, for any
admissible frequency triple (ω,m, λ) with respect to s and a where �ω > 0.

We note that Theorems 4.1 and 4.2 do not require λ to be a separation constant
arising from separating the angular and radial components of a mode solution. However,
whereas for mode stability on the real axis, λ can take any real value, for mode stability
in the upper half-plane we require the more restrictive condition of �(λω) < 0. We
recall that both these conditions are fulfilled by an eigenvalue of the angular ODE (2.8),
by statement 1 of Proposition 2.1. Hence, Theorems 4.1 and 4.2 imply Theorems 1.1
and 1.2, discussed in the introduction.

The structure of this section is as follows. In Sect. 4.1, we introduce a unique con-
tinuation lemma in the style of [Shl15, Lemma 6.1]. This plays a key role in Sect. 4.2,
where we show mode stability for s ≤ 0. In Sect. 4.3, we prove that mode stability
for s > 0 follows from the mode stability for s < 0 via the Teukolsky–Starobinsky
identities introduced in Sect. 2.3. Finally, in Sect. 4.4, we give an alternative proof of
Theorem 4.2 in the extremal Kerr (|a| = M) case.

4.1. A unique continuation lemma. For the proof of mode stability for s ≤ 0 on the real
axis, it will be useful to introduce the following unique continuation lemma, inspired by
that of [Shl15, Lemma 5.1]:

Lemma 4.1 (Unique continuation lemma). Suppose that we have a solution u(r∗) :
(−∞,∞) → C to the ODE

u′′ + Vu = 0

such that u ∈ L∞(−∞,∞) with (|u′| + |u|)(−∞) = 0, V is real and bounded with
either

1. V (∞) = ω2 ∈ R\{0} and V − ω2 decaying at an integrable rate as r∗ → ∞, or
2. V (−∞) = ω2

0 ∈ R\{0} and V̂ := ω2
0 − V decaying at an integrable rate as

r∗ → −∞.

Then u is identically zero.

Proof of Lemma 4.1. For a continuous, piecewise continuously differentiable function
y, we define the y-current as

Qy(r∗) := y|u′|2 + yV |u|2, (Qy)′(r∗) = y′|u′|2 + (yV )′|u|2.
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Note that statement 1 is precisely [Shl15, Lemma 5.1]. As the proof is very similar
to that of statement 2, we omit it here. For statement 2, define

y(r∗) := − exp

(
−C

∫ r∗

−∞
ζdr∗

)
,

where ζ is a fixed positive function which is identically 1 near r = ∞ and is set
to have the same (integrable) decay as |V̂ | as r∗ → −∞. In particular, y′ > 0 in
(−∞,∞), y(+∞) = 0 and y(−∞) = −1. It is clear from the assumptions on y and
u that Qy(±∞) = 0, so, writing V (r∗) = ω2

0 − V̂ (r∗), the fundamental theorem of
calculus implies

∫ ∞

−∞

(
y′|u′|2 + y′ω2

0 − (yV̂ )′|u|2
)
dr∗ = 0.

The only term which can threaten this estimate is (yV̂ )′|u|2; however,
∣∣∣∣
∫ ∞

−∞
(yV̂ )′|u|2dr∗

∣∣∣∣ ≤
∫ ∞

−∞
2|y||u′||u|dr∗

≤ 1

2

∫ ∞

−∞

⎡
⎣y′|u′|2 + y′ω2

0

(
2V̂

Cω0ζ

)2

|u|2
⎤
⎦ dr∗

≤ 1

2

∫ ∞

−∞

(
y′|u′|2 + y′ω2

0|u|2
)
dr∗

if we make C = C(ω0, ‖V̂ ζ−1‖∞) sufficiently large. Thus, this term cam be absorbed
into the left hand side of the previous identity and the conclusion follows from an
application of the fundamental theorem of calculus. ��
Remark 4.2. We note that an analogue of Lemma 2.5, based solely on an asymptotic
analysis, could be used in lieu of Lemma 4.1. However, the latter is slightly stronger in
that it does not require knowledge of the explicit potential, but only its decay properties
at one end. Thus, whereas for the original Teukolsky radial ODE (2.10) we have sketched
how to apply Lemma 2.5 to establish non-existence of solutions for non-superradiant
frequencies (see Sect. 2.4), in the following section we demonstrate how Lemma 4.1
can be used to derive non-existence of solutions to the transformed equations (3.4) and
(3.24) for any admissible frequencies.

4.2. Mode stability for s ≤ 0. Proof of Theorems 4.1 and 4.2 for s ≤ 0 Fix M >

0, |a| ≤ M and s ∈ 1
2Z≤0. Fix an admissible frequency triple (ω,m, λ).

Let R(r) := R[s], (aω)
mλ (r) be an outgoing solution to the radial ODE (2.10) (see

Definition 2.4) with vanising inhomogeneity. Let ũ be defined by (3.3) if |a| = M and
by (3.23) if |a| < M . Then ũ is smooth in its domain and satisfies an ODE of the form

ũ′′ + Ṽ ũ = 0, (4.1)
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with respect to x∗ ∈ (−∞,∞), where Ṽ was explicitly computed in Propositions 3.1
and 3.8, respectively for |a| = M and |a| < M . Define the T -current

Q̃T := �
(
ũ′ωũ

)
, −

(
Q̃T

)′ := �ω|ũ′|2 − �(ωṼ )|ũ|2, (4.2)

where the last equality is obtained using (4.1).
For ω in the upper half-plane and on the real axis, we will show that ũ vanishes

identically. By the injectivity of the transformation R �→ ũ (statement 5 in Proposi-
tions 3.8 and 3.1), R must vanish identically as well. This is in contradiction with our
Definition 2.5.
The case �ω > 0 (Theorem 4.2). From the boundary conditions listed in statement
4 of Propositions 3.1 and 3.8, it follows that Q̃T (±∞) = 0. An application of the
fundamental theorem of calculus yields

0 =
∫ ∞

−∞

(
−Q̃T

)′
dx∗ ≥ �ω

∫ ∞

−∞

(
|ũ′|2 + Ṽω2 |ω|2|ũ|2

)
dx∗,

where the inequality is obtained using properties (ii) and (iii) of Ṽ in Remarks 3.2 and
3.9 and the assumption that �(ωλ) ≥ 0. Here, Ṽω2 denotes the coefficient of ω2 in Ṽ ; as,
by property (i) of Ṽ in Remarks 3.9 and 3.2, Ṽω2 > 0 for x∗ ∈ (−∞,∞) and�ω > 0 by
assumption, it follows that ũ vanishes identically. From injectivity of the map R �→ ũ,
we conclude that R must also vanish identically, which contradicts the assumption that
it is the radial component of a (nontrivial) mode solution.

The case ω ∈ R\{0} and, if |a| = M, ω − mω+ �= 0 (Theorem 4.1). In this case, Ṽ
is real (see property (iv) of Remarks 3.2 and 3.9), so the Q̃T current defined in (4.2) is
conserved.

In both the subextremal and extremal cases, an applicationof the fundamental theorem
of calculus yields 0 = Q̃T (−∞) − Q̃T (+∞). Thus, if |a| < M

0 = Q̃T (−∞) − Q̃T (+∞)

= 1

2

(
r+

r+ − r−
|ũ′(−∞)|2 + r+ − r−

r+
ω2|ũ(−∞)|2

)
+
1

2

(
|ũ′(+∞)|2 + ω2|ũ(+∞)|2

)
,

by the boundary conditions of ũ obtained in statement 4 of Proposition 3.8, and, for
|a| = M , if additionally ω(ω − mω+) < 0

0 = Q̃T (−∞) − Q̃T (+∞) = 1

2

(
3|ũ′(−∞)|2 + 1

3
ω2|ũ(−∞)|2

)
,

or if ω(ω − mω+) > 0

0 = 2Q̃T (−∞) − 2Q̃T (+∞)

= 1

4|ω|√2Mω(ω − mω+)
|(x1/4ũ′)(+∞)|2 + 4|ω|√2Mω(ω − mω+)|(x−1/4ũ)(+∞)|2

+ 3|ũ′(−∞)|2 + 1

3
ω2|ũ(−∞)|2,

by the boundary conditions of ũ obtained in statement 4 of Proposition 3.1. Since ũ
and ũ′ are bounded functions (statement 3 of Propositions 3.1 and 3.8), we can apply
Lemma 4.1 to conclude that ũ vanishes identically. From injectivity of the map R �→ ũ,
it follows that R must vanish identically, which contradicts the assumption that it is the
radial component of a (nontrivial) mode solution. ��
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4.3. Mode stability for s > 0. Proof of Theorems 4.1 and 4.2 for s > 0 Fix M >

0, |a| ≤ M and s ∈ 1
2Z>0. Fix an admissible frequency triple (ω,m, λ).

