
Synchronization transition in dipole-coupled two-level systems with positional disorder

M. P. Kwasigroch and N. R. Cooper
T.C.M. Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, U.K.

(Accepted:11 October, 2017)

We study the decoherence dynamics of dipole-coupled two-level quantum systems in Ramsey-type experi-
ments. We focus on large networks of two-level systems, confined to two spatial dimensions and with positional
disorder giving rise to disordered dipolar couplings. This setting is relevant for modeling the decoherence dy-
namics of the rotational excitations of polar molecules confined to deep optical lattices, where disorder arises
from the random filling of lattice sites with occupation probability p. We show that the decoherence dynamics
exhibits a phase transition at a critical filling pc ' 0.15. For p < pc the dynamics is disorder-dominated and the
Ramsey interference signal decays on a timescale T2 ∝ p−3/2. For p > pc the dipolar interactions dominate
the disorder, and the system behaves as a collective spin-ordered phase, representing synchronization of the
two-level systems and persistent Ramsey oscillations with divergent T2 for large systems. For a finite number
of two-level systems, N , the spin-ordered phase at p > pc undergoes a crossover to a collective spin-squeezed
state on a timescale τsq ∝

√
N . We develop a self-consistent mean-field theory that is capable of capturing the

synchronization transition at pc, and provide an intuitive theoretical picture that describes the phase transition in
the long-time dynamics. We also show that the decoherence dynamics appear to be ergodic in the vicinity of pc,
the long-time behaviour being well described by the predictions of equilibrium thermodynamics. The results
are supported by the results of exact diagonalization studies of small systems.

I. INTRODUCTION

The dynamical evolution of coupled quantum spin systems
is a very rich topic for exploration with a long and fruitful
history, starting with early works on the dynamics of nuclear
spins. The considerations of the motion of a single spin-flip
in a disordered network of coupled nuclear spins led Ander-
son to propose of the notion of localization of single parti-
cles via quantum interference [1], and to point out important
questions concerning the qualitative form of dynamics in the
many-particle case.

The dynamics of coupled quantum spin systems is un-
dergoing a resurgence of interest, due to recent advances in
both theory and experiment. The theoretical advances include
the development of the concept of many-body localization
(MBL)[2], involving the non-ergodic behaviour of isolated
many-body quantum systems, for which models of highly
excited quantum spin systems provide an important class of
examples. The experimental advances involve the develop-
ment of numerous novel forms of coupled two-level quan-
tum systems, which constitute generalized quantum “spins”,
in which the rate of decay of excitations (1/T1 relaxation rate)
is small compared to the timescales set by the coupling be-
tween the spins. These systems include not just nuclear spins,
but also trapped ions, NV centres, Rydberg excitations, and
polar molecules[3–6]. They provide a range of novel settings
(different dimensionalities, range and nature of coupling, and
forms of disorder) in which collective quantum spin dynamics
can be studied.

In recent work [7] we have shown that, in certain settings,
simple Ramsey-type experiments on quantum spin systems
with transverse (XY) spin-spin couplings can show an inter-
esting phase transition in the long-time dynamics: between a
phase that is disorder-dominated and decoheres at long times
(finite T2 decoherence time); and a phase where dipole in-
teractions dominate the disorder and give rise to a collective
spin-ordered state that retains coherence for arbitrarily long

times (T2 →∞). This long-lived coherence indicates that the
phase describes a synchronized, phase-locked, oscillation of
all of the two-level systems. The synchronization transition
proposed in Ref. 7 arises in a closed quantum system (un-
der unitary time evolution and conserved energy) so is dis-
tinct from synchronization phenomena in driven open quan-
tum systems[8] or in classical models of driven dissipative XY
systems[9, 10].

This collective phase-locked oscillation of all the two-level
systems is a consequence of certain special features that arise
for dipolar coupling in a two-dimensional (2D) plane. These
features can be understood using intuition based on the ther-
modynamic phases of hard-core bosons, representing the s =
1/2 quantum spins in a particle-like picture[7]. Within this
picture, the XY spin-spin coupling leads to inter-site hopping
of the bosons, which has interesting features for dipolar in-
teractions in 2D. On the one hand, a hopping amplitude of
1/rα with α = 3 is sufficiently short-ranged in D = 2 di-
mensions (α > D) to permit a well-defined thermodynamic
limit with a finite energy density. (This contrasts with dipo-
lar interactions in D = 3 for which surface effects, such as
sample shape, can control bulk behaviour.) It is also suffi-
ciently short-ranged to allow the existence of localized single-
particle states in the regime of strong disorder [1]. On the
other hand, for a disorder-free system, this form of hopping
is sufficiently long-ranged in 2D (α < 2D) to allow the exis-
tence of a Bose-Einstein condensate (BEC) of these particles –
i.e. with long-ranged phase coherence – even at non-zero tem-
perature. Specifically, for α = 3 in D = 2 dimensions, the
long-wavelength dispersion of the bosons is relativistic: this
leads to a density of states that vanishes at the band edge, al-
lowing a stable BEC of bosons even at non-zero temperatures
in 2D [11]. (This contrasts with the usual case of parabolic
dispersion, for which there is no such BEC in D = 2.) Thus,
for a sufficiently clean system, one anticipates that the bosons
can retain long-range phase coherence even for excited states
(sufficiently close in energy to the ideal phase-ordered ground
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state) reflecting the existence of this stable BEC phase of hard-
core bosons even for nonzero temperatures. Indeed, in Ref. 7
we showed theoretical evidence for the existence of this phase
in a quantum spin system excited by a uniform pulse (as in a
standard Ramsey interference experiment), and for its destruc-
tion by strong disorder arising from inhomogeneous broaden-
ing of the individual two-level transitions.

