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Abstract. The masonry viaduct at Marsh Lane is an important part of the railway network 

near Leeds, UK, dating from the 1860s. However, deterioration has resulted in notable de-

flections under train loads, which have concerned asset managers. Coupled with uncertainty 

regarding the true structural behaviour under serviceability conditions, this has led to de-

tailed monitoring of the viaduct. This paper summarises the main conclusions of the monitor-

ing installation before focusing on the evaluation of computational modelling of the viaduct, 

through comparison of modelling and monitoring results. In the monitoring scheme, fibre-

optic cables containing Fibre-Bragg Gratings allowed measurement of dynamic in-plane bar-

rel strains while digital image correlation captured displacements using commercial video 

cameras. The results illuminated a complicated three-dimensional dynamic response under 

train loading and highlighted the importance of interaction between adjacent spans. Sepa-

rately, rail loading of the viaduct was simulated with a series of finite element models, each 

with increasing levels of complexity, to establish the relative stiffness contributions of various 

structural components. These models were then compared to detailed measurements from the 

real viaduct so that their validity could be evaluated. This approach revealed the impact of 

some common modelling assumptions and permitted assessment of nonlinear contributions to 

structural behaviour. 
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1 INTRODUCTION 

Masonry arch bridges and viaducts form a key component of the railway network in the 

UK and other European countries. Many of these structures are now approaching 150 years 

old and are still in active service, carrying passenger or freight trains. They may show signs of 

distress such as cracking or liveliness under load, but since their serviceability behaviour is 

often complex it can be unclear whether such signs are a cause for concern. Greater under-

standing of this behaviour is therefore necessary to allow repair and maintenance work to be 

prioritised across the network and tailored to the conditions of individual bridges. 

Researchers and consultants may choose to use a finite element (FE) model to investigate 

the behaviour of a masonry arch bridge. To create an accurate representation of the structure 

requires that the model include the nonlinear behaviour of masonry. It is also necessary to 

have knowledge of the geometry and material properties of all structural components; some of 

these such as the backing and foundations are hidden and therefore difficult to assess. Fur-

thermore, soil-structure interaction will play a part in the response and consequently the soil 

properties should be established. These properties will vary spatially, while often a computa-

tional model will use only average values. Because of this, the resulting finite element model 

can be complex and time intensive to construct and run. Moreover, it will remain sensitive to 

input parameters which are typically uncertain. A sensitivity analysis can consider likely 

ranges of these parameters, but this adds yet more expense. Even if this approach can be justi-

fied by a researcher or consultant in some unique cases, it is impractical for practicing asset 

engineers to adopt it for all the structures in their care. 

Often, asset engineers will use limit state software when assessing their bridges. These 

consider the ultimate limit state (ULS) of the bridge when it is on the point of collapse, and 

the loads required to achieve this are compared against the real loads currently acting on the 

structure. Input uncertainties will remain in the limit state approach and so either average val-

ues of unknown properties will be used, or safe ranges chosen which result in a range of po-

tential ULS loads against which current working loads are assessed. However, this approach 

reveals little about what the behaviour of the bridge should be under its working loads; inves-

tigating this may well be a better approach for assessing the severity of any damage. 

Therefore, it is important to consider what can be gleaned from a simplified analysis, per-

formed under service conditions. This paper addresses this question, using the case study of 

the Marsh Lane viaduct in the UK and evaluating monitoring data of this structure’s servicea-

bility response against a baseline given by simplified linear elastic FE analysis. 

2 MARSH LANE VIADUCT 

The Marsh Lane viaduct is located in Leeds, UK, and was constructed in the 1860s. It has 

suffered extensive cracking and water damage throughout its life, as well as permanent de-

formations resulting from the spreading of relieving arches in the piers. Monitoring of the vi-

aduct, which was carried out by the Cambridge Centre for Smart Infrastructure and 

Construction (CSIC), was commissioned in response to visible live load deflections which 

concerned the asset managers. Figure 1 shows a photograph of the monitored spans of the vi-

aduct, while key dimensions are indicated in Figure 2. 