Let R[s], (aω)
mλ (r) be a nontrival outgoing solution to the radial ODE (2.10) with inho-

mogeneity F̂ [s], (aω)
mλ ≡ 0 (see Definition 2.4). Then, we can generate a nonzero solution

to the radial ODE of opposite sign spin via the Teukolsky–Starobinsky identities (2.24),
according to Lemma 2.19. This contradicts the mode stability result for s < 0 obtained
in Sect. 4.2. ��

4.4. An alternative proof of mode stability for �ω > 0 for extremal Kerr. Indeed, in
this section, we will show that Theorem 4.2 for |a| < M implies Theorem 4.2 for
|a| = M , circumventing the need, in this case, for the novel integral transformation we
have previously introduced. We note that the the continuity argument we present makes
precise the argument suggested at the end of [CM19, Section VIII-B].
Alternative proof of Theorem 4.2 for |a| = M Fix M > 0 and s ∈ 1

2Z. Let (ω,m, λ) be

an admissible frequency triple with �ω > 0 and R := R[s], (aω)
mλ be a nontrivial solution

to the radial ODE (2.10) with the boundary condition at the horizon in Definition 2.4.
By (2.11), for fixed s and m, dropping superscripts,

R(r) = Z(a, ω, λ)RI+(r) + Z(a, ω, λ)RI−(r)

for some complex Z and Z . From the proofs given in [HW74], which can be trivially
extended to yield statements in the full range |a| ≤ M , it follows that

Theorem 4.3 [HW74]. Fix M > 0, s ∈ 1
2Z and an admissible frequency parameter m.

Then, for (a, ω, λ) ∈ [−M, M] × C × C such that

2M
(
M2 +

√
M2 − a2

)
ω �= am − i |s − 1|

√
M2 − a2 − i t, for any t ∈ [0,∞),

Z is analytic in λ (fixing a and ω), analytic in ω (fixing a and λ) and continuous in a
(fixing λ and ω).

For R to be the radial component of a mode solution (in particular, for it to be an
outgoing solution of the radial ODE), a and ω must be such that Z vanishes. Suppose
there is a zero of Za0 for |a0| = M at (ω, λ) = (ω0, λ0)with�ω0 > 0 and�(λ0ω0) > σ .
In any compact set of parameters (a, ω) for which the conclusion of Theorem 4.3 holds,
Z is a uniformly continuous function of the two variables: thus, for any ε > 0 fixed
independently of a and ω,

∃δ > 0 such that |a − a0| < δ and ω ∈ B|ω0|/2(ω0) implies |Za0(ω) − Za(ω)| < ε.

Now, since Za0(ω) is an analytic function ofω, its zeros are isolated points. Thus, we can
certainly find some σ ′ < |ω0|/2 such that |Za0 | > ε > |Za0 − Za | for ω ∈ ∂Bσ ′(ω0).
We further tighten the ball by ensuring that (ω,m, λ0) is still an admissible frequency
triple for any ω ∈ ∂Bσ ′(ω0):

� (λ0ω) > σ − |λ0|σ ′ > 0.

ByRouché’s theorem (see e.g. [FL12]), Za will also have a zero in this ball.We conclude
that, if there is a mode in the upper half plane for |a0| = M , then there must exist a mode
in the upper half plane for |a| = M − δ/2, which contradicts the statement of Theorem
4.2 in the case |a| < M (proven in [Whi89]). ��
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Remark 4.3. Note that in the previous proof, we have made use of the fact that the mode
stability results we can prove hold for more general frequency parameters λ than the
angular eigenvalue arising from the separation constant. Hence, we have not shown that,
for �ω ≥ 0, Theorem 1.1 implies Theorem 1.2. Such an implication would appear to be
significantly more difficult to obtain, given that, for complex ω, the angular eigenvalues,
and hence Z , become multi-valued complex functions of a and ω.

5. Quantitative Mode Stability on the Real Axis and a Scattering Theory for the
Teukolsky Equation

As in [Shl15], mode stability for the Teukolsky equation can be made into a quantitative
statement, which is the goal of this section. In Sect. 5.1, we state the main result, Theo-
rem 5.1, which we prove in Sect. 5.4, with the aid of some estimates, given in Sect. 5.3,
on the ODEs for the previously introduced integral tranformations. We also provide an
application in the context of scattering theory in Sect. 5.2.

5.1. Statement of the main theorem. Recall Definition 2.3 and (2.15) for u[s]H+ and u[s]I+ ,
which are uniquely defined solutions of the homogeneous radial ODE (2.13).

Definition 5.1. Fix M > 0, |a| ≤ M and s ∈ 1
2Z. For an admissible frequency triple

(ω,m, λ) with real ω, we define W[s](ω,m, λ) to be the Wronskian of u[s]H+ and u[s]I+

W[s](ω,m, λ) :=
(
u[s]I+

)′ · (u[s]H+

)
−
(
u[s]H+

)′ · (u[s]I+

)
. (5.1)

Remark 5.1. Note that W[s] in Definition 5.1 is independent of r∗ due to the fact that
u[s]I+ and u[s]H+ satisfy the same second order ODE which does not involve first order
derivatives in r∗.

There is a non-trivial solution to the homogeneous radial ODE (2.13) (i.e. uH+ and
uI+ are linearly dependent) if and only ifW = 0 ⇔ ∣∣W−1

∣∣ = ∞. The results shown in
the previous section immediately imply

Corollary 5.1 (of Theorem 4.1). Fix M > 0, |a| ≤ M and s ∈ 1
2Z. For any admissible

frequency triple (ω,m, λ) with respect to s and a,

W[s](ω,m, λ) �= 0.

Consequently, on any compact set of frequencies where Theorem 4.1 holds, there is a
real number G > 0 such that ∣∣∣W[s]

∣∣∣−1 ≤ G < ∞.

Quantitative mode stability consists of showing that, in a bounded frequency regime,
the constant G can be explicitly determined in terms of the compact set of frequencies,
the spin s characterizing the Teukolsky equation, and the black hole parameters. For
subextremalKerr black hole spacetimes (|a| < M), such a boundwas attained in [Shl15],
with a constant that degenerated as |a| → M . A careful manipulation of the integral
transformations introduced in Sect. 3.1 will enable us to upgrade Theorem 4.1 to a
quantitative statement which is uniform in the specific angular momentum of a Kerr
black hole:
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Theorem 5.1. Fix M > 0 and s ∈ 1
2Z. LetA be a set of frequency parameters (ω,m, λ)

admissible with respect to s such that ω is real and

CA := sup
(a,ω,m,l)∈[−M,M]×A

(
|ω| + |ω|−1 +

∣∣∣ω − am

2M2

∣∣∣−1
δ|a|,M + |m| + |λ|

)
< ∞,

where δ|a|,M is the Kronecker delta. Then

sup
(ω,m, λ)∈A

∣∣∣W[s]
∣∣∣−1 ≤ G(CA, M, |s|) < ∞, (5.2)

where G will be given in an explicitly computable manner by (5.11), respectively.

