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1. INTRODUCTION

Stochastic models play a crucial role in elucidating many
areas of the natural and engineering sciences. Indeed,
mathematical models of stochastic phenomena are widely
used in many branches of physics (Van Kampen, 2007), en-
gineering (Åström, 1970; Lindquist and Picci, 2015), eco-
nomics (Dupačová et al., 2002), and biology (Wilkinson,
2011). Their importance relies on the fact that many—if
not any—physical phenomena are unavoidably corrupted
by “noise”. This inherent source of stochasticity sometimes
can not be neglected in the mathematical modelling pro-
cedure, in the sense that it represents an essential part
of the model. In this paper, we address the problem of
modelling stochastic phenomena from an open systems
viewpoint. A system is open if it can interact with its
external environment by means of some “unmodelled”
features. As opposed to closed systems, open systems are
amenable to interconnection. The term interconnection
here is intended in the most general sense, i.e. as variable
sharing between systems (Willems, 2007). In this setting,
a theory of open systems is de facto a theory of intercon-
nected systems. When dealing with deterministic linear
time-invariant (LTI, for short) systems, an elegant and
mature theory of open systems is provided by the theory
of behaviors (Willems and Polderman, 1997). Recently, a
generalization of the latter theory to a stochastic frame-
work has been proposed in Willems (2013). In that paper
the emphasis is put on static stochastic systems.

Building on Willems (2013), in this paper, we present
an extension of the notion of open stochastic system to
the dynamical case. We then specialize it to the case of
LTI discrete-time processes. In particular, we analyze: (i)

? Sponsor and financial support acknowledgment goes here.

a representation of such processes in terms of a linear
model, (ii) in what sense and under which conditions these
processes can be interconnected, and (iii) the invariance
properties inherited by these processes. With reference to
the latter point, a new invariance property in the space
of rational multivariate discrete-time spectral densities is
discussed.

Paper structure. The rest of the paper is organized as
follows. After reviewing in §2 some results of behavioral
theory, in §3 we introduce the definition of stochastic
process in a behavioral flavor. In §4 we focus on the linear-
time invariant case. §5 is devoted to present and analyze
interconnection between LTI processes. In §6 we study the
invariance properties of LTI processes. Finally, §7 collects
some concluding remarks and future research directions.

Notation. Throughout the paper, we denote by Z, R, and
C the set of integer, real, and complex numbers, respec-
tively. Given a set A, Ac will denote the complement of A
w.r.t. A, while ∅ the empty set. We let Rn×m denote the
set of real-valued n×m matrices and A> ∈ Rm×n denote
the transpose of A ∈ Rn×m. The symbols R[z, z−1]n×m

and R(z)n×m stand for the set of n × m Laurent poly-
nomial matrices and the set of n × m rational matrices
with real coefficients in the indeterminate z, respectively.
The normal rank of a rational matrix A(z) ∈ R(z)n×m is
defined as the rank of A(z) almost everywhere in z ∈ C
and will be denoted by rk(A). Given A(z) ∈ R(z)n×m,
we let A∗(z) := A>(1/z) and, for square A(z)’s of full
normal rank, A−∗(z) := [A>(1/z)]−1. We recall that a
Laurent unimodular matrix is a square Laurent polyno-
mial matrix whose inverse is also Laurent polynomial or,
equivalently, whose determinant is a non-zero monomial
λzk, λ ∈ R \ {0}, k ∈ Z. We denote by U[z, z−1]n×n

the group of n-dimensional Laurent unimodular matrices



and by S+(T)n×n the set of n×n matrix-valued functions
which are positive definite on the unit circle T := {z ∈ C :
|z| = 1}, i.e. n×n discrete-time coercive spectral densities.
Sn×nrat ⊂ S+(T)n×n will denote the set of n × n rational
discrete-time coercive spectral densities. Finally, we shall
suppose the reader to be acquainted with some elementary
notions of probability theory, e.g. the definitions of σ-
algebra, (smallest) σ-algebra generated by a collection of
sets, Borel σ-algebra, probability measure; notions that
can be found in any standard textbook of probability or
measure theory, e.g. Billingsley (1986).

2. BACKGROUND ON BEHAVIORAL THEORY

In this preliminary section, we quickly review some basic
notions and results of behavioral theory. We refer the
reader to the seminal papers Willems (1986, 1989, 1991)
and to the monograph Willems and Polderman (1997) for
a comprehensive treatment on the subject.

