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The accuracy of existing impedance boundary conditions is investigated, and new impedance
boundary conditions are derived, for lined ducts with inviscid shear flow. The accuracy of the
Ingard–Myers boundary condition is found to be poor. Matched asymptotic expansions are used to
derive a boundary condition accurate to second order in the boundary layer thickness, which shows
substantially increased accuracy for thin boundary layers when compared with both the Ingard–
Myers boundary condition and its recent first order correction. Closed-form approximate boundary
conditions are also derived using a single Runge–Kutta step to solve an impedance Ricatti equation,
leading to a boundary condition that performs reasonably even for thicker boundary layers. Surface
modes and temporal stability are also investigated.
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1. Introduction
The work of Ingard (1959) and Myers (1980) on the acoustic boundary condition at an impedance

surface in a non-quiescent fluid has formed the basis for most subsequent work, industrial and
academic (e.g. Koch & Mohring 1983; Tester 1973b), where sound attenuation in a moving fluid
was important. Over thirty years after the publication of Myers’ paper, and over five years since
indisputable evidence was presented, both theoretical (Brambley 2009) and experimental (Renou &
Aurégan 2011), of its weaknesses, the Ingard–Myers boundary condition continues to be routinely
used in aeroacoustics computations to inform engine design.

Inviscid perturbations to a sheared flow over an acoustic liner are governed by the Pridmore-
Brown (1958) equation. Modal solutions to this equation show that acoustic liners do not only
attenuate acoustic modes, but also support surface waves – vibrations of the liner and boundary
layer – that are not present in the hard-wall case. These waves were classified as surface modes by
Rienstra (2003), who used uniform flow and the Myers (or Ingard-Myers) model of the impedance
lining to find a possible four surface modes per frequency and circumferential order. This work was
extended by Brambley (2013), who accounted for the thin-but-nonzero thickness boundary layer
by using the first order correction terms to the Myers condition (Brambley 2011b) and found the
number of possible surface waves increased to six. At present no further surface wave solutions to
the Pridmore-Brown equation have been identified.

The importance of including a finite-thickness shear layer rather than assuming a uniform
slipping flow also manifests in the different convective and absolute stability of the two models.
Experimental evidence of an instability in flow over an impedance lining has been reported many
times (e.g. Aurégan & Leroux 2008; Marx et al. 2010). Theoretical predictions of the instability
that utilise the Myers model found that in the time domain a numerical instability would grow
at the grid scale and swamp any meaningful signal, while in the frequency domain an unstable
mode was found with a growth rate unbounded with increasing wavenumber. This was due to the
illposedness of the problem of uniform slipping flow over an impedance lining (Brambley 2009).
This illposedness is regularised by taking into account a thin but finite-thickness sheared boundary
layer, and modified versions of the Myers condition (Brambley 2011b; Joubert 2010; Myers &
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Chuang 1984; Rienstra & Darau 2011), correct to first order in the boundary layer thickness,
predict convectively or absolutely unstable modes with bounded growth rates.

The accuracy of the current inviscid models was investigated by Gabard (2013) by considering
reflection of acoustic plane waves from an impedance lining in shear flow. It was found that use
of the Myers condition can lead to significant errors (of up to 14dB) in predictions of sound
attenuation due to the great impact of the boundary layer thickness. Modelling the physics inside
the boundary layer more precisely, for instance by expanding to second order in the boundary
layer thickness, should therefore lead to more accurate predictions of the absorption and reflection
coefficients for an acoustic liner in flow. The accuracy of current boundary conditions and the
newly derived conditions are tested in a different way here: by comparing with the exact effective
impedance found by numerical solution of the Pridmore-Brown equation; and by comparing the
prediction of cuton and cutoff acoustic modes.

There are a number of common simplifications used in the literature that we follow here, since
reasonable agreement is possible between theory using these assumptions and practice (e.g. Boyer
et al. 2011). Commonly, acoustic liners are manufactured using a perforated facing sheet having
hole diameters and spacings of the order of or larger than a typical boundary layer thickness. The
majority of acoustic lining literature models such linings as homogeneous, however, and here we
follow this simplification. When applied in shear flow, the Pridmore-Brown equation possesses a
singularity, called the critical layer, wherever the phase speed of a wave is equal to the base flow
velocity (that is, when a wave is perfectly convected). It has been shown that the contribution
to the resultant sound field of the critical layer is modest at most (Brambley et al. 2012). Here
we avoid the critical layer in favour of simplicity. Also omitted from the analysis are viscous and
nonlinear effects. It has been shown that viscosity alone does not regularise the illposedness of
the Myers condition (Brambley 2011a), but when coupled with a finite-thickness shear layer the
problem becomes wellposed and the viscothermal effects allow the unstable mode to restablise
below a critical wavelength (Khamis & Brambley 2015) – a phenomenon missing from the inviscid
theory. It has also been shown that including viscosity in the boundary layer can be necessary
to accurately match theoretical results with experimental data (Renou & Aurégan 2010, 2011).
Nonlinearity with respect to the interaction between sound field, shear flow and liner is beyond
the scope of this work.

In this work, new boundary conditions are derived that extend the inviscid theory. In section 2
the governing Pridmore-Brown equations for the acoustic pressure p̃ and velocity ṽ are stated, and
an impedance Ricatti equation is derived for Z(r) = p̃(r)/ṽ(r). Section 3 describes the asymptotic
analysis leading to a boundary condition that is correct to second order in the boundary layer
thickness. Section 4 solves the impedance equation by a single fourth order explicit Runge-Kutta
step across the boundary layer; and by a second order, single-step implicit scheme. Expressions
are given for the effective impedance at the lining seen by the acoustics in a plug flow (uniform
mean flow). In section 5, the accuracy of each of these models is compared against the Ingard-
Myers boundary condition, its first order correction, and numerical simulations. While the second
order boundary condition performs better for thin boundary layers, the single-step implicit Runge-
Kutta scheme retains accuracy for high frequencies and short wavelengths, and for thicker boundary
layers, making it a viable substitute for the asymptotic boundary conditions outside their regions
of validity. In section 6, simplified forms of the conditions are found both for a specific linear shear
profile and for the limiting case k/ω � 1 satisfied by surface modes. In section 7 it is found that
the second order asymptotic condition is extremely accurate when investigating surface modes
and their stability, as well as cuton and cutoff acoustic modes. The second order condition does,
however, support spurious modes far from its region of asymptotic validity.

2. Governing equations
We are concerned with the dynamics of an inviscid compressible perfect gas, for which (with a

star denoting a dimensional variable) the governing equations take the form

∂ρ∗

∂t∗
+∇∗ · (ρ∗u∗) = 0, ρ

Du∗

Dt∗
= −∇∗p∗, Dp∗

Dt∗
= c∗

2Dρ∗

Dt∗
, (2.1)
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where the material derivative isD/Dt∗ = ∂/∂t∗+u∗·∇∗; γ = c∗p/c
∗
v is the ratio of specific heats; and

p∗, ρ∗ and u∗ are the fluid pressure, density and velocity, respectively. The third equation in (2.1),
relating p∗ and ρ∗, is a consequence of the assumption that the specific entropy remains constant
for a given fluid particle (Pierce 1994); for a perfect gas, the speed of sound satisfies c∗

2

= γp∗/ρ∗.
To nondimensionalise, we imagine a cylindrical duct (x, r, θ) with an uniform base flow at its
centreline and scale length by the duct radius l∗; density by the centreline value ρ∗0; velocity by
the centreline sound speed c∗0 =

√
γp∗0/ρ

∗
0; and pressure by ρ∗0c∗

2

0 . Time is made dimensionless by
combining the length and velocity scales, t∗ = l∗t/c∗0. In such a scheme, the duct radius is unity,
and the centreline main-flow density and pressure take the respective values ρ0 = 1, and p0 = 1/γ.
The dimensionless centreline velocity is U0 = M , the centreline Mach number of the flow. In a thin
region of width δ near the acoustically-lined duct wall, the steady base flow velocity and density
vary, giving r-dependent profiles, U(r) and ρ(r). We take the flow to be non-slipping, non-swirling,
and everywhere parallel, and as such the base pressure is constant across the boundary layer,
p ≡ p0. The nondimensional governing equations are, for completeness,

∂ρ

∂t
+∇ · (ρu) = 0, ρ

Du

Dt
= −∇p, Dp

Dt
=
γp

ρ

Dρ

Dt
. (2.2)

Small, unsteady perturbations to the base flow are considered, of the form

q = q̃(r) exp {iωt− ikx− imθ}.
The common exponential factor is omitted henceforth. The velocity and density gradients in the
base flow boundary layer alter the effect of the acoustic lining on the acoustics. At the lining, the
acoustic pressure drives a wall-normal velocity, p̃ = Zbṽ, for the given impedance of the lining, Zb.
Governing equations for the acoustic pressure p̃ and radial velocity ṽ may be derived from (2.2):(

p̃′

Q

)′
+
ᾱ2

Q
p̃ = 0,

[(
rṽ

ω − Uk

)′
Q

ᾱ2

]′
+Q

(
rṽ

ω − Uk

)
= 0, (2.3a,b)

where a dash denotes differentiation with respect to r, and

Q(r) =
ρ(ω − Uk)2

r
and ᾱ(r)2 = ρ(ω − Uk)2 − k2 − m2

r2
. (2.4)

It is worth noting that the Pridmore-Brown equation (2.3a) (Pridmore-Brown 1958) and the
corresponding equation for the radial velocity (2.3b) are both second order, in p̃ and ṽ respectively,
with the radial momentum equation stating ṽ ∼ p̃′. The similarity between the two equations
(2.3a,b) may be highlighted by defining φ = rṽ/(ω − Uk) and rearranging,

Q

ᾱ2

(
p̃′

Q

)′
+ p̃ = 0,

1

Q

(
Q

ᾱ2
φ′
)′

+ φ = 0. (2.5a,b)

Inherent in the linearisation of the Euler equation, and thus in (2.3a,b), is the so-called critical
layer singularity, ω − U(rc)k = 0, where rc is the radial location of the critical layer. This occurs
when a wave is perfectly convected, and leads to a continuous hydrodynamic spectrum. We neglect
the critical layer in this work by assuming that rc does not fall within our physical domain.