Together with Theorem 4.3, asW[s] = 2iωZ , we can infer that, away from any of the
problematic frequencies already identified, the Wronskian is continuous in the extremal
limit:

Corollary 5.2 (of Theorem 4.3 and 5.1). Fix M > 0, |a| ≤ M and s ∈ 1
2Z. Then,

for each real m and λ admissible with respect to s, the Wronskian W[s](ω,m, λ) is
continuous in ω for every ω ∈ R admissible with respect to a.

5.2. Application to scattering theory. A simple corollary from Theorem 5.1 concerns
the transmission and reflection coefficients for the radial ODE. We begin with a lemma
to define these objects:

Lemma 5.2 (Transmission and reflection coefficients). For admissible frequency triples
(ω,m, λ) with ω ∈ R\{0,mω+} for whichW[s](ω,m, λ) �= 0, there exists a unique set
of complex numbers T[s](ω,m, λ), T̃[s](ω,m, λ),R[s](ω,m, λ) and R̃[s](ω,m, λ) such
that, if s ≥ 0

T[s]

−i(ω − mω+)
u[s]H+ = R[s]

iω
u[s]I+ +

1

iω
u[s]I− ,

T̃[s]

iω
u[s]I+ = R̃[s]

−i(ω − mω+)
u[s]H+ +

1

−i(ω − mω+)
u[s]H− , (5.3)

and, if s < 0,

T̃[s]

−i(ω − mω+)
u[s]H+ = R̃[s]

iω
u[s]I+ +

1

iω
u[s]I− ,

T[s]

iω
u[s]I+ = R[s]

−i(ω − mω+)
u[s]H+ +

1

−i(ω − mω+)
u[s]H− . (5.4)

We say thatR[s] and R̃[s] are reflection coefficients and that T[s] and T̃[s] are transmis-
sion coefficients.
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Proof. If W[s] �= 0, we can solve these equations for the transmission and reflection
coefficients using the definition of W[s]. We obtain

T[s](ω,m, λ) = −ω − mω+

ω

1

W[s] W
[
u[s]I− , u[s]I+

]
= −2i(ω − mω+)

W[s] ,

T̃[s](ω,m, λ) = ω

ω − mω+

1

W[s] W
[
u[s]H− , u[s]H+

]
= − 2iω

W[s] ,

R[s](ω,m, λ) = 1

W[s] W
[
u[+s]I− , u[s]H+

]
= 1

W[s] W
[
u[−s]
I+ , u[s]H+

]
,

R̃[s](ω,m, λ) = − 1

W[s] W
[
u[s]H− , u[s]I+

]
= − 1

W[s] W
[
u[−s]
H+ , u[s]I+

]
, (5.5)

where W [y1, y2] := y1y′2 − y2y′1 denotes a Wronskian, for s ≥ 0. For s < 0, the same
hold interchanging the tilded with non-tilded coefficients. We have further simplified
these expressions by computing theWronskiansW in the definitions of the transmission
coefficients directly from the asymptotic expansions of u[s]I+ and u

[s]
H+ and Definition 2.3:

W
[
u[s]I− , u[s]I+

]
= 2iω,

W
[
u[s]H− , u[s]H+

]
= −2i(ω − mω+).

By the considerations in Sect. 2.4.2, W
[
u[−s]
I+ , u[s]H+

]
and W

[
u[−s]
H+ , u[s]I+

]
are con-

served in r∗. Hence, the transmission and reflection coefficients are independent of r∗.
��

We recall that, by Theorem 4.1, there is a lower bound on W in a compact range
of frequencies where the theorem applies, hence from (5.5) one can infer immediately
that there is an upper bound for the transmission and reflection coefficients in such a
frequency range. The goal of this section is to make the latter bound explicit in the
frequency range and the black hole parameters:

Corollary 5.3 (of Theorem 5.1). Fix M > 0 and s ∈ {
0,± 1

2 ,±1,± 3
2 ,±2

}
. Let B ⊂ A

and B̃ ⊂ A be sets of frequency parameters (ω,m, λ) which are admissible with respect
to s such that ω is real, Cs(ω,m, λ) > 0 and

CB := sup
(a,ω,m,l)∈[−M,M]×B

(
|ω| + |ω|−1 + |ω − mω+|−1 + |m| + |λ|

+|Cs(ω,m, λ)|−1
)

< ∞,

CB̃ := sup
(a,ω,m,l)∈[−M,M]×B̃

(
|ω| + |ω|−1 + |ω − mω+|−1 + |m| + |λ|

)
< ∞,

where Cs(ω,m, λ) is the radial Teukolsky–Starobinsky constant defined by Proposi-
tion 2.10. Then, ∣∣∣T[s]

∣∣∣2 + ∣∣∣R[s]
∣∣∣2 ≤ G(CB, M, |s|) < ∞,

∣∣∣T̃[s]
∣∣∣2 +

∣∣∣R̃[s]
∣∣∣2 ≤ G(CB̃, M, |s|) < ∞,

where G can be given explicitly. For |a| = 0 or s half-integer, G ≡ 1.
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Remark 5.3. In general, B � B̃. However, when |s| = 2, if we take λ to be a sepa-
ration constant, λ = λ

[s], (aω)
ml for some admissible l (see Proposition 2.1), by (2.23)

in Remark 2.12, we must have |C2| > 0 if ω �= 0, so B = B̃. We recall that, in the
case |s| = 2, the Teukolsky equation describes the dynamics of the extremal curvature
components under a linearization of the Einstein equation around the Kerr black hole
solution, making this spin especially meaningful in the study of the Kerr black hole
spacetimes.

Proof of Corollary 5.3. We begin by using the energy identities in Propositions 2.20
and 2.21 to relate the transmission and reflection coefficients. For the non-tilded map
(Fig. 3a), set

• if |a| = M and s is an integer or if s = 0,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R[s]
∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 =
[

ω

2M2(ω − mω+)

]2s ∣∣∣T[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
I+

∣∣∣2 =
(

ω − mω+

ω

)2 [2M2(ω − mω+)

ω

]2s ∣∣∣T[−s]
∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

[4M2(ω − mω+)]4s
∣∣∣R[−s]

∣∣∣2 ;

• if |a| = M and s is a half-integer,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R[s]
∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 = 2M2
[

ω

2M2(ω − mω+)

]2s+1 ∣∣∣T[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
I+

∣∣∣2 = 2M2
[

ω

2M2(ω − mω+)

]2s+1 ∣∣∣T[−s]
∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

[4M2(ω − mω+)]4s
∣∣∣R[−s]

∣∣∣2 ;

• if |a| < M and s is an integer, setting products denoted by
∏

to be the identity
whenever s = 1,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R[s]
∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 = 4|ξ |2∏s−1
j=1

[
4|ξ |2 + (s − j)2

]
(2ω)2s

∣∣∣T[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,
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∣∣∣a[−s]
I+

∣∣∣2 = (2ω)2s−2∏s−1
j=1

[
4|ξ |2 + (s − j)2

]
(
r+ − r−
2Mr+

)2 ∣∣∣T[−s]
∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

4|ξ |2(4|ξ |2 + s2)
∏s−1

j=1

[
4|ξ |2 + (s − j)2

]2
∣∣∣R[−s]

∣∣∣2 ;

• if |a| < M and s is a half-integer, setting products denoted by
∏

to be the identity
whenever s = 1/2,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R[s]
∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 =
∏�s�

j=1

[
4|ξ |2 + (s − j)2

]
(2ω)2s−1

2Mr+
r+ − r−

∣∣∣T[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
I+

∣∣∣2 = (2ω)2s−1

∏�s�
j=1

[
4|ξ |2 + (s − j)2

] r+ − r−
2Mr+

∣∣∣T[−s]
∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

(4|ξ |2 + s2)
∏�s�

j=1

[
4|ξ |2 + (s − j)2

]2
∣∣∣R[−s]

∣∣∣2 .

