
HARDWARE METAPAPER

A Cartesian Coordinate Robot for Dispensing Fruit Fly Food
Matthew T. Wayland and Matthias Landgraf

The fruit fly, Drosophila melanogaster, continues to be one of the most widely used model organisms in
biomedical research. Though chosen for its ease of husbandry, maintaining large numbers of stocks of
fruit flies, as done by many laboratories, is labour-intensive. One task which lends itself to automation
is the production of the vials of food in which the flies are reared. Fly facilities typically have to gener-
ate several thousand vials of fly food each week to sustain their fly stocks. The system presented here
combines a cartesian coordinate robot with a peristaltic pump. The design of the robot is based on an
open hardware CNC (computer numerical control) machine, and uses belt and pulley actuators for the X
and Y axes, and a leadscrew actuator for the Z axis. CNC motion and operation of the peristaltic pump
are controlled by grbl (gnea 2018), an open source, embedded, G-code parser. Grbl is written in optimized
C and runs directly on an Arduino. A Raspberry Pi is used to generate and stream G-code instructions to
Grbl. A touch screen on the Raspberry Pi provides a graphical user interface to the system. Whilst the
robot was built for the express purpose of filling vials of fly food, it could potentially be used for other
liquid handling tasks in the laboratory.

Keywords: open source; Drosophila; CNC; liquid handling; Cartesian coordinate robot; Arduino; Raspberry
Pi; G-code

Metadata Overview
•	 Hardware	 design	 files:	 https://doi.org/10.5334/
joh.9.s1.

•	 Software	 source	 code:	 https://doi.org/10.5281/ze-
nodo.846812.

•	 User	 manual:	 https://waylandm.github.io/fly-
food-robot/	 (archived	with	 software	 source	 code	 in:	
	https://doi.org/10.5281/zenodo.846812).

•	 Target	 group:	 scientists	 and	 technicians	 working	 in	
the	biological	sciences.

•	 Skills	required:	laser	cutting	acrylic	–	easy;	soldering	
through-hole	components	onto	printed	circuit	boards	
–	 easy;	 cutting	 aluminium	 profile	 using	 a	 mitre	
saw	–	easy.

(1) Overview
Introduction
For	more	 than	 100	 years	 the	 fruit	 fly,	Drosophila mela-
nogaster,	 has	 served	 as	 a	 genetic	 model	 system	 for	 the	
study	 of	 a	 wide	 range	 of	 questions,	 from	 the	 basics	 of	
genetic	inheritance	to	embryonic	development	and	mod-
elling	human	disease.	For	example,	around	77%	of	human	
genes	known	to	be	involved	in	disease	have	been	identi-
fied	with	confidence	 in	Drosophila,	 illustrating	the	 large	
degree	 of	 evolutionary	 conservation	 that	 has	 informed	
many	studies	 (Held,	 Jr	2017).	Moreover,	 the	fruit	 fly	was	

the	model	system	for	pioneering	work	that	revealed	the	
fundamental	 principles	 of	 genetic	 inheritance,	 speci-
fication	 of	 body	 plans,	 innate	 immunity	 and	 circadian	
rhythms.	 These	 groundbreaking	 discoveries	 led	 to	 six	
Nobel	prizes	in	physiology	and	medicine,	for	a	total	of	ten	
scientists	(Manchester	Fly	Facility	2018).
One	reason	for	Drosophila’s	success	as	an	experimental	

model	system	is	 its	straight	 forward	maintenance	 in	the	
laboratory	environment.	This	enables	 scientists	 to	breed	
large	 numbers	 of	 flies,	 and	 to	 generate	 and	 keep	 large	
numbers	of	genetically	distinct	 stocks	with	 relative	ease	
and	at	 comparatively	 low	cost.	 Fruit	 flies	 are	 commonly	
reared	 in	vials	 (glass,	polystyrene	or	polypropylene)	con-
taining	a	small	quantity	of	food	(Figure 1).	Fly	food	is	pre-
pared	in	batches	by	cooking	a	mixture	of	water,	glucose,	
yeast,	 agar	 and	 wheat	 flour	 in	 a	 kettle.	 Fungicides	 and	
antibiotics	are	added	to	prevent	spoilage	by	microorgan-
isms.	Optionally	dyes	may	be	used	to	colour	code	batches.	
Food	 must	 be	 dispensed	 into	 vials	 whilst	 it	 is	 molten	
(above	50°C),	as	it	solidifies	at	room	temperature.
In	 the	 fly	 facility	 of	 the	 Department	 of	 Zoology,	

University	of	Cambridge,	 vials	used	 to	be	 filled	one	at	a	
time	by	 a	 technician	using	a	neoprene	 tube	and	a	peri-
staltic	 pump.	 One	 end	 of	 the	 neoprene	 tube	 would	 be	
anchored	in	the	kettle	of	food	and	the	other	inserted	into	
the	 vial	 to	 be	 filled.	 The	 technician	 would	 activate	 the	
peristaltic	 pump	 (Cole-Parmer	 Masterflex,	 Cole-Parmer	
2018)	by	pressing	a	foot	switch	until	the	desired	volume	
of	food	had	been	dispensed	into	the	vial.	The	free	end	of	
the	tube	would	then	be	moved	to	the	next	vial	to	be	filled	

Wayland, MT and Landgraf, M 2018 A Cartesian Coordinate
Robot for Dispensing Fruit Fly Food. Journal of Open
Hardware, 2(1): 3, pp. 1–8, DOI: https://doi.org/10.5334/joh.9

Department of Zoology, University of Cambridge, Downing
Street, Cambridge, CB2 3EJ, UK
Corresponding author: Matthew T. Wayland (mw283@cam.ac.uk)

https://doi.org/10.5334/joh.9.s1
https://doi.org/10.5334/joh.9.s1
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5334/joh.9
mailto:mw283@cam.ac.uk

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 2 of 8

and	the	process	 repeated.	This	work	 flow	was	 laborious,	
messy,	and	consumed	the	valuable	time	of	skilled	techni-
cians.	Nevertheless,	this	continues	to	be	standard	practice	
in	many	fly	facilities	around	the	world.
There	is	an	automated	fly	food	dispenser	on	the	market,	

but	it	is	prohibitively	expensive	for	many	academic	fruit	fly	
facilities,	including	our	own.	We	set	out	to	design	an	open	
hardware	solution	to	share	with	the	scientific	community.

