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Abstract
When statistical analyses consider multiple data sources, Markov melding provides a method for combining the source-
specific Bayesian models. Markov melding joins together submodels that have a common quantity. One challenge is that the
prior for this quantity can be implicit, and its prior density must be estimated. We show that error in this density estimate
makes the two-stageMarkov chainMonte Carlo sampler employed byMarkov melding unstable and unreliable. We propose a
robust two-stage algorithm that estimates the required prior marginal self-density ratios using weighted samples, dramatically
improving accuracy in the tails of the distribution. The stabilised version of the algorithm is pragmatic and provides reliable
inference. We demonstrate our approach using an evidence synthesis for inferring HIV prevalence, and an evidence synthesis
of A/H1N1 influenza.

Keywords Biased sampling · Data integration · Evidence synthesis · Kernel density estimation · Multi-source inference ·
Self-density ratio · Weighted sampling

1 Introduction

Many modern applied statistical analyses consider several
data sources, which differ in size and complexity. The wide
variety of problems and information sources has produced
numerous methods for multi-source inference (Lanckriet
et al. 2004; Coley et al. 2017; Besbeas and Morgan 2019),
as well as general methodologies including evidence syn-
thesis methods (Sutton and Abrams 2001; Ades and Sutton
2006; Spiegelhalter et al. 2004), and the data fusion model
(Kedem et al. 2017). These methods require an appropriate
joint model for all data, which can be challenging to specify.

An alternative approach is to model smaller, simpler
aspects of the data, such that designing these submodels
is easier, then combine the submodels. The premise is that
the combination of many smaller submodels will serve as
a good approximation to a larger joint model, which may
be methodologically or computationally infeasible. Markov
melding (Goudie et al. 2019) is a methodology for coherently
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combining these submodels. Specifically, Markov melding
joins together submodels that share a common quantity φ

into a single joint model. Consider M submodels indexed
by m = 1, . . . , M that share φ, have submodel specific
parameters ψm and submodel specific data Ym , denoting the
mth submodel pm(φ,ψm,Ym). Markov melding forms a sin-
gle joint melded model pmeld(φ,ψ1, . . . , ψM ,Y1, . . . ,YM ),
which enables information to flow through φ from onemodel
to another. The melded model posterior thus incorporates
uncertainty from all sources of data.

Multi-stage sampling methods are useful, pragmatic tools
for estimating complex joint models – such as pmeld – in
a computationally feasible manner, and have been applied
in settings including statistical genetics and phylogeny (Tom
et al. 2010), meta-analysis (Lunn et al. 2013; Blomstedt et al.
2019), spatial statistics (Hooten et al. 2019), and joint models
in survival analysis (Mauff et al. 2020).Whilst it is preferable
to sample the joint posterior directly, this is often infeasible
due to the complexity of the model, the size of the data,
the limitations of probabilistic programming languages such
as JAGS and Stan, or the complications of re-expressing
complicated submodels in a common programming language
(Johnson et al. 2020). Improving the stability of multi-stage
estimation techniques is thus of interest to applied statisti-
cians.
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Evidence synthesis models consider multiple sources
of data (evidence), including randomised controlled trials
or observational studies, to understand complex phenom-
ena. Each source of data has an associated submodel and
set of parameters it informs; combining all the submodels
requires assumingdeterministic or probabilistic relationships
between the submodel-specific parameters. For example,
De Angelis et al. (2014) collected many surveys of partially
overlapping subpopulations, albeit at different frequencies,
and combined these in an evidence synthesis model to esti-
mate human immunodeficiency virus (HIV) prevalence in the
United Kingdom. An introduction to evidence synthesis can
be found in Chapter 8 of Spiegelhalter et al. (2004); other
applications include estimating the prevalence of campy-
lobacteriosis (Albert et al. 2011) and influenza (Presanis et al.
2014).

We can form evidence synthesis models by applying
Markov melding to the various sources of data and their
submodels. However, the common quantity φ may be a com-
plex, non-invertible function of the parameters in one of the
submodels. This is a challenge for Markov melding, as the
method requires the prior marginal density of φ under each
submodel pm(φ), which may not be analytically tractable.
Instead, prior samples of φ are drawn, and the prior marginal
density is estimated using a kernel density estimate (KDE)
p̂m(φ) (Wand and Jones 1995). However, the use of a KDE
in lieu of the analytic density function has poor implications
for the numerical stability of the Markov Chain Monte Carlo
(MCMC)method used to estimate themelded posterior, even
in our low dimensional examples. Specifically, we illustrate
that the multi-stage MCMC sampler of Goudie et al. (2019)
is sensitive to error in p̂m(φ), particularly in low probability
regions.

To address this sensitivity, we first note thatMarkovmeld-
ing strictly only requires an estimate of the self-density ratio
(Hiraoka et al. 2014), r(φnu, φde) = pm(φnu) / pm(φde), aswe
will show in Sect. 2. In Sect. 3 we develop methodology that
reduces the error in the self-density ratio estimate r̂(φnu, φde)

by using weighted-sample KDEs (Vardi 1985; Jones 1991),
which are more accurate in low probability regions. Multiple
weighted-sample estimates of r̂(φnu, φde) are combined via
a weighted average to further improve performance. We call
this methodology weighted-sample self-density ratio esti-
mation (WSRE), and demonstrate the effectiveness of our
methodology in two examples. The first is a toy example
from Ades and Cliffe (2002). We show that output from
the multi-stage estimation process that uses WSRE is closer
to reference samples than the naive approach, which uses a
single KDE for p̂m(φ). The second example is an involved
evidence synthesis, previously considered in Goudie et al.
(2019). Here we show that the multi-stage estimation pro-
cess that employs WSRE produces plausible samples, whilst
the naive approach produces nonsensical results. In these

examples φ is a 1 or 2 dimensional quantity. We discuss
the applicability of our method for higher dimensional φ in
Sect. 6.