2.1. The uniform solution
It is well known (see, e.g., Brambley & Peake 2008; Vilenksi & Rienstra 2007) that the acoustic

pressure and radial velocity in a duct with inviscid uniform flow can be expressed in terms of Bessel
functions as p̃u(r) = EJm(αr) and ṽu(r) = iαEJ ′m(αr)/(ω−Mk), where α2 = (ω−Mk)2−k2 and
E is a constant amplitude. Modes for such a flow are found by applying a boundary condition at the
lined wall, p̃u(1) = Zeff ṽu(1). The effective impedance Zeff differs from the true lining impedance
Zb due to refraction through the sheared boundary layer, which is neglected in the uniform flow
model. For example, for the Myers boundary condition,

Zeff =
ω

ω −Mk
Zb, (2.6)

where the Doppler factor accounts for refraction across a vortex sheet by enforcing continuity
of normal discplacement. We would like to choose a Zeff such that the easily calculable uniform
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flow acoustic modes match the modes in the real flow with a sheared boundary layer. Thus, Zeff

includes information about both the lining impedance Zb, and how acoustic modes evolve in shear.
This means that solving the uniform-flow problem with a lining impedance of Zeff is equivalent to
solving the true sheared flow problem with the actual lining impedance Zb. We are interested in
the relationship between Zb and Zeff .

If we knew both ω and k, then we could find Zeff explicitly:

Zeff = (ω −Mk)
Jm(α)

iαJ ′m(α)
. (2.7)

We do not know both k and ω a priori, however, and therefore we would like to solve (2.7) for
the modes k(ω); a relationship between Zeff and the known Zb is then needed. For example, the
Ingard–Myers boundary condition modelling an infinitely thin shear layer (Eversman & Beckemeyer
1972) is given in (2.6), while the first order asymptotic correction to the Ingard–Myers boundary
condition in the limit of a thin shear layer (Brambley 2011b) is given by

Zeff =
ω

ω −Mk

Zb − i(ω−Mk)2

ω δI0

1 + iωZb
k2+m2

(ω−Mk)2 δI1
, (2.8)

where I0 and I1 are integrals across the thin boundary layer,

δI0 =

∫ 1

0

1−
(
ω − U(r)k

)2
ρ(r)

(ω −Mk)2
dr, δI1 =

∫ 1

0

1− (ω −Mk)2(
ω − U(r)k

)2
ρ(r)

dr. (2.9)

2.2. An impedance governing equation
Most work concerning acoustic propagation in inviscid fluids begins with equations (2.2) and

reduces them to a form of the Pridmore-Brown equation (Pridmore-Brown 1958), e.g. (2.3a). Less
common is the corresponding governing equation for the radial acoustic velocity ṽ, (2.3b). Here,
we also work directly with the impedance and derive a new governing equation. We extend the
relationship p̃ = Zbṽ at the boundary r = 1 to one valid for all r, Z(r) = p̃(r)/ṽ(r). The same is
done for the uniform flow equivalent, Zu(r) = p̃u(r)/ṽu(r). Hence, Zb ≡ Z(1) and Zeff ≡ Zu(1).

From (2.2) and (2.3a,b) the following relations may be derived:

ᾱ2

Q
p̃ = i

(
rṽ

ω − Uk

)′
and p̃′ = −iQ

(
rṽ

ω − Uk

)
. (2.10)

Guided by the form of (2.10), we write

1

r
(ω − Uk)Z =

p̃
rṽ

(ω−Uk)

. (2.11)

Taking the derivative with respect to r and using (2.10) to eliminate p̃ and ṽ we find a nonlinear
Ricatti equation for Z, [

1

r
(ω − Uk)Z

]′
= −iQ+

iᾱ2

Q

[
1

r
(ω − Uk)Z

]2

. (2.12)

Note that (2.12) is a rephrasing of the acoustic equations (2.3a,b), and thus Z(r) represents
the lumped impedance of both the boundary and the fluid in [r, 1]. Since (2.12) is a first order
equation and at the lining the boundary condition gives Z(1) = Zb, in the uniform flow region the
requirement that Z(r) = Zu(r) allows us to find Zeff .

The equation (2.12) is exact, and so its numerical solution should correspond with direct solution
of the Pridmore-Brown equation. However, its nonlinearity makes it a less attractive candidate for
such computations. We instead solve equation (2.12) using two different approximate methods. In
section 4, two single-step Runge-Kutta solutions are found, one explicit and one implicit, which
exploit the inherently small step size δ. In appendix B, an alternative asymptotic analysis (to that
in section 3) is performed by expanding (2.12) in terms of the small width of the boundary layer,
δ. The two methods vary in essence by where we make our approximations: the first approximately
solves an exact equation, the second exactly solves an approximate equation.
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3. Deriving the asymptotic solution

In this section the asymptotic boundary condition for the effective impedance is found to second
order in δ by solving equations (2.3a,b) inside the boundary layer and matching to the uniform
solutions outside the boundary layer.

Outside the boundary layer, the uniform base flow pressure solution may be written p̃u(r) =
EJm(αr) as described above. Expanding this about the lined wall at r = 1 using the boundary
layer scaling r = 1− δy as in Brambley (2011b), the outer solution for the pressure becomes

p̃u(1− δy) = EJm(α)− δyEαJ ′m(α)− 1

2
δ2y2E

[
αJ ′m(α) + (α2 −m2)Jm(α)

]
+O(δ3). (3.1)

Using the notation p∞ ≡ p̃u(1), the pressure at the wall r = 1, and v∞ ≡ ṽu(1), (3.1) and the
equivalent radial velocity expansion may be written

p̃u(1− δy) = p∞ + δyi(ω −Mk)v∞ +
1

2
δ2y2

[ (
k2 +m2 − (ω −Mk)2

)
p∞ + i(ω −Mk)v∞

]
+O(δ3)

(3.2a)

ṽu(1− δy) = v∞ − δy
(

(ω −Mk)2 − k2 −m2

i(ω −Mk)
p∞ − v∞

)
+

1

2
δ2y2

[
3m2 + k2 − (ω −Mk)2

i(ω −Mk)
p∞

+
(
2 + k2 +m2 − (ω −Mk)2

)
v∞

]
+O(δ3). (3.2b)

Our inner solutions will be matched to (3.2) in the limit y →∞.
In terms of the boundary layer variable y, equations (2.3a,b) become

(
p̃y

ρ(ω − Uk)2

)
y

= δ

(
yp̃y

ρ(ω − Uk)2

)
y

− δ2

(
1− k2 +m2

ρ(ω − Uk)2

)
p̃+O(δ3) (3.3)

for the pressure, and

[( ṽ

ω − Uk
)
y

ρ(ω − Uk)2

ρ(ω − Uk)2 − k2 −m2

]
y

= δ

(
ṽ

ω − Uk
ρ(ω − Uk)2

ρ(ω − Uk)2 − k2 −m2

)
y

− δ
[(

ṽ

ω − Uk

)
y

2m2yρ(ω − Uk)2

[ρ(ω − Uk)2 − k2 −m2]
2

]
y

− δ2

(
ṽ

ω − Uk ρ(ω − Uk)2

)
+ δ2

(
ṽ

ω − Uk
yρ(ω − Uk)2

[ρ(ω − Uk)2 − k2 −m2]
2

(
ρ(ω − Uk)2 +m2 − k2

))
y

− δ2

[(
ṽ

ω − Uk

)
y

4m2y2ρ(ω − Uk)2

[ρ(ω − Uk)2 − k2 −m2]
3

(
ρ(ω − Uk)2 − k2

) ]
y

+O(δ3) (3.4)

for the radial velocity; ρ and U are now the corresponding base density and axial velocity as
functions of y. A subscript denotes differentiation.

Solving (3.3) and (3.4) to second order produces the inner solutions; see appendix A for details.
When evaluated at the wall, the second order correction to the ṽ expansion is singular if (ω−Mk)2 =
k2 + m2. Solutions of the Pridmore-Brown equation exist at this point. Thus, the singularity is
a consequence of the asymptotic expansion and is spurious. Close to the new singular point one
could simply revert to using the first order expansion as derived by Brambley (2011b), which is
unaffected by the unphysical singularity.

