
29

Staged Generic Programming

JEREMY YALLOP, University of Cambridge, UK

Generic programming libraries such as Scrap Your Boilerplate eliminate the need to write repetitive code,

but typically introduce significant performance overheads. This leaves programmers with the regrettable

choice between writing succinct but slow programs and writing tedious but efficient programs.

Applying structured multi-stage programming techniques transforms Scrap Your Boilerplate from an

inefficient library into a typed optimising code generator, bringing its performance in line with hand-written

code, and so combining high-level programming with uncompromised performance.

CCS Concepts: · Software and its engineering→ Functional languages; Modules / packages;

Additional Key Words and Phrases: multi-stage programming, generic programming, metaprogramming,

partial evaluation

ACM Reference Format:

Jeremy Yallop. 2017. Staged Generic Programming. Proc. ACM Program. Lang. 1, ICFP, Article 29 (Septem-

ber 2017), 28 pages.

https://doi.org/10.1145/3110273

1 INTRODUCTION

Generic programming. The promise of generic programming is the elimination of the tedious
boilerplate code used to traverse complex data structures. For example, suppose that you want to
search a value v for every value of a certain type satisfying some predicate (e.g. even int values). You
might start by writing code to traverse v, examining its constructors and iterating over their fields.
Alternatively, you might use a generic programming library such as Scrap Your Boilerplate [Lämmel
and Peyton Jones 2003] (SYB), and write code like the following:

listify evenp v

This snippet lists all even integers within v, whether v is a list, tree, pair, or some more complex
structure.
Evidently, generic programming can significantly simplify certain programming tasks. How-

ever, this simplification often comes with a severe performance cost. For example, with the SYB
implementation of listify the snippet above typically executes around 20 times slower than an
equivalent hand-written traversal specialised to a particular type (Section 3.3), even if v is dense in
integers. If the integers are sparsely distributed, performance can be significantly worse.

Multi-stage programming. The poor performance of functions like listify is a consequence of
the same genericity that makes them appealing. How might we keep the genericity but eliminate
the cost?

One approach to eliminating abstraction costs is multi-stage programming. Multi-stage programs
improve efficiency using information that becomes available after a function is defined but before

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).

2475-1421/2017/9-ART29

https://doi.org/10.1145/3110273

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3110273
https://doi.org/10.1145/3110273

29:2 Jeremy Yallop

it is invoked. For example, the author of listify cannot possibly know the eventual types of its
arguments, and so ought to make listify as general as possible. However, the caller of listify
typically knows the types of the arguments before the time when the function is actually called.
This type information can be used to specialise listify at the call site, taking advantage of type
information to optimize the function implementation. In other words, multi-stage programming
transforms an inefficient generic function such as listify into an optimising code generator.

Since the overheads of SYB are so large, even naive staging that does no more than eliminate type-
passing polymorphism can achieve dramatic performance increases [Yallop 2016]. As we shall see,
application of more sophisticated staging techniques can achieve more substantial improvements Ð
eliminating branches, projections and function calls, statically merging values, and restructuring
code to avoid repeated computation.

For example, here is the code generated by the staged listifywhen v has type ˘int ˙ string list¯ list

Ð that is, when v is an association list whose keys are integers and whose values are lists of strings:

let rec f l = match l with

| [] → []

| hd ȷȷ tl → let ˘x˛y¯ = hd in

if evenp x then x ȷȷ f tl else f tl

The code corresponds closely to what one might write by hand: a simple recursive traversal1

that tests each key x in turn, consing the key onto the result if it satisfies evenp. The listify code
generator has determined that the value y can be ignored, since a string list cannot contain an int.

1.1 Outline and Contributions

The central contribution of this work is the principled application of staging techniques to transform
a generic programming library into a typed optimising code generator. Several of the techniques
used have not previously appeared in the literature but, since they deal with the core elements of
functional programming Ð algebraic data, higher-order functions, recursion, etc. Ð we anticipate
that they will be applicable to a wide class of programs.
The next two sections recapitulate a naive staging of SYB [Yallop 2016], starting with a port of

SYB to OCaml (Section 2), which is then staged to turn generic functions into code generators,
largely eliminating generic dispatch overhead (Section 3).
The remainder of the paper presents new contributions:

• Building on the staging transformation of Section 3, we show how to further improve perfor-
mance with an armoury of principled staging techniques: recursion analysis, let‚rec insertion
and inlining (Section 4.1), partially-static data (Section 4.2), reification and reflection (Sec-
tion 4.3), case lifting (Section 4.4), branch pruning (Section 4.5), and fixed-point elimination
(Section 4.6).
Several of the techniques in Section 4 have roots in type-directed partial evaluation, normal-
ization by evaluation, and other venerable approaches to program transformation. We show
here that these techniques find happy expression in a multi-stage programming language
with delimited control and advanced forms of polymorphism.
• The simple listify example from the introduction guides the development, as we consider
techniques that improve the generated code for various types of data. However, the techniques
developed for listify also apply directly to other generic functions (Section 5).

1 It is common in OCaml to define functions such as listify without using tail recursion; the standard library has many

examples, including map, append, and split. Like those functions, the code here runs faster than an equivalent tail-recursive

definition that concludes by reversing the list, but risks overflowing the stack on extremely long input.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:3

• An appealing property of quotation-based multistage programming is that optimizations are
typically predictable Ð constructs that do not appear in quotations in the generated program
are certain to be absent from the generated program. For this reason, a qualitative evaluation
that focuses on the nature of the generated code may be more informative than a quantitative
assessment of program running time. Nevertheless, we include a quantitative evaluation
in Section 6 to complement the analysis of code generation, and show that the systematic
staging of SYB generates code that runs 20-30× faster than the unstaged version, and that
equals or outperforms handwritten code.
• Finally, this work serves to demonstrate how staged programming languages support ex-
tending libraries with the ability to optimize their own code at call sites. The staged SYB
dramatically outperforms the original, but requires no compiler optimizations, no external
tools, and no additional sophistication on the part of the user of the library.

2 SCRAP YOUR BOILERPLATE

We begin with an implementation of SYB in OCaml as a starting point for the staged implementation
of Section 3.

2.1 SYB Basics

SYB is designed for writing generic traversals over data, with specialised behaviour at certain types.
There are three key ingredients in the SYB design. First, a run-time type equality test supports
examining the type of data during a traversal (Section 2.2). Second, a small collection of shallow
traversals supports traversing individual nodes (Section 2.3). Third, a collection of generic łschemesž
builds on these traversals to traverse entire values (Section 2.4).

2.2 The First SYB Ingredient: Type Equality Tests

Type equality tests play a central role in SYB. For example, listify p compares the type of each
node with the argument type of the predicate p.

The TYPEABLE interface (Figure 1a) supports type equality tests2. Each TYPEABLE instance has three
members: the type t, instantiated to a concrete type such as int or bool list; the value tyrep, which
represents the type t; and the function eqty, which determines whether tyrep is equal to some other
type representation.
The type tyrep, used for type representations, is an open data type [Löh and Hinze 2006]. An

instance of TYPEABLE for a type t extends tyrep with a new constructor, which takes as many
arguments as t has type parameters. For example, the TYPEABLE instance for int extends TYPEABLE

with a nullary constructor Int, and the instance for list adds a unary constructor List (Figure 1b).
Both tyrep and eql (used in the return type of eqty) are generalized algebraic data types (GADTs)

[Johann and Ghani 2008]. A GADT value transports information about type equalities around a
program. A match expression that examines a value of type t tyrep to find Int also discovers that the
t is equal to int, which appears in the return type of Int; similarly, a match expression that examines
a ˘s˛ t¯ eql value to reveal Refl also reveals that the types s and t are equal.
In place of GADTs the original SYB uses a general coercion function gcast built on an unsafe

coercion [Lämmel and Peyton Jones 2004]. The eqty function can be used to write gcast without
unsafe features.
Figure 1b also makes use of modular implicits, an OCaml extension for overloading [White

et al. 2015]. The implicit keyword makes a module available for implicit instantiation. Enclosing

2 The use of laziness addresses a limitation of recursive modules, which are used for instances of recursive types

e.g. Data_list in Figure 2a. See the "relaxed in-place update" scheme described by Leroy [2003] for details.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:4 Jeremy Yallop

type _ tyrep = ..

module type TYPEABLE =

sig

type t

val tyrep ȷ t tyrep lazy_t

val eqty ȷ 's tyrep → ˘t˛ 's¯ eql option

end

Fig. 1a. The TYPEABLE interface for type equality tests

type _ tyrep ¸= Int ȷ int tyrep

implicit module Typeable_int =

struct

type t = int

let eqty = function

| Int → Some Refl

| _ → None

let tyrep = lazy Int

end

type _ tyrep ¸= List ȷ 'a tyrep → 'a list tyrep

implicit module Typeable_list {AȷTYPEABLE} =

struct

type t = A.t list

let eqty = function

| List a → ˘match A.eqty a with

| Some Refl → Some Refl

| None → None¯

| _ → None

let tyrep = lazy ˘List ˘force A.tyrep¯¯

end

Fig. 1b. TYPEABLE instances for int and list

braces, as in {AȷTYPEABLE}, mark a parameter as implicit. No corresponding argument need be
passed; instead, the compiler instantiates the argument automatically. Implicit arguments can also
be supplied explicitly using braces: f {Typeable_int} x. Modular implicits are not essential to the
implementation Ð explicit dictionaries could serve in place of implicit arguments Ð but significantly
improve usability.

2.3 The Second SYB Ingredient: Generic Operations

The second ingredient of SYB is a small set of shallow traversals over data. The function gmapQ is a
representative example: it accepts a function q and a value v, applies q to the immediate sub-values
of v, and returns a list of the results:

gmapQ q ˘C ˘x1˛ x2˛ . . .̨ xn¯¯ = [q x1; q x2; . . .; q xn]

Figure 2a lines 1ś6 give the definition of the DATA signature3, which includes the operations of
TYPEABLE and the gmapQ operation. In the full SYB library DATA supports a few additional traversals.
However, to simplify the exposition this paper focuses on gmapQ, since the staging techniques
presented apply to the other traversals without significant modification.
The gmapQ function takes two arguments: a generic query of type genericQ (defined on Figure 2a

line 1), and a value of type t. The type genericQ is sufficiently general that the query can be applied
to any value with a DATA instance; however, the type 'u returned by the query is the same in each
case.