In the present paper, we investigate the properties of this
collective spin-ordered phase in the case where there is only
positional disorder, and no local frequency offsets. This
is the situation most relevant to the quantum spin systems
formed by polar molecules in deep optical lattices. There,
the two levels are two rotational levels of the polar molecule
(e.g. ro-vibrational ground state and one rotationally excited
level [12–24]). The positional disorder arises from the in-
complete, and random, site occupancy of the lattice sites. To
describe this situation requires one to go beyond the simple
mean-field models used in Ref. 7. We do so by developing
a self-consistent mean-field theory involving an RPA-like de-
coupling of correlation functions. We present the results of
this model for the long-time dynamics, and demonstrate the
existence of a phase transition at site occupation probability of
pc ' 0.15. We further show that this is close to the transition
expected under the assumption that the dynamics are ergodic,
so can be interpreted in terms of the equilibrium phase tran-
sition. We present results of exact diagonalization studies of
small systems which confirm this general picture.

Throughout this work, we present our results in the lan-
guage of quantum spin systems, rather than of hard-core
bosons used in Ref. 7. In terms of spins, the BEC of hard-
core bosons of Ref. 7 can be viewed as a collectively or-
dered spin state, with long-range spin-spin correlations. This
long-range ordering of the spins translates to a synchronized,
phase-locked, oscillation of widely-separated two-level sys-
tems. We also draw closer connections to the physics of
Ramsey-type experiments on two-level quantum systems. In
particular, we show that in system of finite number of spins
N , the dynamics of the collective spin-ordered phase shows
a crossover to a strongly spin-squeezed state on a timescale
τsq ∝

√
N .

II. MODEL

We study a set of coupled two-level quantum systems,
which we shall view as s = 1/2 spins, with Hamiltonian

H =
J0a

3

2

∑
i 6=j

1

|Ri −Rj |3
(s−i s

+
j + s−j s

+
i ), (1)

where s±i are the raising/lowering operators for the i-th spin,
which is located at position Ri. (We study the spin system
in a frame rotating at the bare transition frequency ω0, which
is assumed to satisfy ω0 � J0/~ such that the rotating wave
approximation is accurate.) The positions Ri are assumed
to lie in a 2D plane at the sites of a square lattice of lattice
constant a. Crucial to our study, however, is the assumption
that each site hosts a spin only with (independent) probability

p. Thus, the mean 2D density of spins is p (in units of the
density of sites), and for p 6= 1 the system has (quenched)
positional disorder.

The model is relevant in a number of dfferent physical set-
tings in which two-level quantum systems are coupled by
dipolar interactions, including polar molecules, NV centres,
and coupled Rydberg excitations. Note, however, that the spe-
cific physical setting could lead to variants of this model – in
dimensions other than D = 2, or including local frequency
offsets (random fields that couple to szi ), or additional szi s

z
j

interactions[25] – which could lead to differences in the qual-
itative physics that we describe.

Our primary motivation has been to understand the coupled
rotational excitations of polar molecules confined to the sites
of an optical lattice [26], for which this model emerges natu-
rally [7]. In that case, we can take |sz = −1/2〉 to represent
the ro-vibrational ground state, |` = 0,m = 0〉, of the polar
molecule at site i and |sz = +1/2〉 the |` = 1,m = 0〉 ro-
tationally excited state (` is the molecular angular momentum
and m its projection perpendicular to the 2D plane). Then
the Hamiltonian (1) describes the resonant “flip-flop” trans-
fer of a rotationally excited state between pairs of molecules
driven by the dipolar coupling [13]. The interaction energy
J0 = d2/4πε0a

3 is the coupling strength for nearest neigh-
bour sites in terms of the dipole matrix element d between
|` = 0,m = 0〉, and |` = 1,m = 0〉 (e.g. J0/h = 52 Hz
for KRb in a lattice with a = 532 nm [26]). Although lattices
of polar molecules are typically prepared as 3D lattices, the
dynamics of the rotational excitations could be confined and
studied in 2D by use of an electric or magnetic field gradi-
ents to isolate the flip-flop resonance condition to a 2D plane.
Technical advances have dramatically increased the available
filling of lattice sites with ground state polar molecules above
p ' 0.3 [27, 28]. As we will describe, our results show that
this upper limit is sufficient to show an interesting phase tran-
sition to an interaction-stabilized synchronized phase that is
resistant to decoherence, and which shows spontaneous spin-
squeezing.

A. Method of Probing and Physical Observables

We consider probing the system by means of Ramsey in-
terference. Starting from the de-excited state

∏N
i=1 |sz =

−1/2〉i, we consider applying a resonant pulse with uniform
amplitude and phase, to prepare the initial state

|Ψ〉 =

N∏
i=1

(
cos

θ

2
|sz = −1/2〉i + sin

θ

2
eiφ|sz = +1/2〉i

)
(2)

Here the site label i runs over all sites on which there are
spins, which is typically N = pNsite for a 2D lattice of Nsite

sites. The initially prepared state (2) has a uniform density
ρ = p sin2(θ/2) of excited states, and with full phase co-
herence between lattice sites. We then study the subsequent
temporal dynamics under the action of (1). Our goal is to de-
termine the long-time behaviour. Since the Hamiltonian (1)
conserves total sz , the mean density of excited states, ρ, must
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be conserved. The central question is: does the system retain
long-range spin-spin correlations?

We shall show that for large systems, N � 1, there
is a phase transition between a disorder-dominated phase at
p < pc in which individual two level systems decohere from
each other at long times, and a spin-ordered phase at p > pc
in which the dipole-dipole interactions cause the spins to re-
main collectively locked together to arbitrarily long time. This
collective phase has striking signatures in the Ramsey interfer-
ence signal, obtained by applying the conjugate pulse to rotate
the spins back by angle −θ. For a large system, N → ∞,
the signature of this collective phase is a diverging T2 deco-
herence time (i.e. persistent Ramsey fringes). For a finite
system, there is a crossover, on a timescale τsq that grows as√
N , to a collective state of the spins which exhibits spin-

squeezing [29, 30].
We shall study the dynamics of the initial state with θ =

π/2, φ = 0, with all spins in sx = 1/2, which is represen-
tative of the general case. It is convenient to rotate coordi-
nates to define the new spin operators Sx = −sz , Sy = sy ,
Sz = sx, such that the initial state (2) is the product of eigen-
states of Sz = +1/2. In this frame the Hamiltonian (1) be-
comes

H =
∑
i6=j

Jij

[
Szi S

z
j −

1

4
(S+
i − S

−
i )(S+

j − S
−
j )