For the tilded map (Fig. 3b), set

• if |a| = M and s is an integer or if s = 0,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

[4M2(ω − mω+)]4s
∣∣∣R̃[s]

∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 =
[
2M2(ω − mω+)

ω

]2s ∣∣∣T̃[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
I+

∣∣∣2 =
[

ω

2M2(ω − mω+)

]2s ∣∣∣T̃[−s]
∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R̃[−s]
∣∣∣2 ;

• if |a| = M and s is a half-integer,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

[4M2(ω − mω+)]4s
∣∣∣R̃[s]

∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 = 1

2M2

[
2M2(ω − mω+)

ω

]2s+1 ∣∣∣T̃[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
I+

∣∣∣2 = 1

2M2

[
ω

2M2(ω − mω+)

]2s+1 ∣∣∣T̃[−s]
∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R̃[−s]
∣∣∣2 ;
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• if |a| < M and s is an integer, setting products denoted by
∏

to be the identity
whenever s = 1,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

4|ξ |2(4|ξ |2 + s2)
∏s−1

j=1

[
4|ξ |2 + (s − j)2

]2
∣∣∣R̃[s]

∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 = (4|ξ |2 + s2)
∏s−1

j=1

[
4|ξ |2 + (s − j)2

]
(2ω)2s

(
r+ − r−
2Mr+

)2 ∣∣∣T̃[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
I+

∣∣∣2 = 4|ξ |2(2ω)2s

(4|ξ |2 + s2)
∏s−1

j=1

[
4|ξ |2 + (s − j)2

]
∣∣∣T̃[−s]

∣∣∣2 ,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R̃[−s]
∣∣∣2 ;

• if |a| < M and s is a half-integer, setting products denoted by
∏

to be the identity
whenever s = 1/2,

a[s]H− = 0,
∣∣∣a[s]I−

∣∣∣ = 1,
∣∣∣a[s]I+

∣∣∣2 = Cs

(4|ξ |2 + s2)
∏�s�

j=1

[
4|ξ |2 + (s − j)2

]2
∣∣∣R̃[s]

∣∣∣2 ,

∣∣∣a[s]H+

∣∣∣2 = (4|ξ |2 + s2)
∏�s�

j=1

[
4|ξ |2 + (s − j)2

]
(2ω)2s+1

r+ − r−
2Mr+

∣∣∣T̃[s]
∣∣∣2 ,

∣∣∣a[−s]
H−

∣∣∣ = 1, a[−s]
I− = 0,

∣∣∣a[−s]
H+

∣∣∣2 = Cs

(2ω)4s

∣∣∣R̃[−s]
∣∣∣2 ,

∣∣∣a[−s]
I+

∣∣∣2 = (2ω)2s+1

(4|ξ |2 + s2)
∏�s�

j=1

[
4|ξ |2 + (s − j)2

] r+ − r−
2Mr+

∣∣∣T̃[−s]
∣∣∣2 .

We deduce that, if s is an integer,
∣∣∣R[s]

∣∣∣2 + ω − mω+

ω

∣∣∣T[s]
∣∣∣2 = 1,

∣∣∣R̃[s]
∣∣∣2 + ω

ω − mω+

∣∣∣T̃[s]
∣∣∣2 = 1, (5.6)

and if s is half-integer or if a = 0,
∣∣∣R[s]

∣∣∣2 +
∣∣∣T[s]

∣∣∣2 = 1,
∣∣∣R̃[s]

∣∣∣2 +
∣∣∣T̃[s]

∣∣∣2 = 1. (5.7)

From (5.7), one can immediately obtain the bound G ≡ 1 in the case a = 0 or
s = 1/2. In the remaining cases, whenever the superradiant condition ω(ω−mω+) < 0
is met, the reflection coefficient can have absolute value greater than 1; however, noting
that boundedness of the transmission coefficients follows directly from the computation
(5.5) and its analogue for s < 0, together with Theorem 5.1, we can conclude using
(5.6). ��
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5.3. Estimates on the integral transformations. In this section,wepresent an estimate for
the transformed equation, which is one of the main ingredients in the proof of Theorem
5.1.

Proposition 5.4. Consider |a| ≤ M and let ũ be as defined in Proposition 3.1 for
|a| = M and as in Proposition 3.8 for |a| < M. Further define

ζ1(x) :=
{

(x − r+)(x − r−)(x2 + a2)−1 if |a| < M
(x − M)(x − 2M)(x2 + 2M2)−1 if |a| = M

,

functions f and g by

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1 if |a| < M

x−1/4 if a = M and ω(ω − mω+) > 0

x−1/4 exp
(
4
√−2Mω(ω − mω+)x

1/2
)

if a = M and ω(ω − mω+) ≤ 0

,

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

x2 if |a| < M

x2 if a = M and ω(ω − mω+) > 0

x5/2 exp
(
8
√−2Mω(ω − mω+)x

1/2
)

if a = M and ω(ω − mω+) ≤ 0

,

and a coordinate x∗ such that dx/dx∗ = ζ1 and x∗(3M) = 0.
For any (a, ω,m, λ) ∈ [−M, M] ×A, we have

|( f (x)ũ) (+∞)|2 ≤ G(CA, M, |s|)
∫ ∞

−∞
g(x)

∣∣∣H̃ ∣∣∣2 ζ1dx
∗, (5.8)

where the constant G(CA, M, |s|) is explicitly computable.
Remark 5.5. Proposition 5.4 gives an estimate for the boundary term of ũ as x → ∞
in terms of the inhomogeneity H̃ and an explicitly computable constant depending on
CA, M and |s|.

Moreover, note that, as long as F̂ [−s] is smooth and compactly supported far from the
horizon and away from r = ∞, H̃ (see definitions in Proposition 3.1 and Proposition 3.8)
must decay faster than any polynomial as x → ∞ (since it can be written as the a Fourier
transform of F̂ [−s] extended toR by zero); moreover, we can apply Lemma 3.6 to obtain
even more precise asymptotics for H̃ in the superradiant regime for the extremal case.
These considerations are enough to show that the right hand side of the estimate in
Proposition 5.4 is finite for F̂ [−s] smooth and compactly supported in r∗.

Proof of Proposition 5.4. Recall the definition of the h and y currents:

Q̃y(x∗) := y|ũ′|2 + yṼ |ũ|2, (Qy)′(x∗) = y′|ũ′|2 + (yṼ )′|u|2 + 2yζ1�
[
ũ′ H̃

]
,

Q̃h := h�
[
ũ′ũ

]
− 1

2
h′|ũ|2, (Q̃h)′ = h|ũ′|2 −

(
hṼ +

1

2
h′′
)
|ũ|2 + hζ1�(ũ H̃),

where the second identity in each line is obtained using (3.4) if |a| = M and (3.24) if
|a| < M . Throughout this proof, we will be heavily using the expressions for Ṽ and the
boundary conditions of ũ as obtained in Propositions 3.1 and 3.8, respectively.Moreover,
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we will use the notation �CA,M,|s| whenever it is understood that the left hand side can
be bounded by the product of the right hand side by an explicitly computable constant
depending on CA, M and |s|.
Estimate near the horizon. For the x∗ = −∞ end, we follow an identical approach to
that in Lemma 4.1. Decompose V̂ (x∗) := Ṽ (x∗) − ω2

0, where ω2
0 := Ṽ (−∞) > 0.