The most substantial forms of damage include longitudinal cracks springing from above re-

lieving arches in the piers, which continue along the centreline of the main arch soffits. In ad-

dition to these, there are transverse cracks in the arch soffits, just above the vertical level of 

internal rigid backing. Large regions of the soffits are also depressed, due to long-term defor-

mations of the as-built geometry. 
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Figure 1: The Marsh Lane viaduct. 

  
(a)                                                                                  (b) 

Figure 2: (a) main span elevation, viewed along the global transverse direction, and (b) pier elevation, viewed 

along the global longitudinal direction, views of Marsh Lane viaduct (with key dimensions in metres). 

3 MONITORING SCHEME 

Monitoring data was collected at Marsh Lane viaduct on two occasions in 2016. The instal-

lation scheme is described in full detail in a paper by Acikgoz et al [1]. The key technologies 

used were fibre-optic Fibre-Bragg Gratings (FBGs) to measure in-plane strains and digital 

image correlation to capture displacements and any rigid body rotations.  

Further monitoring work is currently underway to evaluate degradation and temperature-

related changes in the response, but this paper considers only data from the initial monitoring 

campaign. 

3.1 FBG installation  

In-plane barrel strains were measured using Fibre-Bragg Gratings, which are point sensors 

embedded into a fibre-optic cable of arbitrary length. Several cables instrumented in this fash-

ion were strung across the structure and clamped in places of interest such that the individual 

FBGs measured average dynamic strains across gauge lengths given by the distances between 

clamps. One end of each cable was connected to an analyser, which sent pulses of light along 

the cables and examined the backscattered light for any shifts in each of the FBGs’ unique 

Bragg wavelengths, which could then be related to the strains experienced by these sensors. 

Of particular interest in this paper are the longitudinal cables which were positioned on the 

arch soffits running directly underneath the two track centrelines of the viaduct. Figure 3 

shows the locations of FBGs on these four longitudinal monitoring cables L1 to L4, as seen 

when looking up from ground level. Points S1 to S8 are the eight locations on each cable 
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where local in-plane strains were measured in the arch barrels. Here, the notation is such that 

sensor S1 is the first to be passed by a train as it travels on the track above, while S8 is the last. 

The span opening response was also measured by FBGs, positioned between the skew-

backs at the tops of the piers in each of the longitudinal planes L1 to L4. These strains were 

post-processed to give pier-to-pier opening displacements. Figure 4 shows a typical pier-to-

pier measurement as a train passes over the viaduct. 

 

 

Figure 3: The four longitudinal monitoring cables L1 to L4, with sensor locations S1 to S8 shown for each cable. 

 

Figure 4: Typical measured pier-to-pier response as a train passes on the track above. 

3.2 Digital image correlation 

While the FBG installation is well-suited to monitoring in-plane strains, it was also desired 

to measure displacements, such as the crown vertical displacement. This was achieved using 

the Imetrum videogrammetry system. While the FBG scheme was custom-made for this pro-

ject, the Imetrum equipment is a commercially available product [2].  

In order to achieve high quality displacement data, it was necessary to have highly textured 

patterns to track. Although the natural texture of brickwork and mortar can be used for video 

measurements, high-contrast artificial targets were also printed and attached to the structure in 

some locations. A view of one arch soffit showing these targets is given in Figure 5. 

Typical crown vertical displacement is indicated later in this paper in Figure 9. 
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Figure 5: Examples of the videogrammetry targets used at Marsh Lane viaduct. 

3.3 Monitoring conclusions 

Monitoring of the Marsh Lane viaduct revealed a pseudo-static and three-dimensional 

mode of response under the action of live loads. This is discussed in detail by Acikgoz et al [1] 

and is most simply described by considering response components in the global longitudinal 

and transverse directions.  

Considering the longitudinal plane of the viaduct, the application of vertical axle loads 

from a passing train leads to spreading of the arch directly beneath the axle, while the two 

spans immediately adjacent contract. This contraction is possible because the carriage lengths 

are approximately double the span length. As such, when an axle is positioned near the crown 

of one span, no loads are applied to the two adjacent spans. This results in a cycle of pier-to-

pier span opening and closing as the multi-carriage train passes overhead, with accompanying 

rotation of the piers below. This cycle can be clearly seen in the monitoring data in Figure 4.  

