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Supplementary Information 

Supplementary Results 

The STRING based UC-associated signalling network contained 709 proteins and 11016 

protein-protein interactions, meanwhile the Reactome based UC-associated signalling 

network contained 317 proteins and 1867. Out of the 48 SNP affected proteins we found in 

our study cohort, 33 and 23 were in the STRING and Reactome derived networks respectively. 

The patient specific networks were clustered with the same clustering method that was used 

in the iSNP method (see Methods). The STRING derived network clustered the patients into 

6 clusters, meanwhile using the Reactome derived network clustered the patients into 4 

clusters (Figure S2 a and b). The Reactome and STRING clustering were dissimilar compared 

to the OmniPath derived network clustering (Figure S2 c and d). The STRING and the 

Reactome derived clusters were similar, only the STRING clusters were splitting two 

Reactome clusters into two (Figure S2e). We measured the similarity using the rand index 

(Figure S2 f). The primary cluster driving proteins in both the STRING and Reactome derived 

networks were affected by the SNP rs477515, which is related to various HLA proteins, 

NOTCH4 and AGER (Table 1). The secondary cluster driving proteins were affected by the 

SNP rs913678. These proteins included VEGFA, XPO5 and POLH. The clustering difference 

between the networks originated from the degree of these proteins. In Reactome and STRING, 

the HLA proteins were the highest degree proteins in the UC associated signalling network, 

meanwhile, in the OmniPath network, these proteins had not had as many interactions as 

PRKCB, NFKB1 or CEBPB. Important however to note that the affected biological processes 

in the UC-associated signalling networks were independent of the network source, indicating 

that the curation or other resource related biases do not affect our main message on the 

cellular functions affected in UC.  



 

Supplementary Figure 1. The iSNP pipeline blue: input data, green: pipeline script, grey: external 

information, orange: output The iSNP pipeline uses the vcf files and various external information to find 

the SNPs location and search for the transcription factor binding sites or miRNA target sites for both 

the SNP affected – mutated - and not affected - wild type - sequence. After that the mutated and wild 

type network is compared and where are differences those differences are kept.  



This analysis suggests that the OmniPath derived network has overlapping biological 

processes with the other two databases. OmniPath’s coverage is higher compared to the two 

other databases: 34 compared to 33 and 23 (Figures S3 a). The low overlap at the node and 

the edge level shows that all three networks contain complementary information (Figure S3 

b,c). The patient clustering can be database-specific, and would be driven by the degree of 

the SNP affected proteins - in our case the HLA proteins in the Reactome and the STRING 

derived networks and PRKCB in the OmniPath derived network. The enriched biological 

processes were overlapping between the network sources but the OmniPath network has a 

much higher number of enriched biological processes (Figure S3 d,e,f). All three networks 

contained the same immune related functions such as “Immune Related Process”. 

 

 

Supplementary Figure 2. Running the iSNP method on two different networks. a) Hierarchical 

clustering of patients using the STRING network, Hamming distance.  The patients are separated into 

six distinguishable clusters. b) Hierarchical clustering of patients using the Reactome network, 

Hamming distance. The patients are separated into four distinguishable clusters.  c-e Heatmaps 

showing the similarity between clustering. Each cell in the heatmap represents the percentage of the 

patients in that column.  c) Overlaps between the OmniPath and STRING clusters. d) Overlaps between 



the OmniPath and Reactome clusters. In these comparisons, the percentages are in the OmniPath 

clusters. The clusters are not mapped to one another, meaning the databases measure different parts 

of the human interactome. e) Comparison between Reactome and STRING The clustering is similar; 

only the Reactome 2 and 4 clusters are the STRING 4,5 and 3,6 clusters, respectively. Here the 

percentages are in the Reactome clusters. f) Adjusted rand index calculations. 

 

 

Supplementary Figure 3. Overlaps between various UC associated signalling networks using 

different initial query human interactome. a) SNP-affected proteins, b) Proteins (nodes), c) Physical 

protein-protein interactions (edges) d) Gene Ontology Biological Processes (functions) e) Enriched GO 

biological processes in the OmniPath network visualised by Revigo, f) Enriched GO biological 

processes in the Reactome network visualised by Revigo, g) Enriched GO biological processes in the 

OmniPath network visualised by Revigo The networks have high overlap at the initial SNP affected 

proteins, but they contain different edges and through that different interactors. However, the affected 

functions are similar. Benjamini-Hochberg corrected hypergeometric tests q<0.05 visualised.   