]
(3)

where Jij ≡ J0a
3/|Ri −Rj |3. The prepared state is an

eigenstate of the first term on the right hand side of Eq. 3.
We shall study the dynamics induced by the remaining terms.
Our primary focus will be on the time evolution of the mean
polarization

〈Sz〉 ≡ (1/N)
∑
i

〈Szi 〉 , (4)

with N the total number of spins. This quantity 〈Sz〉 deter-
mines the amplitude of the Ramsey interference signal (i.e.
the oscillations at the transition frequency ω0). However, for
reasons we expand on below, it will be helpful also to study
the quantity

∆ ≡ 1

N2

∑
i 6=j

〈Szi Szj + Syi S
y
j 〉, (5)

This describes the mean-square of the collective spins Sz ≡
(1/N)

∑
i S

z
i and Sy ≡ (1/N)

∑
i S

y
i (up to an offset of

1/2N ). It therefore acts as an order parameter for the long-
range coherence of the spin. This order parameter is helpful
in exposing the existence of a long-range spin-ordered state,
∆ 6= 0, even in regimes for which the mean polarization van-
ishes, 〈Sz〉 = 0, arising from the formation of a spin-squeezed
state of the collective spin [30]. The order parameter ∆ could
be obtained from Ramsey-type experiments by measuring the
variances of the distributions of Sz and Sy obtained in re-
peated measurements. [Note that, when the individual two-
level systems are viewed as hardcore bosons, ∆ describes the
condensate fraction of these bosons. Thus, the BEC phase
of hardcore bosons described in Ref. [7] is equivalent to the
collective spin-ordered phase, ∆ 6= 0.]

III. SELF-CONSISTENT MEAN FIELD THEORY

A complete description of the dynamics requires a solu-
tion of the full time-evolution of this disordered many-particle
quantum spin system. Since this is too complex for an exact
solution[31], we develop an effective mean-field description
that is qualitatively and quantitatively accurate. In the sim-
plest mean-field theories, in which the Hamiltonian is reduced
to a linear coupling of spins to the mean polarization 〈Sz〉, the
dynamics becomes trivial even for a disordered lattice, p 6= 1:
the mean field polarization 〈Sz〉 remains time independent.
(This is a consequence of the fact that disorder enters only
in the magnitudes of the couplings Jij , so a mean-field state
with uniform 〈Szi 〉 remains an extremum of the energy.) The
system only evolves in time if quantum fluctuations about this
simplest mean-field theory are included.

A. RPA decoupling

To develop a theory that goes beyond the simplest mean-
field theory, we study the dynamics in a form of random phase
approximation (RPA) known as Tyablikov decoupling [32].
This takes into account the leading quantum fluctuations
above the mean-field state in a self-consistent manner. The ap-
proach involves re-expressing all 3-point correlation functions
that enter the equations of motion in terms of 1- and 2-point
ones, e.g. 〈Szi S

+
j S
−
k 〉 ' 〈Szi 〉〈S

+
j S
−
k 〉. We obtain a closed

system of coupled equations for 〈Szi 〉 and the equal-time 2-
point correlation functions 〈S+

i S
+
j 〉, 〈S

−
i S
−
j 〉 and 〈S+

i S
−
j 〉:

d

dt
〈Sza〉 = −

∑
i

2Jia〈Syi S
x
a 〉,

d

dt
〈SyaSxb 〉 =

∑[
2〈Szi 〉 (−Jia〈SxaSxb 〉+ Jib〈SyaS

y
b 〉)

−2Jib〈Szb 〉〈SyaS
y
i 〉
]

=
d

dt
〈Sxb Sya〉,

d

dt
〈SyaS

y
b 〉 =

∑
2〈Szi 〉 (Jia〈SxaS

y
b 〉+ Jib〈SyaSxb 〉)

d

dt
〈SxaSxb 〉 =

∑[
− 2〈Szi 〉 (Jia〈SyaSxb 〉+ Jib〈SxaS

y
b 〉)

+2Jia〈Sza〉〈S
y
i S

x
b 〉+ 2Jib〈Szb 〉〈SxaS

y
i 〉
]
. (6)

The above system of equations can be generated from a
Hamiltonian in which longitudinal (massive) fluctuations are
neglected:

H =
∑
i 6=j

Jij
[
Szi S

z
j + Syi S

y
j

]
=
∑
i 6=j

Jij

[
〈Szi 〉〈Szj 〉+ 2 (Szi − 〈Szi 〉) 〈Szj 〉+ Syi S

y
j

+O
(
(Szi − 〈Szi 〉)(Szj − 〈Szj 〉)

) ]
. (7)
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B. Analytic Theory

We now describe the main structure of the theory and the re-
sulting dynamical transition captured by the above equations.
To simplify the presentation, and to allow some analytical in-
sights, in this section we shall make a coarse-graining approx-
imation 〈Szi 〉 ' 〈Sz〉. (Comparisons with numerical results,
described below, show that this coarse-graining procedure re-
produces the full results accurately.) A reader most interested
in the final results may skip over this subsection on theoretical
methods to the numerical results in subsection III C.

In the coarse-graining approximation 〈Szi 〉 ' 〈Sz〉, the
Tyablikov equations of motion in Eq. 6 take a particularly
simple form. To see this, it is convenient to introduce bosonic
creation and annihilation operators, a+

i and a−i = (a+
i )† re-

spectively, for each lattice site i, which obey the standard com-
mutation algebra

[a−i , a
+
j ] = δij , [a+

i , a
+
j ] = [a−i , a

−
j ] = 0. (8)

Their Heisenberg equations of motion are given by

d

dt
a±i = i[Heff , a

±
i ],

Heff = −Jp〈Sz〉
∑
i

a+
i a
−
i

−1

4
〈Sz〉

∑
i 6=j

Jij(a
−
i − a

+
i )(a−j − a

+
j ) (9)

where Heff is an effective Hamiltonian that governs the time-
evolution of the bosonic operators, and J = 1

N

∑
i 6=j Jij ∼

9.0J0 with the sum taken over all N sites of the (undiluted)
square lattice. By comparing the above equation of motion

with the system of equations in Eq. 6 in the coarse-graining
approximation 〈Szi 〉 ' 〈Sz〉, we find that we can make the
identification:

〈Sαi S
β
j 〉 = 〈a−αi a−βj 〉, (10)

for all α = ±1, β = ±1, i, j and time, provided we use
the same initial condition. It now becomes clear that we can
simplify the system of equations in Eq. 6 by diagonalizing the
effective Hamiltonian (9).