2 Markovmelding

The Markov melding framework is able to join together any
number of submodels which share a common component
φ. As the examples in this paper only consider two sub-
models, we limit our exposition to the M = 2 model case;
for the more general case see Goudie et al. (2019). Markov
melding constructs a joint model using the conditional dis-
tributions for submodel-specific parametersψm and data Ym ,
denoted pm(ψm,Ym | φ). These conditional distributions are
then combined with a global prior for φ called the pooled
prior ppool(φ), which we discuss in Sect. 2.1. Mathemati-
cally, assuming that the supports of the relevant conditional,
joint, and marginal distributions containing φ are appropri-
ate, we define the melded joint distribution as

pmeld(φ,ψ1, ψ2,Y1,Y2)

= ppool(φ)p1(ψ1,Y1 | φ)p2(ψ2,Y2 | φ) (1)

= ppool(φ)
p1(φ,ψ1,Y1)

p1(φ)

p2(φ,ψ2,Y2)

p2(φ)
. (2)

The submodel-specific conditional densities
pm(ψm,Ym) | φ) may be analytically intractable. Hence,
it is easier to work with the submodel-joint densities
pm(φ,ψm,Ym) and their prior marginal distributions pm(φ)

as specified in Eq. (2), because the former can be factorised
into the data generating process specified during submodel
construction.

2.1 Forming the pooled prior

The pooled prior should represent previous knowledge of
φ in the absence of other information. A general approach
to constructing ppool(φ) is to consider a weighted combina-
tion of the prior marginal distributions pm(φ), with submodel
weights λm . Selection of the pooling method and specific
values of the weights is a topic covered in much detail else-
where (Clemen and Winkler 1999; O’Hagan et al. 2006); a
full summary of this field is beyond the scope of this article.
For the examples considered in this paper we form ppool(φ)

via logarithmic pooling: ppool(φ) ∝ p1(φ)λ1p2(φ)λ2 , with

λ1 = λ2 = 1
2 . Logarithmic pooling also allows us to use the

methodology we develop in Sect. 3 in the pooled prior.
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2.2 Two-stageMarkov chain Monte Carlo sampler

Directly estimating themeldedmodel’s posterior distribution

pmeld(φ,ψ1, ψ2 | Y1,Y2)
∝ ppool(φ)

p1(φ,ψ1,Y1)

p1(φ)

p2(φ,ψ2,Y2)

p2(φ)
. (3)

necessitates simultaneously evaluating both submodels. This
can be impractical if the submodels are implemented in dif-
ferent probabilistic programming languages or have bespoke
implementations.We use the two-stageMarkov chainMonte
Carlo (MCMC) sampler of Goudie et al. (2019) to sample
from pmeld(φ,ψ1, ψ2 | Y1,Y2) without the need to evaluate
Eq. (3) all at once. This involves a two-stage MCMC pro-
cedure, first sampling from a partial product of the terms in
Eq. (3), then using these samples as a proposal distribution
in the second stage. The result is a convenient cancellation
of the common terms in the stage two acceptance probabil-
ity, whilst still ensuring that the final samples come from the
melded posterior distribution of Eq. (3).

In stage one of the sampler we may, for example, opt to
target the first submodel p1, but with an (improper) flat prior
for φ

pmeld,1(φ,ψ1 | Y1) ∝ p1(φ,ψ1,Y1)

p1(φ)
,

sowe construct a standardMarkov chain inwhich a proposed
move from (φ,ψ1) → (φ∗, ψ∗

1 ), with proposal density
q(φ∗, ψ∗

1 | φ,ψ1), is accepted with probability

α((φ∗, ψ∗
1 ), (φ, ψ1))

= p1(φ
∗, ψ∗

1 ,Y1)p1(φ)q(φ,ψ1 | φ∗, ψ∗
1 )

p1(φ,ψ1,Y1)p1(φ∗)q(φ∗, ψ∗
1 | φ,ψ1)

. (4)

This Markov chain asymptotically emits samples from
pmeld,1.

In stage two we update φ and ψ2 using Metropolis-
within-Gibbs updates, targeting the full melded posterior
distribution of Eq. (3). Updatingφ uses the stage one samples
as a proposal distribution. For a sample of size N frompmeld,1

denoted {φ(meld,1)
n }Nn=1 we sample an index n∗ uniformly at

random between 1 and N , and use the corresponding value
as the proposal φ∗ = φ

(meld,1)
n∗ . This results in a stage two

acceptance probability for a move from φ → φ∗ of

α(φ∗, φ)

= ppool(φ
∗)p1(φ∗, ψ1,Y1)p2(φ

∗, ψ2,Y2)p1(φ)p2(φ)

ppool(φ)p1(φ,ψ1,Y1)p2(φ,ψ2,Y2)p1(φ∗)p2(φ∗)
p1(φ,ψ1,Y1)p1(φ

∗)
p1(φ∗, ψ1,Y1)p1(φ)

= ppool(φ
∗)p2(φ∗, ψ2,Y2)p2(φ)

ppool(φ)p2(φ,ψ2,Y2)p2(φ∗)
, (5)

since all stage one terms cancel, providing a form of “mod-
ularisation” in the algorithm. The update for ψ2 has an
acceptance probability for a move from ψ2 → ψ∗

2 , drawn
from a proposal distribution q(ψ∗

2 | ψ2), of

α(ψ∗
2 , ψ2) = p2(φ,ψ∗

2 ,Y2)

p2(φ,ψ2,Y2)

q(ψ2 | ψ∗
2 )

q(ψ∗
2 | ψ2)

,

as all terms that do not contain ψ2 cancel. Samples from the
melded posterior distribution for ψ1,
pmeld(ψ1 | Y1,Y2), can be obtained by storing the indices n
used to drawvalues ofφ from {φ(meld,1)

n }Nn=1 in stage two. The
stored indices are then used to resample the stage one samples
{ψ(meld,1)

1,n }Nn=1 yielding samples from pmeld(ψ1 | Y1, Y2).
An interesting property of Equations (4) and (5) is that our

interaction with the unknown prior marginal distribution is
limited to the self-density ratio r(φ, φ∗) = pm(φ) / pm(φ∗).
In Sect. 3 we develop methodology that uses self-density
ratios to improve the numerical stability of the acceptance
probability calculations.

We do not have to target pmeld,1(φ,ψ1 | Y1) with an
improper prior in stage one; we are free to choose any of
the components of Eq. (3). The choice of stage one com-
ponents will affect MCMC mixing, yet is often constrained
by the practicalities of sampling the subposterior distribu-
tions. In the example of Sect. 5 the common quantity φ is a
non-invertible function of parameters in p1, and it is possible
to sample from the subposterior p1(φ,ψ1 | Y1) using JAGS.
Hence, we draw stage one samples from p1(φ,ψ1 | Y1), with
stage two, implemented partially in Stan, accounting for
the remaining terms: 1 / p1(φ), p2(φ,ψ2 | Y2) / p2(φ), and
ppool(φ). This process highlights another interesting advan-
tage of Markov melding; we can use samples produced from
one statistical software package in combination with a model
implemented in another,mixing andmatching as ismost con-
venient.

