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Abstract

Matrix models are ubiquitous in modern statistics. For instance, they are used in finance

to assess interdependence of assets, in genomics to impute missing data and in movie rec-

ommender systems to model the relationship between users and movie ratings. Typically

such models are either high-dimensional, meaning that the number of parameters may

exceed the number of data points by many orders of magnitudes, or nonparametric in the

sense that the quantity of interest is an infinite dimensional operator. This leads to new

algorithms and also to new theoretical phenomena that may occur when estimating a pa-

rameter of interest or functionals of it or when constructing confidence sets. In this thesis,

we will exemplarily consider three such matrix models and develop statistical theory for

them: Matrix completion, Principal Component Analysis (PCA) with Gaussian data and

transition operators of Markov chains.

We start with matrix completion and investigate the existence of adaptive confidence

sets in the ’Bernoulli’ and ’trace-regression’ models. In the ’Bernoulli’ model we show

that adaptive confidence sets do not exist when the variance of the errors is unknown,

whereas we give an explicit construction in the ’trace-regression’ model. Finally, in the

known variance case, we show that adaptive confidence sets do also exist in the ’Bernoulli’

model based on a testing argument.

Next, we consider PCA in a Gaussian observation model with complexity measured by

the effective rank, the reciprocal of the percentage of variance explained by the first prin-

cipal component. We investigate estimation of linear functionals of eigenvectors and prove

Berry-Essen type bounds. Due to the high-dimensionality of the problem we discover a

new phenomenon: The plug-in estimator based on the sample eigenvector can have non-

negligible bias and hence may be not
√
n-consistent anymore. We show how to de-bias

this estimator, achieving
√
n-convergence rates, and prove exact matching minimax lower

bounds.

Finally, we consider nonparametric estimation of the transition operator of a Markov

chain and its transition density. We assume that the singular values of the transition

operator decay exponentially. For example, this assumption is fulfilled by discrete, low

frequency observations of periodised, reversible stochastic differential equations. Using

penalization techniques from low rank matrix estimation we develop a new algorithm and

show improved convergence rates.
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Chapter 1

Introduction

Mathematical models build the foundation of statistics. For a given data set, a model

describes approximately how this data was generated and often contains the necessary in-

formation to draw meaningful conclusions from it. The mathematical analysis of a model

leads to the extraction of this information in the form of statistical inference by considering

estimators, confidence sets and tests. A mathematical statistician considers such models

and investigates how to pursue inference in an ’optimal’ way, attempting to solve many

intriguing mathematical puzzles on his or her search for an answer to this question. This

thesis is concerned with the analysis of three such models in high,- and infinite dimensions.

The basic assumption in statistics is the following: we observe data Y which is distributed

according to some probability measure P acting on a polish space Ω. Usually the exact

distribution P is not known and hence a statistician considers a multitude of possible

probability measures in some broader family P such that P ∈ P. Since dealing directly

with a probability measure can be difficult, we usually take a slightly different point of

view: we parameterize each probability measure P ∈ P with some parameter θ ∈ Θ, where

Θ is contained in some other polish space, meaning that we find a bijection between P
and Θ. To account for this relationship, we often write Pθ for the measure generated by

θ through the aforementioned mapping. For instance, if P denotes the class of univariate

Gaussian distributions with unknown mean and variance one, then P = {N (θ, 1), θ ∈ R}
and Θ = R. We call a family P parametric if Θ is finite dimensional, dim(Θ) < ∞, and

nonparametric otherwise.

To enable statistical analysis in parametric statistics, it is typically assumed that the

number of available data points, n, is of larger magnitude than the (constant) dimen-

sionality of Θ. However, for many modern phenomena this assumption is too rigid and

hence parametric statistical theory does not provide the necessary tools for these data

sets. On the other hand, a completely nonparametric model might throw away too much
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Introduction

information and the number of data points might not be sufficient to allow for meaningful

inference. For example, in the famous Netflix prize data set [BL07] 100 480 507 movie

ratings were provided. These were given by 480 189 users to 17 770 movies. The goal

was to predict the remaining 8 432 478 023 unknown ratings as well as possible. Hence,

without further assumptions the number of free parameters is approximately 85 times the

number of data points and therefore the required assumption of parametric statistics is

not fulfilled. In fact, typically used estimators such as the Maximum-Likelihood-Estimator

(MLE) may not even be defined in similar situations. This kind of problem has spawned

a new area of statistics in recent years, known as high-dimensional statistics, where the

dimensionality may depend on the number of available data points and exceed it by many

magnitudes, see for example the monograph by Bühlmann and van de Geer [BvdG11] for

a comprehensive exposition.

In this thesis, we will consider problems from this area and at its intersection with non-

parametric statistics. We will focus on three models where the parameters are operators

acting on a separable Hilbert space H. If H is finite dimensional such an operator can

be directly identified with a matrix. Many phenomena can be modelled by such operator

or high-dimensional matrix models. First, we will consider the problem described above,

matrix completion, and the existence of adaptive confidence sets in it. Another instance

of a high-dimensional matrix model is inference about the main sources of variability in a

data set. This is frequently used in Finance or Psychometrics and known in the statistics

literature as factor analysis or principal component analysis (PCA). The main parameter

here is the covariance operator Σ of a collection of centred Gaussian random variables,

but the object of interest are functionals of Σ such as its first eigenvector. In chapter 3

we will develop results for this model. Finally, in chapter 4 we will consider a Markov

chain model where the observed data is not independent and how this data evolves over

time is described by the transition operator P .

1.0.1 Structural assumptions

We are first going to introduce some typically used statistical models in high-dimensional

and nonparametric statistics and discuss possible structural assumptions with an empha-

sis on matrix models.

The first prototypical model we consider is regression:

Yi = θ(Xi) + εi, i = 1, . . . , n, (1.1)

with Xi being some known design vectors or sensing matrices, θ in some function class

Θ and εi independent, mean zero errors. For instance, linear (parametric) regression
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amounts to considering Θ = {θ(x) = θTx, θ, x ∈ Rp}, sparse high-dimensional linear

regression to Θ = {θ(x) = θTx, θ, x ∈ Rp,
∑

1θi 6=0 ≤ s} for some monotone grow-

ing functions s = s(n) : N → N and p = p(n) : N → N and nonparametric regression

to setting Θ = Cβ, or Θ = Hβ, β > 0, for some bounded Hölder or Sobolev balls of

functions Rp → R. Nonparametric regression and sparse (vector) linear regression have

an extremely rich history and for conciseness we refer to the books [Tsy08, GN16] and

[BvdG11], respectively, and references therein for an overview.

If θ is a matrix, two low rank regression models have been mostly considered: The re-

duced rank model and trace regression. The reduced rank model assumes a multivariate

linear regression model with a n × p2 response variable Y and a p1 × p2 regression ma-

trix θ with possibly small rank. Historically, this model has been widely been considered

in the econometrics literature from the 1950’s onwards, assuming a parametric model,

[RV98, Ize75, DT82, And51]. Relaxing the parametric assumption has led to the discov-

ery of new phenomena and estimators, see for instance [YELM07, BSW11].

In chapter 2 we will be particularly interested in the case where in the regression model

(1.1) Xi is a matrix in Rp1×p1 and Θ = {θ(x) = 〈θ, x〉, rank(θ) ≤ r, θ ∈ Rp1×p2}, where

p1, p2 and r may again depend on n. This model is known as trace regression [RT11]

and includes matrix completion [KLT11] and quantum state tomography [Kol11]. Other

structural assumptions in matrix regression models have focussed mostly on sparsity. For

instance, row or column sparsity [KT15, CW19], group sparsity [LPVDGT11] or subma-

trix localization [BI13, CLR17]. Moreover, combining these lines of work, simultaneous

sparsity and low rank assumptions have been considered in [ANW12, MMS14, BSW12,

LSHM10, YMB16, KLT17].

Covariance estimation is another typical matrix inference problem and closely tied to

regression: considering the model

Xi
i.i.d.∼ N (0,Σ), (1.2)

for some covariance operator Σ, we define the sample covariance Σ̂ = 1
n

∑
XiX

T
i . We can

then rewrite the model as

Y = Σ + (Σ̂− Σ) (1.3)

and may view Σ̂−Σ as centred, non-i.i.d. noise. For an extensive treatment of paramet-

ric estimation of Σ we refer to the monograph by Eaton [Eat83]. Sparsity assumptions

have been considered in the estimation of Σ, its inverse and its eigenvectors, too. For

instance, row sparsity assumptions for Σ have been proposed and analyzed by Bickel

and Levina [BL08a] and El Karoui [EK08] and sparsity of the leading eigenvectors of a

’spiked’ covariance matrix by Johnstone and Lu [JL09] and Ma [Ma13]. Assuming spar-
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Introduction

sity of Σ−1 goes back to the analysis of graphical models by Dempster [Dem72], as zero

entries of the precision matrix Σ−1 allow to conclude conditional independence of un-

derlying variables and are thus highly desirable. His model has been extended to the

modern high-dimensional setting with p → ∞ by [MB06, YL07, CLL12, CLZ16]. An-

other assumption, motivated by longitudinal data, particularly autoregressive processes,

is bandedness where the entries of Σ or Σ−1 decay polynomially when moving away from

the diagonal [BL08b, CZZ10, WP03]. Other structural assumptions are Toeplitz struc-

ture, Σij = σ(|i− j|), as considered by Cai et al. [CRZ13] and approximate low rank and

missing observations [Lou14].

The second prototypical model is density estimation where we assume that data is gener-

ated as

Xi
identically distributed∼ θ, i = 1, . . . , n (1.4)

for some probability density function θ. The classic nonparametric approach is to assume

that in addition the Xi are independent and that θ ∈ Hβ or Cβ. We refer again to [GN16]

for an extensive, contemporary treatment. Density estimation models and their combina-

tion with matrices are natural in the context of Markov chains. Indeed, consider a Markov

chain with discrete state space {1, 2, . . . , p} and presume that (Xi)i∈N are discrete obser-

vations of this chain, i.e. E[Xi|Xi−1, . . . , X1] = E[Xi|Xi−1]. The transition probabilities of

going from one state to another form a p×p matrix, the transition matrix. The statistical

literature about inference for the transition matrix goes back to Bartlett and Anderson

and Goodman in the 1950’s [Bar51, AG57]. Only recently, Zhang and Wang [ZW18] and

Zhang et al. [LWZ18] have proposed a high-dimensional framework for Markov chains

and have additionally imposed and motivated low rank assumptions.

Assuming that the state space of the Markov chain is not countable anymore, leads to

the nonparametric equivalent of the transition matrix, the transition operator P , and its

kernel, the transition density p:

Pf(x) = E[f(X2)|X1] =

ˆ
p(x, y)f(y)dy, f ∈ L2. (1.5)

Assuming smoothness, estimating p nonparametrically is similar to density estimation and

has been first considered in 1969 by Roussas [Rou69]. More recently, Zhang and Wang

[ZW18] proposed to assume additionally that P has a known low rank.

Furthermore, it has been proven that in case Θ = Hβ or Θ = Cβ, β > p/2, a multitude

of statistical models are asymptotically equivalent : the density model with independent

observations from above if constrained to [0, 1] and bounded from below, nonparametric

regression, the Gaussian White noise model, spectral density estimation, continuous time

diffusion processes and Poisson processes with varying intensity [Nus96, BL96, BCLZ02,
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Rei08, BCLZ04, DR06, GNZ10, RSH18]. Asymptotic equivalence means that, when pass-

ing from one model to the other by some transformation, no information is lost asymptot-

ically. Asymptotic equivalence allows to convey lower bounds for minimax rates and gives

indications how to construct estimators in these models. Historically, many phenomena

have been first explored assuming the Gaussian white noise model,

dY (t) = θ(t)dt+
1√
n
dWt, t ∈ [0, 1]p,

where Wt is a Brownian motion, as it is the easiest to handle and the equivalence results

from the aforementioned references give some indication that the Gaussian white noise

model may be viewed as the archetype of a nonparametric model. Asymptotic equivalence

results for other parameter spaces are more sparse in the literature. One notable example

in the context of high-dimensional matrix models is the article by Wang [Wan13] where

asymptotic equivalence between quantum state tomography and noisy matrix completion

is investigated.

1.0.2 Basic definitions: estimators, loss functions and minimax rates

In this section we review the basic notion of an estimator and ways to measure its quality.

Given a data set and having specified an appropriate family of models, the goal is to

perform inference to answer open questions about phenomena which have given rise to

this data. For instance, the statistician might be interested in investigating the relation-

ship between mutation of certain genes in a person’s DNA and his or her likelihood of

developing a certain type of disease. This amounts to analyzing which specific models and

parameters are appropriate and how uncertain these conclusions are.

Inferring which models are appropriate leads to the construction of an estimator for the

unknown parameter θ. Sometimes also only a specific aspect of θ may be of interest.

This can be described by a measurable map Ψ : Θ → T , θ 7→ Ψ(θ). We call such a map

functional. An estimator for θ is a measurable map θ̂ : Ω → Θ, ω 7→ θ̂(ω). In principle

any such map is an estimator, but the statistician would also like to make sure that his

or her choice of θ̂ is reasonable. This leads to the mathematical analysis of θ̂.

We will measure the performance of an estimator by how close it is to the truth on

average or with high probability. Naturally, this performance depends on how is it mea-

sured. Such a measuring function is called a loss function and is often a metric induced

by a norm on Θ. In nonparametric statistics, the Euclidean and `∞ norms are used, and

in matrix inference the `∞ norm, the spectral norm and the Hilbert-Schmidt (Frobenius)

norm. In addition, in the case of regression models (1.1) often the (squared) prediction
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error

‖θ − θ̂‖2n =
1

n

n∑
i=1

(θ(Xi)− θ̂(Xi))
2 (1.6)

is considered. Note that this is not necessarily a norm on Θ. However, under appropriate

conditions on the design Xi, it can often be shown to be equivalent to the Euclidean loss

for well behaved regression functions up to some, usually small, error. We will always

consider the Euclidean distance as loss function.

Our key definition here is the minimax rate, the best possible performance in the worst

case. Naturally, it depends on the model under investigation and the loss function used.

We also emphasize the dependence on n, the number of observations or the signal to noise

level.

Definition 1.0.1. Given a family of models P = Pn with corresponding parameter space

Θ and a loss function ` : Θ×Θ→ [0,∞) the minimax rate over Θ is defined by

rn,Θ := inf
θ̃

sup
θ∈Θ

Eθ`(θ̃, θ), (1.7)

where the infimum is taken over all measurable estimators θ̃.

The definition above is nonasymptotic and holds for a fixed number of observations,

n. However, constructing estimators that achieve this rate exactly for a finite n is often

difficult. Moreover, it can be argued that in many cases an asymptotic analysis reflects

sufficiently well the nonasymptotic behaviour, too, and hence most theoretical develop-

ments have been taken place under the assumption that n goes to ∞. This means that it

is only desired that for an estimator θ̂

lim sup
n

sup
θ∈Θ

Eθ`(θ̂, θ)
rn,Θ

= 1. (1.8)

We call an estimator that fulfills (1.8) asymptotically exact minimax. In parametric

statistics sufficient answers to asymptotic exact minimaxity are provided by the Hájek-Le

Cam asymptotic minimax Theorem, yielding an asymptotic lower bound for rn,Θ, and,

moreover, under mild regularity conditions it can be shown that the maximum-likelihood-

estimator (MLE) attains the above bound asymptotically (see chapter 8 in [vdV98]).

In the context of nonparametric and high-dimensional models, obtaining estimators that

are asymptotically exact minimax is much more difficult and is performed on a case by case

basis. The first proof into this direction is due to Pinsker in 1980, where he determined

the exact constant in the nonparametric Gaussian white noise model under squared error

loss [Pin80]. His result was extended by Tsybakov [Tsy98] to pointwise and supremum

6



loss.

In the context of high-dimensional models asymptotic exact minimaxity was mostly stud-

ied in the normal means model where Y = θ + ε, θ ∈ Rn. For instance, Donoho and

Johnstone [DJ94b] constructed hard and soft thresholding estimators that asymptotically

achieve the exact rate over nearly sparse parameter spaces. Other approaches that achieve

the asymptotic exact rate in this model are empirical Bayes [JS04] and false discovery rate

thresholding [ABDJ06]. Considering exactly sparse balls instead, only recently Wu and

Zhou [WZ13] showed that a penalized least squares estimator achieves asymptotically the

exact rate. Finally, in context of the sparse high-dimensional linear regression model, Su

and Candès [SC16] extended the false discovery rate approach and proved asymptotically

exact rates for sparse parameter spaces.

In many situations it is viewed as sufficient that only the order of the rate in (1.7) is

matched. This means that asymptotically, as the number of observations n goes to infin-

ity, an estimator θ̂ fulfills

lim sup
n

sup
θ∈Θ

Eθ`(θ̂, θ)
rn,Θ

<∞. (1.9)

This is the notion of minimaxity we will employ in this thesis and which has been preva-

lent in the statistical literature. Moreover, as customary in high-dimensional statistics

(compare e.g. [BvdG11]), we relax this even further and instead of attaining the minimax

rate in expectation we will usually only prove that our procedures attain the minimax

rate with high probability.

1.0.3 Minimax estimators

In this section we discuss some principles how to construct estimators for the whole pa-

rameter θ. In principle, for every problem there are different ways to construct estimators

that attain the minimax rate (1.8). However, in case the loss function is given by the

prediction error (1.6) a generalized least-squares estimator, named minimum contrast es-

timator by Pfanzagl [Pfa69] and first used by Huber [Hub67], can be shown to be minimax

optimal in many cases as proven by Birgé and Massart in their seminal paper [BM93].

For illustration of this principle, consider the least squares estimator in the general re-

gression model (1.1) from above:

θ̂ ∈ arg min
θ∈Θ

n∑
i=1

(Yi − θ(Xi))
2 . (1.10)

Its prediction error can be closely related to the richness of the geometry of Θ. In particu-

lar, the key quantity is the local covering number N(ε, δ,Θ, ‖ · ‖n), the smallest number of
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ε-balls in ‖ · ‖n distance required to cover a ball of size δ in Θ. The logarithm of the cov-

ering number is known as metric entropy. Provided that Θ is not too complex such that

the entropy integral below converges, van de Geer [vdG90] proved the following theorem

which in this form can be found as Theorem 9.1 in her monograph [vdG00].

Theorem 1.0.1. Assume that εi are centred, independent sub-Gaussian random variables.

Suppose Ψ(δ) is such that

Ψ(δ) ≥
ˆ δ

0

√
logN(u, δ,Θn, ‖ · ‖n)du ∨ δ

and that Ψ(δ)/δ2 is non-decreasing in δ. Moreover, suppose δn is such that for a constant

c > 0
√
nδ2

n ≥ cΨ(δn).

Then, for another constant C > 0

P
(
‖θ̂ − θ‖n > δn

)
≤ e−Cnδ2n . (1.11)

This approach has been generalized to other statistical models such as density esti-

mation by Birgé and Massart in their seminal article [BM93]. They also considered the

case where the entropy integral above does not converge and showed that the obtained

convergence rates for the least squares estimator (1.10) may be strictly sub-optimal. To

circumvent this issue they proposed subsequently to restrict the minimization problem in

(1.10) to a finite dimensional approximation space Θ(mn) ⊂ Θ, a sieve [BM98]. Sieves for

the purpose of nonparametric density estimation had already been considered in 1962 by

Cencov [Cen62], and were brought back to the attention of the nonparametric statistics

community by Grenander in his monograph in 1981 [Gre81], who also coined the term

sieve. Some other key references are [Sto80, Cox88] for nonparametric regression and

[GH82, SW94, WS95] for nonparametric maximum-likelihood estimation. Traditionally,

spans of wavelets, the Fourier basis or local polynomials have been used as sieves.

Some other popular approaches in nonparametric estimation include kernel density esti-

mators (e.g. [GN16] for an overview), regression trees [Don97], random forests [Bre01,

ATW19, MGS18] and sieves of neural networks [GBC16, BK19, SH19].

Moreover, in recent years, the Bayesian approach has been investigated in more depth

in the frequentist nonparametric and high-dimensional statistics literature. In particular,

if the prior is chosen well it can often be shown that the posterior measure concentrates

around the true value with speed of convergence given by the minimax rate. For an ex-

tensive treatment of the subject we refer to the recent monograph by Ghosal and van der

Vaart [GvdV17].

Having constructed an estimator which achieves the minimax rate of convergence for
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a specific parameter space is usually just the first step. For instance, in the normal means

model

Yij = θij + εi, i, j = 1, . . . , n, rank(θ) = r (1.12)

the true rank r is usually not known. We call r a hyperparameter. Taking Θ = Rn×n in the

least squares estimator (1.10) results in a sub-optimal Euclidean norm convergence rate

of n2, whereas if r were known it would be possible to achieve the rate rn. On the other

hand, assuming r to be smaller than the true r yields an estimator whose convergence

cannot be guaranteed at all. Hence, the statistician’s goal is to construct estimators which

do not require the knowledge of the true hyperparameter but still achieve the best possible

convergence rate.

Definition 1.0.2. Given a family of statistical models Pn with parameter space Θ and

minimax rate rn,Θ and a subfamily Pn,0 ⊂ Pn with parameter space Θ0 ⊂ Θ and minimax

rate rn,Θ0 and a loss function `, we call an estimator θ̂ adaptive to Θ0 if for some constant

C not depending on n

sup
θ∈Θ

Eθ`(θ̂, θ)
rn,Θ

≤ C

sup
θ∈Θ0

Eθ`(θ̂, θ)
rn,Θ0

≤ C.

In general it is not possible to construct adaptive estimators, see e.g. the recent arti-

cle by Liu and Gao [LG18] for a counterexample. However, for many statistical models

and loss functions adaptive estimators do exist. If for some model the construction of

adaptive estimators is theoretically possible, there are several approaches to the construc-

tion. In the theoretical community the two most prevalent methods are penalization of

minimum contrast estimators and Lepski’s method. Other approaches to constructing

adaptive estimators include (generalized) cross-validation [Sto74, Gei75, WW75, CW79,

HM85], early stopping [ZY05, Büh06, BHR18a, BHR18b], aggregation of estimators (e.g.

[BTW07, DGP18, DT08] and the recent review by Tsybakov [Tsy14]) or, when consider-

ing a Bayesian approach, empirical Bayes methods [Zha05, JS04, RS17, KSvdVvZ16] and

hyperpriors (e.g. [Hua04, vdVvZ09, BG03, CvdV12, GvdVZ15]).

Lepski’s method, proposed by Lepski in a series of papers in the beginning of the 1990’s

[Lep90, Lep91, Lep92] is based on multiple comparisons of a family of estimators. Its

advantage is that it is fairly versatile, applicable in many statistical settings and for

many estimators and loss functions and that it directly acts on the object of inter-

est. Some examples include kernel estimators in the nonparametric white noise model

[LMS97], nonparametric density estimation [Efr08], Tikhonov regularizers in inverse prob-

lems [BH05, Mat06], high-dimensional sparse linear regression [Zha13] and tail index esti-
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mation in extreme value problems [BT15]. Moreover, Lepski’s method has been extended

to multivariate hyperparameters by Lepski and Goldenshluger [GL08, GL11, GL14], giv-

ing rise to the name ’Lepski-Goldenshluger-method’. We refer to chapter 8 in [GN16] for

a thorough explanation of Lepski’s method. However, in simulations it has been observed

that the performance of Lepski’s method is highly dependant on the choice of additional

tuning parameters and hence one has to use it carefully in practice. As a partial remedy,

Lacour and Massart [LM15] extend the concept of a minimal penalty (due to [BM07])

to the Lepski-Goldenshluger method and argue that choosing the tuning parameter close

to the theoretically smallest possible is optimal. They also give some advice on how to

implement their approach for real data sets [LM15]. Another possibility is to use a mul-

tiplier bootstrap as calibration tool as proposed by Chernozhukov et al. [CCK14a].

The second, widely considered approach to adaptation is penalization, particularly in

the analysis of high-dimensional models. For illustration, consider again the regression

model (1.1). Barron, Birgé and Massart [BBM99] showed very generally how to combine

the method of sieves with penalization. Particularly, suppose that we are given a se-

quence of finite dimensional, linear sieves Θ(1),Θ(2), . . . ,Θ(mn) ⊂ Θ with respective least

squares estimators θ̂(1), . . . , θ̂(mn). Now, for some constant λ > 0 to be specified, pick the

estimator θ(k̂) where

k̂ ∈ arg min
k∈{1,...,mn}

(
n∑
i=1

(Y − θ̂(k)(Xi))
2 + 24λ dim(Θ(k))/n

)
. (1.13)

If all sieves are contained in Θ(mn), this construction is equivalent to solving the following

penalized problem:

θ̂(k̂) ∈ arg min
θ∈Θmn

(
n∑
i=1

(Y − θ̂(Xi))
2 + 24λPen(θ)/n

)
, (1.14)

where Pen(θ) := minΘ(k): θ∈Θ(k) dim(Θ(k)). This slightly different point of view has been

taken by van de Geer [vdG01]. The statistical idea is that the penalty term acts as a coun-

termeasure to overfitting by preventing overly complex models. Barron et al. [BBM99]

proved the following theorem and generalized versions which apply to nonlinear sieves,

too.

Theorem 1.0.2. Assume that εi are centred, independent Gaussian random variables

with unit variance. Suppose that the sieves Θ(i) are linear and λ ≥ 1 is such that

mn∑
k=1

exp(−λ dim(Θ(k))) ≤ C
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for some constant C > 0. Then θ̂(k̂) satisfies for another constant C ′ > 0

E‖θ̂(k̂) − θ‖2n ≤ C ′ inf
k

(
inf

θk∈Θ(k)
‖θ − θk‖2n +

λ dim(Θ(k) + 1

n

)
. (1.15)

In nonparametric models the sieves can usually be picked in a subsequent manner,

Θ(i) ⊂ Θ(i+1), and λ of constant order. In high-dimensional sparse regression the sieves

are not necessarily nested and it is necessary to pick λ � log(p) to account for the fact

that for each sparsity level s there are
(
p
s

)
≤ ps s-dimensional linear sieves. Inequalities

such as (1.15) above are called oracle inequalities as they balance the first term, the bias,

and the second term, the variance, as well as an oracle that would tell the statistician the

optimal sieve Θ(kopt). The representation (1.13) shows that the penalized least squares

approach is closely related to traditional model selection procedures such as Mallows’ CP

[Mal73], AIC [Aka73] or BIC [Sch78] and, moreover, Birgé and Massart [BM01] proved

that in the case of the Gaussian white noise model it is also equivalent to cross-validation.

While Mallow’s CP, AIC and BIC are based on direct considerations of the likelihood,

[BBM99] argue that the right criterion for the choice of a penalty is the complexity of the

sieves.

However, while being extremely general and also optimal from a theoretical perspec-

tive, this method may suffer in terms of practical applicability. Particularly, computing

solutions of the least-squares estimators in (1.10) may be not feasible at all, and a total

of mn estimators have to be computed, adding an additional computational burden.

If the Θ(k) are convex, computation of the least squares estimators (1.10) is usually fea-

sible, either by methods from convex optimization, such as gradient descent, or there are

explicit solutions of the optimization problem. For instance, in case of the nonparametric

white noise model, if Θ(k) is chosen as the span of the first k Fourier basis elements the

solution of (1.10) are the first k empirical Fourier coefficients.

In high-dimensional problems, such as sparse linear regression or low rank matrix re-

gression, the sieves Θ(k) are usually not convex and the least square estimators in (1.10)

have an explicit solution only in special cases . In particular, in sparse linear regression

such an explicit solution for (1.10) usually does not exist unless s = p or the design is

orthogonal. Moreover, in sparse linear regression the penalty function in (1.14) equals

Pen(θ) = ‖θ‖0 :=
∑

1θi 6=0 and hence the optimization problem in (1.14) is also not con-

vex.

A remedy for this issue is to substitute the non-convex penalty function by a convex relax-

ation of it. For instance, in the sparse linear regression model Tibshirani [Tib96] proposed

the lasso where the `0 penalty is substituted by the `1 norm. Thus, computation becomes

more feasible, for example by (stochastic) sub-gradient descent or specialized algorithms
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such as LARS [EHJT04]. In the case of generalized sparse linear models, including sparse

linear regression, this convex relaxation can be proven to still attain the minimax opti-

mal rates while being efficiently computable [BRT09, vdG08, Zha09]. Consequently, this

methodology has also been brought forward in low rank regression problems such as trace

regression [CP10, KMO10, CP11] and linear matrix regression [YELM07]. It can be shown

to attain the optimal rates of convergence using the trace (nuclear) norm as relaxation of

the rank [KLT11, RT11]. However, in the particular case of rank constrained models this

relaxation seems not to be necessary as the non-convex optimization problem (1.14) has

often an explicit solution. For instance, the solution of the rank penalized optimization

problem proposed by Bunea et al. [BSW11] is given by a hard thresholded singular value

decomposition (SVD) of a linear estimator. In fact, in models where explicit solutions

to (1.14) exist it can often be seen that they and their convex relaxation counterpart are

similar: the solution to (1.14) is usually a hard thresholded estimator whereas its convex

relaxation via the `1 norm or the nuclear norm is soft thresholded. Besides matrix linear

regression this is for instance the case in nonparametric regression with wavelet approx-

imation spaces [DJ94a], the normal means model and linear regression with orthogonal

design [DJ94b, Tib96] and trace regression [KLT11]. Hard thresholding has the practical

benefit that the kept coefficients or singular values are not shrunk, hence reducing bias.

Alternative, computationally feasible, approaches to reduce bias that have been proposed

are to use the convex relaxed estimator as an initial estimator and then to fit an unbiased

estimator on the selected model [BC13], to hard threshold the debiased lasso [vdG16] or

to use the adaptive lasso [HMZ08, Zou07] where each coefficient in the lasso `1 penalty is

penalized differently by an adaptively chosen weight.

Cai, Liang and Rakhlin [CLR16] showed how to extend the convex relaxation approach to

linear models under general structural assumptions such as sparsity or low rank. Hence,

one might be tempted to conjecture that convex relaxation always works in the sense that

the corresponding estimators achieve the minimax rate. However, this is not the case. Pio-

neering work by Berthet and Rigollet [BR13] showed that minimaxity and computational

efficiency do not have to go hand in hand. In particular, they considered sparse PCA

and showed that it is necessary to pay an additional factor of s1/2 in the minimax rate

of testing when considering tests that are not NP-hard to compute. Similar phenomena

have now been discovered in many other high-dimensional models. For instance, compu-

tational gaps appear in (sparse) sub-matrix localization [MW15, CW19, CLR17], sparse

CCA [GMZ17], sparse and low rank logistic regression [BB18] and community detection

[HWX15].

The choice of numerical constants in the penalization (tuning) parameter is also a de-

bated subject as they influence (impact) largely the practical performance of estimators.
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In their work on Gaussian model selection Birgé and Massart [BM01, BM07] observed

that the tuning parameter must have at least some given numerical value to prevent

inferior performance and that this minimal value is observable in the data. Moreover,

they showed that the theoretically optimal tuning parameter is roughly twice the minimal

parameter, leading to a feasible algorithm for tuning parameter selection. For further dis-

cussion and some numerical examples we refer to the recent survey by Arlot [Arl19]. Other

approaches to prevent inferior numerical performance in high-dimensional sparse linear

regression include the square root lasso [Owe07, BCW11, BCW14, Klo14] for which the

tuning parameter does not depend on the error variance, sub-sampling (coined stability

selection) [MB10], estimation of the variance and otherwise a design dependant fixed value

[BC13] (see also [CCK13] for further justification for heavy-tailed errors and a combination

with the bootstrap and heteroscedastic noise) and cross-validation [Tib96, ZHT07].

1.0.4 Functionals

A function of a parameter defining the model is a functional, i.e. Ψ(θ) for some map Ψ.

For instance, in nonparametric density estimation, we might be interested in the value of

the density function θ at a certain value X0, Ψ(θ) = θ(X0) or the second moment of θ,

Ψ(θ) =
´ 1

0 θ(x)2dx. Another example would be the value of a high-dimensional vector θ

at one specific coordinate θi, the average of θ or the Euclidean norm of θ, ‖θ‖.

In parametric statistics, assuming differentiability of Ψ, the ∆-method in combination

with asymptotic efficiency of the MLE θ̂ provides a sufficient answer to the problem of

optimally estimating functionals: the estimator Ψ(θ̂) is asymptotically efficient with lim-

iting Gaussian distribution, too. In nonparametric and high-dimensional statistics, many

more phenomena appear in the inference for functionals.

In particular, the minimax rate of a functional may differ from the minimax rate of the

estimator for θ. In fact, in many cases even asymptotic efficient estimators with Gaussian

limits exist. Particularly, this means that in such cases no bias-variance trade off has to

be performed as there exist estimators with asymptotic bias o(n−1/2). In nonparamet-

ric statistics such situations are well explored and for the sake of conciseness we refer to

[vdV98]. The key realization is that a similar phenomena to the parametric case may hold,

namely that nonparametric estimators exist that achieve the minimax rate of convergence

measured by the Euclidean norm loss function and simultaneously satisfy central limit

theorems. This was coined ’plug-in’ property by Bickel and Ritov [BR03]. Nickl [Nic07]

and Giné and Nickl [GN08b, GN09a, GN09b] showed that some commonly used estima-

tors such as the nonparametric MLE, kernel density estimators and wavelet estimators

fulfill this property in density estimation. For nonparametric integral functionals, which
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are sufficiently smooth, we obtain by a second order functional Taylor expansion, that

Ψ(θ̂)−Ψ(θ) = DΨ(θ)[θ̂ − θ] +OP(‖θ̂ − θ‖2).

If the convergence rate in Euclidean norm is at least n−1/4 (corresponding to a smooth-

ness index larger than p/2) the second term vanishes asymptotically and hence, when θ̂

satisfies a (uniform) CLT, asymptotic efficiency and a Gaussian limiting distribution can

be established. If the achievable convergence rate in Euclidean norm is less than n−1/4

asymptotically efficient estimators may still exist, but a more careful case by case analysis

has to be performed. For instance, estimating the second moment
´
θ2(x)dx at

√
n-rate

with Gaussian limiting distribution is possible even when the achievable Euclidean norm

convergence rate is slower than n−1/4 [BR88, GN08a].

In high-dimensional statistics such ’plug-in’ estimators unfortunately seem to exist only

in situations without intrinsic low-dimensional structure such as sparsity or low rank. In

these cases the typical assumption is that p = o(n) and M -estimators are considered.

Similarly to the nonparametric setting, it turns out that usually functionals of θ̂ are

asymptotically efficient if p2 = o(n) and consequently Euclidean norm convergence rates

are at least n−1/4. This has already been noted by Huber in his seminal paper on robust

regression [Hub73]. When p2/n → ∞ it is necessary to perform a case by case analysis,

too. For instance, linear functionals of M -estimators in linear regression were consid-

ered in [YM79, Por84, Por85, Mam89] where it was shown that p3/2 log(n)2/3 = o(n) is

a sufficient condition to establish
√
n-rates, asymptotic Gaussianity and efficiency. More

recently, [KZ18, Kol17, JHW18] considered estimation of general non-linear functionals

in regression, covariance estimation and a binomial model, respectively. They propose a

novel, iterative ’bootstrap-chain’ debiasing method which allows the construction of
√
n-

consistent, asymptotically Gaussian and efficient estimators, even when p2/n → ∞ and

only p = o(n).

When the model has some intrinsic structure such as sparsity or a low rank, estima-

tors such as the lasso are biased in possibly every coordinate and hence linear functionals

of θ are not asymptotically Gaussian. As a remedy for this issue one step debiasing pro-

cedures were independently proposed by various authors [ZZ14, JM14, vdGBRD14]. For

instance, consider the high-dimensional sparse linear regression model and assume that θ̂

is the lasso estimator and that the design vectors are Gaussian distributed with covariance

matrix Ξ−1. Then the debiased lasso is defined as

θ̃ := θ̂ +
ΞXT (Y −Xθ̂)

n
= θ + ΞTXT ε/n+ (I − ΞTXTX/n)(θ̂ − θ).
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Assuming a convergence rate in Euclidean norm of the initial estimator θ̂ of at least

n−1/4 the third term on the right-hand side above can be shown to be asymptotically

negligible (in `∞ norm) and asymptotic Gaussianity and efficiency for linear functionals

can be established. Moreover, it is possible to replace Ξ by a consistent estimator. If

the convergence rate of θ̂ with respect to Euclidean loss is less than n−1/4 it turns out

that efficient estimation of linear functionals is still possible if and only if the covari-

ance matrix of the design vectors Xi can be estimated at a sufficiently high convergence

rate [JM18, CG17]. Carpentier and Kim [CK18] extended this methodology to low rank

trace regression. Moreover, debiased estimators were also considered in generalized linear

models [NL17], sparse precision matrices [JvdG15], sparse PCA [Jv18] and z-estimation

[BCCW18]. Other, possibly asymptotically efficient, functionals were also investigated in

the sparse setting, e.g. the correlation between two regressors [GWCL19] and explained

variance [CG18b].