The deformation of the spans is limited somewhat by the solid backing over the arch 

haunches, which itself rotates as a rigid body. Due to pre-existing damage, connectivity be-

tween this rigid backing and arch barrels is strong in compression but negligible in tension, 

and so the rotation of this backing has an impact on the mode of deformation of the arch bar-

rels.  

The transverse component of the response mode is best visualised by considering a single 

pier and its central relieving arch, along with the skewback and main arch haunches above. 

The transverse response involves spreading of the relieving arch in time with opening of the 

longitudinal cracks in the main arch soffit above. The two sides of the pier and two regions of 

the main arch, either side of the longitudinal crack, can be considered as four macro blocks. 

Spreading of the relieving arch causes outward rotation of the two pier macro blocks. This 

rotation only maintains connectivity between the pier blocks and the skewback, which moves 

with the main arch blocks, over the central portion of the pier, close to the relieving arch. 

However, towards the outer edges of the pier there will be separation between the pier and the 

skewback. When the pier is viewed edge-on, this allows the pier and skewback to appear to 

move independently. This provides an explanation for the phenomenon sometimes referred to 

as “skewback rocking,” which has been noted by other engineers [3]. 
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4 FINITE ELEMENT MODELLING SCHEME 

4.1 Model overview 

A series of linear elastic finite element models were constructed of the Marsh Lane viaduct, 

using Abaqus FEA software. Starting from a basic model of the piers and main arches, in-

creasing amounts of structure were added in each subsequent model in order to gauge the rela-

tive importance of the individual structural components. These were either modelled 

explicitly with new finite elements, as in the case of shell elements for the piers, arches, and 

the spandrel walls, or using idealised boundary conditions as was done for the rigid backing. 

This backing was modelled as a series of rigid ties across the arch haunches.  

From a sensitivity study it was concluded that it was only necessary to model five spans of 

the viaduct in order that the behaviour of the central span would not be influenced by the 

boundary conditions applied to the outermost spans. Therefore, in all cases presented here, 

five spans were modelled, and the results of the central span were analysed.  

The finite element models are summarised in Table 1 and shown in Figure 6. It was neces-

sary to make assumptions regarding the geometry and properties of the viaduct, when assem-

bling these models. Some assumptions could be verified; for example, the vertical level of 

rigid backing was not visible but could be inferred from local spalling on the arch intrados, 

which reliably occurred at this level due to the step change in stiffness that comes from mov-

ing from rigid (solid) backing into soil backfill with a much lower Young’s Modulus. Howev-

er, other assumptions could not be verified. These include the hidden geometry of the 

foundations, for which no record drawings existed. These were modelled based on guidance 

from Network Rail, the asset owners, regarding conventional foundations for that time period 

and structural typology. 

The most critical assumptions regarded the Young’s Moduli of the masonry and soil, 

which unfortunately could not be confirmed by site tests. Again, conventional values from the 

literature were used, based on a qualitative assessment of the masonry and soil conditions [4, 

5]. The soil properties were then used to estimate the stiffnesses of soil springs, in order to 

account for soil-structure interaction in the FE models. The assumed values of these proper-

ties and the resulting soil spring stiffnesses are given in Table 2. The vertical soil spring stiff-

ness was refined from its initial calculated value, using deflection data captured during 

monitoring at a point when a train axle was positioned directly above one of the viaduct piers. 

It is the refined value that is presented in Table 2. 

 

FE Model  Description 

1 Basic model containing main arches, piers, and soil springs 

2 Model 1, with inclusion of spandrel walls 

3 Model 2, with inclusion of rigid backing 

4 Model 3, with inclusion of relieving arches 

 

Table 1: Overview of the four finite element models of Marsh Lane viaduct. 
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                                      (c)                                                                                        (d) 

Figure 6: Views of the four finite element models of Marsh Lane viaduct: (a) Model 1, (b) Model 2, (c) Model 3 

and (d) Model 4. 