In the theory of behaviors, a dynamical system is defined
as a triple Σ := (T,W,B), where T is the set of times
over which the system evolves (time axis), W is the set
over which the variables of the signals being modelled take
values (signal space), and B is a subset of WT (i.e. the set
of all maps from T to W, also called universum) in which
all the admissible system trajectories live (the behavior
of the system). The dynamical system Σ = (T,W,B) is
linear if W is a vector space and B a linear subspace of
WT. Σ is said to be time-invariant if T is closed under
addition and σtB ⊆ B for all t ∈ T, where σ denotes the
backward shift operator defined as (σf)(t′) := f(t′+1). In
this paper we mainly focus on n-dimensional, real-valued,
discrete-time systems. Hence we set T := Z and W := Rn.
As a consequence, the behavior of the system becomes a
subset of (Rn)Z (the set of maps from Z to Rn), i.e. a family
of n-dimensional, real-valued, discrete-time sequences. A
linear time-invariant system may be described by an Auto-
Regressive (AR) model 1

R`w(t+ `) +R`+1w(t+ `+ 1) + · · ·+RLw(t+ L) = 0,

for all t ∈ Z, where L, ` ∈ Z, L > `. The Laurent
polynomial matrix R(z) := R`z

` + R`+1z
`+1 + · · · +

RLz
L ∈ R[z, z−1]n×p defines an operator in the shift σ,

R : (Rp)Z → (Rn)Z which allows to rewrite the previous
expression as

R(σ)w(t) = 0. (1)

The behavior of the LTI system is then given by

Ker∞R := {w ∈ (Rp)Z : R(σ)w = 0}. (2)

Equation (1) is known as the kernel representation of a
LTI behavior. A LTI behavior B ⊆ (Rn)Z is said to be
complete if for all w(t) ∈ B, w|[t1,t2] ∈ B|[t1,t2] ∀ t1, t2 ∈ Z,

t1 ≤ t2, where w|[t1,t2] and B|[t1,t2] denote the restriction

of w(t) and B, respectively, to the time interval [t1, t2]. A
fundamental result in behavioral theory states that every
LTI complete behavior admits a kernel representation (1).

To conclude, consider two LTI complete behaviors B1, B2

with kernel representations described by R1(z), R2(z) ∈
R[z, z−1]n×p, respectively. We say that the two behaviors

1 We remark that the behavior is always deterministic, i.e. it is
composed by deterministic trajectories. Therefore, in this section, the
term AR has not to be intended in relation to a stochastic framework.

B1, B2 are equivalent if R1(z) = U(z)R2(z) with U(z) ∈
U[z, z−1]n×n being a Laurent unimodular matrix. Hence,
with reference to the kernel representation, every behavior
is uniquely determined by its kernel matrix up to a
unimodular transformation acting on the left.

3. FROM DETERMINISTIC TO
STOCHASTIC BEHAVIORS

We begin by recalling that a probability space—or stochas-
tic system, using the terminology of Willems (2013)—
is defined as a triple (V,E , P ), where V is the outcome
space, E is a σ-algebra of events, and P : E → [0, 1] is a
probability measure which assigns to each event in E a
value in the interval [0, 1].

Consider now a deterministic system Σ = (T,W,B). Σ
can be regarded as a very special probability space. As
a matter of fact, Σ coincides with the probability space
(WT, {∅,WT,B,Bc}, PΣ) in which PΣ is chosen such that
PΣ(B) = 1. Since the previous definition unavoidably
involves the probability measure PΣ (and specifically the
constraint PΣ(B) = 1), we could clearly have used a
σ-algebra of events richer than {∅,WT,B,Bc}. However
the latter seems to be a more natural choice due to the
fact that it is the most “parsimonious” σ-algebra, that is,
the smallest possible σ-algebra of events containing the
deterministic behavior B.

Now assume that some source of stochasticity is added to
the deterministic system Σ (for instance, some additive
noise acting on the trajectories of B), then we expect
that the newly generated (stochastic) system will possess a
richer σ-algebra of events—indeed the noise modifies, and,
more precisely, enlarges the space of admissible trajectories
of the system—and, as a consequence, a new probability
measure. Furthermore, by adding more and more sets to
our event space, we are, in a sense, moving more and
more away from the class of deterministic systems. Loosely
speaking, the cardinality of the σ-algebra of events can be
considered as a measure of the “degree” of stochasticity of
the system.