On the other hand, if no
√
n-convergence rates are achievable, similar phenomena occur

in nonparametric and high-dimensional theory. Instead of using debiased estimators it is

necessary to perform a careful bias-variance trade-off, leading to penalized (thresholded)

estimators and the use of Lepski’s method, see for instance [CCTV18, FRW15, VG18] for

sparse high-dimensional models. Additionally, it has been observed that adapting to an

unknown hyperparameter such as sparsity or smoothness may come at a price. In partic-

ular, this issue has been noted first by Lepski [Lep90, Lep92] when estimating θ(X0) in

the Gaussian white noise model where he showed that one has to pay a logarithmic price

in the minimax rate. Cai and Low [CL05] extended this result to more general linear

functionals and also gave examples where the rate penalty may even be of polynomial or-

der. More recently, in the context of estimating θ(X0) in a contaminated nonparametric

density model Liu and Gao [LG18] have shown that adaptation to the contamination level

and the smoothness simultaneously is impossible at all. In the context of high-dimensional

models this phenomena has also been observed, for example in the sparse normal means

model when estimating
∑
θi [CCTV18].

1.0.5 Confidence sets

Confidence sets and statistical tests both help to quantify the uncertainty of the process

of drawing conclusions from the data. A confidence set C = C(Y ) is a measurable, data

dependant subset of Θ, such that for the true parameter θ the probability that θ lies in

the confidence set has at least a prescribed value,

Pθ(θ ∈ C) ≥ 1− α, 0 < α < 1. (1.16)
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If the inequality above holds for any arbitrary θ ∈ Θ we call C honest at level 1− α and

if the inequality holds asymptotically we call C asymptotically honest.

Similar to the case of estimators we measure the performance of a confidence set by its

diameter in some given metric.

In parametric statistics, asymptotically honest confidence sets can be constructed by using

asymptotic normality of the MLE. Indeed, in parametric models under some regularity

conditions (e.g. [vdV98])
√
n(θ̂ − θ)→ N (0, I(θ)−1),

where I(θ) denotes the Fisher-information at θ. Assuming continuity of I(θ) at the true

θ, it is possible to estimate it consistently with the plug-in estimator I(θ̂) and hence to

construct an asymptotic 1− α confidence set with diameter of order n−1/2. Similar ideas

often work for functionals for which estimation at
√
n-rate is possible and in chapter 3 we

will consider such a case in detail.

In situations where no
√
n-rate estimation is possible constructing confidence sets may be

more difficult. A lower bound for the diameter of a confidence set is the minimax rate

of estimation (see section 6.4.1. in [GN16]) and so it is desirable that a confidence set

attains this bound.

For the purpose of visualization confidence bands, confidence sets defined through the

`∞ norm, are widely considered in nonparametric statistics. One possibility for their

construction is to use results from extreme value theory. Indeed, it is possible to prove

extreme value type limit Theorems for the supremum of minimax optimal estimators cen-

tred around their expectation with normalizing factor r−1
n,Θ. Consequently, by slightly

undersmoothing, it is possible to build asymptotic confidence bands with almost minimax

optimal diameter [BR73, GN10]. However, Hall [Hal91] proved that convergence to the

limit is slow and thus the confidence bands are honest only for extremely large n . Hence,

to construct honest confidence bands the bootstrap may be used for smaller values of

n [CCK14b, CCK14a, CvK03, HH13]. Other possibilities to construct confidence bands

in nonparametric problems are the use of Rademacher complexities and multiscale ap-

proaches (see chapter 6.4.2 in [GN16]). Similarly, in high-dimensional statistics, uniform

confidence sets have been considered and the bootstrap has been advocated for practical

implementation. Building on the seminal work by Chernozhukov et al. [CCK13] on high-

dimensional Gaussian approximation, Belloni et al. [BCK15] first proposed to bootstrap

debiased estimators in high-dimensional sparse linear regression models. Furthermore,

modified versions of the bootstrap in this setting have been proposed in [DBZ17] and

[ZC17].
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Confidence sets with respect to the Euclidean metric (’confidence balls’) are at a first

glance less appealing in high and infinite dimensions as they are harder to visualize. How-

ever, the Euclidean diameter of a confidence set centred at some estimator may be viewed

as a proxy for the Euclidean loss of this estimator and is thus a useful performance mea-

sure. Estimating the Euclidean loss for the purpose of constructing confidence balls has

been proposed by Juditsky and Lambert-Lacroix [JLL04] and by Robins and van der Vaart

[RVDV07] in nonparametric models and has been further investigated in high-dimensional

sparse linear regression by Nickl and van de Geer [Nv13] and Cai and Guo [CG18a].

If the hyperparameters defining the model are unknown, constructing adaptive confi-

dence sets with diameter adapting to the minimax risk of some smaller sub-model may

be impossible at all. This is due to the fact that the minimax rate of testing between two

models is a lower bound for any honest confidence set [JLL04, HN11, GN16] and will be

explained in more detail in chapter 2.2.

1.0.6 Minimax lower bounds

In this section we discuss approaches to derive lower bounds for the minimax risk (1.7)

and the minimax diameter of confidence sets in high and infinite dimensions. For more

details and proofs we refer to chapter 2 in the monograph by Tsybakov [Tsy08].

For deriving minimax lower bounds of estimation, the trinity of Le Cam’s method [LeC73],

Assouad’s Lemma [Ass83] and Fano’s inequality provides sufficient tools for most prob-

lems. Fano’s inequality is originally due to Fano [Fan61] but was developed into its modern

version by [IK82, KT93, Tsy08]. The three methods are closely related as discussed for

example by Yu [Yu97] and more extensively by Guntuboyina in his PhD thesis [Gun11].

The basic principle of all three methods is to lower bound the minimax risk via a testing

argument. Consequently, it is necessary to construct a null hypothesis and a subspace of

alternative hypotheses. The alternative hypotheses are supposed to appear close to the

null hypothesis in the data with reference to some information theoretic distance such as

the Kullback-Leibler distance, but are actually as far apart as possible from each other

when their distance is measured with respect to the loss function.

For estimating the whole parameter θ Fano’s inequality and Assouad’s Lemma have been

prevalent in nonparametric and high-dimensional statistics. In nonparametric statistics

wavelets are particularly easy to handle in the construction of these alternative hypothe-

ses. For this reason they have found multiple applications in the construction of lower

bounds, see for example Kerkyacharian and Picard [KP92] and Donoho et al. [DJKP96]

for lower bounds over Besov balls in density estimation by using Fano’s inequality or Gobet
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et al. [GHR04] for lower bounds for scalar diffusion processes observed in low frequency

by using Assouad’s Lemma.

In high-dimensional statistics Fano’s inequality and a modified version of Assouad’s Lemma

have also been frequently used. For instance, Fano’s inequality has been used to de-

rive lower bounds in trace regression [KLT11], high-dimensional sparse linear regression

[RWY11, RT11], sparse PCA [VL13] and for the estimation of sparse covariance matrices

[RT12]. Moreover, Cai et al. [CZZ10] combined Le Cam’s method with Assouad’s Lemma

to obtain bounds for banded covariance matrices. Using this new technique, Cai and

Zhou proved lower bounds for sparse covariance matrices [CZ12] and Cai et al. for sparse

precision matrices [CLZ16].

Constructing the space of alternative hypotheses is performed on a case by case basis.

However, the resulting minimax bounds are usually closely tied to the geometric struc-

ture of the parameter space Θ. Hence, similar to the general theory for deriving upper

bounds [vdG90, BM93], there have also been attempts to formulate a general theory for

lower bounds based on the geometry of Θ. The close connection between entropy and

rates had already been noticed by Birgé [Bir83] in 1983 in his consideration of the non-

parametric density model. Building on his work Yang and Barron [YB99] formulated

a general, geometric lower bound: it can be derived from the relationship between the

entropy of a Kullback-Leibler ball and the entropy of a ball in the loss-function. Un-

fortunately, as Yang and Barron already noted, their bound appears to be tight only in

situations where the entropy grows polynomially, i.e. in nonparametric settings. Thus,

Ma and Wu [MW15] extended this work to high-dimensional matrices by using tools from

convex geometry. They considered models where the loss-function is given by an arbitrary

unitarily invariant norm and showed that this new method provides tight lower bounds for

matrix completion with low rank constraint, sparse submatrix estimation and covariance

matrix estimation.

To prove lower bounds for nonlinear functionals, such as ‖θ‖22, Fano’s inequality is also

used, too, see for instance Collier et al. [CCT17] for lower bounds for quadratic func-

tionals in the sparse normal means model. An alternative to the use of Fano’s inequality

is the same approach as for testing lower bounds. It is based on constructing a set of

alternative distributions that are close to a null hypothesis in total variation distance

but for which the functionals are far apart. The main difference lies in the proofs: it is

necessary to bound the χ2-distance between a null distribution and a mixture measure

of alternatives instead of the KL-distance between null and each alternative separately.

This approach has been successfully employed for instance in the proof of lower bounds

for a linear functional by Collier et al. [CCT17] and for a quadratic functional of a sparse

covariance matrix by Fan et al. [FRW15].
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For linear functionals in convex parameter spaces there is a more involved theory available:

for nonparametric densities Donoho and Liu [DL91a, DL91b] proved general lower bounds

in terms of the interplay between functional and geometry of Θ by using Le Cam’s method.

Since for functionals adaptive rates may differ from the nonadaptive rates [Lep90, Lep92],

in subsequent work Brown and Low [BL96] and Cai and Low [CL05, CL04a] developed

new lower bound techniques, showing different general lower bounds. In high-dimensional

statistics the only work regarding adaptivity of linear functionals that we are aware of

is Collier et al. [CCTV18] who prove that when estimating a linear functional in the

sparse normal means model one may have to pay a price for adaptation depending on the

asymptotic regime: either no price, a log log-factor or a log-factor.

If estimation of functionals at a
√
n-rate is possible, sharp semiparametric information

bounds, indicating asymptotic efficiency, are of interest, too. For functionals in nonpara-

metric statistics these bounds are similar to the parametric case. The main difference

is that the nonparametric nature of the model may deteriorate the achievable variance,

see for example chapter 25 in [vdV98]. The bounds obtained this way are asymptotic

in nature. An alternative is to use van Trees’ inequality [vT68, GL95] which provides a

non-asymptotic minimax lower bound containing the Fisher Information. For instance,

Dalalyan et al. [DGT06] used van Trees’ inequality to prove sharp lower bounds in the

estimation of a shift parameter in the Gaussian white noise model.

In high-dimensional statistics parametric asymptotic lower bounds do not apply anymore

since the models are not fixed as n grows. In high-dimensional sparse linear regression

van de Geer et al. [vdGBRD14] embedded their high-dimensional model into an infinite

dimensional model where the classic semi-parametric bounds apply. To circumvent this

embedding, allowing for less stringent assumptions, Janková and van de Geer [JvdG18]

extended the parametric Cramér-Rao inequality and Le Cam’s lower bounds (see e.g.

[vdV98]) for asymptotically unbiased estimators to the high-dimensional case.

Lower bounds for adaptive confidence sets are determined by the addition of estima-

tion lower bounds and testing lower bounds for composite hypotheses (see chapter 6.4

in [GN16]). The concept of the minimax rate of testing and the development of test-

ing lower bounds were pioneered by Ingster, see for instance the monograph Ingster and

Suslina [IS03] for an overview. Typically, testing lower bounds are more difficult to derive

than estimation lower bounds and no general theory is available. The commonly used

approach due to Ingster is to construct a product measure of alternative hypotheses, then

to lower bound the minimax risk by the Bayes risk over this prior and then to bound

the χ2-distance bet-ween the null-hypothesis and the product measure of alternatives.

In high-dimensional statistics this approach was successfully used to construct testing

lower bounds for the simple null hypothesis H0 : θ = 0 against a composite alternative
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for instance by Ingster et al. [ITV10] and Arias-Castro et al. [ACCP11] in the sparse

high-dimensional regression model, by Mukherjee et al. [MPL15] in a sparse binary re-

gression model and by Carpentier and Nickl [CN15] in low rank trace regression. Usually,

the testing lower bounds for the simple null hypothesis H0 : θ = 0 can be extended

to composite null hypotheses, thus providing lower bounds for the diameter of adaptive

confidence sets, see for instance Nickl and van de Geer [Nv13] for such an extension in the

high-dimensional sparse linear regression model. Using Ingster’s strategy, testing lower

bounds for functionals are proven in the same way. For instance, Berthet and Rigollet

[BR13] proved lower bounds for testing the value of the largest eigenvalue in sparse PCA

and Cai and Guo [CG17] developed lower bounds for the diameter of confidence sets of

linear functionals in high-dimensional sparse linear regression.

1.0.7 Contributions

In this thesis, we consider three problems from the areas of constructing estimators, esti-

mating functionals and constructing confidence sets at the intersection of high-dimensional

and nonparametric matrix and operator inference. In the following, we briefly summarize

our main contributions.

Adaptive confidence sets for matrix completion

In chapter 2, we consider the construction of adaptive confidence balls in two closely re-

lated matrix completion models, the trace regression model and Bernoulli model, assuming

in both cases an unknown low rank of the target matrix M0 ∈ Rm1×m2 . Additionally, we

assume that M0 is bounded by some a > 0. The typical application of matrix completion

models are recommender systems [BL07, GNOT92], but they have also been proposed in

genomics [CZC+13] and sensor localization [Sin08].

In the trace regression model noisy entries from the target matrix are sampled with re-

placement. This means, that the data is given as

Yi = 〈Xi,M0〉+ εi, i = 1, . . . , n,

where the εi are independent, bounded, mean zero random variables and the Xi are chosen

uniformly at random from the set of matrices with exactly one nonzero entry which equals

one. Particularly, this means that in the trace regression model, it is possible to observe

an entry of the unknown matrix M0 multiple times.

On the other hand, the Bernoulli model is a normal means model with entries missing at

random. Here, data is given as

Yij = Bij((M0)ij + εij), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2,
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where the Bij are independent Bernoulli random variables with success probability p =

n/m1m2. Here sampling an entry twice is impossible. The main assumption in both

models is that M0 is a matrix of rank r with r being much smaller than min(m1,m2).

In both models it can be shown that the matrix lasso estimator proposed in the trace

regression model by Koltchinskii et al. [KLT11] achieves the optimal rate of convergence

in Frobenius norm up to a logarithmic factor with high probability (for a proof in the

Bernoulli model see Proposition 2.8.3 ).

For the trace regression model, we give an explicit construction of a confidence ball,

even when the error variance is unknown. If the variance is known, we use a χ2-statistic

which has been also used in trace regression models with Gaussian design by Carpentier

et al. [CEGN15] and prove in Theorem 2.4.1 that it is honest and has Frobenius diameter

adapting to the minimax risk up to a log-factor.

The unknown variance case is more challenging. Inspired by Robins and van der Vaart

[RVDV07], we propose to estimate the unknown risk via the U-statistic (2.19). In our

construction we split the sample into two equally sized batches. We use the first sample

to construct a minimax optimal estimator such as the matrix lasso M̂ and the second

sample to estimate the risk unbiasedly. In the construction of the U-statistic, we con-

sider only entries that have been sampled at least twice. The number of such samples is

random, but assuming the uniform sampling regime, we show in Lemma 2.4.1 that with

high probability there are sufficiently many for our construction. In Theorem 2.4.2 we

show that the constructed confidence set is asymptotically honest, and, that its Frobenius

diameter adapts up to a log-factor to the minimax rate of estimation.

The information geometry of the Bernoulli model turns out to be completely different: in

Corollary 2.5.1 and Corollary 2.5.2 we show that adaptive confidence sets do only exist if

the error variance is known. The proofs of these results are both based on testing argu-

ments:

If the variance is known, we give a theoretical existence proof based on an upper bound

for the minimax rate of testing for a composite null hypotheses containing all matrices

with bounded rank and the existence of an oracle estimator. To bound the minimax rate

of testing, we employ in Theorem 2.5.1 an ’infimum’-type test (see e.g. [BN13, Nv13]). In

its proof, we bound the type II error probability by using Talagrand’s inequality [Tal96]

in combination with sharp bounds for the spectral norm of random matrices due to Ban-

deira and van Handel [BvH16]. Moreover, we show in Proposition 2.8.3 that the matrix

lasso estimator by Koltchinskii et al. [KLT11] fulfills the required oracle inequality in the

Bernoulli model, employing again the bounds due to [BvH16].

In the unknown variance case, we prove in Theorem 2.5.2 a lower bound for the mini-

max rate of testing, which implies the non-existence of adaptive confidence sets. In our
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proof, we follow the approach of Nickl and van de Geer [Nv13]. We first reduce the test-

ing problem to the simple null hypothesis H0 : M0 = 0 and then prove testing lower

bounds following Ingster’s approach. The main conceptual difference to previous works

(e.g. [ITV10]) is that we allow for any arbitrary, bounded, mean zero noise instead of

using strictly Gaussian distributed error random variables. This might be more realistic

in the matrix completion setting, as in applications such as movie recommender systems

[BL07] all observed entries are bounded.

Efficient Estimation of Linear Functionals of Principal Components

In chapter 3, we focus on principal component analysis (PCA), which is a commonly

used dimension reduction technique for high-dimensional data sets. Assuming a general

framework where the data lies in a Hilbert space H, PCA and our results are applicable

to a wide range of problems, including functional data analysis [RS05] and kernel PCA in

machine learning [BBZ07].

We assume a model where for some covariance operator Σ Gaussian data is given as

Xi
i.i.d.∼ N (0,Σ),

and we measure the model complexity by the effective rank,

r(Σ) :=
trace(Σ)

‖Σ‖
.

The effective rank is the reciprocal of percentage of variance explained by the first principal

component and captures the difficulty of estimating Σ in spectral norm as proven by

Koltchinskii and Lounici [KL17a]. Particularly, the effective rank may be of a much smaller

order than the dimension of H, for instance if the eigenvalues of Σ decay polynomially or

exponentially. A small effective rank compared to the dimensionality of the data is also

observed empirically in some applications, see for instance Novembre et al. [NJB+08] for

an example in genomics where the data lies in R500.568, but the effective rank is

roughly 3.

Since Σ is symmetric and positive definite, it has an eigendecomposition,

Σ =
∑
i≥1

λi (θi ⊗ θi) .

We study estimation of linear functionals of eigenvectors of Σ, 〈θr, u〉, by proving Berry-

Esseen type bounds and bounds for the convergence of moments.

We start by proving in Theorem 3.3.2 that the plug-in estimator 〈θ̂r, u〉 is asymptoti-

cally Gaussian with
√
n-rate of convergence when centred around its expectation. The
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main tools for the proof are a representation of the bias term and a concentration in-

equality for higher order perturbation terms, which were both proven by Koltchinskii and

Lounici in [KL16]. As typical in high-dimensional statistics [Hub73, vdGBRD14, GZ16],

we are able to establish asymptotic Gaussianity if the complexity parameter is of smaller

order than
√
n: if r(Σ)�

√
n, Corollary 3.3.3 shows that the bias is of smaller order than

n−1/2 and hence that the plug-in estimator 〈θ̂r, u〉 attains a
√
n-convergence rate with

Gaussian limit.

Moreover, in Theorem 3.3.4 we give a sharp minimax lower bound in quadratic loss. This

shows that the plug-in estimator is in fact asymptotically exact minimax and efficient if

r(Σ) �
√
n and thus implies semiparametric optimality of θ̂r. The proof is based on an

application of van Tree’s inequality [vT68]. As van Tree’s inequality is non-asymptotic,

we prevent possible issues with high-dimensional asymptotic formulations.

If r(Σ) �
√
n, the bias is non-negligible. We calculate the value of the second order

perturbation term of 〈θ̂r, u〉 and prove that it is of order r(Σ)/n. Hence, in this case the

plug-in estimator does not even achieve a
√
n-rate of convergence (as proven in Proposi-

tion 3.3.5 ).

Nevertheless, contrary to the situation in sparse linear regression [CG17, JM18], efficient

estimation at
√
n-rate is possible when r(Σ) �

√
n. We develop a novel method of bias

reduction by estimating the bias and correcting the plug-in estimator. In our construction

we use two samples of size o(n) to estimate the bias parameter and a third sample con-

taining the majority of the data for estimating the plug-in estimator. In Theorem 3.3.6

we show that this newly constructed estimator attains a
√
n-rate of convergence rate with

optimal variance in the Gaussian limit as long as r(Σ) = o(n).

Finally, by using perturbation theory for linear operators, we show in Corollary 3.6 that

the asymptotic variance can be substituted by its empirical version to obtain a standard

Gaussian limit.

Spectral thresholding for the estimation of Markov chain transition operators

In chapter 4, we consider the estimation of the transition operator and the corresponding

transition density of discrete observations X1, . . . , Xn of a Markov chain. The distribution

of the Markov chain is characterized by the transition operator

Pf(x) = E[f(X1)|X0 = x] =

ˆ
f(y)p(x, y)dy, f ∈ L2.

In contrast to previous works in nonparametric statistics (e.g. [Lac07, Clé00] ) the central

object of our assumptions is the transition operator P instead of the transition density p.

Motivated by low frequency observations of periodised, reversible diffusion processes, we
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assume an approximatively low rank structure of the transition operator with exponen-

tially decaying singular values. In addition, we assume that the corresponding left and

right singular functions have finite Sobolev norm.

In Lemma 4.2.1 we show that these assumptions are indeed met for periodised, reversible

diffusion processes. The proof follows after an application of Weyl’s law [Wey11] for op-

erators with non-smooth coefficients due to Ivrii [Ivr00] and also uses elliptic regularity

results for p.d.e’s developed in a recent article by Nickl and Ray [NR19].

We propose a new algorithm that combines a Galerkin-estimator by Gobet et al. [GHR04]

with low rank matrix estimation techniques by Klopp [Klo11] by hard thresholding the

singular values of the initial estimator. This is closely related to approaches used in molec-

ular dynamics (e.g. [SMP14, CSP+07, CKL+08]), where only the first few singular pairs

are kept.

In the first part of Theorem 4.2.1 we show improved convergence rates of this estima-

tor compared to situations without singular value decay. Particularly, the dependance

of the dimension d on the nonparametric rate increases, up to log-factors, from 2d to d.

The proof is constructed in several steps. We first derive novel spectral norm bounds

for various quantities appearing in our estimator by using a Bernstein inequality for non-

reversible Markov chains due to Jiang et al. [JSF18]. Afterwards, we apply the general

proof for rank penalized estimators developed by Klopp [Klo11], bound the low rank ap-

proximation error and the smoothness approximation error. Additionally, we obtain in

Lemma 4.2.3 that the rank of our estimator is, with high probability, of polylogarithmic

order.

In the second part of Theorem 4.2.1 we prove a tight matching lower bound. For the

proof we use Fano’s inequality and construct the alternative hypotheses by combining

wavelets with projection matrices, adapting an idea by Koltchinskii and Xia [KX15] in

quantum state tomography to our setting.

Finally, in section 4.2.5 we illustrate our theoretical results with simulated data. We sim-

ulate discrete observations of two reversible diffusion processes, an Ohrnstein-Uhlenbeck

process and a Cox-Ingersoll-Ross (CIR) process. Comparing our estimator to the Galerkin-

estimator [GHR04] without hard thresholding of singular values, we observe a considerably

improved performance.
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Chapter 2

Adaptive confidence sets for

matrix completion

2.1 Introduction

In matrix completion we observe n noisy entries of a data matrix M = (Mij) ∈ Rm1×m2 ,

and we aim at doing inference on M . In a typical situation of interest, n is much smaller

than m1m2, the total number of entries. This problem arises in many applications such

as recommender systems and collaborative filtering [BL07, GNOT92], genomics [CZC+13]

or sensor localization [Sin08]. Two statistical models have been proposed in the matrix

completion literature: the trace-regression model (e.g. [CZ16, Klo14, KLT11, NW12,

RT11] ) and the ‘Bernoulli model’ (e.g. [CR09, Cha15, Klo15]).

In the trace-regression model we observe n pairs (Xi, Y
tr
i ) satisfying

Y tr
i = 〈Xi,M〉+ εi = tr(XT

i M) + εi, i = 1, . . . , n, (2.1)

where (εi) is a noise vector. The random matrices Xi ∈ Rm1×m2 are independent of the

εi’s, chosen uniformly at random from the set

B =
{
ej(m1)eTk (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
, (2.2)

were the ej(s) are the canonical basis vectors of Rs. In this model Y tr
i returns the noisy

value of the entry corresponding to the random position Xi.

In the Bernoulli model each entry of M + E, where E = (εij) ∈ Rm1×m2 is a matrix

of random errors, is observed independently of the other entries with probability p =

n/(m1m2). More precisely, if n ≤ m1m2 is given and Bij are i.i.d. Bernoulli random

variables of parameter p independent of the εij ’s, we observe

Y Ber
ij = Bij (Mij + εij) , 1 ≤ i ≤ m1, 1 ≤ j ≤ m2. (2.3)

25



Adaptive confidence sets for matrix completion

The major difference between these models is that in the trace-regression model multiple

sampling of a particular entry is possible whereas in the Bernoulli model each entry can

be sampled at most once. A further difference is that in the trace regression model

the number of observations, n, is fixed whereas in the Bernoulli model the number of

observations n̂ :=
∑

ij Bij is random with expectation En̂ = n. Despite these differences,

the results on minimax optimal recovery using computationally efficient algorithms for

these two models in the literature are very similar and from a ‘parameter estimation’

point of view the models appear to be effectively equivalent (see, e.g., [CZ16, CT10,

CP11, Cha15, Gro11, KMO10, Klo14, KLT11, NW12, Rec11]).

In this chapter we investigate questions that go beyond mere ‘estimation’ of the matrix

parameter, namely about the existence of confidence sets for estimators M̂ that adapt to

the unknown rank of M . This question is in non-parametric and high-dimensional models

a delicate matter (see e.g. [Bar04, BN13, CL04b, GN10, HN11, JLL04, Low97, NS16,

Nv13, RVDV07, SvdVvZ15] and Chapter 8.3 in [GN16]) that depends on a rather subtle

interaction of certain ‘information geometric’ properties of the model – the material rel-

evant for this chapter is reviewed in Section 2.2. Many of these results reveal limitations

by showing that confidence regions that adapt to the whole parameter space do not exist

unless one makes specific ‘signal strength’ assumptions. For example, Low [Low97] and

Giné and Nickl [GN10] investigated this question in nonparametric density estimation and

Nickl and van de Geer [Nv13] in the sparse high-dimensional regression model.

Construction of confidence sets in the matrix completion setting is difficult mainly due to

two reasons. Firstly, the Restricted Isometry Property (RIP) does not hold, requiring a

more involved analysis than in a standard trace regression setting such as in [CEGN15].

Moreover, in most practical applications of matrix completion such as movie recommender

systems [BL07, GNOT92] the variance of the errors is not known. Typical constructions

of non-asymptotic confidence sets such as χ2-confidence sets (e.g. [RVDV07, CEGN15])

require explicit knowledge of the variance and are thus not feasible. Particularly in the

‘Bernoulli model’, the problem of unknown variance can be expected to be potentially

severe: for the related standard normal means model (without low rank structure and

without missing observations) Baraud [Bar04] has shown that in the unknown variance

case honest confidence sets of shrinking diameter do not exist, even if the true model is

low dimensional. Similarly, in high-dimensional regression Cai and Guo [CG18a] prove

the impossibility of constructing adaptive confidence sets for the lq-loss, 1 ≤ q ≤ 2, of

adaptive estimators if the variance is unknown.

Our main contribution is that we show that in the case of unknown noise variance the

information-theoretic structure of the two models considered is fundamentally different:

in the trace regression model, even if only an upper bound for the variance of the noise

is known, honest confidence sets exist that have Frobenius norm diameter that adapts to

the unknown rank of M . Contrary to this, we prove that such confidence regions cannot
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exist in the Bernoulli model when the noise variance is unknown. The construction of

the confidence set in the trace-case is explicit and allows for an computationally efficient

implementation. This is a stark contrast to the situation of estimating the unknown M0

where results and algorithms (e.g. those in [KMO10, KLT11]) can often be conveyed from

one model to the other.

To complement our findings we also show how to construct adaptive honest confidence sets

for these two models in the case of known noise variance. However, even in this simpler

case the algorithms used in each case do not convey to the other model. The construction

for the trace-model is again easily implementable whereas we have to use a different, only

theoretical approach in the Bernoulli model which is not computationally efficient.

This chapter is organized as follows: in Subsection 2.1.1 we formulate the assumptions and

collect notation which we use throughout the paper. Then, in Section 2.2, we review and

present general results about the existence of honest and adaptive confidence sets in terms

of some information-theoretic quantities that determine the complexity of the adaptation

problem at hand. Afterwards we review the literature on minimax estimation in matrix

completion problems. In Section 2.4 we give an explicit construction of honest and adap-

tive confidence sets in the trace-regression case, adapting a U-statistic approach inspired

by Robins and van der Vaart [RVDV07] (see also [GN16], Section 6.4, and [CEGN15]).

Finally, we present our results for the Bernoulli model in Section 2.5. First, we derive an

upper bound for the minimax rate of testing a low rank hypothesis and deduce from it

the existence of honest and adaptive confidence regions in the known variance case. Then,

we show that in the Bernoulli model, contrary to the trace-regression case, honest and

adaptive confidence sets over the whole parameter space do not exist if the variance of

the errors is not known a priori. Sections 2.7-2.8 contain the proofs of our results.

2.1.1 Notation & assumptions

By construction, in the Bernoulli model (2.3) the expected number of observations, n, is

smaller than the total number of matrix entries, i.e. n ≤ m1m2. To provide a meaningful

comparison we will assume throughout that n ≤ m1m2 also holds in the trace regression

model (2.1). In many applications of matrix completion, such as recommender systems

(e.g. [BL07, GNOT92]) or sensor localization (e.g. [BLWY06, Sin08]) the noise is bounded

but not necessarily identically distributed. This is the assumption which we adopt in this

chapter. More precisely, we assume that the ει are independent random variables that are

homoscedastic, have zero mean and are bounded:

Assumption 2.1.1. In the models (2.1) and (2.3) with index ι = i and ι = (i, j), respec-

tively, we assume E(ει) = 0, E(ε2ι ) = σ2, ει ⊥ εη for ι 6= η and that there exists a positive
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constant U > 0 such that almost surely

max
ι
|ει| ≤ U.

We denote by M = (Mij) ∈ Rm1×m2 the unknown matrix of interest and define

m = min(m1,m2),

d = m1 +m2.

For any l ∈ N we set [l] = {1, . . . , l}. Let A,B be matrices in Rm1×m2 . We define

the matrix scalar product as 〈A,B〉 := tr(ATB). The trace norm of the matrix A is

defined as ‖A‖∗ :=
∑
σj(A), the operator norm as ‖A‖ := σ1(A) and the Frobenius norm

as ‖A‖2F :=
∑

i σ
2
i =

∑
i,j A

2
ij where (σj(A)) are the singular values of A arranged in

decreasing order. Finally ‖A‖∞ = maxi,j |Aij | denotes the largest absolute value of any

entry of A. Given a semi-metric D we define the diameter of a set S by

|S|D := sup{D(x, y) : x, y ∈ S}.

Furthermore, for k ∈ N0 we define the parameter space of rank k matrices with entries

bounded by a in absolute value as

A(a, k) := {A ∈ Rm1×m2 : ‖A‖∞ ≤ a and rank(A) ≤ k}. (2.4)

Finally, for a subset Σ ⊂ (0, U ] we define

A(a, k)⊗ Σ := {(A, σ) : A ∈ A(a, k), σ ∈ Σ}.

As usual, for sequences an and bn we say an . bn if there exists a constant C independent

of n such that an ≤ C ·bn for all n. We write PM,σ (and EM,σ for the corresponding expec-

tation) for the distribution of the observations in the models (2.1) or (2.3), respectively.

2.2 Minimax theory for adaptive confidence sets

In this section we present results about existence of honest and adaptive confidence sets

in a general minimax framework. To this end, let Y = Y n ∼ Pnf on some measure space

(Ωn,B), n ∈ N, where f is contained in some parameter space A, endowed with a semi-

metric D. Let rn denote the minimax rate of estimation over A, i.e.

inf
f̃n:Ωn→A

sup
f∈A

EfD(f̃ , f) � rn(A).
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2.2. Minimax theory for adaptive confidence sets

We consider an ‘adaptation hypothesis’A0 ⊂ A characterised by the fact that the minimax

rate of estimation in A0 is of asymptotically smaller order than in A: rn(A0) = o(rn(A))

as n → ∞. In our matrix inference setting we will choose for D the distance induced by

‖ · ‖F , for A0,A the parameter spaces A(a, k0) ⊗ Σ, A(a, k) ⊗ Σ from above, k0 = o(k)

as min(n,m) → ∞, and data (Yi, Xi) or (Yij , Bij) arising from equation (2.1) or (2.3),

respectively.

Definition 2.2.1 (Honest and adaptive confidence sets). Let α, α′ > 0 be given. A set

Cn = Cn(Y, α) ⊂ A is a honest confidence set at level α for the model A if

lim inf
n

inf
f∈A

Pnf (f ∈ Cn) ≥ 1− α. (2.5)

Furthermore, we say that Cn is adaptive for the sub-model A0 at level α′ if there exists a

constant K = K(α, α′) > 0 such that

sup
f∈A0

Pnf (|Cn|D > Krn(A0)) ≤ α′ (2.6)

while still retaining

sup
f∈A

Pnf (|Cn|D > Krn(A)) ≤ α′. (2.7)

We next introduce certain composite testing problems.

Definition 2.2.2 (Minimax rate of testing & uniformly consistent tests). Consider the

testing problem

H0 : f ∈ A0 against H1 : f ∈ A, D(f,A0) ≥ ρn (2.8)

where (ρn : n ∈ N) is a sequence of non-negative numbers. We say that ρn is the minimax

rate of testing for (2.8) if

(i) ∀β > 0 ∃ a constant L = L(β) > 0 and a test Ψn = Ψn(β), Ψn : Ωn → {0, 1} such

that

sup
f∈A0

Ef [Ψn] + sup
f∈A, D(f,A0)≥ Lρn

Ef [1−Ψn] ≤ β. (2.9)

We say that such a test Ψn is β-uniformly consistent.

(ii) For some β0 > 0 and any sequence ρ∗n = o(ρn) we have

lim inf
n→∞

inf
Ψn:Ωn→{0,1}

[
sup
f∈A0

Ef [Ψn] + sup
f∈A, D(f,A0)≥ρ∗n

Ef [1−Ψn]

]
≥ β0 > 0. (2.10)

Theorem 2.2.1. Let ρn be the minimax rate of testing for the testing problem (2.8) and

suppose that β0 > 0 is as in (2.10). Suppose that

rn(A0) = o(ρn).
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Then a honest and adaptive confidence set Cn that satisfies (2.5)-(2.7) for any α, α′ > 0

such that 0 < 2α + α′ < β0 does not exist. In fact if 3α < β0, then for any honest

confidence set Cn that satisfies (2.5) we have that

sup
f∈A0

Ef |Cn|D ≥ cρn. (2.11)

for a constant c = c(α) > 0.

The first claim of this theorem is Proposition 8.3.6 in [GN16]. The lower bound (2.11)

also follows from that proof, arguing as in the proof of Theorem 4 in [CN15].

A converse of Theorem 2.2.1 also exists, as can be extracted from Proposition 8.3.7

in [GN16] and an observation in Carpentier (see [Car13], proof of Theorem 3.5 in Section

6). For this we need the notion of an oracle-estimator.

Definition 2.2.3 (Oracle estimator). Let β > 0 be given. We say that an estimator f̂

satisfies an oracle inequality at level β if there exists a constant C such that for all f ∈ A
we have with Pnf -probability at least 1− β,

D(f̂ , f) ≤ C inf
Ã∈{A,A0}

(
D(f, Ã) + rn(Ã)

)
. (2.12)

This is a typical property of adaptive estimators, and is for example in the trace-

regression setting fulfilled by the soft-thresholding estimator proposed by Koltchinskii

et.al. [KLT11]. The following theorem proves that if the minimax rate of testing is no

larger than the minimax rate of estimation in the adaptation hypothesis, then honest

adaptive confidence sets do exist. The proof is constructive and yields a confidence set of

non-asymptotic coverage at least 1− α.

Theorem 2.2.2. Let α, α′ > 0 be given. Let ρn be the minimax rate of testing for

the problem (2.8) such that a min(α/2, α′)-uniformly consistent test exists. Assume that

ρn ≤ C ′rn(A0) for some constant C ′ = C(α, α′) > 0. Moreover, assume that an oracle

estimator f̂ at level α/2 fulfilling (2.12) exists. Then there exists a confidence set Cn that

adapts to the sub-model A0 at level α′ satisfying (2.6), (2.7) and that is honest at level α,

i.e.,

sup
f∈A

Pnf (f /∈ Cn) ≤ α.

2.3 Minimax matrix completion

First results on noisy matrix completion where obtained by Candès and Plan [CP10].

Using a semidefinite programming approach they construct an estimator M̂SDP and prove

a by a
√
n-factor sub-optimal upper bound on the estimation error in Frobenius norm.

Noisy matrix completion was further studied in several papers (see e.g. [CP10, CP11,
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KMO10, KLT11, NW12, Klo14, Cha15, CZ16, Klo15, Rec11] ). Optimal rates have first

been achieved by Negahban and Wainwright [NW12] and Keshavan et al. [KMO10].

However, the construction of the estimator and the achievable upper bound in [NW12]

requires knowledge of the ’spikiness’ ratio of the unknown matrix and leads to sub-optimal

rates in cases of matrices M with ‖M‖2F = o(m1m2) and max(|Mij |) ≥ c. The bounds

due to Keshavan et al. [KMO10] are only optimal for almost square matrices and are off

by a factor of
√

max(m1,m2)/min(m1,m2) in the case of arbitrary rectangular matrices.