2.3 Naive prior marginal estimation

The expressions in Eqs. (4) and (5) explicitly include both
models’ prior marginal distributions pm(φ) for m = 1, 2,
and implicitly includes them in ppool(φ). In our examples we
do not have analytic expressions for these marginals. More
generally, if φ is not a root node in the directed acyclic graph
representation of either submodel (see e.g. π12 in Fig. 1),
or is the aggregate output of a non-invertible deterministic
link function, then the analytic form of pm(φ) will likely be
intractable.

The approach proposed by Goudie et al. (2019), which
we call the naive approach, estimates the prior marginal dis-
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tributions by sampling pm(φ,ψm,Ym) for each model using
simple Monte Carlo, as the samples of φ will be distributed
according to the correct marginal, and employs a standard
KDE p̂m(φ) (Wand and Jones 1995). The two-stage sam-
pler then targets the corresponding estimate of the melded
posterior

p̂meld(φ,ψ1, ψ2 | Y1,Y2)
∝ p̂pool(φ)

p1(φ,ψ1,Y1)

p̂1(φ)

p2(φ,ψ2,Y2)

p̂2(φ)
, (6)

where p̂pool(φ) is the approximation to ppool(φ) obtained by
plugging in p̂m(φ) for m = 1, 2.

2.4 Numerical issues in the naive approach

Sampling the melded posterior using Eq. (6) can be numeri-
cally unstable. Say we propose a move from φ → φ∗, where
φ∗ is particularly improbable under pm . The KDE estimate
at this value, p̂m(φ∗), is poor in terms of relative error

∥

∥

∥

∥

p̂m(φ∗) − pm(φ∗)
pm(φ∗)

∥

∥

∥

∥

1
,

particularly in the tails of the distribution (Koekemoer and
Swanepoel 2008). In our experience, the KDE is typically an
underestimate in the tails, which can lead to an explosion in
the self-density ratio estimate r̂(φ, φ∗) = p̂m(φ) / p̂m(φ∗).
Hence, improbable values for φ∗ are accepted far too often.
Once at this improbable value, i.e. when φ is improbable
under pm(φ), the error in theKDE then leads to a dramatically
reduced value for the acceptance probability. This results
in Markov chains that get stuck at improbable values. For
example, see the top left panel of Fig. 5.

In which stage this instability arises depends on which
prior marginal densities are intractable, and how the terms in
Eq. (3) are apportioned across the stages. In the example of
Sect. 4, p1(φ) is unknown and is part of both stage one (in Eq.
(4)) and stage two (via ppool(φ) in Eq. (5)). Thus both stages
are numerically brittle. Our second example, contained in
Sect. 5, represents a more typical scenario, where the first
submodel posterior is used as the proposal for the melded
posterior. In this case, all unknown prior marginal terms are
factorised into the stage two target, and the instability is con-
fined to the second stage.

3 Self-density ratio estimation

As described in Sect. 2.4, the self-density ratios associated
with both p1(φ) and p2(φ) may be required by the two-stage
MCMC algorithm. To simplify notation, we consider in this
section a generic joint density p(φ, γ ) that we can evaluate

pointwise, but whose marginal p(φ) = ∫

p(φ, γ )dγ we can-
not obtain analytically. Our interest is in the self-density ratio
evaluated at φnu and φde (the subscripts are abbreviations of
numerator and denominator respectively) which we denote
as

r(φnu, φde) = p(φnu)

p(φde)
=

∫

p(φnu, γ )dγ
∫

p(φde, γ )dγ
.

In our examples we set φnu = φ and φde = φ∗ for use in
Eqs. (4) and (5); and define γ = (ψm,Ym) and p = pm
where m = 1 or 2 as appropriate (see Sects. 4 and 5 for
details).

To avoid the numerical issues associated with the naive
approach, we need to improve the ratio estimate r̂(φnu, φde)

for improbable values of φnu and φde, e.g. values more than
two standard deviations away from the mean. The funda-
mental flaw in the naive approach in this context is that it
minimises the absolute error in the highdensity region (HDR)
of p(φ), i.e. the region Rε(p(φ)) = {φ : p(φ) > ε}. But this
is not necessarily the sole region of interest, and we are con-
cerned with minimising the relative error. To address this we
reweight p(φ) towards a particular region, and thus obtain
a more accurate estimate in that region. We then exploit the
fact that we only interact with the prior marginal distribution
via its self-density ratio to combine estimates from multiple
reweighted distributions.

3.1 Single weighting function

We can shift p(φ) by multiplying the joint distribution
p(φ, γ ) by a known weighting function w(φ; ξ), controlled
by parameter ξ , then account for this shift in our KDE. This
will improve the accuracy of the KDE in the region to which
we shift the marginal. We first generate N samples denoted
{(φn, γn)}Nn=1, from a weighted version of the joint distribu-
tion

{(φn, γn)}Nn=1 ∼ 1

Z1
p(φ, γ )w(φ; ξ), (7)

where Z1 = ∫∫

p(φ, γ )w(φ; ξ)dφdγ is the normalising

constant. The samples {φ(s)
n }Nn=1, obtained by ignoring the

samples of γn , are distributed according to a weighted ver-
sion s(φ; ξ) of the marginal distribution p(φ)

{φ(s)
n }Nn=1 ∼ 1

Z2
p(φ)w(φ; ξ) = s(φ; ξ),

where Z2 = ∫

p(φ)w(φ; ξ)dφ. Typically (7) cannot be sam-
pled by simple Monte Carlo; instead we employ MCMC.

Using the samples {φ(s)
n }Nn=1 from s(φ; ξ) we compute a

weighted kernel density estimate (Jones 1991), with band-
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width h, kernel Kh , and normalising constant Z3

ˆ̂p(φ) = 1

Z3Nh

N
∑

n=1

(w(φn; ξ))−1Kh(φ − φ(s)
n ), (8)

and form our weighted-sample self-density ratio estimate

ˆ̂r(φnu, φde) =
ˆ̂p(φnu)

ˆ̂p(φde)
=

∑N
n=1(w(φn; ξ))−1Kh(φnu − φ

(s)
n )

∑N
n=1(w(φn; ξ))−1Kh(φde − φ

(s)
n )

.