We make the following Bogoliubov transformation for the
bosonic operators (details given in Appendix A) which pre-
serves the commutation relations in Eq. 8

ã−i ≡
N∑
j=1

[[
W+

i

]∗
j
a−j −

[
W−

i

]
j
a+
j

]
,

ã+
i ≡

(
ã−i
)†
. (11)

where W±
i are 2N -dimensional eigenvectors of the Bogoli-

ubov matrix, defined in Appendix A, with eigenvalues ±εi (i
ranges from 1 to N ).

[
W±

i

]
j

is the jth component of the
vector W±

i . The Hamiltonian becomes diagonal in the new
bosonic operators ã±i . Up to a constant

Heff = 2εiã
+
i ã
−
i ,

d

dt
ã±i = i[Heff , ã

±
i ] = ±2iεiã

±. (12)
In the coarse-graining approximation, the total energy is

E = NJp/4 = NJp〈Sz〉2 +
∑
i6=j

JijS
y
i S

y
j . (13)

Since energy is conserved by the dynamics, we can set its
derivative with respect to time to zero to obtain

〈Ṡz〉 =
−1

〈Sz〉2NJp
d

dt

∑
i 6=j

Jij
〈
Syi S

y
j

〉
=

1

〈Sz〉8NJp
d

dt

∑
i 6=j

Jij
〈
(a−i − a

+
i )(a−j − a

+
j )
〉

=
−1

〈Sz〉N
d

dt

∑
i

〈
a+
i a
−
i

〉
(14)

=
−1

N〈Sz〉
d

dt

N∑
i=1

N,N∑
m 6=0,n6=0

〈([
W−

m

]∗
i
ã−m +

[
W+

m

]∗
i
ã+
m

) ([
W+

n

]
i
ã−n +

[
W−

n

]
i
ã+
n

)〉
(15)

≡ − 1

N〈Sz〉
∑

m,n,α,β

cαβmnĊ
αβ
mn(t) , (16)

where the Goldstone mode is not included in the summation
and Cαβmn(t) ≡ 〈ãαmãβn〉 (α, β = ±1). From Eq. 12 it follows
that

Ċαβmn(t) ' 〈Sz〉λαβmnCαβmn(t), (17)

where λαβmn = i(αεm + βεn).
The conservation of energy can be re-expressed as

E/2NJp =
1

8
=

1

2
〈Sz〉2 +

1

N

∑
m,n,α,β

cαβmnC
αβ
mn(t). (18)

If 〈Sz〉 decays to a non-zero value in the long-time limit,
by Eq. (17), the coefficients Cαβmn(t) oscillate harmonically
at long times with frequencies αεm + βεn. In the thermo-
dynamic limit, where the frequencies form a continuum, we
expect only the zero-frequency terms in Eq. (18), with m = n
and α + β = 0, to survive in the long-time limit (the average
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of the oscillating terms decaying to zero), such that

1

N

∑
m,n,α,β

cαβmnC
αβ
mn(t)

t→∞
=

1

N

∑
n

(
c+−nn C

+−
nn + c−+

nn C
−+
nn

)
= 2

∑
n 6=0

(W+
n ·W+∗

n )(W−
n ·W−∗

n )

≡ F. (19)

From energy conservation, we can now deduce that the long-
time limit of the mean-field is given by

〈Sz(t→∞)〉 =

√
1

4
− 2F . (20)

From the above expression, it follows that 〈Sz(t→∞)〉 6= 0
is only possible if F < 1

8 . Otherwise 〈Sz〉 decays to zero at
long times, in which case, by Eq. (17), all Cαβmn(t) are con-
stant.

This effective theory shows a mean-field-like transition at
a critical value of F = 1

8 , assuming that the original coupled
equations lead to relaxation of 〈Sz〉. The quantity F mea-
sures the degree of quantum fluctuations in the initial state.
It must be computed for the specific geometry of the N cou-
pled spins. It is therefore a function of the filling p (i.e of the
disorder), so F (pc) = 1/8 defines a critical filling pc. Be-
low the critical filling p < pc (F > 1/8) this theory suggests
that the long-time average 〈Sz〉 will vanish in the thermody-
namic limit. However, for p > pc (F < 1/8) it suggests
that 〈Sz〉 should tend to a non-zero value. [This value grows
as 〈Sz〉 ∝ (p− pc)

1
2 , since F is linear in p close to pc.] This

persistence of non-zero polarization to long times is the signa-
ture of the emergent phase-coherent dynamics of the N quan-
tum spins, with the coherence stabilized against the disorder
(p 6= 1) by the long-range dipolar coupling of the spins. Note
that the existence of this stable phase F < 1/8 at p > pc is a
special feature of our model of dipolar interactions in 2D. In
lower dimensions, or if the interactions are nearest-neighbour
only, the quantity F is not bounded, so F � 1/8: in those
situations, the theory predicts quantum fluctuations to lead to
〈Sz〉 → 0 at long times, that is decay of coherence of the
initial state for all fillings p.

C. Numerical results

We now turn to describe the results of numerical calcu-
lations of the RPA-decoupled dynamics of our full theory,
Eqns. 6, i.e. without coarse-graining and with the time evo-
lution of the diagonal elements of the correlation functions
Cαβmn(t) computed exactly. Our numerical results involve
studies of finite square lattices with Nsite sites, and with pe-
riodic boundary conditions. For site filling p, there are then
typically N = pNsite spins, which we take to be in the range
N = 100 − 1000. In view of the finite system sizes, when
plotting mean values such as 〈Sz〉, we further take the aver-
age over disorder realizations.