Matching with the outer solutions (3.2) and evaluating at the boundary y=0 gives, after some
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algebra,

p̃(0) = p̃u(0) + i(ω −Mk)ṽu(0)δI0 + i(ω −Mk)ṽu(0)δ2I2 + (k2 +m2)p̃u(0)
(
δI0δI1 − δ2I3

)
− (ω −Mk)2p̃u(0)δ2I7 +O(δ3), (3.5a)

ṽ(0) =
ω

ω −Mk

{
ṽu(0)− ip̃u(0)

k2 +m2

ω −Mk
δI1 + (ω −Mk)2ṽu(0)δ2I2 + (k2 +m2)ṽu(0)δ2I3

+ ip̃u(0)
k2 +m2

ω −Mk

k2 −m2 − (ω −Mk)2

k2 +m2 − (ω −Mk)2
δ2I3 + (k2 +m2)ṽu(0)

(
δI0δI1 − δ2I2 − δ2I5

)
+

2im2p̃u(0)

ω −Mk

(
k2 +m2

k2 +m2 − (ω −Mk)2
δ2I6 − δ2I4

)}
+O(δ3), (3.5b)

where the integrals Ij are

I0 =

∫ ∞
0

χ0(y)dy, I1 =

∫ ∞
0

χ1(y)dy, I2 =

∫ ∞
0

yχ0(y)dy

I3 =

∫ ∞
0

yχ1(y)dy, I4 =

∫ ∞
0

yχ2(y)dy, I5 =

∫ ∞
0

χ1(y)

∫ y

0

χ0(y′)dy′dy

I6 =

∫ ∞
0

yχ1(y)χ2(y)dy, I7 =

∫ ∞
0

χ0(y)

∫ y

0

(
1− k2 +m2

ρ(y′)(ω − U(y′)k)2

)
dy′dy

(3.6)

with

χ0(y) =

[
1− ρ(ω − Uk)2

(ω −Mk)2

]
, χ1(y) =

[
1− (ω −Mk)2

ρ(ω − Uk)2

]
,

χ2(y) =

[
1− (ω −Mk)2 − k2 −m2

ρ(ω − Uk)2 − k2 −m2

]
.

(3.7)

The impedance of the boundary is the ratio of the acoustic pressure to the normal velocity that
it drives, so we write Zb = p̃(0)/ṽ(0) using equations (3.5). We identify the effective impedance
with the same ratio for the uniform flow variables: Zeff = p∞/v∞. Using these two relationships
we may rearrange the ratio of (3.5a) and (3.5b) to find an expression for the effective impedance
of an acoustic liner with an inviscid sheared boundary layer:

Zeff =
ω

Ωu

Zb − iΩ2
u

ω

(
δI0 + δ2I2

)
− Zbµ2δ2I2 + σ+Zb(δI0δI1 + δ2I3 − δ2I5)

1 + iσ+
ωZb

Ω2
u
δI1 + Υ1δ2I3 + Υ2

(
δ2I4 − σ+

µ2 δ2I6

)
+ σ+δI0δI1 −Ω2

uδ
2I7

+O(δ3), (3.8)

where σ+ = k2 +m2, Ωu = ω −Mk, and µ2 = σ+ −Ω2
u; and

Υ1 =
iσ+ωZb
Ω2

u

(2m2

µ2
− 1
)
− σ+, Υ2 = 2im2ωZb

Ω2
u

.

Equation (3.8) readily reduces to the modified boundary condition as derived by Brambley (2011b)
at O(δ), (2.8), and to the classical Myers condition (2.6) in the limit δ → 0. Figure 1 shows that
the condition is correct to the stated asymptotic order.

Equation (3.8) may be applied in the physical r domain by transforming the integrals Ij as
follows:

δI0 =

∫ 1

0

χ0(r)dr, δI1 =

∫ 1

0

χ1(r)dr, δ2I2 =

∫ 1

0

(1− r)χ0(r)dr

δ2I3 =

∫ 1

0

(1− r)χ1(r)dr, δ2I4 =

∫ 1

0

(1− r)χ2(r)dr, δ2I5 =

∫ 1

0

χ1(r)

∫ 1

r

χ0(r′)dr′dr

δ2I6 =

∫ 1

0

(1− r)χ1(r)χ2(r)dr, δ2I7 =

∫ 1

0

χ0(r)

∫ 1

r

(
1− σ+

ρ(r′)Ω(r′)2

)
dr′dr.

(3.9)
An example of the accuracy of this boundary condition is given in section 5, and an explicit form
for a linear boundary layer profile is given in section 6.1.
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Figure 1. The relative errors of the leading (black dotted), first (blue dashed) and second (red solid) orders
of the new boundary condition (3.8) when compared with numerical solutions of the Pridmore-Brown
equation. The green dash-dot lines have gradients of 1, 2 and 3 beginning from the top and moving down.
Parameters used are k = ±1 ± i,±i and ω = 1, m = 0, M = 0.5 with the tanh boundary layer profile of
(5.1). Relative error is defined |Z∗/Zeff − 1|, where Z∗ is the approximation from the specified model, and
Zeff is the exact result from (2.7).

4. The Runge-Kutta solutions
Here we derive an expression for Zeff by approximately solving (2.12) using a single step of a

fourth order explicit Runge-Kutta method (see Hairer et al. 1993), and a second order, single-step
implicit scheme.

Equation (2.12) may be transformed as follows. Dividing (2.12) through by (ω−Mk)2 produces

1

ω −Mk
L′ = −iQ̃+

iᾱ2

Q̃(ω −Mk)2
L2, (4.1)

where Q̃ = Q/(ω −Mk)2, an O(1) quantity for all ω, k, and

L =
(ω − Uk)

r(ω −Mk)
Z. (4.2)

The quantity L may be split into a uniform flow value, Lu = Zu/r, and a perturbation due to the
presence of the boundary layer, L̃, such that

L = Lu + L̃. (4.3)

Equation (4.1) has the associated data Lu(1) = Zeff , and L = Lu outside the boundary layer. For
a uniform flow of Mach number M and constant density ρ ≡ 1, (4.1) reduces to

1

(ω −Mk)
L′u = − i

r
+ ir

(
1− k2 + m2

r2

(ω −Mk)2

)
L2

u. (4.4)

Equation (4.4) may then be used in (4.1) along with the decomposition (4.3) to form a governing
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equation for L̃(r):

1

(ω −Mk)
L̃′ =

i

r

[
1− ρ(ω − Uk)2

(ω −Mk)2

]
+ ir

k2 + m2

r2

(ω −Mk)2

[
1− (ω −Mk)2

ρ(ω − Uk)2

]
L2

u

+ ir

[
1− k2 + m2

r2

ρ(ω − Uk)2

]
(2LuL̃+ L̃2). (4.5)

The asymptotics of equation (4.5) may be found in appendix B, where it is shown that the
Modified Myers (Brambley 2011b) condition may be cleanly reproduced from (4.5) but the second
order extension runs into difficulties concerning nonuniqueness. Here, we proceed with approximate
solutions to (4.5).

4.1. The explicit scheme
In order to ensure the correct δ → 0 behaviour, we use the decomposition (4.3) and solve (4.5)

for L̃(r), with the necessary condition that L̃ = 0 in uniform flow (for r < 1 − δ). While this is
technically only valid for profiles with U ≡M for r < 1− δ, for a 99%U0 boundary layer thickness
the approximation L̃ = 0 for r < 1 − δ is a reasonable one. We choose to step from the top of
the boundary layer at r = 1 − δ, with the initial condition L̃(1 − δ) = 0, to the lining at r = 1,
where the boundary condition L̃(1) = ωZb/(ω −Mk) − Zeff gives Zeff as a function of Zb. Using
the analytic uniform solution defined in section 2.1 we can treat as known the intermediate values
of Lu(r) that arise.

To perform the step, we define the 4th order explicit Runge-Kutta difference equation L̃1 =
L̃0 + δ

6 (k1 + 2k2 + 2k3 + k4), where L̃0 = L̃(1− δ) = 0. Defining

A =
i(ω −Mk)

r
χ0, B = ir

k2 +m2/r2

ω −Mk
χ1, C = ir(ω −Mk)

[
1− k2 +m2/r2

ρ(ω − Uk)2

]
, (4.6)

with χj defined as in (3.7), the kj terms become

k1 =A(1−δ) +B(1−δ)Lu(1−δ)2, (4.7a)

k2 =A(1−δ/2) +B(1−δ/2)Lu(1−δ/2)2 + C(1−δ/2)

(
2Lu(1−δ/2)

δ

2
k1 +

δ2

4
k2

1

)
, (4.7b)

k3 =A(1−δ/2) +B(1−δ/2)Lu(1−δ/2)2 + C(1−δ/2)

(
2Lu(1−δ/2)

δ

2
k2 +

δ2

4
k2

2

)
, (4.7c)

k4 =A(1) +B(1)Z2
eff + C(1)

(
2Zeffδk3 + δ2k2

3

)
. (4.7d)

The decomposition (4.3) may then be used to apply the boundary condition at r=1, giving

Zeff =
ω

ω −Mk
Zb −

δ

6
(k1 + 2k2 + 2k3 + k4). (4.8)

If we extract the Zeff from k4, defining k4 = k̃4 + [B(1)Zeff + 2C(1)δk3]Zeff , where k̃4 = A(1) +
δ2C(1)k2

3, we can rearrange (4.8) to find

Zeff =
ω

ω −Mk

Zb − δ
6 (1−Mk/ω)(k1 + 2k2 + 2k3 + k̃4)

1 + δ
6 (B(1)Zeff + 2δC(1)k3)

, (4.9)

which then gives Zeff as a function of Zb. The classical Myers condition is recovered in the limit
δ → 0, as we would hope (Eversman & Beckemeyer 1972; Tester 1973a). The form of (4.9) bears
a striking resemblance to that of the Modified Myers condition.