Figure 2a lines 8ś20 define two implicit instances of the DATA signature. The first, Data_int, defines
gmapQ to return an empty list, since an int value has no sub-values. The second, Data_list, defines

3 Recursive module types, written with module type rec, are a language extension, but macro-expressible via OCaml’s

existing recursive modules.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

S
ta
g
ed

G
en
eric

P
ro
g
ra
m
m
in
g

29:5
type 'u genericQ = {DȷDATA} → D.t → 'u

module type rec DATA = sig

type t

module Typeable ȷ TYPEABLE with type t = t

val gmapQ ȷ 'u genericQ → t → 'u list

end

implicit module Data_int = struct

type t = int

module Typeable = Typeable_int

let gmapQ _ _ = []

end

implicit module rec Data_list {AȷDATA} = struct

type t = A.t list

module Typeable = Typeable_list{A.Typeable}

let gmapQ q l = match l with

| [] → []

| x ȷȷ xs → [q x; q xs]

end

let mkQ {TȷTYPEABLE} u ˘gȷ T.t → u¯ {DȷDATA} x =

match D.Typeable.eqty ˘force T.tyrep¯ with

| Some Refl → g x

| _ → u

let single p x = if p x then [x] else []

let rec listify {TȷTYPEABLE} p {DȷDATA} x =

mkQ [] ˘single p¯ x ␣ concat ˘D.gmapQ ˘listify p¯ x¯

Fig. 2a. SYB: a cross-section

1 type 'u genericQ = {DȷDATA} → D.t code → 'u code

2 module type rec DATA = sig

3 type t

4 module Typeable ȷ TYPEABLE with type t = t

5 val gmapQ ȷ 'u genericQ → t code → 'u list code

6 end

7

8 implicit module Data_int = struct

9 type t = int

10 module Typeable = Typeable_int

11 let gmapQ _ _ = .<[]>.

12 end

13

14 implicit module rec Data_list {AȷDATA} = struct

15 type t = A.t list

16 module Typeable = Typeable_list{A.Typeable}

17 let gmapQ q l = .< match .˜l with

18 [] → []

19 | x ȷȷ xs → [.˜˘q .<x>.̄ ; .˜˘q .<xs>.̄] >.

20 end

21

22 let mkQ {TȷTYPEABLE} u ˘gȷ T.t code → u code¯ {DȷDATA} x =

23 match D.Typeable.eqty ˘force T.tyrep¯ with

24 | Some Refl → g x

25 | _ → u

26

27 let single p x = .<if .˜˘p x¯ then [x] else []>.

28

29 let listify {TȷTYPEABLE} p = gfixQ ˘fun self {DȷDATA} x →

30 .<.˜˘mkQ .<[]>. ˘single p¯ x¯ ␣ concat .˜˘D.gmapQ self x¯>.̄

Fig. 2b. Naively staged SYB: a cross-section

P
ro
c.
A
C
M

P
ro
g
ram

.
L
an
g
.,V

o
l.
1,N

o
.
IC
FP

,A
rticle

29.
P
u
b
licatio

n
d
ate:

Sep
tem

b
er

2017.

29:6 Jeremy Yallop

gmapQ to apply the argument function q to each sub-node and collect the results. The generic type of
q allows it to be applied to any value for which a suitable implicit argument is in scope; in particular,
it can be applied to x, which has type A.t and to xs, which has type t, since the implicit modules A

and Data_list˘A¯ are in scope.
The mkQ function (Figure 2a lines 22ś25) builds a generic query from a monomorphic function g

and a default value u. The result is a generic query which accepts a further argument x; if x’s
type representation is equal to g’s argument type representation then g is applied; otherwise, u is
returned.
Here is an example of gmapQ in action:

gmapQ ˘mkQ false evenp¯ [10;20;«0];;

‚ ȷ bool list = [true; false]

Since gmapQ applies q only to immediate sub-values of v Ð here the head of the list, 10, and the
tail, [20;«0] Ð only the result for evenp 10 is returned. In place of the tail, gmapQ returns false, i.e. the
default passed to mkQ.

2.4 The Third SYB Ingredient: Generic Schemes

The final ingredient of SYB is a set of recursive schemes built atop gmapQ and other traversals. For
example, Figure 2a lines 29ś30 give a definition of listify, which use an auxiliary function single

(line 27), the standard list concatenation function concat, and the generic functions mkQ and gmapQ.
The definition of listify may be read as follows: apply p to the current node, if the current node
is suitably typed, and append the result of applying listify p to the sub-values. Thus, whereas
gmapQ only applies to immediate sub-values, listify recursively traverses entire structures. This
technique of building a recursive function such as listify from a shallow traversal such as gmapQ

Section 2.3 is sometimes referred to as tying the knot.
Writing generic traversals in this open-recursive style allows considerable flexibility in the form of

the traversal, and SYB supports a wide range of traversals besides listify, including gsize (compute
the size of a value), everywhere (apply a function to every sub-value), synthesize (build values from
the bottom up), and many more.

Dramatis Personñ. We pause to summarise the elements introduced so far. SYB provides interfaces
for type equality (Section 2.2) and shallow traversal (Section 2.3), along with recursive schemes
such as listify. Library authors may provide instances for the data types they define, following
the pattern of Typeable_list and Data_list

4. SYB users combine schemes and instances by calling
generic schemes with suitable instances in scope. Users are, of course, also free to define their own
generic schemes.

3 STAGING SYB, NAIVELY

SYB overhead. It is often observed that SYB has poor performance compared to handwritten code
[Adams et al. 2015]. The causes of this inefficiency are various, but most can be traced to various
forms of abstraction Ð that is, to delaying decisions until the last possible moment. For example,

• Most function calls in an SYB traversal involve polymorphic overloaded functions.
• Most function calls in an SYB traversal are indirect calls through arguments, not to statically-
known functions.
• Many SYB schemes test for type equality at each node.

4Instances are often synthesized from type definitions, e.g.by GHC [The GHC Team 2015]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:7

Multi-stage programming can eliminate each of these sources of inefficiency, transforming poly-
morphic functions into monomorphic functions, indirect calls into direct calls, and dynamic type
equality checks into static code specialisers.

For example, compared to the relatively efficient code on page 1 that searches for even integers
in a value of type ˘int ˙ bool¯ list, the call to listify performs a great many fruitless operations,
attempting to apply the generic function mkQ [] evenp to every node, including lists and pairs, and
dispatching recursive calls through polymorphic functions and DATA instances.
This section shows how to narrow the performance gap between the SYB implementation

(Section 2) and the hand-written code. In particular, Section 3.1 and Section 3.2 transform the
inefficient SYB implementation step-by-step into a code generator and specialiser. These changes
to SYB involve changing two of the three ingredients in the implementation:

The type equality code (Section 2.2) needs no changes, although it will be used statically rather
than dynamically Ð i.e. during code generation, not during code execution.

Generic operations (Section 2.3) are specialised to particular types: gmapQ becomes a code generator
(Section 3.1).

Recursive schemes (Section 2.4) are transformed, first into open-recursive functions, and then
into generators that build groups of mutually-recursive monomorphic functions (Section 3.2).

3.1 Staged Generic Operations

Staging basics. Staging involves introducing quotations and splices to a program in order to
change the program’s behaviour so that rather than returning a regular value it constructs code
that computes that value. Enclosing an expression e of type t in quotations:

.<e>.

delays its evaluation so that rather than evaluating to a value of type t it builds a code value of
type t code. Conversely, splicing an expression e of type t code into a quotation:

.˜e

indicates that e should be evaluated to a code value which is then inserted into the quotation.
Code generated using MetaOCaml [Kiselyov 2014] is guaranteed to be well typed; this is ensured

in part by a purely generative design that provides no way to deconstruct code values.

Binding-time analysis. The first step in staging a program, known as binding-time analysis [Jones
et al. 1993; Taha 1999], divides its free variables into static Ð those whose values are available
immediately Ð and dynamic Ð those whose values are not yet available. The analysis extends from
variables to expressions, classifying those expressions that involve only static variables as static,
and other expressions as dynamic. In multi-stage languages, binding-time analysis is typically
a task for the programmer, and guides the subsequent insertion of quotations and splices into a
program.

SYB has a particularly simple binding-time analysis. Values that describe type structure, passed as
implicit arguments, are classified as static, and values to traverse, passed as non-implicit arguments,
are classified as dynamic. Consequently, SYB functions are changed from functions that accept
both type representations and values at runtime to functions that first accept type representations,
which they use to generate code representing functions that accept values.

Staging DATA. Figure 2b shows the changes to DATA. Both the second argument and the result type
of gmapQ acquire a code constructor, since both are classified as dynamic (line 5). The argument and
result type of the query passed to gmapQ are modified similarly (line 1). However, the query itself is
typically supplied directly via a scheme such as listify, and so is left as static.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:8 Jeremy Yallop

The implementations of gmapQ for the Data_int and Data_list instances follow straightforwardly
from the types. For Data_int the list returned by gmapQ is dynamic (line 11). In Data_list’s gmapQ, l is
dynamic, and must be spliced within the quotation that builds the function body (line 17). Similarly,
variables x and xs are dynamic, since they are only available when l is examined; they are passed
to q as quoted code values. However both q and its implicit argument are static, and so q is called
immediately, generating code to be spliced into the body quotation (line 19).

Since mkQ operates on TYPEABLE values, which are only used statically, only the type of mkQ, not its
definition, needs to change to give dynamic variables type code (line 22).

The staged mkQ function examines type representations during code generation to determine how
to generate code. Here is the code generated at type int → bool for the example from Section 2.3:

.< fun y → evenp y >.

At type int list → bool, the type representations are incompatible and so the generated code is
even simpler:

.< fun y → false >.

In both cases, the generated code reveals no trace of either TYPEABLE or DATA. These generic
signatures are now used only during traversal generation and are no longer needed for the traversals
themselves; they can be discarded, alongwith the other generic functionmachinery and its overhead,
before the call to the generated function takes place.