If the true rank is not known the best bounds in terms of the size of the set of matrices

under consideration and the achieved convergence rates have up until now been obtained

by Koltchinskii. et al. [KLT11] and Klopp [Klo14] for the trace-regression model and

by Klopp [Klo15] for the Bernoulli model. For example, in the trace-regression setting,

Klopp [Klo14] shows that a constrained Matrix Lasso estimator M̂ := M̂(a, σ) satisfies

with PM0,σ-probability at least 1− 2/d

‖M̂ −M0‖2F
m1m2

≤ Ckd log(d)

n
and ‖M0 − M̂‖∞ ≤ 2a (2.13)

as long as m log(d) ≤ n ≤ d2 log(d) and where C = C(σ, a) > 0. Similarly, in the Bernoulli

model with noise bounded by U it has been shown in Klopp [Klo15] that an iterative soft

thresholding estimator M̂ := M̂(a, σ) satisfies with PM0,σ-probability at least 1− 8/d

‖M̂ −M0‖2F
m1m2

≤ Ckd
n

and ‖M0 − M̂‖∞ ≤ 2a (2.14)

for n ≥ m log(d) and for a constant C = C(σ, a, U) > 0. Matching lower bounds have also

been shown by Koltchinskii. et a. [KLT11] and Klopp [Klo15]. In the trace-regression

model with Gaussian noise we have for constants β ∈ (0, 1) and c = c(σ, a) > 0 that

inf
M̂

sup
M0∈A(a,k)

PM0,σ

(
‖M̂ −M0‖2F

m1m2
> c

kd

n

)
≥ β.

A similar lower bound can be obtained in the Bernoulli setting (see Klopp [Klo15]). These

lower and upper bounds imply that for the Frobenius loss and the parameter space A(a, k)

the minimax rate rn,m(A(a, k)) is (at most up to a log-factor) of order√
m1m2kd/n. (2.15)

2.4 Trace Regression Model

We first consider the trace regression model. For the sake of precision we sometimes write

M0 for the ‘true parameter’ M that has generated the equation (2.1).

For notational simplicity we assume that n is even. Then we can split our observations in
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two independent sub-samples of equal size n/2. In what follows all probabilistic statements

are under the distribution P (with corresponding expectation written E) of the first sub-

sample (Y tr
i , Xi)i≤n/2 of size n/2 ∈ N, conditional on the second sub-sample (Y tr

i , Xi)i>n/2,

i.e. we have P(.) = PM0,σ( · |(Y tr
i , Xi)i>n/2).

2.4.1 A non-asymptotic confidence set in the trace regression model

with known variance of the errors.

In this case we can adapt the construction of Carpentier et al. [CEGN15]. That is, we esti-

mate the risk ‖M̂ −M0‖2F /(m1m2) by the χ2-statistic (2.16) and center the confidence set

around a minimax optimal estimator M̂ . In (2.16) subtraction of σ2 is crucial since with-

out this R̂n would have a bias of σ2 = Ω(1) and the diameter of Cn would be dominated

by σ2. The other quantities in the definition of (2.17) are required to make sure that the

right hand side is with large enough probability an upper bound on ‖M̂ −M0‖2F /(m1m2)

such that the confidence set has the desired coverage probability.

More precisely, using only the second sub-sample (Y tr
i , Xi)i>n/2 we compute the matrix

lasso estimator from Klopp [Klo14] which achieves the bound (2.13) with probability at

least 1 − 2/d. Then, we freeze M̂ and the second sub-sample. We define the following

residual sum of squares statistic:

R̂n =
2

n

∑
i≤n/2

(Y tr
i − 〈Xi, M̂〉)2 − σ2. (2.16)

Given α > 0, let ξα,σ,U =
√

2σU log(α), zα = log(3/α) and, for a z > 0, a fixed constant

to be chosen, define the confidence set

Cn =

{
A ∈ Rm1×m2 :

‖A− M̂‖2F
m1m2

≤ 2

(
R̂n + z

d

n
+
z̄ + ξα,σ,U√

n

)}
, (2.17)

where

z̄2 = z̄2(α, d, n, σ, z) = zασ
2 max

(
3‖A− M̂‖22
m1m2

, 4zd/n

)
.

It is not difficult to see (using that x2 . y + x/
√
n implies x2 . y + 1/n) that

EM0,σ

[
|Cn|2F
m1m2

∣∣∣∣M̂] . ‖M̂ −M0‖2F
m1m2

+
zd+ σ2zα/3

n
+
ξα,σ,U√

n
. (2.18)

Markov’s inequality, (2.18) and that M̂ is minimax optimal (up to a log-factor) with

PM0,σ-probability of at least 1 − 2/d as long as m log(d) ≤ n ≤ d2 log(d) imply that Cn

has an adaptive and up to a log-factor minimax optimal squared diameter with probability

1−α′ for any α′ > 2/d. The following theorem shows that Cn is also a honest confidence

set:
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Theorem 2.4.1. Let α > 0, α′ > 2/d and suppose that m log(d) ≤ n ≤ d2 log(d), that

Assumption 2.1.1 is satisfied and that σ > 0 is known. Let Cn = Cn(Y, α, σ) be given by

(2.17) with z > 0. Then, for every n ∈ N and every M0 ∈ A(a,m),

PM0,σ (M0 ∈ Cn) ≥ 1− 2α

3
− 2e−zd/(11a2).

Hence, for any 1 ≤ k0 < k ≤ m, Cn is a honest and (up to a log-factor) adaptive confidence

set at the level α for the model A(a, k)⊗ {σ} and adapts to the sub-model A(a, k0)⊗ {σ}
at level α′.

The proof of Theorem 2.4.1 follows the lines of the proof of Theorem 2 in [CEGN15]

and we omit it here as the unknown variance results considered in the next section straight-

forwardly imply the known variance results.

2.4.2 A non-asymptotic confidence set in the trace regression model

with unknown error variance.

In this subsection we assume, that the precise knowledge of the noise variance σ is not

available, although the quantities a, U are available to the statistician (i.e. upper bounds

on the matrix entries and on the noise). Instead, we assume that σ belongs to a known

set Σ ⊂ (0, U ]. In applications of matrix completion this is usually a realistic assumption,

since the entries of M0 are bounded, too. For example in a movie recommender system

(e.g. [BL07, GNOT92]) the entries of the observations Y and consequently M0 and εi are

bounded from above by the best possible rating and below from the worst possible rating.

As the variance is now assumed to be unknown the construction from (2.17) is not feasible

anymore since we can not compute the test statistic (2.16). Instead we use a U-statistic

approach which only requires an upper bound on the variance for using Markov’s inequal-

ity.

As in the previous section, we use the second half of the sample, (Y tr
i , Xi)n/2<i≤n, for

constructing a minimax optimal estimator M̂ of M that fulfills ‖M̂‖∞ ≤ a. Since σ is

bounded by U we use again the matrix lasso estimator from Klopp [Klo14] with σ re-

placed by U which achieves the bound (2.13) with probability at least 1 − 2/d. In order

to construct the confidence set, we will be interested in all pairs of observations (Y tr
l , Xl)

and (Y tr
s , Xs) in the first sub-sample with 1 ≤ l < s ≤ n/2 such that Xl = Xs (that

is, independent measurements of the same matrix entry). For each (i, j) ∈ [m1] × [m2],

let S(i,j) = {k ∈ {1, . . . , n/2} : Xk = ei(m1)eTj (m2)} =: {a1 < ... < ap(i,j)} where p(i,j)

is the number of times that we observe the entry (i, j). For all indices (i, j) such that

S(i,j) 6= ∅, we form the bp(i,j)/2c couples (Xa1 , Xa2), (Xa3 , Xa4), . . . etc. We denote by N
the set of all these pairs and let |N | = N be their number. Re-ordering, we can write

(X̃k, Zk, Z
′
k)k≤N where X̃k = Xl = Xs for some couple (Xl, Xs) ∈ N and Zk = Y tr

l and

Z ′k = Y tr
s . That is, using two different samples of the same entry X̃k = Xl = Xs we form

33



Adaptive confidence sets for matrix completion

the observation triples (X̃k, Zk, Z
′
k). We use (X̃k, Zk, Z

′
k)k≤N to construct a U-Statistic to

estimate the squared Frobenius loss. Contrary to the construction in (2.16) this does not

require knowledge of the variance of the errors. We define:

R̂N :=
1

N

N∑
k=1

(Zk − 〈M̂, X̃k〉)(Z ′k − 〈M̂, X̃k〉), (2.19)

and we set R̂N = 0 if N = 0. Note that

EM0,σ

[
R̂N

∣∣∣∣M̂,N ≥ 1

]
=
‖M̂ −M0‖2F

m1m2
. (2.20)

We define the confidence set

Cn :=

{
A ∈ A(a,m) :

‖A− M̂‖2F
m1m2

≤ R̂N + zα,N

}
(2.21)

where the random quantile constant zα,N is defined as

zα,N :=
U2 + 4a2

√
Nα

if N 6= 0 and zα,N = 4a2 if N = 0.

The quantity N is random but we can bound it from below with high probability by

n2/(64m1m2) as proven in the following lemma.

Lemma 2.4.1. For n ≤ m1m2 we have with probability at least 1−exp
(
−n2/(372m1m2)

)
that:

N ≥ n2

64m1m2
.

Markov’s inequality, (2.20), Lemma 2.4.1 and that M̂ achieves the nearly optimal rate

(2.13) with PM0,σ-probability of at least 1− 2/d imply for any k ≤ m, any M0 ∈ A(a, k),

any σ ≤ U , any α′ > 2/d + exp(−n2/(372m1m2)) and a large enough constant C =

C(α, α′, σ, a, U) > 0 that

PM0,σ

(
|Cn|2F
m1m2

> C
kd log(d)

n

)
≤ α′. (2.22)

Since k is arbitrary this implies that Cn is a confidence set whose ‖·‖2F -diameter adapts to

the unknown rank of M0 without requiring the knowledge of σ ∈ Σ. The following theorem

implies that Cn is also a honest confidence set. Note that our result is non-asymptotic

and holds for any triple (n,m1,m2) ∈ N3 as long as m log d ≤ n ≤ m1m2.

Theorem 2.4.2. Let α > 0 be given, assume m log(d) ≤ n ≤ m1m2 and that As-

sumption 2.1.1 is fulfilled. Let Cn = Cn(Y, α) as in (2.21). Then Cn satisfies for any
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M0 ∈ A(a,m) and any σ ∈ Σ

PM0,σ (M0 ∈ Cn) ≥ 1− α.

Hence, for any α′ > 2/d+exp(−n2/(372m1m2)) and any 1 ≤ k0 < k ≤ m, Cn is a honest

confidence set at level α for the model A(a, k)⊗ Σ that adapts (up to a log-factor) to the

rank k0 of any sub-model A(a, k0)⊗ Σ at level α′.

2.5 Bernoulli Model

In this section we consider the Bernoulli model (2.3). As before we let PM,σ (and EM,σ for

the corresponding expectation) denote the distribution of the data when the parameters

are M and σ, and we sometimes write M0 for the ‘true’ parameter M for the sake of

precision.

2.5.1 A non-asymptotic confidence set in the Bernoulli model with

known variance of the errors.

Here we assume again that σ > 0 is known. In case of the Bernoulli model we are not

able to obtain two independent samples and cannot use the risk estimation approaches

from the trace-regression setting. Instead we use the duality between testing and honest

and adaptive confidence sets laid out in Section 2.2. We first determine an upper bound

for the minimax rate ρ = ρn,m of testing the low rank hypothesis

H0 : M ∈ A(a, k0) against H1 : M ∈ A(a, k), ‖M −A(a, k0)‖2F ≥ ρ2, (2.23)

and then apply Theorem 2.2.2. As test statistic, we propose an infimum-test which has

previously been used by Bull and Nickl [BN13] and Nickl and van de Geer [Nv13] in

density estimation and high-dimensional regression, respectively (see also Section 6.2.4.

in [GN16]). Since σ2 = Eε2ij is known we can define the statistic

Tn := inf
A∈A(a,k0)

∣∣∣∣∣∣ 1√
2n

∑
i,j

Bij
(
(Yij −Aij)2 − σ2

)∣∣∣∣∣∣ = inf
A∈A(a,k0)

∣∣∣∣∣∣ 1√
2n

∑
i,j

(
(Yij −BijAij)2 −Bijσ2

)∣∣∣∣∣∣
(2.24)

and choose the quantile constant uα such that

Pσ

 1√
2n

∣∣∣∣∣∣
∑
i,j

Bij(ε
2
ij − Eε2ij)

∣∣∣∣∣∣ > uα

 ≤ α/3. (2.25)
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For example, using Markov’s inequality, we get

Pσ

 1√
2n

∣∣∣∣∣∣
∑
i,j

Bij(ε
2
ij − σ2)

∣∣∣∣∣∣ > uα

 ≤ 1

2nu2
α

∑
i,j

Varσ
(
Bij(ε

2
ij − σ2)

)
≤ σ2(U2 − σ2)

2u2
α

so uα = σ
√(

3(U2 − σ2)
)
/(2α) is an admissible choice.

Theorem 2.5.1. Let α ≥ 12 exp(−100d) be given. Consider the Bernoulli model (2.3)

and the two parameter spaces A(a, k) and A(a, k0), 1 ≤ k0 < k ≤ m. Furthermore assume

that Assumption 2.1.1 is fulfilled, that σ > 0 is known, that n ≥ m log(d) and consider

the testing problem (2.23). Suppose

ρ2 ≥ Cm1m2k0d

n
� r2

n,m(A(a, k0))

where C = C(α, a, U, σ) > 0 is a constant. Then the test Ψn := 1{Tn>uα} where uα is the

quantile constant in (2.25) and Tn is as in (2.24) fulfills

sup
M∈A(a,k0)

EM,σ[Ψn] + sup
M∈A(a,k), ‖M−A(a,k0)‖2F≥ρ2

EM,σ[1−Ψn] ≤ α.

Now in order to apply Theorem 2.2.2 we use the soft-thresholding estimator proposed

by Koltchinskii et al. [KLT11] which satisfies the oracle inequality (2.12) up to a log-

factor in the trace regression model. That this holds in the Bernoulli-model as well with

PM0,σ-probability of at least 1− 1/d can be proven in a similar way and we sketch this in

Proposition 2.8.3, removing the log-factor by using stronger bounds on the spectral norm

of the noise matrix (Bijεij)i,j .

This and Theorem 2.5.1 imply, using Theorem 2.2.2, that there exist honest and

adaptive confidence sets in the Bernoulli model if the variance of the errors is known.

Corollary 2.5.1. Let α ≥ 2/d and α′ ≥ 12 exp(−100d) be given. Suppose that σ > 0 is

known, that Assumption 2.1.1 is fulfilled and that n ≥ m log(d). Then, for any 1 ≤ k0 <

k ≤ m, there exists a honest confidence set Cn at the level α for the model A(a, k)⊗ {σ},
i.e., for any M0 ∈ A(a, k),

PM0,σ (M0 ∈ Cn) ≥ 1− α,

and Cn adapts to the sub-model A(a, k0)⊗ {σ} at level α′.

2.5.2 The case of the Bernoulli model with unknown error variance.

In this subsection we assume again, as in Subsection 5.2, that the precise knowledge of

the error variance σ is not available. Whereas in this case for the trace-regression model

the construction of honest and adaptive confidence set was seen to be possible, we will

now show that this is not the case for the Bernoulli model. We use again the duality
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between testing and confidence sets, this time applying Theorem 2.2.1. The next theorem

gives a lower bound for the minimax rate of testing for the composite null hypothesis H0 :

M ∈ A(a, k0) of M having rank at most k0 against a rank-k alternative. To simplify the

exposition we will consider only square matrices and also an asymptotic ‘high-dimensional’

framework where min(n,m) → ∞ and k0 = o(k). We formally allow for k0 = 0, thus

including the ‘signal detection problem’ when H0 : M = 0, σ2 = 1.

Theorem 2.5.2. Suppose that Assumption 2.1.1 is satisfied for some U ≥ 2 and assume

m = m1 = m2. Furthermore, let k = kn,m → ∞ be such that 0 < k ≤ m1/3 and

k1/4
√
m/n < min(1, a)/2. For 0 ≤ k0 < k satisfying k0 = o(k) and a sequence ρ = ρn,m ∈

(0, 1/2) consider the testing problem

H0 : M ∈ A(a, k0), σ2 = 1 vs H1 : M ∈ A(a, k), ‖M−A(a, k0)‖2F ≥ m2ρ2, σ2 = 1−4ρ2.

(2.26)

If, as min(n,m)→∞,

ρ2 = o
(√km

n

)
, (2.27)

then for any test Ψ we have that

lim inf
min(n,m)→∞

[
sup

M∈A(a,k0)
EM,1[Ψ] + sup

M∈A(a,k), ‖M−A(a,k0)‖2F≥m2ρ2
E
M,
√

1−4ρ2
[1−Ψ]

]
≥ 1.

(2.28)

In particular, if Σ ⊂ (0, U ] contains the interval [
√

1− 4τ , 1] where τ = lim supn,m k
1/4
√
m/n,

then (2.10) holds for the choices A0 = A(a, k0)⊗ Σ,A = A(a, k)⊗ Σ and β0 = 1, ρ∗ = ρ.

Using Theorem 2.2.1 this implies the non-existence of honest and adaptive confidence

sets in the model (2.3) if the variance of the errors is unknown and k0 = o(
√
k). In

particular adaptation to a constant rank k0, k0 = O(1), is never possible if k → ∞ as

min(m,n)→∞.

Corollary 2.5.2. Assume that the conditions of Theorem 2.5.2 are fulfilled and that

k0 = o(
√
k). Then for any α, α′ > 0 satisfying 0 < 2α+α′ < 1 a honest confidence set for

the model A(a, k)⊗Σ at level α that adapts to the sub-model A(a, k0)⊗Σ at level α′ does

not exist. In fact if α < 1/3, we have for every honest confidence set Cn for the model

A(a, k)⊗ Σ at level α and constant c = c(a, U, α) that

sup
(M0,σ)∈A(a,k0)⊗Σ

EM0,σ|Cn|2F ≥ c
m3
√
k

n
.

2.6 Conclusions

We have investigated confidence sets in two matrix completion models: the Bernoulli

model and the trace regression model. In the trace regression model the construction of

37



Adaptive confidence sets for matrix completion

adaptive confidence sets is possible, even if the variance is unknown. Contrary to this we

have shown that the information theoretic structure in the Bernoulli model is different;

in this case the construction of adaptive confidence sets is not possible if the variance is

unknown.

One interpretation is that in practical applications (e.g. recommender systems such as

Netflix [BL07]) one should incentivise users to perform multiple ratings of every product

they rate, to justify the use of the trace regression model and the proposed U-statistic

confidence set.

In the case of the Bernoulli model a few questions remain open: Our proof only shows

that one can not adapt to a low rank hypothesis k0 = o(
√
k) if the variance is unknown.

It remains an open question whether the lower bound ρ in Theorem 2.5.2 is tight, as well

as whether adaptation over ‘non-low-rank parameter spaces’ when k0 �
√
k or k > m1/3

is possible.

2.7 Proofs

2.7.1 Proof of Theorem 2.2.2

Proof. Let Ψn be a test that attains the rate ρ with error probabilities bounded by

min(α/2, α′) and let L = L(min(α/2, α′)) be the corresponding constant in (2.9). Let

f̂ denote an estimator that satisfies the oracle inequality (2.12) with probability of at

least 1− α/2. Define a confidence set

Cn := {f ∈ A : D(f̂ , f) ≤ K (rn(A)Ψn + rn(A0)(1−Ψn))}

where K > 0 is a constant to be chosen.

We first prove that Cn is adaptive: If f ∈ A\A0 there is nothing to prove, and if f ∈ A0

we have

Pnf (|Cn|D > Krn(A0)) = Pnf (Ψn = 1) ≤ α′.

For coverage we investigate three distinct cases and note that

sup
f∈Ã

Pnf
(
D(f̂ , f) > Crn(Ã)

)
≤ α/2 (2.29)

where C > 0 is as in (2.12) and where Ã ∈ {A0,A}. Hence f̂ is, by the oracle inequality,

an adaptive estimator.

Then for f ∈ A0, by (2.29)

Pnf (f /∈ Cn) ≤ Pnf
(
D(f̂ , f) > Krn(A0)

)
≤ α/2 ≤ α

38



2.7. Proofs

for K ≥ C.

If f ∈ A\A0 and D(f,A0) ≥ Lρn, then for K ≥ C

Pnf (f /∈ Cn) = Pnf (D(f̂ , f) > Krn(A),Ψn = 1) + Pnf (D(f̂ , f) > Krn(A),Ψn = 0)

≤ Pnf (D(f̂ , f) > Krn(A)) + Pnf (Ψn = 0) ≤ α.

If f /∈ A\A0 but D(f,A0) < Lρn, then by the oracle inequality and since ρn ≤ C ′rn(A0)

we have with probability at least 1− α/2 for such f that

D(f̂ , f) ≤ C(D(f,A0) + rn(A0)) ≤ CLρn + Crn(A0) ≤ C(LC ′ + 1)rn(A0).

Thus we still have

Pnf (f /∈ Cn) = Pnf (D(f̂ , f) > Krn(A0)) ≤ α/2 ≤ α

for K ≥ C(LC ′ + 1).

2.7.2 Proof of Theorem 2.4.2

Proof. Recall that

EM0,σ

(
R̂N |N,N > 0

)
=
‖M̂ −M0‖2F

m1m2
=: r. (2.30)

Thus using Markov’s inequality we have for N > 0 that

PM0,σ (M0 /∈ Cn|N,N > 0) ≤ PM0,σ

(
|R̂N − r| > zα,N |N,N > 0

)
≤

VarM0,σ

(
R̂N
∣∣N,N > 0

)
z2
α,N

. (2.31)

Using equation (2.30) we compute

VarM0,σ

(
R̂N
∣∣N,N > 0

)
=

1

N
EM0,σ

((
(Zk − 〈M̂, X̃k〉)(Z ′k − 〈M̂, X̃i〉)− r

)2∣∣∣N,N > 0
)

≤ 1

N

[(
E〈M0 − M̂,X1〉4

)
+ 2σ2r + σ4

]
=

1

N

[
‖M̂ −M0‖4L4

m1m2
+ 2σ2r + σ4

]

≤ U4 + 8U2a2 + 16a4

N
= αz2

α,N

since ‖M̂ −M0‖∞ ≤ 2a and where we define ‖M̂ −M0‖4L4 :=
∑

i,j(M̂ij −Mij)
4. Hence
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(2.31) implies

PM0,σ (M0 /∈ Cn|N > 0) ≤ α.

Moreover, as ‖M̂ −M0‖∞ ≤ 2a and zα,0 = 4a2, we have that P (M0 /∈ Cn|N = 0) = 0.

2.7.3 Proof of Theorem 2.5.1

Proof. If M ∈ A(a, k0), then by definition of the infimum and uα we have

EM,σ[Ψ] = PM,σ (Tn > uα) ≤ Pσ

 1√
2n

∣∣∣∣∣∣
∑
ij

Bij(ε
2
ij − σ2)

∣∣∣∣∣∣ > uα

 ≤ α/3.
The case M ∈ A(a, k), ‖M −A(a, k0)‖2F ≥ ρ2 requires more elaborate arguments. Let A∗

be a minimizer in (2.24). Then

EM,σ[1−Ψ] = PM,σ (Tn < uα)

= Pσ

∣∣∣∣∣∣
∑
ij

Bij [(A
∗
ij −Mij)

2 − 2εij(A
∗
ij −Mij) + (ε2ij − σ2)]

∣∣∣∣∣∣ < √2nuα

 .

(2.32)

For ρ ≥ 8072a
√
k0d/p = 8072a

√
m1m2k0d/n we can apply Lemma 2.8.1 which yields a

weaker version of the Restricted Isometry Property (RIP). Namely, Lemma 2.8.1 implies

that the event

Ξ :=

∑
i,j

Bij(Aij −Mij)
2 ≥ p

2
‖A−M‖2F ∀A ∈ A(a, k0)

 , M ∈ H1,

occurs with probability of at least 1− 2 exp(−100d). We can thus bound (2.32) by

Pσ

 sup
A∈A(a,k0)

2

∣∣∣∣∣∣
∑
i,j

Bijεij(Aij −Mij)

∣∣∣∣∣∣−
∑

i,j Bij(Aij −Mij)
2

2

 > −√nuα,Ξ

(2.33)

+Pσ

∣∣∣∣∣∣
∑
i,j

Bij(ε
2
ij − σ2)

∣∣∣∣∣∣ >
∑

i,j Bij(A
∗
ij −Mij)

2

2
−
√
nuα,Ξ

+ 2 exp(−100d). (2.34)
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The stochastic term (2.34) can be bounded using d2 ≥ 3n and that ρ is large enough.

Indeed, on the event Ξ we have that∑
i,j Bij(A

∗
ij −Mij)

2

2
≥ pρ2/4 ≥ (1 +

√
2)/
√

3duα ≥ (1 +
√

2)
√
nuα

for ρ ≥ 2
√
uαd/p which implies together with the definition of uα in (2.25) that (2.34) can

be bounded by α/3 + 2 exp(−100d). For the cross term (2.33) we use the two following

inequalities which, just as before, hold on the event Ξ ∀ A ∈ A(a, k0)∑
i,j Bij(Aij −Mij)

2

4
≥
√
nuα and

∑
i,j Bij(Aij −Mij)

2

8
≥
p‖A−M‖2F

16
.

Hence, using also a peeling argument, (2.33) can be bounded by

∑
s∈N: pρ2/2≤2s<∞

Pσ

 sup
A∈A(a,k0), 2s≤p‖A−M‖2F≤2s+1

∣∣∣∑i,j Bijεij(Aij −Mij)
∣∣∣

p‖A−M‖2F
>

1

16


≤

∑
s∈N: pρ2/2≤2s<∞

Pσ

 sup
A∈A(a,k0), p‖A−M‖2F≤2s+1

∣∣∣∣∣∣
∑
i,j

Bijεij(Aij −Mij)

∣∣∣∣∣∣ > 2s

16


=

∑
s∈N: pρ2/2≤2s<∞

Pσ
(
Z(s) >

2s

16

)
(2.35)

where we set the corresponding probability to 0 if the supremum is taken over an empty

set and where we define

Z(s) := sup
A∈A(a,k0), p‖A−M‖2F≤2s+1

∣∣∣∣∣∣
∑
i,j

Bijεij(Aij −Mij)

∣∣∣∣∣∣ .
Lemma 2.8.2 (with choices z = 162, ξij = εij , t = 2s and q = 1 there ) implies for

ρ ≥ 16144U
√
k0d/p and for 2s ≥ pρ2/2 that

Pσ
(
Z(s) >

2s

16

)
≤ exp

(
−2s

2097152U2 + 517120aU

)
Hence, (2.35) can be upper bounded by

∑
s∈N: pρ2/2≤2s<∞

exp

(
−2s

2097152U2 + 517120aU

)
≤2 exp

(
− pρ2

2097152U2 + 517120aU

)
(2.36)

≤2 exp(−100d)
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for ρ ≥ 16169U(a∨U)
√
d/p. Consequently (2.32) can be bounded by α/3+4 exp(−100d) ≤

2α/3 since α ≥ 12 exp(−100d).

2.7.4 Proof of Theorem 2.5.2

Proof. Step I : Reduction to an easier testing problem between two distribu-

tions

Assume without loss of generality that m is divisible by k. Suppose

ρ = ρn,m =
vk1/4√m√

n
(2.37)

where v = vn,m is a sequence such that v = o(1), and assume w.l.o.g. that 0 < v ≤ 1.

Moreover we denote u = 2ρ. For 1 ≤ i ≤ m, 1 ≤ κ ≤ k, 1 ≤ j ≤ m let

Bij
i.i.d.∼ B(p) and Uκi

i.i.d.∼ R and Vj
i.i.d.∼ R,

where B(p) is a Bernoulli distribution of parameter p = n/m2 and R is the standard

Rademacher distribution Pr(V1 = ±1) = 1/2. Let P be a uniform random partition of

{1, . . . ,m} in k groups of size m/k, and denote by Kj , Kj ∈ {1, ..., k}, the label of element

j of P. Consider the following testing problem:

H ′0 : M = 0 and εij
i.i.d.∼ R

against

H ′1 : Mij = uU
Kj
i Vj (2.38)

and εij ∼ δ{1−Mij}(1 +Mij)/2 + δ{−1−Mij}(1−Mi,j)/2

Note that the variance of εij under H0 is 1 and the variance of the noise under H1 is

(1−Mij)
2(1 +Mij)/2 + (−1−Mij)

2(1−Mij)/2 = (1−Mij)(1 +Mij) = 1− 4ρ2,

so the noise variables are homoscedastic across the (i, j)’s and |εij | ≤ 2 ≤ U . Let π be the

distribution of M under H ′1 and write ν0 and ν1 for the distribution of Y under H ′0 and

H ′1, respectively.

Since the prior M in (2.38) consists of k i.i.d. scaled Rademacher vectors that each form

m/k columns of M we have rank(M) ≤ k and ‖M‖∞ = u = 2ρ ≤ a for v small enough

and since k1/4
√
m/n ≤ a/2. Thus M ∈ A(a, k). Then, reordering the columns of M we

have

‖M −A(a, k0)‖2F = ‖Mord −A(a, k0)‖2F
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where Mord is a m×m matrix with the (((i− 1)m/k) + 1)-th to the (im/k)-th columns

each given by uri where ri are i.i.d Rademacher vectors of length m, i = 1, ..., k. Then

(as in the proof of Theorem 1 in [CN15]) we transform Mord into the m × k matrix

MordP = u
√
m/kR consisting of k column vectors u

√
m/kri, i = 1, ..., k. The m × k

projection matrix P consists of k column vectors, the i-th having zero entries except

for the indices s ∈ [((i − 1)m/k) + 1, . . . , im/k] where it equals
√
k/m. Hence P is an

orthonormal projection matrix and we obtain

‖M −A(a, k0)‖2F ≥ ‖(Mord −A(a, k0))P‖2F = ‖u
√
m/kR−A(a

√
m/k, k, k0)‖2F

where we define

A(a, k, k0) := {A ∈ Rm×k : ‖A‖∞ ≤ a and rank(A) ≤ k0}.

Therefore, if σmin(A) denotes the minimal singular value of a matrix A, we have that

‖M −A(a, k0)‖2F ≥
m2

k
‖uR/

√
m−A(a/

√
m, k, k0)‖2F

≥ m2u2

k
(k − k0)(σmin(R/

√
m))2

≥ m2u2

2
(σmin(R/

√
m))2 ≥ m2u2

4
= m2ρ2 (2.39)

with probability going to 1, where we have used that k − k0 ≥ k/2 for m large enough

(recall k0 = o(k)) as well as the variational characterisation of minimal eigenvalues com-

bined with Corollary 1 in [Nv13] (with choices n = m, p = k1 = k, θ = 0 and Λmin = 1

there) to lower bound σ2
min(R/

√
m) by 1/2.

To conclude, π is concentrated on H1 and the primed testing problem above is, asymp-

totically, strictly easier than the testing problem (2.26) since H ′0 is contained in H0 and

H ′1 is asymptotically contained in H1. Thus, we have for any test Ψ by a standard lower

bound (as, e.g., in (6.23) in [GN16]) that for all η > 0

EH0Ψ + sup
H1

EH1(1−Ψ) ≥ EH′0Ψ + EH′1(1−Ψ)− o(1) ≥ (1− η)

(
1−

dχ2(ν0, ν1)

η

)
− o(1),

where dχ2(ν0, ν1) denotes the χ2-distance between ν0 and ν1, which remains to be bounded.

Step II : Expectation over censored data

We define I = [m]× [m] and observe that the likelihood of the data under ν0 is

L(Y1, ...Ym,m) =
∏

(i,j)∈I

(
(1− p)1{Yij=0} +

p

2
1{Yij=1} +

p

2
1{Yij=−1}

)
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and that the likelihood of the data under ν1 is

L(Y1, ...Ym,m) = EM∼π
∏

(i,j)∈I

(
(1−p)1{Yij=0}+p(1/2+Mij/2)1{Yij=1}+p(1/2−Mij/2)1{Yij=−1}

)
.

Thus, the likelihood ratio L between these two distributions is given by

L = EM∼π
∏

(i,j)∈I

(
1{Yij=0} + (1 +Mij)1{Yij=1} + (1−Mij)1{Yij=−1}

)
.

So we have that

dχ2(ν0, ν1)2 + 1 = EY∼ν0L2

= EY∼ν0
[
EM∼π

∏
(i,j)∈I

(
1{Yij=0} + (1 +Mij)1{Yij=1} + (1−Mij)1{Yij=−1}

)]2

= EM,M ′∼π
∏
i,j

[(
1− p+

p

2
(1 +Mij)(1 +M ′ij) +

p

2
(1−Mij)(1−M ′ij)

)]
= EM,M ′∼π

∏
i,j

[
1 + pMijM

′
ij

]
. (2.40)

where M ′ is an independent copy of M .

Step III : Conditioning over the cross information

Let Nr,r′ be the number of times where the couple Kj = r,K ′j = r′ occurs. That is,

Nr,r′ :=
m∑
j=1

1{Kj=r,K′j=r′}.

We enumerate the elements inside these groups from 1 to Nr,r′ . We write Ṽ r,r′

j for the

corresponding enumeration of the Vj . Setting N = (Nr,r′)r,r′ and using the definition of

the prior, we compute

EM,M ′∼π
∏
i,j

[
1 + pMijM

′
ij

]
= EN,U,Ṽ ,U ′,Ṽ ′

m∏
i=1

∏
r,r′∈{1,...,k}2

Nr,r′∏
j=1

[
1 + pu2U ri Ṽ

r,r′

j (U r
′
i )′(Ṽ r,r′

j )′
]

=: EN

∏
r,r′∈{1,...,k}2

I(Nr,r′) (2.41)

where we define for any N = Nr,r′ > 0

I(N) = EX,W,X′,W ′
m∏
i=1

N∏
j=1

[
1 + pu2XiWjX

′
iW
′
j

]
and where (Xi)i≤m, (X

′
i)i≤m, (Wi)j≤N , (W

′
i )j≤N are i.i.d. Rademacher random variables.
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Moreover, we set Ir,r′(0) = 0.

Step IV : Bound on EN
∏
r,r′∈{1,...,k}2 I(Nr,r′).

In order to bound I(N) we use the following lemma proved below

Lemma 2.7.1. Let N = Nr,r′. There exist constants C1, C2, C3 > 0 such that for v small

enough

I(N) ≤ exp
(
C1v

4N/m
)

exp
(C2v

4k2N

m2

)
exp

(
C3v

4N2k2/m2
)
. (2.42)

Using (2.40), (2.41) and (2.42) we have that

dχ2(ν0, ν1)2 + 1

= EN

∏
r,r′∈{1,...,k}2

I(Nr,r′) (2.43)

≤ EN

exp

C2v
4k2

m2

∑
r,r′

Nr,r′

exp

C1v
4

m

∑
r,r′

Nr,r′

 ∏
r,r′∈{1,...,k}2

exp
(
C3v

4N2
r,r′k

2/m2
)

= exp

(
C2v

4k
2

m
+ C1v

4

)
EN

 ∏
r,r′∈{1,...,k}2

exp
(
C3v

4N2
r,r′k

2/m2
) , (2.44)

since
∑

r,r′ Nr,r′ = m. We bound the expectation of the stochastic term in (2.44) using

the following lemma proved below:

Lemma 2.7.2. There exists a constant C ′ > 0 such that for v small enough we have

EN
[∏
r,r′

exp
(
C3v

4N2
r,r′k

2/m2
)]
≤ 1 + 2C ′v4 + exp

(
−m/k2

)
. (2.45)

Inserting (2.45) into (2.44) and summarizing all the steps we obtain

0 ≤ dχ2(ν0, ν1)2 ≤ C
(
v2 + exp

(
−m/k2

))
= o(1)

for a constant C > 0 and therefore, letting η → 0,

E0[Ψ] + sup
H1

EH1 [1−Ψ] ≥ (1− η)

(
1−

dχ2(ν0, ν1)

η

)
− o(1) = 1− o(1).

Proof of Lemma 2.7.1. Note that, by construction of P, we have that

N = Nr,r′ ≤ m/k

since the number of j where M.,j corresponds to Kj = r is bounded by m/k. As the
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product of two independent Rademacher random variables is again a Rademacher random

variable, we have

I(N) = ER,R′
m∏
i=1

N∏
j=1

[
1 + pu2RiR

′
j

]
,

where R = (Ri)
m
i=1, R

′ = (R′i)
N
i=1 are independent Rademacher vectors of length m and N ,

respectively. The usual strategy to use 1 +x ≤ ex and then to bound iterated exponential

moments of Rademacher variables (as in the proof of Theorem 1 of [CN15]) only works

when k = const, and a more refined estimate is required for growing k, as relevant here.