Fig. 1 shows the time-dependence of the mean polariza-
tion 〈Sz〉 for a range of different site fillings p, and different

0 1 2 3 4 5
t [h/(Jp)]

0

0.1

0.2

0.3

0.4

0.5

<
S

z >

p=0.75, N=200
p=0.1, N=200
p=0.01, N=200

p<p
c
, decohering

p>p
c
, spin-ordered

spin squeezing

FIG. 1. The dynamical evolution of 〈Sz〉 for different filling frac-
tions, p. For p < pc, 〈Sz〉 decays to zero at long times, showing
the decoherence expected for the spin-disordered phase. Decoher-
ence occurs on a timescale T2 ∝ p−3/2 [see Fig. 2]. For p > pc,
〈Sz〉 falls to a non-zero value, signalling the formation of a phase
with persistent spin-order. At very long times, t & τsq ∝

√
N , 〈Sz〉

begins to decay also in the spin-ordered regime p > pc as a result of
spin-squeezing.

system sizes N , in terms of time as measured in units of the
rescaled mean-field coupling Jp. These numerical results re-
produce the qualitative features of the coarse-grained theory
described above. (In fact, we also find quantitatively similar
results.) In particular, the results show that there are indeed
two regimes of long-time dynamics separated by a critical fill-
ing fraction, which we find to be close to pc = 0.15.

For p < pc the dynamics is that of independent clusters
of several spins, and 〈Sz〉 decays to zero at long times with
lightly damped oscillations. For low enough p, the contin-
uum limit can be taken with the only characteristic lengthscale
being the mean spacing between molecules, p−1/2a. This
lengthscale then sets both the energy and the time scale, the
latter being given by h/(Jp3/2). Fig. 2 shows the coherence
time as a function of p in this regime p < pc, and a compar-
ison to the expected p−3/2 scaling. This independent-cluster
behaviour was also found in Ref. [33], which studied similar
models but in regimes where disorder is always strong, and
for which there is no spin-locked phase of the type we now
discuss at p > pc.

Above the critical filling fraction p > pc we find that the
dynamics of the system is consistent with relaxation, on a time
scale of the order h/(Jp), to a spin-ordered phase that retains
long-range correlations between the spins.

For a thermodynamically large system, N → ∞, this state
can be characterized by a non-zero mean polarization 〈Sz〉
that persists to arbitrarily long times. This phase-locked state
leads to a divergent T2 decoherence time, and a persistent
Ramsey interference signal.

In systems of finite size – including our numerical simula-
tions (on N = 100− 1000 spins) – further care is required in
relating the spin-order state at p > pc to the dynamics of the
mean polarization 〈Sz〉. The reason is that, in any finite sys-
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FIG. 2. The decoherence time T2 is finite in the independent clusters
regime when p < pc ∼ 0.15 and scales as p−3/2 at small p (solid
line). The inset indicates how T2 is extracted from one data set.

tem, a new timescale appears, τsq ∝
√
N , beyond which 〈Sz〉

tends to zero due to the development of strong spin-squeezing.
This spin-squeezing is a result of the fact that the exact energy
eigenstates are also eigenstates of total Sx. The differences in
the energy eigenvalues of these eigenstates are proportional to
(Sx)2/N in the harmonic approximation around Sx = 0. The
initial state (2) is a coherent state, formed from a superposi-
tion of these eigenstates centred on Sx = 0 with a spread that
scales as δSx ∝ 1/

√
N . The Hamiltonian (Sx)2/N leads

to one-axis squeezing of this coherent state on a timescale
τsq ∝

√
N , along with revivals of the initial (unsqueezed)

coherent state at times ∝ N [29]. Indeed, our numerical re-
sults, Fig. 1, show that in the regime p > pc, following an
initial drop of the mean polarization 〈Sz〉 to a large non-zero
value after a time of order (h/Jp), this non-zero value starts
to decay away to zero at longer times, t > τsq. This longer
timescale increases with system size in a manner consistent
with τsq ∝

√
N (data not shown).

The emergence of a collective spin-ordered phase for p >
pc is most clearly observed by studying not 〈Sz〉 but the mean-
square spin ∆, (Eq. 5). This quantity reflects the existence of
an infinite-range collectively ordered state of all of the spins,
even in the presence of strong spin-squeezing that causes 〈Sz〉
to vanish. In Fig. 3 we show the time evolution of the or-
der parameter ∆ for the same parameters as in Fig. 1. In the
spin-ordered phase, p > pc, the order parameter ∆ remains
non-zero at late times. The long-time limit of the order pa-
rameter ∆, shown in Fig. 4, exhibits a transition from a spin-
disordered phase (∆ ' 0) at p < pc, and the collective dipole-
locked phase at p > pc (∆ 6= 0), which becomes increasingly
sharp in the thermodynamic limit, N →∞.

IV. DISCUSSION

Figure 4 contains the main results of this work. It shows
that, for fillings p above a critical value pc ' 0.15, the long-
time dynamics is to a collective spin-ordered state in which all
two-level systems remain phase-locked.

0 2 4 6 8
t [h/(Jp)]

0

0.05

0.1

0.15

0.2

0.25

∆

p=0.75, N=200
p=0.1, N=200
p=0.01, N=200

p>p
c
, spin-ordered

p<p
c
, decohering

FIG. 3. The dynamical evolution of ∆ for the same parameters as
Fig. 1. For the spin-ordered phase, p > pc, the order parameter
remains non-zero at late times.

0 0.2 0.4 0.6 0.8 1
p

0

0.05

0.1

0.15

0.2

0.25

∆

N=64
N=100
N=200
coarse-graining

FIG. 4. Long-time average of the order parameter ∆ as a function
of the filling fraction p, computed from the numerical integration of
the RPA equations of motion, Eqns. 6. (The results are averaged over
100-1000 disorder realizations.) For increasing numbers of spins,N ,
the dependence on p becomes increasingly sharp around pc ' 0.15.
For p < pc the order parameter ∆ tends to zero at late times, indi-
cating a spin-disordered phase that decoheres. For p > pc, the order
parameter ∆ remains non-zero for arbitrarily long times, indicating
a spin-ordered phase with persistent spin-coherence. The dotted line
shows the results from the analytic theory based on coarse-graining,
Eq. 20.