Define

ŷ(x∗) := − exp

(
−C1

∫ x∗

−∞
ζ1(r

∗)dr∗
)

,

where ζ1(x∗), already defined, is a fixed positive function. Consequently, ŷ′ > 0 in
(−∞,∞), ŷ(+∞) = 0 and ŷ(−∞) = −1. The fundamental theorem of calculus
implies
∫ ∞

−∞

(
ŷ′|ũ′|2 + [ŷ′ω2

0 − (ŷ V̂ )′]|ũ|2
)
dx∗ = 2Q̃T (−∞) −

∫ ∞

−∞
2 ŷζ1�

[
ũ′ H̃

]
dx∗,

as Qŷ(−∞) = −2Q̃T (−∞). The only term which can threaten this estimate on the left
hand side is (ŷ V̂ )′|u|2; however, this term cam be absorbed into the remaining ones on
the left hand side by making C1 large enough, as in the proof of Lemma 4.1. Thus, after
Cauchy–Schwarz on the integral with the inhomogeneity, we obtain

∫ ∞

−∞

(
ŷ′|ũ′|2 + ŷ′ω2

0|ũ|2
)
dx∗ �

∣∣∣Q̃T (−∞)

∣∣∣ +
∫ ∞

−∞
ζ1

∣∣∣H̃ ∣∣∣2 dx∗.
Estimate as x∗ → ∞, for |a| < M . For the x∗ = ∞ end in the subextremal case, we
follow the approach of [Shl15, Lemma 6.1]: define

y(x∗) := exp

(
−C2

∫ +∞

x∗
ζ2(r

∗)dr∗
)

,

where ζ2(x∗) is a fixed positive function which is identically 1 near x∗ = −∞ and is
(x∗)−2 near x∗ = +∞. In particular, y′ > 0 in (−∞,∞), y(+∞) = 1 and y(−∞) = 0.
The fundamental theorem of calculus implies
∫ ∞

−∞

(
y′|ũ′|2 + [y′ω2 − (yV̂ )′]|ũ|2

)
dx∗ = 2Q̃T (∞) −

∫ ∞

−∞
2yζ1�

[
ũ′ H̃

]
dx∗,

where V̂ (x) := Ṽ (x) − ω2 is O(x−1) as x → ∞. The only term which can threaten
this estimate is (yṼ )′|ũ|2. Let C3 be a large constant to be chosen later and χ be a
smooth function which is 1 on (−∞,C3] and 0 on [C3 + 1,∞). Define V̂1 := χ V̂ and
V̂2 := (1− χ)V̂ . For the Ṽ1 we can apply a similar trick as near the x∗ = −∞ end

∣∣∣∣
∫ ∞

−∞
(yV̂1)

′|ũ|2dx∗
∣∣∣∣ ≤

∫ ∞

−∞
2|y||ũ′||V̂1||ũ|dx∗

≤ 1

4

∫ ∞

−∞

⎡
⎣y′|ũ′|2 +

(
4C3

ωC2

∥∥∥∥∥
V̂χ

C3ζ2

∥∥∥∥∥∞
)2

y′ω2|ũ|2
⎤
⎦ dx∗,
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and for V̂2 we note that V̂ ′
2 has the same decay as ζ2, so

∣∣∣∣
∫ ∞

−∞
(yV̂2)

′|ũ|2dx∗
∣∣∣∣ ≤ 1

4

∫ ∞

−∞
y′ω2

[
‖r V̂2‖
C3ω2 +

∥∥∥∥∥
V̂ ′
2

ζ2C2ω2

∥∥∥∥∥∞
]
|ũ|2dx∗.

If we make C3 large and then take C2 " C3, after Cauchy–Schwarz on the integral with
the inhomogeneity, we obtain

∫ ∞

−∞

(
y′|ũ′|2 + y′ω2|ũ|2

)
dx∗ �

∣∣∣Q̃T (∞)

∣∣∣ +
∫ ∞

−∞
ζ−1
2 ζ 2

1

∣∣∣H̃ ∣∣∣2 dx∗

which, summing to the ŷ current estimate from before, yields

∫ ∞

−∞
x−2

[
|ũ′|2 + |ũ|2

]
ζ1dx

∗ �
∣∣∣Q̃T (∞)

∣∣∣ +
∫ ∞

−∞
x2
∣∣∣H̃ ∣∣∣2 ζ1dx

∗.

Estimate as x∗ → ∞, for |a| = M and ω(ω − mω+) > 0. For the extremal case, we
begin with the non-superradiant frequencies. Define

f̃ = − arctan(x),
d f̃

dx
= O(x−2),

d2 f̃

dx2
= O(x−3),

d3 f̃

dx3
= O(x−4).

Set f = f̃ χ for a smooth function χ which vanishes for x ≤ 3M and is identically 1
for x ≥ 4M . Then, we have Q̃h= f ′(±∞) + Q̃h= f (±∞) = 0, so an application of the
fundamental theorem of calculus yields

∫ ∞

−∞

[
2 f ′|ũ′|2 +

(
f Ṽ ′ − 1

2
f ′′′
)
|ũ|2

]
dx∗ = −

∫ ∞

−∞

[
2 f�

(
ũ′ H̃

)
+ f ′�

(
ũ H̃

)]
ζ1dx

∗,

We have

f Ṽ ′ − 1

2
f ′′′ =

(
4βγ/M

x2
arctan(x) + O(x−3)

)
as x → ∞,

but f Ṽ ′ − 1
2 f ′′′ may have a bad sign for x ∈ [3M, R1] with R1 large. By rescaling f ,

this term of indeterminate sign can be made small enough to be absorbed by the left
hand side of the ŷ estimate from before. Then, after Cauchy–Schwarz on the term with
an inhomogeneity, we obtain

∫ ∞

−∞
x−2

[
|ũ′|2 + |ũ|2

]
ζ1dx

∗ �
∫ ∞

−∞
x2|H̃ |2ζ1dx∗.

Estimate as x∗ → ∞, for |a| = M and ω(ω − mω+) < 0. Define h̃(x) by

h̃ := exp
(
8
√−βγ/Mx1/2

)
,

dh̃

dx
=
(
4
√−βγ/M

)
x−1/2h̃(x),

d2h̃

dx2
=
(
−16βγ/M − 2

√−βγ/Mx−1/2
)
x−1h̃(x),
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and ỹ(x) by

ỹ(x) := h̃(x)

4
√−βγ/M

[
x1/2 − A√−βγ/M

+ Cx−1/2
]

,

d ỹ

dx
= h̃(x)

[
1 +

1− 2A

8
√−βγ/M

x−1/2 + Cx−1 + O(x−3/2)

]
.

Set h = χ h̃(1 + Bx−1/2) and y = −χ ỹ for a smooth function χ which vanishes for
x ≤ 3M and is identically 1 for x ≥ 4M . Then

Q̃h(+∞) =
(
−2

√−βγ/M − 1

2
× 4

√−βγ/M

) ∣∣∣exp (4√−βγ/Mx1/2
)
x−1/4ũ

∣∣∣2 (∞)

= −4

√−βγ

M

∣∣∣exp (4√−βγ/Mx1/2
)
x−1/4ũ

∣∣∣2 (∞) = −4Q̃y(+∞),

Q̃h(−∞) = Q̃y(−∞) = (−∞) = 0.

Adding the y and h currents, an application of the fundamental theorem of calculus
yields

− 3

4
Q̃h(+∞) +

∫ ∞

−∞

[
(h + y′)|ũ|2 +

(
−hV − 1

2
h′′ + (yṼ )′

)
|ũ|2

]
dx∗

= −
∫ ∞

−∞
ζ1

{
2y�

[
ũ′ H̃

]
+ h�

[
ũ H̃

]}
dx∗,

where, as x → ∞,

h + y′ = h̃

[−1 + 2A + 8B

8
√−βγ/M

x−1/2 − Cx−1 + O(x−3/2)

]
,

and, recalling that

Ṽ = 4βγ/M

x
− L + 16βγ + α2

x2
+ O(x−2),

we have

− hV − 1

2
h′′ + (yṼ )′

= −1

2
(8B + 2A − 1)

√−βγ/Mh̃x−3/2

+ h̃

[(
− 3

16
+

A

2
+ 3B + L + α2 +

4βγ

M
(4M − C)

)
x−2 + O(x−5/2)

]
as x → ∞.

Choosing

A = 1

4
+ 4(L + α2) + 96βγ, B = 3

16
− (L + α2) − 24βγ, C = −4M,
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we obtain finally

h + y′ = h̃

[
4M

x
+ O(x−3/2)

]
as x → ∞,

−hV − 1

2
h′′ + (yṼ )′ = h̃

[
1

2x2
+ O(x−5/2)

]
as x → ∞.