We now bound I(N) for a fixed N,m/k ≥ N > 0. Using the binomial theorem twice we

have

I(N) = ER′
[[1

2

N∏
j=1

[
1 + pu2R′j

]
+

1

2

N∏
j=1

[
1− pu2R′j

]]m]

=
1

2m

m∑
s=1

(
m

s

)[1

2

[
1 + pu2

]s[
1− pu2

]m−s
+

1

2

[
1− pu2

]s[
1 + pu2

]m−s]N
=

1

2m2N

m∑
s=1

(
m

s

) N∑
q=1

(
N

q

)[
1 + pu2

]sq+(m−s)(N−q)[
1− pu2

](m−s)q+s(N−q)
= EQ,S

[[
1 + pu2

]SQ+(m−S)(N−Q)[
1− pu2

](m−S)Q+S(N−Q)
]

with independent Binomial random variables S ∼ B(1/2,m), Q ∼ B(1/2, N). If A :=
1−pu2
1+pu2

, we obtain

I(N) = EQ,S
[[

1 + pu2
]mN [1− pu2

1 + pu2

]SN+mQ−2SQ ]
=
[
1 + pu2

]mNEQ[AmQESAS(N−2Q)
]

=
[
1 + pu2

]mNEQ [AmQ2−m
(
A(N−2Q) + 1

)m]
=
[
1 + pu2

]mNEQ [ANm/2(1

2
A(N/2−Q) +

1

2
A(−N/2+Q)

)m]
=
[
1− p2u4

]mN/2EQ(1

2
AQ−N/2 +

1

2
AN/2−Q

)m
.

Now, we denote x := pu2 = 4vk1/2/m ≤ 1/2 for v small enough. Furthermore, we Taylor

expand log(A) about 1 up to second order, i.e.

log(A) = log(1− x)− log(1 + x) = −2x− 1

2

(
1

ξ2
1

− 1

ξ2
2

)
x2 =: −2x− c(x)x2

for ξ1 ∈ [1/2, 1], ξ2 ∈ [1, 3/2] and where c(x) ∈ [0, 16/9] since x ≤ 1/2. Hence, using also
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the inequality ex ≤ 1 + x+ x2/2 + x3/6 + 2x4 we deduce

I(N) ≤ exp
[
−mNx2/2

]
EQ
[1

2
exp

(
− 2x(Q−N/2)− c(x)(Q−N/2)x2)

)
+

1

2
exp

(
− 2x(N/2−Q)− c(x)(N/2−Q)x2)

)]m
≤ exp

[
−mNx2/2

]
· EQ

[
1

2

(
1− 2x(Q−N/2)− c(x)(Q−N/2)x2 + (−2x(Q−N/2)− c(x)(Q−N/2)x2)2/2

+ (−2x(Q−N/2)− c(x)(Q−N/2)x2)3/6 + 2(−2x(Q−N/2)− c(x)(Q−N/2)x2)4
)

+
1

2

(
1− 2x(N/2−Q)− c(x)(N/2−Q)x2 + (−2x(N/2−Q)− c(x)(N/2−Q)x2)2/2

+ (−2x(N/2−Q)− c(x)(N/2−Q)x2)3/6 + 2(−2x(N/2−Q)− c(x)(N/2−Q)x2)4
)]m

.

Since x ≤ 1/2 and |N/2 − Q|x ≤ 1/4 there exist two constants c2 = c2(x) = c(x)/2 +

c(x)2/32 ≤ 1 and c1 = c1(x) = 32 + 32c(x) + 12c(x)2 + 2c(x)3 + c(x)4/8 ≤ 140 such that

the last equation above can be bounded by

≤ exp
[
−mNx2/2

]
EQ
[
1 + 2x2(Q−N/2)2 + c1|Q−N/2|4x4 + c2|Q−N/2|x2

]m
≤ exp

[
−mNx2/2

]
EQ exp

[
mx2(N − 2Q)2/2 + c1m(Q−N/2)4x4 + c2m|Q−N/2|x2

]
= EQ

[
exp

(m
2

(
x2(2Q−N)2 −Nx2

))
exp

(
c1m(Q−N/2)4x4 + c2m|Q−N/2|x2

)]
.

Using the Cauchy-Schwarz inequality twice, this implies that

I(N) ≤
√
EQ
[

exp
(
mx2N

(
(2Q−N)2/N − 1

))][
EQ
[

exp
(
c1mx

4(N − 2Q)4/4
)]

· EQ
[

exp
(

2c2m|2Q−N |x2
)]]1/4

=:
√

(I)(II)1/4(III)1/4.

Step 1 : Bound on term (III)

Since Q ∼ B(1/2, N), since (2Q−N) is symmetric and since 2c2mx
2 ≤ 1/2 we have that

(III) = EQ
[

exp
(

2c2m|2Q−N |x2
)]
≤ 2EQ

[
exp

(
2c2m(2Q−N)x2

)]
= 2
[

exp
(

2c2mx
2
)

+ exp
(
− 2c2mx

2
)]N

≤ 2
[
1 + 8c2

2m
2x4
]N

≤ exp
(
8c2

2m
2x4N

)
≤ exp

(C2v
4k2N

m2

)
. (2.46)

Step 2 : Term (II)
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We use mN2x4 ≤ 64v4/m, (N − 2Q)2 ≤ N2 and N ≤ m/k to obtain

(II) ≤ EQ
[

exp
(

64c1v
4N/m · (N − 2Q)2/N

)]
.

Since Q ∼ B(1/2, N) the Rademacher average Z = (N − 2Q)/
√
N is sub-Gaussian with

sub-Gaussian constant at most 1. It hence satisfies (e.g., equation (2.24) in [GN16]) for

c > 2

E exp{Z2/c2} ≤ 1 +
2

c2/4− 1
≤ ec3c−2

,

which for v small enough and the choice c−2 = 64c1v
4N/m implies for some constant C1

that

(II) ≤ exp

(
4C1v

4N

m

)
.

Step 3 : Term (I)

We have that

(I) = EQ
[

exp
(
mNx2

[
(2Q−N)2

N
− 1

])]
= E

exp

16v2Nk

m

 1

N

(
N∑
i=1

εi

)2

− 1

 = E

exp

16v2k

m

∑
i 6=j,i,j≤N

εiεj

 ,
where εi are i.i.d. Rademacher random variables. If A = (aij) is a symmetric matrix with

all elements on the diagonal equal to zero, then for the Laplace transform of an order-two

Rademacher chaos Z =
∑

i,j aijεiεj we have the inequality

EeλZ ≤ exp

{
16λ2‖A‖2F

2 (1− 64‖A‖λ)

}
, λ > 0,

see, e.g., Exercise 6.9 on p.212 in [BLM13] with T = {A}. Now take A = (δi 6=j)i,j≤N so

that we have ‖A‖ ≤ N and for v small enough 16v2kN/m ≤ 16v2 ≤ 1/128.

E
[

exp
(16v2k

m

∑
i 6=j,i,j≤N

εiεj

)]
≤ exp

(
163v4k2‖A‖2F

2m2(1− 1024v2k‖A‖/m)

)
≤ exp

(
163v4k2N2

m2

)

and therefore we conclude for a constant C3 > 0 that

(I) ≤ exp
(

2C3v
4k2N2/m2

)
. (2.47)

Step 4 : Conclusion on I(N)

Combining the bounds for (I), (II) and (III) with the bound on I(N) we have that

I(N) ≤ exp
(
C2v

4k2N/m2
)

exp
(
C1v

4N/m
)

exp
(
C3v

4k2N2/m2
)
.
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Proof of Lemma 2.7.2. We bound the expectation by bounding it separately on two com-

plementary events. For this we consider the event ξ where all Nr,r′ are upper bounded by

τ := 15m/k2, assumed to be an integer (if not replace it by its integer part plus one in

the argument below). More precisely we define

ξ =
{
∀r ≤ k, ∀r′ ≤ k : Nr,r′ ≤ τ

}
.

Note that {Nr,r′ > τ} occurs only if the size of the intersection of the class r of partition P
with the class r′ of partition P ′ is larger than τ . This means that at least τ elements among

m/k elements of the class r′, must belong to the class r. The positions of these τ elements

can be taken arbitrarily within the m/k elements. For the first element, among those τ ,

the probability to belong to the class r is m/k
m . For the second element this probability is

m/k
m−1 or (m/k)−1

m−1 and so on. All these probabilities are smaller than (m/k)/(m−m/k+ 1).

Therefore we have

PN(Nr,r′ > τ) ≤
(
m/k

τ

)(
m/k

m−m/k + 1

)τ
≤ (m/k)τ

τ !
(2/k)τ ≤ 2τ (m/k2)ττ−τeτ ≤ e−τ ,

where we use
(
m/k
τ

)
≤ (m/k)τ

τ ! and Stirling’s formula. Using a union bound this implies

that the probability of ξ is lower bounded by 1− k2 exp(−15m/k2).

We have on the event ξ

EN

[
1{ξ}

∏
r,r′∈{1,...,k}2

exp
(
C3v

4N2
r,r′k

2/m2
)]

≤ exp
(
C3v

4k2 · 152(m/k2)2k2/m2
)]

≤ exp
(
C ′v4

)
≤ 1 + 2C ′v4.

for C ′ = 225C3 and for v small enough. Moreover, by definition of Nr,r′ , we have that

Nr,r′ ≤ m/k and
∑

r,r′ Nr,r′ = m. Hence∑
r,r′

N2
r,r′ ≤ km2/k2 = m2/k

which implies that on ξC

EN

[
1{ξC}

∏
r,r′∈{1,...,k}2

exp
(
C3v

4N2
r,r′k

2/m2
)]

≤ PN(ξC) exp
(
C3v

4k
)

≤ k2 exp
(
− 15m/k2 + C3v

4k
)
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≤ k2 exp
(
− 3m/k2

)
≤ exp

(
−m/k2

)
,

for v small enough and since k3 ≤ m. Thus, combining the bounds on ξ and ξC , we have

that

EN
[∏
r,r′

exp
(
C3v

4N2
r,r′k

2/m2
)]
≤ 1 + 2C ′v4 + exp

(
−m/k2

)
.

2.8 Auxiliary results

2.8.1 Proof of Lemma 2.4.1

Proof. Assume that among the first n/4 samples we have less than n/8 entries that are

sampled twice - otherwise the result holds since n/8 ≥ n2/64m1m2 for n ≤ m1m2. Then,

among the first n/4 samples, there are at least n/8 distinct elements of B, the set of all

standard basis matrices in Rm1×m2 , that have been sampled at least once. We write S
for the set of distinct elements of {Xi}i≤n/4 and obviously have |S| ≥ n/8. Hence, by

definition of the sampling scheme, we have that

P(Xi ∈ S) ≥ n

8m1m2
, n/4 < i ≤ n/2.

Furthermore, when sampling an element from S we have to remove this element from

S as we have to use the entry that is stored in S to form a pair of entries. Hence the

probability to sample another element from S decreases and is bounded by

P(Xj ∈ S\{Xi}
∣∣Xi ∈ S) ≥ n− 1

8m1m2

for n/4 < i < j < n/2. We deduce by induction for j > i+ k and k ≤ n/2− i− 1 that

P(Xj ∈ S\{Xi, ..., Xi+k}
∣∣Xi, ..., Xi+k ∈ S) ≥ n− k

8m1m2

which yields

P
(
N ≥ n2

64m1m2

)
≥ P

 ∑
n/4<i≤n/2

1{Xi∈S} ≥
n2

64m1m2


≥ P

 ∑
n/4<i≤n/2

Zi ≥
n2

64m1m2

 (2.48)
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where Zi can be taken to be Bernoulli random variables with success probability

p′ =
n− n2

64m1m2

8m1m2
.

Then, Bernstein’s inequality for bounded random variables (see e.g. Theorem 3.1.7 in

[GN16]), (2.48) and the estimates

E

 ∑
n/4<i≤n/2

Zi

 ≥ n2

33m1m2

which holds for n ≤ m1m2 and

Var

 ∑
n/4<i≤n/2

Zi

 ≤ n2

32m1m2

imply that

P
(
N ≥ n2

64m1m2

)
≥ 1− P

 ∑
n/4<i≤n/2

Zi − E

 ∑
n/4<i≤n/2

Zi

 ≤ −n2

72m1m2

 ≥ 1− exp

(
n2

372m1m2

)
.

2.8.2 Lemma 2.8.1

Lemma 2.8.1. Consider the Bernoulli model (2.3) and assume n ≥ m log(d). Then, with

probability at least 1− 2 exp(−100d) we have for any given M ∈ A(a,m) that

sup
A∈A(a,m), ‖M−A‖F≥Ca

√
(rank(A)∨1)d/p

∣∣∣∣∣∣
∑
i,j

(Bij − p)(Aij −Mij)
2

∣∣∣∣∣∣− p

2
‖M0 −A‖2F

 ≤ 0

where C = 8072.

Proof. We have, using a union bound, that

P

 sup
A∈A(a,m), ‖M−A‖F≥Ca

√
(rank(A)∨1)d/p

∣∣∣∣∣∣
∑
i,j

(Bij − p)(Aij −Mij)
2

∣∣∣∣∣∣− p

2
‖M0 −A‖2F

 > 0


≤

m∑
k=1

P

 sup
A∈A(a,k), p‖M−A‖2F≥C2a2kd

∣∣∣∣∣∣
∑
i,j

(Bij − p)(Aij −Mij)
2

∣∣∣∣∣∣− p

2
‖A−M‖2F

 > 0

 .

(2.49)
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Then, using a peeling argument each of the terms in (2.49) can be bounded by

∑
s∈N: C2a2kd/2≤2s<∞

P

 sup
A∈A(a,k), 2s≤p‖A−M‖2F≤2s+1

∣∣∣∣∣∣
∑
i,j

(Bij − p)(Aij −Mij)
2

∣∣∣∣∣∣ > 2s/2


≤

∑
s∈N: C2a2kd/2≤2s<∞

P

 sup
A∈A(a,k), p‖A−M‖2F≤2s+1

∣∣∣∣∣∣
∑
i,j

(Bij − p)(Aij −Mij)
2

∣∣∣∣∣∣ > 2s/2


(2.50)

with the convention that if the supremum is taken over an empty set the corresponding

probability is set equal to 0. For the cases where the supremum is not taken over an

empty set, we apply Lemma 2.8.2 (with choices ξij = 1, q = 2, z = 4, U = 1 and t = 2s

there ) and obtain for

Z(s) : = sup
A∈A(a,k), p‖A−M‖2F≤2s+1

∣∣∣∣∣∣
∑
i,j

(Bij − p)(Aij −Mij)
2

∣∣∣∣∣∣
that we can bound

P (Z(s) > 2s/2) ≤ exp

(
−2s

260352a2

)
Hence, (2.50) can be upper bounded by

∑
s∈N: Ca2kd/2≤2s<∞

exp

(
−2s

260352a2

)
≤2 exp

(
− C2kd

260352

)
≤ 2 exp(−101d).

The result then follows by noting that log(m) ≤ d.

2.8.3 Lemma 2.8.2

Lemma 2.8.2. Consider the Bernoulli model (2.3). Suppose that ξij are independent

random variables with maxij |ξij | ≤ U and that m log(d) ≤ n. Let z > 0, q ∈ {1, 2},
M ∈ A(a,m) and 1 ≤ k0 < m be given. Finally, for C = 1009 suppose that t ∈ R+ is

such that t ≥ C2z(4a)2q−2U2k0d/2 and that the supremum in

Z(t) := sup
A∈A(a,k0), p‖A−M‖2F≤2t

∣∣∣∣∣∣
∑
i,j

[(Bijξij − EBijξij)(Aij −Mij)
q]

∣∣∣∣∣∣
is not empty. Then,

P
(
Z(t) >

t√
z

)
≤ exp

(
−t

322(8(2a)2q−2U2z + 505(2a)qU
√
z/32)

)
(2.51)

Proof. We first bound EZ(t) and then apply Talagrand’s [Tal96] inequality. Using sym-
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metrization (e.g. Theorem 3.1.21 in [GN16]) and two contraction inequalities (e.g. Theo-

rems 3.1.17 and 3.2.1 in [GN16]), we obtain that

EZ(t) ≤ 2UE

 sup
A∈A(a,k0), p‖A−M‖2F≤2t

∣∣∣∣∣∣
∑
i,j

Bijεij(Aij −Mij)
q

∣∣∣∣∣∣


≤ 2(4a)q−1UE

 sup
A∈A(a,k0), p‖A−M‖2F≤2t

∣∣∣∣∣∣
∑
i,j

Bijεij(Aij −Mij)

∣∣∣∣∣∣


≤ 2(4a)q−1UE

(
sup

A∈A(a,k0), p‖A−M‖2F≤2t

|〈ΣR, A−A0〉|

)
+ 2(4a)q−1UE |〈ΣR, A0 −M〉|

≤ 8(4a)q−1U
√
k0t/pE ‖ΣR‖+ 2(4a)q−1UE |〈ΣR, A0 −M〉| . (2.52)

where εij are independent Rademacher random variables, ΣR :=
(
Bijεij

)
ij

and where A0

is an arbitrary element in A(a, k0) such that p‖A0−M‖2F ≤ 2t. Such an A0 exists as soon

as the supremum is not taken over an empty set. An extension of Corollary 3.6 in [BvH16]

to rectangular matrices by self-adjoint dilation (e.g. section 3.1. in [BvH16]) implies (with

choices ξij = Bijεij/
√
p, bij =

√
p, α = 3 and σ = max

(
maxj

√∑m1
i=1 b

2
ij ,maxi

√∑m2
j=1 b

2
ij

)
≤

√
pd there ) that

E ‖ΣR‖ ≤ e2/3(2
√
pd+ 42

√
log(d)) ≤ 86

√
pd

since m log(d) ≤ n. For the second term in (2.52) we have

E|〈ΣR, A0 −M〉| ≤ (Var(〈ΣR, A0 −M〉))1/2

=
(
p‖A0 −M‖2F

)1/2 ≤ √2t.

Hence, for C2z(4a)2q−2U2k0d/2 ≤ t and since C = 1009 we have that

EZ(t) ≤ 688(4a)q−1U
√
k0td+ 2(4a)q−1U

√
2t ≤ 31t/(32

√
z). (2.53)

We now make use of the following inequality due to Talagrand [Tal96], which in the current

form with explicit constants can be obtained by inverting the tail bound in Theorem 3.3.16

in [GN16].

Theorem 2.8.1. Let (S,S) be a measurable space and let n ∈ N. Let Xk, k = 1, . . . , n

be independent S-valued random variables and let F be a countable set of functions f =

(f1, ..., fn) : Sn → [−K,K]n such that Efk(Xk) = 0 for all f ∈ F and k = 1, ..., n. Set

Z := sup
f∈F

n∑
k=1

fk(Xk).
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Define the variance proxy

Vn := 2KEZ + sup
f∈F

n∑
k=1

E
[
(fk(Xk))

2
]
.

Then, for all t ≥ 0,

P (Z − EZ ≥ t) ≤ exp

(
−t2

4Vn + (9/2)Kt

)
.

The functional A → ‖A −M‖2F is continuous on the compact set of matrices {A ∈
A(a, k0) : ‖A−M‖2F ≤ 2t}, hence by continuity and compactness the supremum is attained

over a countable subset. Thus we may apply Talagrand’s inequality to Z(t). We have for

our particular case, since supf∈F |f(X)| = supf∈{F
⋃
{−F}} f(x), that

Xij = Bijξij − EBijξij , S = [−2U, 2U ]

F =

{
f : Sm1×m2 → [−2(2a)qU, 2(2a)qU ]m1×m2 , fij(Xij) = (−1)lXij(Aij −Mij)

q,

A ∈ A(a, k0), p‖A−M‖2F ≤ 2t, l ∈ {0, 1}
}

and moreover

sup
(A,l), A∈A(a,k0), p‖A−M‖2F≤2t, l∈{0,1}

∑
i,j

E
[(

(−1)l(Bijξij − EBijξij)(Aij −Mij)
q
)2
]

≤(2a)2q−2 sup
A∈A(a,k0), p‖A−M‖2F≤2t

∑
i,j

Var(Bijξij)(Aij −Mij)
2

≤(2a)2q−2U2 sup
A∈A(a,k0), p‖A−M‖2F≤2t

∑
i,j

p(Aij −Mij)
2 ≤ 2(2a)2q−2U2t.

Therefore, using our previous estimate in (2.53) for EZ(t) as well, we have for the variance

proxy Vm1m2 that

Vm1m2 ≤ 2(2a)2q−2U2t+ 31(2a)qUt/(8
√
z).

Hence, using (2.53) and Talagrand’s inequality, we obtain

P
(
Z(t) >

t√
z

)
≤ P

(
Z(t)− EZ(t) >

t

32
√
z

)
≤ exp

(
−t

322(8(2a)2q−2U2z + 505(2a)qU
√
z/32)

)
.
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2.8.4 An oracle estimator in the Bernoulli model

Here we prove that the soft-thresholding estimator proposed by Koltchinskii et al. [KLT11]

for the trace-regression setting fulfills the oracle inequality (2.12) in the Bernoulli model.

Their estimator is defined as

M̂ ∈ arg min
A∈Rm1×m2

(
‖A‖2F
m1m2

− 2

n
〈Y,A〉+ λ‖A‖∗

)
(2.54)

where λ is a tuning parameter which we choose as

λ = 3

(
3
√

2σ +
√

2CU√
mn

)
(2.55)

where C > 0 is the constant in Corollary 3.12 in [BvH16].

Proposition 2.8.3. Consider the Bernoulli model (2.3). Assume n ≥ m log(d) and that

Assumption 2.1.1 is fulfilled. Let M̂ be given as in (2.54) with a choice of λ as in (2.55).

Then, with PM0,σ-probability of at least 1− 1/d we have for any M0 ∈ A(a,m) that

‖M̂ −M0‖2F
m1m2

≤ inf
A∈Rm1×m2

(
‖M0 −A‖2F
m1m2

+ C
drank(A)

n

)
≤ inf
k∈{0,...,m}

(
‖M0 −A(a, k)‖2F

m1m2
+ C

dk

n

)
for a constant C = C(a, σ, U) > 0.

Proof. Going through the proof of Theorem 2 and Corollary 2 in [KLT11] line by line we

see that we only need to bound the spectral norm of the matrix

Σ :=
1

n
(Bijεij)i,j

by λ/3 with high probability. Using self-adjoint dilation to generalize Corollary 3.12 and

Remark 3.13 in [BvH16] for rectangular matrices (with choices ε = 1/2, σ̃∗ = U and

σ̃ = max

max
j

√√√√m1∑
i=1

EσB2
ijε

2
ij ,max

i

√√√√m2∑
j=1

EσB2
ijε

2
ij

 = σ
√
n/m

there) we obtain

Pσ

(∥∥∥∥∥
n∑
i=1

εiXi

∥∥∥∥∥ > 3
√

2σ

√
n

m
+ t

)
≤ d exp

(
− −t

2

C1U2

)

for a constant C1 > 0. Choosing t =
√

2C1U
√

n
m and using that n ≥ m log(d) yields that

Ξ occurs with Pσ-probability at least 1− 1/d.
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Chapter 3

Efficient Estimation of Linear

Functionals of Principal

Components

3.1 Introduction

Principal Component Analysis (PCA) is commonly used as a dimension reduction tech-

nique for high-dimensional data sets. Assuming a general framework where the data lies

in a Hilbert space H, PCA can be applied to a wide range of problems such as functional

data analysis [RS05, LAS16] or machine learning [BBZ07].

The parametric setting has been well understood since the 1960’s (e.g. [And63] and

[DPR82]) and the asymptotic distribution of sample eigenvalues and sample eigenvectors

is well known. For high-dimensional data, where the dimension p = p(n) → ∞ with the

sample size n, the spiked covariance model introduced by Johnstone in [Joh01] has been

the most common framework to study the asymptotic properties of principal components.

In this model, it is assumed that the covariance matrix is given by a ’spike’ and a noise

part, that is

Σ =
l∑

j=1

si(θi ⊗ θi) + σ2Ip,

where
∑l

j=1 si(θi⊗θi) is a low rank covariance matrix involving several orthonormal com-

ponents (’spikes’) θi and σ2Ip is the covariance of the noise. Error bounds in this model,

based on perturbation analysis, were studied in [Nad08]. Moreover, if p
n → c ∈ (0, 1] the

asymptotic distribution of sample eigenvectors was derived in [Pau07] and in more gen-

eral asymptotic regimes in [WF17]. Assuming sparsity of the eigenvectors (sparse PCA),

inference is possible even when p
n → ∞. This model has recently received substantial

attention, e.g. [CMW13, BR13, VL13, WBS16, GZ15].
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More recently, a so-called ’effective rank’ setting for PCA has been considered, for ex-

ample, in [KL16, KL17a, KL17c, Ver12, RW16, NSU18]. In this dimension-free setting, it

is assumed that the covariance Σ is an operator acting in a Hilbert space H, no structural

assumptions are made about Σ and its ’complexity’ is characterized by the effective rank

r(Σ) := trace(Σ)/‖Σ‖, trace(Σ) denoting the trace and ‖Σ‖ denoting the operator (spec-

tral) norm of Σ. In a series of papers [KL17a, KL16, KL17c, KL17b], Koltchinskii and

Lounici derived sharp bounds on the spectral norm loss of estimation of Σ by the sample

covariance Σ̂ that provide complete characterization of the size of ‖Σ̂−Σ‖ in terms of ‖Σ‖
and r(Σ), and obtained error bounds and limiting results for empirical spectral projection

operators and eigenvectors of Σ̂ under the assumption that r(Σ) = o(n) as n → ∞. In a

recent paper [NSU18], Naumov et al. constructed bootstrap confidence sets for spectral

projections in a lower dimensional regime where r(Σ) = o(n1/3). In [RW16], Reiss and

Wahl considered the reconstruction error for spectral projections.

In this paper, we further develop the results of [KL16] and [KL17c] in the direction of

semi-parametric statistics. In particular, we develop a bias reduction method in the prob-

lem of estimation of linear functionals of principal components (eigenvectors of Σ) and

show asymptotic normality of the resulting debiased estimators under the assumption that

r(Σ) = o(n). We prove a non-asymptotic risk lower bound that asymptotically exactly

matches our upper bounds, thus establishing rigorously the semi-parametric optimality of

our estimator in a general dimension-free setting (as long as r(Σ) = o(n)).

The problem of
√
n-consistent estimation of low-dimensional functionals of high-dimensional

parameters has received increased attention in recent years, and in various models semi-

parametric efficiency of regularisation-based estimators has been studied, see for instance

[vdGBRD14, JvdG18, RSZZ15, NL17]. Moreover, the paper [GZ16] develops Bernstein-

von-Mises (BvM) results for functionals of covariance matrices in situations where bias

is asymptotically negligible. While formal calculations of the Fisher information in such

models indicate optimality of these procedures, a rigorous interpretation of such efficiency

claims requires some care: the standard asymptotic setting for semi-parametric efficiency

[vdV98] can not be straightforwardly applied because parameters in high-dimensional

models are not fixed but vary with sample size n, so that establishing LAN expansions

to apply Le Cam theory is not always possible or even desirable. In [JvdG18] some

non-asymptotic techniques have been suggested under conditions that ensure asymptotic

negligibility of the bias of candidate estimators. We take here a different approach, based

on using the van Trees’ inequality [GL95] to construct non-asymptotic lower bounds for

the minimax risk in our estimation problem that match the upper bound exactly in the

large sample limit.
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3.2 Preliminaries

3.2.1 Notation and conventions

Let H be a separable Hilbert space. In what follows, 〈·, ·〉 denotes the inner product of

H and also, with a little abuse of notation, the Hilbert–Schmidt inner product between

Hilbert–Schmidt operators acting on H. Similarly, the notation ‖ · ‖ is used both for the

norm of vectors in H and for the operator (spectral) norm of bounded linear operators

in H. For a nuclear operator A, trace(A) denotes its trace. We use the notation ‖ · ‖p,
1 ≤ p ≤ ∞ for the Schatten-p norms of operators in H : ‖A‖p := (trace(|A|p))1/p, where

|A| =
√
A∗A, A∗ being the adjoint operator of A. For p = 1, ‖A‖1 is the nuclear norm; for

p = 2, ‖A‖2 is the Hilbert–Schmidt norm; for p =∞, ‖A‖∞ = ‖A‖ is the operator norm.

Given vectors u, v ∈ H, u⊗ v denotes the tensor product of u and v :

(u⊗ v) : H 7→ H, (u⊗ v)w := 〈v, w〉u.

Given bounded linear operators A,B : H 7→ H, A⊗B denotes their tensor product:

(A⊗B)(u⊗ v) = Au⊗Bv, u, v ∈ H.

Note that A⊗B can be extended (by linearity and continuity) to a bounded operator in the

Hilbert space H⊗H, which could be identified with the space of Hilbert–Schmidt operators

in H. It is easy to see that, for a Hilbert–Schmidt operator C, we have (A⊗B)C = ACB∗

(in the finite-dimensional case, this defines the so called Kronecker product of matrices).

On a couple of occasions, we might need to use the tensor product of Hilbert–Schmidt

operators A,B, viewed as vectors in the space of Hilbert–Schmidt operators. For this

tensor product, we use the notation A⊗v B.
Throughout the paper, the following notations will be used: for nonnegative a, b, a . b

means that there exists a numerical constant c > 0 such that a ≤ cb; a & b is equivalent

to b . a; finally, a � b is equivalent to a . b and b . a. Sometimes, constant c in the

above relationships could depend on some parameter γ. In this case, we provide signs .,

& and � with subscript γ. For instance, a .γ b means that there exists a constant cγ > 0

such that a ≤ cγb.
In many places in the proofs, we use exponential bounds for some random variables,

say, ξ of the following form: for all t ≥ 1 with probability at least 1 − e−t, ξ ≤ Ct. In

some cases, it would follow from our arguments that the inequality holds with a slightly

different probability, say, at least 1− 3e−t. In such cases, it is easy to rewrite the bound

again as 1− e−t by adjusting the value of constant C. Indeed, for t ≥ 1 with probability

at least 1 − e−t = 1 − 3e−t−log(3), we have ξ ≤ C(t + log(3)) ≤ 2 log(3)Ct. We will use

such an adjustment of the constants in many proofs, often, without further notice.
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3.2.2 Bounds on sample covariance

Let X be a Gaussian vector in H with mean EX = 0 and covariance operator Σ :=

E(X⊗X). Given i.i.d. observations X1, . . . , Xn of X, let Σ̂ = Σ̂n be the sample (empirical)

covariance operator defined as follows:

Σ̂ := n−1
n∑
j=1

Xj ⊗Xj .

Definition 3.2.1. The effective rank of the covariance operator Σ is defined as

r(Σ) :=
trace(Σ)

‖Σ‖
.

The role of the effective rank as a complexity parameter in covariance estimation is

clear from the following result proved in [KL17a].

Theorem 3.2.2. Let X be a mean zero Gaussian random vector in H with covariance

operator Σ and let Σ̂ be the sample covariance based on i.i.d. observations X1, . . . , Xn of

X. Then

E‖Σ̂− Σ‖ � ‖Σ‖
(√

r(Σ)

n

∨ r(Σ)

n

)
. (3.1)

This result shows that the size of the properly rescaled operator norm deviation of Σ̂

from Σ, E‖Σ̂−Σ‖
‖Σ‖ , is characterized up to numerical constants by the ratio r(Σ)

n . In particular,

the condition r(Σ) = o(n) is necessary and sufficient for operator norm consistency of Σ̂ as

an estimator of Σ. In addition to this, the following concentration inequality for ‖Σ̂−Σ‖
around its expectation was also proved in [KL17a].

Theorem 3.2.3. Under the conditions of the previous theorem, for all t ≥ 1 with proba-

bility at least 1− e−t

∣∣∣‖Σ̂− Σ‖ − E‖Σ̂− Σ‖
∣∣∣ . ‖Σ‖((√r(Σ)

n

∨
1

)√
t

n

∨ t

n

)
. (3.2)

It immediately follows from the bounds (3.1) and (3.2) that, for all t ≥ 1 with proba-

bility at least 1− e−t

‖Σ̂− Σ‖ . ‖Σ‖
(√

r(Σ)

n

∨ r(Σ)

n

∨√
t

n

∨ t

n

)
(3.3)

and, for all p ∈ [1,∞),

E1/p‖Σ̂− Σ‖p .p ‖Σ‖
(√

r(Σ)

n

∨ r(Σ)

n

)
. (3.4)
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3.2.3 Perturbation theory and empirical spectral projections

The covariance operator Σ is self-adjoint, positively semidefinite and nuclear. It has

spectral decomposition

Σ =
∑
r≥1

µrPr,

where µr are distinct strictly positive eigenvalues of Σ arranged in decreasing order and

Pr are the corresponding spectral projection operators. For r ≥ 1, Pr is an orthogonal

projection on the eigenspace of the eigenvalue µr. The dimension of this eigenspace is

finite and will be denoted by mr. The eigenspaces corresponding to different eigenvalues

µr are mutually orthogonal. Denote by σ(Σ) the spectrum of operator Σ and let λj =

λj(Σ), j ≥ 1 be the eigenvalues of Σ arranged in a non-increasing order and repeated with

their multiplicities. Denote ∆r := {j : λj = µr}, r ≥ 1. Then card(∆r) = mr. The r-th

spectral gap is defined as

gr = gr(Σ) := dist(µr;σ(Σ) \ {µr}).

Let ḡr = ḡr(Σ) := min1≤s≤r gs.

We turn now to the definition of empirical spectral projections of sample covariance

Σ̂ that could be viewed as estimators of the true spectral projections Pr, r ≥ 1. In [KL16],

the following definition was used: let P̂r be the orthogonal projection on the direct sum of

eigenspaces of Σ̂ corresponding to its eigenvalues {λj(Σ̂) : j ∈ ∆r}. This is not a perfect

definition of a statistical estimator since the set ∆r is unknown and it has to be recovered

from the spectrum σ(Σ̂) of Σ̂.

When Σ̂ is close to Σ in the operator norm, the spectrum σ(Σ̂) of Σ̂ is a small per-

turbation of the spectrum σ(Σ) of Σ. This could be quantified by the following inequality

that goes back to H. Weyl:

sup
j≥1
|λj(Σ̂)− λj(Σ)| ≤ ‖Σ̂− Σ‖. (3.5)

It easily follows from this inequality that, if ‖Σ̂−Σ‖ is sufficiently small, then the eigen-

values λj(Σ̂) of Σ̂ form well separated clusters around the eigenvalues µ1, µ2, . . . of Σ.

To make the last claim more precise, consider a finite or countable bounded set A ⊂ R+

such that 0 ∈ A and 0 is the only limit point (if any) of A. Given δ > 0, define λδ(A) :=

max
{
λ ∈ A : (λ−δ, λ)∩A = ∅

}
and let Tδ(A) := A\[0, λδ(A)). The set Tδ(A) will be called

the top δ-cluster of A. Let A1 := Tδ(A), A2 := Tδ(A \ A1), A3 := Tδ(A \ (A1 ∪ A2)), . . .

and ν = νδ := min{j : Aj+1 = ∅}. Obviously, ν <∞. We will call the sets A1, . . . , Aν the

δ-clusters of A. They provide a partition of A into sets separated by the gaps of length at

least δ and such that the gaps between the points inside each of the clusters are smaller

than δ.
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The next lemma easily follows from inequality (3.5).

Lemma 3.2.4. Let δ > 0 be such that, for some r ≥ 1,

‖Σ̂− Σ‖ < δ/2 and δ <
ḡr
2
.

Let Âδ1, . . . , Â
δ
ν be the δ-clusters of the set σ(Σ̂). Then ν ≥ r and, for all 1 ≤ s ≤ r

Âδs ⊂ (µs − δ/2, µs + δ/2) and {j : λj(Σ̂) ∈ Âδs} = ∆s.

Given δ > 0 and δ-clusters Âδ1, . . . , Â
δ
ν of σ(Σ̂), define, for 1 ≤ s ≤ ν, the empirical

spectral projection P̂ δs as the orthogonal projection on the direct sum of eigenspaces of Σ̂

corresponding to its eigenvalues from the cluster Âδs. It immediately follows from Lemma

3.2.4 that, under its assumptions on δ, P̂ δs = P̂s, s = 1, . . . , r.

In the following sections, we will be interested in the problem of estimation of spectral

projections in the case when the true covariance Σ belongs to certain subsets of the

following class of covariance operators:

S(r)(r; a) :=
{

Σ : r(Σ) ≤ r,
‖Σ‖
ḡr(Σ)

≤ a
}
,

where a > 1, r > 1. We will allow the effective rank to be large, r = rn → ∞, but not

too large such that rn = o(n) as n → ∞. For Σ ∈ S(r)(r; a), we take δ := τ‖Σ̂‖ for a

sufficiently small value of the constant τ > 0 in the definition of spectral projections P̂ δs .

The following lemma is an easy consequence of the exponential bound (3.3).

Lemma 3.2.5. Suppose a > 1 and rn = o(n) as n → ∞. Take τ ∈
(
0, 1

4a ∧ 2
)

and

δ := τ‖Σ̂‖. Then, there exists a numerical constant β > 0 such that, for all large enough

n,

sup
Σ∈S(r)(r;a)

PΣ{∃s = 1, . . . , r : P̂ δs 6= P̂s} ≤ e−βτ
2n.