Overall Implementation and Design
Overview
Vials	 are	 stored	 in	 cardboard	 boxes	 in	 a	 10	 ×	 10	 grid.	
This	 ordered	 arrangement	 facilitates	 automated	 filling	
using	a	robot	with	three	axes	of	motion	(Figures 2	and	
3).	 Coordinated	 movement	 of	 the	 x,	 y	 and	 z	 actuators	
places	a	dispensing	nozzle	over	 the	mouth	of	a	vial	and	
a	peristaltic	pump	 is	 activated	 to	deliver	 food.	Top	 level	
control	is	provided	by	a	Raspberry	Pi	with	a	touchscreen	
user	interface.	G-code	(Wikipedia	2018b)	instructions	are	
generated	on	the	Raspberry	Pi	and	then	streamed	to	Grbl	
(gnea	2017;	gnea	2018),	a	G-code	parser,	 running	on	an	
Arduino	Uno	(Revision	3).	Grbl	uses	a	gShield	(Synthetos	
2018c;	 	Synthetos	2018b)	to	translate	the	G-code	instruc-
tions	into	digital	pulses	which	drive	the	stepper	motors	of	
the	X,	Y	and	Z	actuators.	The	selection	and	specification	of	
components	are	described	in	more	detail	below.

Design based on a CNC router
Rather	than	attempt	to	design	our	own	cartesian	coordi-
nate	robot,	we	decided	to	adapt	an	existing	machine.	We	
originally	planned	 to	use	a	 cheap,	mass-produced,	desk-
top	CNC	(Computer	Numerical	Control)	router.	However,	
modifying	a	commercial	CNC	router	would	require	some,	

Figure 1:	A	vial	of	 fruit	 flies.	The	 food	 is	at	 the	bottom	
of	the	vial	and	the	flies	can	be	seen	crawling	over	the	
inside	wall.	Green	dye	has	been	 added	 to	 the	 food	 to	
identify	the	batch;	normally	the	colour	of	fly	food	is	pale	
yellow/brown.	 The	 vial	 has	 a	 height	 of	 80	mm	 and	 a	
diameter	of	25	mm.

Figure 2:	System	architecture.

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly Food Art. 3, page 3 of 8

potentially	 challenging,	 reverse	 engineering.	 Addition-
ally,	a	commercial	router	would	include	components	not	
required	for	this	project,	such	as	a	spindle.
An	open-hardware	 router	provided	a	much	more	 flex-

ible	starting	point,	because	the	design	could	be	modified	
before	 commencing	 the	 build.	 Of	 the	 numerous	 open-
hardware	router	designs	available	online,	we	chose	Mark	
Carew’s	“routy”	(Carew	2018)	for	the	following	reasons:

•	 The	build	was	well	documented	with	photographs.
•	 All	parts	were	readily	available.
•	 The	OpenBuilds	community	forum	showed	that	other	
people	had	successfully	built	functioning	routers	us-
ing	this	design.

•	 This	bed	of	this	router	is	a	suitable	size	to	accommo-
date	two	boxes	of	vials.

•	 It	was	relatively	cheap	to	build.

This	cartesian	coordinate	robot	uses	belt	and	pulley	actua-
tors	for	the	X	and	Y	axes,	and	a	leadscrew	actuator	for	the	
Z	axis.	Grbl	(gnea	2017;	gnea	2018),	an	open	source	G-code	
parser	provides	CNC	motion	control.	Key	features	of	Grbl	
include	precise	timing,	asynchronous	operation	and	accel-
eration	management.	Grbl	is	written	in	optimized	C	and	
runs	on	an	Arduino.	The	Arduino	cannot	drive	the	step-
per	 motors	 directly	 and	 so	 a	 gShield	 (Synthetos	 2018c;	
	Synthetos	 2018b)	 is	 required	 to	 provide	 the	 hardware	
interface	(Figure 3).	Header	pins	on	the	gShield	enable	it	
to	be	mounted	directly	on	top	of	an	Arduino	Uno.

We	 opted	 to	 use	 the	 combination	 of	 Grbl,	 Arduino	
Uno	and	gShield,	because	they	had	been	shown	to	be	an	
effective	solution	for	CNC	motion	control	in	the	original	
“routy”	design.	However,	alternative	open	hardware	CNC	
controllers	 are	 available,	 and	 could	 potentially	 be	 used	
in	this	build.	For	example,	 the	 functions	of	 the	Arduino	
Uno	 and	 gShield	 are	 combined	 in	 the	 SmoothieBoard	
(smoothieboard	 2018)	 and	 the	 TinyG	 (Synthetos	 2018a;	
Synthetos	 2018d).	 The	 SmoothieBoard	 and	 TinyG	 each	
have	their	own	open	source	G-code	parser.
For	 this	 project,	 some	 minor	 modifications	 to	 the	

“routy”	design	were	required,	including:

•	 A	 pair	 of	 limit	 switches	were	 added	 to	 each	 axis	 to	
define	the	range	of	motion.	The	limit	switches	are	also	
used	for	‘homing’;	i.e.	setting	the	origin	of	the	coordi-
nate	system.

•	 The	z-actuator	was	 lengthened	to	give	greater	range	
in	the	vertical	axis,	and	thus	enable	to	robot	to	handle	
vials	of	a	variety	of	sizes.

•	 The	gantry	was	raised	to	provide	more	clearance	from	
the	bed	of	the	router.

•	 A	 router	would	normally	have	a	 sacrificial	bed.	 This	
has	been	replaced	with	an	acrylic	platform	with	guide	
rails	to	ensure	the	correct	alignment	of	the	boxes	of	
vials	in	the	x-axis	(Figure 4a).	The	platform	can	be	re-
moved	from	the	robot	and	disassembled	for	cleaning.

•	 A	fence	has	been	added	to	facilitate	alignment	of	box-
es	in	the	y-axis	(Figure 4b).