3.2 Staged Traversal Schemes

Staging non-recursive code such as gmapQ and mkQ is straightforward. However, the recursive schemes
in SYB introduce new challenges for staging. Applying a generic scheme such as listify may
involve traversing a number of mutually-recursive types, and so specialising a generic scheme
involves generating a set of mutually-recursive functions (an instance of so-called polyvariant

specialization [Hughes 1999; Launchbury 1991]).
Here is the type of listify following binding-time analysis, classifying implicit arguments static

and others dynamic:

val listify ȷ {TȷTYPEABLE} → ˘T.t code → bool code¯ → T.t list genericQ

Staging listify involves deciding whether the recursion should be considered static or dynamic.
Unfortunately, neither option seems to be what is needed. Since the recursion performed by SYB
traverses values, which are dynamic, it is clear that the generated code must be recursive. However,
if all recursion is left until the dynamic phase then listify will be unable to statically discover the
type structure, which is used to generate monomorphic code.
The solution is found in the literature [Kameyama et al. 2011]: replacing let rec with a fixed-

point operator that traverses the static data (i.e. DATA instances) to generate recursive code. Two
features of SYB constrain the required behaviour of the fixed-point operator. First, it must perform
memoization to avoid non-termination, since SYB type descriptions may contain cycles; for example,
the gmapQ instance for Data_list invokes q with the Data_list instance. Second, it must be able to
generate arbitrary-size recursive groups, since an SYB traversal may involve any number of types.

Figure 2b lines 29ś30 show the result of staging listify with a fixed-point combinator gfixQ that
performs memoization and let rec insertion. The remainder of this section shows how to define
that combinator.

Generic fixed-points with memoization. The following definition provides a starting point for
gfixQ:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:9

type 'a map =

Nil ȷ 'a map

| Cons ȷ ˘module TYPEABLE with type t = 'b¯ ˙ ˘'b → 'a¯ ˙ map → map

val new_mapȷ unit → 'a map ref

val lookupȷ {TȷTYPEABLE} → 'a map → ˘T.t → 'a¯ option

val pushȷ {TȷTYPEABLE} → 'a map ref → ˘T.t → 'a¯ → unit

Fig. 3. TYPEABLE-keyed maps: interface

val let_locus ȷ ˘unit → 'w code¯ → 'w code

val genlet ȷ 'a code → 'a code

Fig. 4a. the let insertion interface [Kiselyov 2014]

let_locus ˘fun ˘¯ → κ[genlet e]¯

{

.<let x = .˜e in

.˜˘let_locus ˘fun ˘¯ → κ[.<x>.]¯¯>.

Fig. 4b. let insertion: basic operation

effect ’enLet ȷ 'a code → 'a code

Fig. 5a. ’enLet, an effect for let insertion

let genlet v = perform ˘’enLet v¯

Fig. 5b. genlet, a performer of algebraic effects

let let_locus body =

try body ˘¯

with effect ˘’enLet v¯ k →

.< let x = .˜v in .˜˘continue k .< x >.¯>.

Fig. 5c. let_locus, a handler of algebraic effects

val gfixQ ȷ ˘'u genericQ → 'u genericQ¯ → 'u genericQ

let rec gfixQ f {DȷDATA} ˘xȷD.t¯ = f {D} ˘gfixQ f¯ x

This definition is derived from the standard fixed-point equation fix f = f ˘fix f¯ byη-expanding
to adapt to the call-by-value setting, then generalising over the implicit argument D.

Updating gfixQ to support memoization requires a suitable memo table. Figure 3 gives a definition:
each entry in a map value is a pair of an instantiated generic scheme of type 'b → 'a and a TYPEABLE

instance for 'b. The operations new_map, lookup and push define creation, resolution and extension
operations for map; their implementations are straightforward and omitted.

The map type serves as the basis for a memoizing gfixQ, which interposes map lookups on every
recursive call and adds an entry when lookup fails:

let gfixQ f =

let m = new_map ˘¯ in

let rec h {DȷDATA} x = match lookup {D.Typeable} !m with

| Some g → g x

| None → let g = f h {D} in push m g; g x

in h

let insertion. We take a moment to review standard techniques for let insertion in multi-stage
programming as introduced by Kiselyov [2014]. Figure 4a gives the interface, with two operations:
let_locus marks a point on the stack which is suitable for let-insertion, and genlet requests that its
argument .<e>. be inserted at that point. Figure 4b shows the behaviour: a call to genlet in a context
κ sends the argument e to an enclosing let_locus, which let-binds e to x and continues with x as the
argument to κ, enclosing the context with let_locus. (In fact, the behaviour is more sophisticated:
genlet searches the stack for the highest insertion point at which its argument is well-scoped.)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:10 Jeremy Yallop

let genlet v =

try perform ˘’enLet v¯ with Unhandled → v

Fig. 6a. Improved genlet: inline when no handler is

found

let let_locus body =

try body ˘¯ with

effect ˘’enLet v¯ k when is_well_scoped v →

match perform ˘’enLet v¯ with

| v → continue k v

| exception Unhandled →

.< let x = .˜v in .˜˘continue k .< x >.̄ >.

Fig. 6b. Improved let_locus: insert as high as scop-

ing permits

let genrec k =

let r = genlet ˘.<ref dummy>.̄ in

genlet ˘.<.˜r ȷ= .˜˘k .< !.˜r >.̄ >.̄ ;

.< !.˜r >.

Fig. 7. The genrec combinator

let gfixQ f =

let m = new_map ˘¯ in

let rec h {DȷDATA} x =

match lookup {D.Typeable} !m with

| Some g → .< .˜g .˜x >.

| None → let g = genrec ␣␣ fun j →

push m j;

.<fun y → .˜˘f h .<y>.̄ >.

in .< .˜g .˜x >.

in h

Fig. 8. The staged gfixQ fixed-point combinator

As the use of contexts suggests, the implementation of these operations typically involves
requires some form of delimited control, such as the delimcc library [Kiselyov 2012] or algebraic
effects [Bauer and Pretnar 2012; Dolan et al. 2015], although implementations based on state are
also possible [Filinski 2001]. Figure 5a, Figure 5b and Figure 5c give a simple implementation of
let insertion in terms of algebraic effects: the genlet function (Figure 5b) performs the effect ’enLet
(Figure 5a) to transfer control to the handler in the body of let_locus (Figure 5c), which builds
a let quotation, and passes the bound variable .<x>. via the continuation k back to the context
surrounding genlet.
Figures 6a and 6b give a more sophisticated implementation. If no handler is in scope then the

genlet of Figure 6a fails gracefully, returning its argument directly to the calling context instead.
The handler in let_locus (Figure 6b) is more sophisticated, too: it checks whether the code passed
by getlet would be well-scoped in the current context; if so, it first tries to forward the request to
the surrounding handler, only generating a let-binding if forwarding fails.
In each of these implementations, the captured continuation k that appears in an effect case

within the body of a match or try handler extends to include the handler itself Ð that is, OCaml
implements so-called deep handlers.

let rec insertion. It remains to stage gfixQ and add support for let rec insertion. Staging gfixQ

requires a straightforward modification to map and its operations to give the stored functions type
˘'b → 'a¯ code.

MetaOCaml does not support generating recursive binding groups of arbitrary size. However,
Landin’s observation that such groups may be simulated without recursion usingmutable references
[Landin 1964] suggests an encoding in terms of let.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:11

RMWeightsSelectIntMap

0

1,000

2,000 1,780

1,032

1,775

136159108 937096ru
n
ti
m
e
(µ
s)

Unstaged Naively staged Manual

Fig. 9. Naively staged SYB Performance: standard benchmarks

Figure 7 defines a function genrec, which adds a binding to a recursive group by inserting two
let bindings: one to introduce a reference r, and a second to assign a value to r. The function k that
constructs the right-hand side has access to r, making it possible to build recursive functions:

Finally, Figure 8 gives a new definition of gfixQ that combines staging, heterogeneousmemoization
and let rec-insertion. The argument to genrec begins by adding an entry to the table for the fresh
binding so that if the table is consulted during the call to f the binding will be available. The full
implementation of the library provides a function instantiate (not shown here) that combines the
instantiation of a generic function with a call to let_locus, ensuring that bindings are correctly
grouped.

This definition of gfixQ supports both the staged listify (Figure 2b), and the other generic schemes
in the SYB library.

3.3 Performance of the Naive Staging

Figure 9 summarises the performance of the naively-staged SYB on a set of benchmarks described
by Adams et al. [2015]. For each benchmark the graph records the running time of three imple-
mentations of a function on the same data: a hand-written implementation, an unstaged SYB
implementation (Section 2), and an implementation generated by staged SYB (Section 3).

Each benchmark has a straightforward implementation as a hand-written recursive function, and
a succinct implementation as a generic function. For example, here is the hand-written function for
SelectInt, which finds and sums all the weights in a weighted tree:

let rec selectInt t = match t with

| Leaf x → x

| Fork ˘l˛ r¯ → selectInt l ¸ selectInt r

| WithWeight ˘t˛ x¯ → selectInt t ¸ x

And here is an SYB implementation of the same function:

let selectInt = everything ˘¸¯ ˘mkQ 0 id¯

As Figure 9 shows, the SYB implementations are between 14 and 19 times slower than equivalent
handwritten functions on the test data, and the staged SYB implementations eliminate the majority
of this overhead. Yallop [2016] gives further details.

Yallop [2016] goes on to identify three remaining sources of overhead. First, there is an unneces-
sary gmapT call for each weight in the generated code for rmWeights. Second, the generated code for
selectInts builds an intermediate list, unlike the handwritten code. Third, recursive calls through
references are slower than direct calls.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:12 Jeremy Yallop

type t1 = A of t3

and t2 = B

and t3 = C of t1

| D of t2

(a) type recursion

t2

t1

t3

(b) type DAG

let ˘¯ = f1 ȷ= fun x → e1

let ˘¯ = f2 ȷ= fun x → e2

let ˘¯ = f3 ȷ= fun x → e3

(c) Landin-style recursion

let f1 x = e1

let rec f2 x = e2

and f3 x = e3

(d) Precise recursion

let rec f2 x = e2[f1˘x¯ȷ=e1]

and f3 x = e3[f1˘x¯ȷ=e1]

(e) Precision + inlining

Figure 10. Improved code with simpler recursion

4 STAGING SYB, CAREFULLY

The naively staged SYB shows dramatic improvements over the unstaged library on standard
benchmarks (Section 3.3). However, there are two reasons to pause before celebrating.
First, the code generated by the staged version is still significantly slower than hand-written

code Ð over twice as slow on the SelectInt benchmark.
Second, none of the benchmarks represent situations where the hand-written code ignores large

parts of the structure, and in such situations the naively staged code exhibits very poor performance.
For example, when listify evenp is applied to a string list the resulting list is certain to be empty,
and the optimal code is the constant function:

fun _ → []

However, the naively staged SYB generates code that traverses the entire list, recursing via
references and appending empty lists:

let ˘¯ = f ȷ= ˘fun _ → []¯

let ˘¯ = g ȷ= ˘fun l → match l with

| [] → []

| h ȷȷ t → !f h ␣ !g t¯

There is evidently substantial room for improvement here.
The effectiveness of staging is often improved by applying binding-time improvements Ð program

transformations such as CPS conversion [Lawall and Danvy 1994; Nielsen and Sùrensen 1995]
or eta expansion [Danvy et al. 1996] that allow more expressions to be classified as static. This
section explores a succession of binding-time improvements to the staged SYB, resulting in a second
round of drastic performance improvements and bringing the generated output much closer to
hand-written code.