As before, these weights may have a bad sign for x ∈ [3M, R1], where R1 is some
large constant. By rescaling h and y, this term of indeterminate sign can be made small
enough that it can be absorbed by the ŷ estimate’s left hand side. Then, after Cauchy–
Schwarz on the term with an inhomogeneity, we obtain

∫ ∞

−∞
x−3/2

[∣∣∣exp (4√−βγ/Mx1/2
)
x1/4ũ′

∣∣∣2 +
∣∣∣exp (4√−βγ/Mx1/2

)
x−1/4ũ

∣∣∣2
]

ζ1dx
∗

+
∣∣∣[exp (4√−βγ/Mx1/2

)
x−1/4ũ

]
(+∞)

∣∣∣2

�
∣∣∣Q̃T (−∞)

∣∣∣ +
∫ ∞

−∞
x5/2

∣∣∣exp (4√−βγ/Mx1/2
)
x−1/4 H̃∗

∣∣∣2 ζ1dx
∗.

Note that the estimate holds even if ω(ω − mω+) = 0.
The T estimate for |a| ≤ M . Consider the Q̃T current,

Q̃T := �
(
ũ′ωũ

)
,

(
Q̃T

)′ := ζ1ω�H̃u,

where the second identity is obtained from (3.24) and (3.4). We recall that

Q̃T (∞) =

⎧⎪⎨
⎪⎩

ω2 |ũ(∞)|2 , if |a| ≤ M

4|ω|√2Mω(ω − mω+)
∣∣(x−1/4ũ

)
(∞)

∣∣2 , if |a| = M and ω(ω − mω+) > 0

0, if |a| = M and ω(ω − mω+) < 0

,

using the boundary conditions in Propositions 3.1 and 3.8.
By the fundamental theorem of calculus,

∣∣∣Q̃T (∞)

∣∣∣ + ∣∣∣Q̃T (−∞)

∣∣∣ �
∫ ∞

−∞
�
(
ζ1 H̃ ũ

)
dx∗,

whichwe canCauchy–Schwarz in themost appropriateway to combinewith the previous
estimates to finish the proof. ��

5.4. Proof of Theorem 5.1. In this section, we present the proof of Theorem 5.1. We
first note that the definition of the Wronskian via (5.1) cannot easily yield Theorem 5.1,
because the representations we have for u[s]I+ and u

[s]
I+ are merely asymptotic near r = ∞

and r = r+, respectively. However, the Wronskian can be used to construct a Green’s
function for the inhomogeneous version of the radial ODE (2.10):
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Lemma 5.6. Let F̂ [s] be compactly supported in (r+,∞) and set H [s] = �1+s/2(r2 +
a2)−3/2 F̂ [s]. Then, if

(
W[s])−1

is finite,

u[s](r∗)

= 1

W[s]

[
u[s]I+(r

∗)
∫ r∗

−∞
u[s]H+(x

∗)H [s](x∗)dx∗ + u[s]H+(r
∗)
∫ ∞

r∗
u[s]I+(x

∗)H [s](x∗)dx∗
]

solves the inhomogenous radial ODE (2.13) with boundary conditions compatible with
those in Definition 2.4.

Hence, if we choose a particular inhomogeneity and obtain suitable estimates on the
solution to the the radial ODEwith outgoing boundary condition and the inhomogeneity
of our choice, we also obtain a lower bound onW. This will be our strategy:

Proof of Theorem 5.1. We will begin by establishing the strong bound in A. Let s > 0
and (ω,m, λ) be any admissible frequency triple in the bounded range A. Throughout
the proof, we will use the notation�CA,M,|s| whenever it is understood that the left hand
side can be bounded by the product of the right hand side by an explicitly computable
constant depending on CA, M and |s|, and ∼CA,M,|s| when the left hand side can also
be bounded by the right hand side in this way.

For s ≥ 0, suppose we specify a smooth function H [−s], compactly supported away
from r+. Let u[−s] be the solution to the radial ODE (2.13) with inhomogeneity H [−s]
and boundary conditions compatible with those in Definition 2.4. Using the Teukolsky–
Starobinsky identities (2.14) to define

u[+s] := �s/2(r2 + a2)1/2
(
D−

0

)2s (
�s/2(r2 + a2)−1/2u[−s]) ,

we obtain a solution to the radial ODE of spin +s with inhomogeneity (see Lemma 2.17)

H [+s] := (r2 + a2)1/2�s/2 (D+
0

)2s (
�s/2(r2 + a2)−1/2H [−s]) .

Moreover, assuming the support of H [−s] is sufficiently far from r∗ = ±∞ that it does
not affect the first s coefficients of the asymptotic representation for R[−s] at either
end, we conclude, by the proof of Lemma 2.19, that u[+s] also has outgoing boundary
conditions. We can thus write, by Lemma 5.6,

∣∣∣∣
∫ ∞

−∞
u[−s]
I+ (r∗)H [−s](r∗)dr∗

∣∣∣∣
2 (

W[−s])−2 =
∣∣∣(�−s/2u[−s]) (−∞)

∣∣∣2
∣∣∣∣
∫ ∞

−∞
u[+s]I+ (r2 + a2)1/2�s/2 (D+

0

)2s (
�s/2(r2 + a2)−1/2H [−s]) dr∗

∣∣∣∣
2 (

W[+s])−2

=
∣∣∣((r2 + a2)1/2

(
D−

0

)2s (
�s/2(r2 + a2)−1/2u[−s])) (−∞)

∣∣∣2 .

(5.9)

As the potential in the ODE for u is, in general, complex, obtaining such bounds
directly from the radial ODE (2.13) can be quite difficult (even for a = 0, this is not the
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usual strategy in the literature, see [DHR19b]). The key estimate to circumvent these
issues was obtained in statements 4(b) of Proposition 3.1 and 3.8:

∣∣∣�−s/2u[−s](−∞)

∣∣∣2 ∼CA,M,|s|
∣∣( f (x∗)ũ)(+∞)

∣∣2 , (5.10)

for some appropriate f determined in Proposition 5.4. It follows from Lemma 2.19 that

∣∣∣((r2 + a2)1/2
(
D−

0

)2s (
�s/2(r2 + a2)−1/2u[−s])) (−∞)

∣∣∣2 ∼CA,M,|s|
∣∣( f (x∗)ũ)(+∞)

∣∣2 .

It immediately follows that, in the frequency parameter range A, Proposition 5.4 an
estimate, depending on M, |s| and CA, for the boundary terms at r∗ = −∞ in the right
hand side of (5.9) in terms of the transformed inhomogeneity H̃ and thus in terms of
H [−s].

Hence, to obtain an explicit lower bound for W, we have to construct a suitable
smooth H [−s] which is compactly supported very far from r = r+ and r = ∞ (so that
the first s coefficients of the series expansion for u[−s] at either end are the same as
for a homogeneous solution of outgoing boundary conditions) so that the left and right
hand sides of (5.9) are finite. For the right hand side, the assumption on the support is
sufficient, by Remark 5.5. For the left hand side, we must work a bit more.