Figure 3:	System	overview.	The	cartesian	coordinate	robot	has	three	axes	of	motion	(x, y	and	z).	A	Raspberry	Pi	(r)	gen-
erates	and	streams	G-code	instructions	to	an	Arduino	(not	shown)	which	drives	stepper	motors	(s)	via	the	gShield.	
A	protoshield	is	used	for	custom	electronics;	visible	on	this	circuit	board	are	the	capacitors	used	to	filter	noise	on	
the	limit	switch	lines,	and	the	two	optocouplers	which	are	the	interface	to	the	peristaltic	pump	(p).	The	gShield	and	
protoshield	are	stacked	on	top	of	the	Arduino	and	housed	in	the	electronics	box	(e).	A graphical user interface	is	
displayed	on	the	touch	screen	of	the	Raspberry	Pi	(r).	Fly	food	prepared	in	the	kettle	is	propelled	through	neoprene	
tubing	(t)	by	the	peristaltic	pump	(p)	to	the	nozzle	(n)	from	where	it	is	dispensed.	Boxes	(b)	of	vials	are	loaded	on	to	
the	platform	of	the	robot	for	filling.

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 4 of 8

Incorporation of the peristaltic pump
The	Cole-Parmer	Masterflex	peristaltic	pump	 (Cole-Parmer	
2018)	is	used	to	manually	fill	vials.	We	decided	to	incorporate	
one	of	these	pumps	into	our	build	for	the	following	reasons:

•	 Long	term	use	in	our	fly	facility	has	demonstrated	the	
reliability	of	the	pump.

•	 The	 pump	 can	 be	 operated	 by	 remote	 control	 (via	
	cable),	 which	 is	 prerequisite	 for	 integration	 into	 a	
	robotic	system.

•	 We	had	one	at	our	disposal.

A	promising	open	hardware	alternative	 to	 this	 commer-
cial	 pump	 has	 been	 developed	 by	 iGEM	 (International	
Genetically	 Engineered	 Machine)	 2017	 team	 Aachen	
(iGEM	Aachen	2018a;	iGEM	Aachen	2018b).
To	fill	vials	of	fly	food	we	simply	need	to	be	able	to	start	

and	stop	the	pump.	However,	for	other	applications	it	may	
be	necessary	to	control	the	direction	of	flow.	The	remote	
control	interface	on	the	peristaltic	pump	is	a	DB15	female	
port.	Closing	contact	between	pins	10	and	12	starts	 the	
pump;	breaking	contact	stops	the	pump.	The	pump	can	
be	 switched	 from	 clockwise	 (CW)	 rotation	 to	 counter-
clockwise	(CCW)	rotation	by	closing	contact	between	pins	
11	 and	 12.	 In	 the	 operation	 of	 a	 CNC	 router	 Grbl	 uses	
Arduino	pins	A3	and	D13	for	enabling	coolant	and	chang-
ing	 spindle	 direction	 respectively.	 Here	 we	 use	 A3	 for	
pump	stop/start	and	D13	for	pump	direction	(CW/CCW).	
Two	 optocouplers	 are	 used	 to	 connect	 the	 Arduino	 to	
the	 pump	 while	 maintaining	 electrical	 isolation.	 When	
Arduino	pin	A3	is	high	(i.e.	set	to	5	Volts),	one	of	the	opto-
couplers	makes	 contact	between	pins	10	and	12	on	 the	
DB15	port	starting	the	pump.

A	neoprene	tube	with	a	nylon	nozzle	is	used	to	deliver	
food	to	the	vials.	To	attach	this	assembly	on	to	the	z-actu-
ator	 of	 the	 robot	 we	 designed	 a	mounting	 plate	 which	
was	cut	from	a	sheet	of	acrylic	(Figure 4c).	Cable	ties	are	
threaded	through	the	holes	to	attach	the	hose	assembly.

Custom electronics
Several	electronic	components	must	be	wired	to	the	Arduino,	
including	optocouplers	for	 interfacing	with	the	peristaltic	
pump,	and	capacitors	for	filtering	noise	on	the	wires	from	
the	limit	switches.	These	components	are	mounted	on	an	
Arduino	protoshield	(Figure 3).	A	protoshield	was	chosen	
over	a	 custom	printed	circuit	board,	because	 (i)	 it	 can	be	
conveniently	 stacked	 between	 the	 Arduino	 and	 gShield	
boards;	and	(ii)	it	is	cheap	and	readily	available	to	anyone	
wishing	to	replicate	the	robot.	Circuit	diagrams	for	the	cus-
tom	electronics	are	provided	on	Docubricks.

Top level control
Movement	of	the	robot	is	programmed	in	G-code.	A	com-
puter	is	required	to	generate	G-code	programs,	and	also	to	
stream	them	to	the	Grbl	software	running	on	the	Arduino.	
We	 chose	 a	 Raspberry	 Pi,	 on	 the	 basis	 of	 its	 small	 foot-
print,	low	energy	consumption,	and	low	cost.

User interface to control system
A	 touchscreen	 attached	 to	 the	 Raspberry	 Pi	 presents	 a	
graphical	user	interface	(GUI)	to	the	operator	of	the	robot	
(Figure 3).	 A	 GUI	 was	 chosen	 over	 hardware	 switches,	
because	it	could	be	rapidly	reconfigured	to	add	or	remove	
functionality	as	required.	A	resistive	rather	than	a	capaci-
tive	touchscreen	was	selected	for	this	application,	because	
some	operators	may	wear	gloves.

Figure 4:	Parts	laser	cut	from	acrylic	sheet.	(a)	Platform	with	guide	rail	to	ensure	correct	alignment	of	boxes;	can	be	
disassembled	for	cleaning.	(b)	Fence	to	prevent	boxes	of	vials	from	being	pushed	off	the	platform	and	to	ensure	their	
correct	alignment	in	the	y-axis.	(c)	Mount	for	the	neoprene	tube	and	nylon	nozzle	that	deliver	the	fly	food	to	the	vials;	
cable	ties	are	threaded	through	the	holes	to	attach	the	tube	and	nozzle	assembly.

http://docubricks.com/viewer.jsp?id=8652757760093769728

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly Food Art. 3, page 5 of 8

Modularity
The	system	is	inherently	modular	(Figure 2),	facilitating	fur-
ther	customization.	Should	a	module	cease	to	be	available,	
it	will	be	possible	to	substitute	an	alternative.	For	example:

•	 A	different	router	design	could	be	chosen	to	provide	
linear	actuators.