 
Supplementary Figure 4. Revigo analysis of overrepresented Gene Ontology Biological processes in 

commonly affected proteins grouped by in how many patients they are affected. A) Common biological 

process - affected in more than 300 patients. The processes involved in most ulcerative colitis patients 



in our cohort are well known pathogenetic avenues of ulcerative colitis such as NFKB signalling and 

regulation of autophagy. B) Biological processes of genes affected between 300 and 170 patients. Note 

Notch signalling and MHC class II antigen presentation. These are functions of SNP affected proteins 

which are not involved at the first few clustering level. C) Specific processes – affected in less than 170 

patients. Note angiogenesis and cell migration, which are probably related to the first neighbours of 

VEGFA. Benjamini-Hochberg corrected hypergeometric tests, q<0.05 visualised. 

 

 

Supplementary Table 1 List of clustered patients and patient demographics 

Cluster 
Gender Immunomodulator Age Age at diagnosis 

Female Male No only ASA Yes No data Mean STD Mean STD 

1 70 75 96 47 2 63 15.3 39.90648 15.35 

2 50 61 74 36 1 60.1 13 36.72477 13.23 

3 34 31 41 21 3 56.6 14.8 36.08065 15.61 

4 28 29 35 22 0 57.9 15.4 36.4 14.32 

Whole data set 182 196 246 126 6 60.3 14.7 37.78 14.67 

STD: standard deviation, ASA: aminosalicylic acid  

  



Supplementary Discussion  

 

The conclusion drawn from computational workflows is dependent on three factors; 1) the 

quality of the input data, 2) the quality of the processing and parameter optimisation and 3) 

the quality of the analysis 1. If any one of these components fails, then the entire pipeline fails 

leading to aberrant conclusions. We address each of these areas below.  

Challenges with the input data 

The high-quality individual genetic information was collected from the UK IBD Genetic 

Consortium. The data were preprocessed and quality controlled with immunochip data, giving 

the individual patient alleles present at the SNP sites. Immunochip contains a subset of 

specific SNPs associated with autoimmune diseases 2. We looked for individual patient SNP 

burdens against IBD SNPs that had been finemapped. In this way, we were not analysing the 

data looking for novel SNPs. Our aim was to functionally annotate those that had been already 

identified on a patient by patient basis. The East Anglian Cohort was chosen due to the access 

to granularity of clinical data, to assess if clinical parameters could be associated with the 

patient stratification. This was ambitious, given that it required nearly 30,000 patients for 

Cleynen et al to identify NOD2, MHC and 3p21 as being associated with age of disease onset 

and disease location 3.   

 

For validation ideally we should use a high number of patients with transcriptomic and genomic 

features, however that was not yet available. Instead, we turned to a validation cohort with 

transcriptomics data on a high number of similar patients from the PROTECT study 4. The 

PROTECT cohort however has its own limitations 4,5. It has only juvenile ulcerative colitis 

patients and a relatively low number of controls (n=20). However using a homogenous and 

treatment naive population we were able to demonstrate the similarities between the effect of 

the SNPs and the transcriptomic manifestation of UC.  

 

During the testing phase of the pipeline design, it became clear that generating patient specific 

backgrounds for RSAT resulted in differing SNP effects of the same SNP. This was optimised 

by using a singular genetic background file for RSAT and FIMO to remove any differences 

between the patient data except for the SNP alleles, thereby reducing false positive/negative 

prediction. Whilst this allowed us to meet our aim of specific analysis of the SNP function, we 

acknowledge that it necessitates simplification of the complexity of the individual human 

genome.  
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We used a binary approach as to whether a SNP affects the regulation of a gene or protein - 

this allows us to identify when a SNP weakly affects the binding of a transcription factor or 

miRNA target site, but does not eliminate the site completely, giving a broader overview of 

SNP functional annotation. 

 

One of the final input challenges we had to overcome was that the immunochip data we had 

to use was based on a 15 years old genome version, Hg18. We had to map the genomic 

coordinates to the better annotated Hg19 genome version. Such lift-overs are inherent with 

difficulties 6; reassuringly we did not have any variants that would not map over due to it being 

in a contig from the Hg18 that did not reside in Hg19, or merged rs numbers. Our main issue 

was some variant alleles being recognised as ancestral alleles in Hg19. Each of these SNPs 

needed to be separated for manual filtering and checking.  