From this intuitive description, we can see that the σ-
algebra of events plays an important role in the mathemat-
ical model of a stochastic system, perhaps as important as
the probability measure associated to the system. When
dealing with static systems, i.e. systems which do not
evolve in time, this is exactly the point raised in Willems
(2013). One of the aims of the present paper is to show
that this is also true in the dynamical case. To this end,
we first revisit the definition of a stochastic process in the
spirit of behavioral theory.

Definition 1. A stochastic process is a quadruple Σ :=
(T,W,E , P ), where

(1) T is the time axis,
(2) W is the signal space, i.e. the set in which the

variables whose (noisy) time evolution is modelled
take on their values,

(3) E is a σ-algebra of subsets of WT with elements called
events,

(4) P : E → [0, 1] is the probability measure defined on
the σ-algebra of events.



Remark 2. With reference to the above definition, we
observe that:

(i) A stochastic process is a probability space where the
outcome space is given by WT. Two important classes
of stochastic processes are obtained by selecting T =
R, in which case the outcome space is the space
of functions f : R → W, and T = Z, in which
case the outcome space is the space of sequences
{ft}t∈Z taking values on W. Intuitively, we can think
of a stochastic process as a system described by a
collection of “behaviors” consisting of sets contained
in the σ-algebra E , where to each “behavior” is
assigned, through P , a probability of being selected.

(ii) The standard definition of stochastic process is a
family of random variables (i.e. measurable func-
tions) {ft}t∈T defined on some probability space and
parametrized by an index t ∈ T, which usually
represents time. By specifying the finite-dimensional
probability distributions of the family {ft}t∈T it is
then possible to characterize the infinite-dimensional
distributions of the process (by virtue of Kolmogorov
existence theorem (Billingsley, 1986, Thm. 36.1)).
Our definition of a stochastic process is essentially
equivalent to the latter one but formulated in terms
of σ-algebras of events defined on the (usually
infinite-dimensional) space of trajectories WT. From
this point of view, in Definition 1 emphasis is put
on the event space itself rather than on the variables
that generate that space.

♦

For the rest of the paper, we restrict our attention to the
class of n-dimensional real-valued discrete-time stochastic
processes, i.e. we set T = Z and W = Rn. Notice that, in
this setting, we can identify two particular subclasses of
stochastic processes, namely the subclass of deterministic
dynamical systems whose σ-algebra of events is given by
{∅, (Rn)Z,B,Bc} with B ⊂ (Rn)Z, and the subclass of
stochastic processes whose σ-algebra of events is given
by the Borel σ-algebra generated by the open sets of
(Rn)Z equipped with the product topology (i.e. the topol-
ogy of pointwise convergence), which we will denote by
B((Rn)Z). Since the Borel σ-algebra of (Rn)Z coincides
with the σ-algebra containing all the “non-pathological”
subsets of (Rn)Z, we can think of these two subclasses as
two extremes in the space of stochastic processes.

Remark 3. It is worth noting that when dealing with
continuous-time stochastic processes (T = R) the Borel
σ-algebra generated by the open sets of the product space
(Rn)R equipped with the product topology proves often
to be inadequate for describing the events of the process
(Billingsley, 1986, Ch. 7). Indeed, for instance, it can
be shown that the many “interesting” sets of functions,
e.g. the set of continuous functions, are not contained
in B((Rn)R). To overcome this issue, other types of σ-
algebras can be considered in place of B((Rn)R), for
instance the Borel σ-algebra generated by the open sets in
the space of continuous functions equipped the topology
of uniform convergence on compact sub-intervals. ♦

4. LINEAR TIME-INVARIANT
STOCHASTIC PROCESSES

In this section we introduce the notion of linear time-
invariant (discrete-time) stochastic process. For these pro-
cesses the “coarseness” of the σ-algebra of events runs
along the subspace of trajectories defined by a determin-
istic LTI behavior. We then discuss a canonical represen-
tation for these systems.

Definition 4. The stochastic process Σ := (Z,Rn,E , P )
is said to be linear and time-invariant (LTI, for short)
if there exists a linear and time-invariant behavior L ⊂
(Rn)Z such that the events are the Borel subsets of the
quotient space (Rn)Z/L, i.e. E := B((Rn)Z/L), and P is
a Borel probability measure on the same quotient space,
i.e. P : B((Rn)Z/L)→ [0, 1].

Observe that B((Rn)Z/L) is a well-defined Borel σ-
algebra. Indeed, it coincides exactly with the Borel σ-
algebra generated by the open sets A/L (open sets of the
quotient topology), with A an open set of the topological
vector space (Rn)Z equipped with the product topology.
Moreover, using the terminology introduced in Willems
(2013), we call L the fiber of the LTI stochastic process.