Thermalization Ansatz: A natural way to try to understand
the long-time dynamics is to assert that the system evolves to a
thermal state, that is a state of maximum entropy constrained
only by the values of any constants of the motion. For our
model, the two conserved quantities are the energy and the
mean number of excited states, which are E = NJp/4 and
ρ = (1/2)p for the initial state we consider (prepared by a
θ = π/2 pulse). To determine the predictions of this ther-
malization ansatz for the long time polarization 〈Sz〉 of an
infinite system, we have computed the correlation functions
of the system at non-zero temperature within RPA by consid-
ering the equation of motion of the advanced Green’s func-
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FIG. 5. Phase diagram shown as a function of site dilution p and
mean energy per particle E/N . The solid line shows the critical
energy, Ec, that determines the phase boundary between disordered
and ordered phases, as computed within the equilibrium RPA theory.
The dashed line is the mean energy of the initial state (2). Assuming
thermalization of this initial state at long times, one would expect
a transition from spin-disordered (i.e. decoherence) at p < pc to
spin-ordered (i.e. persistent coherence) at p > pc with pc ' 0.15.
This expectation, based on thermodynamics, agrees very well with
the long-time behaviour found from the dynamical calculations. (See
Fig 4.)

tion and using Tyablikov decoupling to form a closed system
of equations. (Since the initial state is prepared with an en-
ergy density above the mean energy density of the band, the
temperature is negative[7].) The methodology is presented in
Appendix B. Fig. 5 summarizes the results of this thermody-
namic analysis. This shows the equilibrium phase diagram as
a function of the mean dipolar energy per particle E/N and
the site occupation p, as well as the energyE = NJp/4 of the
initial state (2). These results show that, within the assump-
tion that the system thermalizes at long times, there would be
a transition from a disordered phase, 〈Sz〉 = 0, to a collec-
tively ordered phase, 〈Sz〉 6= 0, at a critical filling pth

c ' 0.15.
Hence, we find that the critical filling for the transition ob-
served in the long-time dynamics, pc, closely matches the
value that we obtain from the thermalization ansatz, pth

c . This
lends strong support to the notion that the long time dynamics
can be understood in terms of the thermal equilibration of the
system, and the existence of this thermodynamic phase transi-
tion. Note again that the existence of this stable ordered phase
∆ 6= 0 at nonzero temperatures in this 2D setting relies on the
fact that the dipole coupling is sufficiently long-ranged to sup-
press the phase fluctuations that preclude a magnetically or-
dered phase at any non-zero temperature for short-range cou-
plings.

Exact Diagonalization Studies: To explore the properties of
this strongly interacting many body quantum system beyond
the above approximate schemes, we have performed exact di-
agonalization studies on finite systems with periodic boundary
conditions. Our results are restricted to small systems, with a
number of spins in the range N = 8 − 16 spins. To sup-
press fluctuations arising from the specific disorder realiza-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

0

0.05

0.1

0.15

0.2

0.25

∆

N=12 (Dynamics)

N=14 (Dynamics)

N=16 (Dynamics)

N=12 (Thermodynamics)

N=14 (Thermodynamics)

N=16 (Thermodynamics)

Dynamics

Thermodynamics

FIG. 6. Long-time average of ∆ calculated from exact dynamics of
small systems compared against the corresponding thermodynamic
prediction of the microcanonical ensemble. There is a cross-over in
system-size scaling for both at approximately p ∼ 0.2 which agrees
well with the RPA results

tion, we average the results over 1000 disorder realizations for
the smaller systems and 100 disorder realizations for the larger
systems. We have used the exact diagonalization studies to
test the results obtained using the RPA decoupling scheme in
both the dynamical and thermodynamical properties. To do
so, we calculate ∆ computed in two different ways. For the
dynamical case, we compute the expectation value using the
state obtained by following the exact time-evolution of the ini-
tial state to the long-time limit. For the thermodynamic case,
we use the expectation value in a microcanonical ensemble, in
which we average over the five eigenstates that are closest in
energy to the mean energy of the prepared state. The results
of these two methods are summarized in Fig. 6. They show
qualitatively the same behaviour of ∆ calculated either from
the long-time dynamics or from the thermodynamic average:
in both cases, ∆ shows a marked rise from a small to large val-
ues as p increases through a value ' 0.15. We associate this
crossover in these small finite systems with the phase transi-
tion found in the RPA approach for N → ∞ at a value of
pc ' 0.15. That both the dynamical and thermodynamical
results agree in capturing the behaviour in the vicinity of the
transition p ' 0.15 is consistent with the results we found
in the RPA decoupling. This implies that the eigenstate ther-
malization hypothesis (ETH)[2] is accurate for states in this
regime of energy.

Validity of Mean-Field Methods: It should come as no sur-
prise that our mean-field type theories do rather well. The
disordering transition can be thought of as a thermodynamic
phase transition taking place at an effective non-zero temper-
ature. The thermal excitations that dominate and drive this
transition consist of long-wavelength spin-waves in which the
discrete nature of the participating microscopic spins becomes
coarse-grained. The system flows, in an RG sense, to an ef-
fective large-spin description at large lengthscales. This forms
the basis of the semi-classical spin-wave analysis. Further-
more, the effective Ginzburg-Landau energy describing the
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phase transition can be written as

F =

∫
ddr

{
t|Ψ(r)|2 +

K

2

∣∣∣∇ 1
2 Ψ(r)

∣∣∣2 + u|Ψ(r)|4
}
,

(21)
where Ψ(r) is the coarse-grained magnetization and ∇ 1

2 Ψ(r)
is a consequence of the anomalous relativistic dispersion. One
could view this effective Ginzburg-Landau functional as orig-
inating from the microscopic self-consistency equations (see
Eqn B6). As a result of the anomalous, relativistic dispersion,
the upper critical dimension of the theory is 2, giving only log-
arithmic corrections to mean-field exponents in D = 2. (See
Appendix C.)