The cancellation of the normalisation constant Z3 is crucial,
as accurately estimating constants like Z3 is known to be
challenging.

3.2 Choice of weighting function

The choice of w(φ; ξ) affects both the validity and efficacy
of our methodology. The weighted marginal s(φ; ξ) must
satisfy the requirements for a density for our method to be
valid. Hence, the specific form of w(φ; ξ) is subject to some
restrictions. Our first requirement is that w(φ; ξ) > 0 for all
φ in the support of p(φ, γ ). We also require that the weighted
joint distribution, defined in (7), has finite integral, to ensure
that it can be normalised to a probability distribution, and that
the marginal s(φ; ξ) is positive over the support of interest,
also with finite integral.

3.3 Multiple weighting functions

The methodology of Sect. 3.1 produces a single estimate
ˆ̂r(φnu, φde) using ˆ̂p(φ) from Eq. (8). It is accurate for values
in the HDR of s(φ; ξ), i.e. Rε(s(φ; ξ)), and we can con-
trol the location of Rε(s(φ; ξ)) through ξ . This is similar
to importance sampling, with s(φ; ξ) acting as the proposal
density. Nakayama (2011) notes importance sampling can be
used to improve the mean square error (MSE) of a KDE in
a specific local region, at the cost of an increase in global
MSE. To ameliorate the decrease in global performance, we
specifymultiple regions inwhichwewant accurate estimates
for ˆ̂p(φ), and then combine the corresponding estimates of
ˆ̂r(φnu, φde) to provide a single estimate that is accurate across
all regions.

We elect to use W different weighting functions, indexed
by w = 1, . . . ,W , with function-specific parameters ξw

denoted w(φ; ξw). Samples are then drawn from each of
the W weighted distributions sw(φ; ξw) ∝ p(φ)w(φ; ξw).
Denote the samples from the wth weighted distribution by
{φ(sw)

n }Nn=1. Each set of samples produces a separate ratio

estimate ˆ̂rw(φnu, φde) in the manner described in Sect. 3.1.
Each individual ˆ̂rw is accurate (in terms of relative accu-

racy) only in the HDR of sw(φ; ξw). Thus, when combining
multiple ratio estimates, simply taking the mean of all w =

1, . . . ,W estimates (for a specificvalueofφnu andφde)would
notmake use of our knowledge about the region inwhich ˆ̂rw is
accurate. We therefore propose a weighted average of all the
individual ratio estimates, where the weights approximately
come from sw(φnu; ξw)sw(φde; ξw) – this quantity is largest
when ˆ̂rw(φnu, φde) is most accurate. This ensures the more
accurate terms are given more weight in our final estimate.
Specifically, we use {φ(sw)

n }Nn=1 to compute a standard KDE
of sw(φ; ξw)

ŝw(φ; ξw) = 1

Nh

N
∑

n=1

Kh(φ − φ(sw)
n ).

Finally, we form the weighted-sample self-density ratio esti-
mate ˆ̂rWSRE(φnu, φde), which is a weighted mean of the
individual ratio estimates

ˆ̂rWSRE(φnu, φde) = 1

Z4

W
∑

w=1

ŝw(φnu, φde; ξw)ˆ̂rw(φnu, φde),

where ŝw(φnu, φde; ξw) = ŝw(φnu; ξw) ŝw(φde; ξw) and
Z4 = ∑W

w=1 ŝw(φnu, φde; ξw).

3.4 Choosing values for �w

Consider a D-dimensional φ = (φ[1], . . . , φ[D]) where φ[d]
is the dth component of φ, for d = 1, . . . , D. Assume we
have a compact region of interest for the dth component
denoted Ad = [ad , bd ] ⊆ supp(φ[d]), such that the overall
region of interest A can be defined as the Cartesian product
of component-wise regions of interest A = ŚD

d=1 Ad . We
are interested in accurately evaluating the self-density ratio
for two points in this region. We will obtain W choices for
ξw by specifying V weighting functions for each of the D
components, such that W = V D .

Assume that the weighting function w(φ; ξ) is composed
of D independent component weighting functions

w(φ; ξ) =
D

∏

d=1

m(φ[d]; ξ [d]),

where ξ [d] is the dth component of ξ . We can then define the
marginal of the weighted target

t(φ[d]; ξ [d]) =
∫

s(φ; ξ)dφ[−d],

whereφ[−d] represents the D−1 components ofφ that are not
φ[d]. For typical choices of ξ and w(φ; ξ), the corresponding
HDRof t(φ[d]; ξ [d]) does not span the region of interest. That
is, |Rε(t(φ[d]; ξ [d]))| � |Ad |.
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Our aim is to choose, for each of the d components, values
v = 1, . . . , V of ξ [d] denoted {ξv,d}Vv=1, yielding weighting
functions m(φ[d], ξv,d) and corresponding t(φ[d], ξv,d), such
that

⋃V
v=1 Rε(t(φ[d]; ξv,d)) ≈ Ad = [ad , bd ]. We employ

the following heuristic argument, first choosing a “mini-
mum” ξ1,d and a “maximum” ξV ,d such that

ξ1,d : ad ∈ Rε(t(φ
[d]; ξ1,d)),

ξV ,d : bd ∈ Rε(t(φ
[d]; ξV ,d)).

In words, we choose a minimum value ξ1,d so that the cor-
responding HDR of the weighted target includes the lower
limit of the region of interest. An analogous argument is used
to choose the maximum ξV ,d . We then interpolate V −2 val-
ues between ξ1,d and ξV ,d ensuring that there is sufficient,
but not complete, overlap between the corresponding HDRs.

Denote an element from the set of all W possible val-
ues for the parameter of the weighting function with ξw ∈
ŚD

d=1{ξv,d}Vv=1, noting that ξw is a D-vector.
The practitioner typically has some knowledge of p(φ)

and A from prior predictive checks and previous attempts at
running the two-stage sampler. Thus only a small number
of trial-and-error attempts should be needed to determine
ξ1,d and ξV ,d for all dimensions. These attempts are also
used to check for overlap between the HDRs, and increase
V if the overlap is insufficient. Section 6 contains further
discussion of this selection process and its relationship to
umbrella sampling (Torrie and Valleau 1977)

3.5 Practicalities and software

In our examples we use Gaussian density functions for
m(φ[d]; ξv,d),

m(φ[d]; ξv,d) = 1
√

2πσ 2
v,d

exp

{

− 1

2σ 2
v,d

(φ − μv,d)
2

}

,

with ξv,d = (μv,d , σ
2
v,d), though we fix σ 2

v,d = σ 2
d for all

v. Our definition of sufficient overlap is that 0.95 empirical
quantile of t(φ[d]; ξv,d) is equal or slightly greater than the
0.05 empirical quantile of t(φ[d]; ξv+1,d), for v = 1, . . . , V−
1.