Definition 4 can be intuitively interpreted as follows: given
any (Borel) subset Ē ⊂ (Rn)Z, which consists of a subset
of trajectories in (Rn)Z, if the stochastic process Σ is LTI
with fiber L then the subset E generated by adding to
Ē the trajectories belonging to the LTI behavior L is an
event of Σ. Loosely speaking, an event is a collection of
subsets in (Rn)Z with trajectories “parallel” to the LTI
behavior L (see Fig. 1 for a pictorial example).

Z

R

L E = Ē + L ∈ E
Ē

1 2 3 4 5

Fig. 1. In a LTI stochastic process an event E ∈ E
corresponds to a fixed event Ē plus all the subsets
“shifted” by the fiber L (in this figure L is made of
constant trajectories, i.e. trajectories belonging to the
set {w ∈ RZ : w(t+ 1) = w(t), ∀t ∈ Z}).

Throughout the paper, we will often make the assumption
that the fibers are complete LTI behaviors, this means that
all the trajectories belonging to the fiber admit a finite
dimensional characterization, that is, they are uniquely
determined by their restrictions over all possible finite
time intervals. Under this assumption, the fiber of a LTI
stochastic process can always be represented by means of
the kernel of a Laurent polynomial matrix, as recalled in
§2. LTI processes characterized by a complete fiber admit
a canonical representation, called kernel representation by
analogy with the deterministic case.

Theorem 5. A stochastic process Σ = (Z,Rn,E , P ) is a
LTI stochastic process with fiber L being a complete LTI



behavior if and only if Σ can be described by a stochastic
sequence w(·) satisfying for all t ∈ Z

R(σ)w(t) = e(t), (3)

where R(z) ∈ R[z, z−1]m×n is of full row normal rank,
i.e. rk(R) = m, and e(·) describes the stochastic process
Σe := (Z,Rm,B((Rm)Z), Pe).

Proof. See Appendix A.

With reference to the previous result, we remark that if
E ∈ E is an event of Σ then its probability measure P is
defined through e(·) by

P (E) := Pe(R[E]),

being R[E] ∈ B((Rm)Z) the image of E under R(σ).

Furthermore, if we consider the restriction of a LTI process
to a finite set of time indices, say I := {t1, t2, . . . , tn},
ti ∈ Z, n > 0, then we obtain a (static) stochastic system
described by the triple Σ|I := ((Rn)|I|,E |I , P |I), where
|I| is the cardinality of the set I, E |I := B((Rn)|I|/L|I)
with L|I the restriction of the complete LTI behavior to
the time set I, and P |I a restricted probability measure
defined for all E ∈ E |I as

P |I(E) := P
(⋃

Gi∈π−1[E]Gi

)
,

being π−1[E] the pre-image of E under the canonical pro-
jection π : (Rn)Z → (Rn)|I|, {ft}t∈Z 7→ {ft1 , ft2 , . . . , ftn}.
Since in general the restriction L|I returns a non-empty
linear finite-dimensional subspace of (Rn)|I|, we note that
Σ|I does not, in general, describe a classical random vec-
tor, where for classical we mean a random vector char-
acterized by a Borel σ-algebra of events on (Rn)|I|, as in
(Willems, 2013, Def. 2).

5. INTERCONNECTION OF
STOCHASTIC PROCESSES

Interconnection is a property characterizing open systems,
i.e. systems which are allowed to interact with their
environment. With reference to the mathematical model of
a deterministic dynamical system, this interaction can take
place if some variables of the system are left unmodelled
(Willems, 2007). In this section we present an extension
of the definition of interconnection between deterministic
dynamical systems which applies to stochastic processes.
After introducing some general definitions, we will focus
on the discrete-time LTI case.

As in the deterministic case, interconnection of two
stochastic processes can be thought of as variable sharing
between the two processes. In other words, interconnection
between two processes is obtained by simply imposing an
equality constraint on the variables describing the stochas-
tic laws of the two processes (Fig. 2).

In the deterministic case, given two dynamical systems
Σ1 = (W,T,B1) and Σ2 = (W,T,B2) having the same
time axis and signal space, the interconnection between Σ1

and Σ2 is defined as the deterministic system Σ1 ∧ Σ2 :=
(W,T,B1 ∩ B2) (Willems, 2007). In the stochastic case,
the definition of interconnection we are going to present
is similar to the latter one if we replace the role of the
deterministic behaviors with the σ-algebras of events of the

Σ1 Σ2
...
w1 ...

w2

Σ1 Σ2
...