Proof. By (3.3) with t := βτ2n, we obtain that

sup
Σ∈S(r)(r;a)

PΣ

{
‖Σ̂− Σ‖ ≥ C‖Σ‖

(√
rn
n

∨√
βτ2n

n

)}
≤ e−βτ2n,

where C > 0 is a numerical constant. Take β = 1
16C2 and note that, for all large enough

n, C
√

rn
n ≤ τ/4 to obtain that

sup
Σ∈S(r)(r;a)

PΣ{‖Σ̂− Σ‖ ≥ (τ/4)‖Σ‖} ≤ e−βτ2n,

Since τ/4 ≤ 1/2, we easily obtain that, for all Σ ∈ S(r)(r; a) and for all n large enough

with probability at least 1− e−βτ2n, (1/2)‖Σ‖ ≤ ‖Σ̂‖ ≤ 2‖Σ‖. This implies that with the
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same probability (and on the same event)

‖Σ̂− Σ‖ < (τ/4)‖Σ‖ ≤ (τ/2)‖Σ̂‖ = δ/2.

On the other hand, for all Σ ∈ S(r)(r; a),

δ = τ‖Σ̂‖ ≤ 2τ‖Σ‖ < 1

2a
‖Σ‖ ≤ ḡr(Σ)

2
.

It remains to use Lemma 3.2.4 to complete the proof.

In the proofs of the main results of the paper, we deal for the most part with spectral

projections P̂r that were studied in detail in [KL16]. We use Lemma 3.2.5 to reduce the

results for P̂ δr to the results for P̂r.

3.3 Main Results

Our main goal is to develop an efficient estimator of the linear functional 〈θr, u〉, where

u ∈ H is a given vector and θr = θr(Σ) is a unit eigenvector of the unknown covariance

operator Σ corresponding to its r–th eigenvalue µr, which is assumed to be simple (that

is, of multiplicity mr = 1). The corresponding spectral projection Pr is one-dimensional:

Pr = θr ⊗ θr. A “naive” plug-in estimator of Pr is the empirical spectral projection P̂ δr

with δ = τ‖Σ̂‖ for a suitable choice of a small constant τ, as described in Lemma 3.2.5.

According to this lemma and under its assumptions, P̂ δr coincides with a high probability

with the one-dimensional empirical spectral projection P̂r := θ̂r ⊗ θ̂r, where θ̂r is the

corresponding unit eigenvector of Σ̂. As an estimator of θr, we can use an arbitrary unit

vector θ̂δr from the eigenspace Im(P̂ δr ), which with a high-probability coincides with ±θ̂r
(under conditions of Lemma 3.2.5). In case r = 1, when the top eigenvalue µ1 = ‖Σ‖ of Σ

is simple and the goal is to estimate a linear functional of the top principal component θ1,

there is no need to use δ-clusters to define an estimator of θ1 since θ̂1 (a unit eigenvector

in the eigenspace of the top eigenvalue ‖Σ̂‖ of Σ̂) is already a legitimate estimator.

Note that both θr and −θr are unit eigenvectors of Σ, so, strictly speaking, 〈θr, u〉 can

be estimated only up to its sign. In what follows, we assume that θ̂δr and θr (or, whenever

is needed, θ̂r and θr) are properly aligned in the sense that 〈θ̂δr , θr〉 ≥ 0 (which is always

the case either for θr, or for −θr). This allows us to view 〈θ̂δr , u〉 as an estimator of 〈θr, u〉.
It was shown in [KL16] that “naive” plug-in estimators of the functional 〈θr, u〉, such

as 〈θ̂δr , u〉 or 〈θ̂r, u〉, are biased with the bias becoming substantial enough to affect the

efficiency of the estimator or even its convergence rates as soon as the effective rank is

large enough, namely, r(Σ) & n1/2. Moreover, it was shown that the quantity

br = br(Σ) := EΣ〈θ̂r, θr〉2 − 1 ∈ [−1, 0]
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plays the role of a bias parameter. In particular, the results of [KL16] imply that the

random variable 〈θ̂r, u〉 concentrates around
√

1 + br〈θr, u〉 (rather than around 〈θr, u〉)
with the size of the deviations of order O(n−1/2) provided that r(Σ) = o(n) as n → ∞.
Thus, the bias of 〈θ̂r, u〉 as an estimator of 〈θr, u〉 is of the order (

√
1 + br − 1)〈θr, u〉 �

br〈θr, u〉. It was shown in [KL16] that |br| . r(Σ)
n and it will be proved below in this

paper that, in fact, |br| � r(Σ)
n (see Lemma 3.4.9 and bounds (3.39), (3.40)). This fact

implies that, indeed, the bias of 〈θ̂r, u〉 (and of 〈θ̂δr , u〉) is not negligible and affects the

convergence rate as soon as r(Σ)

n1/2 → ∞. This resembles the situation in sparse regression

(see e.g. [JM14, vdGBRD14, ZZ14]): If p denotes the dimension of the model and s

its sparsity and if s log(p) = o(n1/2), the bias of a desparsified LASSO estimator for

the regressor β is negligible, which makes it possible to prove asymptotic normality of

linear forms of β. On the other hand, if s log(p) � n1/2, Cai and Guo [CG17] proved

that adaptive confidence sets for linear forms do not exist in general. This implies that

any attempt to further de-bias the desparsified LASSO or any other estimator to prove

asymptotic normality is deemed to fail. Contrary to this, in our case estimation of the

bias parameter br is possible (as will be shown below).

We will state a uniform (and somewhat stronger) version of some of the results of

[KL16] on asymptotic normality of linear forms

√
n(〈θ̂δr , u〉 −

√
1 + br(Σ)〈θr(Σ), u〉), u ∈ H

under the assumption that r(Σ) = o(n). To this end, define the following operator

Cr :=
∑
s 6=r

1

µr − µs
Ps,

which is bounded with ‖Cr‖ = 1
gr
. Denote

σ2
r (Σ;u) := 〈Σθr, θr〉〈ΣCru,Cru〉 = µr〈ΣCru,Cru〉.

Clearly,

σ2
r (Σ;u) ≤ ‖Σ‖

2

g2
r

‖u‖2. (3.6)

Note that, if H is finite-dimensional (with a fixed dimension) and Σ is non-singular,

then the Fisher information for the model X ∼ N(0; Σ) is I(Σ) = 1
2(Σ−1 ⊗ Σ−1) (see,

e.g., [Eat83]). The maximum likelihood estimator Σ̂ based on n i.i.d. observations of

X (the sample covariance) is then asymptotically normal with
√
n-rate and limit covari-

ance I(Σ)−1 = 2(Σ ⊗ Σ). An application of the Delta Method to the smooth function

g(Σ) := 〈θr(Σ), u〉 shows that g(Σ̂) is also asymptotically normal with limiting variance〈
(I(Σ)−1g′(Σ), g′(Σ)

〉
, which turns out to be equal to σ2

r (Σ;u).

For u ∈ H, r > 1, a > 1 and σ0 > 0, consider the following class of covariance operators
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in H :

S(r)(r, a, σ0, u) :=
{

Σ : r(Σ) ≤ r,
‖Σ‖
ḡr(Σ)

≤ a, σ2
r (Σ;u) ≥ σ2

0

}
.

We emphasize here that we regard a and σ0 as fixed constants, but r, ‖Σ‖ and ḡr may

all possibly depend on n. For example, this allows that ‖Σ‖ → ∞ as long as ḡr → ∞ at

the same rate as it is the case in factor models as considered in [WF17]. Note that some

additional conditions on r, a, σ0, u are needed for the class S(r)(r, a, σ0, u) to be nonempty.

Say, bound (3.6) implies that it is necessary for this that σ2
0 ≤ a2‖u‖2. It is also obvious

that there should be a > r (since ‖Σ‖ ≥ rgr(Σ)).

We will also need the following assumption on the loss function `.

Assumption 3.3.1. Let ` : R 7→ R+ be a loss function satisfying the following conditions:

`(0) = 0, `(u) = `(−u), u ∈ R, ` is nondecreasing and convex on R+ and, for some

constants c1, c2 > 0

`(u) ≤ c1e
c2u, u ≥ 0.

The proofs to all our theorems are in fact non-asymptotic and often can be expressed

by Berry-Esseen type bounds. However, for a more concise presentation we present asymp-

totic statements.

In what follows, Z denotes a standard Gaussian random variable and Φ denotes its

distribution function.

Theorem 3.3.2. Let u ∈ H, a > 1 and σ0 > 0. Suppose that rn > 1 and rn = o(n) as

n→∞. Let δ = τ‖Σ̂‖ for some τ ∈
(
0, 1

4a ∧ 2
)
. Then

supΣ∈S(r)(rn,a,σ0,u) supx∈R
∣∣PΣ

{√n(〈θ̂δr ,u〉−
√

1+br(Σ)〈θr(Σ),u〉)
σr(Σ;u) ≤ x

}
− Φ(x)

∣∣→ 0 as n→∞.

Moreover, under Assumption 3.3.1,

sup
Σ∈S(r)(rn,a,σ0,u)

∣∣EΣ`

(√
n(〈θ̂δr , u〉 −

√
1 + br(Σ)〈θr(Σ), u〉)

σr(Σ;u)

)
− E`(Z)

∣∣→ 0 as n→∞.

The proof of this theorem will be given in Section 3.4 that also includes a number of

auxiliary statements used in the proofs of our main results on efficient estimation of linear

functionals.

Corollary 3.3.3. Let u ∈ H, a > 1 and σ0 > 0. Suppose that rn > 1 and rn = o(
√
n) as

n→∞. Let δ = τ‖Σ̂‖ for some τ ∈
(
0, 1

4a ∧ 2
)
. Then

supΣ∈S(r)(rn,a,σ0,u) supx∈R
∣∣PΣ

{√n(〈θ̂δr ,u〉−〈θr(Σ),u〉)
σr(Σ;u) ≤ x

}
− Φ(x)

∣∣→ 0 as n→∞.
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Moreover, under Assumption 3.3.1,

sup
Σ∈S(r)(rn,a,σ0,u)

∣∣EΣ`

(√
n(〈θ̂δr , u〉 − 〈θr(Σ), u〉)

σr(Σ;u)

)
− E`(Z)

∣∣→ 0 as n→∞.

Our next goal is to provide a minimax lower bound on the risk of an arbitrary estimator

of the linear functional 〈θr(Σ), u〉 in the case of quadratic loss `(t) = t2, t ∈ R. The proof

is based on van Trees’ inequality and will be given in Section 3.7. Define

S̊(r)(r, a, σ0, u) :=
{

Σ : r(Σ) < r,
‖Σ‖
ḡr(Σ)

< a, σ2
r (Σ;u) > σ2

0

}
, r > 1, a > 1, σ2

0 > 0,

the interior of the set S(r)(r, a, σ0, u).

Theorem 3.3.4. Let r > 1, a > 1 and σ0 > 0. Suppose S̊(r)(r, a, σ0, u) 6= ∅. Then, for all

statistics Tn(X1, . . . , Xn),

lim inf
n→∞

inf
Tn

sup
Σ∈S̊(r)(r,a,σ0,u)

nEΣ(Tn(X1, ..., Xn)− 〈θr(Σ), u〉)2

σ2
r (Σ;u)

≥ 1.

Moreover, for any Σ0 ∈ S̊(r)(r, a, σ0, u)

lim
ε→0

lim inf
n→∞

inf
Tn

sup
Σ∈S̊(r)(r,a,σ0,u),‖Σ−Σ0‖1≤ε

nEΣ(Tn(X1, ..., Xn)− 〈θr(Σ), u〉)2

σ2
r (Σ;u)

≥ 1.

It follows from Corollary 3.3.3 and Theorem 3.3.4 that the estimator 〈θ̂δr , u〉 is efficient

in a semi-parametric sense for quadratic loss under the assumption that rn = o(n1/2).

It turns out, however, that if rn
n1/2 → ∞, then not only the efficiency, but even the

√
n–

convergence rate of this estimator fails in the class of covariance operators S(r)(rn, a, σ0, u).

Proposition 3.3.5. Let a > r and let σ2
0 be sufficiently small, say,

σ2
0 ≤

1

2

[
a2

(r − 1)2
− a

r − 1

]
.

Let rn = o(n) and rn
n1/2 →∞ as n→∞. Then, for some constant c = c(r; a;σ0) > 0

lim
n→∞

sup
Σ∈S(r)(rn,a,σ0,u)

PΣ

{
|〈θ̂δr , u〉 − 〈θr(Σ), u〉| ≥ c‖u‖rn

n

}
= 1.

The reason for the loss of the
√
n–convergence rate of plug-in estimators of linear

functionals of principal components is their large bias in the case when the complexity

of the problem is even moderately high (that is, rn
n1/2 → ∞). In [KL16], a method of

bias reduction in this problem was suggested that led to
√
n-consistent estimation of

linear functionals. The estimator is, however, not efficient, since the basic sample split
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employed in its construction gives a limiting variance that is twice as large as the optimal

one. Since the bias parameter depends itself on sample size in a subtle way, modifying

the algorithm in [KL16] to obtain an efficient estimator is not straightforward, and we

describe below a construction that yields an asymptotically normal estimator of 〈θr(Σ), u〉
with optimal variance in the class of covariance operators S(r)(rn, a, σ0, u) with rn = o(n).

The idea is to use only a small portion of the data (of size o(n)) to estimate the bias

parameters and to use most of the data for the estimator of the target eigenvector.

For some m < n/3, we split the sample X1, . . . , Xn into three disjoint subsamples, one

of size n′ := n − 2m > n/3 and two others of size m each. In Theorem 3.3.6 below, we

choose m = mn = o(n) as n → ∞, which implies n′ = n′n = (1 + o(1))n as n → ∞.
Denote by Σ̂(1), Σ̂(2), Σ̂(3) the sample covariances based on these three subsamples and let

θ̂
δj ,j
r , j = 1, 2, 3 be the corresponding empirical eigenvectors with parameters δj = τ‖Σ̂(j)‖

for a proper choice of τ (see Lemma 3.2.5). Let

ďr :=
〈θ̂δ1,1r , θ̂δ2,2r 〉
〈θ̂δ2,2r , θ̂δ3,3r 〉1/2

and θ̌r :=
θ̂δ1,1r

ďr ∨ (1/2)
.

Our main goal is to prove the following result showing the efficiency of the estimator

〈θ̌r, u〉 of the linear functional 〈θr(Σ), u〉. Its proof will be given in Section 3.5.

Theorem 3.3.6. Let u ∈ H, a > 1 and σ0 > 0. Suppose that rn > 1 and rn = o(n) as

n→∞. Take m = mn such that mn = o(n) and nrn = o(m2
n) as n→∞. Then

sup
Σ∈S(r)(rn,a,σ0,u)

sup
x∈R

∣∣PΣ

{√n(〈θ̌r, u〉 − 〈θr(Σ), u〉)
σr(Σ;u)

≤ x
}
− Φ(x)

∣∣→ 0 as n→∞. (3.7)

Moreover, under Assumption 3.3.1 on the loss `,

sup
Σ∈S(r)(rn,a,σ0,u)

∣∣EΣ`

(√
n(〈θ̌r, u〉 − 〈θr(Σ), u〉)

σr(Σ;u)

)
− E`(Z)

∣∣→ 0 as n→∞.

Remark 3.3.1. The assumption rn = o(n) is not necessary for the existence of a
√
n-

consistent estimator of 〈θr(Σ), u〉. In fact, the estimator 〈θ̌r, u〉 (say, with m = n/4) is
√
n-consistent provided that rn ≤ cn for a sufficiently small constant c > 0. This fact

easily follows from (3.66) of Corollary 3.5.3 in Section 3.5. This is also the case for a

somewhat simpler estimator (based on splitting the sample into two parts) considered

earlier by Koltchinskii and Lounici [KL16] (see Proposition 3). However, it is not clear

whether asymptotically efficient estimators (in the sense of Theorem 3.3.6) of linear func-

tionals 〈θr(Σ), u〉 of the eigenvector θr(Σ) with
√
n-rate and optimal limit variance σr(Σ;u)

exist when the condition rn = o(n) does not hold. In this case, the linear term of the

perturbation series, that determines the limit variance σr(Σ;u), is no longer dominant,

which makes the existence of such estimators unlikely. However, asymptotically normal
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estimators of functionals 〈θr(Σ), u〉 might still exist (but with a larger limit variance). It

could be easier to develop such estimators in the case of spiked covariance models rather

than in the more general framework of the current paper. The solution of this problem

would rely on the tools of random matrix theory (see, [Pau07] as well as the more recent

paper [BKYY16]) rather than perturbation theory, and, possibly, it would require the

development of minimax lower bound techniques different from those employed in the

present paper.

Remark 3.3.2. It is not hard to develop similar asymptotically efficient estimators for

l-dimensional “functionals” of the form Aθr(Σ), where A is a linear operator from H
into Rl for a fixed (small) dimension l. This is equivalent to the problem of estimation

of (〈θr(Σ), u1〉, . . . , 〈θr(Σ), ul〉) for several linear functionals u1, . . . , ul ∈ H. The bias re-

duction method developed in this paper can be extended to this case and the proof of

asymptotic normality of the resulting estimators follows along the same lines as in the

case when l = 1 with asymptotic covariance matrix equal to

(µr〈ΣCrui, Cruj〉)i,j=1,...,p .

Similarly, our approach can be extended to linear functionals of multiple eigenvectors of

multiplicity 1 each, e.g. (〈θr(Σ), u〉, 〈θs(Σ), v〉), u, v ∈ H. In this case the asymptotic

covariance equals

− µrµs
(µr − µs)2

〈θr(Σ), v〉〈θs(Σ), u〉.

In this case the debiasing strategy in Theorem 3.3 can be adjusted by using the second

and third part of the sample to estimate the bias for both θr(Σ) and θs(Σ).

However, note that when r(Σ) is large, the asymptotic normality of random vectors

n1/2(θ̌r − θr(Σ)) holds only in the sense of finite-dimensional distributions, not in the

sense of weak convergence in the Hilbert space H (indeed, the norm ‖θ̌r − θr(Σ)‖ is of

order
√

r(Σ)/n� 1/
√
n).

Remark 3.3.3. Our method of bias reduction does not seem to have an easy extension to

the problem of estimation of linear functionals of spectral projections Pr for an eigenvalue

of multiplicity > 1. In part, this was a motivation for the first author to develop a more

general approach to bias reduction (a so called “bootstrap chain” method) and to study

the problem of efficient estimation for more general smooth functionals of covariance of

the form 〈f(Σ), B〉, where f is a smooth function on the real line (see [Kol17]). So far,

the asymptotic efficiency for the resulting “bootstrap chain” estimators has been proved

under more restrictive assumptions on the underlying covariance Σ. In particular, it was

assumed that H is a space of finite (high) dimension p and that the spectrum of Σ is both

upper and lower bounded away from 0 by constants which implies that r(Σ) � p.

Remark 3.3.4. Lemma 3.5.4 of Section 3.5 provides explicit bounds on the accuracy of
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the normal approximation in Theorem 3.3.6. Using these bounds, it is possible to state

somewhat more complicated conditions under which the normal approximation holds if

a = an → ∞ or σ0 = σ
(n)
0 → 0 as n → ∞. In particular, the normal approximation (3.7)

still holds uniformly in S(r)(rn, an, σ
(n)
0 , u) provided that mn = o(n) and

a2
n

σ
(n)
0

(√
nrn
m2
n

log
m2
n

nrn

∨√√√√n log2 m2
n

nrn

m2
n

)
→ 0 as n→∞.

Finally, we show that σr(Σ;u) can be consistently estimated by σr(Σ̂;u), which allows

us to replace the standard deviation σr(Σ;u) in the normal approximation (3.7) by its

empirical version. This yields the following result that can be used for hypotheses testing

of linear functionals of θr. See Section 3.6 for its proof.

Corollary 3.3.7. Under the conditions of Theorem 3.3.6,

supΣ∈S(r)(rn,a,σ0,u) supx∈R
∣∣PΣ

{√n(〈θ̌r,u〉−〈θr(Σ),u〉)
σr(Σ̂;u)

≤ x
}
− Φ(x)

∣∣→ 0 as n→∞.

3.4 Proof of Theorem 3.3.2

We will prove the result for empirical eigenvectors θ̂r rather than for θ̂δr . The reduction to

this case is based on Lemma 3.2.5 which immediately implies that

sup
Σ∈S(r)(rn,a,σ0,u)

PΣ{θ̂δr 6= θ̂r} ≤ e−βτ
2n.

Therefore, denoting

ξn(Σ) :=

√
n(〈θ̂δr , u〉 −

√
1 + br(Σ)〈θr(Σ), u〉)

σr(Σ;u)

and

ηn(Σ) :=

√
n(〈θ̂,ru〉 −

√
1 + br(Σ)〈θr(Σ), u〉)
σr(Σ;u)

,

we obtain

sup
Σ∈S(r)(rn,a,σ0,u)

sup
x∈R
|PΣ{ξn(Σ) ≤ x} − PΣ{ηn(Σ) ≤ x}| ≤ e−βτ2n → 0 as n→∞.

Also, since ξn(Σ) ≤ 2
√
n‖u‖

σr(Σ;u) and ηn(Σ) ≤ 2
√
n‖u‖

σr(Σ;u) , we obtain that

sup
Σ∈S(r)(rn,a,σ0,u)

|EΣ`(ξn(Σ))− EΣ`(ηn(Σ))|
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≤ sup
Σ∈S(r)(rn,a,σ0,u)

EΣ|`(ξn(Σ))− `(ηn(Σ))|I(θ̂δr 6= θ̂r) ≤ 2`

(
2
√
n‖u‖
σ0

)
e−βτ

2n → 0,

under Assumption 3.3.1.

We will prove more explicit bounds for the estimator θ̂r stated below in Lemma 3.4.8

that immediately implies the result.

Our starting point is the first order perturbation expansion of the empirical spectral

projection operator P̂r:

P̂r = Pr + Lr(E) + Sr(E) (3.8)

with a linear term Lr(E) = PrECr + CrEPr and a remainder Sr(E), where E := Σ̂− Σ.

It was proved in [KL16] that, under the assumption

E‖Σ̂− Σ‖ ≤ (1− γ)gr
2

(3.9)

for some γ ∈ (0, 1), the bilinear form of the remainder Sr(E) satisfies the following con-

centration inequality: for all u, v ∈ H and for all t ≥ 1 with probability at least 1 − e−t

∣∣∣〈(Sr(E)− ESr(E))u, v〉
∣∣∣ .γ ‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

∨ t

n

)√
t

n
‖u‖‖v‖. (3.10)

Under the same assumption, it was also proved in [KL16] that the following representation

holds for the bias EP̂r − Pr of empirical spectral projections P̂r :

EP̂r − Pr = Pr(EP̂r − Pr)Pr + Tr, (3.11)

where the main term Pr(EP̂r − Pr)Pr is aligned with the spectral projection Pr and is of

order

‖Pr(EP̂r − Pr)Pr‖ .
‖Σ‖2

g2
r

r(Σ)

n
(3.12)

and the remainder Tr satisfies the bound

‖Tr‖ .γ
mr‖Σ‖2

g2
r

√
r(Σ)

n

1√
n
. (3.13)

Representation (3.11) is especially simple in the case when Pr is of rank 1 (mr = 1),

which also implies that P̂r is of rank 1. In this case, Pr = θr ⊗ θr, P̂r = θ̂r ⊗ θ̂r for unit

eigenvectors θr, θ̂r of covariance operators Σ, Σ̂, respectively, and

Pr(EP̂r − Pr)Pr = brPr

for a “bias parameter” br = br(Σ) :

br = E〈θ̂r, θr〉2 − 1 ∈ [−1, 0].
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Thus, it follows from (3.11) that

EP̂r = (1 + br)Pr + Tr. (3.14)

We obtain from (3.8) and (3.14) that

P̂r − (1 + br)Pr = Lr(E) + Sr(E)− ESr(E) + Tr. (3.15)

Denote

ρr(u) := 〈(P̂r − (1 + br)Pr)θr, u〉, u ∈ H.

As in [KL16], the function ρr(u), u ∈ H will be used in what follows to control the linear

forms 〈θ̂r −
√

1 + brθr, u〉, u ∈ H. First, we need to derive some bounds on ρr(u).

The following lemma is an immediate consequence of (3.15), (3.10) and (3.13).

Lemma 3.4.1. Suppose condition (3.9) holds for some γ ∈ (0, 1). Then, for all u ∈ H
and for all t ≥ 1 with probability at least 1− e−t

|ρr(u)− 〈Lr(E)θr, u〉| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

∨ t

n

)√
t

n
‖u‖. (3.16)

We will need simple concentration and normal approximation bounds for 〈Lr(E)θr, u〉
given in the next lemma.

Lemma 3.4.2. For all t ≥ 1 with probability at least 1− e−t

|〈Lr(E)θr, u〉| . σr(Σ;u)

(√
t

n

∨ t

n

)
. (3.17)

Moreover, if σr(Σ;u) > 0, then

sup
x∈R

∣∣P{√n〈Lr(E)θr, u〉
σr(Σ;u)

≤ x
}
− Φ(x)

∣∣ . 1√
n
, (3.18)

where Φ is the distribution function of standard normal r.v.

Proof. Without loss of generality, assume that the space H is finite-dimensional (the

general case follows by a simple approximation argument). Since Lr(E) = PrECr+CrEPr

and Crθr = 0, we have

〈Lr(E)θr, u〉 = 〈CrEPrθr, u〉 = 〈Eθr, Cru〉 = 〈E, θr ⊗ Cru〉.

Since E is self-adjoint, we obtain that

〈Lr(E)θr, u〉 =
1

2
〈E, θr ⊗ Cru+ Cru⊗ θr〉.
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Let Z,Z1, . . . , Zn be i.i.d. standard normal vectors in H such that Xj = Σ1/2Zj . Then

E = Σ1/2

(
n−1

n∑
j=1

Zj ⊗ Zj − E(Z ⊗ Z)

)
Σ1/2.

Defining

D :=
1

2
Σ1/2(θr ⊗ Cru+ Cru⊗ θr)Σ1/2 =

1

2

(
Σ1/2θr ⊗ Σ1/2Cru+ Σ1/2Cru⊗ Σ1/2θr

)
,

we obtain that

〈Lr(E)θr, u〉 =

〈
n−1

n∑
j=1

Zj ⊗ Zj − E(Z ⊗ Z), D

〉

= n−1
n∑
j=1

(〈DZj , Zj〉 − E〈DZ,Z〉).

Clearly, 〈DZ,Z〉 d
=
∑

k λkg
2
k, where {λk} are the eigenvalues of D and {gk} are i.i.d.

standard normal r.v. It easily follows that

E〈DZ,Z〉 = tr(D) = 0

and

Var(〈DZ,Z〉) = 2
∑
k

λ2
k = 2‖D‖22 = σ2

r (Σ;u).

We can now represent 〈Lr(E)θr, u〉 as follows:

〈Lr(E)θr, u〉
d
= n−1

n∑
j=1

∑
k

λk(g
2
k,j − 1),

where {gk,j} are i.i.d. standard normal r.v. Using standard exponential bounds for sums

of independent ψ1 r.v. (see, e.g., [Ver12], Proposition 5.16 or Theorem 3.1.9 in [GN16]),

we obtain that with probability at least 1− e−t

∣∣n−1
n∑
j=1

∑
k

λk(g
2
k,j − 1)

∣∣ . (∑
k

λ2
k

)1/2
√
t

n

∨
sup
k
|λk|

t

n
,

which implies that with the same probability

|〈Lr(E)θr, u〉| . ‖D‖2
√
t

n

∨
‖D‖ t

n
.

Since ‖D‖ ≤ ‖D‖2 = 1
2σ

2
r (Σ;u), bound (3.17) follows.

72



3.4. Proof of Theorem 3.3.2

To prove (3.18), we use the Berry-Esseen bound that implies

sup
x∈R

∣∣P{∑n
j=1

∑
k λk(g

2
k,j − 1)

√
n(2

∑
k λ

2
k)

1/2
≤ x

}
− Φ(x)

∣∣ . ∑
k |λk|3

(
∑

k λ
2
k)

3/2

1√
n
,

and therefore

sup
x∈R

∣∣P{√n〈Lr(E)θr, u〉
σr(Σ;u)

≤ x
}
− Φ(x)

∣∣ . ‖D‖33
‖D‖32

1√
n
.
‖D‖
‖D‖2

1√
n
.

1√
n
.

The following bounds on ρr(u) immediately follow from (3.16) and (3.17).

Lemma 3.4.3. Suppose condition (3.9) holds for some γ ∈ (0, 1). Then, for all u ∈ H
and for all t ≥ 1 with probability at least 1− e−t

|ρr(u)| .γ σr(Σ;u)

(√
t
n

∨ t
n

)
+ ‖Σ‖2

g2r

(√
r(Σ)
n

∨√ t
n

)√
t
n‖u‖. (3.19)

Moreover, with the same probability

|ρr(u)| .γ ‖Σ‖gr
√

t
n‖u‖+ ‖Σ‖2

g2r

(√
r(Σ)
n

∨√ t
n

)√
t
n‖u‖. (3.20)

and, for u = θr,

|ρr(θr)| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
. (3.21)

Note that we dropped the term t
n in some of the expressions on the right hand side

of the above bounds (compare with (3.16)). This term is dominated by
√

t
n for t ≤

n. Moreover, it follows from the definition of ρr(u) that it is upper bounded by 2‖u‖.
Since ‖Σ‖gr ≥ 1, this easily implies that, for t ≥ n, the right hand side of bound (3.20)

(with a proper constant) is larger than |ρr(u)|. Bound (3.21) follows from (3.16) since

〈Lr(E)θr, θr〉 = 0.

To study concentration and normal approximation of the linear form

〈θ̂r −
√

1 + brθr, u〉, u ∈ H,

it remains to prove that it can be approximated by 〈Lr(E)θr, u〉.

Lemma 3.4.4. Suppose that for some γ ∈ (0, 1) condition (3.9) holds and, in addition,

1 + br ≥ γ. (3.22)
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Then, for all u ∈ H and for all t ≥ 1, with probability at least 1− e−t

|〈θ̂r −
√

1 + brθr, u〉 − 〈Lr(E)θr, u〉| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

∨ t

n

)√
t

n
‖u‖. (3.23)

Proof. We use the following representation obtained in [KL16] (see (6.7) in [KL16]), which

holds provided that θ̂r and θr are properly aligned so that 〈θ̂r, θr〉 ≥ 0 :

〈θ̂r −
√

1 + brθr, u〉 = ρr(u)√
1+br+ρr(θr)

(3.24)

−
√

1+br√
1+br+ρr(θr)(

√
1+br+ρr(θr)+

√
1+br)

ρr(θr)〈θr, u〉

(it is clear from the proof given in [KL16] that 1 + br + ρr(θr) ≥ 0). Denote

νr :=
ρr(θr)

1 + br
.

Then, it is easy to see that

〈θ̂r −
√

1 + brθr, u〉 = ρr(u)− br/(1 + br) + νr

1 + νr +
√

(1 + νr)/(1 + br)
ρr(u) (3.25)

− νr
√

1 + br
1 + νr +

√
1 + νr

〈θr, u〉.

Recall that (3.9) and (3.22) hold for some γ ∈ (0, 1). If |νr| ≤ 1/2, then (3.25) easily

implies that

|〈θ̂r −
√

1 + brθr, u〉 − ρr(u)| ≤ 1

γ
(|br|+ |νr|)|ρr(u)|+ |νr||〈θr, u〉|. (3.26)

It also follows from (3.21) that, under condition (3.22),

|νr| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
(3.27)

with probability at least 1− e−t. On the other hand, bound (3.12) implies that

|br| .
‖Σ‖2

g2
r

r(Σ)

n
. (3.28)

It follows from (3.27) that for the condition |νr| ≤ 1/2 to hold with probability at least

1− e−t, it is enough to have

‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
≤ cγ (3.29)

for a small enough constant cγ > 0. Assume that (3.29) holds. Note also that it implies
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that t . n and condition (3.9) and Theorem 3.2.2 imply that ‖Σ‖gr

√
r(Σ)
n . 1. It follows

from (3.26), (3.20), (3.27) and (3.28) that with probability at least 1− 3e−t:

|〈θ̂r −
√

1 + brθr, u〉 − ρr(u)|

.γ

[
‖Σ‖2
g2r

r(Σ)
n +

(
‖Σ‖2
g2r

(√
r(Σ)
n

∨√ t
n

)√
t
n

)
∧ 1/2

]
×
[
‖Σ‖
gr

√
t
n‖u‖+ ‖Σ‖2

g2r

(√
r(Σ)
n

∨√ t
n

)√
t
n‖u‖

]
+‖Σ‖

2

g2r

(√
r(Σ)
n

∨√ t
n

)√
t
n‖u‖. (3.30)

Using the facts that

‖Σ‖2

g2
r

r(Σ)

n
.
‖Σ‖
gr

√
r(Σ)

n
. 1,

that
‖Σ‖2

g2
r

t

n
.
‖Σ‖
gr

√
t

n
. 1

and that

‖Σ‖2

g2
r

√
r(Σ)

n

√
t

n
.
‖Σ‖
gr

(
r(Σ)

n

)1/4( t
n

)1/4

≤ ‖Σ‖
gr

(√
r(Σ)

n

∨√
t

n

)
(that follow from condition (3.29)), it is easy to conclude that the last term

‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
‖u‖

in the right hand side of bound (3.30) is dominant. Hence, with probability at least 1−e−t

|〈θ̂r −
√

1 + brθr, u〉 − ρr(u)| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
‖u‖ (3.31)

provided that condition (3.29) holds. On the other hand, if

‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
> cγ ,

then

|〈θ̂r −
√

1 + brθr, u〉 − ρr(u)| ≤ |〈θ̂r −
√

1 + brθr, u〉|+ |ρr(u)|

≤ (‖θ̂r‖+
√

1 + br‖θr‖)‖u‖+ (‖P̂r‖+ (1 + br)‖Pr‖)‖θr‖‖u‖ ≤ 4‖u‖

.γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
‖u‖.

75



Efficient Estimation of Linear Functionals of Principal Components

Thus, we proved that with probability at least 1− e−t

|〈θ̂r −
√

1 + brθr, u〉 − ρr(u)| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
‖u‖. (3.32)

It remains to combine this with the bound (3.16) to complete the proof.

The following result is a slightly improved version of Theorem 6 in [KL16].

Lemma 3.4.5. Under conditions (3.9) and (3.22) for some γ ∈ (0, 1), the following

bounds hold for all t ≥ 1 with probability at least 1− e−t :

|〈θ̂r −
√

1 + brθr, u〉| .γ
‖Σ‖
gr

√
t

n
‖u‖ (3.33)

and

|〈θ̂r −
√

1 + brθr, θr〉| .γ
‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
. (3.34)

Proof. Indeed, it follows from (3.23) and (3.17) that, for some constants C,Cγ > 0 with

probability at least 1− e−t

|〈θ̂r −
√

1 + brθr, u〉| ≤ Cσr(Σ;u)

(√
t

n

∨ t

n

)
+ Cγ

‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
‖u‖.

Since σr(Σ;u) . ‖Σ‖gr ‖u‖, with the same probability

|〈θ̂r −
√

1 + brθr, u〉| ≤ C
‖Σ‖
gr

√
t

n
‖u‖+ Cγ

‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

)√
t

n
‖u‖.

We dropped the term t
n present in bounds (3.23) and (3.17) since for t ≥ n (the only case

when it is needed), the right hand side already dominates the left hand side (which is

smaller than 2‖u‖). Note that condition (3.9) and Theorem 3.2.2 imply that ‖Σ‖gr

√
r(Σ)
n ≤

cγ for some constant cγ > 0. Assuming that also ‖Σ‖gr

√
t
n ≤ cγ , which implies that t . n,

we obtain that for some constant Cγ > 0 with probability at least 1 − e−t bound (3.33)

holds. On the other hand, if ‖Σ‖gr

√
t
n > cγ , then

|〈θ̂r −
√

1 + brθr, u〉| ≤ (‖θ̂r‖+
√

1 + br‖θr‖)‖u‖ ≤ 2‖u‖ .γ
‖Σ‖
gr

√
t

n
‖u‖,

implying again (3.33). For u = θr, 〈Lr(E)θr, u〉 = 0 and bound (3.23) implies that with

probability at least 1− e−t (3.34) holds.

The following two lemmas will be used to derive normal approximation bounds for

〈θ̂r −
√

1 + brθr, u〉 from the corresponding bounds for 〈Lr(E)θr, u〉 as well as to control
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the risk for loss functions satisfying Assumption 3.3.1. We state them without proofs

(which are elementary).

Lemma 3.4.6. For random variables ξ, η, denote

∆(ξ; η) := sup
x∈R
|P{ξ ≤ x} − P{η ≤ x}|

and

δ(ξ; η) := inf{δ > 0 : P{|ξ − η| ≥ δ}+ δ}.

Then, for a standard normal r.v. Z,

∆(ξ;Z) ≤ ∆(η;Z) + δ(ξ; η).

Under Assumption 3.3.1, for all A > 0

|E`(ξ)− E`(η)| ≤ 4`(A)∆(ξ; η) + E`(ξ)I(|ξ| ≥ A) + E`(η)I(|η| ≥ A).

Lemma 3.4.7. Let ξ be a random variable such that for some τ1 ≥ 0 and τ2 ≥ 0 and for

all t ≥ 1 with probability at least 1− e−t

|ξ| ≤ τ1

√
t ∨ τ2t.

Let ` be a loss function satisfying Assumption 3.3.1. If 2c2τ2 < 1, then

E`2(ξ) ≤ 2e
√

2πc2
1e

2c22τ
2
1 +

ec2
1

1− 2c2τ2
. (3.35)

Next we prove the normal approximation bounds for linear forms 〈θ̂r −
√

1 + brθr, u〉.