4.1 Recursion and Inlining

The implementation in Section 3 inherits SYB’s agnosticism about recursion in type definitions,
treating all types involved in a traversal as though they were defined in a mutually recursive group,
and so generating a mutually-recursive group of bindings. This is a sound over-approximation, but
has two drawbacks for performance. First, there is a certain overhead in each function call, particu-
larly when every function call goes through a mutable cell. Second, the scheme is unfavourable
to further optimizations, since it makes inlining difficult; each function definition consequently
serves as a boundary between static and dynamic code.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:13

1 let gfixQ f =

2 let m = new_map ˘¯ in

3 let rec h {DȷDATA} x =

4 match lookup {D.Typeable} !m˛ peers {D} with

5 | Some g˛ _ → R.dyn .< .˜g .˜x >.

6 | None˛ lazy [] →

7 f h {D} x

8 | None˛ lazy [_] →

9 let g = genrec1 ˘fun j → push m j;

10 fun y → ˘f h y¯¯

11 in .< .˜g .˜x >.

12 | None˛ _ →

13 let g = genrec ˘fun j →

14 push m j; .< fun y → .˜˘f h .<y>.̄ >.̄

15 in .< .˜g .˜x >.

16 in h

Fig. 11. A gfixQ for more precise recursion

module type PS =

sig

type t and sta

val dyn ȷ sta code → t

val cd ȷ t → sta code

val now ȷ t → sta option

end

Fig. 12. An interface to partially-static data

Furthermore, it is the over-approximation that makes the encoding with reference cells necessary.
In practice, mutual recursion between large numbers of types is rare: the common case is for
cycles in type definitions to involve only a single type. There is no difficulty in generating a single
recursive binding using let rec; it is only when the number of bindings is unknown that difficulties
arise.
Figure 10 outlines a superior approach: starting from the types involved in a traversal (Fig-

ure 10(a)), the staged code should make use of the dependency graph between types to determine
where the cycles occur (Figure 10(b)); then, rather than a single large group tied together with
references (Figure 10(c)), the generated code should consist of a sequence of mutually-recursive
groups (Figure 10(d)). This approach may be further refined by inlining all the functions generated
from non-recursive type definitions (Figure 10(e)).
The improved scheme avoids the performance cost arising from over-approximating recursion

between types. More importantly, inlining enables many more opportunities for optimization. (This
is no surprise: exposing optimization opportunities is generally the main benefit of inlining [Pey-
ton Jones and Marlow 2002].)
For example, generating code for listify evenp at the type bool ˙ string involves generating

functions at the types bool and string. For both bool and string the generated code ignores its
argument, returning [], the default value passed to mkQ. The generated code for bool ˙ string calls
the generated functions for bool and string, and appends the results:

fun ˘x˛ y¯ → !f x ␣ !f y

This is clearly sub-optimal: both lists are statically known to be empty and so there is no need for
the generated code to perform an append. Inlining alone is not sufficient to eliminate the dynamic
append, but it is an essential prerequisite both for that and for many more powerful optimizations
described in the following sections (Section 4.2śSection 4.6).

Figure 11 gives an implementation of an improved gfixQ that takes proper account of the recursive
structure of types. The key new detail is the use of the function peers that returns a list of those
types that partake in a cycle with D.t. (It is perhaps worth noting that peers may itself be defined as
a function using the SYB framework, since gmapQ may be used together with delimited control to
retrieve a list of the types immediately referenced by a type with a DATA instance, which is all that

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:14 Jeremy Yallop

is needed to find the cycles.) There are then four cases to consider: either the function is already in
the table (line 5); or there are no peers (line 6), in which case the function is non-recursive and is
applied directly (i.e. inlined), not inserted in the table; or there is a single peer (line 8), in which
case the function genrec1 (not shown) inserts a single let rec binding; or there are multiple peers
(line 11), in which case gfixQ falls back to the old scheme.

It would, of course, be easy to add a few more cases to handle other small fixed-size recursive
groups.
With this improved gfixQ, the generated code for listify evenp at type ˘int ˙ string¯ list is as

follows:

let rec evenslist x = match x with

| [] → []

| hȷȷt → let ˘i˛ s¯ = h in

˘if evenp i then [i] else []¯ ␣ [] ␣ evenslist t

The generated code for listify evenp at the types int and string has been inlined, and there is an
obvious opportunity for optimization (i.e. eliminating the append of []), which the next section
considers.

4.2 Partially-Static Data

Several of the code excerpts seen so far have involved dynamic values with some statically-known
structure. For example, Figure 2b includes quotations involving list literals of known length such
as .<[]>. and .<[x]>.. Quoted literals often suggest missed opportunities for static computation; for
example, in the closing example of Section 4.1, the subexpression ˘if evenp i then [i] else []¯ ␣ []

can be simplified to eliminate the append.
As with the over-approximation of recursive structure, the root cause is that the binding-time

analysis is too crude, marking an entire expression as dynamic whenever any sub-expression is
dynamic. Every implementation of the gmapQ function must have the same return type ('u code); the
result is that even fully-static expressions such as [] are marked as dynamic and quoted (Figure 2b,
line 11).

One solution to this problem is partially-static data, well known in the partial evaluation literature
as a binding-time improvement [Bondorf 1992; Thiemann 2013], and often used in writing staged
programs [Carette et al. 2009; Inoue 2014; Kaloper-Meršinjak and Yallop 2016; Kiselyov et al. 2004;
Sheard and Diatchki 2002]. As the name suggests, partially-static data are built partly from statically-
known values, and partly from unknown dynamic values, and typically support some form of
computation on the static portions.
Figure 12 defines a basic interface to partially-static data. The PS interface exposes two types:

t, the partially-static type, and sta, the fully-static type. The functions dyn and cd convert back
and forth between partially-static and fully-dynamic values; the function now attempts to extract a
fully-static value from a partially-static one. Instances of PS typically expose additional constructors
for injecting static data into t, along with operations for computing with partially-static values.

There are many useful instances of PS. The binding-times of listifymay be improved by defining
a type of partially-static lists, whose elements are dynamic, and whose spines may be partly static
and partly dynamic (Figure 13). The result of appending two such partially-static lists, l <¸> r,
results in static reduction in the case where l has a static suffix and r a static prefix (Figure 14).
Furthermore, the static value [] acts as a left and right identity for append, which is needed to
simplify the code from the end of Section 4.1.

Partially-static data and algebraic structure. The discussion above suggests a connection between
partially-static data and algebraic structure that often proves useful. Several other generic schemes

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:15

s1 d1 s2 @ s3 d2 s4

{ s1 d1 s2@s3 d2 s4

s1 d1 s2 @ d2 { s1 d1 s2 d2

Fig. 13. Partially-static lists: adjacent static parts merge

type 'a ps_list =

Empty

| SCons of 'a code list ˙ 'a ps_list

| DCons of 'a list code ˙ 'a ps_list

let rec ˘<¸>¯ l r = match l with

| Empty → r

| SCons ˘s˛ tl¯ → ˘match tl <¸> r with

| SCons ˘u˛ tl¯ → SCons ˘s ␣ u˛ tl¯

| Empty | DCons _ as r → SCons ˘s˛ r¯¯

| DCons ˘s˛ tl¯ → ˘match tl <¸> r with

| DCons ˘u˛tl¯ → DCons ˘.<.˜s ␣ .˜u>.̨ tl¯

| Empty | SCons _ as r → DCons ˘s˛ r¯¯

Fig. 14. Partially-static lists with append

benefit from partially-static data designed to take advantage of the algebraic laws of the underlying
structure: as with partially-static lists, the string monoid proves useful when defining the generic
pretty-printer gshow; commutative monoids appear when defining gsize; tropical semirings (formed
from addition and max) arise in the definition of gdepth (Section 5).
Incorporating partially-static data into the staged SYB implementation involves a few changes.

First, the original flexibility in the return type of genericQ is restored; a generic query no longer
unconditionally returns dynamic values:

type 'u genericQ = {DȷDATA} → D.t code → 'u

Second, gfixQ acquires a PS constraint, requiring that the return type of a query satisfies the
partially-static interface:

val gfixQ ȷ {PȷPS} → ˘P.t genericQ → P.t genericQ¯ → P.t genericQ

In practice the constraint is no hardship, since partially-static data subsume the old fully-dynamic
data. The body of gfixQmust be updated with dyn and cd accordingly. Finally, schemes such as listify
must be written in terms of partially-static data; in practice this means replacing list operations
such as concat with corresponding operations for ps_list (Figure 14).

With these changes the superfluous appends disappear from generated code. Here is the updated
output of listify evenp at the type ˘int ˙ string¯ list:

let rec evenslist x = match x with

| [] → []

| hȷȷt → let ˘i˛ s¯ = h in

˘if evenp i then [i] else []¯ ␣ evenslist t

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:16 Jeremy Yallop

1 module type rec DATA =

2 sig

3 type t and t_

4 module Typeable ȷ TYPEABLE with type t = t

5 val gmapQ ȷ 'u genericQ → t_ → 'u list

6 val reify ȷ t code → ˘t_ → 'a code¯ → 'a code

7 end

8

9 type ˘'a˛ 'r¯ list_ =

10 Nil

11 | Cons of 'a code ˙ 'r

12 implicit module rec Data_list {Aȷ DATA} =

13 struct

14 type t = A.t list and t_ = ˘A.t˛ t code¯ list_

15 let gmapQ q l = match l with

16 | Nil → []

17 | Cons ˘h˛ t¯ → [q h; q t]

18

19 let reify c k = .< match .˜c with

20 | [] → .˜˘k Nil¯

21 | h ȷȷ t → .˜˘k ˘Cons ˘.<h>.̨ .<t>.̄ ¯¯>.