•	 The	 touchscreen	could	be	replaced	with	mechanical	
switches.

•	 The	Raspberry	Pi	could	be	substituted	for	a	spare	lap-
top	or	desktop	computer.

•	 A	 SmoothieBoard	 (Smoothieboard	 2018)	 or	 TinyG	
(Synthetos	 2018a;	 Synthetos	 2018d)	 could	 replace	
both	the	Arduino	and	gShield.

(2) Quality control
Safety
Operators	of	the	robot	should	be	aware	of	three	hazards:

•	 Electric	shock.
•	 Entanglement	or	entrapment	in	moving	parts.
•	 Slips,	trips	and	falls.

Electric shock
The	power	supply	runs	on	mains	electricity	and	so	should	
be	 positioned	well	 away	 from	 the	 robot	 where	 there	 is	
no	danger	of	 it	being	splashed	with	 liquid.	Additionally,	
use	of	a	residual	current	device	(RCD)	is	recommended	to	
protect	operators	from	electrocution.	The	actuators	of	the	
robot	use	low	voltage	(24V)	motors.	All	cables	should	be	
inspected	for	damage	before	switching	on	the	robot.

Entanglement or entrapment in moving parts
Precautions	should	be	taken	for	loose	hair,	clothing,	jew-
ellery	and	other	items	so	that	they	are	not	caught	in	the	
machine.	 Trays	 of	 vials	 should	 be	 loaded	 and	 unloaded	
when	 the	 actuators	 of	 all	 three	 axes	 are	 stationary.	 The	
touchscreen	handset	allows	the	operator	to	start	and	stop	
jobs	while	standing	well	clear	of	the	moving	parts.

Slips, trips and falls
Cables	and	neoprene	tubing	should	be	positioned	so	that	
they	do	not	pose	an	obstruction	or	tripping	hazard.		Spillages	
of	fly	food	to	be	cleaned	up	immediately	to	avoid	slip	hazard.

Calibration
Before	 the	 robot	 can	be	used,	 it	 is	 essential	 to	 calibrate	
the	 motion	 of	 the	 actuators,	 determine	 the	 cartesian	
coordinates	 of	 the	 vials	 to	 be	 filled,	 calibrate	 the	 flow	
rate	 of	 the	 peristaltic	 pump,	 and	 generate	 G-code	 pro-
grams	for	filling	vials.	These	procedures	are	described	in	
detail	in	the	user	manual	(live:	https://waylandm.github.
io/fly-food-robot/;	 archive:	 https://doi.org/10.5281/
zenodo.846812),	and	summarized	below.

Calibration of actuator motion
The	step	size	(steps/mm)	of	the	stepper	motor(s)	on	each	
axis	 must	 be	 calculated,	 so	 that	 Grbl	 can	 calculate	 the	
number	of	digital	pulses	required	to	move	an	actuator	a	
known	distance	(https://perma.cc/T2F4-QUEB).	Grbl	can	

automatically	find	the	origin	of	the	cartesian	coordinate	
system	by	running	a	homing cycle	in	which	the	actuators	
are	driven	in	the	positive	direction	until	the	limit	switches	
are	activated.	The	step	size	of	the	linear	actuators	is	calcu-
lated	on	completion	of	the	build,	and	this	calibration	pro-
cedure	should	not	need	to	be	repeated	unless	the	motors	
or	timing	belt	are	replaced.

Determination of vial coordinates
The	platform	of	 the	robot	can	accommodate	 two	boxes,	
each	 containing	 100	 vials	 (Fisher	 Scientific	 2018).	 The	
guide	 rail	 and	 fence	 ensure	 that	 the	 boxes	 are	 always	
placed	 in	 the	 same	position	 (Figure 4).	 The	 robot	must	
be	given	 the	 coordinates	of	 every	 vial	 to	be	 filled.	 If	we	
know	the	xy	coordinates	of	the	vials	in	diagonally	oppo-
site	corners	of	a	box,	we	can	calculate	the	coordinates	of	
all	other	vials	 in	 the	box	by	 interpolation.	We	also	need	
to	determine	the	appropriate	height	(z	coordinate)	of	the	
nozzle	for	filling	vials;	sufficient	proximity	to	the	mouth	
of	the	vial	to	ensure	accuracy	of	food	delivery,	but	not	so	
close	that	it	might	strike	the	vial	when	moving	laterally.	A	
step	by	step	protocol	for	determining	vial	coordinates	is	
provided:	https://perma.cc/DM23-UAL8.	 This	procedure	
is	performed	once	and	would	only	need	to	be	repeated	if	
the	size	of	the	boxes	or	vials	changed.

Calibration of the flow rate of the peristaltic pump
To	maximize	speed	the	peristaltic	pump	is	run	at	its	maxi-
mum	flow	rate	of	30	ml/second.	In	our	fly	facility,	we	add	
8	ml	of	 food	 to	 each	 vial,	 therefore	based	on	 the	maxi-
mum	flow	rate,	we	should	only	need	to	run	the	pump	for	
0.27	seconds	to	dispense	8	ml	of	food.	However,	there	is	
latency	 in	 the	 system	 and	 the	 pump	does	 not	 reach	 its	
maximum	flow	rate	instantaneously	on	activation.	There-
fore,	it	is	important	to	determine	the	fill	time	empirically.	
We	do	this	by	programming	the	robot	to	test	fill	a	single	
box	of	vials	using	a	range	of	fill	times;	one	per	row.	The	
volume	of	food	in	the	vials	can	then	be	measured	and	the	
optimum	fill	time	identified.	A	script	has	been	written	for	
this	purpose	and	more	details	can	be	found	in	the	manual:	
https://perma.cc/9J24-FUZP.