Our implementation of our WSRE methodology is avail-
able in an R (R Core Team 2021) package at https://github.
com/hhau/wsre. It is built on top of Stan (Carpenter et al.
2017) and Rcpp (Eddelbuettel and François 2011). Package
users supply a joint density p(φ, γ ) in the form of a Stan
model; choose the parameters ξw of each of the W weight-
ing functions; and the number of samples N drawn from
each sw(φ; ξw). The combined estimate ˆ̂rWSRE(φnu, φde)

is returned. A vignette on using wsre is included in the

package, and documents the specific form of Stan model
required.

4 An evidence synthesis for estimating the
efficacy of HIV screening

To illustrate our approach we artificially split an existing
joint model into two submodels, then compare the melded
posterior estimates obtained by the two-stage algorithmusing
the naive and WSRE approaches. Artificially splitting this
joint model serves several purposes: it demonstrates that the
numerical instability can occur in a simple, low dimensional
setting; we can obtain a good parametric approximation to
the prior marginal to use as a reference; and the simplicity
of the model allows us to focus on our methodology, not the
complexity of the model.

4.1 Model

The model is a simple evidence synthesis model for infer-
ring the efficacy of HIV screening in prenatal clinics (Ades
and Cliffe 2002), and has 8 basic parameters ρ1, ρ2, . . . , ρ8,
which are group membership probabilities for particular risk
groups and subgroups thereof. The first risk group partitions
the prenatal clinic attendees into those born in sub-Saharan
Africa (SSA), injecting drug users (IDU), and the remain-
ing women. These groups have corresponding membership
probabilities ρ1, ρ2, and 1 − ρ1 − ρ2. The groups are sub-
divided based on whether they are infected with HIV, with
group specific HIV positivity ρ3, ρ4 and ρ5 respectively; and
if they had already been diagnosed before visiting the clinic,
with pre-clinical diagnosis probabilities ρ6, ρ7 and ρ8. An
additional probability is also included in the model, denoted
ρ9, which considers the prevalence of HIV serotype B. This
parameter enables the inclusion of study 12, which further
informs the other basic parameters. Table 1 summarises the
full joint model, including the s = 1, . . . , 12 studies with
observations ys and sample size ns ; the basic parameters
ρ1, . . . , ρ9; and the link functions that relate the study pro-
portions π1, . . . , π12 to the basic parameters.

Wemake one smallmodification to originalmodel ofAdes
and Cliffe (2002), to better highlight the impact of WSRE on
the melded posterior estimate. The original model adopts
a flat, Beta(1, 1) prior for ρ9. This induces a prior on π12

that is not flat, but not overly informative, making it difficult
to demonstrate the issues caused by an inaccurate density
estimate of the tail of the prior marginal distribution. Instead,
we adopt a Beta(3, 1) prior for ρ9. This prior would have
been reasonable for the time and place in which the original
evidence synthesis was constructed, since the distribution of
HIV serotypes differs considerably between North America
and sub-Saharan Africa (Hemelaar 2012).
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Table 1 HIV example: Study
probabilities, their relationships
to the basic parameters, and data
used to inform the probabilities.
For full details on the sources of
the data see Ades and Cliffe
(2002).

Parameter Data
y n y/n

π1 = ρ1 11,044 104,577 0.106

π2 = ρ2 12 882 0.014

π3 = ρ3 252 15,428 0.016

π4 = ρ4 10 473 0.021

π5 = ρ4ρ2+ρ5(1−ρ1−ρ2)
1−ρ1

74 136,139 0.001

π6 = ρ3ρ1 + ρ4ρ2 + ρ5(1 − ρ1 − ρ2) 254 102,287 0.002

π7 = ρ6ρ3ρ1
ρ6ρ3ρ1+ρ7ρ4ρ2+ρ8ρ5(1−ρ1−ρ2)

43 60 0.717

π8 = ρ7ρ4ρ2
ρ7ρ4ρ2+ρ8ρ5(1−ρ1−ρ2)

4 17 0.235

π9 = ρ6ρ3ρ1+ρ7ρ4ρ2+ρ8ρ5(1−ρ1−ρ2)
ρ3ρ1+ρ4ρ2+ρ5(1−ρ1−ρ2)

87 254 0.343

π10 = ρ7 12 15 0.800

π11 = ρ9 14 118 0.119

π12 = ρ4ρ2+ρ9ρ5(1−ρ1−ρ2)
ρ4ρ2+ρ5(1−ρ1−ρ2)

5 31 0.161

The code to reproduce this example is available at https://
github.com/hhau/presanis-conflict-hiv-example.

4.2 Submodels formed by splitting

In the full joint model study 12 informs the probability
π12, and provides indirect evidence for the basic parameters
through the deterministic link function

π12 = ρ2ρ4 + ρ9ρ5(1 − ρ1 − ρ2)

ρ2ρ4 + ρ5(1 − ρ1 − ρ2)
.

Figure 1 is a DAG of the basic parameters in the full model
that relate to π12. We consider splitting the model at the node
corresponding to the expected proportion π12 in study 12,
i.e. we set the common quantity φ = π12.

The first submodel (m = 1) considers data from studies 1
to 11 Y1 = (y1, . . . , y11), corresponding study proportions
(π1, . . . , π11), and all basic parameters ψ1 = (ρ1, . . . , ρ9).
Note that the study proportions are implicitly defined because
they are deterministic functions of the basic parameters. The
joint distribution of this submodel is

p1(ρ1, . . . , ρ9, y1, . . . , y12) = p(ρ1) . . . p(ρ9)
11
∏

s=1

p(ys | πs).

The prior p1(π12) on the commonquantityφ = π12 is implic-
itly defined, so its analytic form is unknown, hence it needs
to be estimated.