Lemma 3.4.8. Suppose that conditions (3.9) and (3.22) hold for some γ ∈ (0, 1) and

also that n ≥ 2r(Σ). Assume that, for some u ∈ H, σr(Σ;u) > 0. Let α ≥ 1. Then the

following bound holds: for some constants C,Cγ,α > 0,

sup
x∈R

∣∣P{√n〈θ̂r −√1 + brθr, u〉
σr(Σ;u)

≤ x
}
− Φ(x)

∣∣
≤Cn−1/2 +

Cγ,α
σr(Σ;u)

‖Σ‖2

g2
r

(√
r(Σ)

n
log

n

r(Σ)

∨ log n
r(Σ)√
n

)
‖u‖+

(
r(Σ)

n

)α
. (3.36)

Moreover, under Assumption 3.3.1 on the loss `, there exist constants C,Cγ , Cγ,α > 0

such that

∣∣E`(√n〈θ̂r −√1 + brθr, u〉
σr(Σ;u)

)
− E`(Z)

∣∣
77



Efficient Estimation of Linear Functionals of Principal Components

≤ c1e
c2A

(
Cn−1/2 +

Cγ,α
σr(Σ;u)

‖Σ‖2

g2
r

(√
r(Σ)

n
log

n

r(Σ)

∨ log n
r(Σ)√
n

)
‖u‖+

(
r(Σ)

n

)α)
+ 2e3/2(2π)1/4c1e

c22τ
2
e−A

2/2τ2 + c1e
c22e−A

2/4, (3.37)

where

τ := Cγ
‖Σ‖‖u‖
grσr(Σ;u)

.

Proof. We will use the first claim of Lemma 3.4.6 with

ξ :=

√
n〈θ̂r −

√
1 + brθr, u〉

σr(Σ;u)
and η :=

√
n〈Lr(E)θr, u〉
σr(Σ;u)

.

It follows from bound (3.23) that, under conditions (3.9) and (3.22), for some Cγ > 0

δ(ξ; η) ≤ inf
t≥1

{
Cγ

σr(Σ;u)

‖Σ‖2

g2
r

(√
r(Σ)

n

∨√
t

n

∨ t

n

)√
t‖u‖+ e−t

}
.

Taking t := α log
(

n
r(Σ)

)
with some α ≥ 1 easily yields an upper bound

δ(ξ; η) ≤ Cγ,α
σr(Σ;u)

‖Σ‖2

g2
r

(√
r(Σ)

n
log

n

r(Σ)

∨ log n
r(Σ)√
n

)
‖u‖+

(
r(Σ)

n

)α
.

Using bound (3.18) to control ∆(η;Z), we obtain from Lemma 3.4.6 that bound (3.36)

holds with some constants C,Cγ,α > 0. To prove the second statement, we use the second

bound of Lemma 3.4.6 with the random variable ξ :=
√
n〈θ̂r−

√
1+brθr,u〉

σr(Σ;u) and η = Z. The

following exponential bound on ξ is an easy corollary of bound (3.33): for some constant

Cγ > 0 and for all t ≥ 1 with probability at least 1− e−t

|ξ| ≤ Cγ
‖Σ‖

grσr(Σ;u)

√
t‖u‖ = τ

√
t. (3.38)

Using bound (3.35) with τ1 = τ and τ2 = 0, we obtain

E`2(ξ) ≤ 2e
√

2πc2
1e

2c22τ
2
1 + ec2

1 ≤ 4e
√

2πc2
1e

2c22τ
2
1

Therefore,

E`(ξ)I(|ξ| ≥ A) ≤ E1/2`2(ξ)P1/2{|ξ| ≥ A} ≤ 2e3/2(2π)1/4c1e
c22τ

2
e−A

2/2τ2 .

We also have

E`(Z)I(|Z| ≥ A) ≤ c1e
c22e−A

2/4.

Using bound (3.36), we can now deduce bound (3.37) from the second statement of Lemma

3.4.6.
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Lemma 3.4.8 immediately implies Theorem 3.3.2 (by passing to the limit as n → ∞
in (3.36) and as n→∞ and then A→∞ in (3.37)).

3.4.1 Proof of Proposition 3.3.5

Denote

Ar(Σ) := 2 trace(PrΣPr) trace(CrΣCr) = 2
∑
s 6=r

µrµsms

(µr − µs)2
.

It was shown in [KL17c] that

E‖Lr(E)‖22 =
Ar(Σ)

n
,

where E = Σ̂− Σ. Note that

Ar(Σ)

2
≤ µr
g2
r

(trace(Σ)− µr) ≤
‖Σ‖2

g2
r

r(Σ) (3.39)

and
Ar(Σ)

2
≥ µ1µr

(µ1 − µr)2 ∨ µ2
r

(r(Σ)− 1). (3.40)

Lemma 3.4.9. The following representation holds:

br(Σ) = −1

2

Ar(Σ)

n
+ βr,

where

|βr| .
‖Σ‖3

g3
r

(√
r(Σ)

n

∨ r(Σ)

n

)3

.

Proof. Recall representation (3.11) and bound (3.13). Note that

br = trace(Pr(EP̂r − Pr)Pr)

and

EP̂r − Pr = ESr(E).

We will use the following representation for Sr(E) (based on perturbation series for P̂r)

that easily follows from Lemma 4 in [KL17b]:

Sr(E) = PrECrECr + CrEPrECr + CrECrEPr

−PrEPrEC2
r − PrEC2

rEPr − C2
rEPrEPr + S(3)

r (E),

where

‖S(3)
r (E)‖ . ‖E‖

3

g3
r

.
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Since PrCr = CrPr = 0 this implies

PrSr(E)Pr = −PrEC2
rEPr + PrS

(3)
r (E)Pr.

Therefore we obtain

br = E trace(PrSr(E)Pr) = −E trace(PrEC
2
rEPr) + E trace(PrS

(3)
r (E)Pr)

= −E‖PrECr‖22+E trace(PrS
(3)
r (E)Pr) = −1

2
E‖PrECr+CrEPr‖22+E trace(PrS

(3)
r (E)Pr)

−1

2
E‖Lr(E)‖22 + E trace(PrS

(3)
r (E)Pr) = −1

2

Ar(Σ)

n
+ E trace(PrS

(3)
r (E)Pr).

Thus, βr = E trace(PrS
(3)
r (E)Pr) and, using bound (3.4), we get

|βr| ≤ E‖S(3)
r (E)‖‖Pr‖1 ≤ E‖S(3)

r (E)‖ . E‖E‖3

g3
r

.
‖Σ‖3

g3
r

(√
r(Σ)

n

∨ r(Σ)

n

)3

,

which completes the proof.

It follows from the lower bound (3.40) on Ar(Σ)
2 and the bound of Lemma 3.4.9 that,

under the assumption r(Σ) ≤ n, with some constant C > 0

|br| ≥
µ1µr

(µ1 − µr)2 ∨ µ2
r

r(Σ)− 1

n
− C ‖Σ‖

3

g3
r

(
r(Σ)

n

)3/2

. (3.41)

Next note that

|〈θ̂r − θr, u〉| ≥ |
√

1 + br − 1|〈θr, u〉| − |〈θ̂r −
√

1 + brθr, u〉|

≥ |br|
1 +
√

1 + br
|〈θr, u〉| − |〈θ̂r −

√
1 + brθr, u〉|

≥ |br|
2
|〈θr, u〉| − |〈θ̂r −

√
1 + brθr, u〉|.

Using bounds (3.33) and (3.41), we obtain that for all t ≥ 1 with probability at least

1− e−t

|〈θ̂r−θr, u〉| ≥
1

2
|〈θr, u〉|

(
µ1µr

(µ1 − µr)2 ∨ µ2
r

r(Σ)− 1

n
−C ‖Σ‖

3

g3
r

(
r(Σ)

n

)3/2)
−Cγ

‖Σ‖
gr

√
t

n
‖u‖.

(3.42)

We will show that there exists a covariance Σ0 ∈ S(r)(rn, a, σ0, u) such that |〈θr(Σ0), u〉| ≥
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‖u‖
2 ,

µ1(Σ0)µr(Σ0)

(µ1(Σ0)− µr(Σ0))2 ∨ µ2
r(Σ0)

≥ c1

for some constant c1 > 0 that might depend on r, a, σ0 and r(Σ0) − 1 ≥ rn/2. Assuming

that such a Σ0 exists, we choose tn →∞, tn = o( r
2
n
n ) and applying bound (3.42) to Σ = Σ0,

we immediately obtain that

sup
Σ∈S(r)(rn,a,σ0,u)

PΣ

{
|〈θ̂r − θr(Σ), u〉| ≥

(
c1

8

rn
n
− C

4
a3

(
rn
n

)3/2

− Cγa
√
tn
n

)
‖u‖
}

≥ 1− e−tn → 1.

Since (
c1

8

rn
n
− C

4
a3

(
rn
n

)3/2

− Cγa
√
tn
n

)
‖u‖ =

(c1

8
+ o(1)

)rn
n
‖u‖,

this implies the claim of Proposition 3.3.5.

It remains to define a Σ0 with the desired properties. Let

Σ0 =

r+1∑
s=1

µsPs,

where Ps = θs ⊗ θs, s = 1, . . . r, θ1, . . . , θr being arbitrary orthonormal vectors in H and

Pr+1 is an orthogonal projection on a d-dimensional subspace of H orthogonal to θ1, . . . , θr.

Let µs := µ1

(
1 − s−1

a

)
, s = 1, . . . , r + 1. Then ḡr(Σ0) = µ1

a and the condition ‖Σ0‖
ḡr(Σ0) ≤ a

is satisfied. For simplicity, assume that ‖u‖ = 1. Moreover, since θ1, . . . , θr are arbitrary

orthonormal vectors, we can assume without loss of generality that, for r > 1, u :=
1√
2
θ1 + 1√

2
θr. Then 〈θr(Σ0), u〉 = 1√

2
> 1

2‖u‖ and, by a simple computation,

σ2
r (Σ0;u) =

∑
s 6=r

µrµs
(µr − µs)2

‖Psu‖2 =
1

2

µ1µr
(µ1 − µr)2

=
1

2

[
a2

(r − 1)2
− a

r − 1

]
.

Assuming that σ2
0 ≤ 1

2

[
a2

(r−1)2
− a

r−1

]
, we conclude that the condition σ2

r (Σ0;u) ≥ σ2
0 is

satisfied. For r = 1, we can assume that u := 1√
2
θ1 + 1√

2
θ2 with a slight modification of

the argument. Finally, we take dimension d = dn so that

r(Σ0) =
r∑
s=1

µs
µ1

+
µr+1

µ1
dn =

r∑
s=1

(
1− s− 1

a

)
+
(
1− r

a

)
dn ∈ (rn/2 + 1, rn].

Then Σ0 ∈ S(r)(rn, a, σ0, u). This completes the proof.
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3.5 Proof of Theorem 3.3.6

Recall that the estimator θ̌r is based on empirical eigenvectors θ̂
δj ,j
r , j = 1, 2, 3 with param-

eters δj = τ‖Σ̂(j)‖ and with a proper choice of τ (as in Lemma 3.2.5). These eigenvectors

are in turn defined in terms of empirical spectral projections P̂
δj ,j
r of sample covariances

Σ̂(j) (based on δj-clusters of its spectrum σ(Σ̂(j))). We will, however, replace θ̌r by the

estimator θ̃r defined in terms of empirical spectral projections P̂
(j)
r , j = 1, 2, 3, P̂

(j)
r be-

ing the orthogonal projection onto direct sum of eigenspaces of Σ̂(j) corresponding to its

eigenvalues λk(Σ̂
(j)), k ∈ ∆r. Since card(∆r) = mr = 1, P̂

(j)
r = θ̂

(j)
r ⊗ θ̂(j)

r and we can

define

d̂r :=
〈θ̂(1)
r , θ̂

(2)
r 〉

〈θ̂(2)
r , θ̂

(3)
r 〉1/2

and

θ̃r :=
θ̂

(1)
r

d̂r ∨ (1/2)
.

The reduction to this case is based on Lemma 3.2.5 (implying that P̂
δj ,j
r = P̂

(j)
r with a

high probability) and is straightforward (as in the proof of Theorem 3.3.2).

The rest of the proof is based on several lemmas stated and proved below.

Lemma 3.5.1. Suppose that for some γ ∈ (0, 1) condition (3.9) holds for the sample

covariance Σ̂(2) based on m observations:

E‖Σ̂(2) − Σ‖ ≤ (1− γ)gr
2

(3.43)

Then, for all t ≥ 1 with probability at least 1− e−t

∣∣〈θ̂(1)
r , θ̂

(2)
r 〉 −

√
1 + b

(n′)
r

√
1 + b

(m)
r

∣∣ .γ ‖Σ‖2g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m . (3.44)

and with the same probability

∣∣〈θ̂(2)
r , θ̂

(3)
r 〉 − (1 + b

(m)
r )

∣∣ .γ ‖Σ‖2g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m . (3.45)

Proof. Obviously, condition (3.43) holds also for the sample covariance Σ̂(2) (which is

based on a sample of the same size m). Moreover, it also holds for the sample covariance

Σ̂(1) based on n′ ≥ m observations since the sequence n 7→ E‖Σ̂n − Σ‖ is non-increasing

(see, e.g., Lemma 2.4.5 in [vdVW96]).

The following representation is obvious:

〈θ̂(1)
r , θ̂

(2)
r 〉 =

√
1 + b

(n′)
r

√
1 + b

(m)
r 〈θr, θr〉

+

√
1 + b

(m)
r 〈θ̂(1)

r −
√

1 + b
(n′)
r θr, θr〉
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+

√
1 + b

(n′)
r 〈θ̂(2)

r −
√

1 + b
(m)
r θr, θr〉

〈θ̂(1)
r −

√
1 + b

(n′)
r θr, θ̂

(2)
r −

√
1 + b

(m)
r θr〉. (3.46)

By bound (3.34), with probability at least 1− e−t

|〈θ̂(1)
r −

√
1 + b

(n′)
r θr, θr〉| .γ ‖Σ‖

2

g2r

(√
r(Σ)
n′
∨√ t

n′

)√
t
n′ (3.47)

Similarly, with probability at least 1− e−t

|〈θ̂(2)
r −

√
1 + b

(m)
r θr, θr〉| .γ ‖Σ‖

2

g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m . (3.48)

To bound the last term in the right hand side of (3.46), we apply bound (3.33) to θ̂
(1)
r

conditionally on the second sample (similarly to the proof of Theorem 6 in [KL16]). This

yields that with probability at least 1− e−t

|〈θ̂(1)
r −

√
1 + b

(n′)
r θr, θ̂

(2)
r −

√
1 + b

(m)
r θr〉| .γ

‖Σ‖
gr

√
t

n′
‖θ̂(2)
r −

√
1 + b

(m)
r θr‖. (3.49)

On the other hand, under the assumption that 〈θ̂r, θr〉 ≥ 0,

‖θ̂(2)
r −

√
1 + b

(m)
r θr‖ ≤ ‖θ̂(2)

r − θr‖+
∣∣∣√1 + b

(m)
r − 1

∣∣∣
=

√
2− 2〈θ̂(2)

r , θr〉+ |b(m)
r |√

1+b
(m)
r +1

≤
√

2− 2〈θ̂(2)
r , θr〉2 + |b(m)

r |

=

√
2− 2〈P̂ (2)

r , Pr〉+ |b(m)
r | = ‖P̂ (2)

r − Pr‖2 + |b(m)
r |.

≤
√

2‖P̂ (2)
r − Pr‖+ |b(m)

r |.

By a standard perturbation bound (see, e.g., [KL16]),

‖P̂ (2)
r − Pr‖ ≤ 4

‖Σ̂(2) − Σ‖
gr

.

Thus,

‖θ̂(2)
r −

√
1 + b

(m)
r θr‖ ≤ 4

√
2
‖Σ̂(2) − Σ‖

gr
+ |b(m)

r |. (3.50)

Using the exponential bound (3.3) on ‖Σ̂(2) − Σ‖ and bound (3.28), we obtain that with

probability at least 1− e−t

∥∥θ̂(2)
r −

√
1 + b

(m)
r θr

∥∥ . ‖Σ‖
gr

(√
r(Σ)

m

∨ r(Σ)

m

∨√
t

m

∨ t

m

)
+
‖Σ‖2

g2
r

r(Σ)

m
. (3.51)
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Under assumption (3.43), we have ‖Σ‖gr

√
r(Σ)
m . 1, which implies ‖Σ‖

2

g2r

r(Σ)
m . ‖Σ‖

gr

√
r(Σ)
m .

Thus, the first term in the right hand side of bound (3.51) is dominant. Moreover, we

can drop the term r(Σ)
m and, for t ≤ m, we can also drop the term ‖Σ‖

gr
t
m in the right hand

side. Since the left hand side of (3.51) is not larger than 2, for t > m, the term ‖Σ‖
gr

√
t
m is

larger (up to a constant) than the left hand side. Thus, the term ‖Σ‖
gr

t
m can be dropped

for all the values of t and the bound (3.51) simplifies as follows

∥∥∥θ̂(2)
r −

√
1 + b

(m)
r θr

∥∥∥ . ‖Σ‖
gr

(√
r(Σ)

m

∨√
t

m

)
(3.52)

and it still holds with probability at least 1− e−t. It follows from bound (3.49) and (3.52)

that for all t ≥ 1 with probability at least 1− 2e−t

|〈θ̂(1)
r −

√
1 + b

(n′)
r θr, θ̂

(2)
r −

√
1 + b

(m)
r θr〉| .γ

‖Σ‖2

g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

n′
. (3.53)

Taking into account that n′ ≥ m, it easily follows from representation (3.46) and

bounds (3.47), (3.48) and (3.53) that with probability at least 1− e−t

∣∣∣〈θ̂(1)
r , θ̂

(2)
r 〉 −

√
1 + b

(n′)
r

√
1 + b

(m)
r

∣∣∣ .γ ‖Σ‖2g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m ,

which proves (3.44). The proof of bound (3.45) is similar.

Define

∆1 :=
〈θ̂(1)
r , θ̂

(2)
r 〉√

1 + b
(n′)
r

√
1 + b

(m)
r

− 1

and

∆2 :=
〈θ̂(2)
r , θ̂

(3)
r 〉

1 + b
(m)
r

− 1.

Assuming that

1 + b(n
′)

r ≥ (3/4)2 and 1 + b(m)
r ≥ (3/4)2, (3.54)

we obtain that, for some constant Cγ > 0 and for t ≥ 1 on an event E of probability at

least 1− e−t

|∆1| ∨ |∆2| ≤ Cγ
‖Σ‖2

g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

m
. (3.55)

Next we have

d̂r =
〈θ̂(1)
r , θ̂

(2)
r 〉

〈θ̂(2)
r , θ̂

(3)
r 〉1/2

=
〈θ̂(1)
r , θ̂

(2)
r 〉/((1 + b

(n′)
r )1/2(1 + b

(m)
r )1/2)

〈θ̂(2)
r , θ̂

(3)
r 〉1/2/(1 + b

(m)
r )1/2

√
1 + b

(n′)
r
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=
1 + ∆1√
1 + ∆2

√
1 + b

(n′)
r =

√
1 + b

(n′)
r +

1 + ∆1 −
√

1 + ∆2√
1 + ∆2

√
1 + b

(n′)
r ,

which implies

∣∣∣d̂r −√1 + b
(n′)
r

∣∣∣ ≤√1 + b
(n′)
r

∣∣∣(1+∆1)2−(1+∆2)

∣∣∣
√

1+∆2(1+∆1+
√

1+∆2)

≤ 2|∆1|+∆2
1+|∆2|√

1+∆2(1+∆1+
√

1+∆2)
. (3.56)

Under the assumption that

‖Σ‖2

g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

m
≤ cγ (3.57)

for a sufficiently small constant cγ > 0, bounds (3.56) and (3.55) imply that on the event

E ∣∣∣∣ d̂r√
1 + b

(n′)
r

− 1

∣∣∣∣ .γ ‖Σ‖2g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

m
. (3.58)

Moreover, on the same event E,

d̂r ≥
√

1 + b
(n′)
r − 2|∆1|+∆2

1+|∆2|√
1+∆2(1+∆1+

√
1+∆2)

≥ 3
4 −

2|∆1|+∆2
1+|∆2|√

1+∆2(1+∆1+
√

1+∆2)
≥ 1

2 , (3.59)

∣∣∣∣
√

1 + b
(n′)
r

d̂r
− 1

∣∣∣∣ .γ ‖Σ‖2g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

m
(3.60)

and also, using bound (3.28), we obtain that

|d̂r − 1| ≤ |
√

1 + b
(n′)
r − 1|+ 2|∆1|+∆2

1+|∆2|√
1+∆2(1+∆1+

√
1+∆2)

≤ |b(n
′)

r |+ 2|∆1|+∆2
1+|∆2|√

1+∆2(1+∆1+
√

1+∆2)

.γ
‖Σ‖2
g2r

r(Σ)
n′ + ‖Σ‖2

g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m . (3.61)

and ∣∣ 1

d̂r
− 1
∣∣ .γ ‖Σ‖2

g2
r

r(Σ)

n′
+
‖Σ‖2

g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

m
. (3.62)

The key ingredient of the proof of Theorem 3.3.6 is the following lemma.

Lemma 3.5.2. Suppose that, for some γ ∈ (0, 1), conditions (3.43) and (3.54) hold.

Then, for all t ≥ 1 with probability at least 1− e−t

∣∣〈θ̃r − θr, u〉 − 〈Lr(Σ̂(1) − Σ)θr, u〉
∣∣
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.γ
‖Σ‖2
g2r

(√
r(Σ)
m

∨√ t
m

∨ t
m

)√
t
m‖u‖. (3.63)

Proof. We use the following simple representation:

〈θ̃r − θr, u〉 = 〈θ̂(1)
r −

√
1 + b

(n′)
r θr, u〉

+

(
1
d̂r
− 1

)
〈θ̂(1)
r −

√
1 + b

(n′)
r θr, u〉+

(√
1+b

(n′)
r

d̄r
− 1

)
〈θr, u〉 (3.64)

that holds on the event E (where d̂r ≥ 1/2). Using bounds (3.60) and (3.62) that both

hold under assumption (3.57) on the event E as well as bound (3.33) (applied to θ̂
(1)
r with

n = n′), we obtain that with probability at least 1− 2e−t∣∣∣∣〈θ̃r − θr, u〉 − 〈θ̂(1)
r −

√
1 + b

(n′)
r θr, u〉

∣∣∣∣
.γ

‖Σ‖2
g2r

r(Σ)
n′
‖Σ‖
gr

√
t
n′ ‖u‖+ ‖Σ‖2

g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m
‖Σ‖
gr

√
t
n′ ‖u‖

+‖Σ‖
2

g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m‖u‖.

It is easy to check that the last term in the right hand side is dominant yielding the

simpler bound

∣∣〈θ̃r − θr, u〉 − 〈θ̂(1)
r −

√
1 + b

(n′)
r θr, u〉

∣∣
.γ

‖Σ‖2
g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m‖u‖ (3.65)

that holds under assumption (3.57) with probability at least 1− e−t. Since the left hand

side is bounded by 5‖u‖, bound (3.65) also holds trivially when

‖Σ‖2

g2
r

(√
r(Σ)

m

∨√
t

m

)√
t

m
> cγ .

It remains to combine (3.65) with the bound (3.23) (applied to θ̂
(1)
r ) to complete the proof.

The following statement is an immediate consequence of Lemma 3.5.2 and Lemma

3.4.2. As always, we dropped the terms t
n′ ,

t
m from the bounds since the left-hand side

is smaller that 3‖u‖ and, for t ≥ n′ or t ≥ m (the only cases when these terms might be

needed), it is dominated by the expression with
√

t
n′ ,
√

t
m only.

Corollary 3.5.3. Suppose that, for some γ ∈ (0, 1), conditions (3.43) and (3.54) hold.
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Then, for all t ≥ 1 with probability at least 1− e−t

∣∣〈θ̃r − θr, u〉∣∣ .γ ‖Σ‖gr √ t
n′ ‖u‖+ ‖Σ‖2

g2r

(√
r(Σ)
m

∨√ t
m

)√
t
m‖u‖. (3.66)

Lemma 3.5.2 implies the following statement. This, in turn, implies Theorem 3.3.6.

Lemma 3.5.4. Suppose that m2 ≥ 2nr(Σ) and conditions (3.43) and (3.54) hold for some

γ ∈ (0, 1). For a given u ∈ H, suppose that σr(Σ;u) > 0. Let α ≥ 1. Then the following

bounds holds: for some constants C,Cγ,α > 0,

sup
x∈R

∣∣P{√n〈θ̃r − θr, u〉
σr(Σ;u)

≤ x
}
− Φ(x)

∣∣
≤ C(n′)−1/2 +

Cγ,α
σr(Σ;u)

‖Σ‖2

g2
r

(√
nr(Σ)

m2
log

m2

nr(Σ)

∨√
n log2 m2

nr(Σ)

m2

)
‖u‖+

(
nr(Σ)

m2

)α
.

(3.67)

Moreover, denote

τ1 := Cγ

(
‖Σ‖
gr

∨ ‖Σ‖2
g2
r

√
nr(Σ)

m2

)
‖u‖

and

τ2 := Cγ
‖Σ‖2

g2
r

√
n

m2
‖u‖.

Suppose that Assumptions 3.3.1 on the loss ` holds and c2τ2 ≤ 1/4. There exist constants

C,Cγ , Cγ,α > 0 such that

∣∣E`(√n〈θ̃r − θr, u〉
σr(Σ;u)

)
− E`(Z)

∣∣
≤ c1e

c2A

(
C(n′)−1/2 +

Cγ,α
σr(Σ;u)

‖Σ‖2

g2
r

(√
nr(Σ)

m2
log

m2

nr(Σ)

∨√
n log2 m2

nr(Σ)

m2

)
‖u‖+

(
nr(Σ)

m2

)α)
+ 2e3/2(2π)1/4c1e

c22τ
2
1 (e−A

2/2τ21 ∨ e−A/2τ2) + c1e
c22e−A

2/4. (3.68)

Proof. The proof is similar to that of Lemma 3.4.8. To prove (3.67), we apply the first

bound of Lemma 3.4.6 to the random variables

ξ :=

√
n〈θ̃r − θr, u〉
σr(Σ;u)

, η :=
〈Lr(Σ̂(1) − Σ)θr, u〉

σr(Σ;u)
.

and use the bound of Lemma 3.5.2 with t = α log
(

m2

nr(Σ)

)
to control δ(ξ, η).

To prove the bound (3.68), observe that, by bound (3.66), for all t ≥ 1 with probability

at least 1− e−t

|ξ| ≤ τ1

√
t ∨ τ2t.
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Under assumption c2τ2 ≤ 1/4, bound (3.35) implies that

E`2(ξ) ≤ 2e
√

2πc2
1e

2c22τ
2
1 +

ec2
1

1− 2c2τ2
≤ 4e

√
2πc2

1e
2c22τ

2
1 .

Therefore,

E`(ξ)I(|ξ| ≥ A) ≤ E1/2`2(ξ)P1/2{|ξ| ≥ A} ≤ 2e3/2(2π)1/4c1e
c22τ

2
1 (e−A

2/2τ21 ∨ e−A/2τ2).

It remains to repeat the rest of the proof of the second statement of Lemma 3.4.8.

3.6 Proof of Corollary 3.3.7

The proof is based on a deterministic bound on |σ2
r (Σ̃;u) − σ2

r (Σ;u)| for a small pertur-

bation Σ̃ of Σ provided by the following lemma.

Lemma 3.6.1. Let mr = 1. Denote E := Σ̃− Σ and suppose that ‖E‖ ≤ gr/4. Then

|σ2
r (Σ̃;u)− σ2

r (Σ;u)| . ‖Σ‖
2

g2
r

‖E‖
gr
‖u‖2. (3.69)

and ∣∣∣∣σr(Σ̃;u)

σr(Σ;u)
− 1

∣∣∣∣ . 1

σ2
r (Σ;u)

‖Σ‖2

g2
r

‖E‖
gr
‖u‖2. (3.70)

Proof. We use the Riesz representation of the spectral projector Pr(Σ̃)

Pr(Σ̃) = − 1

2πi

˛
γr

RΣ̃(η)dη,

where RB(η) = (B − ηI)−1 denotes the resolvent of operator B and γr is the circle in C
with center µr and radius gr/2 (and with counterclockwise orientation). Since ‖Ẽ‖ ≤ gr

4

and mr = 1, it is easy to see that there is only one eigenvalue µr(Σ̃) of Σ̃ inside γr and

that dist(η;σ(Σ̃)) ≥ gr
4 , η ∈ γr. Note also that, for all η ∈ γr,

‖RΣ(η)‖ ≤ 2

gr
, ‖RΣ̃(η)‖ ≤ 4

gr
(3.71)

and

RΣ̃(η)−RΣ(η) = (Σ− ηI + E)−1 − (Σ− ηI)−1

=
[
(I +RΣ(η)E)−1 − I

]
RΣ(η). (3.72)
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It follows that, for all η ∈ γr,

‖RΣ̃(η)−RΣ(η)‖ ≤ 2

gr
‖ (I +RΣ(η)E)−1 − I‖ ≤ 2

gr

∞∑
k=1

‖RΣ(η)E‖k ≤ 8‖E‖
g2
r

. (3.73)

Denote A(Σ) := θr(Σ)⊗ u+ u⊗ θr(Σ), B(Σ) := Pr(Σ)⊗Cr(Σ) +Cr(Σ)⊗ Pr(Σ) and

D(Σ) := B(Σ)A(Σ) = θr(Σ)⊗ Cr(Σ)u+ Cr(Σ)u⊗ θr(Σ).

We have

1

2πi

˛
γr

RΣ(η)⊗RΣ(η)dη =

∞∑
s,s′=1

1

2πi

˛
γr

dη

(µs − η)(µs′ − η)
Ps ⊗ Ps′

=
∑
s 6=r

1

µr − µs
(Pr ⊗ Ps + Ps ⊗ Pr)

= Pr(Σ)⊗ Cr(Σ) + Cr(Σ)⊗ Pr(Σ) = B(Σ). (3.74)

Hence, using (3.71) and (3.73), we derive the following bound for any bounded operator

H :

∥∥(B(Σ̃)−B(Σ))H
∥∥

=
∥∥ 1

2πi

˛
γr

[
RΣ̃(η)HRΣ̃(η)−RΣ(η)HRΣ(η)

]
dη
∥∥

=
∥∥ 1

2πi

˛
γr

[
(RΣ̃(η)−RΣ(η))HRΣ̃(η) +RΣ(η)H(RΣ̃(η)−RΣ(η))

]
dη
∥∥

≤gr
2

8‖E‖
g2
r

‖H‖
(

4

gr
+

2

gr

)
≤ 24‖E‖‖H‖

g2
r

. (3.75)

Note also that

‖A(Σ̃)‖ ≤ 2‖u‖, (3.76)

and, using the bound ‖Cr(Σ)‖ ≤ 1
gr
,

‖B(Σ)H‖ ≤ ‖Pr(Σ)HCr(Σ)‖+ ‖Cr(Σ)HPr(Σ)‖ ≤ 2

gr
‖H‖. (3.77)

Finally, observe that, by standard perturbation bounds,

‖A(Σ̃)−A(Σ)‖ ≤ 2‖θr(Σ̃)− θr(Σ)‖‖u‖

≤ 2‖Pr(Σ̃)− Pr(Σ)‖2‖u‖ ≤ 2
√

2‖Pr(Σ̃)− Pr(Σ)‖2‖u‖

≤ 8
√

2‖E‖‖u‖
gr

. (3.78)
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It follows from bounds (3.75), (3.76), (3.77) and (3.78) that

‖D(Σ̃)−D(Σ)‖ ≤ ‖(B(Σ̃)−B(Σ))A(Σ̃)‖+ ‖B(Σ)(A(Σ̃)−A(Σ))‖

≤ 24‖E‖‖A(Σ̃)‖
g2
r

+
2

gr
‖A(Σ̃)−A(Σ)‖ ≤ 48‖E‖‖u‖

g2
r

+
2

gr

8
√

2‖E‖‖u‖
gr

≤ 80‖E‖‖u‖
g2
r

. (3.79)

Now, recall that

σ2
r (Σ;u) = 〈Σθr(Σ), θr(Σ)〉〈ΣCr(Σ)u,Cr(Σ)u〉

=
1

2

∥∥∥Σ1/2(θr(Σ)⊗ Cr(Σ)u+ Cr(Σ)u⊗ θr)Σ1/2
∥∥∥2

2

=
1

2
‖Σ1/2D(Σ)Σ1/2‖22 =

1

2
tr(Σ1/2D(Σ)Σ1/2Σ1/2D(Σ)Σ1/2)

=
1

2
tr(ΣD(Σ)ΣD(Σ)). (3.80)

Hence, by the duality between operator and nuclear norms and since rank(D(Σ)) ≤
2, rank(D(Σ̃)) ≤ 2, we have that

|σ2
r (Σ̃;u)− σ2

r (Σ;u)| =1

2

∣∣ trace(Σ̃D(Σ̃)Σ̃D(Σ̃))− trace(ΣD(Σ)ΣD(Σ))
∣∣

=
1

2

∣∣ trace((Σ̃− Σ)D(Σ̃)Σ̃D(Σ̃)) + trace(Σ(D(Σ̃)−D(Σ))Σ̃D(Σ̃))

+ trace(ΣD(Σ)(Σ̃− Σ)D(Σ̃)) + trace(ΣD(Σ)Σ(D(Σ̃)−D(Σ)))
∣∣

≤ 1

2
‖Σ̃− Σ‖

(
‖D(Σ̃)Σ̃D(Σ̃)‖1 + ‖D(Σ̃)ΣD(Σ)‖1

)
+

1

2
‖D(Σ̃)−D‖

(
‖Σ̃D(Σ̃)Σ‖1 + ‖ΣD(Σ)Σ‖1

)
≤ ‖Σ̃− Σ‖

(
‖D(Σ̃)Σ̃D(Σ̃)‖+ ‖D(Σ̃)ΣD(Σ)‖

)
+ ‖D(Σ̃)−D‖

(
‖Σ̃D(Σ̃)Σ‖+ ‖ΣD(Σ)Σ‖

)
. (3.81)

It remains to observe that ‖Cr(Σ)‖ ≤ 1
gr
, ‖Cr(Σ̃)‖ ≤ 2

gr
and that

‖D(Σ)‖ ≤ 2‖(θr(Σ)⊗ Cr(Σ)u)‖ ≤ 2‖Cr(Σ)‖‖u‖ ≤ 2‖u‖
gr

,

‖D(Σ̃)‖ ≤ 2‖(θr(Σ̃)⊗ Cr(Σ̃)u)‖ ≤ 2‖Cr(Σ̃)‖‖u‖ ≤ 4‖u‖
gr

and

‖Σ̃‖ ≤ ‖Σ‖+ ‖E‖ ≤ ‖Σ‖+
gr
4
≤ 2‖Σ‖,
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implying the bounds

‖D(Σ̃)Σ̃D(Σ̃)‖ ≤ 32‖Σ‖‖u‖2

g2
r

, ‖D(Σ̃)ΣD(Σ)‖ ≤ 8‖Σ‖‖u‖2

g2
r

,

‖Σ̃D(Σ̃)Σ‖ ≤ 8‖Σ‖2‖u‖
gr

and ‖ΣD(Σ)Σ‖ ≤ 2‖Σ‖2‖u‖
gr

. (3.82)

Bound (3.69) now follows from (3.81), (3.79) and (3.82). Bound (3.70) follows from

(3.69).

It remains to apply this lemma to Σ̃ = Σ̂ and to use standard bounds on ‖Σ̂− Σ‖ to

obtain the following inequalities.

Proposition 3.6.2. Suppose that condition (3.9) holds for some γ ∈ (0, 1). Then, there

exists a constant cγ > 0 such that for all t ∈ [1, cγn] with probability at least 1− e−t

|σ2
r (Σ̂;u)− σ2

r (Σ;u)| . ‖Σ‖
3

g3
r

(√
r(Σ)

n

∨√
t

n

)
‖u‖2 (3.83)

and ∣∣∣∣σr(Σ̂;u)

σr(Σ;u)
− 1

∣∣∣∣ . 1

σ2
r (Σ;u)

‖Σ‖3

g3
r

(√
r(Σ)

n

∨√
t

n

)
‖u‖2. (3.84)

The consistency of estimator σr(Σ̂;u) immediately follows:

Proposition 3.6.3. Suppose rn > 1, rn = o(n) as n→∞. For any sequence δn → 0 such

that rn
n = o(δ2

n) as n→∞,

supΣ∈S(r)(rn,a,σ0,u) PΣ

{∣∣σr(Σ̂;u)
σr(Σ;u) − 1

∣∣ ≥ δn}→ 0 as n→∞.

Corollary 3.3.7 can be easily proved using the first statement of Theorem 3.3.6, Propo-

sition 3.6.3 and Lemma 3.4.6.

3.7 Proof of Theorem 3.3.4

Note that the set S̊(r)(r, a, σ0, u) is open in nuclear norm topology. This easily follows

from the continuity of functions Σ 7→ ‖Σ‖, Σ 7→ ḡr(Σ) and Σ 7→ σ2
r (Σ;u) with respect to

the operator norm (for the last function, see Lemma 3.6.1) and, as a consequence, with

respect to the nuclear norm, and of the functions Σ 7→ tr(Σ) and Σ 7→ r(Σ) with respect

to the nuclear norm.