4.2. A single-step implicit scheme
Here we define a trapezoidal second order, single-step implicit Runge-Kutta scheme and use it

for a single step to approximate Zeff . For this scheme, the fundamental difference equation for the
differential equation y′ = f(x, y) is

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)). (4.10)
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The method is implicit due to the appearance of yn+1 on both sides of (4.10).
We use the scheme to first step back from the boundary, which has a known impedance Zb,

through the sheared boundary layer profile to the edge of the boundary layer at r = 1 − δ; and
then to step forward from r = 1 − δ to r = 1 assuming a uniform flow. The details of these steps
are found in appendix D.

The method results in the following effective impedance

Zeff = X1 +
1

2
δ(k̃1 + k̃2), (4.11)

where

X1 = X0 −
1

2
δ(k1 + k2), and X0 =

ω

ω −Mk
Zb, (4.12)

with

k1 =A1(1) +B1(1)X2
0 , (4.13)

k2 =

(
2

δ2B1(1−δ) + 2
X0

δ
− k1

)(
1−

{
1− 4A1(1−δ)/B1(1−δ) + (2X0 − δk1)2(

2
δB1(1−δ) + 2X0 − δk1

)2

} 1
2
)
, (4.14)

for

A1(r) = − i

r

ρ(ω − Uk)2

ω −Mk
, B1(r) = ir(ω −Mk)

(
1− k2 +m2/r2

ρ(ω − Uk)2

)
;

and

k̃1 =A2(1−δ) +B2(1−δ)X2
1 , (4.15)

k̃2 =

(
2

δ2B2(1)
− 2

X1

δ
− k̃1

)(
1−

{
1−

4A2(1)/B2(1) +
(

2X1 + δk̃1

)2

(
2

δB2(1) − 2X1 − δk̃1

)2

} 1
2
)
, (4.16)

for

A2(r) = − i

r
(ω −Mk), B2(r) = ir(ω −Mk)

(
1− k2 +m2/r2

(ω −Mk)2

)
.

The two steps used here (back then forward) allow the resulting condition to be a direct map
from Zb to Zeff (like the asymptotic boundary condition (3.8)), without intermediate values of Zu

having to be used (as in the explicit Runge-Kutta scheme (4.9)).

5. Accuracy of models of Zeff

To measure the accuracy of the boundary conditions derived above, numerical solutions of the
full Pridmore-Brown equation were found. This was achieved using a sixth order finite difference
discretization on a computational grid spaced uniformly in ξ, where r = tanh(Aξ)/ tanh(A), and
A is a stretching parameter, in order to cluster points near r = 1 to resolve the boundary layer.
Regularity conditions were imposed at r = 0, and the wall boundary condition was p̃(1) = 1, with
ṽ free. Roots of the dispersion relation Zb = p̃/ṽ were found via Newton-Raphson iteration over k.
The tanh velocity profile (Rienstra & Vilenski 2008)

U(r) = M tanh

(
1− r
δ

)
+M(1− tanh (1/δ))

(
1 + tanh (1/δ)

δ
r + (1 + r)

)
(1− r), (5.1)

was used to generate the following results, with a constant density ρ(r) ≡ 1. This base flow has a
displacement thickness

δ∗ =
1

6δ

(
tanh2 (1/δ)− 1

)
+

1

3
(1 + 2 tanh (1/δ))− δ ln (cosh (1/δ)) , (5.2)

which for δ ∈ (10−7, 10−1) gives δ∗/δ = 0.69 to two decimal places.
A good initial test of the boundary conditions, and one which seems to be missing from the
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(e) Explicit RK, (4.9)
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Figure 2. Absolute errors in the complex k-plane of the predicted Zeff for each boundary condition. The
colour scheme is normalised such that the darkest blue is an error greater than or equal to 1.5 times
the mean Myers error. The red contour surrounds errors lower than the lowest quartile of the combined
results for the Myers, Modified Myers, second order asymptotic and the single-step implicit Runge-Kutta
conditions. Error was calculated as min{|Z1−Z2|, |1/Z1−1/Z2|}. Parameters are ω = 31,m = 24,M = 0.5,
δ = 2×10−3, for a tanh velocity profile (5.1) and constant base density ρ(r) ≡ 1. The boundary impedance
at each point is found from the numerical solution of the Pridmore-Brown equation, (2.3a).

literature concerning such impedance boundary conditions, is to directly check how well the effective
impedance is approximated. By solving the Pridmore-Brown equation throughout the complex k
plane for a given ω and m, a boundary impedance Zb is generated at each k. This solution has a
unique uniform-flow equivalent and the value of Zu(1) of this uniform-flow mode, from (2.7), is the
Zeff against which we test the models.

Figure 2 shows the absolute errors in the complex k-plane of the predicted Zeff for each boundary
condition. For the thin boundary layer thickness δ = 2×10−3, the asymptotic conditions perform
well. As one would expect, the O(δ2) asymptotic solution, fig. 2c, is more accurate throughout the
plotted domain than the Modified Myers condition, fig. 2b, which in turn is more accurate than
the Myers condition, fig. 2a. For the parameters ω = 31 and m = 24 (typical values for rotor-
alone noise in an aeroengine bypass duct at take-off (McAlpine et al. 2006)), and the restriction
to Im(k),Re(k) ∈ [−100, 100], we are well within the region of asymptotic validity, ω,m, k � 1/δ.
The single-step explicit Runge-Kutta scheme, fig. 2e, performs well in regions where the scheme is
stable, but blows up erratically due to the stiffness of the impedance Ricatti equation (2.12). The
single-step implicit scheme, fig. 2d, is reasonably accurate for most of the domain, but has regions
where the error is large. Sudden changes inside the boundary layer are not modelled well by the
implicit scheme, which utilises data points only at either side of the layer; this suggests the implicit
scheme is not suitable for predicting surface modes, and may explain the loss of accuracy of the
implicit scheme in the darker regions of fig. 2d. The Myers condition, fig. 2a, also loses accuracy in
these regions due to its vanishingly thin shear layer. The wellposed asymptotic schemes in figs. 2b
and 2c do not have this problem: the bulk treatment of the shear as integrals across the boundary
layer, (3.6), allow better modelling of variations inside the boundary layer.
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(b) Modified Myers, (2.8)
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(c) O(δ2) condition, (3.8)
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(e) Explicit RK, (4.9)
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Figure 3. As in fig. 2, but for a boundary layer thickness δ = 3×10−2. Note also the different error scale
compared with fig. 2.

In the bypass duct of an aeroengine the boundary layer may be much thicker than 10−3. Figure 3
shows results for δ = 3×10−2, with all other parameters as in fig. 2. For this relatively thick
boundary layer, the region of asymptotic validity is k � 33, so it is no surprise that the breakdown
of the asymptotic models (figs. 3b and 3c) occurs within the plotted domain. The Myers condition,
fig. 3a, is also only usefully accurate in a small region near the origin. The instability of the explicit
method makes it unusable in most circumstances (fig. 3e). The A-stable single-step implicit scheme,
however, comes into its own for thicker boundary layers. Figure 3d shows the implicit scheme
to be extremely accurate throughout the k domain. Importantly, the accuracy is not lessened
as k increases past 1/δ, meaning the single-step implicit scheme may also be useful when short
wavelength, high frequency waves interact with a thick boundary layer. There are, however, larger
errors near the Doppler-shifted origin, which is a region important for modes close to cuton. These
errors can manifest as erroneous instabilities of the least cutoff upstream modes, discussed in
section 7.

6. Simplified forms and limiting cases
Although expressible analytically, the boundary condition in (3.8) contains integrals across the

boundary layer that for a general boundary layer profile must be performed numerically. The
single-step implicit scheme boundary condition (4.11) is also complicated in its most general form.
We now investigate specific situations when fully closed, simplified forms of the conditions may be
found.

6.1. Linear boundary profile
In the case of a linear boundary layer velocity profile

U(r) =

{
M(1− r)/δ, (1− r) < δ
M, (1− r) > δ

(6.1)
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with a constant density ρ ≡ 1, the integrals Ij in (3.8) may be performed analytically and a closed
form expression for the O(δ2) asymptotic solution can be written:

Zeff =
ω

ω −Mk

Zb + δ iMk
3ω (3ω − 2Mk) + δ2 Mk

12ω

(
8Zb

(
k2 +m2

)
− (ωZb − i)(4ω − 3kM)

)
1 + iδMkZb

(k2+m2)
(ω−Mk)2 + δ2Υ3

, (6.2)

where

Υ3 =
Mk

12(ω −Mk)2

(
Mk3

(
4− 3M2

)
+ 2k2

(
5M2 − 4

)
ω +Mk

(
4m2 − 11ω2

)
− 8m2ω + 4ω3

)
− 6iMkωZ(m2 − k2)(2ω − 3Mk) +

iωZb
k2M2

(m2 − k2) ln

(
ω

ω −Mk

)
. (6.3)

Equation (6.2), with (6.3), may be applied directly as a boundary condition assuming a uniform
base flow.