The second submodel (m = 2) pertains specifically to
study 12, with data Y2 = y12, the study 12 specific prob-
ability φ = π12, and ψ1 = ∅. The joint distribution is
p2(π12, y12) = p2(π12)p(y12 | π12). In more complex
examples p2(φ) may be implicitly defined, and contribute

substantially to the melded posterior. However, in this sim-
ple example we are free to choose p2(π12) = p2(φ), and opt
for a Beta(1, 1) prior.

4.3 Self-density ratio estimation

We now compute the self-density ratio estimate
ˆ̂rWSRE(φnu, φde) of p1(φnu) / p1(φde). In the notation defined
in Sect. 3.4, this example has D = 1, andwe use V = W = 7
Gaussian weighting functions. We fix the variance parame-
ter of the weighting function σ 2

w = 0.082 for all w, and use
the heuristic described in Sect. 3.4 to choose values for the
mean parameter of the weighting function. Specifically, we
set the minimum to be ξ1,1 = μ1 = 0.05, with maximum
ξ7,1 = μ7 = 0.08 and 5 additional, equally spaced values
between these extrema. We draw 3000 MCMC samples in
total, apportioned equally across the 7 weighting functions.
We thus draw 428 post warmup MCMC samples from each
weighted target.

4.4 Results

We compare the melded posterior obtained by the naive
approach and using WSRE. For a fair comparison, we esti-
mate the prior marginal distribution of interest p̂1(φ) using
3000 Monte Carlo samples, This set-up is slightly advan-
tageous for the naive approach, which uses Monte Carlo
samples, rather than the MCMC samples of the self-density
ratio estimate; the naive approachmakes useof a sample com-
prised of 3000 effective samples, whilst the self-density ratio
estimate uses fewerthan 3000 effective samples. A reference
estimate of the melded posterior is obtained using a paramet-
ric density estimate p̂ref,1(φ) for the unknown prior marginal,
based on 5 × 106 prior samples. The reference sample also
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Fig. 1 Partial directed acyclic
graph (DAG) for the HIV
model. The top row only depicts
nodes that relate to π12. Dashed
lines indicate deterministic
relationships between nodes,
some of which are
non-invertible. Solid lines
indicate stochastic relationships

y12y11y10y9

π12π11π10π9

ρ9ρ5ρ4ρ2ρ1

Fig. 2 Top: Stage one trace plot for φ using the naive method. At any
moment in time chains can jump to the spurious mode, which is an
artefact of p̂1(φ).Bottom: Corresponding stage two trace plot. The stage
two target has the same numerical instability, and because the stage one
samples are the proposal distribution, all chains encounter the instability

contains some error, as p̂ref,1(φ) is not perfect. However, in
the absence of an analytic form for p1(φ) it serves as a very
close approximation.We estimate themelded posterior using
the two-stage sampler of Sect. 2.2, targeting in stage one

pmeld,1(φ,ψ1 | Y1) ∝ p1(φ,ψ1,Y1)

p1(φ)
. (9)

and the full melded posterior in stage two. To demonstrate
the numerical instability of interest, we run 24 chains that
target pmeld,1 in (9) using the naive approach.
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Fig. 3 Quantile-quantile plot of the melded posterior quantiles using
theWSRE approach (blue) and the naive approach (red). Both methods
are comparable to the quantiles from the reference sample (x-axis)

The top panel of Fig. 2 displays the trace plot of the post-
warmup samples. Many chains have already converged to a
spurious model around φ ≈ 0.02, and other chains jump to
this mode after a variable number of additional iterations.
As discussed in Sect. 2.4, this mode is an artefact of the
naive KDE employed for p̂1(φ), and is also visible in the
corresponding stage two trace plot (bottom panel of Fig. 2).
Because the stage one samples act as the proposal for stage
two, all stage two chains quickly jump to the spurious mode.

The samples surrounding the spurious mode introduce
substantial bias in estimate of the melded posterior under the
naive approach. This is visible in the quantile-quantile plot
in Fig. 3, where the naive approach produces an implausible
estimate compared to the reference quantiles. In contrast, the
WSRE approach rectifies the numerical instability, and uses
the two-stage sampler to produce a sensible estimate of the
melded posterior.
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5 An evidence synthesis to estimate the
severity of the H1N1 pandemic

We now consider a more involved example, where the prior
for the common quantity does not have an analytical form
under either submodel, and the two priors contain a substan-
tially different quantity of information. Presanis et al. (2014)
undertook a large evidence synthesis in order to estimate the
severity of the H1N1 pandemic amongst the population of
England. Thismodel combines independent data on the num-
ber of suspected influenza cases in hospital’s intensive care
unit (ICU) into a large severitymodel. Here, we reanalyse the
model introduced in Goudie et al. (2019) that uses Markov
melding to join the independent ICU model (m = 1) with
a simplified version of the larger, complex severity model
(m = 2). In this example the melded model has no obvious
implied joint model, so there are no simple “gold standard”
jointmodel estimates to use as a baseline reference.However,
we demonstrate that the naive approach is highly unstable,
whereas the WSRE approach produces stable results. The
code to reproduce all figures and outputs for this example is
available at https://github.com/hhau/full-melding-example.

5.1 ICU submodel

The data for the ICU submodel (m = 1) are aggregateweekly
counts of patients in the ICU of all the hospitals in England,
for 78 days between December 2010 and February 2011.
Observations were recorded of the number of children a = 1
and adults a = 2 in the ICU on days U = {8, 15, . . . , 78},
andwedenote a specificweekly observation as ya,t for t ∈ U .

To appropriately model the temporal nature of the weekly
ICU data we use a time inhomogeneous, thinned Poisson
process with rate parameter λa,t for t ∈ T where T =
{1, 2, . . . , 78}. This is the expected number of new ICU
admissions; the corresponding age group specific ICU exit
rate is μa . There is also a discrepancy between the observa-
tion timesU and the daily support of our Poisson process T .
We address this in the observation model

ya,t ∼ Pois(ηa,t ), t ∈ U , (10)

ηa,t =
t

∑

u=1

λa,u exp{−μa(t − u)}, t ∈ T , (11)

through different supports for t in Eqs. (10) and (11). An
identifiability assumption of ηa,1 = 0 is required, which
enforces the reasonable assumption that no H1N1 influenza
patients were in the ICU at time t = 0.