Let Σ =
∑∞

s=1 µsPs ∈ S̊(r)(r, a, σ0, u). Without loss of generality, assume that Σ is of

finite rank. Otherwise, consider ΣN :=
∑N

s=1 µsPs. Clearly,

r(ΣN ) ≤ r(Σ) < r
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and, for all N > r,
‖ΣN‖
ḡr(ΣN )

=
‖Σ‖
ḡr(Σ)

< a.

Moreover, since ‖ΣN − Σ‖ → 0 as N → ∞, we also have that σ2
r (ΣN ;u) → σ2

r (Σ;u) as

N →∞, implying that σ2
r (ΣN ;u) > σ2

0 for all large enough N. Thus, ΣN ∈ S̊(r)(r, a, σ0, u)

for a sufficiently large N and we can replace Σ by ΣN . Assuming that rank(Σ) < ∞, let

L := Im(Σ). We can now restrict Σ to an operator acting from L to L, which is non-

singular. In what follows, all the covariance operators from the class S̊(r)(r, a, σ0, u) that

are of interest to us will have L as an image and could be viewed as operators from L to

L. For simplicity, we just assume that H = L is a finite-dimensional space. For a fixed Σ,

consider the following parametric family of perturbations of Σ :

Σt := Σ +
tH√
n
, |t| ≤ c,

where H is a self-adjoint operator and c > 0 is a constant. Denote

SΣ,c := {Σt : t ∈ [−c, c]}.

Since the set S̊(r)(r, a, σ0, u) is open in nuclear norm topology, there exists δ > 0 such that

the condition
c‖H‖1√

n
< δ, (3.85)

implies that SΣ,c ⊂ S̊(r)(r, a, σ0, u). Moreover, we will assume that

δ < ‖Σ−1‖−1 (3.86)

and

δ <
1

4
ḡr(Σ). (3.87)

Under these assumptions and condition (3.85), Σt is a small enough perturbation of Σ so

that Σt is non-singular and we can define in a standard way the one-dimensional spectral

projection operator Pt := Pr(Σt) = θt ⊗ θt, where θt = θr(Σt) is the corresponding unit

eigenvector as well as operators Ct := Cr(Σt) and

Lt(H) := Lr(Σt)(H) = PtHCt + CtHPt.

It is easy to see that (for a given c > 0 and large enough n so that the perturbation is

small) one can choose t 7→ θt in such a way that 〈θt, θt′〉 ≥ 0, t, t′ ∈ [−c, c]. Based on these

definitions, we also define the functions g(t) := 〈θt, u〉 and σ2(t) := σ2
r (Σt;u). Concerning

the function g, we need the following lemma.

Lemma 3.7.1. The function g is continuously differentiable in the interval [−c, c] and
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the following statements hold:

i) g′(t) = 1√
n
〈Lt(H)θt, u〉, t ∈ [−c, c].

ii) |g′(t)− g′(0)| . |t|‖H‖
2

g2rn
‖u‖, t ∈ [−c, c].

Proof. Let δ ∈ (−1, 1). Similarly to (3.24) (see also (6.6) in [KL16]),

g(t+ δ)− g(t) = 〈θt+δ − θt, u〉

=
〈(Pt+δ − Pt)θt, u〉 − (

√
1 + 〈(Pt+δ − Pt)θt, θt〉 − 1)〈θt, u〉√

1 + 〈(Pt+δ − Pt)θt, θt〉
. (3.88)

Applying the first order perturbation expansion (similar to (3.8)) to the spectral projec-

tions Pt, Pt+δ, we obtain that

Pt+δ − Pt = Lt(δH/
√
n) + St(δH/

√
n) (3.89)

with the remainder term satisfying the bound

‖St(δH/
√
n)‖ . δ2‖H‖2

g2
rn

= O(δ2). (3.90)

Moreover, since Ctθt = 0,

〈Lt(δH/
√
n)θt, θt〉 =

1√
n
〈(PtHCt + CtHPt)θt, θt〉 = 0 (3.91)

and therefore we have that

|〈(Pt+δ − Pt)θt, θt〉| .
δ2‖H‖2

g2
rn

= O(δ2). (3.92)

Hence, using again (3.88), (3.90) and (3.92), we have that

g(t+ δ)− g(t)

δ
=

1√
n

〈Lt(H)θt, u〉
1 +O(δ)

+O(δ). (3.93)

Passing to the limit as δ → 0 implies the first assertion.

We now prove the second claim. First note that

|g′(t)− g′(0)| = |〈Lt(H/
√
n)θt − L0(H/

√
n)θ0, u〉|

≤ |〈(Lt(H/
√
n)− L0(H/

√
n))θt, u〉|+ |〈L0(H/

√
n)(θt − θ0), u〉|

≤ ‖Lt(H/
√
n)− L0(H/

√
n)‖‖u‖+ ‖L0(H/

√
n)‖‖θt − θ0‖‖u‖. (3.94)
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Also,

Lt(H/
√
n) = − 1

2πi

˛
γr

RΣt(η)
H√
n
RΣt(η)dη, (3.95)

where γr is the circle of radius gr/2 with the center at µr and with counterclockwise

orientation. Therefore, by a standard argument already used in the proof of Lemma 3.6.1,

‖Lt(H/
√
n)− L0(H/

√
n)‖ ≤ gr

2
sup
η∈γr
‖RΣt(η)−RΣ(η)‖(‖RΣ(η)‖+ ‖RΣt(η)‖)‖H‖√

n
.

(3.96)

By (3.71) and (3.73), we have

‖RΣ(η)‖ ≤ 2

gr
, ‖RΣt(η)‖ ≤ 4

gr

and

‖RΣt(η)−RΣ(η)‖ ≤ 8

g2
r

|t|‖H‖√
n

.

Therefore, it follows from (3.96) that

‖Lt(H/
√
n)− L0(H/

√
n)‖ ≤ 24|t|‖H‖2

g2
rn

. (3.97)

It remains to observe that

‖L0(H)‖ = ‖PrHCr + CrHPr‖ ≤
2‖H‖
gr

and

‖θt − θ0‖ ≤ ‖Pt − P0‖2 ≤
4
√

2|t|‖H‖
gr
√
n

(where we also used the fact that rank(Pt−P0) ≤ 2 and ‖Pt−P0‖2 ≤
√

2‖Pt−P0‖). This

implies the bound

‖L0(H/
√
n)‖‖θt − θ0‖‖u‖ ≤

8
√

2|t|‖H‖2

g2
rn

‖u‖. (3.98)

The second assertion follows from the bounds (3.94), (3.97) and (3.98).

The continuity of the derivative g′(t) easily follows from the continuity of the functions

t 7→ θt and t 7→ Lt(H/
√
n) (which could be proved using representation (3.95)).

We will study the following estimation problem. Let Σ be fixed and let X1, . . . , Xn be

i.i.d. random variables in H sampled from N(0; Σt), |t| ≤ c, t being an unknown parameter.
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The goal is to estimate the function g(t) based on the observations X1, . . . , Xn. We will

use van Trees inequality to obtain a minimax lower bound on the risk of estimation of

g(t) with respect to quadratic loss. To this end, let π be a smooth probability density

on [−1, 1], satisfying the boundary conditions π(−1) = π(1) = 0 as well the condition

Jπ :=
´ 1
−1

π′(s)2

π(s) ds < +∞. Let πc(t) := 1
cπ
(
t
c

)
, t ∈ [−c, c] be a prior on [−c, c]. Then (see

e.g. [GL95]), for any estimator Tn = Tn(X1, . . . , Xn) of g(t) the following bound holds

sup
|t|≤c

nEt(Tn − g(t))2 ≥ n
ˆ c

−c
Et(Tn − g(t))2πc(t)dt

≥
n
( ´ c
−c g

′(t)πc(t)dt
)2

´ c
−c In(t)πc(t)dt+ Jπc

, (3.99)

where In(t) = nI(t) denotes the Fisher information for the model

X1, . . . , Xn
i.i.d.∼ N(0,Σt),

t ∈ [−c, c]. Let I(t) := I1(t). It is well known that the Fisher information for the model

X ∼ N(0; Σ) with non-singular covariance matrix Σ is I(Σ) = 1
2(Σ−1 ⊗ Σ−1) (see, e.g.,

[Eat83]). Thus,

In(t) = nI(t) = n
〈
I(Σt)

dΣt

dt
,
dΣt

dt

〉
=
n

2

〈
(Σ−1

t ⊗ Σ−1
t )

H√
n
,
H√
n

〉
=

1

2
〈Σ−1

t HΣ−1
t , H〉 =

1

2
tr(Σ−1

t HΣ−1
t H).

We will now bound the numerator of the expression in the right hand side of inequality

(3.99) from below and its denominator from above.

Bound on the numerator. We use Lemma 3.7.1 to obtain that for some constant

B1 > 0

( ˆ c

−c
g′(t)πc(t)dt

)2
=
( ˆ c

−c
[g′(0) + (g′(t)− g′(0))]π(t/c)dt/c

)2
≥ g′(0)2 + 2g′(0)

ˆ c

−c
(g′(t)− g′(0))π(t/c)dt/c

≥ g′(0)2 − 2|g′(0)|
ˆ c

−c
|g′(t)− g′(0)|π(t/c)dt/c

≥ g′(0)2 −B1c|g′(0)|
ˆ 1

−1
|t|π(t)dt

‖H‖2

g2
rn
‖u‖

= g′(0)2 −B1c|g′(0)|‖H‖
2

g2
rn
‖u‖

=
〈Lr(H)θr, u〉2

n
− |〈Lr(H)θr, u〉|

B1c‖H‖2

g2
rn

3/2
‖u‖. (3.100)
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Bound on the denominator. First note that, by a simple computation,

Jπc = Jπ/c
2. (3.101)

Then, we need to bound In(t) = 1
2tr(Σ−1

t HΣ−1
t H) in terms of In(0) = 1

2tr(Σ−1HΣ−1H).

Assume that
c‖Σ−1H‖√

n
≤ 1

2
. (3.102)

Arguing as in the proof of Lemma 3.6.1, we easily get that

Σ−1
t = Σ−1 +

[(
I +

tΣ−1H√
n

)−1

− I

]
︸ ︷︷ ︸

=:D

Σ−1, (3.103)

where

‖D‖ ≤ 2|t|‖Σ
−1H‖√
n

≤ 1.

Furthermore, note that

trace
(
Σ−1
t HΣ−1

t H
)

= trace(Σ−1HΣ−1H)+2 trace(DΣ−1HΣ−1H)+trace(DΣ−1HDΣ−1H).

and thus we have that

In(t) ≤ In(0) + ‖D‖‖Σ−1HΣ−1H‖1 +
‖DΣ−1H‖2‖HΣ−1D‖2

2

≤ In(0) +

(
‖D‖+

‖D‖2

2

)
‖Σ−1H‖22 ≤ In(0) + 3

|t|‖Σ−1H‖32√
n

. (3.104)

Using (3.104), we obtain the following bound:

ˆ c

−c
In(t)πc(t)dt ≤ In(0) + 3

‖Σ−1H‖32√
n

ˆ c

−c
|t|π(t/c)dt/c

≤ In(0) +
3c‖Σ−1H‖32√

n
. (3.105)

Substituting (3.100), (3.105) and (3.101) into van Trees inequality (3.99) and taking

into account that

In(0) =
1

2
tr(Σ−1HΣ−1H) =

1

2
‖Σ−1/2HΣ−1/2‖22

and

〈Lr(H)θr, u〉 = 〈(PrHCr + CrHPr)θr, u〉 = 〈Hθr, Cru〉

=
1

2
〈H, θr ⊗ Cru+ Cru⊗ θr〉 = 〈Σ−1/2HΣ−1/2,Σ−1/2BΣ−1/2〉,
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where

B :=
1

2
(Σθr ⊗ ΣCru+ ΣCru⊗ Σθr),

we obtain that

sup
|t|≤c

nEt(Tn − g(t))2

≥
〈Σ−1/2HΣ−1/2,Σ−1/2BΣ−1/2〉2 − |〈Σ−1/2HΣ−1/2,Σ−1/2BΣ−1/2〉|B1c‖H‖2

g2r
√
n
‖u‖

1
2‖Σ−1/2HΣ−1/2‖22 +

3c‖Σ−1H‖32√
n

+ Jπ/c2
.

(3.106)

In what follows, we set H := B. Note that with this choice of H

2‖Σ−1/2BΣ−1/2‖22 =
1

2
‖Σ1/2θr ⊗ Σ1/2Cru+ Σ1/2Cru⊗ Σ1/2θr‖22

=
1

2

(
‖Σ1/2θr ⊗ Σ1/2Cru‖22 + ‖Σ1/2Cru⊗ Σ1/2θr‖22

)
= ‖Σ1/2θr‖2‖Σ1/2Cru‖2 = σ2

r (Σ;u).

Also, by a simple computation (using that rank(B) = 2), we have that

‖B‖ ≤ ‖B‖2 ≤
1√
2

‖Σ‖2

gr
‖u‖, ‖B‖1 ≤

‖Σ‖2

gr
‖u‖ (3.107)

and that

‖Σ−1B‖ ≤ ‖Σ−1B‖2 ≤
1√
2

‖Σ‖
gr
‖u‖. (3.108)

These bounds imply that, for any given c > 0 and for all n large enough, H = B satisfies

condition (3.85) for a small enough δ such that SΣ,c ⊂ S̊(r)(r, a, σ0, u) and conditions

(3.86), (3.87) hold. Also, H = B satisfies condition (3.102) (for any given c > 0 and all

large enough n).

For H = B, inequality (3.106) becomes

sup
|t|≤c

nEt(Tn − g(t))2

≥
‖Σ−1/2BΣ−1/2‖42 − ‖Σ−1/2BΣ−1/2‖22

B1c‖B‖2
g2r
√
n
‖u‖

1
2‖Σ−1/2BΣ−1/2‖22 +

3c‖Σ−1B‖32√
n

+ Jπ/c2

≥ σ2
r (Σ;u)

(
1−

B1c‖B‖2
2g2r
√
n
‖u‖+

3c‖Σ−1B‖32√
n

+ Jπ/c
2

1
4σ

2
r (Σ;u) +

3c‖Σ−1B‖32√
n

+ Jπ/c2

)
. (3.109)

It remains to replace σ2
r (Σ;u) with σ2(t) = σ2

r (Σt;u). To this end, we use the bound (3.69)
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to obtain that for some constant D1 > 0

sup
t∈[−c,c]

σ2(t)

σ2
r (Σ;u)

≤ 1 +
D1

σ2
r (Σ;u)

‖Σ‖2

g3
r

c‖B‖√
n
‖u‖2. (3.110)

It follows from (3.109) that

sup
t∈[−c,c]

σ2(t)

σ2
r (Σ;u)

sup
|t|≤c

nEt(Tn − g(t))2

σ2(t)
≥ 1−

B1c‖B‖2
2g2r
√
n
‖u‖+

3c‖Σ−1B‖32√
n

+ Jπ/c
2

1
4σ

2
r (Σ;u) +

3c‖Σ−1B‖32√
n

+ Jπ/c2
. (3.111)

Suppose
D1

σ2
r (Σ;u)

‖Σ‖4

g4
r

c√
n
‖u‖3 ≤ 1, (3.112)

which holds for any given c > 0 and all large enough n and which, in view of bounds

(3.107), implies that
D1

σ2
r (Σ;u)

‖Σ‖2

g3
r

c‖B‖√
n
‖u‖2 ≤ 1.

Under condition (3.112), bounds (3.111) and (3.110) (and also bounds (3.107) and (3.108))

imply that

sup
Σ∈S̊(r)(r,a,σ0,u)

EΣ(Tn − 〈θr(Σ), u〉)2

σ2
r (Σ;u)

≥ sup
|t|≤c

nEt(Tn − g(t))2

σ2(t)

≥
(

1−
B1c‖B‖2
2g2r
√
n
‖u‖+

3c‖Σ−1B‖32√
n

+ Jπ/c
2

1
4σ

2
r (Σ;u) +

3c‖Σ−1B‖32√
n

+ Jπ/c2

)(
1− D1

σ2
r (Σ;u)

‖Σ‖2

g3
r

c‖B‖√
n
‖u‖2

)

≥
(

1−
B1a

4‖u‖3 c√
n

+ 3a3‖u‖3 c√
n

+ Jπ/c
2

σ2
0
4 + 3a3‖u‖3 c√

n
+ Jπ/c2

)(
1− D1

σ2
0

a4‖u‖3 c√
n

)
. (3.113)

It remains to pass to the limit in inequality (3.113) first as n→∞ and then as c→∞ to

complete the proof.

A local version of the theorem easily follows from the above arguments since, for all

ε > 0, c > 0 and for all large enough n, SΣ0,c ⊂ {Σ : ‖Σ− Σ0‖1 ≤ ε}.
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Chapter 4

Spectral thresholding for the

estimation of Markov chain

transition operators

4.1 Introduction

We consider an aperiodic and irreducible Markov chain (Xi)i∈N with the d-dimensional

torus Td as state space. The dynamics of this chain are described by its transition operator,

Pf(x) = E[f(X1)|X0 = x] =

ˆ
Td
f(y)p(x, y)dy,

where f ∈ L2 = L2(Td). We are interested in nonparametric estimation of the transition

density p(·, ·) and thus the transition operator P , too.

Nonparametric estimation of p when assuming smoothness of p has been thoroughly stud-

ied, e.g. [AL11, Bir13, Clé00, Lac07, Sar14]. If p ∈ Hs, where Hs denotes the L2-Sobolev

space of smoothness s, the L2-minimax rates for estimating p are

n−
s

2s+2d .

Here we use the additional information provided by assuming that P has an approximately

low rank structure to improve these rates. Precisely, since P is a compact operator on

L2(µ) it has functional singular value decomposition

Pf =
∑
k≥0

λk〈uk, f〉µvk f ∈ L2(µ),
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and we assume that the singular values λk decay exponentially fast, in the sense that for

constants c, C > 0.

λk ≤ C exp
(
−ck

2
d

)
.

This assumption is motivated by discrete, low frequency observations of periodised, re-

versible diffusion processes for which it is fulfilled by virtue of Weyl’s law [Gar53, Hör79,

Ivr00, Ivr16, Wey11]. Indeed, for a 1-periodic Lipschitz continuous vector field b(x) =

(b1(x), . . . , bd(x)) and a scalar 1-periodic σ(x) define the multi-dimensional diffusion pro-

cess

dYt = b(Yt)dt+ σ(Yt)dWt, t ≥ 0,

and consider its periodised version

Xt = Yt modulo Zd, t ≥ 0.

Then P = P1 is one instance of the Feller semigroup (Pt)t∈R+ with infinitesimal generator

L : H2 → L2, and one obtains that P = exp(L) where L is given by

L =
σ2(x)

2

d∑
i=1

∂2

∂x2
i

+
d∑
i=1

bi(x)
∂

∂xi
.

L is an elliptic operator and moreover, since the diffusion is assumed to be reversible, L

is self-adjoint with respect to the invariant measure µ. Hence, Weyl’s law[Ivr00] applies

and states that its k-th eigenvalue is of order −k
2
d . This implies the exponential decay of

the eigenvalues, and thus the singular values, of P .

Such a decay of the singular values is also observed empirically in applications such as

molecular dynamics (see e.g. [RZMC11]). This has prompted practitioners and applied

mathematicians to estimate only the first few eigenpairs of P and discard the rest in their

analysis [CSP+07, CKL+08, KWNS18, RZMC11, Sch98, SMP14, SHWP15]. However,

often no theoretical guarantees are provided and it is not clear whether their procedures

are optimal from a statistical point of view.

Low rank assumptions for Markov chains have only recently began to be considered in

the statistical literature, primarily in the finite state case [LWZ18, ZW18]. In these works

it is assumed that the transition matrix has a low rank structure and they show nearly

optimal rates for their algorithms. Moreover, Zhang and Wang [ZW18] extend their re-

sult to continuous state space Markov chains. By contrast, they assume that P has fixed

(constant) rank whereas we assume decay of the eigenvalues. This leads to a more difficult

analysis in our setting as one has to take bias due to discarding eigenvalues into account.
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4.2. Main results

We investigate a modified version of one popular method from molecular dynamics for

the estimation of P , where the number of eigenpairs kept is chosen in a data driven

way. Considering a Galerkin-type estimator [GHR04, Sch98, SMP14] we use techniques

from low rank matrix estimation [CP11, Klo14, KLT11]. Particularly we show that hard

thresholding eigenvalues yields minimax optimal L2-rates

n−
s

2s+d log(n)
d
2

s
2s+d

over the class of Markov chains with exponentially decaying eigenvalues. This improves

the dependance on the dimension d from 2d to almost d compared to the case with-

out eigenvalue decay. Moreover, our analysis reveals that our algorithm keeps at most

C log(n)
d
2 eigenpairs of the estimated transition operator, thus justifying the commonly

used approach to discard most of them. Simulations complement our theoretical results

and show the improved performance when thresholding eigenvalues.

4.2 Main results

4.2.1 Basic Notation

Let Td denote the d-dimensional torus, isomorphic to the unit cube [0, 1]d when opposite

points are identified, equipped with Lebesgue measure λ. By L2 = L2(Td, λ) we denote

the space of square integrable functions (with respect to λ) on Td equipped with Euclidean

inner product 〈·, ·〉 and corresponding L2 norm ‖·‖L2 . We also denote the Euclidean inner

product for any finite dimensional vector space by 〈·, ·〉 and the corresponding norm by

‖ ·‖2. For any probability measure µ on Td if µ has a density with respect to the Lebesgue

measure, we denote it in slight abuse of notation by µ, too. Moreover, when considering

functions in L2 (µ) = L2(Td, µ), we use the canonical scalar product and denote it by

〈·, ·〉µ with corresponding norm ‖ · ‖L2(µ). ‖·‖L∞ denotes the L∞ norm. ‖·‖F denotes the

Hilbert–Schmidt (Frobenius) norms of operators on L2, while ‖·‖∞ denotes the spectral

norm for the λ scalar product, respectively.

For s ∈ N we define the Sobolev space of smoothness s as

Hs := {f ∈ L2 : ‖f‖Hs :=
∑
|i|≤s

‖Dif‖L2 <∞}.

For s /∈ N, Hs is defined through interpolation or equivalently through Fourier methods

(see Chapter I.9 in [LM72] or Section 7 in [AF03]). For s > 0 we will also use the Hölder

spaces Cs equipped with Hölder norm ‖·‖Cs . We also employ the same notation for vector

fields f = (f1, . . . , fd). For example f ∈ Cs means that ‖f‖Cs :=
∑

i ‖fi‖Cs < ∞. We

will sometimes use the notation a . b, meaning that a ≤ Cb for some universal constant

C > 0 which does not depend on n.
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4.2.2 Assumptions on the model

We assume that we observe a Markov chain (Xi)0≤i≤n with state space Td and we introduce

a set of Markov chains with smoothness index s denoted byM(s) =M(s, Cµ, cµ, C1, C2, . . . , C6)

fulfilling the following assumptions:

A1: (Xi)i∈N0
is irreducible, aperiodic and has invariant measure µ which has a density

which we will also denote by µ

A2: The invariant measure µ is bounded away from 0 and ∞, i.e. for constants Cµ >

cµ > 0, cµ ≤ µ ≤ Cµ.

A3: For a s ≥ d, µ ∈ Hs and ‖µ‖Hs ≤ C1 for some constant C1 > 0.

Note that assumption A2 implies that L2 = L2(µ) and that the pairs of norms ‖·‖L2 and

‖·‖L2(µ)are equivalent. We assume that X0 ∼ µ. Recall, that the transition operator P is

defined on L2 (µ) by

Pf(x) = E [f (X1) | X0 = x] .

We assume that P is a compact integral operator with kernel p(x, y), the transition density.

A4: C2 > p(x, y) > 0 for all x, y ∈ Td and for a constant C2 > 1 .

As P is compact in L2(µ) it has a functional singular value decomposition: there exists two

orthonormal bases (uk)k∈N and (vk)k∈N of L2 (µ) and a non-negative decreasing sequence

(λk)k∈N such that,

Pf =
∑
k

λk 〈uk, f〉µ vk, f ∈ L2(µ), (4.1)

p(x, y) =
∑
k

λkuk(y)µ(y)vk(x). (4.2)

Having obtained the representation (4.1) it is thus natural to formulate the remaining

assumptions on the singular values and left and right singular functions. We assume that

P has an approximately low rank structure with exponential decay of the singular values

and that the left and right singular functions obey a certain degree of smoothness.

A4: The k-th singular value (counting multiplicity) is bounded by

C3 exp
(
−C4k

2
d

)
for positive constants C3 and C4.

A5: The absolute spectral gap γ := 1− λ1 = 1− supf∈L2(µ),〈f,1〉µ=0,‖f‖L2(µ)=1 ‖Pf‖L2(µ)

is bounded away from zero by some constant C5 > 0.

A6: The singular functions (uk, vk) fulfill
∑

k λ
2
k(‖uk‖

2
Hs + ‖vk‖2Hs) ≤ C6 for some con-

stant C6 > 0 for the same s ≥ d as in A3.
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When considering the class M(s) =M(s, Cµ, cµ, C1, . . . , C6) we will suppress the depen-

dence on all parameters except s, since they, treating them as constants, do not change

the minimax rate as longM(s) has non-empty interior. We will also write that p ∈M(s)

or P ∈ M(s) if it is the transition density or the transition operator of a Markov chain

in M(s), respectively.

Periodised diffusion processes (which have also been considered in [Abr18, NR19, vWvZ16])

fulfill these assumptions under mild conditions on σ and b detailed in the Lemma below.

This includes for example periodised versions of the Langevin processes considered by

Roberts and Tweedie [RT96]. The proof follows after an application of Weyl’s law for

operators with non-smooth coefficients due to Ivrii [Ivr00] and by using p.d.e. results for

elliptic operators from a recent article by Nickl and Ray [NR19].

Lemma 4.2.1. For a vector field b(x) = (b1(x), . . . , bd(x) and a scalar σ(x) consider

the diffusion process dYt = b(Yt)dt + σ(Yt)dWt, t ≥ 0, and its periodised version Xt =

Yt modulo Zd. Assume that we observe the chain (Xi)i∈N0. Moreover, assume that σ(m+

x) = σ(x) and b(x+m) = b(x) for all m ∈ Zd and that σ−2b = ∇B for some B ∈ C2. If∥∥σ−2
∥∥
Cs−1,

∥∥σ2
∥∥
Cs−1 and ‖b‖Cs−1 are bounded by a constant C > 0 for some s > 2, then

p ∈M(s).

4.2.3 Construction of the estimator

Here we describe how to obtain estimators for p and P given observations (Xi)0≤i≤n,

using a Galerkin approach. This method has also been employed for estimating the drift

and volatility functions in a scalar diffusion model in the seminal paper by Gobet et al.

[GHR04] and the first part of our construction is closely related.

Instead of estimating p in the functional space, the Galerkin approach estimates the action

of P on a suitable approximation space and we obtain plug-in estimators for p and P .

Lemma 4.2.2. For any non-negative integral operator P whose kernel p satisfies assump-

tion A4 and for any orthonormal basis (fk)k∈Zd of L2 we have that

p (x, y) =
∑
k,k′

〈fk, Pfk′〉 fk (x) fk′ (y)

in L2. In particular this defines an isometry between P and p.

Working with P instead of p is advantageous because we can fully use its low-rank

nature. We construct our estimator as a modified version of the estimator described by

Gobet et al. [GHR04], adjusted to the non-reversible case:

Let
{

Ψjk, j ∈ N ∪ {−1}, k ∈ Zd
}

be a tensorized and sufficiently smooth (with regularity

greater than s) periodic wavelet basis of Td. For convenience, we denote this basis {Ψλ}

103



Spectral thresholding for the estimation of Markov chain transition operators

where λ = (j, k1, . . . , kd) is a multi index. We define VJ as the linear span of wavelets up

to resolution level J ,

VJ := span {Ψλ, |λ| = |(j, k)| := j ≤ J} ,

and denote by VJ the corresponding space of wavelet coefficients. The dimension of VJ

is bounded by C2Jd. One can find the construction of such a wavelet basis for instance

in chapters 4.3.4 and 4.3.6 in [GN16].

Remark 4.2.1 (Other basis functions). The proof of Theorem 4.2.1, our main result, re-

quires the Jackson and Bernstein inequalities and the bound ‖v‖L∞ ≤ C
√

dim(VJ) for

any v ∈ VJ satisfying ‖v‖L2 ≤ 1. Thus, arguing as in Remark 5 in Chorowski and

Trabs [CT16] the conclusions of Theorem 4.2.1 remain valid for the trigonometric and

the B-spline basis if one strengthens the assumptions A3 and A7 to ‖µ‖Cs ≤ c and∑
λ2
k(‖uk‖2Cs + ‖vk‖2Cs) ≤ C for some constants c, C > 0.

As in Gobet et al. [GHR04], we will use bold letters for the coefficient expansions in

the wavelet basis (Ψλ) of functions and operators in and on L2. These denote vector and

matrix like elements. The corresponding functions and operators - which do not depend

on the basis - are in italic. In the case of vectors or matrix elements whose coefficients

are only defined for |λ| ≤ J , such as R̂J , we will sometimes consider them as elements in

the whole sequence space. This is done through setting the undefined coefficients to 0.

Let now J be a resolution level which we will choose later. Following Gobet et al. [GHR04]

we construct a first estimator R̂J with coefficients :

(
R̂J

)
λ,λ′

=
1

n

n−1∑
i=0

Ψλ (Xi) Ψλ′ (Xi+1) for |λ| ≤ J, |λ′| ≤ J.

The ergodic theorem implies that each of these coefficients converges almost surely to its

expectation,

E [Ψλ (X0) Ψλ′ (X1)] = 〈Ψλ, PΨλ′〉µ.

We thus also introduce RJ which is defined as the expectation of R̂J , i.e.

(RJ)λ,λ = 〈Ψλ, PΨλ′〉µ for |λ| ≤ J, |λ′| ≤ J.

As ∪J∈NVJ = L2, we can define R, the limit of RJ (with respect to the Hilbert–Schmidt

norm). Note that R is defined through the L2(µ)-inner product and therefore

R 6= P := (〈Ψλ, PΨλ′〉)λ,λ′ .

We need to match the scalar products to estimate P . Let G be the Gram operator with

corresponding sequence representation G = (〈Ψλ, GΨλ′〉)λ,λ′ . G is such that ∀u, v ∈ L2
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〈u,Gv〉 = 〈u, v〉µ. Therefore, defining u = (〈u,Ψλ〉)λ (and v similarly), we have that

〈u,Rv〉 = 〈u, Pv〉µ = 〈u,GPv〉 = 〈u,GPv〉 .

If we estimate G−1 we are thus able to estimate P. Following Gobet et al. [GHR04], we

define

(GJ)λ,λ′ := 〈Ψλ,Ψλ′〉µ for |λ| ≤ J, |λ′| ≤ J

and ĜJ as:

(
ĜJ

)
λ,λ′

=
1

n+ 1

n∑
i=0

Ψλ (Xi) Ψλ′ (Xi) for |λ| ≤ J, |λ′| ≤ J.

From here on, our approach differs from that in Gobet et al. [GHR04]. In their (self-

adjoint) setting, recovering the first non-trivial eigenpair is sufficient, as the drift and

volatility functions are identified in terms of this eigenpair and the invariant measure.

Since our objective is to estimate p and P we have to consider all singular triples instead.

By assumption A5 P is approximately low rank and hence RJ , the matrix of projected

coefficients of GP , is an approximately low rank matrix. For this reason we use the

usual scheme for estimating low rank matrices, see for instance [YELM07, Klo11, BSW11,

KLT11] and hard threshold the singular values of R̂J . This yields which singular triples

should be discarded in a data driven way.

We denote the SVD of R̂J by

R̂J =
∑

λ̂kûkv̂
T
k ,

where λ̂k denotes the k-th eigenvalue of R̂J and ûk and v̂k the corresponding singular

vectors. We define the spectral hard threshold estimator at level α, R̃J = R̃J(α) as,

R̃J :=
∑

λ̂k1
(
|λ̂k| > α

)
ûkv̂

T
k . (4.3)

Finally, we define the estimator for the action of P on VJ as

P̃J := Ĝ
−1
J R̃J . (4.4)

We have the relation

Pf(x) =
∑
λ

(Pf)λΨλ(x),

and hence we estimate P by P̃ which we define as

P̃ f(x) :=
∑
|λ|≤J

(P̃f)λΨλ(x). (4.5)
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This also yields an estimator for p by plug-in, given by

p̃(x, y) :=
∑

|λ|≤J, |λ′|≤J

(
P̃J

)
λ,λ′

Ψλ(x)Ψλ′(y). (4.6)

We finally choose for a constant C > 0 and for d·e denoting the ceiling function,

J =
⌈
log2(n

1
2s+d log(n)−

d
4s+2d )

⌉
and α = C

√
2Jd

n
, (4.7)

to obtain the theoretical results in Theorem 4.2.1 in the next section.

Remark 4.2.2 ( From P to Pτ ). In molecular dynamics it is often desired to obtain an

estimate for the transition operator,

Pτf(x) := E[f(Xτ )|X0 = x], f ∈ L2(µ),

and its transition density pτ , τ > 1, for example for simulating or visualizing the Markov

chain at a coarser timescale.

Given the estimator P̃ in (4.4) and τ ∈ N it is possible to obtain an estimator for pτ

as follows: if τ ≤ c log(n) we use the plug-in estimator (P̃)τ and the induced estimator

for pτ in (4.6) and we are able to obtain similar theoretical results as in our main result,

Theorem 4.2.1 (up to logarithmic factors).

If τ > C log(n) it suffices to estimate the invariant density µ as in this case all singular

values of Pτ except the first one are of smaller order than 1/n.

Remark 4.2.3 (Adaptivity). The correct choice of J depends on the smoothness parameter

s. In practice s is unknown, but one can use for instance Lepski’s method to adapt to

s. The proof that this works is a straightforward adaptation of results of Chorowski and

Trabs [CT16].

4.2.4 Convergence rates

We now give our main theoretical result for the estimator p̃ of the transition density p

constructed in (4.6). The upper bounds attained in L2-loss for estimating p match the

lower bounds and are therefore minimax optimal, showing that the logarithmic factors

are inherent in the information-geometric structure of the problem. Heuristically this

can be explained by the need to estimate approximately log(n)
d
2 singular triples with d-

dimensional rate for each triple.

Comparing our result to the standard Markov chain case without singular value decay

where the L2 minimax rates are n−
s

2s+2d (e.g. [Clé00, Lac08]), we see that the effect of

the dimension on the rate improves, up to the logarithmic factor, from 2d to d.
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Theorem 4.2.1. Suppose that we observe (Xi)0≤i≤n drawn from a stationary Markov

Chain with p ∈ M(s) for some s ≥ d. Then, for the estimator p̃ defined in (4.6) and a

constant C > 0 we have, for n sufficiently large enough, with probability at least

1− 12 exp

(
−n

d
2s+d log(n)−

d2

4s+2d

)
that

‖p− p̃‖L2 ≤ C log (n)
d
2

s
2s+d n−

s
2s+d . (4.8)

Moreover, the following minimax lower bound holds: for constants c, p0 > 0,

inf
p̂

sup
p∈M(s)

Pp
(
‖p− p̂‖L2 ≥ c log (n)

d
2

s
2s+d n−

s
2s+d

)
≥ p0 > 0. (4.9)

In addition, by isometry this implies the same upper and lower bounds for estimating P .

The proof of the upper bounds for p̃ in (4.8) is based on an application of concentration

inequalities for Markov chains by Jiang et al. [JSF18] , combined with an ε-net argument

to obtain tight bounds for the spectral norm rate of R̂J and an application of the general

theory for rank penalized estimators by Klopp[Klo11].

The lower bound (4.9) requires different arguments compared to the case without decay.

There an application of Assouad’s Lemma and flipping coefficients suffices [Clé00]. In-

stead, here we adapt an idea by Koltchinskii an Xia [KX15] to our nonparametric setting

by using projection matrices to infuse the low rank structure of P .

Additionally, the rank of P̃ in (4.4) is bounded by approximately log(n)
d
2 , implying

the same low rank structure for P̃ . This justifies the approach of practitioners such

as [CSP+07, CKL+08, KWNS18, SMP14] to dismiss most eigenpairs in their analysis.

Lemma 4.2.3. Under the conditions of Theorem 4.2.1, we have for the estimator P̃

given in (4.5), for some constant C > 0, that, on the same event of probability at least

1− 12 exp

(
−n

d
2s+d log(n)−

d2

4s+2d

)
on which (4.8) holds,

rank(P̃ ) ≤ C log(n)
d
2 . (4.10)

4.2.5 Numerical Experiments

In this section we illustrate our theoretical findings with simulated data from two diffu-

sion processes. We consider one-dimensional, real valued Ornstein-Uhlenbeck and Cox-

Ingersoll-Ross (CIR) processes.

Our theoretical findings are constrained to Markov chains with compact state space and

thus, strictly speaking, do not apply for those. However, due to their drift pushing both of

these processes close to the origin, all of our simulated observations where in fact bounded

by 1.5 and 2.5 for the Ornstein-Uhlenbeck and CIR processes respectively, effectively con-
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fining them to a compact set. Therefore we believe that the use of our methodology is

justified here.