The single-step implicit scheme (4.11) simplifies greatly for the specific linear shear profile (6.1).
Using the sign convention for the roots as discussed in appendix D, the boundary condition reduces
to

Zeff =
iΩu

δµ2
− iΩu

δµ2

{
1 +

δZbµ
2

Ω2
u

(
2iω + δ(ω2 − k2 −m2)Zb

)
− δ2Mkµ2 (2ω −Mk)

Ω2
u

} 1
2

, (6.4)

where as before Ωu = ω −Mk and µ2 = k2 +m2 −Ω2
u. Expanding the square root in the small-δ

limit recovers the Myers condition at leading order.
Recent work has shown that the shape of the boundary layer profile is not as important for at-

tenuation predictions as parameters such as the displacement and momentum thicknesses (Gabard
2013). Thus, the explicit forms (6.2) and (6.4) could be used more generally if the thickness is
altered to match the required boundary layer parameters.

As an example, the displacement thickness for a compressible flow may be defined

δ∗ =

∫ 1

0

1− ρ(r)U(r)

ρ0U0
dr, (6.5)

where a subscript 0 denotes a duct centreline value. Given a displacement thickness of a boundary
layer profile we wish to emulate, we could define a linear profile of the form (6.1) with δ → 2δ∗.
Momentum thickness and energy thickness might similarly be used.

6.2. Surface modes

Surface modes are waves localised near the boundary which decay exponentially into the
core of the duct. A surface with a finite impedance (not hard-wall) and an infinitesimally thin
boundary layer can support up to four surface modes (Rienstra 2003). Working to first order
in a finite boundary layer thickness above such a surface allows up to six surface modes to
be supported (Brambley 2013). To investigate the effect of the second order corrections to the
surface mode predictions, we utilise the scaling k/ω � 1 and the surface mode dispersion
relation (Brambley 2013)

µ− ω −Mk

iZeff
= 0, (6.6)

where Zmod in Brambley (2013) translates to the notation used here as iωZmod = i(ω−Mk)Zeff , and
µ2 = k2 +m2−(ω−Mk)2, with Re(µ) > 0. By rearranging (3.8) such that we have i(ω−Mk)Zeff =
f(Zb, Zeff), and using from (2.7)

Zeff = (ω −Mk)
Jm(α)

iαJ ′m(α)
, and

Jm(α)

αJ ′m(α)
∼ 1

µ
(6.7)
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in the function f(Zb, Zeff), the surface mode dispersion relation (6.6) for the O(δ2) asymptotic
solution may be written

0 = iωZb

[
µ− µ3δ2I2 + µ(k2 +m2)(δI0δI1 + δ2I3 − δ2I5)− (k2 +m2)

(
δI1 +

(
2m2

µ2 − 1

)
δ2I3

)
− 2m2

(
δ2I4 −

1

µ2
(k2 +m2)δ2I6

)]
+ µ(ω −Mk)2(δI0 + δ2I2)

+ (k2 +m2)(ω −Mk)2(δ2I3 − δI0δI1) + (ω −Mk)4δ2I7 − (ω −Mk)2. (6.8)

To use the dispersion relation (6.8), the Ij integral terms must be evaluated in the regime k/ω �
1 (or, in some cases, the wavenumber and frequency dependence extracted from the integrals). For
the integrals I0, I1, I2, I4 and I7 this may be readily done. For the integrals I3, I5 and I6, however,
global contributions are important and as such the k dependence cannot be extracted for a general
boundary layer profile. To overcome this problem, the high k/ω limit of the analytical results
for a linear profile are used. This is of course detrimental to the resulting surface mode model,
but it should give an idea of the number of possible new surface modes predicted by the second
order model. The asymptotic form of the Ij integrals are shown in appendix C. Using these in
(6.8) produces a polynomial in k of order 14 if we take Zb to be locally reacting (independent
of k), meaning that for a given frequency ω the O(δ2) asymptotic solution predicts the existence
of a possible 14 surface modes. Not all of these solutions will correspond to real modes, however,
since they must satisfy Re(µ) > 0 in order to decay away from the boundary. The surface mode
asymptotics of the Modified Myers condition by Brambley (2013) predict only six possible surface
modes. This suggests that either the Modified Myers condition fails to predict all possible surface
modes (through the neglect of important physics, say); or the new second order model predicts
spurious modes that are not shared by the Pridmore-Brown equation.

Repeating the above surface mode analysis for the single-step implicit Runge-Kutta scheme (6.4)
produces a 6th order polynomial in k, meaning a possible six surface modes for a given frequency.
This matches the number predicted by the Modified Myers condition (Brambley 2013), and suggests
that the extra surface modes predicted by the second order asymptotic condition derived here are
in fact spurious. This is investigated further in the next section.

7. Wavenumber spectrum and stability
Modes in the k-plane are found for the Myers, Modified Myers, single-step implicit scheme (4.11),

and the O(δ2) asymptotic solution (3.8), and compared with those found via numerical solution
of the full Pridmore-Brown equation. The liner model used for all results here (unless specifically
stated) is a mass-spring-damper impedance,

Zb(ω) = R+ iωd− ib/ω, (7.1)

for R = 3, d = 0.15, b = 1.15. Figure 4 shows the results for a tanh boundary layer profile with a
boundary impedance of Zb = 3 − 0.52i and parameters ω = 5, m = 0, δ = 2×10−3. In fig. 4, the
O(δ2) asymptotic solution is seen to reproduce the full numerical modes with great accuracy. The
single-step implicit condition predicts poorly the surface mode position in the right half plane, but
this is expected: the method cannot fully resolve a wave existing predominantly in the boundary
layer; only information at the top and bottom edges of the boundary layer are used in the numerical
scheme. The Myers condition cannot predict the position or behaviour of surface modes (see fig. 4),
as it neglects boundary layer physics in favour of a vortex sheet.

The lines from the surface modes in the right half plane of fig. 4 are Briggs–Bers (Bers 1983;
Briggs 1964) contours, and give us information about the stability of the modes (see the appendix
of Brambley (2009) for a full discussion). The modes are tracked as Im(ω) is reduced from zero
to sufficiently negative. The impedance changes with ω via (7.1). All of the boundary conditions
except the Myers condition predict a downstream-propagating convective instability, due to their
crossing the real k axis from the upper- to the lower-half planes. This convective instability is also
present in the Pridmore-Brown numerics, visible in fig. 4.

Figure 5 shows the least cutoff modes in the k-plane for parameters typical of rotor-stator
interaction in a turbofan engine. The downstream-propagating modes in the right half of fig. 5 are
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Figure 4. Modes in the k-plane of the Myers condition (black circle), Modified Myers condition (blue
triangle), single-step implicit scheme (4.11) (green cross), O(δ2) asymptotic solution (3.8) (red right-
triangle) and Pridmore-Brown numerics (purple plus). The tanh boundary layer profile (6.1) is used, with
a constant base density. Parameters are ω = 5, m = 0, M = 0.5, δ = 2× 10−3. The boundary impedance
for the markers is Zb = 3+0.52i. The lines track the surface mode for each boundary condition as Im(ω) is
reduced from zero to −10, or sufficiently negative, as Re(ω) is held constant, and the boundary impedance
changes in line with (7.1).

well approximated by all the tested models. Discrepancies can be seen in the upstream-propagating
modes of the Myers condition and single-step implicit scheme, however. The Myers condition modes
are too cutoff, which could be an explanation for the errors in sound absorption found in Gabard
(2013) when using the Myers condition. In contrast, the single-step implicit scheme modes have
destabilized and have the wrong sign for Im(k); this could be either due to a failing of the method
or a wrong choice of sign for the square roots in the derivation (see appendix D for a detailed
discussion). Both asymptotic methods correctly predict the Pridmore-Brown result.

Figure 6a shows results for ω = 10, m = 5 and δ = 1×10−3, with the addition of modes predicted
by the O(δ2) asymptotic solution surface mode dispersion relation (6.8). The good agreement
between the O(δ2) asymptotic solution and its surface mode dispersion relation for the four surface
modes near the main spectrum on the right of fig. 6a shows that the reduced model (6.8) is working
as intended. Importantly, the two modes in the lower left corner are unique to the O(δ2) asymptotic
solution and its surface mode approximation, with no counterparts found using either the Modified
Myers condition or the full numerics. These modes also fall outside the range of validity of the
asymptotics, since they do not satisfy |k| � 1/δ. Figure 6b shows the movement of the modes as
Im(Zb) is increased from −2.5 to sufficiently positive, where the mass-spring-damper liner model
is not used. The four surface modes near the main spectrum join, or interact with, the cutoff
modes as the impedance is varied. However, the modes in the lower left do not interact with the
other modes in any way. These two pieces of information about the modes in the lower left – their
irreproducibility by the numerics; and their unphysical isolation from the main spectrum – suggests
they are spurious. Thus, as the surface mode dispersion relation (6.8) has been shown to be a valid
approximation of (3.8), we may use it to suggest that the O(δ2) asymptotic solution predicts eight
spurious surface modes. This may not be as harmful to the predictive power of the model as it
seems at first: new modes could only exist (for reasonable ω and m) for k values large enough to
bring the O(δ2) terms of (3.8) into balance with the O(δ) or O(1) terms. This would inherently
mean moving outside the region of asymptotic validity of the model, and hence a careful use of
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Figure 5. Least cutoff modes of the Myers condition (black circle), Modified Myers condition (blue triangle),
single-step implicit scheme (4.11) (green cross), O(δ2) asymptotic solution (3.8) (red right-triangle) and
Pridmore-Brown numerics (purple plus), for ω = 31, m = 4, M = 0.5, δ = 2 × 10−3 and a tanh profile.
The boundary impedance is Zb = 3 + 4.61i.
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Figure 6. (a) Surface modes near the origin for Zb = 1 − 2.5i, where here the mass-spring-damper model
is not used. (b) A larger view of the k-plane, with tracks of surface modes as Im(Zb) is increased from
−2.5 with Re(Zb) = 1 held constant. A spurious mode can be seen far from the origin. In both plots the
parameters are ω = 10, m = 5, δ = 1× 10−3, for a tanh profile with M = 0.5.

the new condition should prevent spurious modes being mistakenly deemed important. Indeed, the
spurious modes in fig. 6 are outside the region of asymptotic validity, given by |k| � 1000.