Generation of G-code programs
Two	G-code	programs	are	required,	one	for	filling	a	single	
box	of	vials,	and	another	for	filling	two	boxes	of	vials.	We	
have	written	a	python	script	to	generate	these	G-code	pro-
grams;	it	requires	the	following	parameters:

•	 for	each	box,	the	xy	coordinates	of	diagonally	oppo-
site	vials

•	 the	fill	 time,	as	determined	in	the	calibration	of	the	
flow	rate	of	the	peristaltic	pump

•	 the	appropriate	height	(z	coordinate)	of	the	nozzle	for	
filling	vials

•	 the	time	the	robot	should	wait	after	filling	a	vial,	to	
allow	for	drips	of	food	from	the	nozzle,	before	moving	
on	to	the	next	vial	(default	value	of	0.1	seconds).

Protocol	 and	 script	 for	 generating	 G-code	 programs:	
https://perma.cc/G94Y-BED4.

https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://perma.cc/T2F4-QUEB
https://perma.cc/DM23-UAL8
https://perma.cc/9J24-FUZP
https://perma.cc/G94Y-BED4

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 6 of 8

Liquid handling performance
The	precision	and	accuracy	with	which	the	robot	aliquots	
fly	food	to	vials	was	assessed	by	measuring	the	depth	of	
food	in	each	of	100	vials.	The	volume	of	food	in	each	vial	
was	estimated	using	the	following	formula:

 2volume r h 	 (1)

where	 r	 is	 the	 internal	 radius	 of	 the	 vial	 and	 h	 is	 the	
depth	of	food.	The	estimated	volume	of	food	in	each	vial	
ranged	 from	7.1–8.3	ml	 (mean	=	7.7	ml;	 standard	devia-
tion	=	0.27	ml).	For	comparison,	100	manually	filled	vials	
contained	an	estimated	7.5–9.1	ml	(mean	=	8.3	ml;	stand-
ard	deviation	=	0.25	ml)	of	 food.	The	variation	reported	
here	is	probably	inflated	by	measurement	error.

General testing
The	robot	has	been	used	routinely	in	the	Department	of	
Zoology’s	fly	facility	since	21st	October	2015,	each	week	
filling	at	least	1,000	vials	with	food.	In	the	first	few	weeks	
of	 operation	 the	 control	 system	 malfunctioned	 three	
times,	resulting	in	jobs	stopping	before	all	vials	were	filled	
and	then	restarting.	The	malfunction	was	not	reproduci-
ble,	and	so	the	cause	could	not	be	determined	definitively.	
However,	all	errors	 involved	a	prototype	of	 the	 software	
user	 interface,	where	 the	 operator	would	 tap	 a	 desktop	
icon	 on	 the	 touchscreen	 to	 launch	 a	 shell	 script,	which	
would	in	turn	run	a	job.	It	is	possible	that	if	the	operator	
tapped	the	icon	too	many	times,	a	second	instance	of	the	
shell	script	might	be	initiated,	potentially	conflicting	with	
the	first.	The	current	graphical	user	interface	(GUI),	devel-
oped	 using	 TkInter	 (Tkinter	 2018),	 prevents	 more	 than	
one	 job	being	 launched	 at	 a	 time.	 Since	 starting	 to	use	
the	current	GUI	approximately	two	years	ago,	not	a	single	
fault	has	been	reported.	The	robot	can	fill	two	boxes,	each	
containing	100	vials,	within	seven	minutes.

(3) Application
Use case
To	date	the	robot	has	been	applied	solely	to	the	use	case	of	filling	
vials	of	fly	food.	A	video	showing	the	robot	in	action	is	available	
at:	https://doi.org/10.6084/m9.figshare.5175223.v1.

Reuse potential and adaptability
The	system	in	its	current	form	could	be	applied	to	other	
low	precision	liquid	handling	operations,	such	as	dispens-
ing	reagents.	The	design	includes	the	electronics	required	
to	control	the	direction	of	rotation	of	the	peristaltic	pump,	
so	the	system	could	be	programmed	(in	G-code)	to	extract	
liquid	from	one	vial	and	transfer	it	to	another.	More	gener-
ally,	a	cartesian	coordinate	robot	can	be	used	to	automate	
many	 tasks	 in	 the	 laboratory,	 such	 as	moving	 a	 camera	
to	 capture	 macroscopic	 images	 of	 museum	 specimens	
arranged	 in	trays	 (Blagoderov	et	al.	2012)	or	positioning	
an	extruder	for	3D	bioprinting	(Banović	and	Vihar	2018).

Support
The	robot	has	yet	to	be	replicated	in	other	labs	and	so	a	
community	of	users	has	still	to	be	established.	Neverthe-
less,	 support	 communities	are	associated	with	all	of	 the	
constituent	open	hardware	and	software	components:

•	 Arduino	(Arduino	2018)
•	 CNC router	(OpenBuilds	2018)
•	 grbl	(gnea	2018)
•	 gShield	(Synthetos	2018c)
•	 Raspberry Pi	(Raspberry	Pi	Foundation	2018)
•	 TkInter	(Tkinter	2018)

(4) Build Details
Availability of materials and methods
All	materials	are	readily	available	from	online	suppliers.	A	
complete	 bill	 of	 materials,	 including	 URLs	 of	 vendors,	 is	
provided	 on	 Docubricks.	 There	 are	 two	 specialized	 hard-
ware	components	which	are	produced	by	only	one	manu-
facturer:	 the	Cole-Parmer	Masterflex	peristaltic	pump	and	
the	gShield	CNC	motion	controller.	The	peristaltic	pump	is	
mass	produced	and	so	should	be	easy	to	acquire,	but	could	
be	 substituted	with	 a	 device	 of	 similar	 specification.	 The	
gShield	 is	 one	of	 several	 CNC	motion	 controllers.	 Should	
production	 of	 the	 gShield	 cease,	 suitable	 alternatives	
include	 the	 SmoothieBoard	 (Smoothieboard	 2018)	 and	
TinyG	 (Synthetos	 2018a;	 Synthetos	 2018d).	Moreover,	 cir-
cuit	diagrams	for	the	gShield	are	available	(Synthetos	2018c;	
Synthetos	2018b)	and	so	the	device	could	be	fabricated.
Access	to	a	laser	cutter	will	be	required	to	cut	the	acrylic	

parts	 (tube	 mount,	 platform	 and	 fence	 rails).	 A	 mitre	
(chop)	 saw	 is	 needed	 to	 cut	 the	 V-Slots™	 Aluminium	
extrusion.