22 end

Fig. 15. Extended DATA with reify

4.3 Reification (and Reflection)

The staged gmapQ (Figure 2b, lines 17ś19) combines two operations: it builds a code value that
examines a datum, and it applies a generic query q to the sub-values of that datum. These operations
need not always occur together; in fact, it is useful to decompose gmapQ into its constituent parts.
Figure 15 extends the DATA interface with a function reify that serves the first function, and a

type t_ that describes the input to the second argument of reify. More precisely, t_ represents
the one-step unrolling of t, with a constructor corresponding to each constructor of t, but with
dynamic rather than static arguments. For example, the type A.t list (Figure 15, line 10) has a
constructor ȷȷ (pronounced łconsž) with arguments of type A.t and A.t list. Accordingly, the type
˘A.t˛ t code¯ list_ (also Figure 15, line 10) has a constructor Cons with arguments of type A.t code

and A.t list code.
With the addition of reify, the body of gmapQ is identical to the unstaged version, except for the

names of the constructors. (However, the types differ.)
The łcontinuationž argument to reify offers considerable flexibility. For example, reify c ˘gmapQ q¯

behaves like the staged gmapQ from Figure 2b, while reify c id, where id is the identity function, is a
function that can be used as the dyn injection to treat a DATA instance as partially static. The reflect

function (not shown) is an inverse to reify, satisfying reify c reflect ≡ c up to observational
equivalence. While reify is useful for analysing values described by DATA, reflect is useful for
constructing values. A staged version of the generic traversal gmapT, which rebuilds a term after
transforming its sub-values, may be conveniently expressed by pre-composing reify and post-
composing reflect.
The sections that follow give further uses for reify, which provides a basis for code motion

(Section 4.4) and for statically exploring and eliminating dynamic branches (Section 4.5, Section 4.6).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:17

κ[dyn

.< match x with

| [] → .˜˘cd e1¯

| hȷȷt → .˜˘cd e2¯>.]

{

dyn

.< match x with

| [] → .˜˘cd κ[e1]¯

| hȷȷt → .˜˘cd κ[e2]¯>.

Fig. 16. Lifting match across continuation frames

val case_locusȷ {PȷPS} → ˘unit → P.t¯ → P.t

val reifyȷ {PȷPS} → {DȷDATA} → D.t code → ˘D.t_ → P.t¯ → P.t

Fig. 17. case insertion, with partially-static data

reify, eta, and The Trick. The one-step dynamic unrolling that provides access to the top-level
static structure of a dynamic value corresponds directly to a well-known binding-time improvement
known in the partial evaluation community as The Trick [Jones 1995]. From another perspective,
the reify function for a DATA instance simply performs the appropriate eta expansion for the type t,
enabling a more favourable binding-time analysis [Danvy et al. 1995].

4.4 Case Lifting

The reify function (Section 4.3) exposes the top-level structure of data to allow static computation
with dynamic values. However, the inserted match expressions form a boundary between the static
and dynamic parts of the program. For example, consider the code generated for listify evenp at
the type int ˙ int:

.< let ˘x˛ y¯ = p in

if evenp .˜x then .˜˘cd [x]¯ else .˜˘cd []¯

␣ if evenp .˜y then .˜˘cd [y]¯ else .˜˘cd []¯>.

There are four possible outcomes for the two evenp tests, and for each outcome the length of the
result list is statically known. However, there is no static context that encloses enough data to build
any of the lists statically.
Transforming the program to lift one of the if expressions to the highest-possible point, just

below where x and y are bound, exposes more opportunities for optimization:

.< let ˘x˛ y¯ = p in

if evenp .˜x then

.˜˘.< if evenp .˜y then .˜˘cd ˘[x] ␣ [y]¯¯ else .˜˘cd [x]¯>.̄

.˜˘.< if evenp .˜y then .˜˘cd [y]¯ else .˜˘cd []¯>.̄ >.

This is not an anomalous example; the case lifting transformation increases the scope of static
variables, which is generally a binding-time improvement. Figure 16 shows the interaction with
contexts in the general case: the contextκ will not further reduce the fully-dynamic match expression,
but lifting the match across the context plugs in the possibly-static values e1 and e2, possibly exposing
new redexes.

Interface and implementation. Figure 17 gives an interface for case lifting which resembles the
let-insertion interface of Figure 4a. The case_locus function, analogous to let_locus, marks a place
where bindings may be inserted. The reify function is a generic version of the reify member of
DATA (Figure 15); it interacts with the reify member through the continuation argument, hoisting
the binding generated by reify to a case_locus point and interposing the context κ to shuffle the

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:18 Jeremy Yallop

let f x = match x with

Left x → []

| Right y → []

a. before pruning

let f x = []

b. after pruning

Fig. 18. Pruning listify evenp at ˘bool˛string¯ either

let rec r l = match l with

[] → []

| hȷȷt → r t

a. before recursive pruning

let r l = []

b. after recursive pruning

Fig. 19. Pruning listify evenp at bool list

continuation frames as depicted in Figure 16. Sinceκ is duplicated in each branch the implementation
makes use of multi-shot delimited control.

Case lifting elsewhere. While let-insertion is a common feature of staged programs, full case
lifting appears much rarer in practice, although less powerful forms of if insertion are occasionally
seen [Kameyama et al. 2011, 2014]. One possible reason is that duplicating continuations is often
unwise; while in our setting it is commonly the case that static computation will substantially reduce
the resulting code, that may not be true elsewhere. Second, while let insertion is polymorphic in
the type of the expression, case lifting is data-specific. The DATA constraint provides a convenient
basis for lifting arbitrary match expressions; without DATA, case lifting would have to be defined
separately for every type.

Case lifting for binary sums is, however, found in the broader literature relating to normalization
by evaluation and type-directed partial evaluation [Balat et al. 2004; Lindley 2007].

4.5 Branch Pruning

Here is a definition of binary sums in OCaml:

type ˘'a˛ 'b¯ either =

Left of 'a

| Right of 'b

The generic function listify evenp, applied to a value v of type ˘a˛ b¯ either, must first determine
whether v is Left x or Right y and then return a list of even integers found in x or y. If both x and y

are types such as bool or string that cannot contain integers, then the list will be empty in both
cases (Figure 18a).

In such cases, where it is statically apparent that all branches of a match are equal and independent
of the variables bound by the match, the match may be eliminated altogether, and replaced with the
value of the branch (Figure 18b) (provided, of course, that the scrutinee is free of effects!).

This is an instance of eta contraction, which applies to all algebraic data types, not just to simple
binary sums.

This branch pruning optimization enjoys two favourable interactions with inlining (Section 4.1)
and partially-static data (Section 4.2). First, reducing partially static data makes it more likely that
the branches of the match will produce evidently-equal values. Second, branch pruning eliminates
the dynamic matches introduced by reification (Section 4.3), making their static results available
for further computation.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:19

The eta rule therefore appears twice in converting a fully dynamic value to a fully static value:
first, reification statically exposes the top-level structure of a dynamic value. Here is an example,
with a dynamic value .<v>. of type ˘string˛ bool¯ either

listify evenp .<v>.

The effect of reification is to eta-expand .<v>.:

dyn .< match v with Left x → .˜˘listify evenp .<x>.̄

| Right y → .˜˘listify evenp .<y>.̄ >.

Next, computation with partially-static data simplifies the branches:

dyn .< match v with Left x → .˜˘sta []¯

| Right y → .˜˘sta []¯ >.

Finally, the branches are determined to be equal, and the result is eta reduced again, leaving only a
static value.

sta []

Implementation. A natural implementation of pruning is a wrapper around reify that passes into
reify a continuation that accumulates each value k v. When all the values have been accumulated
they are compared for equality; if they can be determined to be static and equal then the whole
expression built by reify is replaced with the static value.

4.6 Recursive Branch Elimination

The code in Figure 19(a), generated by the instantiation of listify evenp at the type bool list, is an
example of an unnecessary branch that is not eliminated by the branch pruning optimization of
Section 4.5.
The simplicity of the code is a consequence of the optimizations introduced so far: inlining

brought the instantiation of listify for bool into the body of r; reification expanded the value to
examine the true and false cases; branch pruning eliminated the match, having determined that both
branches were static empty lists, and partially-static data eliminated the resulting append of an
empty list.
However, the recursive data type (list), which led to the generation of the recursive function,

prevented further optimizations from taking place. The difficulty arises because the recursive call
r t is not static, and so the approach in Section 4.5 is not sufficiently powerful to detect that the
code can be simplified. Nevertheless, it is both evident that the function always returns the empty
list, and important that the code should be simplified, since the list it traverses may be arbitrarily
long.

How might Section 4.5 be generalized to the recursive case? The solution is to determine a static
fixed point. Starting from the assumption that r always returns the empty list, every recursive call to
r is replaced with the static empty list value. If the branches are then all statically equal to the empty
list then it is legitimate to eliminate the whole recursion (Figure 19(b)). This approach naturally
generalises both to mutual recursion, where the starting assumption is that all the functions in
a recursive binding group return zero, and to monoids other than lists. (Strictly speaking, it is
also necessary to check that the recursion is well-founded, or we will make the embarrassing
optimization of replacing a non-terminating loop with a constant. However, it is likely that all
recursion in the SYB setting is well-founded.)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:20 Jeremy Yallop

let rec gshow {DȷDATA} v =

show_constructor ˘constructor v¯ ˘gmapQ gshow v¯

Fig. 20a. gshow, unstaged

let gshow = gfixQ ˘fun f {DȷDATA} v →

˘show_constructor ˘constructor v¯ ˘gmapQ f v¯¯¯

Fig. 20b. gshow, staged

let gshow_list_bool =

let sl = ref dummy in let sb = ref dummy in

let ˘¯ = sb ȷ= fun b → apply_constructor ˘string_of_bool b¯ [] in

let ˘¯ = sl ȷ= fun l → apply_constructor

˘match l with [] → "[]" | _ȷȷ_ → "ȷȷ"¯

˘match l with [] → []

| hȷȷt → [!sb h; !sl t]¯

in fun x → !sl x

Fig. 20c. gshow, naively staged: generated code

(instantiated at bool list, slightly simplified)

let rec r l = match l with

| [] → "[]"

| hȷȷt → if h then "˘true ȷȷ "^ r t ^"¯"

else "˘false ȷȷ "^ r t ^"¯"

Fig. 20d. gshow, carefully staged: generated code

(instantiated at bool list)

Implementation. The implementation is broadly similar to the implementation of branch pruning
(Section 4.5): the gfixQMon combinator, an extension of gfixQ with an additional MONOID constraint
(ensuring that the result type has a zero element) interacts with reify to extract the results of
each branch in an environment where all functions in the local recursive group return zero. If the
results of every branch are zero for every function in the group then (under the well-foundedness
assumption mentioned above) the functions in the group may be replaced with constant zero
functions and inlined in any bindings subsequently generated.