7.1. The unstable hydrodynamic mode
Surface modes are important for stability analyses. In a laminar boundary layer, linearly unstable

surface modes can seed turbulence which subsequently causes the boundary layer to thicken.
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Figure 7. The unstable mode growth rate is plotted against real k for parameters δ = 2 × 10−3, m = 12,
M = 0.5, with a tanh boundary layer profile and a mass-spring-damper impedance, Zb(ω) = R+iωd−ib/ω,
for R = 3, d = 0.15, b = 1.15, as in (7.1).

Instability waves are also known to be a source of sound radiation (e.g. Tam & Morris 1980),
so being better able to predict the linear stability of the boundary layer over a liner is extremely
important for aeroacoustic applications where noise suppression is the goal.

The unstable hydrodynamic mode (Brambley & Peake 2006; Rienstra 2003) of the asymptotic
boundary conditions (2.6), (2.8) and (3.8) are traced for increasing real k in fig. 7, and compared
with Pridmore-Brown numerics, where now we are solving for ω given k. The growth rate of the
mode is −Im(ω). The O(δ2) asymptotic solution (dashed) replicates the full numerical solution
(solid) accurately for moderate k. In this case, it is a quantitatively better approximation than
the Modified Myers for k . 160, which would be considered a very large wavenumber for most
practical purposes. The O(δ2) asymptotic solution retains the regularization that results from
considering a finite-thickness shear layer; that is, applying the condition (3.8) (within its region
of asymptotic validity) forms a wellposed system. It therefore is a usefully predictive tool for
investigating maximum growth rates and representative wavelengths of the linear instability of an
inviscid boundary layer over an impedance lining. For completeness, the Myers boundary condition
prediction is plotted in fig. 7 (black dotted); its illposedness manifests as an unbounded growth
rate. The Pridmore-Brown solution asymptotes to Im(ω) = 0 as k →∞ but never becomes stable
(Im(ω) > 0) for any real k. Viscosity controls the restabilisation at small wavelengths (Khamis &
Brambley 2015): we would therefore not expect the inviscid numerics nor the inviscid boundary
conditions (2.8) and (3.8) to be stable at large real k without the addition of a small amount of
viscosity to stabilise the system for large wavenumbers.

8. Conclusion
Analytical modelling of flow over a lining, where the acoustics in a uniform flow may be

expressed in terms of Bessel functions and modes found by applying an effective impedance
boundary condition, may be improved by using the second order asymptotic boundary condition
derived here, (3.8). The model has been shown to predict with greater accuracy both cutoff
and cuton modes, as well as surface modes. When the boundary layer thickness δ is small and
the wavenumber and frequency satisfy k, ω � 1/δ, the second order condition consistently and
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accurately predicts numerical solutions of the Pridmore-Brown equation, improving on the modified
Myers condition (Brambley 2011b) and retaining its wellposedness.

For numerics in the frequency domain, the boundary conditions derived here may be easily
applied in their general forms, (3.8) and (4.11), or simplified by assuming a specific shear profile;
for example, a linear profile leads to expressions (6.2) and (6.4). For sufficiently thin boundary
layers, the second order asymptotic condition allows the accurate prediction of growth rates and
characteristic wavelengths of instability. The effect of the shear is modelled more precisely than in
previous modifications of the Myers condition, improving predictions of the position of cuton modes
in the k-plane. This should increases the accuracy of attenuation calculations. For thick boundary
layers or high wavenumbers/frequencies outside the region of asymptotic validity, the single-step
implicit Runge-Kutta boundary condition (4.11) could be carefully used, with the associated
caveats kept in mind. It has been evidenced here that the implicit Runge-Kutta condition can
produce very accurate predictions of the effective impedance. The scheme performs poorly, however,
when predicting the wavenumber and behaviour of surface modes and modes with sharp changes
in the boundary layer forced by the shear due to its poor resolution of waves in the boundary layer.
A higher order implicit method could solve this problem, but for such a method a closed form of
the boundary condition would be overly complicated.

The new second order asymptotic condition predicts surface modes with a higher degree of
accuracy than the modified Myers condition, but also predicts additional spurious surface modes.
Asymptotic analysis of the k/ω � 1 regime has shown that the new condition predicts a possible
14 surface modes, compared to the six of the Modified Myers condition (Brambley 2013) and four
of the Myers condition (Rienstra 2003). By comparison with computations, it is suggested that
the extra modes predicted by the second order condition are spurious, and are easily recognised
by being far out of the range of asymptotic validity. Analysis of the single-step implicit scheme
boundary condition leads to a prediction of six surface modes, matching the prediction of the
Modified Myers. Also introduced at the second order of the asymptotic expansion is the spurious
singularity when (ω−Mk)2 = k2+m2, near which the first order condition or implicit Runge-Kutta
condition could be used instead.

Impedance eduction techniques, which, broadly speaking, allow the inference of the impedance
of a material from its response to different frequencies of sound, are dependent on the quality of
the liner model which they employ. The second order asymptotic condition derived here has more
parameters (the δIj integrals) than previous models, meaning more degrees of freedom with which
to achieve a better fit to the data (or, indeed, with which to “back out” some information about
the base flow).

The application of impedance conditions in grazing flow in the time domain is an open question.
The Myers condition has been applied in the time domain in many different ways, and is still a
topic of current research (e.g. Gabard & Brambley 2014). The use of the modified Myers condition
in the time domain has been only tentatively studied, and application of the new conditions derived
here in the time domain would be interesting future work.

The general problem of a liner with grazing flow has many facets which themselves are open
problems; including viscothermal effects which are in the most part neglected in the literature. It is
known that viscosity by itself does not regularise the illposedness of the Myers condition (Brambley
2011a), but that viscous effects can be necessary to accurately predict experimental results (Renou
& Aurégan 2011). The combination of viscous effects and an expansion in the boundary layer
thickness is current work (Khamis & Brambley 2015).
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Appendix A. Details of the asymptotics of the p̃ and ṽ governing equations
We solve (3.4) to second order for the inner solution by expanding the radial velocity as ṽ =

ṽ0 + δṽ1 + δ2ṽ2 +O(δ3). We match to the outer solution

ṽu(1− δy) = v∞ + δy

(
µ2

iΩu
p∞ + v∞

)
+

1

2
δ2y2

[(
2 + µ2

)
v∞ +

µ2 + 2m2

iΩu
p∞

]
+O(δ3) (A 1)

in the limit y →∞, where for brevity Ωu = ω −Mk, and µ2 = k2 +m2 −Ω2
u. With Ω = ω − Uk

and σ+ = k2 +m2, the leading order solution is

ṽ0 = A0Ω +B0Ω

∫ y

0

1− σ+

ρΩ2
dy′, (A 2)

which may be written in terms of bounded integrals as

ṽ0 = A0Ω −B0Ωy
µ2

Ω2
u

+B0Ω
σ+

Ω2
u

∫ y

0

1− Ω2
u

ρΩ2
dy′. (A 3)

Upon matching with the leading order of (A 1) as y → ∞ we find B0 ≡ 0 and A0 = v∞/Ωu.
Similarly at first order,

ṽ1 = A1Ω +A0Ωy −B1Ωy
µ2

Ω2
u

+B1Ω
σ+

Ω2
u

∫ y

0

1− Ω2
u

ρΩ2
dy′. (A 4)

Matching with (A 1) gives B1 = ip∞ and A1 = −iσ+I1p∞/Ω
2
u, where

I1 =

∫ ∞
0

χ1(y)dy, χ1(y) = 1− (ω −Mk)2

ρ(ω − Uk)2
. (A 5)

At second order, we find

ṽ2 =A2Ω −B2Ωy
µ2

Ω2
u

+B2Ω
σ+

Ω2
u

∫ y

0

χ1dy′ +A1Ωy −B1Ω

∫ y

0

y
µ2

Ω2
u

dy′

+B1Ω
σ+

Ω2
u

∫ y

0

(∫ y′

0

χ1dy′′ − I1
)

dy′ +B1Ω
σ+

Ω2
u

I1y +
1

2
A0Ωy

2

− 2m2Ω
(
A0 −B1

µ2

Ω2
u

)∫ y

0

y′

ρΩ2 − σ+
dy′ − 2m2B1Ω

σ+

Ω2
u

∫ y

0

y′

ρΩ2 − σ+
χ1dy′

+A0Ω

∫ 1

0

y′
(

1 +
2m2

ρΩ2 − σ+

)
dy′ −A0Ω

∫ y

0

(
1− σ+

ρΩ2

)∫ y′

0

ρΩ2dy′′dy′. (A 6)