•
•

. . .

•

w = w1 = w2

Σ1 ∧ Σ2

Fig. 2. Interconnection of stochastic processes Σ1 =
(T,W,E1, P1) and Σ2 = (T,W,E2, P2) .

processes (which indeed represent collections of admissible
“behaviors” of the processes). However, in this case, a
problem arises. As a matter of fact, since interconnection
of stochastic processes also involves the probability laws
defined on the processes, a natural compatibility condition
between the two to-be-interconnected processes has to be
fulfilled. This natural condition states that the probability
measure defined on the interconnected process must be
consistent, in a sense explained below, with the probability
measures defined on the original processes. This condition
was introduced in Willems (2013) with reference to (static)
stochastic systems under the name of complementarity. In
the following definition, we adapt the notion of comple-
mentarity to the case of stochastic processes.

Definition 6. Two stochastic processes Σ1 = (T,W,E1, P1)
and Σ2 = (T,W,E2, P2) are said to be complementary if for
all E1, E′1 ∈ E1 and E2, E′2 ∈ E2 such that E1∩E2 = E′1∩
E′2 it holds

P1(E1)P2(E2) = P1(E′1)P2(E′2).

Moreover, the two σ-algebras E1 and E2 are said to be
complementary if for all non-empty sets E1, E′1 ∈ E1 and
E2, E′2 ∈ E2 such that E1 ∩ E2 = E′1 ∩ E′2 it holds

E1 = E′1 and E2 = E′2.

Remark 7. The notion of complementarity between σ-
algebra of the processes is weaker than the notion of
complementarity of processes. Indeed, the former repre-
sents only a sufficient condition for complementarity of
processes. However, working with complementarity of σ-
algebra is usually easier since this notion does not involve
the probability laws describing the processes, as pointed
out also in Willems (2013). ♦

Under the assumption of complementarity between two
stochastic processes, we arrive at a formal definition of
interconnection.

Definition 8. Let Σ1 = (T,W,E1, P1) and Σ2 = (T,W,E2,
P2) be two independent 2 and complementary stochastic
processes. The interconnection of Σ1 and Σ2 is defined as
the stochastic process

Σ1 ∧ Σ2 := (T,W,E , P ),

where E is the σ-algebra generated by E1 ∪ E2 and P is
defined on the sets {E1 ∩ E2 : E1 ∈ E1, E2 ∈ E2} by

P (E1 ∩ E2) := P1(E1)P2(E1)

2 We say that two stochastic processes are (stochastically) indepen-
dent if their σ-algebras of events are so, with respect to any joint
probability measure.



and extended to all of E by virtue of the Hahn-Kolmogorov
extension theorem (also known as Carathéodory extension
theorem or simply extension theorem, see e.g. (Billingsley,
1986, Ch. 3)). 3

Remark 9. It is worth pointing out that interconnection
between stochastic processes, as given in Definition 8, dif-
fers from the classical notion of coupling between stochas-
tic processes. As a matter of fact, even in the static
case, coupling of two stochastic systems Σ1 = (W,E1, P1)
and Σ2 = (W,E2, P2) requires the construction of a new
stochastic system with signal space W × W, σ-algebra
generated by the sets {E1 × E2 : E1 ∈ E1, E2 ∈ E2},
and probability measure having prescribed marginal dis-
tributions, see e.g. Lindvall (2002). On the other hand,
interconnection between Σ1 and Σ2 means that a new σ-
algebra is constructed on the same signal space shared
by the two to-be-interconnected systems, that is W. More
precisely, the events which lie in the intersection between
the two σ-algebras E1 and E2 generate the σ-algebra of the
interconnected system. From this viewpoint, coupling ap-
pears more similar to juxtaposition of stochastic processes
than interconnection, where for juxtaposition we mean
that starting from two processes described by stochastic
laws w1 and w2 we construct a new process described by
(w1, w2), as in Willems (2013). ♦

We now restrict the attention to the class of LTI stochastic
processes. In this case, the fiber of the process is given
by a LTI behavior. If we add the further assumption
that the fiber is described by a complete LTI behavior,
then, by virtue of Theorem 5, the process admits a kernel
representation. For this class of stochastic processes, it is
possible to derive a condition on the kernel matrices which
is equivalent to complementary of σ-algebras of events of
the processes.