The Ornstein-Uhlenbeck process is given by

dXt = −θXtdt+ σdWt, t ≥ 0 (4.11)

and the CIR process by,

dXt = −θ(Xt − µ)dt+ σ
√
XtdWt, t ≥ 0. (4.12)

In each case we generated observations at discrete time steps X0, X1, . . . , Xn. For the

Ornstein-Uhlenbeck process we simulated X0, X1, . . . , Xn exactly whereas we used the

Euler-Maruyama scheme with step size 0.005 to generate the CIR process. The transition

density of the Ornstein-Uhlenbeck process is the density of a Gaussian random variable

and given by,

p(x, y) =
1√

πσ2(1− e−2θ)/θ
e
θ(y−xe−θ)2

σ2(1−e−2θ) ,

whereas for the CIR process the transition density is the density of a non-central χ2-

distribution and can be expressed as,

p(x, y) =
β( yx)

ν
2 e

θν
2
−βye

−β(x+y)
eθ−1 Iν

(
β
√
xy

sinh(θ/2)

)
Γ(βµ)(1− e−θ)

,

where β = 2θσ−2, ν = βµ− 1, Γ denotes the Gamma function and Iν the modified Bessel

function of first kind with index ν.

108



4.2. Main results

x
y

p(x, y)

x
y

p(x, y)

x
y

p(x, y)

x
y

pJ(x, y)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.1: In clockwise order starting in the upper left corner: Transition-density p(x, y)
for the Ornstein-Uhlenbeck process (4.11) with parameters θ = 2, σ = 1 and plotted in
the region [−1.5, 1.5]2; transition density projected on the approximation space of the first
J = 7 trigonometric basis functions in each direction; non-thresholded estimator (i.e. p̃
with α = 0) p̂ for n = 500, X0 = 0.5 and J = 7; thresholded estimator p̃ with the same
settings and threshold level α = 0.1.

As basis functions, following Remark 1, we use the trigonometric basis on the interval

[c− b, c+ b], given by

Ψk(x) =


1√
2b

k = 0

1√
b

cos
(
π(x−c)k

2b

)
k = 2i, i ∈ N

1√
b

sin
(
π(x−c)(k+1)

2b

)
k = 2i− 1, i ∈ N.

For the Ornstein-Uhlenbeck process we choose c = 0 and b = 2 and for the CIR-process

c = b = 2. Moreover, we symmetrize the estimator R̂J as originally proposed by Gobet

et al. [GHR04], since one-dimensional diffusion processes are always reversible.

In the plots one can see that spectral hard thresholding eigenvalues reduces the noise

level and smoothes the estimated transition density. This allows to use a larger resolution

level than would be optimal for the non-thresholded estimator and thus to estimate finer

details of the transition densities.
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Figure 4.2: In clockwise order starting in the upper left corner: Transition-density p(x, y)
for the CIR process (4.12) with parameters θ = 1.2, σ = 1.1, µ = 0.8 and plotted in
the region [0.1, 3.1]2; transition density projected on the approximation space of the first
J = 8 trigonometric basis functions in each direction; non-thresholded estimator (i.e. p̃
with α = 0) p̂ for n = 1000, X0 = 1 and J = 8; thresholded estimator p̃ with the same
settings and threshold level α = 0.08.

4.3 Proofs

Throughout the results and proofs, the constants involved will be denoted by C and c;

we will not always keep track of them and they may change from equation to equation.

However one can check that they can be bounded by functions of constants defining the

model in A1-A7.

4.3.1 Upper bounds - proof of (4.8)

Decomposing the error term

We first decompose the error term and then bound each term separately. We have that

‖P̃J −P‖F ≤‖Ĝ
−1
J (R̃J −Rr,J‖F + ‖(Ĝ−1

J −G−1
J )Rr,J‖F

+‖G−1
J (Rr,J −RJ)‖F + ‖G−1

J RJ − P‖F

≤‖Ĝ−1
J ‖∞‖R̃J −RJ‖F + (‖G−1

J ‖∞ + ‖Ĝ−1
J ‖∞)‖Rr,J −RJ)‖F

+ r1/2‖(Ĝ−1
J −G−1

J )Rr,J‖∞ + ‖G−1
J RJ −P‖F

=:I + II + III + IV, (4.13)
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where Rr,J denotes a rank-r approximation of RJ with r to be chosen. We therefore have

to take care of 4 terms: Variance bounds in Frobenius norm (I), rank-r approximation error

(II), correction of the scalar product in spectral norm (III), and smoothness approximation

error (IV).

Bounding I - variance bounds in spectral and Frobenius norm

In this section we bound the first term ‖Ĝ−1
J ‖∞‖R̃J − RJ‖F . We will first obtain a

bound for ‖R̃J −RJ‖F . In our proof, we follow the usual line of arguments from the low

rank literature [Klo11, KLT11] and bound the spectral norm of R̂J −RJ . Moreover, we

also prove spectral norm bounds for ĜJ −GJ and (ĜJ −GJ)PJ , where PJ denotes the

restriction of P to VJ .

Lemma 4.3.1. Assume 23Jd ≤ cn for some small enough constant c > 0. Then for

constants C,C ′, C ′′ > 0 we have that

P

(∥∥∥R̂J −RJ

∥∥∥
∞
≤ C

√
2Jd

n

)
≥ 1− 4 exp

(
−2Jd

)
, (4.14)

P

(∥∥∥ĜJ −GJ

∥∥∥
∞
≤ C ′

√
22Jd

n

)
≥ 1− 4 exp

(
−2Jd

)
, (4.15)

P

(∥∥∥(ĜJ −GJ)PJ

∥∥∥
∞
≤ C ′′

√
2Jd

n

)
≥ 1− 4 exp

(
−2Jd

)
. (4.16)

Proof. We only prove (4.14) as the two other bounds follow from the same argument,

appealing to the bounds (4.34) and (4.35), respectively, instead.

We use an ε-net argument, arguing exactly as in the proof of Lemma 1.1 in Candès and

Plan [CP11]. Indeed, arguing as in [CP11] we have, since VJ has dimension C2Jd, that

there exists a 1
4 -net D 1

4
of the unit sphere in VJ for Euclidean distance of cardinality less

than 9C2Jd .

Now let v and u with ‖u‖2 = ‖v‖2 = 1 such that
∥∥∥R̂J −RJ

∥∥∥
∞

= vT (R̂J −RJ)u and u0

and v0 contained in D 1
4

such that ‖u− u0‖2 ≤ 1/4, ‖v− v0‖2 ≤ 1/4. We obtain that

∥∥∥R̂J −RJ

∥∥∥
∞

=〈v0, (R̂J −RJ)u0〉+ 〈v− v0, (R̂J −RJ)u〉+ 〈v0, (R̂J −RJ)(u− u0)〉

≤1

2

∥∥∥R̂J −RJ

∥∥∥
∞

+ 〈v0, (R̂J −RJ)u0〉

and hence it suffices to bound vT
(
R̂J −RJ

)
u on D 1

4
. Generalizing formula (24) in

Lemma 19 in Nickl and Söhl [NS17] by using a Bernstein inequality for non reversible

Markov chains by Jiang et al. [JSF18] we obtain Lemma 4.4.1 which can be found in the
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appendix. Applying Lemma 4.4.1 and using a union bound we obtain,

P

(∥∥∥(R̂J −RJ

)∥∥∥
∞
> 2C

√
2Jd

n
x

)

≤P

(
max

u0,v0∈D 1
4

〈v0, (R̂J −RJ)u0〉 > C

√
2Jd

n
x

)
≤ 4 · 9C2Jd

(
e−2Jdx

)
.

Applying this with x = 1 + C ln (9) finishes the proof of the Lemma.

Throughout the rest of the proof we will work on the event

Ω :=

{∥∥∥R̂J −RJ

∥∥∥
∞
≤ C

√
2Jd

n
,
∥∥∥ĜJ −GJ

∥∥∥
∞
≤ C ′

√
22Jd

n
,

∥∥∥(ĜJ −GJ)PJ

∥∥∥
∞
≤ C ′′

√
2Jd

n

}
(4.17)

which happens by Lemma 4.3.1 with probability at least 1− 12e−2Jd .

We now prove Frobenius norm bounds by applying Theorem 2 (iii) by Klopp [Klo11]. For

completeness, we briefly present her proof below.

As noted by Bunea et. al. [BSW11] the hard threshold estimator (4.3) is the solution of

the rank penalized problem

R̃J = arg min
S∈VJ×VJ

‖R̂J − S‖2F + α2rank(S). (4.18)

We suppose that α is such that α ≥ 2C
√

2Jd/n. Since R̃J is the minimizer of (4.18) the

first inequality holds for any S and afterwards we use that 〈A,B〉 ≤ rank(A)‖A‖F ‖B‖∞
and that 2ab ≤ a2 + b2 to obtain that

‖R̃J −RJ‖2F ≤ ‖S−RJ‖2F + 2〈R̂J −RJ , R̃J − S〉+ α2(rank(S)− rank(R̃J))

≤‖S−RJ‖2F + α

√
rank(R̃J) + rank(S)‖R̃J − S‖F + α2(rank(S)− rank(R̃J))

≤‖S−RJ‖2F + α

√
rank(R̃J) + rank(S)‖R̃J −RJ‖F

+ ‖S−RJ‖2F + α

√
rank(R̃J) + rank(S)‖RJ − S‖F + α2(rank(S)− rank(R̃J))

≤3

2
‖S−RJ‖2F +

1

2
‖R̃J −RJ‖2F + 4α2rank(S).

Summarizing, rearranging terms, we have that on Ω

I = ‖Ĝ−1
J ‖∞

∥∥ŘJ −RJ

∥∥2

F
. ‖Ĝ−1

J ‖∞ inf
S∈VJ×VJ

(
‖S−RJ‖2F + α2rank (S)

)
≤ ‖Ĝ−1

J ‖∞
(
‖Rr,J −RJ‖2F + rα2

)
(4.19)
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We now find the adequate Rr,J in (4.19) .

Bounding II - low rank approximation error

By construction of the extension of operators on VJ as operators in the sequence space

we have that, RJ = πλJGPπλJ , where πλJ is the orthogonal projection on VJ with respect

to the Euclidean scalar product.

For any rank r approximation Pr of P , Rr,J := πλJGPrπ
λ
J is a rank r approximation of

RJ and fulfills ‖Rr,J −RJ‖F . ‖Pr − P‖F . We define the rank r approximation of P as

follows:

Prf :=

r−1∑
k=0

λk 〈uk, f〉µ vk for f ∈ L2(µ). (4.20)

This provides a sequence of approximations Rr,J of RJ satisfying

‖Rr,J −RJ‖2F .
∑
k≥r

λ2
k. (4.21)

We recall that by assumption A5 λk ≤ C3 exp
(
−C4k

2/d
)
. Denote by d·e the ceiling

function and set

r :=

⌈
C log

(
1

α

) d
2

⌉
+ 2 (4.22)

for C > 0 large enough. With this choice we obtain that

‖Rr,J −RJ‖2F .
∑
k≥r

λ2
k .
ˆ ∞

2
√

log 1
α

xd−1 exp

(
−x

2

2

)
dx. (4.23)

If d ≥ 3, we use integration by parts

Fd (y) :=

ˆ ∞
y

xd−1 exp

(
−x

2

2

)
dx = yd−2 exp

(
−y

2

2

)
+ (d− 1)

ˆ ∞
y

xd−3 exp

(
−x

2

2

)
dx

= yd−2 exp

(
−y

2

2

)
+ (d− 1)Fd−2 (y) ,

and it remains to bound Fd for d = 2 and d = 1. For y ≥ 1 we have that F1(y) ≤ F2(y) =

exp(−y2/2) and therefore we obtain overall that

‖Rr,J −RJ‖2F .
(

log
1

α

) d
2

α2. (4.24)

Since rank(Rr,J) = r, (4.19) implies that on Ω

∥∥∥R̃J −RJ

∥∥∥2

F
. α2

(
log

1

α

) d
2

.
2Jd

n
(log n)

d
2 . (4.25)
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Bounding III - correction of the scalar product

In this section we bound the third term, r1/2‖(Ĝ−1
J −G−1

J )Rr,J‖∞, in the decomposition

(4.13). Moreover, we first prove that ‖Ĝ−1
J ‖∞ . 1 on Ω.

The fact that the invariant density is bounded away from 0 implies that inf‖u‖2=1 ‖GJu‖2 ≥
c, which proves that GJ has bounded inverse in spectral norm. On the event{∥∥∥ĜJ −GJ

∥∥∥
∞
≤ c/2

}
⊃ Ω,

we have by Lidski’s inequality that

∀u ∈ VJ ,
∥∥∥ĜJu

∥∥∥
2
≥ ‖GJu‖2 −

∥∥∥GJ − ĜJ

∥∥∥
∞
‖u‖2 .

Therefore, for any u ∈ VJ we have that∥∥∥ĜJu
∥∥∥

2
≥ c

2
‖u‖2 ,

implying that on Ω

‖Ĝ−1
J ‖∞ . 1. (4.26)

Moreover, due to the bounds (4.16) and (4.25), we obtain that

‖(Ĝ−1
J −G−1

J )Rr,J‖∞

.‖Ĝ−1
J −G−1

J ‖∞‖Rr,J −RJ‖F + ‖(Ĝ−1
J −G−1

J )RJ‖∞

.‖ĜJ −GJ‖∞‖Rr,J −RJ‖F + ‖(Ĝ−1
J −G−1

J )RJ‖∞
.‖ĜJ −GJ‖∞

(
‖Rr,J −RJ‖F + ‖G−1

J RJ −PJ‖F
)

+ ‖(ĜJ −GJ)PJ‖∞

.

√
22Jd

n
·

(√
2Jd

n
log(n)

d
4 + IV

)
+

√
2Jd

n
.

Bounding IV - bias bounds

It is left to bound the term IV in (4.13).

Let πλJ and πµJ be the orthogonal projectors on V J for the λ and µ scalar products

respectively. [GHR04] remarks that the non-zero eigenpairs of πµJPπλJ and G−1
J RJ are

identical. We quickly prove this here for completeness.

Lemma 4.3.2. We have the equality

πµJ = (πλJGπ
λ
J)−1πλJG

which implies that

G−1
J RJ =

(
πλJGπ

λ
J

)−1
πλJRπ

λ
J = πµJPπ

λ
J . (4.27)
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Indeed, πµJ minimizes

‖G1/2(I − πµJπ
λ
J)‖2F ,

leading to the normal equation

πλJG(I − πλJπ
µ
J ) = 0 =⇒ πλJGπ

λ
Jπ

µ
J = πλJG

=⇒ πµJ = (πλJGπ
λ
J)−1πλJG.

Using this identity, we establish the bias bounds.

Lemma 4.3.3. The bias satisfies :

∥∥G−1
J RJ −P

∥∥
F
. 2−Js. (4.28)

Proof. Note that (I − πµJ ) = (I − πµJ )(I − πλJ) and that ‖I − πµJ‖∞ . 1 arguing as in the

proof of Lemma 4.4. in [GHR04]: indeed, by our assumptions on µ we have that

‖πµJ‖∞ = sup
f,g∈L2: ‖f‖L2=‖g‖L2=1

〈f, πµJg〉

≤ ‖µ−1‖L∞‖µ‖L∞ sup
f,g∈L2(µ) ‖f‖L2(µ)=‖g‖L2(µ)=1

〈f, πµJg〉µ . 1.

Therefore, we obtain that

∥∥G−1
J RJ −P

∥∥
F

= ‖πµJPπ
λ
J − P‖F ≤ ‖(I − π

µ
J )P‖F + ‖P (I − πλJ)‖F

. ‖(I − πλJ)P‖F + ‖P (I − πλJ)‖F .

Since the L2(µ) and the L2 norm are equivalent due to µ being bounded from above and

below the induced Hilbert-Schmidt (Frobenius) norms are also equivalent. Particularly,

this implies that for any operator A acting on L2(µ) the inequality ‖A‖2F .
∑

k ‖Auk‖2L2(µ)

holds, where {uk} is the basis of L2(µ)-orthonormal right singular functions of P . Hence,

we obtain that

‖(I − πλJ)P‖2F .
∑
k

‖(I − πλJ)Puk‖2L2(µ) =
∑
k

λ2
k‖(I − πλJ)vk‖2L2(µ)

.
∑
k

λ2
k‖vk‖2Hs2−2Js . 2−2Js,

where we used Jackson’s inequality. Finally, we bound

‖P (I − πλJ)‖2F =
∑

Ψλ /∈VJ

‖PΨλ‖2L2
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.
∑

Ψλ /∈VJ

‖
∑
k

λkvk〈uk,Ψλ〉µ‖2L2(µ)

=
∑
k

λ2
k‖(I − πλJ)(µuk)‖2L2 . 2−2Js

where we used Jackson’s inequality and that for s > d/2 Hs is a Banach algebra.

Rates of convergence for P̃

Taking all the above bounds together we obtain on the event Ω which happens with

probability at least 1− 12e−2Jd that

‖P̃−P‖F .

(
log(n)

d
4

√
2Jd

n
+ 2−Js

)(
1 +

√
22Jd

n
log(n)

d
4

)
(4.29)

and hence, choosing the optimal resolution level from (4.7) and since s > d/2, we obtain

that with probability at least 1− 12 exp

(
−n

d
2s+d log(n)−

d2

4s+2d

)
∥∥∥P− P̃

∥∥∥
F
. log (n)

d
2

s
2s+d n−

s
2s+d . (4.30)

The identification between P and P is isometric, and therefore, this proves the rates for

estimation of P . By Lemma 4.2.2 the correspondence between P and p is also isomet-

ric, and thus the estimator p̃ achieves the same L2-rates as in (4.30) on the same high

probability event. This ends the proof of (4.8) in Theorem 4.2.1. �

4.3.2 Proof of Lemma 4.2.3

We have that rank(P̃ ) = rank(P̃) ≤ rank(R̃J) =: r̃. Moreover, since R̃J is a hard

thresholding estimator, we have, by Lidski’s inequality and denoting by λk(RJ) the k-th

singular value of RJ that

r̃ ≥ k =⇒ λk(RJ) + ‖RJ − R̂J‖∞ > 2C

√
2Jd

n
.

On the other hand, on Ω we have that ‖RJ − R̂J‖∞ ≤ C
√

2Jd/n. Finally, note that as

in (4.23) we have that for some small enough c > 0

λk(RJ)2 .
∑
l≥k

λ2
l . exp(−ck

2
d ).

Hence, for k = C ′ log(n)
d
2 for some C ′ > 0 large enough, we have that

λk(RJ) ≤ C
√

2Jd

n
.
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Thus, λk(R̂J) and the preceding singular values are set to 0 by the hard thresholding

procedure, implying that r̃ . log(n)
d
2 . �

4.3.3 Lower bounds - proof of (4.9)

In this section, we prove the minimax lower bounds showing that the rates attained by

our estimator are optimal.

We first construct a sufficiently rich sub-set M ⊂M(s) of transition densities. Let π0 be

the λ-orthogonal projector onto constants. Let (Ψλ)λ be a s-regular orthonormal periodic

wavelet family with at least one vanishing moment and compactly supported. Let (NJ)

be for each J a maximal subset of wavelets of resolution J such that two different wavelets

in RJ have disjoint support. We have that |NJ | ≥ c2Jd. Let WJ = span (Ψ ∈ NJ).

Let Gk,J denote the set of all k-dimensional subspaces of WJ . For every element S ∈ Gk,J ,

we denote πS the orthogonal projector from L2 to S, and define PS = π0 + ηεnπS , with

εn = (log n)−
d
4

d
2s+d n−

s
2s+d

and for η > 0 a constant. The following lemma shows that these PS are contained in

M(s) for an appropriate choice of k and J :

Lemma 4.3.4. Choose k and J such that

ck
2

(− log εn)
d
2 ≤ k ≤ ck (− log εn)

d
2

cJ
2

log(n)−
d
2

1
2s+dn1/(2s+d) ≤ 2J ≤ cJ log(n)−

d
2

1
2s+dn1/(2s+d).

Then for any choice of constants defining M(s) such that M(s) 6= ∅, we can choose

positive constants cε, ck and cJ , such that for n large enough ∀S ∈ Gk,J PS is contained

in M(s).

Proof. We carefully check that A1-A7 are fulfilled.

We first check A1-A4 together. Let b = (fi)1≤i≤k be an orthonormal basis of S. Complete

it into b = (fi)1≤i≤|NJ | an orthonormal basis of WJ and let fi,λ = 〈fi,Ψλ〉 be the change

of coordinate matrix between (Ψλ)λ∈RJ and b. Then

pS (x, y) =1 + εnη
k∑
i=1

∑
λ∈RJ

∑
λ′∈RJ

fi,λΨλ (x) fi,λ′Ψλ′ (y)

Note that this formula implies that λ is the invariant measure and thus A1−A3 once we

have proved that pS defines a probability density. Since the Ψλ have disjoint support,

1− Cη2Jdεn ≤ pS (x, y) ≤ 1 + Cη2Jdεn.
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Since s ≥ d 2Jdεn goes to 0 as n grows, implying that for any c > 0, for n large enough,

0 < 1−c ≤ pS (x, y) ≤ 1+c. Moreover, p integrates to 1 and hence p is indeed a probability

density and A1-A4 follow. Moreover, by definition of PS the first eigenvalue is 1, the

next k eigenvalues are ηεn and the remaining eigenvalues are zero. With our choices of k

and εn we thus obtain A5. Likewise A6 is fulfilled as the spectral gap is precisely 1− ηεn
which can be made arbitrary close to one. Finally, by the relation ‖fi‖Hs ≤ C2Js‖fi‖L2

which holds for arbitrary fi ∈ WJ (see equation 4.166 and following in chapter 4.3.6 in

[GN16]) we obtain that ∑
k

λ2
k ‖ek‖

2
Hs
≤ 1 + Ckη2ε2

n22Js ≤ C

for n large enough and thus A7 holds.

We now choose a maximal subset M of Gk,J such that for any two projections in M ,

denoted by S1 and S2 we have that,

‖pS1 − pS2‖L2 = ‖PS1 − PS2‖F ≥ c0εn
√
k (4.31)

for a constant c0 > 0. By Proposition 8 in [Paj98] we have for some universal constants

c, C > 0 that, (
c

c0

)k(|RJ |−k)

≤ |M | ≤
(
C

c0

)k(|RJ |−k)

. (4.32)

We finally add the element p0 = 1 to M .

We now apply Theorem 2.5 in [Tsy08] and check that its conditions are fulfilled for our

choices of k and εn. For pS ∈ M denote by PnS the probability measure for the Markov

chain (X0, . . . , Xn) with transition density pS and invariant measure 1. We first show

that we can control the Kullback–Leibler divergence K(PnS ,Pn0 ) defined for two probabil-

ity measures P and Q with densities dP and dQ respectively as,

K(P,Q) :=


´
Td log

(
dP(x)
dQ(x)

)
dP(x) P is absolutely continous with respect to Q

∞ else

by the squared L2 norm of pS − p0

K (PnS ,Pn0 ) ≤ n ‖pS − p0‖2L2 .

Indeed,

K (PnS ,Pn0 ) =EPnS

[
log

(
dPnS (X0, X1, . . . , Xn)

dPn0 (X0, X1, . . . , Xn)

)]
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=EPnS

[
log

(
pS (X0, X1) . . . pS (Xn−1, Xn)

p0 (X0, X1) . . . p0 (Xn−1, Xn)

)]
=nEP1

S

[
log

(
pS (X0, X1)

p0 (X0, X1)

)]
.

Further evaluating the last equation we find,

EP1
S

[
log

(
pS (X0, X1)

p0 (X0, X1)

)]
=

ˆ
x

ˆ
y

log (pS (x, y)) pS (x, y) dxdy.

We can decompose pS = 1 + εnHb. Then, since log (1 + εnHb) ≤ εnHb, we have that

EP1
S

[
log

(
pS (X0, X1)

p0 (X0, X1)

)]
≤
ˆ
x

ˆ
y
εnHb (x, y) (1 + εnHb (x, y)) dxdy

=

ˆ
x

ˆ
y
ε2
nHb (x, y)2 dxdy

= ‖p0 − pS‖2L2 = η2ε2
n‖πS‖2F = η2ε2

nk

Thus, ordering the elements pS ∈ M from 0 to |M | with p0 = 1 and denoting by Pni the

respective probability measure for the chain (X0, . . . , Xn), we obtain that

1

|M |

|M |∑
j=1

K
(
Pnj ,Pn0

)
≤ nη2ε2

nk.

The bound (4.32) on |M | and our choices of k and J described in Lemma 4.3.4 then imply

nη2ε2
nk ≤ αCk2Jd ≤ k

(
2Jd − k)

)
log(

c

c0
) ≤ log |M | ,

by choosing η small enough. Thus, using also (4.31), all conditions of Theorem 2.5 in

[Tsy08] are met and we obtain (4.9). Moreover, by isometry the same lower bound holds

for P . �

4.4 Appendix

4.4.1 Proof of Lemma 4.2.1

The condition σ−2b = ∇B for some B ∈ C2 implies, by Theorem 4.2 in [Ken78], that the

chain Xt is reversible with invariant measure satisfying µ ∝ eB. This identity and the

bounds on the Cs−1 norms of b and σ−2 imply µ ∈ Hs and that c ≤ µ ≤ C for constants

c, C > 0. Moreover, irreducibility and aperiodicity follow by the upper and lower bounds

on p below and thus A1−A3 are fulfilled. Assumption A4 follows by estimates for the

heat kernel, see e.g. Theorem 1.1 in [Nor97] and by noting that
∑

x′=x+Zd Ce
−c‖x′−y‖22

is summable for every x, y ∈ Td. Also note that these estimates yield p(x, y) > c > 0
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uniformly for x, y ∈ Td.
Assumption A5 is implied by Weyl’s law for elliptic operators with non-smooth coefficients

on closed manifolds, Theorem 3.1. in [Ivr00]. Particularly, A5 follows by inverting formula

(3.4) in [Ivr00] applied to the operator L̃ = G−1/2LG1/2 where L is the infinitesimal

generator L

L =
σ(x)

2

d∑
i=1

∂2

∂2xi
+

d∑
i=1

bi(x)
∂

∂xi

(with m = 1 there) and by noting that the L2(µ)-eigenvalues of L equal the L2(λ)-

eigenvalues of L̃ and that the L2(µ)-eigenvalues of P equal the exponentiated L2(µ)-

eigenvalues of L.

A6 follows from arguing as [Abr18] in the proof of Theorem 6, using exercise 7 on p. 493

in [BW09] instead of the cited Lemma 2.3 there and the lower bound on p from above.

We now show that assumption A7 is fulfilled. Adapting Lemma 11 in [NR19] to our

situation with non-constant but scalar σ is straightforward and we obtain that there

exists a C = C(‖σ−2‖Cs−1 , ‖b‖Cs−2) > 0 such that for all f ∈ L2 with E [f (X0)] = 0 we

have for t ≤ s that

∥∥L−1(f)
∥∥
Ht ≤ C ‖f‖Ht−2 ,

∥∥(L∗)−1(f)
∥∥
Ht ≤ C ‖f‖Ht−2

where L−1(f) denotes the solution u to the inhomogeneous p.d.e. Lu = f . Since P and

L are self-adjoint the left and right singular functions coincide, are called eigenfunctions,

and we denote them by ek. Since 〈ek, 1〉µ = 0 for k > 0 we can use this repeatedly for the

eigenfunctions ek which fulfill L−1ek = log(λk)ek. This implies that

‖ek‖Hs . |log λk|ds/2e ‖ek‖L2 . |log λk|ds/2e . k
s+2
d ,

where the last inequality follows by using Weyl’s law again. Therefore we obtain that,

∑
k

λ2
k‖ek‖2Hs .

∑
k

k
2s+4
d e−ck

2
d . 1

and A7 follows.

4.4.2 Lemma 4.4.1

Lemma 4.4.1. Assume 23Jd ≤ n and that κn2−3Jd ≥ x ≥ 1 for some constant κ > 1.

Then for constants C = C(κ), C ′ = C ′(κ) and C ′′ = C ′′(κ) and ∀u, v ∈ VJ with ‖u‖L2 =

‖v‖L2 = 1 the three following bounds hold:

P

(
vT
(
R̂J −RJ

)
u > C

√
2Jd

n
x

)
≤ 2e−2Jdx (4.33)
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P

(
vT
(
ĜJ −GJ

)
u > C ′

√
22Jd

n
x

)
≤ 2e−2Jdx (4.34)

P

(
vT
(
ĜJ −GJ

)
PJu > C ′′

√
2Jd

n
x

)
≤ 2e−2Jdx. (4.35)

In each case the proof is an application of the Bernstein type inequality in Theorem

1.1 by Jiang et al. [JSF18]. Also note that the proof is similar to the proof of Lemma 19

in Nickl and Söhl [NS17] but that they use a different concentration inequality. We prove

(4.33) carefully and only sketch the proofs of the remaining two inequalities as they follow

along the same line of argumentation.

Without loss of generality assume that n is even. We use the identity

vT
(
R̂J −RJ

)
u =

1

n

n−1∑
i=0

(v (Xi)u (Xi+1)− E [v (X0)u (X1)])

=
1

n

n/2−1∑
i=0

(v (X2i)u (X2i+1)− E [v (X0)u (X1)])

+
1

n

n/2−2∑
i=0

(v (X2i+1)u (X2i+2)− E [v (X0)u (X1)])

where v(x) =
∑

λ vλΨλ(x) and u is defined likewise. We only treat the first term in the

equation above as the second one can be bounded with the same arguments. By Lemma

24 in [NS17] the invariant density of the chain (X2i, X2i+1)i∈N0 is

µ2(x1, x2) = µ(x)p(x, y).

Moreover, denoting by P2 the transition operator of (X2i, X2i+1)i∈N0 , we can bound its ab-

solute spectral gap by the absolute spectral gap of the original chain (Xi)i∈N0 by applying

Lemma 24 in [NS17], i.e. for any f ∈ L2(µ2), 〈f, 1〉µ2 = 0, we have that

‖P2f‖L2(µ2) ≤ λ1‖f‖L2(µ2).

We upper bound the variance

Vv,u : = ‖v (x)u (y)− E [v (X0)u (X1)]‖2L2(µ2)

≤
ˆ
v(x)2u(y)2µ(x)p(x, y)dxdy ≤ ‖µ‖L∞‖p‖L∞ ≤ C

for some constant C > 0. Next we bound

‖v (x)u (y)− E [v (X0)u (X1)]‖L∞ ≤ 2 ‖v (x)u (y)‖L∞
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≤ C ′2Jd.

We now apply Theorem 1.1 by [JSF18] (with ε = x
√

2Jd

n for some constant
√
n2−3Jd/2 ≥

x ≥ 1, σ2 ≤ C and c = C ′2Jd there) to obtain overall that for some constants τ, τ ′ > 0

P

(
vT
(
R̂J −RJ

)
u > x

√
2Jd

n

)
≤ exp

 −x22Jd

τ + τ ′ x23Jd/2√
n

 .

Using also the assumption 23Jd ≤ n this yields for another constant τ ′′ > 0 that

P

(
vT
(
R̂J −RJ

)
u > xτ ′′

√
2Jd

n

)
≤ exp

(
−x2Jd

)
.

For the proof of (4.34) note that we have the equality

vT
(
ĜJ −GJ

)
u =

1

n+ 1

n∑
i=0

v(Xi)u(Xi)− Ev(X0)u(X0).

Hence, it remains to bound the variance and obtain a pointwise bound. We have that

‖v(x)u(x)− Ev(X0)u(X0)‖2L2(µ) ≤
ˆ
v(x)2u(x)2µ(x)dx . 2Jd

and

‖v(x)u(x)− Ev(X0)u(X0)‖L∞ . 2Jd.

For the proof of (4.35) we argue as before, this time working with the equality

vT
(
ĜJ −GJ

)
PJu =

1

n+ 1

n∑
i=0

v(Xi)ũ(Xi)− Ev(X0)ũ(X0),

where ũ = PJu. As above it remains to bound the variance and obtain a pointwise bound.

In this case we have that

‖v(x)ũ(x)− Ev(X0)ũ(X0)‖2L2(µ) ≤
ˆ
v(x)2ũ(x)2µ(x)dx . ‖ũ(x)‖L∞ .

Moreover, denoting by pJ the L2-projection of p to VJ×VJ , we have by Young’s convolution

inequality

‖ũ‖L∞ = ‖
ˆ
pJ(·, y)u(y)dy‖L∞ ≤ ‖u‖L2‖pJ‖L2 . 1
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Thus, we obtain that

‖v(X0)ũ(X0)− Ev(X0)ũ(X0)‖L∞ . 2Jd/2.

4.4.3 Proof of Lemma 4.2.2

We split this proof in two parts: we first show the mapping is an isometry from Hilbert–

Schmidt operators to its image endowed with the L2 × L2 norm, and then prove that its

sends the transition operators into their respective transition probabilities.

Lemma 4.4.2. The following function

T : Aλ,λ′ →

x, y →∑
λ,λ′

〈Ψλ, AΨλ′〉L2(λ) Ψλ (x) Ψλ′ (y)


is an isometry from the space of Hilbert–Schmidt operators on L2 endowed with the Hilbert–

Schmidt norm to a subset of L2 × L2.

Proof. We first assume that a finite number of Aλ,λ′ are non-zero; this ensures that we

work with proper functions and justifies exchanging summation and integration. The

general case follows using a density argument. For A with a finite number of non-zero

coefficients we have that,

‖T (A)‖2L2 =

ˆ ∑
λ1,λ2,λ3,λ4

Aλ1,λ2Aλ3,λ4Ψλ1 (x) Ψλ3 (x) Ψλ2 (y) Ψλ4 (y) dxdy

=
∑

λ1,λ2,λ3,λ4

Aλ1,λ2Aλ3,λ4δλ1,λ3δλ2,λ4 =
∑
λ1,λ2

A2
λ1,λ2 = ‖A‖2F .

Lemma 4.4.3. The function

T : Aλ,λ′ →

x, y →∑
λ,λ′

Aλ,λ′Ψλ (x) Ψλ′ (y)


sends a transition operator P into its transition density p.

Proof. We show that PT, the transition operator for the kernel T (P ), equals P . We have
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for any f, g ∈ L2 that

〈g, PTf〉 =

ˆ
x
g (x) (PTf) (x) dx

=

ˆ
x

ˆ
y

∑
λ,λ′

g (x) Ψλ (x)Pλ,λ′Ψλ′ (y) f (y) dydx

=
∑
λ,λ′

〈Ψλ, g〉Pλ,λ′ 〈Ψλ′ , f〉 = 〈g, Pf〉 .
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Z. für Wahrscheinlichkeitstheorie und Verw. Geb., 65(2):181–237, 1983. (Cited on

page 18).
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[BM07] L. Birgé and P. Massart. Minimal Penalties for Gaussian Model Selection. Probab.

Theory Related Fields, 138(1-2):33–73, 2007. (Cited on pages 10 and 13).

[BLWY06] P. Biswas, T. Liang, T. Wang, and Y. Ye. Semidefinite programming based al-

gorithms for sensor network localization. ACM Trans. Sen. Netw., 2(2):188–220,

2006. (Cited on page 27).

[BBZ07] G. Blanchard, O. Bousquet, and L. Zwald. Statistical properties of kernel princi-

pal component analysis. Mach Learn, 66(2-3):259–294, 2007. (Cited on pages 22

and 57).

127



BIBLIOGRAPHY

[BHR18a] G. Blanchard, M. Hoffmann, and M. Reiß. Early stopping for statistical inverse

problems via truncated SVD estimation. Electron. J. Stat., 12(2):3204–3231, 2018.

(Cited on page 9).

[BHR18b] G. Blanchard, M. Hoffmann, and M. Reiß. Optimal adaptation for early stopping

in statistical inverse problems. SIAM-ASA J UNCERTAIN, 6(3):1043–1075, 2018.

(Cited on page 9).

[BKYY16] A. Bloemendal, A. Knowles, H.-T. Yau, and J. Yin. On the principal components

of sample covariance matrices. Probab. Theory Related Fields, 164(1-2):459–552,

2016. (Cited on page 68).

[BLM13] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities. Oxford Uni-

versity Press, 2013. (Cited on page 48).

[BT15] S. Boucheron and M. Thomas. Tail index estimation, concentration and adaptivity.

Electron. J. Statist., 9:2751–2792, 2015. (Cited on page 10).

[Bre01] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001. (Cited on page 8).

[BCLZ02] L.D. Brown, T.T. Cai, M.G. Low, and C-H. Zhang. Asymptotic equivalence theory

for nonparametric regression with random design. Ann. Statist., 30(3):688–707,

2002. (Cited on page 5).

[BCLZ04] L.D. Brown, A.V. Carter, M.G. Low, and C-H. Zhang. Equivalence theory for

density estimation, Poisson processes and Gaussian white noise with drift. Ann.

Statist., 32(5):2074–2097, 2004. (Cited on page 5).

[BL96] L.D. Brown and M.G. Low. Asymptotic equivalence of nonparametric regression

and white noise. Ann. Statist., 24(6):2384–2398, 1996. (Cited on pages 5 and 19).
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[GN08a] E. Giné and R. Nickl. A simple adaptive estimator of the integrated square of a

density. Bernoulli, 14(1):47–61, 2008. (Cited on page 14).
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[JvdG15] J. Janková and S. van de Geer. Confidence intervals for high-dimensional inverse co-

variance estimation. Electron. J. Statist., 9(1):1205–1229, 2015. (Cited on page 15).
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