Here is a simple example: when listify evenp is instantiated with argument type int ˙ ˘bool list¯,
the fixed-point calculation determines that traversing the second component of the pair always
returns an empty list and generates the following efficient code:

let evenspair p =

let ˘i˛ l¯ = p in

if evenp i then [i] else []

5 EVALUATION: APPLICABILITY

We conclude the technical development by evaluating the more carefully staged library with
a variety of examples. This section shows the dramatic improvements to the generated code,
which becomes simpler, shorter, and more obviously correct. The following section (6) shows the
consequent positive impact on performance.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:21

let rec gsize {DȷDATA} v = 1 ¸ sum ˘gmapQ gsize v¯

Fig. 21a. gsize, unstaged

let gsize = gfixQ ˘fun self {DȷDATA} v →

sta 1 <¸> fold_left ˘<¸>¯ zero ˘gmapQ self v¯¯

Fig. 21b. gsize, staged

let gsize_list =

let sl = ref dummy in let sp = ref dummy in

let ss = ref dummy in let si = ref dummy in

let sb = ref dummy in

let ˘¯ = si ȷ= fun y → 1 ¸ sum [] in

let ˘¯ = sb ȷ= fun y → 1 ¸ sum [] in

let ˘¯ = ss ȷ= fun y →

1 ¸ ˘sum ˘match y with

| Left x → [!sb x]

| Right y → [!si y]¯¯ in

let ˘¯ = sp ȷ= fun y →

1 ¸ ˘sum ˘let ˘x˛y¯ = y in [!sb x; !ss y]¯¯ in

let ˘¯ = sl ȷ= fun y →

1 ¸ ˘sum ˘match y with

| [] → []

| hȷȷt → [!sp h; !sl t]¯¯ in

fun x → !sl x

Fig. 21c. gsize, naively staged: generated code

(instantiated at ˘int˙˘int˛string¯ either¯ list)

let rec r l = match l with

| [] → 1

| hȷȷt → 5 ¸ r t

Fig. 21d. gsize, carefully staged: generated code

(instantiated at ˘int˙˘int˛string¯ either¯ list)

gshow. Figures 20a and 20b show unstaged and staged implementations of the gshow function, de-
fined in terms of the SYB functions constructor and gmapQ, and an auxiliary function show_constructor.
The changes needed for staging are minimal: besides the custom fixed point operator gfixQ, the
implementations are identical.
Figures 20c and 20d show the code generated by the naive and carefully staged libraries when

gshow is instantiated at argument type bool list.
Several of the optimisations developed in Section 4 improve the generated code. Recursion

analysis and inlining have reduced the code to a single recursive function (Section 4.1), as is also
the case in the examples that follow. Since gshow inspects v twice, case lifting (Section 4.4) avoids the
multiple dynamic tests (match expressions). The strings built by gshow, like the lists built by listify,
are partially-static (Section 4.2), enabling the static concatenation of strings in the generated code:
the boolean constructor names appear in the same string literals as the infix cons constructor.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:22 Jeremy Yallop

let gtypecount {XȷTYPEABLE} x = gcount ˘mkQ false ˘fun _ → true¯¯

Fig. 22a. gtypecount, unstaged

let gtypecount {XȷTYPEABLE} x = gcount ˘mkQ ff ˘fun _ → tt¯¯

Fig. 22b. gtypecount, staged

let rec crush u = function

| [] → u

| hȷȷt → crush ˘u ¸ h¯ t in

let tl = ref dummy in let te = ref dummy in

let tp = ref dummy in let tb = ref dummy in

let ti = ref dummy in

let ˘¯ = tb ȷ= fun y → crush ˘if false then 1 else 0¯ [] in

let ˘¯ = ti ȷ= fun y → crush ˘if true then 1 else 0¯ [] in

let ˘¯ = tp ȷ= fun p → crush ˘if false then 1 else 0¯

˘let ˘a˛b¯ = p in [!ti a; !tb b]¯ in

let ˘¯ = te ȷ= fun y →

crush ˘if false then 1 else 0¯

˘match y with Left x → [!ti x]

| Right y → [!tp y]¯ in

let ˘¯ = tl ȷ= fun y →

crush ˘if false then 1 else 0¯

˘match y with [] → []

| hȷȷt → [!te h; !tl t]¯ in

fun x → !tl x

Fig. 22c. gtypecount, naively staged: generated code

(instantiated at ˘int˛ int ˙ bool¯ either list)

let rec r l = match l with

| [] → 0

| hȷȷt → 1 ¸ r t

Fig. 22d. gtypecount, carefully staged: generated code

(instantiated at ˘int˛ int ˙ bool¯ either list)

gsize. Figures 21a and 21b show unstaged and staged implementations of the gsize function,
which computes the size of a value as the successor of the sum of the sizes of its sub-values.
Partially-static data changes the code slightly from the unstaged version: arithmetic with <¸> and
zero replaces arithmetic with standard integers. The larger structure of the code is unchanged.
Figures 21c and 21d show the generated code for the naive and carefully staged libraries when

gsize is instantiated with argument type ˘int˙˘int˛string¯ either¯ list. Once again, various opti-
mizations from the preceding pages significantly simplify the generated code .
Since int and string both have size 1, a combination of partially-static data (Section 4.2) and

branch pruning (Section 4.5) reduces the computation of gsize at type ˘int˛string¯ either to «, and
int˙˘˘int˛string¯ either¯ to 5.

gtypecount. Figures 22a and 22b show staged and unstaged implementations of a function
gtypecount in terms of another generic scheme, gcount. Since gtypecount is not defined recursively

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:23

let rec gdepth {Dȷ DATA} x = succ ˘maximum ˘gmapQ gdepth x¯¯

Fig. 23a. gdepth, unstaged

let gdepth_ = gfixQ ˘fun self {DȷDATA} x →

sta 1 <¸> fold_left max zero ˘gmapQ self x¯¯

Fig. 23b. gdepth, staged

let dp = ref dummy in let di = ref dummy in

let tq = ref dummy in let dl = ref dummy in

let ˘¯ = di ȷ= fun y → succ ˘maximum []¯ in

let ˘¯ = dl ȷ= fun y → succ ˘maximum ˘match y with

| [] → []

| hȷȷt → [!di h; !dl t]¯¯ in

let ˘¯ = tq ȷ= fun y → succ ˘maximum ˘let ˘a˛b¯ = y in

[!dl a; !di b]¯¯ in

let ˘¯ = dp ȷ= fun y → succ ˘maximum ˘let ˘a˛b¯ = y in

[!tq a; !di b]¯¯ in

fun x → !dp x

Fig. 23c. gdepth, naively staged: generated code

(instantiated at ˘˘int list ˙ int¯ ˙ int¯ → int)

let rec r x = match x with

| [] → 1

| hȷȷt → 1 ¸ max 1 ˘r t¯

let f p = let ˘x˛y¯ = p in

let ˘a˛b¯ = x in

2 ¸ max 1 ˘r a¯

Fig. 23d. gdepth, carefully staged: generated code

(instantiated at ˘˘int list ˙ int¯ ˙ int¯ → int)

there is no need for custom fixed points, and so the two implementations are identical except for
the use of partially-static booleans ff and tt in place of false and true.

Figures 22c and 22d show the output for gtypecount when it is instantiated to count the number
of int values in a value of type ˘int˛ int ˙ bool¯ either list.

As with gsize, partially-static data (Section 4.2) and branch pruning (Section 4.5) have significantly
simplified the body of the generated function (Figure 22d), so that it simply adds a known integer
for each element in the list, having determined that a value of type ˘int˛ int ˙ bool¯ either always
contains exactly one int.

gdepth. Finally, Figures 23a and 23b show unstaged and staged versions of the generic function
gdepth, a generic function for computing the longest path from a value to one of its leaves. The
implementations are similar except for the use of a custom fixed point gfixQ and partially static
data (<¸>, zero, max) in the staged version.
The implementation of gdepth is similar to gsize, except that the results of traversing the sub-

values are combined with max, not with addition; however, both addition and max are needed, and
the partially static data form a tropical semiring.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:24 Jeremy Yallop

Figures 23c and 23d show the code generated when gdepth is instantiated with argument type
˘˘int list ˙ int¯ ˙ int¯.

As the figures show, the advanced staging techniques of Section 4 have significantly improved
the output. Recursion analysis has determined that the generated function r for traversing int list

values should be recursive, and that the code that follows should be non-recursive. Examining
the code for r reveals a remaining opportunity for improvement: since r always returns at least
1, the call to max in the cons branch is unnecessary. However, the simple fixed-point analysis in
Section 4.6 is not sufficiently powerful enough to detect the redundancy.

6 EVALUATION: PERFORMANCE

The code generated by the improved staging library is evidently clearer, shorter, and simpler than
the code generated by the naive staging. We now confirm that it also performs better.
Figure 24 compares the performance on five representative benchmarks of the unstaged SYB

(Section 2), the naively-staged version (Section 3), the more carefully staged version (Section 4),
and a hand-written version. The first three benchmarks, Map, SelectInt, and RMWeights, are the same
as those used to evaluate the naive staging in Section 3.3. The two additional benchmarks, Size
and Show, are introduced in this work; they are drawn from Section 5, and illustrate how the more
sophisticated optimizations of Section 4 improve the performance of traversals that do not simply
visit each node in a data structure.

All measurements, both for these benchmarks and those in Section 3.3, were made using the
».02.1¸modular‚implicits‚ber fork of MetaOCaml, which is the most recent available version
with support for implicits. The benchmarks were run on an AMD FX 8320 machine with 16GB
of memory running Debian Linux. With the exception of the Map benchmark, whose times have
95% confidence intervals within ±5%, all timings have 95% C.I. within ±2%. The measurements
were taken using core-bench, a sophisticated micro-benchmarking library that accounts for garbage
collection overheads and automatically computes the number of runs needed to eliminate the
cost of the timing function from the measurements [Hardin and James 2013]. Each measurement
reported in Figures 9 and 24 is thus computed by core-bench from thousands of runs of the specified
function.