Recall that, for r > r+, we can determine the precise behavior of uI+ , against which
the inhomogeneities are integrated:

u[±s]
I+ = eiωr r2iMω∓s

[
2s∑
k=0

c[±s]
k r−k + O

(
r−2s−1

)]
,

for c[±s]
0 = 1, some complex c[±s]

k = c[±s]
k (ω,m, λ) and where the remainder can be

explicity estimated (by adapting the proof of [Shl14, Lemma C1], for instance). Fix
R1 and R2 such that r+ � R1 < R2, 1/R2 " 0, fix a bump function χ supported in
[R1, R2] and choose b[−s]

k for k = 0, . . . , s. Set

H [−s] =
s∑

k=0

b[−s]
k e−iωr r−2iMω−s−kχ ;

then

H [+s] = e−iωr r−2iMω

[
s∑

k=0

b[+s]k r s−kχ + 1suppχ ′h

]
,
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where, by a proof similar to Lemma 2.19, we find b[+s]k and h can be explicitly computed

in terms of b[−s]
k , ω,m and s. We thus have

u[−s]
I+ H [−s] =

s∑
k=0

⎡
⎣ 2s∑

j=0

b[−s]
k c[−s]

j r−k− j + O
(
r−2s−k−1

)⎤⎦χ,

u[+s]I+ H [+s] =
s∑

k=0

⎡
⎣ 2s∑

j=0

b[+s]k c[+s]j r−k− j + O
(
r−2s−1−k

)⎤⎦χ

+ h

⎡
⎣ 2s∑

j=0

c[+s]j r−s− j + O(r−3s−1)

⎤
⎦1suppχ ′ ,

which is certainly integrable and where the terms denoted by O can be explicitly com-
puted. With this choice of H [−s], we finally obtain from (5.9)

(
W[±s])−2

�CA,M,|s|
[∫ ∞

2M
g(x)

∣∣∣H̃ ∣∣∣2 dx
]
×

×
⎡
⎣∫ R2

R1

s∑
k=0

∣∣∣∣∣∣
2s∑
j=0

b[±s]
k c[±s]

j (ω,m, λ)r−k− j + Oω,m,λ

(
r−2s−1−k

)∣∣∣∣∣∣ dr
∗

+
∫ R2

R1

|h|
2s∑
j=0

∣∣∣c[+s]j (ω,m, l)r−s− j + Oω,m,λ

(
r−3s−1

)∣∣∣ dr∗
⎤
⎦
−2

�CA,M,|s| 1, (5.11)

where g(x) can be read off the statement of Proposition 5.4 and H̃ is given by (3.5)
or (3.25) if |a| < M , under the identification F̂ = �−1+s/2(r2 + a2)3/2H [−s]. We
remark that the bound (5.11) can be explicitly computed because R1, R2, b

[±s]
k and

thus H [−s] have been chosen and, moreover, c[±s]
j (ω,m, λ), h and the dependence of

Oω,m,λ

(
r−2s−1−k

)
on the frequency parameters are all determined uniquely by the

condition that c[±s]
0 = 1 and the theory of asymptotic analysis for the radial ODE. ��

6. Fixed-Frequency Solutions at Zero Frequency and at the Superradiance
Threshold

In this section, we discuss the fixed-frequency solutions characterized by the real fre-
quencies our Theorems 4.1 and 5.1 do not cover: ω = 0 and, if |a| = M , ω = mω+.

The most interesting question concerning such frequencies is determining what is
the behavior of the Wronskian from Definition 5.1 (and, hence, of the transmission and
reflection coefficients from Definition 5.2) in the limit ω → 0 and, if |a| = M, ω →
mω+. As there is no a priori way of defining mode solutions at these frequencies that
would correspond to “continuous limits” of Definition 2.5 when ω → 0 or ω → mω+;
thus, this question is out of the scope of mode stability. However, in this section, we
attempt to shed some light into these these limits: in Sect. 6.1, we discuss finite energy
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solutions at these frequencies, highlighting the similarities between the two limits; in
Sect. 6.2, we obtain a quantitative lower bound on the decay rate for the Wronskian in
the double limit ω → mω+ and a → M .

6.1. Finite energy solutions. Though there is no definition of mode solution that can be
a priori seen as continuous in the limits ω → 0 and, if |a| = M, ω → mω+, one can
nonetheless investigate the existence of finite energy solutions at such frequencies. The
following two propositions show that, if am �= 0, there there are no nontrivial solutions to
the homogeneous radialODE (2.10)withfinite energy along ahyperboloidal hypersuface
(see Fig. 1b).

Proposition 6.1. Fix s ∈ 1
2Z, M > 0 and |a| ≤ M. Let m be an admissible parameter

with respect to s. Then, if ω = 0 and am �= 0 there is no nontrivial solution to the
homogeneous radial ODE (2.10) with finite energy along a hyperboloidal hypersuface
(see Fig. 1b).

Proof. For ω = 0, the homogeneous radial ODE (2.10) has a regular singularity at
r = ∞ (contrast with the irregular singularity for ω �= 0). An asymptotic analysis
shows that solutions to the homogeneous radial ODE (2.10) are given by (see [Olv73,
Chapter 5], e.g.) the following expansion as r → ∞,

R[s](r) = r

(
s+ 1

2

)
−
√
s2+ 1

4 +λ
[
c1 + O(r−1)

]
+ r

(
s+ 1

2

)
+
√
s2+ 1

4 +λ
[
c2 + O(r−1)

]
,

if
√
s2 + 1

4 + λ �= 0, and if,
√
s2 + 1

4 + λ = 0,

R[s](r) = rs+
1
2

[c1
r

− c2 log r + O(r−2)
]
.

By [Shl15, Lemma D.4], we find that, for s = 0, R corresponds to a solution of finite
energy if and only if ∫ ∞

r0

∣∣∣∣ �

r2 + a2
d

dr
R

∣∣∣∣
2

r2dr < ∞

for some r0 > 3M large, which holds only if λ + 1/4 > 1 and c2 = 0. The finite
energy condition can be generalized for s ∈ 1

2Z, if we take into account the properties
of the algebraically special frame used to derive the Teukolsky equations: we require
λ + s2 + 1/4 ≥ (1 + |s|)2. (We note that, choosing λ = λ from Proposition 2.1, we have
λ + s2 = l(l + 1) if ω = 0, hence λ + s2 + 1/4 ≥ (1 + |s|)2 ⇔ l ≥ |s| + 1.) For s ≥ 0,
the Wronskian in Proposition 2.21 becomes

W
[
u[+s], u[−s]

]
= �−s+1

(
d

dr

(
�s R[+s]) R[−s] −

(
�s R[+s]) d

dr
R[−s]

)

= 2

(
1 + 2s −

√
λ + s2 + 1/4

)
r2s−2

√
λ+s2+1/4 as r → ∞,

so, under the finite energy assumption,W (+∞) = 0. By conservation of theWronskian,
(see proof of Proposition 2.21)

0 = W (∞) = W (−∞) = 2imω+|�±s/2u[±s]|(−∞).

If a �= 0 and m �= 0, we can use a unique continuation argument as in Lemma 4.1 to
infer that u ≡ 0. ��
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Proposition 6.2. Fix s ∈ 1
2Z, M > 0 and |a| = M. Let m be an admissible parameter

with respect to s. Then, if ω = mω+ and m �= 0 there is no nontrivial solution to the
homogeneous radial ODE (2.10) with finite energy along a hyperboloidal hypersurface
(see Fig. 1b).

Proof. For ω = mω+, the homogeneous radial ODE (2.10) has a regular singularity
at r = ∞ (contrast with the irregular singularity for ω �= 0). An asymptotic analysis
shows that solutions to the homogeneous radial ODE (2.10) are given by (see [Olv73,
Chapter 5], e.g.) the following expansion as r → M ,

R[s](r) = (r − M)
−
(
s+ 1

2

)
+
√
s2+ 1

4 +λ+M2ω2−2m2 [
c1 + O(r−1)

]

+ (r − M)
−
(
s+ 1

2

)
−
√
s2+ 1

4 +λ+M2ω2−2m2 [
c2 + O(r−1)

]
,

if
√
s2 + 1

4 + λ �= 0, and if,
√
s2 + 1

4 + λ = 0,

R[s](r) = (r − M)−s− 1
2

[
c1(r − M) + c2 log(r − M) + O(r−2)

]
.

By the proof of Lemma 2.7, in Kerr-star coordinates, which are regular along H+

α[s](r) = (r − M)2iMωR[s](r)e−iωt∗eimφ∗
S[s], (aω)
mλ (θ)

For s = 0, the energy flux along the future event horizon controls the integral of
∣∣∂∗t α

∣∣2
along H+. Hence, a finite energy solution must have

∣∣∂∗t α
∣∣ < ∞ at r = M , so we

require c2 = 0 and λ + M2ω2 − 2m2 ≥ 0. If we take into account the properties of the
algebraically special frame used to derive the Teukolsky equations, the latter condition
is generalized for s ∈ 1

2Z as follows (see also [RHB17]):√
s2 +

1

4
+ λ + M2ω2 − 2m2 ≥ |s| + 1

2
⇔ λ + M2ω2 − 2m2 + s2 ≥ 0.