V. SUMMARY

We have studied the decoherence dynamics of dipole-
coupled two-level systems in 2D, subjected to Ramsey-type
experiments. The combination of r−3 power-law interactions
and the dimensionality, D = 2, allows the appearance both
of a spin-ordered phase at non-zero temperature, and a spin-
disordered phase at sufficiently strong disorder. We studied
the transition between these two phases for the situation in
which the disorder arises from site dilution, with a fraction p
of the lattice sites hosting a two-level system. This is the dom-
inant form of disorder in the experimental realization provided
by polar molecules trapped in a deep optical lattice[26]. We
developed a self-consistent mean-field theory that is capable
of describing the effects of this form of disorder. For small site
occupations, the long-time dynamics shows decoherence with
T2 ∝ p−3/2 set by the (inverse of the) dipole interaction en-
ergy at the mean interparticle spacing∼ p1/2a. This is similar
to behaviour in existing experimental studies of decoherence
dynamics of rotational levels of polar molecules[26, 33], with
an increase in the filling, p, causing a decrease in T2 (in that
case, of a 3D setting, the mean interparticle spacing is∼ p1/3a
so T2 ∝ p−1). Our results show that, in stark contrast to this,
increasing the filling p can in fact increase the degree of co-
herence. Indeed, for p larger than a critical value pc ' 0.15
we predict that a 2D system will show a transition to a spin-
ordered phase for which, for a large system N → ∞, phase
coherence is retained for arbitrarily long times, i.e. persistent
Ramsay oscillations with divergent T2 decoherence time. For
a finite system composed of N two-level systems, this col-
lective spin-ordered phase begins to exhibit spin-squeezing
for times longer than a timescale τsq ∝

√
N . Evidence of

the spin-ordered phase can continue to be found in an order
parameter ∆, determined by the variances of the total spin.
The critical occupation that we predict, pc ' 0.15, is al-
ready achievable in existing experiments on polar molecules
in 3D lattices[27, 28]. Our results present the exciting pos-
sibility that Ramsey-type experiments on 2D planes in these
systems could be used to explore this novel phase transition
in decoherence dynamics, from a disorder-dominated regime
at p < pc where dipole interactions cause decoherence, to a
spin-ordered phase at p > pc in which the dipole interactions
stabilize long-range coherence even in the presence of disor-
der.

We conclude by noting that, although our study has been
motivated by the dipolar interactions of the rotational levels
of polar molecules, similar physics can arise in other settings
with long-range coupled two-level systems. For a model with
1/rα interactions in D dimensions, the conditions for the ex-
istence of a well-defined thermodynamic limit and stable lo-
calized states is α > D, while the condition for an ordered
(BEC) phase at non-zero temperature is α < 2D. Thus,
we anticipate similar physics to appear for α/2 < D < α.
Such settings may be realizable in certain trapped-ion quan-
tum simulators[35, 36].

Appendix A: Bogoliubov diagonalization

We largely follow the work of Ref. [34] here, which should
be consulted for derivations of any statements that are quoted
without a detailed proof. The effective Hamiltonian intro-
duced in Eq. 12 can be rewritten as follows

Heff/〈Sz〉 =

= −2Jp
∑
i

a+
i a
−
i −

1

4

∑
i 6=j

Jij(a
−
i − a

+
i )(a−j − a

+
j )

≡ Aij(a+
i a
−
j + a−i a

+
j ) +Bij(a

−
i a
−
j + a+

i a
+
j ) (A1)

where we have neglected an overall constant. We define
a Bogoliubov transformation to a new set of bosonic cre-
ation/annihilation operators ã±i

ã−i ≡
2N∑

j=N+1

[
W−

i

]
j
a−j −

N∑
j=1

[
W−

i

]
j
a+
j ,

ã+
i ≡ −

2N∑
j=N+1

[
W+

i

]
j
a−j +

N∑
j=1

[
W+

i

]
j
a+
j , (A2)

where W±
i are a family of 2N -dimensional vectors indexed

by i ranging from 1 to N . These vectors satisfy the following
properties

(W±
i )†

(
1 0
0 −1

)
W±

j = ±δij , (A3)

W−
n =

(
0 1
1 0

)
(W+

n )∗, (A4)

where the first property is a consequence of bosonic commu-
tation relations of the new operators [ã−i , ã

+
j ] = δij , and the

second one is a consequence of their hermitian conjugation
ã+
i =

(
ã−i
)†

. Straightforward matrix manipulation shows that
the Hamiltonian in Eq. A1 is diagonal in the new bosonic op-
erators

Heff/〈Sz〉 =
∑
n 6=0

2εn(ã†nãn +
1

2
) (A5)

provided that the vectors W±
i are eigenvectors of the matrix

H =

(
Aij Bij
−Bij −Aij

)
. (A6)
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Their eigenvalues are ±εn respectively. It turns out that such
diagonalization is always possible because the eigenvectors of
H automatically satisfy the properties in Eq. A3 and Eq. A4
(see Ref. [34] for further details). (The second property is
satisfied if the eigenvalues ofH are real, which is the case here

because we are expanding about the classical ground state).
Note that, since the Hamiltonian (3) has an exact symmetry
under global rotations about the z-axis, one of the modes n =
0 is a Goldstone mode, with εn=0 = 0. This zero-energy mode
is excluded from the sum over simple-harmonic oscillators in
Eq. A5.

Appendix B: RPA Thermodynamic Analysis

Following the work of Ref. [32], we begin with the advanced Green’s function

Gαβij (t) ≡ iΘ(−t)〈[Sαi (t), Sβj (0)]〉T . (B1)

By differentiating both sides of the above equation with respect to time and subsequently Tyablikov-decoupling higher-order
Green’s functions, e.g. iΘ(−t)〈[Szk(t)S+

i (t), S−j (0)]〉T ' 〈Szk〉G
+−
ij (t), the resulting RPA equations of motion can be written

in matrix form (
E1 + A′ B′

−B′ E1−A′

)(
G+−(E) G++(E)
G−−(E) G−+(E)

)
≡ (EI +H′)G(E) =

(
Sz 0
0 −Sz

)
(B2)

where the elements of the matrices A′, B′ and Sz are given by

[A′]ij = 4δij
∑
a

Jia〈Sza〉 − 2Jij〈Szi 〉, [B′]ij = 2Jij〈Szi 〉,

[Sz]i = 〈Szi 〉T , (B3)

1 and I are N -dimensional and 2N -dimensional identity matrices respectively, and where Gαβij (t) =
1