The hand-written code for each benchmark is written in idiomatic functional style, prioritizing
modularity over low-level performance tricks. For example, code for the Map benchmark first defines
a function mapTree, which is then applied to the successor function (rather than, say, inlining succ

within mapTree):

let rec mapTree f t = match t with

| Leaf → Leaf

| Bin ˘v˛ l˛ r¯ → Bin ˘f v˛ mapTree f l˛ mapTree f r¯

Similarly, the hand-written code for the printing benchmark Show is written using a combinator
per type constructor (cf. e.g. work described by Kennedy [2004]; Yallop [2007]) rather than fusing
the code together as in Figure 20d. Since the output of a multi-stage program is OCaml code, it is
always possible in principle, but rarely advisable in practice, to manually write identical code to
the output of a staged library, and so achieve identical performance.

The performance of Map with the carefully staged library is almost 20× faster than the unstaged
generic version, slightly improved over the naively staged version, and a little faster than the
handwritten code, apparently because of the inlining of the successor function by the library.
The improvement in SelectInt is more dramatic: it is over 22× as fast as the unstaged generic

version, over twice as fast as the naively-staged version, and there is no remaining overhead
compared to handwritten code.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:25

RMWeightsSelectIntMap Size Show

0

1,000

2,000

2,094

1,809
1,977 1,949

1,326

169180110

709

1,322

15180101 67

956

11580106
293

1,979

ru
n
ti
m
e
(µ
s)

Unstaged Naively staged Carefully staged Manual

Fig. 24. Enhanced staged SYB Performance

The RMWeights benchmark shows improvements over the naive version; there is still a little residual
overhead compared to the handwritten version.

The results of the two new benchmarks are more notable. For Size, the carefully staged version
is almost 30× as fast as the unstaged version; more remarkably, it is over 4× as fast as hand-
written code, due to the fusing together of generated functions and shifting of arithmetic work to
compile-time (Figure 21d).

The carefully staged version of Show is also faster than handwritten code, but there is an additional
surprise: the unstaged generic version also beats the handwritten entry! Examining the handwritten
code for printing lists uncovers the reason: the string concatenation operator is right associative
in OCaml, and so the naive implementation copies the long strings on the right, generated by
show_list, many times.

let rec show_list f l = match l with

[] → "[]"

| hȷȷt → "˘"^ f h ^" ȷȷ " ^ show_list f t ^"¯"

Parenthesizing to avoid right nesting brings the running time down from 1979µs to 1022µs ,
almost as fast as the generated code that fuses together the printers for lists and bools (Figure 20d).

7 RELATED WORK

That generic programming libraries often suffer from poor performance is well known, and there
have been several investigations into ways to make them more efficient.

Boulytchev and Mechtaev [2011] (with a more extensive account in Russian [Mechtaev 2011]) ex-
plore how to implement SYB efficiently in OCaml. Their implementation preceded the introduction
of modular implicits and GADTs, so they use a type-passing implementation together with a type
equality based on an unsafe cast. Instead of language-supported staging, they carefully refactor the
SYB code to eliminate inefficiencies, translating to CPS and traversing the type structure in advance
to build efficient closure-based traversals. They achieve performance fairly close to hand-written
code by combining these transformations with an additional optimisation whose effects are similar
to the selective traversal optimisation described in Section 4.5 and Section 4.6.
The work of Adams et al. [2015] (and the earlier version, [Adams et al. 2014]) are comparable

to the earlier attempt to stage SYB described in Section 3 [Yallop 2016]. Adams et al. improve the
performance of the Scrap Your Boilerplate library by means of a domain-specific optimisation,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

29:26 Jeremy Yallop

implemented first as a Hermit script [Farmer et al. 2012], and then as a GHC optimisation. The opti-
misation seeks to eliminate expressions of łundesirable typesž Ð that is, expressions corresponding
to the dictionaries for the Data and Typeable classes, expressions of type TypeRep, and some associated
newtypes Ð from code that uses SYB by various transformations on the intermediate language.
The resulting improvements are impressive, bringing the performance of the SYB benchmarks
in Section 3.3 in line with handwritten code. (However, the additional benchmarks introduced in
Section 6, which do not visit every node, have no direct counterpart in the work of Adams et al.
[2015], and the critical optimizations that eliminate unnecessary traversals (Sections 4.2 and 4.6)
are not supported by their implementation.)
The work described in this paper improves on the work of Adams et al. in several ways. First,

as the examples in this paper demonstrate, focusing on values of łundesirablež type is not always
sufficient to achieve reasonable performance; in particular, it does not help with avoiding fruitless
traversals of sub-values, such as searching for integers within the list of strings in the listify

example of Section 1. Second, staging avoids the need to go outside the language to improve
performance Ð indeed, the semantics of the language stipulate precisely what code should be
generated by the staged SYB library Ð and so the behaviour of our implementation is not vulnerable
to changes in the details of optimization passes or other internal compiler issues. As Adams et al.
[2015] note, the success of their optimizations depends critically on the details of GHC’s inlining
behaviour, and so optimizations that are performed successfully with one version of GHC are found
to fail with a later version. Finally, MetaOCaml’s type system justifies a degree of confidence in
the correctness of the staged code that is not available in a compiler pass. The types of the staged
SYB library are fully integrated with the rest of the program; in contrast, it is easy in a compiler
optimization pass to inadvertently generate ill-typed code.
The treatment of implicit arguments as static data in a partial evaluation goes back to Jones

[1995], who applies it to the more general case of specializing overloaded functions associated with
arbitrary type classes.

Magalhães [2013] applies local rewrite rules to another generic programming library for Haskell,
generic-deriving, and with careful tuning achieves results equivalent to handwritten code. These
results are encouraging, particularly since no compiler modifications are needed. Nonetheless,
relying on extra-lingual annotations cannot provide strong guarantees that optimisations will
continue to work with future versions of the compiler.

The staged SYB implementation in this paper can be seen as an kind of active library [Veldhuizen
2004] Ð that is, a library which interacts with the compiler in some way to improve performance.
Active libraries are most commonly used in scientific programming domains where performance is
critical. The implicit thesis of this paper is that the active library approach also has a role to play in
significantly improving the performance of very high-level libraries such as SYB, bringing them to
a point where they do not suffer significant disadvantages over hand-written code.
Finally, there is an increasing body of evidence that staging can significantly improve the

performance of elegant but inefficient libraries such as SYB. Two recent examples are given by
Jonnalagedda et al. [2014], who present a staging transformation of high-level parser combinators
using Scala’s Lightweight Modular Staging [Rompf and Odersky 2010], and Kiselyov et al. [2017],
who use staging techniques to implement a stream library with a high-level interface that generates
low-level code with strong performance guarantees. The latter paper implements equivalent staging
transformations in two languages (Scala LMS and MetaOCaml); we expect the techniques developed
in the present paper to be similarly transferable to a variety of systems, including LMS and the
forthcoming Typed Template Haskell [Peyton Jones 2016], which adds MetaOCaml-style typed
quotations to the currently untyped Template Haskell system.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

Staged Generic Programming 29:27

8 CONCLUSION

We have shown how to apply existing and novel multi-stage programming techniques to transform
a popular generic programming library into an optimising code generator. Our staging of SYB
combines the following attributes:

Efficient: while generic programming libraries often suffer from poor performance, the output
of the staged library is comparable to hand-written code.

Incremental: the staging is decomposed into a series of local changes with virtuous interac-
tions, maintaining the original structure of the library.

Type-safe: MetaOCaml’s type safety properties ensure that the staged library never generates
ill-typed code.

Reusable: the staging techniques presented here deal with the core elements of functional
programming: algebraic data, higher-order functions, recursion, etc. We anticipate that these
techniques will apply to a wide class of programs.

REFERENCES

Michael D. Adams, Andrew Farmer, and José Pedro Magalhães. 2014. Optimizing SYB is Easy!. In Proceedings of the ACM

SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation (PEPM ’14). ACM, New York, NY, USA, 71ś82.

Michael D. Adams, Andrew Farmer, and José Pedro Magalhães. 2015. Optimizing SYB traversals is easy! Science of Computer

Programming 112, Part 2 (2015), 170 ś 193. https://doi.org/10.1016/j.scico.2015.09.003 Selected and extended papers from

Partial Evaluation and Program Manipulation 2014.

Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. 2004. Extensional Normalisation and Type-directed Partial Evaluation

for Typed Lambda Calculus with Sums. In POPL ’04. ACM, New York, NY, USA, 64ś76. https://doi.org/10.1145/964001.

964007

Andrej Bauer and Matija Pretnar. 2012. Programming with Algebraic Effects and Handlers. CoRR abs/1203.1539 (2012).

http://arxiv.org/abs/1203.1539

Anders Bondorf. 1992. Improving Binding TimesWithout Explicit CPS-conversion. In Proceedings of the 1992 ACM Conference

on LISP and Functional Programming (LFP ’92). ACM, New York, NY, USA, 1ś10. https://doi.org/10.1145/141471.141483

Dmitri Boulytchev and Sergey Mechtaev. 2011. Efficiently scrapping boilerplate code in OCaml. (September 2011). ACM

Workshop on ML 2011.

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. 2009. Finally Tagless, Partially Evaluated: Tagless Staged Interpreters

for Simpler Typed Languages. J. Funct. Program. 19, 5 (Sept. 2009), 509ś543.

Olivier Danvy, Karoline Malmkjñr, and Jens Palsberg. 1995. The essence of eta-expansion in partial evaluation. LISP and

Symbolic Computation 8, 3 (1995), 209ś227. https://doi.org/10.1007/BF01019004

Olivier Danvy, Karoline Malmkjñr, and Jens Palsberg. 1996. Eta-expansion Does The Trick. ACM Trans. Program. Lang. Syst.

18, 6 (Nov. 1996), 730ś751.

Stephen Dolan, Leo White, KC Sivaramakrishnan, Jeremy Yallop, and Anil Madhavapeddy. 2015. Effective Concurrency

through Algebraic Effects. (September 2015). OCaml Users and Developers Workshop 2015.