In terms of bounded integrals suitable for matching, (A 6) may be rewritten

ṽ2 =A2Ω −B2Ωy
µ2

Ω2
u

+B2Ω
σ+

Ω2
u

∫ y

0

χ1dy′ +A1Ωy −
µ2Ω

2Ω2
u

B1y
2 − m2Ω

Ω2
u

B1y
2

+B1Ω
σ+

Ω2
u

∫ y

0

(∫ y′

0

χ1dy′′ − I1
)

dy′ +B1Ω
σ+

Ω2
u

I1y +
1

2
A0Ωy

2 +
m2Ω

µ2
A0y

2

+m2Ω

(
2B1

Ω2
u

− A0

µ2

)∫ y

0

y′
(

1− Ω2
u − σ+

ρΩ2 − σ+

)
dy′ +

2m2σ+

Ω2
u

Ω

µ2
B1

∫ y

0

χ1y
′dy′

− 2m2σ+

Ω2
u

Ω

µ2
B1

∫ y

0

χ1y
′
(

1− Ω2
u − σ+

ρΩ2 − σ+

)
dy′ +A0σ+Ω

∫ y

0

χ1

∫ y′

0

χ0 dy′′dy′

−A0Ωµ
2

∫ y

0

(∫ y′

0

χ0dy′′ − I0
)

dy′ −A0Ωµ
2I0y −A0σ+Ω

∫ y

0

y′χ1dy′ +
1

2
A0Ωµ

2y2,

(A 7)

where

I0 =

∫ ∞
0

χ0(y)dy, χ0(y) = 1− ρ(ω − Uk)2

(ω −Mk)2
. (A 8)
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At this order in the ṽ expansion we introduce spurious singularities at µ2 = 0 and ρΩ2 = σ+.
Taking y →∞ and matching with the outer solution gives

B2 =
Ω2

u

µ2
A1 +

σ+

µ2
I1B1 −Ω2

uI0A0 (A 9)

and

A2 = −B2Ω
σ+

Ω2
u

I1 −B1
σ+

Ω2
u

∫ ∞
0

(∫ y

0

χ1dy′ − I1
)

dy −m2

(
2B1

Ω2
u

− A0

µ2

)∫ y

0

y′χ2 dy′

− 2m2σ+

Ω2
uµ

2
I3B1 +

2m2σ+

Ω2
uµ

2
B1

∫ ∞
0

yχ1χ2dy −A0σ+

∫ ∞
0

χ1

∫ y

0

χ0 dy′dy

+A0µ
2

∫ ∞
0

(∫ y

0

χ0dy′ − I0
)

dy +A0σ+I3, (A 10)

where

I3 =

∫ ∞
0

yχ1(y)dy, and χ2(y) = 1− (ω −Mk)2 − k2 −m2

ρ(ω − Uk)2 − k2 −m2
. (A 11)

Evaluating ṽ at the wall, y = 0, leads to

ṽ(0) =
ω

Ωu

{
v∞ −

iσ+

Ωu
p∞δI1 − σ+

(
2im2p∞
Ωuµ2

− v∞
)
δ2I3 + σ+v∞δI0δI1

+
iσ+

Ωu
p∞δ

2I3 − µ2v∞δ
2I2 −

2im2p∞
Ωu

δ2I4 − σ+v∞δ
2I5

+
2im2σ+p∞
Ωuµ2

δ2I6

}
+O(δ3) , (A 12)

where

I4 =

∫ ∞
0

yχ2(y)dy, I5 =

∫ ∞
0

χ1(y)

∫ y

0

χ0(y′)dy′dy, I6 =

∫ ∞
0

yχ1(y)χ2(y)dy. (A 13)

Equation (A 12) is equivalent to (3.5b) in the paper.
The corresponding problem for p̃ is solved in the same way, using the governing equation (3.3)

and the outer solution (3.2a). The result is given in appendix A of Brambley (2011b) as

p̃(0) = p∞ + i(ω −Mk)v∞δI0 + p∞(k2 +m2)δI1δI0 + i(ω −Mk)v∞δ
2I2

− (ω −Mk)2p∞δ
2I7 − p∞(k2 +m2)δ2I3. (A 14)

where

I2 =

∫ ∞
0

yχ0(y)dy, and I7 =

∫ ∞
0

χ0(y)

∫ y

0

(
1− k2 +m2

ρ(y′)(ω − U(y′)k)2

)
dy′dy. (A 15)

The effective impedance is formed by taking the ratio Zb = p̃(0)/ṽ(0) and dividing top and
bottom by v∞. This gives Zb = f(Zeff) by virtue of the definition Zeff = p∞/v∞; rearranging for
Zeff produces

Zeff =
ω

Ωu

Zb + δA+ δ2B
1 + δC + δ2D +O(δ3) (A 16)

where

A = − iΩ2
u

ω
I0, B = − iΩ2

u

ω
I2 − Zbµ2I2 + σ+Zb(I0I1 + I3 − I5), C = iσ+

ωZb
Ω2

u

I1,

D =
iσ+ωZb
Ω2

u

(2m2

µ2
− 1
)
I3 + 2im2ωZb

Ω2
u

(
I4 −

σ+

µ2
I6

)
+ σ+(I0I1 − I3)−Ω2

uI7

which is equivalent to (3.8).

Appendix B. Asymptotics of the impedance governing equation
Here we derive, asymptotically, two expressions for Zeff from the nonlinear impedance equation

(4.1), correct to first and second order in δ, respectively.
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In the case of a nonuniform flow, where U = U(r) and ρ = ρ(r), we use (4.3) in (4.1) and
substitute for L′u from (4.4) to arrive at (4.5) which we repeat here for convenience:

1

(ω −Mk)
L̃′ =

i

r

[
1− ρ(ω − Uk)2

(ω −Mk)2

]
+ ir

k2 + m2

r2

(ω −Mk)2

[
1− (ω −Mk)2

ρ(ω − Uk)2

]
L2

u

+ ir

[
1− k2 + m2

r2

ρ(ω − Uk)2

]
(2LuL̃+ L̃2). (B 1)

The first two square brackets on the right hand side of (B 1) are non-zero only in the thin boundary
layer near r = 1. This suggests that a power series expansion of L̃ in the boundary layer thickness
δ is appropriate, so we write L̃ = δL̃1 + δ2L̃2 + O(δ3). The last square bracket is multiplied by
terms proportional to L̃ and L̃2, so the order of magnitude assumptions are self-consistent. We
again rescale to lie within the boundary layer by writing r = 1− δy. Expanding (B 1) in terms of
y and in powers of δ produces

1

Ωu
(L̃1 + δL̃2)′ = − iχ0 − i

σ+

Ω2
u

Lu(0)2χ1 − δ
{

iyχ0 + iy
σ−
Ω2

u

Lu(0)2χ1

− 2iy
σ+

Ω2
u

Lu(0)L′u(0)χ1 + 2i

(
1− σ+

ρΩ2

)
Lu(0)L̃1

}
, (B 2)

where σ± = m2 ± k2, Ω(y) = ω − U(y)k, Ωu = ω −Mk, and the χj are defined as in (3.7). Our
boundary conditions are L̃j → 0 as y →∞ for j = 1, 2. In (B 2) the Taylor expansion of Lu about
the lined wall, Lu(y) = Lu(0)−δyL′u(0)+O(δ2), is used. We note that in this section all arguments
are now in terms of y unless explicitly stated; a dash represents a derivative with respect to y, and
an argument of y=0 relates to a value at the wall, where r=1.

We may integrate the leading order terms in (B 2) to find an expression for L̃1,

L̃1 = iΩu

[
I0 −

∫ y

0

χ0(z)dz +
σ+

Ω2
u

L2
u(0)

(
I1 −

∫ y

0

χ1(z)dz
)]

, (B 3)

where the integration constants Ij are defined as in (3.6). This ensures that L̃1→0 as y→∞, such
that as we move into the main body of the duct, where the flow is uniform, our L value tends to
its uniform flow value Lu. Evaluating (B 3) at y=0 causes the integrals to vanish, and thus we find
an expression for L at the wall, correct to first order in δ,

L(0) = Lu(0) + iΩuδ

[
I0 + I1

σ+

Ω2
u

L2
u(0)

]
+O(δ2). (B 4)

From (4.2), no slip at the boundary implies L(0) = ωZb/Ωu. Similarly, a uniform slipping flow
implies Lu(0) = Zeff. At leading order, then, (B 4) becomes

Zeff =
ω

Ωu
Zb +O(δ), (B 5)

which is the Myers effective impedance (2.6), as expected (Myers 1980). If we make the approxi-
mation L2

u(0) = ZbZeff/(1−Mk/ω) +O(δ), we can rearrange (B 4) at first order to find

Zeff =
ω

Ωu

Zb − i
ωΩ

2
uδI0

1 + iσ+
ωZb

Ω2
u
δI1

+O(δ2), (B 6)

which is the Modified Myers effective impedance (2.8), as derived using matched asymptotic
expansions of p̃ in Brambley (2011b).