Ease of build
The	 robot	 can	 be	 assembled	 using	 standard	 workshop	
tools	 (i.e.	 spanners,	 screw	drivers,	Allen	 (hex)	keys	and	a	
soldering	iron).	Detailed	documentation	on	the	build	pro-
cess	is	available	on	Docubricks,	with	every	step	illustrated	
with	a	photograph	or	diagram.	Similarly,	comprehensive	
instructions	 on	 software	 installation	 and	 configuration	
are	 provided	 on	 github:	 https://waylandm.github.io/
fly-food-robot/	 (archived	 in	 https://doi.org/10.5281/
zenodo.846812).

Operating software and peripherals
•	 Adafruit’s	 custom	 raspberry	 pi	 image	 (Adafruit	
2018a),	based	on	Raspbian	version	8	 (‘jessie’;	 kernel	
release	4.4.24-v7),	 is	pre-configured	for	use	with	the	
PiTFT	touch	screen	and	contains	all	required	software	
dependencies.	Alternatively,	Adafruit	provide	a	helper	
script	(Adafruit	2018c)	to	customize	a	standard	Rasp-
bian	release	for	use	with	the	touch	screen.

•	 Grbl	 gcode	 parser	 (gnea	 2018).	 Originally	 used	 ver-
sion	0.9i	and	currently	using	version	1.1f	(gnea	2017)	
which	was	released	on	01/08/2017.

•	 Arduino	IDE	(Arduino	2018)	is	required	to	load	Grbl	
software	onto	the	Arduino	Uno.

•	 Python	 2.7.9	 scripts	 are	 used	 to	 generate	 all	 gcode	
programs	used	by	the	robot.

•	 The	touchscreen	user	interface	is	developed	using	Py-
thon	2.7.9	and	Tkinter	(Tkinter	2018;	Tk	version	8.6).

Dependencies
•	 Raspberry	 Pi	 version	 3	 (Raspberry	 Pi	 Foundation	
2018).	 Earlier	 versions	 can	 potentially	 be	 used,	 but	
may	require	a	different	touch	screen.

https://doi.org/10.6084/m9.figshare.5175223.v1
http://docubricks.com/viewer.jsp?id=8652757760093769728
http://docubricks.com/viewer.jsp?id=8652757760093769728
https://waylandm.github.io/fly-food-robot/
https://waylandm.github.io/fly-food-robot/
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly Food Art. 3, page 7 of 8

•	 Adafruit	 PiTFT	 Plus	 320	 ×	 240	 2.8″	 TFT	 +	 Resistive	
Touchscreen	(Adafruit	2018b).

•	 Arduino	Uno,	which	 is	open	source	hardware	under	
the	 Creative	 Commons	 Attribution	 Share-Alike	 li-
cense	(Arduino	2018).

•	 Arduino	gShield	(Synthetos	2018c;	Synthetos	2018b)	
provides	 the	 hardware	 implementation	 of	 the	 Grbl	
CNC	motion	control	system.

•	 Cole-Parmer	Masterflex	Peristaltic	Pump	(Cole-Parmer	
2018).	 This	 commercial	 pump	 could	 potentially	 be	
substituted	with	an	open	hardware	peristaltic	pump.

•	 V-Slot™	 Aluminium	 Extrusion	 by	 OpenBuilds	 is	 li-
censed	under	the	Creative	Commons	–	Attribution	–	
Share	Alike	license	(OpenBuilds	2018).

Hardware documentation and files location
Archive for hardware documentation and build files

Name:	CNC	fly	food	dispenser
 Persistent identifier:	https://doi.org/10.5334/joh.9.s1
Licence:	CC-BY	3.0
Publisher:	Matthew	T.	Wayland
Date published:	21/04/2017

Software source code repository
 Name:	Cartesian	coordinate	 robot	 for	dispensing	 fruit	
fly	food
 Repository:	 https://github.com/WaylandM/fly-food-	
robot
 Persistent identifier:	 https://doi.org/10.5281/zenodo	
.846812
Licence:	GNU	General	Public	License	3.0
Date published:	22/08/17

(5) Discussion
Conclusions
The	cartesian	coordinate	robot	described	here	is	a	cheap	
(at	the	time	of	writing,	May	2018,	the	total	cost	of	mate-
rials,	 excluding	 pump,	 was	 £650)	 and	 reliable	 tool	 for	
automating	 the	 production	 of	 vials	 of	 fly	 food.	 It	 does	
not	provide	greater	speed,	accuracy	or	precision	than	a	
human	operator	of	a	peristaltic	pump.	However,	it	does	
release	skilled	 technicians	 from	a	 tedious	 task	 that	car-
ries	the	risk	of	repetitive	strain	injury	(El-Helaly,	Balkhy,	
and	Vallenius	2017).	The	entire	system	can	be	built	and	
configured	 in	one	day.	 In	our	 fly	 facility	 the	 robot	 cur-
rently	saves	our	technicians	around	an	hour	of	work	each	
week.
This	project	is	a	testament	to	the	power	of	open	source	

hardware	and	software.	Designing	a	cartesian	coordinate	
robot	 from	 scratch	 would	 be	 a	 technically	 challenging	
task,	 beyond	 the	 skill	 set	 of	 the	 authors,	 who	 have	 no	
formal	training	 in	engineering.	However,	by	building	on	
existing	 open	 hardware	 (OpenBuilds	 “routy”,	 Arduino,	
gShield)	 and	 software	 (Grbl,	 Python,	 TkInter)	 projects,	
we	have	been	able	to	develop	an	automated	fly	food	dis-
penser	with	relative	ease.

Future Work
The	 current	 system	 is	 fully	 functional	 and	 very	 reliable.	
Nevertheless,	in	future	iterations	of	the	design,	the	follow-
ing	points	should	be	considered:

•	 We	had	a	commercial	peristaltic	pump	at	our	disposal,	
and	so	it	made	sense	to	use	it	in	our	build.	However,	
substituting	the	commercial	pump	for	an	open	hard-
ware	 alternative	 (e.g.	 iGEM	 Aachen	 2018b),	 would	
make	 the	 system	 easier	 and	 cheaper	 to	 replicate	 in	
other	labs.