For s ≥ 0, the Wronskian in Proposition 2.21 becomes

W
[
u[+s], u[−s]

]
= �−s+1

(
d

dr

(
�s R[+s]) R[−s] −

(
�s R[+s]) d

dr
R[−s]

)

= 2

(
−1

2
+ s +

√
s2 +

1

4
+ λ + M2ω2 − 2m2

)
×

× (r − M)
2
√
s2+ 1

4 +λ+M2ω2−2m2
(1 + O(r − M)) ,

as r → M , so, under the finite energy assumption, W (−∞) = 0. By conservation of
the Wronskian, (see proof of Proposition 2.21)

0 = W (−∞) = W (+∞) = 2iω
∣∣∣�±s/2u[±s]

∣∣∣ (+∞).

If ω = mω+ �= 0, we can use a unique continuation argument as in Lemma 4.1 to infer
that u ≡ 0. ��

It is important to keep in mind that, while providing some reassurance, Proposi-
tions 6.1 and 6.2 cannot be used to infer quantitative bounds on the Wronskian
from Definition 5.1 in the limits ω �= 0 or ω �= mω+, if |a| = M , in Theorem 5.1.
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6.2. A quantitative lower bound on the decay rate of the Wronskian near the superra-
diant threshold. Indeed, to understand the rate of blow-up (or not) of the inverse of the
Wronskian in these limits, another approach is needed: for instance, applying multiplier
currents to the radial ODE 2.10 that are well-adapted to the limits ω �= 0 or ω �= mω+
or, alternatively, tracking the dependence of |ω|−1 and |ω − mω+|−1 in the proof of
Theorem 5.1.

The use of multiplier currents has proved sucessful in the case s = 0 and |a| < M :
the complete scattering theory obtained in [DRS18], which implies, in particular, that
theWronskian is at least of size |ω| in the limitω → 0, was obtained by use of multiplier
currents, adapted to the radial ODE for small ω, in [DRS16, Propositions 8.7.1 to 8.7.3].
The proof given there can be easily be extended to cover the full range |a| ≤ M and
ω small for s = 0. Similarly, multiplier currents can be employed to show that the
Wronskian is at least of size |ω−mω+| in the limit ω → mω+, for |a| = M and s = 0.
These techniques are out of the scope of the present paper and will appear elsewhere.

On the other hand, a closer look into the proof of Theorem 5.1 reveals that, while
divisions by |ω| are abundant, divisions by |ω − mω+| are relatively scarce. Thus, one
can easily deduce

Proposition 6.3 (Stronger quantitative bound on the Wronskian). Fix M > 0 and s ∈
1
2Z. LetA′ be a set of frequency parameters (ω,m, λ) admissible with respect to s such
that ω is real and

CA′ := sup
(ω,m,l)∈A′

(
|ω| + |ω|−1 + |m| + |λ|

)
< ∞.

Then

sup
(a, ω,m, λ)∈[−M,M]×A′

(
|ω − mω+|1−2s δ|a|,M + 1

) ∣∣∣W[s]
∣∣∣−2

≤ G(CA′ , M, |s|) < ∞, (6.1)

where G will be given in an explicitly computable manner by (6.4).

Remark 6.4. It is important to highlight already the difference between Theorem 5.1 and
Proposition 6.3.

Theorem 5.1 should be seen as containing exactly the same information as mode
stability or, concretely, Corollary 5.1 (the result is a bound on the Wronskian directly
which holds only away from frequencies excluded from the mode stability statement,
Theorem 4.1), albeit presented in an explicitly computable (in terms of the frequency
range A, the black hole mass M and the Teukolsky spin s) manner.

By contrast, Proposition 6.3 goes beyondmode stability, by providing an upper bound
for the rate of blow-up of |W|−1 in the double limit ω → mω+ and |a| → M .

An immediate consequence is a lower bound for the decay rate of the transmission
coefficients in scattering

Corollary 6.1 (of Proposition 6.3). Fix M > 0 and s ∈ {0, 1
2 , 1,

3
2 , 2}. LetA′ be the set

of frequency parameters (ω,m, λ) introduced in Proposition 6.3. Recall the transmission
coefficients introduced in Definition 5.2. We have(

|ω − mω+|∓(1+2s) δ|a|,M + 1) + 1
) ∣∣∣T[±s]

∣∣∣2 ≤ G(CA′ , M, |s|) < ∞,

(
|ω − mω+|±(1−2s) δ|a|,M + 1) + 1

) ∣∣∣T̃[±s]
∣∣∣2 ≤ G(CA′ , M, |s|) < ∞,
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where G can be given explicitly.

Proof. The proof follows easily from the expressions for the transmission coefficients
given in (5.5) for s ≥ 0, and their analogue for s < 0. ��

To conclude, we outline the proof of Proposition 6.3:

Proof sketch for Proposition 6.3. We refer the reader to the proof of Theorem 5.1, in
Sect. 5.4, to fill in the gaps in the sketch we present. Let s ≥ 0 for simplicity and let
(ω,m, λ) ∈ A′. Once again, we use the notation �CA′ ,M,|s| to denote the existence of a
constant which can be explicitly computed in terms of CA′ , M and |s|

Note that, if |a| = M , (5.10) in that proof can be replaced by
∣∣∣�−s/2u[−s](−∞)

∣∣∣2 ∼CA′ ,M,|s| |ω − mω+|−1/2−2s
∣∣( f (x∗)ũ)(+∞)

∣∣2 , (6.2)

according to statements 4(b) of Proposition 3.1, for some appropriate f given in Propo-
sition 5.4. From Lemma 2.19 and Proposition 2.14 in the case of outgoing boundary
conditions, we obtain∣∣∣((r2 + a2)1/2

(
D−

0

)2s (
�s/2(r2 + a2)−1/2u[−s])) (−∞)

∣∣∣2

∼CA′ ,M,|s| |ω − mω+|4s
∣∣∣�−s/2u[−s](−∞)

∣∣∣2
∼CA′ ,M,|s| |ω − mω+|−1/2+2s

∣∣( f (x∗)ũ)(+∞)
∣∣2 .

Moreover, in the proof of Proposition 5.4 given in Sect. 5.3, we show the slightly
stronger statement (compared to (5.8))

|ω − mω+|1/2 |( f (x)ũ) (+∞)|2 �CA′ ,M,|s|
∫ ∞

−∞
g(x)

∣∣∣H̃ ∣∣∣2 ζ1dx
∗, (6.3)

for |a| = M . Thus, the same construction as for (5.11) in the proof of Theorem 5.1,
using (6.3), shows that for |a| = M ,

|ω − mω+|1±2s
(
W[±s])−2

�CA′ ,M,|s| |ω − mω+|1/2
∣∣( f (x∗)ũ)(+∞)

∣∣2
�CA′ ,M,|s|

[∫ ∞

2M
g(x)

∣∣∣H̃ ∣∣∣2 dx
]
×

×
⎡
⎣∫ R2

R1

s∑
k=0

∣∣∣∣∣∣
2s∑
j=0

b[±s]
k c[±s]

j (ω,m, λ)r−k− j + Oω,m,λ

(
r−2s−1−k

)∣∣∣∣∣∣ dr
∗

+
∫ R2

R1

|h|
2s∑
j=0

∣∣∣c[+s]j (ω,m, l)r−s− j + Oω,m,λ

(
r−3s−1

)∣∣∣ dr∗
⎤
⎦
−2

�CA′ ,M,|s| 1, (6.4)

where g(x), H̃ and H [−s], R1, R2, b
[±s]
k , c[±s]

j (ω,m, λ) and h are as in (5.11). Com-
bining with the uniform boundedness of the Wronskian in the subextremal case (Theo-
rem 5.1), one finally obtains Proposition 6.3. ��
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