Weekly virological positivity data are available at weeks
V = {1, . . . , 11}, and inform the proportion of influenza
cases which are attributable to the H1N1 virus π

pos
a,t . The

virology data consists of the number of H1N1-positive swabs

zposa,v and the total number of swabs nposa,z tested for influenza
that week. This proportion relates the counts to π

pos
a,t via a

truncated uniform prior on π
pos
a,t ,

π
pos
a,t ∼ Unif(ωa,v, 1), t ∈ T

zposa,v ∼ Bin(nposa,z , ωa,v), v ∈ V ,

with v = 1 for t = 1, 2, . . . , 14, and v = 
(t − 1) / 7�
for t = 15, 16, . . . , 78 to align the temporal indices. The
positivity proportion π

pos
a,t is combined with λa,t to com-

pute the lower bound on the total number of H1N1 cases
φa = ∑

t∈T
π
pos
a,t λa,t where φ = (φ1, φ2) is the quantity com-

mon to both submodels. This summation is a non-invertible
function, which necessitates either considering this model
in stage one of our two-stage sampler, or appropriately aug-
menting the definition of φa such that it is invertible.We elect
to consider this submodel in stage one, and further discuss
model ordering in Sect. 6.

Lastly, we specify priors for the remaining parameters. A
lognormal random-walk is used for the expected number of
new admissions

log(λa,1)∼Unif(0, 250), log(λa,t ) ∼ N(log(λa,t−1), ν
−2
a ),

νa ∼ Unif(0.1, 2.7),

for t = 2, 3, . . . , 78 and a = 1, 2. Age group specific exit
rates have informative priors (Presanis et al. 2014)

μ1 = exp{−α}, μ2 = exp{−(α + β)},
α ∼ N(2.7058, 0.07882), β ∼ N(−0.4969, 0.20482),

and the lower bound on the positivity proportion has a flat
prior, ωa,v ∼ Unif(0, 1), for v ∈ V .

5.2 Severity submodel

A simplified version of the large severity model (m = 2) of
Presanis et al. (2014) is considered here, in which parts of
the severity model are collapsed into informative priors. The
cumulative number of ICU admissions φa is assumed to be
an underestimate of the true number of ICU admissions due
to H1N1, χa . This motivates

φa ∼ Bin(χa, π
det), πdet ∼ Beta(6, 4),

χ1 ∼ LN(4.93, 0.172), χ2 ∼ LN(7.71, 0.232),

where πdet is the age group constant probability of detection,
and the priors on χa appropriately summarise the remainder
of the large severity model.
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Severity prior ICU prior ICU posterior
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Fig. 4 Heatmap of the severity submodel prior p2(φ), ICU submodel
prior p1(φ), and the stage one (ICU submodel) posterior p1(φ | Y1)

5.3 Prior distributions, stage one target

Figure 4 displays pm(φ) for both submodels, as well as the
subposterior for the ICU (m = 1) submodel p1(φ | Y1). The
melded posterior will be largely influenced by the product of
p1(φ | Y1) and p2(φ), since p1(φ) is effectively uniform (see
the centre panel of Fig. 4), and there are no data observed in
the severity submodel, i.e. Y2 = ∅. In stage one we target
the ICU submodel posterior p1(φ,ψ1 | Y1), enabling the
use of the original JAGS (Plummer 2018) implementation.
These samples for φ are displayed in the right panel of Fig. 4,
and we see that whilst there is substantial overlap with p2(φ)

(left panel), p1(φ | Y1) is more disperse, particularly for φ1.
Our region of interest is thus the HDR of p1(φ | Y1), as
the two-stage sampler involves evaluating the samples from
p1(φ | Y1) under p2(φ).

5.4 Self-density ratio estimation

The stage two acceptance probability for a move from φ →
φ∗ where φ∗ ∼ p1(φ,ψ1 | Y1) is

α(φ∗, φ) = ppool(φ
∗)p2(φ∗, ψ2,Y2)p1(φ)p2(φ)

ppool(φ)p2(φ,ψ2,Y2)p1(φ∗)p2(φ∗)
. (12)

In both the severity and ICU submodels, the prior marginal
distribution pm(φ) is unknown. This necessitates estimating
the self-density ratio for both p1(φ) and p2(φ). However, the
uniformity of p1(φ) corresponds to a self-density ratio that is
effectively 1 everywhere. In contrast, the severity submodel
prior marginal p2(φ) is clearly not uniform over our region of
interest; appropriately estimating the melded posterior thus
requires an accurate estimate of p2(φ) / p2(φ

∗).
To obtain the WSRE estimate of p2(φ) / p2(φ

∗) we first
note that, in the notation of Section 3.4, φ = (φ1, φ2) =
(φ[1], φ[2]), thus D = 2. We set V = 10, resulting in
W = 102 weighting functions, and we draw 103 samples
from each weighted target for a total of 105 MCMC samples.
The Gaussian weighting functions for the first component
m(φ[1]; ξv,1) have the variance parameter fixed to 252; for
the mean parameter we set ξ1,1 = 30, ξV ,1 = 275, with
8 other equally spaced values between these extrema. For

m(φ[2]; ξv,2) we set the variance parameter to 2502, with
ξ1,2 = 500, ξV ,2 = 3000, and interpolate 8 equally spaced
values between the extrema. The values for the variance
parameters are based on the empirical variance of the samples
in Fig. 4.

5.5 Results

We compare the melded posterior estimate obtained using
WSRE against the naive approach. For the latter we draw
105 samples from p2(φ) so that both approaches have the
same number of samples, although the naive approach has
a larger effective sample size. Figure 5 displays trace plots
of 15 stage two MCMC chains, where α(φ∗, φ) is computed
using the naive approach (left column), and using WSRE
(right column). The erroneous behaviour displayed in the left
column is due to underestimation of the tails of p̂2(φ) using
a standard KDE. This underestimation results in an overesti-
mation of the acceptance probability for proposals in the tails
of p̂2(φ), since the proposal term p̂2(φ

∗) is in the denomi-
nator of Eq. (12). Hence, moves to improbable values of φ∗
have acceptance probabilities that are dominated by Monte
Carlo error. Once at this improbable value the error then has
the opposite effect; the underestimate yields chains unable
to move back to probable values. This produces the mono-
tonic step-like behaviour seen in the top left panel of Fig. 5.
Although this behaviour is not visible in all 15 chains, it will
eventually occur if the chains are run for more iterations, as
a sufficiently improbable value for φ∗ will be proposed. The
results from this sampler are thus unstable.