•	 The	current	system	has	a	single	nozzle	and	so	food	is	
delivered	to	one	vial	at	a	time.	Multiple	nozzles	would	
allow	several	vials	to	be	filled	simultaneously,	poten-
tially	saving	time.

•	 The	limit	switches	are	wired	in	the	normally	open	con-
figuration,	 the	 Grbl	 default.	 Changing	 to	 a	 normally	
closed	configuration	would	make	the	limit	switches	fail	
safe	(i.e.	in	the	event	of	a	fault	in	any	of	the	limit	switch	
circuits,	it	would	not	be	possible	to	operate	the	robot).

•	 Further	 experimentation	 and	 testing	 is	 required	 to	
determine	 if	 the	 actuators	 can	 reliably	 be	 driven	 at	
higher	speed	and	acceleration,	and	thus	increase	the	
rate	at	which	vials	are	filled.

•	 Shields	 could	 be	 added	 to	 protect	 the	 actuators	
against	food	spatter,	although	this	hasn’t	been	an	is-
sue	in	our	facility.

•	 The	cables	connecting	the	cartesian	coordinate	robot	
to	the	power	supply,	raspberry	pi	and	peristaltic	pump	
are	enclosed	in	spiral	wrap,	which	provides	some	pro-
tection	against	entanglement	with	the	actuators.	How-
ever,	a	chain	style	cable	carrier	system	would	be	a	more	
reliable	solution	to	this	problem	(Wikipedia	2018a).

Additional File
The	additional	file	for	this	article	can	be	found	as	follows:

•	 Additional File.	Hardware	design	files.	DOI:	https://
doi.org/10.5334/joh.9.s1

Acknowledgements
We	are	indebted	to	the	developers	of	the	open-hardware	
and	free	software	on	which	this	project	is	based.	We	would	
like	 to	 thank	 Tracey	 Brazier	 and	Oksana	 Elliott	 (Depart-
ment	of	Zoology,	University	of	Cambridge)	for	testing	the	
robot	and	providing	feedback	on	its	performance.	We	are	
grateful	to	Dr	José	Casal	(Department	of	Zoology,	Univer-
sity	 of	 Cambridge)	 for	 helpful	 discussions.	 This	 project	
would	 not	 have	 been	 possible	 without	 the	 Cambridge	
Makespace	 (http://makespace.org/).	 We	 would	 like	 to	
thank	 the	 reviewers,	 Mainardo	 Gaudenzi	 Asinelli,	 Tom	
Baden	and	an	anonymous	individual,	for	helpful	feedback	
on	our	manuscript.

Funding Information
The	 project	 was	 supported	 by	 a	 Wellcome	 Trust	 Grant	
(WT096645MA)	to	Peter	A.	Lawrence.

Competing Interests
The	authors	have	no	competing	interests	to	declare.

Author Contributions
ML	 conceived	 the	 idea	 of	 modifying	 a	 CNC	 router	 to	
dispense	 fruit	 fly	 food.	MTW	built	 and	documented	 the	
robot.	MTW	wrote	the	first	draft	of	the	manuscript,	which	
was	improved	by	feedback	from	ML.

https://doi.org/10.5334/joh.9.s1
https://github.com/WaylandM/fly-food-robot
https://github.com/WaylandM/fly-food-robot
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5281/zenodo.846812
https://doi.org/10.5334/joh.9.s1
https://doi.org/10.5334/joh.9.s1
http://makespace.org/

Wayland and Landgraf: A Cartesian Coordinate Robot for Dispensing Fruit Fly FoodArt. 3, page 8 of 8

References
Adafruit	 2018a	Adafruit PiTFT 2.8″ touchscreen display

for Raspberry Pi: Easy install.	 Perma	 Link:	 https://
perma.cc/HR9B-GWRZ	(visited	on	06/16/2018).

Adafruit	 2018b	Adafruit PiTFT 2.8″ touchscreen display
for Raspberry Pi: Overview.	 Perma	 Link:	 https://
perma.cc/Y45B-RBXJ	(visited	on	06/16/2018).

Adafruit	 2018c	 Raspberry Pi installer scripts: adafruit-
pitft.sh.	 Perma	 Link:	 https://perma.cc/TCE6-U8M8	
(visited	on	06/16/2018).

Arduino	 2018	 Arduino.	 Perma	 Link:	 https://perma.cc/
YSS9-QKM2	(visited	on	06/16/2018).

Banović, L	 and Vihar, B	 2018	 “Development	 of	 an	
Extruder	for	Open	Source	3D	Bioprinting”.	In:	Jour-
nal of Open Hardware,	2(1):	1.	ISSN:	2514-1708.	DOI:	
https://doi.org/10.5334/joh.6

Blagoderov, V,	 et	 al.	 2012	 “No	 specimen	 left	 behind:	
Industrial	scale	digitization	of	natural	history	collec-
tions”.	In:	ZooKeys,	209:	133–146.	ISSN:	1313-2989.	
DOI:	https://doi.org/10.3897/zookeys.209.3178

Carew, M	2018	ROUTY CNC Router (V-Slot Belt and Pin-
ion).	Perma	Link:	https://perma.cc/FN2W-7F58	(vis-
ited	on	06/16/2018).

Cole-Parmer	 2018	 Masterflex L/S: An accurate digital
pump drive for critical metering and dispensing
applications.	 Perma	 Link:	 https://perma.cc/8WKG-
T3D6	(visited	on	06/16/2018).

El-Helaly, M, Balkhy, HH	and	Vallenius, L	2017	“Carpal	
tunnel	 syndrome	among	 laboratory	 technicians	 in	
relation	to	personal	and	ergonomic	factors	at	work”.	
In:	Journal of Occupational Health,	59(6):	513–520.	
DOI:	https://doi.org/10.1539/joh.16-0279-OA

Fisher Scientific	2018	Drosophila products and supplies.	
Perma	 Link:	 https://perma.cc/H252-Y5YK	 (visited	
on	06/27/2018).

gnea	 2017	 Grbl v1.1f (2017-08-01) Release.	 Perma	
Link:	 https://perma.cc/K26Y-7BY4	 (visited	 on	
08/01/2017).

gnea	 2018	Grbl: An open source, embedded, high perfor-
mance g-code-parser and CNC milling controller writ-
ten in optimized C that will run on a straight Arduino.	