Continuing, the first order terms in (B 2) may be examined to find the second order correction
terms. Upon integration,

L̃2 = iΩu

{
I2 −

∫ y

0

zχ0(z)dz + ΓLu(0)

(
I3 −

∫ y

0

zχ1(z)dz
)

+ 2Lu(0)

(
I8 −

∫ y

0

L̃1(z)

[
1− σ+

ρ(z)Ω(z)2

]
dz
)}

, (B 7)



Acoustic boundary conditions 21

where

Γ =
σ−
Ω2

u

Lu(0)− 2i
σ+

Ωu

[
1−

(
1− σ+

Ω2
u

)
Lu(0)2

]
and the new integration constant, I8, is defined by

I8 =

∫ ∞
0

L̃1

[
1− σ+

ρΩ2

]
dy. (B 8)

As before, this ensures that L̃2→0 as y→∞ such that we find the correct behaviour in the uniform
core of the duct. Using (B 3) and (B 7) in (4.3) we have, at the boundary,

L(0) = Lu(0) + iΩu

(
δ
[
I0 + I1

σ+

Ω2
u

L2
u(0)

]
+ δ2

[
I2 + ΓLu(0)I3 + 2Lu(0)I8

])
+O(δ3). (B 9)

By rearranging (B 9) we find the effective impedance,

Zeff =
ω

Ωu

Zb − i
ωΩ

2
u

(
δI0 + δ2I2

)
1 + iδ σ+

Ωu
Lu(0)I1 + iΩuδ2(ΓI3 + 2I8)

+O(δ3), (B 10)

where the values of Lu(0) in the denominator, in the Γ term, and in the I8 integral must be ap-
proximated. Herein lies a key issue with this method: the nonlinear Lu terms force approximations
to be made for which there is no guiding modus operandi. In the matched asymptotic expansions
derivation which leads to the condition (3.8), no such Z2

eff splittings have to be made; the linear form
falls naturally out of the mathematics. Different asymptotic forms of (B 10) may be found by using
different approximations, and it transpires that the behaviour of the boundary condition (B 10) is
heavily dependent on the chosen form. While (3.8) and (B 10) are asymptotically equivalent, it is
difficult to see from (B10) any reason to choose the approximation leading to (3.8), although other
approximations seem to give worse results than (3.8).

We conclude by remarking that although a unique, useful second order condition does not fall
easily out of the impedance governing equation, the derivation of the first order Modified Myers
condition is cleaner than that of Brambley (2011b).

Appendix C. Surface mode asymptotics of Ij integrals
The integrals Ij are approximated in the k/ω � 1 limit as

δI0 =
1

(ω −Mk)2
(ω2δmass − 2Mkωδmom +M2k2δke), δI1 ∼ δs

Mk

ω
,

δ2I2 =
1

(ω −Mk)2
(ω2δ̃2

mass − 2Mkωδ̃2
mom +M2k2δ̃2

ke), δ2I3 ∼ δ2

[
3

2
+ ln

(
ω/k

ω/k −M

)]
,

δ2I4 ∼
∫ 1

0

(1− r)
(

1− M2 − 1

ρU2 − 1

)
dr +

ω

k

∫ 1

0

2(1− r)
ρU2 − 1

(
M − ρU(M2 − 1)

ρU2 − 1

)
dr,

δ2I5 ∼ δ2

[ 19
12M

2k2 − 13
3 Mkω

(ω −Mk)2
+ ln

(
ω/k

ω/k −M

)]
,

δ2I6 ∼ δ2

[
1

2
+M2 +M2 ln

(
ω/k

ω/k −M

)
+

1−M4

2M2
ln

(
1− Mk(Mk − 2ω)

(ω −Mk)2 − k2 −m2

)]
,

δ2I7 ∼
δs(k

2 +m2)

Mkω(ω −Mk)2
(ω2δmass − 2Mkωδmom +M2k2δke),

where I0 and I2 are exact, and

δs =
−M

ρ(1)U ′(1)
, δmass =

∫ 1

0

(1− ρ)dr, δmom =

∫ 1

0

1− ρU

M
dr

δke =

∫ 1

0

1− ρU2

M2
dr, δ̃2

mass =

∫ 1

0

(1− r)(1− ρ)dr,

δ̃2
mom =

∫ 1

0

(1− r)
(

1− ρU

M

)
dr, δ̃2

ke =

∫ 1

0

(1− r)
(

1− ρU2

M2

)
dr,
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are measures of boundary layer thickness.

Appendix D. The implicit scheme
The second order trapezoidal single-step implicit scheme is the highest order such scheme for

which a closed-form solution can be written. The fundamental difference equation for the differential
equation y′ = f(x, y) is

yn+1 = yn +
h

2
(f(xn, yn) + f(xn+1, yn+1)), (D 1)

which may be written

yn+1 = yn +
h

2
(k1 + k2), (D 2)

where

k1 = f(xn, yn), k2 = f

(
xn + h, yn +

h

2
k1 +

h

2
k2

)
. (D 3)

We use this scheme to solve (4.1) and (4.4), which we rewrite together here in the form

L′ = Aj(r) +Bj(r)L
2, (D 4)

for j = 1, 2, with

A1(r) = − i

r

ρ(ω − Uk)2

ω −Mk
, B1(r) = ir(ω −Mk)

(
1− k2 +m2/r2

ρΩ2

)
,

A2(r) = − i

r
(ω −Mk), B2(r) = ir(ω −Mk)

(
1− k2 +m2/r2

(ω −Mk)2

)
.

Equation (D 4) with j = 1 is the impedance governing equation for a sheared flow (our boundary
layer), while for j = 2 it is the corresponding equation for a uniform flow (our imagined slipping
flow with no sheared boundary layer).

This scheme actually performs two steps, one for each boundary layer, sheared and uniform.
Starting from the boundary r = 1 with the known impedance Zb, we step backwards a distance δ
through the sheared boundary layer (equation (D 4) with j = 1):

k1 =A1(1) +B1(1)X2
0 , (D 5a)

k2± =
2

δ2B1(1−δ) + 2
X0

δ
− k1

±

√√√√( 2

δ2B1(1−δ) + 2
X0

δ
− k1

)2

− 4

δ2

(
A1(1−δ)
B1(1−δ) +

(
X0 −

1

2
δk1

)2
)

; (D 5b)

leading to

X1± = X0 −
1

2
δ(k1 + k2±). (D 6)

The quantity X0 = ωZb/(ω −Mk) is L(1) as defined in (4.2), and gives the recovery of the Myers
condition in the limit δ → 0. There are two possible solutions from the square root; however, it is
possible to disregard one by considering the small-δ limit. From (D5b), k2± may be rewritten:

k2± = Y ± Y
√

1 +W, (D 7)

where

Y =
2

δ2B1(1−δ) + 2
X0

δ
− k1, W = − 4

δ2Y 2

(
A1(1−δ)
B1(1−δ) + (X0 − δk1/2)2

)
. (D 8)

Since Y isO(1/δ2), the term inside the square root in (D 7) may be Taylor expanded as
√

1 + δ2W ∼
1 + δ2W/2 + O(δ4). Taking the positive root leads to k2+ = O(1/δ2), while taking the negative
root gives k2− = O(1). Considering (D 6), the single implicit Runge-Kutta step would produce an
O(1/δ) change between the quantities X1 and X0 if k2+ was chosen, and an O(δ) change if k2−
was chosen. Over a small distance we expect a stable solution to change by a small amount; thus,
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we disregard the positive root and write X1± ≡ X1. Note, this assumption may break down if δ2W
is not a small quantity, or if a mode oscillates rapidly within the boundary layer.

When computing the value of k2, we rewrite (D 7) to eliminate the possibility of rounding errors
for small W . The square root may be expanded as a binomial series when |W | < 1,

(1 +W )
1
2 =

∞∑
n=0

(
1/2

n

)
Wn. (D 9)

The leading coefficient of (D 9) is unity, which, when multiplied by the Y outside the root,
cancels with the first Y term in (D 7) when the correct negative root is taken (by the scaling
argument above). The remaining terms in the series, n ∈ [1,∞), may be approximated by the
Padé approximant r(z) = p(z)/q(z) (for polynomials p, q) with the zeroth-order coefficient of p(z)
set to zero. Then, k2 = −Y p(W )/q(W ). If |W | > 1, the explicit square root form (D7) may be
used.

Next, we step forward from the edge of the boundary layer at r = 1−δ through the imagined
uniform boundary layer (equation (D 4) with j = 2) to the boundary, where the impedance is the
effective impedance Zeff . The quantity X1 serves as our initial condition, and generates a further
two solutions:

k̃1 =A2(1−δ) +B2(1−δ)X2
1 , (D 10a)

k̃2± = Ỹ ± Ỹ
√

1 + W̃ , (D 10b)

where

Ỹ =
2

δ2B2(1)
− 2

X1

δ
− k̃1, W̃ = − 4

δ2Ỹ 2

(
A2(1)

B2(1)
+

(
X1 +

1

2
δk̃1

)2
)
, (D 11)

and where we again take the negative root of k̃2± in (D 10b), writing k̃2± ≡ k̃2. The computation
of k̃2 may again be done via Padé approximation if |W̃ | < 1. Since we have a binomial series with
index 1/2, the same polynomials p(z) and q(z) from above may be used, and evaluated at the new
argument W̃ . We arrive at a single value for Zeff ,

Zeff = X1 +
1

2
δ(k̃1 + k̃2), (D 12)

which is the result in the main paper.
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