Theorem 10. Consider two independent LTI complete
stochastic processes Σ1 := (Z,Rn,E1, P1) and Σ2 :=
(Z,Rn,E2, P2) described by fibers L1 := Ker∞R1 and
L2 := Ker∞R2, for suitable Laurent polynomial matri-
ces R1(z) ∈ R[z, z−1]m×n, R2(z) ∈ R[z, z−1]p×n with
rk(R1) = m and rk(R2) = p. The two σ-algebras E1 and
E2 are complementary if and only if it holds

rk

[
R1

R2

]
= m+ p. (4)

In this case, the fiber of the interconnected process Σ1∧Σ2

is given by

L1∧2 := L1 ∩ L2 = Ker∞

[
R1

R2

]
. (5)

Proof. See Appendix A.

Example 11. As a simple example of interconnection, con-
sider two LTI processes Σ1 := (Z,R2,E1, P1) and Σ2 :=
(Z,R2,E2, P2) described by kernel representations

3 The Hahn-Kolmogorov theorem gives conditions under which a
function µ : A → [0, 1] defined on an algebra A of subsets of Ω can be
extended to a unique bona fide probability measure on the σ-algebra
generated by A . These conditions are: (i) µ(Ω) = 1, (ii) countably

additivity, i.e. µ
(⋃∞

i=1
Ai

)
=
∑∞

i=1
µ(Ai) for any countable disjoint

family of subsets {Ai}∞i=1, Ai ∈ A , such that
⋃∞

i=1
Ai ∈ A . (A

function satisfying these two requirements is called a pre-measure
on A .) In our case, the theorem applies to P since the latter is
defined through the product of two bona fide probability measures.

Σ1 Σ2

u1 y1 u2 y2

Σ1 Σ2

y1 = u2

y2 = u1

Σ1 ∧ Σ2

•

•

w1 w2

Fig. 3. Interconnection of LTI stochastic processes Σ1 and
Σ2 of Example 11 in an input-output representation.

[σ + a1 σ + b1]w1(t) = e1(t), a1, b1 ∈ R,
[σ + b2 σ + a2]w2(t) = e2(t), a2, b2 ∈ R,

respectively. Furthermore, assume that e1(·) and e2(·)
describe stochastically independent processes Σe1 =
(Z,R,B(RZ), Pe1) and Σe2 = (Z,R,B(RZ), Pe2), respec-
tively. If we partition the variables w1 and w2 in a “input-
output” form w1 := [u1 y1]> and w2 := [y2 u2]>, then
the two LTI processes Σ1 and Σ2 can be regarded as two
noisy input/output LTI systems (see also Fig. 3). The two
σ-algebras E1 and E2 are complementary if and only if

rk

[
z + a1 z + b1
z + b2 z + a2

]
= 2,

or, equivalently, if and only if a1 +a2 6= b1 +b2 and a1a2 6=
b1b2. If the latter conditions are met, the interconnected
process Σ1 ∧Σ2 is a well-defined LTI process described by
the laws of the stochastic sequence w(t) := [w1(t) w2(t)]>

satisfying [
σ + a1 σ + b1
σ + b2 σ + a2

]
w(t) =

[
e1(t)
e2(t)

]
.

♦

To conclude this section, we present a straightforward
corollary of Theorem 10 which gives a characterization of
interconnected processes with a “full” σ-algebra of events.

Corollary 12. Consider the two Laurent polynomial ma-
trices R1(z) ∈ R[z, z−1]m×n and R2(z) ∈ R[z, z−1]p×n

describing the LTI processes defined in Theorem 10. The
σ-algebra of the interconnected system Σ1 ∧ Σ2 is given
by E = B((Rn)Z) if and only if R := [R>1 R>2 ]> ∈
U[z, z−1]n×n, i.e. R is a unimodular Laurent polynomial
matrix.

6. INVARIANCE PROPERTIES OF LTI
STOCHASTIC PROCESSES

[Giacomo: This section has to be revised!]

In the previous sections, we have pointed out that in the
definition of stochastic process a crucial role is played
by the event space E . For LTI stochastic processes, the
structure of the event space is characterized by its fiber,
i.e. by the subspace of trajectories described by a LTI
behavior. Let us restrict the attention to fibers defined by
complete behaviors and consider two stochastic processes
in their kernel representations

Σ1 : R1(σ)w1(t) = e1(t), (6)

Σ2 : R2(σ)w2(t) = e2(t). (7)



with R1(z) ∈ R[z, z−1]m×n, R2(z) ∈ R[z, z−1]m×n with
rk(R1) = rk(R2) = m and e1 ∼ (Z, (Rm)Z,B((Rm)Z), Pe1)
and e2 ∼ (Z, (Rm)Z,B((Rm)Z), Pe2). If the two processes
happen to have the same fiber, then Ker∞R1 and Ker∞R2

are equivalent behaviors. This in turn implies that R1

and R2 are connected by a unimodular transformation
acting on the left, i.e. R1(z) = U(z)R2(z) with U(z) ∈
U[z, z−1]m×m.