 

Parameter  Value 

Young’s modulus of masonry, Emasonry 5 GPa 

Poisson’s ratio of masonry, vmasonry 0.2 

Density of masonry, ρmasonry 1600 kg/m3 

Young’s modulus of soil, Esoil 250 kPa 

Poisson’s ratio of soil, vsoil 0.3 

Soil vertical translational spring, Kv 984x106 N/m 

Soil longitudinal translational spring, Kh 2.30x106 N/m 

Soil rotational spring, Kr 12.5x106 Nm 

 

Table 2: Assumed values of material properties and resulting soil spring stiffnesses. 

Wolf’s equations were used for the soil spring stiffness calculations; these are simplified, 

empirical equations for embedded foundations and are presented below as equations (1) to (3). 

Along with other sources, Wolf’s equations were incorporated into the more complex and bet-

ter-known equations proposed by Gazetas [6].  
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   (1) 

 

 
(2) 

 
 

(3) 
 

 

In Wolf’s equations, G is the shear modulus, v is the Poisson’s ratio, 2b is the foundation 

length, 2l is its width and e is its embedment depth. 

4.2 Application of loading 

Since the ballast and fill were not included in the FE models, it was necessary to perform 

initial calculations to determine the distribution of live loads through these materials. Starting 

from axle loads applied to the rails, distribution angles of 15° and 30° were assumed for the 

ballast and fill respectively. Patch loads were thus obtained, and these were applied directly to 

the arch extrados in the FE model. 

Since the monitoring data indicated that the response of the viaduct was pseudo-static [1], 

it was deemed sufficient to perform static FE calculations. To simplify computation, nine 

analysis steps were identified based on the salient points of the pier-to-pier response of Figure 

4. These nine points are shown on a typical smoothed pier-to-pier response in Figure 7, along 

with the corresponding axle locations at these times. Due to the interaction effect between 

spans, three spans are considered. Patch loads were calculated for each of these steps and ap-

plied to the FE models.  

In Figure 7, the axle loads correspond to a train that is travelling from left to right. Steps 1 

to 3 only include the leading axle of the train, though by symmetry they can also represent the 

rear axle. In steps 4 to 6, both axle loads from a single carriage are acting on the three spans. 

It is significant that the distance between these axles is approximately double the span length; 

this gives rise to the worst-case response of the viaduct. Lastly, in steps 7 to 9, the rear axle of 

one carriage interacts with the leading axle of the carriage behind it. This results in a double 

peak in the response. 

Between these modelling steps, behaviour is assumed to follow the pattern that is observed 

in the smoothed measured response. In Figures 8 and 9, these regions are filled in using a 

spline function so that the trends can be compared against monitoring results. Numerical 

comparisons, however, are only made using results from the nine modelling steps.  

In Figure 10, which examines in-plane strains across the arch barrel, results from the nine 

modelling steps are plotted without any interpolation. This is because the patterns of the in-

plane strain and pier-to-pier responses are in some cases significantly different and meaning-

ful interpolation is therefore no longer possible using only data taken at these modelling steps. 

Instead, it is more informative to compare the point values. 
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Figure 7: Filtered pier-to-pier response indicating the nine points chosen as modelling steps for the FE analysis, 

and corresponding locations of axle loads for each step (with dimensions in millimetres). 

4.3 Boundary conditions and restraints 

In each of the FE models, only five spans of the viaduct were considered. Boundary condi-

tions were applied to the outer edges of the first and fifth span. These prevented longitudinal 

translation of the outer piers, longitudinal translation and rotation of the outer edges of the 

spandrel walls, and vertical translation of the outer arch springings. Transverse translation 

was only restrained at the central points of each pier base, to avoid over-constraining the 

model. 

Soil springs were applied to all but the outer piers, which were more fully restrained. The 

rotational and vertical translational springs were applied directly to the pier bases, while the 

longitudinal translational springs were applied at a level coinciding with the mid-depth of the 

embedded region of the piers. Although single values of the spring constants were calculated, 

as shown in Table 2, in the FE models these were distributed across the widths of the piers. 
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5 COMPARISON OF MONITORING DATA WITH FINITE ELEMENT 

BASELINE 

A fully accurate linear elastic FE model, which captures all important structural compo-

nents and interaction effects between components, and which uses the correct input values of 

properties such as the Young’s modulus, would theoretically represent the undamaged condi-

tion of the true viaduct as long as loads remain sufficiently low. In other words, in terms of 

the response characteristics such as the pier-to-pier span opening displacement, such a model 

would produce results which would be matched by the real structure, while it remains undam-

aged, but which will be exceeded once the structure experiences damage. This is due to stiff-

ness losses that result from the damage.  