 

Challenges with data processing and parameter optimisation  

Transcription factor binding sites: 

There are multiple transcription factor binding site prediction methods including hidden Markov 

models, hierarchical mixture models, support vector machines, and discriminative maximum 

conditional likelihood which all rely on prior knowledge such as position weight matrix. We 

utilised the two widely cited, validated tools - Regulatory Sequence Analysis tools (RSAT) 7 8 

and Find Individual Motif Occurrences (FIMO) 9. 

 

There are known complexities with SNPs affecting transcription factor binding sites, including 

trans effects of SNPs.  During optimisation, we took into account that the length of the 

transcription factor binding site query sequence needs to be the length of the binding site plus 

the SNP nucleotide, but this does not take into account the folding of DNA and trans effects 

of SNPs, or SNPs in promoters or enhancers so we utilised a longer nucleotide sequence to 

encompass this. We extensively analysed enhancer databases, of which there are many. 10–

12, and utilised the largest repositories available. We acknowledge that not all transcription 

factor binding site enhancers will be active, and that very recently artificial intelligence 

techniques have been utilised to integrate predictions of chromatin interaction with SNP data 

to identify SNPs in areas of active chromatin 13,14, however a switch mechanism to identify 

which are active or not, was not available during the development and expansion of iSNP, so 

we used a simple approach: if a transcription factor binding site was affected in an  enhancer 

site by a SNP with a target gene in the HEDD database, we kept it within the network.  
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For promoter regions, we undertook significant parameter optimisation. The complexity lies 

within the definition of a promoter which varies within the literature. Initially we used 2kb from 

the start of the genes in both directions looking for UC SNPs but this missed a significant 

number of ‘distant’ promoters, so we expanded the analysis to 5kb. Whilst this does not allow 

analysis of the multiple transcription start sites, it does give a global overview of SNP effects 

on individual transcription factor binding sites, so this pay off met our aim.  

MiRNA Target Sites: 

MiRNA target sites were identified within untranslated regions of the transcripts and first 

introns. To remove false positive/false negative results, any hits outside of these regions were 

excluded. In terms of the identification algorithm, we trialled both MIRANDA 15 and TargetScan 

16 for inclusion into the pipeline - both of which perform well in miRNA target site identification, 

MIRANDA uses an algorithm which changes score dependent on the input nucleotides, 

whereas the TargetScan requires genome assembly  to work, which make it a useful 

standalone, but as part of an functional annotation pipeline it was not plausible to integrate it. 

We acknowledge that SNPs may impact on other parts of miRNA biogenesis and action, 

however we utilised the site of SNP impact with the largest wealth of experimental data.  

Challenges with the data analysis  

The next challenge was how to identify key protein drivers of disease from within the networks. 

We have previously identified from studies of cancer networks, information regarding 

pathogenic pathways to disease can be gleaned from the direct protein-protein interactors with 

the protein of interest 17. In our current use case, we identified the direct interactors of any 

SNP affected gene product (protein). This was via a transcription factor binding site enhancer, 

or promoter, or a transcript with an affected miRNA target site. Whilst there are datasets for 

gene splicing sites and pre-miRNAs, that would add a level of complexity, they have an 

increased risk of significant false positivity and negativity, so for this use case, the decision 

was made that these datasets need further validation before adding into the workflow.  

 

Regarding utilising the East Anglian Cohort: Despite having good coverage of patient 

metadata from the UK IBD Genetic Consortium, supervised clustering did not identify any 

association with clinical parameters. Areas with gaps in the UK Genetic Consortium patient 

metadata included 2% of the treatment data and only 43% of the extent of the disease. We 

are therefore, able to say with confidence, that there is no generalisable correlation between 

the clusters and age of diagnosis, or requirement of treatment escalation. Given the gaps in 

the metadata, we are unable to analyse the correlation between disease extent or the 
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requirement of surgery. To answer these questions; larger cohorts, with breadth and depth of 

clinical data, is required, such as provided by Gut Reactions.  

 

For network modularisation we used the top down Grivan-Newman clustering which was 

implemented in Cytoscape’s Clustermaker app18. All network modularisation algorithms give 

back slightly different network modules due to the modularity plateau (equally good module 

determiantions)19. However the enriched functions in each module depend on the SNP-

affected proteins and their network topology. We have not analysed the various structures of 

the network modules but tested how affected functions change using different networks 

(OmniPath20, STRING21, and Reactome22 (Supplementary Figure S3 d-g, and Supplementary 

Table 6). We found that the enriched functions were similar if we used different network 

resources.  
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