Thus, similarly to the deterministic case, we say that
two LTI stochastic processes described by complete fibers
are equivalent if their fibers are equivalent behaviors, i.e.
if their kernel polynomial matrices are identical up to
unimodular transformations acting on the left.

We now investigate what this unimodular invariance prop-
erty entails when applied to spectral densities of stochastic
processes. To this extent, assume that e1, e2 are white
noise processes, and w1, w2 stochastic processes in the clas-
sical sense, i.e. equipped with Borel σ-algebras of events. 4

For n = m, the spectral densities of w1 and w2 in (6)-(7)
are given, respectively, by

Φ1(z) := R−1
1 (z)R−∗1 (z), Φ2(z) := R−1

2 (z)R−∗2 (z).

The fact that Σ1 and Σ2 are equivalent translates into

Φ1(z) = R−1
2 (z)V (z)V ∗(z)R−∗2 (z).

for a suitable unimodular matrix V (z) ∈ U[z, z−1]n×n.
We can generalize this observation to arbitrary rational
discrete-time coercive spectral densities as follows. Con-
sider two rational spectral densities Φ1, Φ2 ∈ Sn×nrat and
let W2 ∈ R(z)n×n be a given minimal spectral factor of
Φ2, say its minimum-phase spectral factor. We say that
two spectral densities Φ1, Φ2 ∈ Sn×nrat are unimodular
equivalent if Φ1 = W2V V

∗W ∗2 with V (z) ∈ U[z, z−1]n×n.

First, we remark that unimodular equivalence is a property
of spectral densities since it does not depend on the chosen
minimal spectral factor. As a matter of fact, if Φ1 and
Φ2 are unimodular equivalent w.r.t. the minimum-phase
spectral factor W2, then they are so w.r.t. any other
spectral factor of Φ2, as long as it is minimal.

Second, we observe that in the scalar case, unimodular
Laurent transformations take the form u(z) := αzk, where
α ∈ R \ {0} and k ∈ Z. In this case, it easy to see
that unimodular invariance reduces to a scaling invariance
property between spectral densities. Namely, let Φ1, Φ2 ∈
S1×1

rat , Φ1 and Φ2 are unimodular equivalent if and only if

Φ1 = αΦ2, α ∈ R \ {0}.

We believe that unimodular invariance property between
rational spectra can be exploited in order to define a
“natural” projective metric in the space Sn×nrat . In particu-
lar, a metric that satisfies unimodular invariance property
in the scalar case has been proposed in Martin (2000).
Martin’s metric has received a lot of attention both from
a theoretical and application-oriented viewpoint, see e.g.
(De Cock and De Moor, 2002; Chaudhry and Vidal, 2009).
However a multivariate extension of this metric is still
missing. We think that unimodular invariance property
of spectra might be enlightening in this regard. This topic
will be the subject of future investigation.

4 In fact, we can always go back to the “classical” case, by enriching
the σ-algebra of events and suitably re-defining the probability over
the new σ-algebra.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of modelling
stochastic dynamical systems from a behavioral perspec-
tive. We focused on LTI processes and we analyzed their
interconnection and invariance properties. Building on this
analysis, new invariance property, unimodular invariance,
in the space of rational spectral densities has been derived.
We believe that this property might prove to be useful for
defining a metric in the latter space. This is one of the
most compelling directions for future research.
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Appendix A. EXTENDED PROOFS

In this Appendix, we present the proofs of Theorem 5 and
Theorem 10 of the main text.