Furthermore, nonlinear behaviour as a result of this damage might reasonably be expected 

to change the “pattern” of response characteristics, so that a graph of a given characteristic 

against time would have a different shape to an analogous graph from a point when there was 

no damage, and the system remained elastic. Therefore, even if the magnitude of the response 

is not known, for example because there is uncertainty regarding the material properties, it is 

informative to compare the measured response “pattern” against the baseline of the linear 

elastic FE analysis, as this can reveal whether damage has been extensive enough to result in 

notable changes in behaviour. 

There are two categories of response characteristic that can be investigated. “Global” re-

sponse parameters indicate the behaviour of the arch overall; these include the pier-to-pier 

span opening or the crown vertical displacement. Meanwhile, an example of “local” response 

parameters would be the variation of strain at points throughout the arch barrel; a greater 

number of local parameters are needed to give a full view of the arch behaviour, but they also 

provide more detail as a result.  

It is worth noting that, in current UK practice, single (point) measurements are preferred by 

asset managers; in particular the crown vertical displacement tends to be used. This is because 

of the practicalities involved in monitoring a very large number of structures. It is still possi-

ble to track the condition of an asset over time by repeatedly taking this one type of measure-

ment; it is expected that any deterioration which might require further action also tends to 

cause an increase in the global response parameter. However, any precise changes to the 

mode of response which may have resulted from the (case-specific) damage cannot be known 

without considering local response parameters. 

5.1 “Global” response parameters 

Figure 8 compares the pier-to-pier span opening response of all four FE models with the 

observed response of the real viaduct in its current condition, as captured by FBG sensors. 

From this plot, it is clear that modelling all key structural components is important in order 

for computational results to approach the monitoring data; this is discussed further in the fol-

lowing section. 

Figure 9, meanwhile, compares the crown vertical displacement and crown in-plane strain 

for the final FE model and the real viaduct. Vertical displacements were captured using vide-

ogrammetry while the crown strain was once again measured using fibre-optic FBGs. 

In all cases, it seems that the patterns of the responses are consistent between the FE mod-

els and the monitoring data. The addition of components such as the spandrel walls and rigid 

backing above the arch haunches does not significantly change the patterns either. In the case 

of the spandrel walls, this can be explained by considering that the inclusion of spandrels 

should not change the mode of response of a longitudinal “slice” of the arch sufficiently far 

from the spandrel itself, other than causing a substantial increase in stiffness. The main effect 
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of the spandrels, while they remain fully connected to the arch barrel, is observed in the trans-

verse response of the viaduct and in particular in transverse flexure of the barrel. Because the 

response characteristics considered here were measured purely in the longitudinal plane, the 

spandrels had little impact on the pattern of this response, though they reduced the magnitude 

of response significantly. 

As for the rigid backing, this does locally affect the response of the arch haunches. This is 

seen in local strain data for this region and discussed in section 5.3. However, the parameters 

considered here are either measured between the skewbacks or at the arch crown, which are 

locations sufficiently separated from the arch haunches for any influence to be exerted by the 

backing. Again, it is a stiffness increase that is seen as the primary impact of the rigid backing 

on these global response parameters.  

 

 

Figure 8: Pier-to-pier opening responses of the four FE models and the real viaduct. 

   
(a)                                                                                      (b) 

Figure 9: (a) crown vertical displacement and (b) crown in-plane strain of the final FE model and the real viaduct. 
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5.2 Relative contributions to global structural performance 

It was also possible to investigate the relative stiffness contributions of the viaduct’s vari-

ous structural components in this finite element survey. The series of models, as detailed in 

Table 1, were constructed so that each included a further structural element, until all key 

components had been modelled. The magnitude of global response parameters was compared 

before and after the addition of new structural components. By setting the final model at a 

level of 100% effectiveness in capturing live load deflections, the difference between each 

pair of models then corresponded to the relative importance of the component that was added 

in that modelling step. 