Andrew Farmer, Andy Gill, Ed Komp, and Neil Sculthorpe. 2012. The HERMIT in the Machine: A Plugin for the Interactive

Transformation of GHC Core Language Programs. In Proceedings of the 2012 Haskell Symposium (Haskell ’12). ACM, New

York, NY, USA, 1ś12. https://doi.org/10.1145/2364506.2364508

Andrzej Filinski. 2001. Normalization by Evaluation for the Computational Lambda-calculus (TLCA’01). Springer-Verlag,

Berlin, Heidelberg, 151ś165. http://dl.acm.org/citation.cfm?id=1754621.1754638

Christopher S. Hardin and Roshan P. James. 2013. Core bench: micro-benchmarking for OCaml. OCaml Users and Developers

Workshop. (September 2013).

John Hughes. 1999. A Type Specialisation Tutorial. Springer Berlin Heidelberg, Berlin, Heidelberg, 293ś325. https:

//doi.org/10.1007/3-540-47018-2_12

Jun Inoue. 2014. Supercompilation via staging. In Fourth International Valentin Turchin Workshop on Metacomputation.

Patricia Johann and Neil Ghani. 2008. Foundations for structured programming with GADTs (POPL 2008). ACM.

Mark P. Jones. 1995. Dictionary-free Overloading by Partial Evaluation. Lisp Symb. Comput. 8, 3 (Sept. 1995), 229ś248.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial Evaluation and Automatic ProgramGeneration. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA.

Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and Martin Odersky. 2014. Staged Parser Combinators

for Efficient Data Processing. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

https://doi.org/10.1016/j.scico.2015.09.003
https://doi.org/10.1145/964001.964007
https://doi.org/10.1145/964001.964007
http://arxiv.org/abs/1203.1539
https://doi.org/10.1145/141471.141483
https://doi.org/10.1007/BF01019004
https://doi.org/10.1145/2364506.2364508
http://dl.acm.org/citation.cfm?id=1754621.1754638
https://doi.org/10.1007/3-540-47018-2_12
https://doi.org/10.1007/3-540-47018-2_12

29:28 Jeremy Yallop

Systems Languages & Applications (OOPSLA ’14). ACM, New York, NY, USA, 637ś653. https://doi.org/10.1145/2660193.

2660241

David Kaloper-Meršinjak and Jeremy Yallop. 2016. Generic Partially-static Data (Extended Abstract). In Proceedings of

the 1st International Workshop on Type-Driven Development (TyDe 2016). ACM, New York, NY, USA, 39ś40. https:

//doi.org/10.1145/2976022.2976028

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2011. Shifting the Stage: Staging with Delimited Control. J.

Funct. Program. 21, 6 (Nov. 2011), 617ś662.

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2014. Combinators for Impure Yet Hygienic Code Generation.

In Proceedings of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program Manipulation (PEPM ’14). ACM,

New York, NY, USA, 3ś14. https://doi.org/10.1145/2543728.2543740

Andrew J. Kennedy. 2004. Functional Pearl: Pickler Combinators. Journal of Functional Programming 14, 6 (November 2004).

Oleg Kiselyov. 2012. Delimited Control in OCaml, Abstractly and Concretely. Theor. Comput. Sci. 435 (June 2012), 56ś76.

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml. In Functional and Logic Programming, Michael

Codish and Eijiro Sumii (Eds.). Lecture Notes in Computer Science, Vol. 8475. Springer International Publishing, 86ś102.

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. 2017. Stream Fusion, to Completeness. In POPL

2017. ACM.

Oleg Kiselyov, Kedar N. Swadi, and Walid Taha. 2004. A Methodology for Generating Verified Combinatorial Circuits. In

Proceedings of the 4th ACM International Conference on Embedded Software (EMSOFT ’04). ACM, New York, NY, USA,

249ś258. https://doi.org/10.1145/1017753.1017794

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A Practical Design Pattern for Generic Programming

(TLDI ’03). ACM, New York, NY, USA, 26ś37.

Ralf Lämmel and Simon Peyton Jones. 2004. Scrap More Boilerplate: Reflection, Zips, and Generalised Casts. In Proceedings

of the Ninth ACM SIGPLAN International Conference on Functional Programming (ICFP ’04). ACM, New York, NY, USA,

244ś255.

P. J. Landin. 1964. The Mechanical Evaluation of Expressions. Comput. J. 6, 4 (1964), 308ś320. https://doi.org/10.1093/

comjnl/6.4.308 arXiv:http://comjnl.oxfordjournals.org/content/6/4/308.full.pdf+html

J. Launchbury. 1991. Project Factorisations in Partial Evaluation. Cambridge University Press. https://books.google.co.uk/

books?id=B1UTK2j8rksC

Julia L. Lawall and Olivier Danvy. 1994. Continuation-based Partial Evaluation. In Proceedings of the 1994 ACM Conference

on LISP and Functional Programming (LFP ’94). ACM, New York, NY, USA, 227ś238. https://doi.org/10.1145/182409.182483

Xavier Leroy. 2003. A proposal for recursive modules in Objective Caml. INRIA Rocquencourt. (May 2003). Version 1.1.

Sam Lindley. 2007. Extensional Rewriting with Sums. In Proceedings of the 8th International Conference on Typed Lambda

Calculi and Applications (TLCA’07). Springer-Verlag, Berlin, Heidelberg, 255ś271. http://dl.acm.org/citation.cfm?id=

1770203.1770222

Andres Löh and Ralf Hinze. 2006. Open Data Types and Open Functions. In Proceedings of the 8th ACM SIGPLAN International

Conference on Principles and Practice of Declarative Programming (PPDP ’06). ACM, New York, NY, USA, 133ś144.

José Pedro Magalhães. 2013. Optimisation of Generic Programs through Inlining. In Accepted for publication at the 24th

Symposium on Implementation and Application of Functional Languages (IFL’12) (IFL ’12).

Sergey Mechtaev. 2011. Eliminating boilerplate code in Objective Caml programs. System Programming 6, 1 (2011). In

Russian.

Kristian Nielsen and Morten Heine Sùrensen. 1995. Call-By-Name CPS-Translation As a Binding-Time Improvement. In

Proceedings of the Second International Symposium on Static Analysis (SAS ’95). Springer-Verlag, London, UK, UK, 296ś313.

http://dl.acm.org/citation.cfm?id=647163.717677

Simon Peyton Jones. 2016. Template Haskell, 14 years on. Talk given at the International Summer School on Metaprogram-

ming, Cambridge, UK. (August 2016). https://www.cl.cam.ac.uk/events/metaprog2016/Template-Haskell-Aug16.pptx.

Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell Compiler Inliner. J. Funct. Program. 12, 5 (July

2002), 393ś434.

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging: A Pragmatic Approach to Runtime Code Generation

and Compiled DSLs. In Proceedings of the Ninth International Conference on Generative Programming and Component

Engineering (GPCE ’10). ACM, New York, NY, USA, 127ś136. https://doi.org/10.1145/1868294.1868314

Tim Sheard and Iavor S. Diatchki. 2002. Staging Algebraic Datatypes. Unpublished manuscript. (2002).

http://web.cecs.pdx.edu/~sheard/papers/stagedData.ps.

Walid Mohamed Taha. 1999. Multistage Programming: Its Theory and Applications. Ph.D. Dissertation. Oregon Graduate

Institute of Science and Technology. AAI9949870.

The GHC Team. 2015. The Glorious Glasgow Haskell Compilation System User’s Guide (7.10.2 ed.).

Peter Thiemann. 2013. Partially Static Operations (PEPM ’13). ACM, New York, NY, USA, 75ś76. https://doi.org/10.1145/

2426890.2426906

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1145/2660193.2660241
https://doi.org/10.1145/2976022.2976028
https://doi.org/10.1145/2976022.2976028
https://doi.org/10.1145/2543728.2543740
https://doi.org/10.1145/1017753.1017794
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1093/comjnl/6.4.308
http://arxiv.org/abs/http://comjnl.oxfordjournals.org/content/6/4/308.full.pdf+html
https://books.google.co.uk/books?id=B1UTK2j8rksC
https://books.google.co.uk/books?id=B1UTK2j8rksC
https://doi.org/10.1145/182409.182483
http://dl.acm.org/citation.cfm?id=1770203.1770222
http://dl.acm.org/citation.cfm?id=1770203.1770222
http://dl.acm.org/citation.cfm?id=647163.717677
https://www.cl.cam.ac.uk/events/metaprog2016/Template-Haskell-Aug16.pptx
https://doi.org/10.1145/1868294.1868314
http://web.cecs.pdx.edu/~sheard/papers/stagedData.ps
https://doi.org/10.1145/2426890.2426906
https://doi.org/10.1145/2426890.2426906

Staged Generic Programming 29:29

Todd L. Veldhuizen. 2004. Active Libraries and Universal Languages. Ph.D. Dissertation. Indiana University Computer

Science.

Leo White, Frédéric Bour, and Jeremy Yallop. 2015. Modular Implicits. ACM Workshop on ML 2014 post-proceedings.

(September 2015).

Jeremy Yallop. 2007. Practical Generic Programming in OCaml. In ACM SIGPLAN Workshop on ML, Derek Dreyer (Ed.).

Freiburg, Germany.

Jeremy Yallop. 2016. Staging Generic Programming. In Proceedings of the 2016 ACM SIGPLANWorkshop on Partial Evaluation

and Program Manipulation (PEPM ’16). ACM, New York, NY, USA, 85ś96. https://doi.org/10.1145/2847538.2847546

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 29. Publication date: September 2017.

https://doi.org/10.1145/2847538.2847546

	Abstract
	1 Introduction
	1.1 Outline and Contributions

	2 Scrap Your Boilerplate
	2.1 SYB Basics
	2.2 The First SYB Ingredient: Type Equality Tests
	2.3 The Second SYB Ingredient: Generic Operations
	2.4 The Third SYB Ingredient: Generic Schemes

	3 Staging SYB, Naively
	3.1 Staged Generic Operations
	3.2 Staged Traversal Schemes
	3.3 Performance of the Naive Staging

	4 Staging SYB, Carefully
	4.1 Recursion and Inlining
	4.2 Partially-Static Data
	4.3 Reification (and Reflection)
	4.4 Case Lifting
	4.5 Branch Pruning
	4.6 Recursive Branch Elimination

	5 Evaluation: Applicability
	6 Evaluation: Performance
	7 Related Work
	8 Conclusion
	References