Proof. [Theorem 5]. “If”: Assume that the stochastic
process Σ is described by the stochastic law of the sequence
w(·) satisfying (3). We first recall some facts concerning
the topological vector space (Rn)Z and polynomial oper-
ators in the shift, which can be found in (Willems, 1989,
§4). The space of time series (Rn)Z when equipped with the
product topology is a completely metrizable and separable
(i.e. Polish) topological vector space. Also, L := Ker∞R
is a closed and linear subspace of (Rn)Z. The polynomial
operator in the shift R(σ) is a linear, continuous, and sur-
jective (since of full row normal rank) operator from (Rn)Z

to (Rm)Z. Consider now the quotient space (Rn)Z/L. Since
L is a closed and linear subspace of (Rn)Z, this is again a
Polish space, as it is separable (as every quotient space
of a separable space) and completely metrizable w.r.t.
the induced quotient topology (see e.g. (Bourbaki, 2003,
Ch.1 §3.2)). Hence by taking the restriction of R(σ) to
the quotient space (Rn)Z/L, i.e. R|(Rn)Z/L, we obtain a
continuous and bijective operator between Polish spaces.
From this fact it follows from (Kechris, 2012, Thm. 15.1)
that R|(Rn)Z/L is a Borel isomorphism, i.e. both R|(Rn)Z/L

and its inverse are Borel measurable. This implies that to
each event set Ee ∈ B((Rm)Z) with associated probability
Pe(Ee) corresponds one and only one E := R−1[Ee] ∈
B((Rn)Z/L) with probability P (E) := Pe(Ee), where
R−1[A] denotes the pre-image of A under R(σ). Hence w(·)
defines the LTI stochastic process (Z,Rn,B((Rn)Z/L), P ),
with L = Ker∞R being a complete LTI behavior.

“Only if”: Assume now that L is a complete LTI behavior
and Σ = (Z,Rn,E , P ) a LTI process with fiber L. Since
L is complete, there exists a Laurent polynomial matrix
R(z) ∈ R[z, z−1]m×n, rk(R) = m ≤ n, such that L =
Ker∞R (Willems, 1989, §4). As before, R(σ) restricted
to (Rn)Z/L is a Borel isomorphism between (Rn)Z/L,
equipped with the quotient topology, and (Rm)Z, equipped
with the product topology. Consider

R(σ)w(t) = e(t),

where e(·) describes a stochastic process with signal space
Rm, σ-algebra B((Rm)Z), and probability Pe such that
Pe(R[E]) := P (E) for all E ∈ B((Rn)Z/L), being
R[E] ∈ B((Rm)Z) the image of E under R. From this
construction it follows that the LTI stochastic process
((Rn)Z,B((Rn)Z/L), P ) is described by the stochastic law
of w(·). This concludes the proof. 2

Proof. [Theorem 10]. “If”: Assume that the normal
rank condition in (4) holds. Firstly, observe that this
implies that m + p ≤ n, otherwise equality in (4) can
not be attained. Secondly, as noticed in the proof of
Theorem 5, the operator R1, when restricted to the do-
main (Rn)Z/Ker∞R1, is a Borel isomorphism between
topological spaces (Rn)Z/Ker∞R1 and (Rm)Z. A simi-
lar result holds for R2. This implies that R1 (R2, re-
spectively) establishes a one-to-one correspondence be-
tween Borel sets in (Rm)Z ((Rp)Z) and Borel sets in
(Rn)Z/Ker∞R1 ((Rn)Z/Ker∞R2). Therefore every Borel
set Ē1 ∈ B((Rm)Z) and Ē2 ∈ B((Rp)Z) uniquely deter-
mines events E1 := R−1

1 [Ē1] ∈ E1 and E2 := R−1
2 [Ē2] ∈

E2, respectively. Now, since (4) holds, we have that the
polynomial operator in the shift

R(σ) :=

[
R1(σ)
R2(σ)

]
is a linear, continuous, and surjective operator from (Rn)Z

to (Rm+p)Z (Willems, 1989, §4). Therefore, from

(i) surjectivity of R, and
(ii) the fact that R1|(Rn)Z/Ker∞R1

and R2|(Rn)Z/Ker∞R2

are Borel isomorphisms,

it follows that, for any non-empty event E1 ∈ E1 and
E2 ∈ E2, the intersection E1 ∩ E2 uniquely determines
the set E1 and E2. (In particular, E1 ∩ E2 is non-empty,
if E1 and/or E2 are so.) This in turn implies that E1 and
E2 are complementary σ-algebras.

“Only if”: We prove the contrapositive, that is, if (4) does
not hold then E1 and E2 are not complementary. Assume
that (4) does not hold. Then the polynomial operator in
the shift R(σ) := [R1(σ)> R2(σ)>]> is not surjective, since
the rows of R(z) are linear dependent for every z ∈ C\{0}.
Hence there exist two non-empty sets E1 ∈ E1 and E2 ∈ E2

whose intersection is the empty set. This in turn implies
E1 ∩ Ec2 = E1 = E1 ∩ (Rn)Z. Therefore it follows that E1

and E2 are not complementary. 2