It is worth noting that possible uncertainties in the input parameters are of less concern in 

this case than they were when comparing the results of FE analysis to monitoring data. Since 

the models are linear elastic, each one should be equally affected by any variations of the in-

put parameters. Therefore, the ratios of output should remain the same. 

The relative contributions of the various structural components are presented below in Ta-

ble 3 and can be visualised by comparing the tabulated values with Figure 8. In particular, the 

large impact of including spandrel walls in the model is clear in Figure 8. This is noteworthy, 

since often a two-dimensional analysis of a masonry arch bridge might neglect the spandrel 

walls and arch-backing interaction. The importance of these features is already established in 

increasing the ultimate load of bridges [7-9] and these results demonstrate that the effect is 

also present in serviceability conditions. In all cases except for total spandrel wall separation, 

this effect is worth bearing in mind.  

The “relative effectiveness” observed in the real response of the viaduct is also presented 

in Table 3. This suggests that the current behaviour, even if it has alarmed asset managers, 

corresponds to only a small reduction in performance from the original, undamaged condition. 

This must be treated with caution, however, due to the uncertainties remaining in some input 

parameters. Of most importance here are the soil and masonry Young’s moduli but there are 

also the soil-structure interaction effects, where Wolf’s equations have been used in conjunc-

tion with assumed geometry below ground level. 

 

Model type  Model 1 Model 2 Model 3 Model 4 
The real 

viaduct 

New structural  

component 

 

Piers, arches, 

and soil 

springs 

Spandrel 

walls 

Rigid  

backing 

above arch 

haunches 

Relieving 

arches (in 

piers) 

N/A 

Additional contribution 

to global resistance 

 

13% 48% 39% 0% N/A 

Total contribution to 

global resistance 
13% 61% 100% 100% 91% 

 

Table 3: Relative contributions of structural components to the resistance of live load deflections. 

The values of Young’s moduli which have been used here were chosen on the basis of 

qualitative assessment of the local conditions and safe ranges of possible values, from the lit-

erature [4, 5]. The highest values from safe ranges were chosen, corresponding to values to-

wards the upper limit of the possible stiffness. When it is considered that reducing the 

stiffness will increase the magnitude of live load deflections and that the results of the final 
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FE model are already quite close to the monitored response, which physically cannot be ex-

ceeded by a linear elastic model purporting to show the undamaged response, then it seems 

reasonably likely that the true stiffnesses are not far from the assumed values.  

On the other hand, while Network Rail guidance on common practice has been applied in 

calculations of the soil-structure interaction, uncertainties here could lead to either increases 

or decreases in the model response. Indeed, when the calculated vertical spring stiffness was 

recalibrated based on observations made during monitoring, it was found that the new value 

corresponded to a substantial increase in stiffness. If the other soil springs have been similarly 

underestimated, which remains unclear, then a lower value of Young’s modulus could be ac-

commodated in the masonry without giving rise to unphysical results. Equally, if the soil 

springs should in fact be stiffer but the masonry Young’s modulus has been accurately pre-

dicted, then the resulting FE model would yield output of reduced magnitude. Viewed 

through this lens, the true structure would appear to have suffered more significant damage 

than Table 3 suggests. 

5.3 “Local” response parameters 

The local strain distribution over the arch barrel, at points S1 to S8, is shown in Figure 10. 

Results are presented for the final FE model and four sets of FBG data. These datasets show 

the response along all four longitudinal cables, L1 to L4, on both sides of the two spans which 

were monitored. 

The variation between FBG datasets indicates the different levels of local damage in the 

vicinity of each cable. The most notable damage is the transverse cracks, which cause much 

larger strains at points S2 on cable L1 and S7 on cable L3. Another transverse crack can be 

seen at point S8 of cable L2, although this is less severe. 