2π

∫ +∞
−∞ Gαβij (E) exp−iEt dE. Working in the eigenbasis of H′ we write down N self-consistent equations for 〈Szi 〉

using the fluctuation-dissipation theorem

〈Szi 〉 =
1

2
− 〈S−i S

+
i 〉 (B4)

=
1

2
−
∫ +∞

−∞

−1
π =

[
G−+
ii (E − i0+)

]
eβE − 1

dE (B5)

=
1

2
+

[(
e−βH

′
− 1
)−1

]−+

ii

〈Szi 〉. (B6)

This forms a system of N coupled equations that can be solved recursively. However, we find that making the coarse-graining
approximation 〈Szi 〉 ' 〈Sz〉, H′ ' −8〈Sz〉H is much less numerically demanding and has a negligible impact on the re-
sults. Within this approximation the critical temperature at which the magnetization vanishes can be extracted from Eq. B6 by
linearizing it in 〈Sz〉

Tc = − 4N∑
i[H−1]−+

ii

= −

∑
i6=0

4

Nεi
(W−∗

i ·W
−
i + W+∗

i ·W
+
i )

−1

. (B7)

There is no zero-temperature transition within RPA and the magnetization at zero temperature vanishes continuously as p→ 0

Sz =
1

2(1 + 1
N

∑
i6=0 W

−
i ·W

−∗
i )

, (B8)

where
∑
i 6=0 W

−
i ·W

−∗
i is the depletion due to zero-point spin-wave fluctuations. Finding the exact solution of Eq. B6 recur-

sively does not change this result significantly.
At the employed level of approximation the residue 〈Szi Szj 〉 − 〈Szi 〉〈Szj 〉 is implicitly neglected. However, this is no

longer valid in the absence of symmetry breaking and has to be included to get an accurate estimate of the energy den-
sity at the critical temperature. One could consider the equation of motion of higher order advanced Green’s functions
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iΘ(−t)〈[Sαi (t)Sβj (t), Sαk (0)Sβl (0)]〉 to find the residue. However, in the absence of spontaneous symmetry breaking 〈Szi Szj 〉 =

〈Syi S
y
j 〉 purely from symmetry considerations, and the energy of the system at the critical temperature Tc is thus given by

〈H〉Tc
= 2

∑
i,j

Jij〈Syi S
y
j 〉 = −1

2

∑
i,j

Jij(S
+
i − S

−
i )(S+

j − S
−
j ) (B9)

= −Tc
16

∑
i,j

Jij
(
[H−1]+−ij − [H−1]−+

ij + [H−1]++
ij − [H−1]−−ij

)
(B10)

= −Tc
16

∑
i 6=0

1

εi
(W−∗

i JW−
i + W+∗

i JW+
i −W+

i JW
−
i −W−

i JW
+
i + c.c.) (B11)

where we have again linearized the fluctuation-dissipation theorem Eq. B6 in 〈Sz〉.

Appendix C: Upper Critical Dimension

To determine the upper critical dimension of the theory
(21), we express the order parameter as a sum of its mean-
field value m̄ and fluctuations δΨ(r)

Ψ(r) = m̄+ δΨ(r). (C1)

For mean-field critical exponents to hold, the t-dependent
mean-field contribution to the energy density must dominate
over the fluctuations in the limit t→ 0 [37]

〈|Ψ(r)|2〉〉 = m̄2 + 〈|δΨ(r)|2〉

= m̄2 +
∑
α=1,2

∫
|q|. 1

a

dDq

(2π)
D

1

ξ−1
α +K|q|

= m̄2 +
∑
α=1,2

∫
|q|. 1

a

dDq

(2π)
D

1

K|q|

−
∑
α=1,2

∫
|q|. 1

a

dDq

(2π)
D

ξ−1
α

K|q|
(
ξ−1
α +K|q|

) ,
(C2)

where m̄ =
√
−t
4u for t < 0 and vanishes otherwise, and

ξ−1
1 = t + 12um̄2, ξ−1

2 = t + 4um̄2. Let us now analyse
the different contributions to 〈|Ψ(r)|2〉 appearing in the final
line in the limit t → 0, i.e. close to the critical point. The
mean-field contribution scales as m̄2 ∼ t, the first fluctuations
integral is a constant, whereas the second fluctuations integral
(with the UV cutoff safely removed) scales as ξ1−D

α ∼ tD−1.
We thus deduce that the mean-field contribution dominates as
t→ 0 when D > 2.
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Lett. 109, 025303 (2012).

[12] A. Micheli, G. K. Brennen, and P. Zoller, Nat. Phys. 2, 341
(2006).

[13] R. Barnett, D. Petrov, M. Lukin, and E. Demler, Phys. Rev. Lett.
96, 190401 (2006).
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H.-C. Nägerl, Phys. Rev. Lett. 118, 073201 (2017).
[29] M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138 (1993)
[30] P. Cappellaro and M. D. Lukin, Phys. Rev. A 80, 032311

(2009).
[31] J. Schachenmayer, A. Pikovski, A. M. Rey, New J. Phys. 17,

065009 (2015).

[32] N. N. Bogolyubov and S. V. Tjablikov, Sov. Phys. Dokl. 4, 589
(1959).

[33] K. R. A. Hazzard, S. R. Manmana, M. Foss-Feig, and A. M.
Rey, Phys. Rev. Lett. 110, 075301 (2013).

[34] R. Rossignoli and A. M. Kowalski, Phys. Rev. A 72, 032101
(2014).

[35] D. Porras and J. I. Cirac, Phys. Rev. Lett. 92, 207901 (2004)
[36] J. W. Britton et al., Nature 484, 489 (2012)
[37] J. Cardy, Scaling and Renormalization in Statistical Physics,

Cambridge University Press (1996).


	Synchronization transition in dipole-coupled two-level systems with positional disorder
	Abstract
	Introduction
	Model
	Method of Probing and Physical Observables

	Self-Consistent Mean Field Theory
	RPA decoupling
	Analytic Theory
	Numerical results

	Discussion
	Summary
	Bogoliubov diagonalization
	RPA Thermodynamic Analysis
	Upper Critical Dimension
	Acknowledgments
	References