Whilst there is no baseline “truth” to compare to in this
example, the sampler that employs ˆ̂rWSRE(φ, φ∗) as an esti-
mate of p2(φ) / p2(φ

∗) produces plausible results, in contrast
to the naive approach. No step-like behaviour is visible when
employing the WSRE approach (right column of 5). Whilst
the between-chain mixing is not optimal, this can be amelio-
rated by running the chains for longer, which cannot be said
for the naive method. This improved behaviour is obtained
using the same number of samples from the prior marginal
distribution, or weighted versions thereof. Users of this algo-
rithm can be much more confident that the results are not
artefactual.

6 Discussion

The complexity of many phenomena necessitates intricate,
large models. Markov melding allows the practitioner to
channel modelling efforts into smaller, simpler submod-
els, each of which may have data associated with it, then
coherently combine these smaller models and disparate
data. Multi-stage, sequential sampling methods, such as the
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Fig. 5 Trace plots of 15
replicate stage two chains for φ1
and φ2, using the naive approach
(left column) and the WSRE
approach (right column)

sampler used for Markov melding, are important tools for
estimating these models in a pragmatic, computationally fea-
sible manner.

In particular, when an analytic form of the prior marginal
distribution is not available, we have demonstrated that the
two-stage sampling process is particularly sensitive to the
corresponding KDE in regions of low probability. Tail prob-
ability estimation is an important and recurrent challenge in
statistics (Hill 1975; Béranger et al. 2019).We addressed this
issue in the Markov melding context by noting that we can
limit our focus to the self-density ratio estimate, and sample
weighted distributions to improve performance in low proba-
bility areas, for lower computational cost than simple Monte
Carlo. Our examples show that for equivalent sample sizes,
we improve the estimation of the melded posterior compared
to the naive approach.

The issue addressed in this paper arises to due differences
in the intermediary distributions of the two-stage sampling
process, particularly where the proposal distribution is wider
than the target distribution. The presence or absence of this
issue is dependent upon the order in which the components
of the melded model are considered in the sampling pro-
cess, which is often constrained by the link function used
to define φ in each model. In both our examples the link
function is non-invertible. Goudie et al. (2019) show exten-
sions of the link function that render it invertible are valid;
that is, the model is theoretically invariant to the choice of
extension. However, the practical performance of the two-
stage sampler is heavily dependent on the appropriateness of
such extensions, and designing such extensions is extremely
challenging. Hence, the ordering of the submodels in the
two-stage sampler is often predetermined; we are practically
constrained by the non-invertible link function. In our exam-
ples this corresponds to sampling the less informative model
for φ first. If we are free to choose the ordering of the two-
stage sampler, we may still prefer to sample the wider model
first, as the melded posterior is more likely to be captured in

a reweighted sample from a wider distribution than such a
sample from a narrow distribution. However, if the melded
posterior distribution is substantially narrower than the stage-
one target distribution then we are susceptible to the sample
degeneracy and impoverishment problem (Li et al. 2014).
Addressing this issue in the melding context, whilst retain-
ing the computational advantages of the two-stage sampler,
is an avenue for future work.

The examples we consider contain 1 or 2 dimensional φ.
For higher dimensional φ we anticipate encountering issues
associated with the curse of dimensionality. Specifically, the
decrease in accuracy of anyKDE and increase in the required
number of weighting functions will scale exponentially with
dimension. Applying the argument in Sect. 3.4 to locate these
additional weighting functions will be challenging. As such
we recommendWSRE, like other KDEmethods, for settings
where dim(φ) ≤ 5 (Wand and Jones 1995). This requirement
may be relaxed when there is structure in φ that allows it to
be split into lower-dimensional components, such as when
φ contains a collection of subject-specific parameters that
are independent a priori. More generally, in high dimensions
almost everywhere is a ‘region of low probability’ and the
performance of KDEs is known to be poor, making choosing
both an appropriate number of weighting functions and their
parameters difficult. Machine learning methods have proven
to be effective for estimating densities of moderate to high
dimension (seeWang andScott (2019) for a review), however
the performance of these methods in low probability regions
has not, to our knowledge, been thoroughly investigated.

There are potential alternatives to our weighted-sample
self-density ratio estimation technique. Umbrella sampling
(Torrie andValleau 1977;Matthews et al. 2018) aims to accu-
rately estimate the tails of a density p(φ) by constructing an
estimate p̂(φ) fromW sets of weighted samples {φn,w}Nn=1 ∼
sw(φ; ξw),However, umbrella sampling requires estimates of
the normalising constants Z2,w = ∫

sw(φ; ξw)dφ to com-
bine the density estimates computed from each weighted
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sample. Our approach is able to avoid computing normalis-
ing constants by focusing on the self-density ratio. Umbrella
sampling also requires choosing the location of theweighting
functions, i.e. choosing ξw appropriately. A heuristic strat-
egy, similar to that of Sect. 3.4, is seen as necessary by Torrie
and Valleau (1977). Adaptive procedures that automatically
choose values of ξw based on other criteria exist, but these
assume that sw(φ) is a Gaussian distribution (Mitsuta et al.
2018) or operate on a predefined grid of possible values
(Wojtas-Niziurski et al. 2013). We cannot use the generic
temperingmethodology advocated byMatthews et al. (2018),
as sampling from p(φ, γ )1 / τ , for τ > 1, does not generally
produce marginal samples from p(φ)1 / τ .

Another possibility would be to sample pmeld using a
pseudo-marginal approach (Andrieu and Roberts 2009). A
necessary condition of the pseudo-marginal approach is that
we possess an unbiased estimate of the target distribution.
Kernel density estimation produces biased estimates of p(φ)

for finite N . A KDE can be debiased (Calonico et al. 2018;
Cheng and Chen 2019), but doing so requires substantial
computational effort. Moreover, we also require an unbiased
estimate of 1 / p(φ). Debiasing estimates of 1 / p(φ) is pos-
sible with pseudo-marginal methods like Russian roulette
(Lyne et al. 2015), but Park and Haran (2018) observe pro-
hibitive computational costs when doing so. The presence
of both ppool(φ) and 1 / p(φ) in the melded posterior further
complicates the production of an unbiased estimate, particu-
larly when ppool(φ) is formed via logarithmic pooling.
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