Leaving aside the locations of severe damage, it can be seen that the comparison of local 

strain data between the final FE model and the monitoring data is more favourable closer to 

the centre of the arch than it is near the haunches. In particular, points S4 and S5, which are 

either side of the crown, agree well. Further away from the crown the comparison is less con-

vincing and there are several reasons why this might be the case.  

Firstly, while the arch is in reasonably good condition near the crown there is evidence of 

damage closer to the haunches, including but not limited to the cracks described above. Nu-

merous other, minor cracks also exist in the soffit. Close to the haunches, some regions of the 

soffit are also depressed as a result of spreading of the relieving arches in the piers. 

A further source of nonlinearity in this region stems from the rigid backing. It is hypothe-

sized that the interface between the backing and the arch barrel has cracked and, as such, con-

nectivity between these components is only possible in compression. Therefore, neither FE 

models with or without the rigid backing would represent the true behaviour of this interface 

at all points in time. As a train passes overhead, the rigid backing would rotate about the 

skewback as the adjacent arch barrels spread and contract in sequence. The rigid backing re-

mains in contact with one of its adjacent barrels at a time and, when connectivity exists, FE 

model 4 will capture the interaction between the barrel and rigid backing. However, as soon 

as the two regions separate, behaviour might more closely resemble model 3, in which the rig-

id backing is not included.  
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Figure 10: Comparisons of local strain response at locations S1 to S8, for the final FE model and the real viaduct. 

5.4 Recommendations 

From this study, it is clear that the full impact of damage cannot be observed in standard 

global response parameters, such as the crown vertical displacement or the pier-to-pier span 

opening; damage is only seen as an increase in the magnitude of the response. Both of these 

measurements are taken at points on the structure which are far enough removed from com-

mon locations of damage that there is no significant change in the pattern of the measured re-

sponse.  

In order to tell the severity of damage from global response characteristics, it is therefore 

necessary to have knowledge of the magnitude of this response before the damage took place. 

If a monitoring scheme was not in place prior to the damage occurring, computational analy-

sis may be useful to assess the undamaged condition of the structure. To do so accurately re-

quires detailed knowledge of the structural geometry and material properties, which may be 

impractical to obtain.  

However, since the pattern of the local response is significantly altered by damage and the 

subsequent onset of nonlinear behaviour, another option could be to change the location at 

which measurements are taken. For example, since typical damage suffered by masonry arch 

bridges might include transverse cracks close to the vertical level of any rigid backing, one 

potential location might be the third-point of the span, instead of the crown. Strain measure-
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ments taken at this location would not only give the current magnitude of response but also 

the current pattern, which may well be expected to change as nonlinearities develop and begin 

to dominate the local structural behaviour. 

6 CONCLUSIONS 

This paper has summarised the monitoring installation at Marsh Lane viaduct, which was 

able to ascertain the complex behaviour of this structure under its service loads [1]. It then 

goes on to present the findings of a finite element investigation which sought to compare the 

viaduct monitoring data against a linear elastic baseline response, corresponding to the un-

damaged behaviour. Although uncertainties regarding input parameters mean that the models 

cannot claim to be a perfect representation of this specific viaduct, some conclusions can still 

be drawn regarding the possibilities of simplified serviceability analysis. 

First, relative stiffness contributions to the serviceability response have been presented for 

the key structural components of a masonry arch viaduct. Some of these components are 

sometimes omitted from standard analysis; the results here confirm that this may lead to sig-

nificant underestimation of the true structural performance.  

The comparison between FE models and monitoring data looks separately at global and lo-

cal response parameters. The results indicate that the pattern of the global response parame-

ters has not drastically changed, even though damage to the viaduct means that some of its 

current behaviour must be nonlinear. However, on the local scale the damage does have an 

effect, sometimes profoundly so, on the pattern of the response. It can lead to significant de-

partures from the linear elastic deformation mode, even though the damage may not be ob-

servable in the global response as more than an increase in magnitude, which might initially 

be relatively minor.  

This is important, because standard UK practice is to monitor the crown vertical displace-

ment of bridges deemed to be at risk. It may be more useful to obtain an alternative point 

measurement, perhaps capturing the strain response at the third-point of the span where both 

the magnitude and the pattern of the response can contain useful information. 
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