URL:	 https://github.com/gnea/grbl	 (visited	 on	
06/17/2018).

Held, LI, Jr.	 2017	 Deep Homology? Uncanny Similari-
ties of Humans and Flies Uncovered by Evo-Devo.	
Cambridge:	 Cambridge	 University	 Press.	 ISBN:	
9781316601211.

iGEM Aachen	 2018a	 Hardware.	 Perma	 Link:	 https://
perma.cc/2VCJ-4XRF	(visited	on	06/16/2018).

iGEM Aachen	 2018b	 Precise peristaltic pump.	 Perma	
Link:	 https://perma.cc/N6GQ-LDZZ	 (visited	 on	
06/16/2018).

Manchester Fly Facility	 2018	 Why the fly?	 Perma	
Link:	 https://perma.cc/PNQ3-Y7EP	 (visited	 on	
02/03/2018).

OpenBuilds	 2018	 OpenBuilds.	 Perma	 Link:	 https://
perma.cc/Q6SW-ZLCS	(visited	on	06/16/2018).

Raspberry Pi Foundation	 2018	 Raspberry Pi.	 Perma	
Link:	 https://perma.cc/WSG5-BVHF	 (visited	 on	
06/16/2018).

Smoothieboard	 2018	 Smoothieboards.	 Perma	 Link:	
https://perma.cc/US2N-UA2W	 (visited	 on	
06/16/2018).

Synthetos	2018a	Affordable Industrial Grade Motion Con-
trol.	URL:	https://github.com/synthetos/TinyG	(vis-
ited	on	06/17/2018).

Synthetos	 2018b	Arduino gShield: Archived source code
and hardware design files.	 Perma	 Link:	 https://
perma.cc/B2WM-D2LF	(visited	on	06/17/2018).

Synthetos	 2018c	The Arduino gShield: A complete hard-
ware solution the grbl CNC motion control software.	
URL:	https://github.com/synthetos/grblShield	(vis-
ited	on	06/17/2018).

Synthetos	2018d	TinyG: Archived source code and hard-
ware design files.	 Perma	 Link:	 https://perma.
cc/67Y7-RAJM	(visited	on	06/17/2018).

Tkinter	 2018	 Tkinter wiki.	 Perma	 Link:	 https://perma.
cc/9VGV-RGVN	(visited	on	06/16/2018).

Wikipedia	 2018a	 Cable carrier.	 Perma	 Link:	 https://
perma.cc/D87F-9QTG	(visited	on	06/16/2018).

Wikipedia	 2018b	 G-code.	 Perma	 Link:	 https://perma.
cc/2MQN-TX97	(visited	on	06/16/2018).

How to cite this article: Wayland, MT and Landgraf, M 2018 A Cartesian Coordinate Robot for Dispensing Fruit Fly Food.
Journal of Open Hardware, 2(1): 3, pp. 1–8, DOI: https://doi.org/10.5334/joh.9

Published: 31 July 2018

Copyright: © 2018 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

 OPEN ACCESS Journal of Open Hardware is a peer-reviewed open access journal published by Ubiquity
Press.

https://perma.cc/HR9B-GWRZ
https://perma.cc/HR9B-GWRZ
https://perma.cc/Y45B-RBXJ
https://perma.cc/Y45B-RBXJ
https://perma.cc/TCE6-U8M8
https://perma.cc/YSS9-QKM2
https://perma.cc/YSS9-QKM2
http://doi.org/10.5334/joh.6
https://doi.org/10.3897/zookeys.209.3178
https://perma.cc/FN2W-7F58
https://perma.cc/8WKG-T3D6
https://perma.cc/8WKG-T3D6
https://doi.org/10.1539/joh.16-0279-OA
https://perma.cc/H252-Y5YK
https://perma.cc/K26Y-7BY4
https://github.com/gnea/grbl
https://perma.cc/2VCJ-4XRF
https://perma.cc/2VCJ-4XRF
https://perma.cc/N6GQ-LDZZ
https://perma.cc/PNQ3-Y7EP
https://perma.cc/Q6SW-ZLCS
https://perma.cc/Q6SW-ZLCS
https://perma.cc/WSG5-BVHF
https://perma.cc/US2N-UA2W
https://github.com/synthetos/TinyG
https://perma.cc/B2WM-D2LF
https://perma.cc/B2WM-D2LF
https://github.com/synthetos/grblShield
https://perma.cc/67Y7-RAJM
https://perma.cc/67Y7-RAJM
https://perma.cc/9VGV-RGVN
https://perma.cc/9VGV-RGVN
https://perma.cc/D87F-9QTG
https://perma.cc/D87F-9QTG
https://perma.cc/2MQN-TX97
https://perma.cc/2MQN-TX97
https://doi.org/10.5334/joh.9
http://creativecommons.org/licenses/by/4.0/

	Metadata Overview
	(1) Overview
	Introduction
	Overall Implementation and Design
	Overview
	Design based on a CNC router
	Incorporation of the peristaltic pump
	Custom electronics
	Top level control
	User interface to control system
	Modularity

	(2) Quality control
	Safety
	Electric shock
	Entanglement or entrapment in moving parts
	Slips, trips and falls

	Calibration
	Calibration of actuator motion
	Determination of vial coordinates
	Calibration of the flow rate of the peristaltic pump
	Generation of G-code programs
	Liquid handling performance

	General testing

	(3) Application
	Use case
	Reuse potential and adaptability
	Support

	(4) Build Details
	Availability of materials and methods
	Ease of build
	Operating software and peripherals
	Dependencies
	Hardware documentation and files location
	Archive for hardware documentation and build files
	Software source code repository

	(5) Discussion
	Conclusions
	Future Work

	Additional File
	Acknowledgements
	Funding Information
	Competing Interests
	Author Contributions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

